VirtualBox

source: vbox/trunk/src/VBox/Devices/Network/DevE1000.cpp@ 75267

Last change on this file since 75267 was 73867, checked in by vboxsync, 6 years ago

Network/E1000: LEDCTL implementation, prompted by patch on vbox-dev.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 326.3 KB
Line 
1/* $Id: DevE1000.cpp 73867 2018-08-24 08:50:37Z vboxsync $ */
2/** @file
3 * DevE1000 - Intel 82540EM Ethernet Controller Emulation.
4 *
5 * Implemented in accordance with the specification:
6 *
7 * PCI/PCI-X Family of Gigabit Ethernet Controllers Software Developer's Manual
8 * 82540EP/EM, 82541xx, 82544GC/EI, 82545GM/EM, 82546GB/EB, and 82547xx
9 *
10 * 317453-002 Revision 3.5
11 *
12 * @todo IPv6 checksum offloading support
13 * @todo Flexible Filter / Wakeup (optional?)
14 */
15
16/*
17 * Copyright (C) 2007-2017 Oracle Corporation
18 *
19 * This file is part of VirtualBox Open Source Edition (OSE), as
20 * available from http://www.virtualbox.org. This file is free software;
21 * you can redistribute it and/or modify it under the terms of the GNU
22 * General Public License (GPL) as published by the Free Software
23 * Foundation, in version 2 as it comes in the "COPYING" file of the
24 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
25 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_DEV_E1000
33#include <iprt/crc.h>
34#include <iprt/ctype.h>
35#include <iprt/net.h>
36#include <iprt/semaphore.h>
37#include <iprt/string.h>
38#include <iprt/time.h>
39#include <iprt/uuid.h>
40#include <VBox/vmm/pdmdev.h>
41#include <VBox/vmm/pdmnetifs.h>
42#include <VBox/vmm/pdmnetinline.h>
43#include <VBox/param.h>
44#include "VBoxDD.h"
45
46#include "DevEEPROM.h"
47#include "DevE1000Phy.h"
48
49
50/*********************************************************************************************************************************
51* Defined Constants And Macros *
52*********************************************************************************************************************************/
53/** @name E1000 Build Options
54 * @{ */
55/** @def E1K_INIT_RA0
56 * E1K_INIT_RA0 forces E1000 to set the first entry in Receive Address filter
57 * table to MAC address obtained from CFGM. Most guests read MAC address from
58 * EEPROM and write it to RA[0] explicitly, but Mac OS X seems to depend on it
59 * being already set (see @bugref{4657}).
60 */
61#define E1K_INIT_RA0
62/** @def E1K_LSC_ON_RESET
63 * E1K_LSC_ON_RESET causes e1000 to generate Link Status Change
64 * interrupt after hard reset. This makes the E1K_LSC_ON_SLU option unnecessary.
65 * With unplugged cable, LSC is triggerred for 82543GC only.
66 */
67#define E1K_LSC_ON_RESET
68/** @def E1K_LSC_ON_SLU
69 * E1K_LSC_ON_SLU causes E1000 to generate Link Status Change interrupt when
70 * the guest driver brings up the link via STATUS.LU bit. Again the only guest
71 * that requires it is Mac OS X (see @bugref{4657}).
72 */
73//#define E1K_LSC_ON_SLU
74/** @def E1K_INIT_LINKUP_DELAY
75 * E1K_INIT_LINKUP_DELAY prevents the link going up while the driver is still
76 * in init (see @bugref{8624}).
77 */
78#define E1K_INIT_LINKUP_DELAY_US (2000 * 1000)
79/** @def E1K_IMS_INT_DELAY_NS
80 * E1K_IMS_INT_DELAY_NS prevents interrupt storms in Windows guests on enabling
81 * interrupts (see @bugref{8624}).
82 */
83#define E1K_IMS_INT_DELAY_NS 100
84/** @def E1K_TX_DELAY
85 * E1K_TX_DELAY aims to improve guest-host transfer rate for TCP streams by
86 * preventing packets to be sent immediately. It allows to send several
87 * packets in a batch reducing the number of acknowledgments. Note that it
88 * effectively disables R0 TX path, forcing sending in R3.
89 */
90//#define E1K_TX_DELAY 150
91/** @def E1K_USE_TX_TIMERS
92 * E1K_USE_TX_TIMERS aims to reduce the number of generated TX interrupts if a
93 * guest driver set the delays via the Transmit Interrupt Delay Value (TIDV)
94 * register. Enabling it showed no positive effects on existing guests so it
95 * stays disabled. See sections 3.2.7.1 and 3.4.3.1 in "8254x Family of Gigabit
96 * Ethernet Controllers Software Developer’s Manual" for more detailed
97 * explanation.
98 */
99//#define E1K_USE_TX_TIMERS
100/** @def E1K_NO_TAD
101 * E1K_NO_TAD disables one of two timers enabled by E1K_USE_TX_TIMERS, the
102 * Transmit Absolute Delay time. This timer sets the maximum time interval
103 * during which TX interrupts can be postponed (delayed). It has no effect
104 * if E1K_USE_TX_TIMERS is not defined.
105 */
106//#define E1K_NO_TAD
107/** @def E1K_REL_DEBUG
108 * E1K_REL_DEBUG enables debug logging of l1, l2, l3 in release build.
109 */
110//#define E1K_REL_DEBUG
111/** @def E1K_INT_STATS
112 * E1K_INT_STATS enables collection of internal statistics used for
113 * debugging of delayed interrupts, etc.
114 */
115#define E1K_INT_STATS
116/** @def E1K_WITH_MSI
117 * E1K_WITH_MSI enables rudimentary MSI support. Not implemented.
118 */
119//#define E1K_WITH_MSI
120/** @def E1K_WITH_TX_CS
121 * E1K_WITH_TX_CS protects e1kXmitPending with a critical section.
122 */
123#define E1K_WITH_TX_CS
124/** @def E1K_WITH_TXD_CACHE
125 * E1K_WITH_TXD_CACHE causes E1000 to fetch multiple TX descriptors in a
126 * single physical memory read (or two if it wraps around the end of TX
127 * descriptor ring). It is required for proper functioning of bandwidth
128 * resource control as it allows to compute exact sizes of packets prior
129 * to allocating their buffers (see @bugref{5582}).
130 */
131#define E1K_WITH_TXD_CACHE
132/** @def E1K_WITH_RXD_CACHE
133 * E1K_WITH_RXD_CACHE causes E1000 to fetch multiple RX descriptors in a
134 * single physical memory read (or two if it wraps around the end of RX
135 * descriptor ring). Intel's packet driver for DOS needs this option in
136 * order to work properly (see @bugref{6217}).
137 */
138#define E1K_WITH_RXD_CACHE
139/** @def E1K_WITH_PREREG_MMIO
140 * E1K_WITH_PREREG_MMIO enables a new style MMIO registration and is
141 * currently only done for testing the relateted PDM, IOM and PGM code. */
142//#define E1K_WITH_PREREG_MMIO
143/* @} */
144/* End of Options ************************************************************/
145
146#ifdef E1K_WITH_TXD_CACHE
147/**
148 * E1K_TXD_CACHE_SIZE specifies the maximum number of TX descriptors stored
149 * in the state structure. It limits the amount of descriptors loaded in one
150 * batch read. For example, Linux guest may use up to 20 descriptors per
151 * TSE packet. The largest TSE packet seen (Windows guest) was 45 descriptors.
152 */
153# define E1K_TXD_CACHE_SIZE 64u
154#endif /* E1K_WITH_TXD_CACHE */
155
156#ifdef E1K_WITH_RXD_CACHE
157/**
158 * E1K_RXD_CACHE_SIZE specifies the maximum number of RX descriptors stored
159 * in the state structure. It limits the amount of descriptors loaded in one
160 * batch read. For example, XP guest adds 15 RX descriptors at a time.
161 */
162# define E1K_RXD_CACHE_SIZE 16u
163#endif /* E1K_WITH_RXD_CACHE */
164
165
166/* Little helpers ************************************************************/
167#undef htons
168#undef ntohs
169#undef htonl
170#undef ntohl
171#define htons(x) ((((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8))
172#define ntohs(x) htons(x)
173#define htonl(x) ASMByteSwapU32(x)
174#define ntohl(x) htonl(x)
175
176#ifndef DEBUG
177# ifdef E1K_REL_DEBUG
178# define DEBUG
179# define E1kLog(a) LogRel(a)
180# define E1kLog2(a) LogRel(a)
181# define E1kLog3(a) LogRel(a)
182# define E1kLogX(x, a) LogRel(a)
183//# define E1kLog3(a) do {} while (0)
184# else
185# define E1kLog(a) do {} while (0)
186# define E1kLog2(a) do {} while (0)
187# define E1kLog3(a) do {} while (0)
188# define E1kLogX(x, a) do {} while (0)
189# endif
190#else
191# define E1kLog(a) Log(a)
192# define E1kLog2(a) Log2(a)
193# define E1kLog3(a) Log3(a)
194# define E1kLogX(x, a) LogIt(x, LOG_GROUP, a)
195//# define E1kLog(a) do {} while (0)
196//# define E1kLog2(a) do {} while (0)
197//# define E1kLog3(a) do {} while (0)
198#endif
199
200#if 0
201# define LOG_ENABLED
202# define E1kLogRel(a) LogRel(a)
203# undef Log6
204# define Log6(a) LogRel(a)
205#else
206# define E1kLogRel(a) do { } while (0)
207#endif
208
209//#undef DEBUG
210
211#define STATE_TO_DEVINS(pThis) (((PE1KSTATE )pThis)->CTX_SUFF(pDevIns))
212#define E1K_RELOCATE(p, o) *(RTHCUINTPTR *)&p += o
213
214#define E1K_INC_CNT32(cnt) \
215do { \
216 if (cnt < UINT32_MAX) \
217 cnt++; \
218} while (0)
219
220#define E1K_ADD_CNT64(cntLo, cntHi, val) \
221do { \
222 uint64_t u64Cnt = RT_MAKE_U64(cntLo, cntHi); \
223 uint64_t tmp = u64Cnt; \
224 u64Cnt += val; \
225 if (tmp > u64Cnt ) \
226 u64Cnt = UINT64_MAX; \
227 cntLo = (uint32_t)u64Cnt; \
228 cntHi = (uint32_t)(u64Cnt >> 32); \
229} while (0)
230
231#ifdef E1K_INT_STATS
232# define E1K_INC_ISTAT_CNT(cnt) do { ++cnt; } while (0)
233#else /* E1K_INT_STATS */
234# define E1K_INC_ISTAT_CNT(cnt) do { } while (0)
235#endif /* E1K_INT_STATS */
236
237
238/*****************************************************************************/
239
240typedef uint32_t E1KCHIP;
241#define E1K_CHIP_82540EM 0
242#define E1K_CHIP_82543GC 1
243#define E1K_CHIP_82545EM 2
244
245#ifdef IN_RING3
246/** Different E1000 chips. */
247static const struct E1kChips
248{
249 uint16_t uPCIVendorId;
250 uint16_t uPCIDeviceId;
251 uint16_t uPCISubsystemVendorId;
252 uint16_t uPCISubsystemId;
253 const char *pcszName;
254} g_aChips[] =
255{
256 /* Vendor Device SSVendor SubSys Name */
257 { 0x8086,
258 /* Temporary code, as MSI-aware driver dislike 0x100E. How to do that right? */
259# ifdef E1K_WITH_MSI
260 0x105E,
261# else
262 0x100E,
263# endif
264 0x8086, 0x001E, "82540EM" }, /* Intel 82540EM-A in Intel PRO/1000 MT Desktop */
265 { 0x8086, 0x1004, 0x8086, 0x1004, "82543GC" }, /* Intel 82543GC in Intel PRO/1000 T Server */
266 { 0x8086, 0x100F, 0x15AD, 0x0750, "82545EM" } /* Intel 82545EM-A in VMWare Network Adapter */
267};
268#endif /* IN_RING3 */
269
270
271/* The size of register area mapped to I/O space */
272#define E1K_IOPORT_SIZE 0x8
273/* The size of memory-mapped register area */
274#define E1K_MM_SIZE 0x20000
275
276#define E1K_MAX_TX_PKT_SIZE 16288
277#define E1K_MAX_RX_PKT_SIZE 16384
278
279/*****************************************************************************/
280
281/** Gets the specfieid bits from the register. */
282#define GET_BITS(reg, bits) ((reg & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT)
283#define GET_BITS_V(val, reg, bits) ((val & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT)
284#define BITS(reg, bits, bitval) (bitval << reg##_##bits##_SHIFT)
285#define SET_BITS(reg, bits, bitval) do { reg = (reg & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0)
286#define SET_BITS_V(val, reg, bits, bitval) do { val = (val & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0)
287
288#define CTRL_SLU UINT32_C(0x00000040)
289#define CTRL_MDIO UINT32_C(0x00100000)
290#define CTRL_MDC UINT32_C(0x00200000)
291#define CTRL_MDIO_DIR UINT32_C(0x01000000)
292#define CTRL_MDC_DIR UINT32_C(0x02000000)
293#define CTRL_RESET UINT32_C(0x04000000)
294#define CTRL_VME UINT32_C(0x40000000)
295
296#define STATUS_LU UINT32_C(0x00000002)
297#define STATUS_TXOFF UINT32_C(0x00000010)
298
299#define EECD_EE_WIRES UINT32_C(0x0F)
300#define EECD_EE_REQ UINT32_C(0x40)
301#define EECD_EE_GNT UINT32_C(0x80)
302
303#define EERD_START UINT32_C(0x00000001)
304#define EERD_DONE UINT32_C(0x00000010)
305#define EERD_DATA_MASK UINT32_C(0xFFFF0000)
306#define EERD_DATA_SHIFT 16
307#define EERD_ADDR_MASK UINT32_C(0x0000FF00)
308#define EERD_ADDR_SHIFT 8
309
310#define MDIC_DATA_MASK UINT32_C(0x0000FFFF)
311#define MDIC_DATA_SHIFT 0
312#define MDIC_REG_MASK UINT32_C(0x001F0000)
313#define MDIC_REG_SHIFT 16
314#define MDIC_PHY_MASK UINT32_C(0x03E00000)
315#define MDIC_PHY_SHIFT 21
316#define MDIC_OP_WRITE UINT32_C(0x04000000)
317#define MDIC_OP_READ UINT32_C(0x08000000)
318#define MDIC_READY UINT32_C(0x10000000)
319#define MDIC_INT_EN UINT32_C(0x20000000)
320#define MDIC_ERROR UINT32_C(0x40000000)
321
322#define TCTL_EN UINT32_C(0x00000002)
323#define TCTL_PSP UINT32_C(0x00000008)
324
325#define RCTL_EN UINT32_C(0x00000002)
326#define RCTL_UPE UINT32_C(0x00000008)
327#define RCTL_MPE UINT32_C(0x00000010)
328#define RCTL_LPE UINT32_C(0x00000020)
329#define RCTL_LBM_MASK UINT32_C(0x000000C0)
330#define RCTL_LBM_SHIFT 6
331#define RCTL_RDMTS_MASK UINT32_C(0x00000300)
332#define RCTL_RDMTS_SHIFT 8
333#define RCTL_LBM_TCVR UINT32_C(3) /**< PHY or external SerDes loopback. */
334#define RCTL_MO_MASK UINT32_C(0x00003000)
335#define RCTL_MO_SHIFT 12
336#define RCTL_BAM UINT32_C(0x00008000)
337#define RCTL_BSIZE_MASK UINT32_C(0x00030000)
338#define RCTL_BSIZE_SHIFT 16
339#define RCTL_VFE UINT32_C(0x00040000)
340#define RCTL_CFIEN UINT32_C(0x00080000)
341#define RCTL_CFI UINT32_C(0x00100000)
342#define RCTL_BSEX UINT32_C(0x02000000)
343#define RCTL_SECRC UINT32_C(0x04000000)
344
345#define ICR_TXDW UINT32_C(0x00000001)
346#define ICR_TXQE UINT32_C(0x00000002)
347#define ICR_LSC UINT32_C(0x00000004)
348#define ICR_RXDMT0 UINT32_C(0x00000010)
349#define ICR_RXT0 UINT32_C(0x00000080)
350#define ICR_TXD_LOW UINT32_C(0x00008000)
351#define RDTR_FPD UINT32_C(0x80000000)
352
353#define PBA_st ((PBAST*)(pThis->auRegs + PBA_IDX))
354typedef struct
355{
356 unsigned rxa : 7;
357 unsigned rxa_r : 9;
358 unsigned txa : 16;
359} PBAST;
360AssertCompileSize(PBAST, 4);
361
362#define TXDCTL_WTHRESH_MASK 0x003F0000
363#define TXDCTL_WTHRESH_SHIFT 16
364#define TXDCTL_LWTHRESH_MASK 0xFE000000
365#define TXDCTL_LWTHRESH_SHIFT 25
366
367#define RXCSUM_PCSS_MASK UINT32_C(0x000000FF)
368#define RXCSUM_PCSS_SHIFT 0
369
370/** @name Register access macros
371 * @remarks These ASSUME alocal variable @a pThis of type PE1KSTATE.
372 * @{ */
373#define CTRL pThis->auRegs[CTRL_IDX]
374#define STATUS pThis->auRegs[STATUS_IDX]
375#define EECD pThis->auRegs[EECD_IDX]
376#define EERD pThis->auRegs[EERD_IDX]
377#define CTRL_EXT pThis->auRegs[CTRL_EXT_IDX]
378#define FLA pThis->auRegs[FLA_IDX]
379#define MDIC pThis->auRegs[MDIC_IDX]
380#define FCAL pThis->auRegs[FCAL_IDX]
381#define FCAH pThis->auRegs[FCAH_IDX]
382#define FCT pThis->auRegs[FCT_IDX]
383#define VET pThis->auRegs[VET_IDX]
384#define ICR pThis->auRegs[ICR_IDX]
385#define ITR pThis->auRegs[ITR_IDX]
386#define ICS pThis->auRegs[ICS_IDX]
387#define IMS pThis->auRegs[IMS_IDX]
388#define IMC pThis->auRegs[IMC_IDX]
389#define RCTL pThis->auRegs[RCTL_IDX]
390#define FCTTV pThis->auRegs[FCTTV_IDX]
391#define TXCW pThis->auRegs[TXCW_IDX]
392#define RXCW pThis->auRegs[RXCW_IDX]
393#define TCTL pThis->auRegs[TCTL_IDX]
394#define TIPG pThis->auRegs[TIPG_IDX]
395#define AIFS pThis->auRegs[AIFS_IDX]
396#define LEDCTL pThis->auRegs[LEDCTL_IDX]
397#define PBA pThis->auRegs[PBA_IDX]
398#define FCRTL pThis->auRegs[FCRTL_IDX]
399#define FCRTH pThis->auRegs[FCRTH_IDX]
400#define RDFH pThis->auRegs[RDFH_IDX]
401#define RDFT pThis->auRegs[RDFT_IDX]
402#define RDFHS pThis->auRegs[RDFHS_IDX]
403#define RDFTS pThis->auRegs[RDFTS_IDX]
404#define RDFPC pThis->auRegs[RDFPC_IDX]
405#define RDBAL pThis->auRegs[RDBAL_IDX]
406#define RDBAH pThis->auRegs[RDBAH_IDX]
407#define RDLEN pThis->auRegs[RDLEN_IDX]
408#define RDH pThis->auRegs[RDH_IDX]
409#define RDT pThis->auRegs[RDT_IDX]
410#define RDTR pThis->auRegs[RDTR_IDX]
411#define RXDCTL pThis->auRegs[RXDCTL_IDX]
412#define RADV pThis->auRegs[RADV_IDX]
413#define RSRPD pThis->auRegs[RSRPD_IDX]
414#define TXDMAC pThis->auRegs[TXDMAC_IDX]
415#define TDFH pThis->auRegs[TDFH_IDX]
416#define TDFT pThis->auRegs[TDFT_IDX]
417#define TDFHS pThis->auRegs[TDFHS_IDX]
418#define TDFTS pThis->auRegs[TDFTS_IDX]
419#define TDFPC pThis->auRegs[TDFPC_IDX]
420#define TDBAL pThis->auRegs[TDBAL_IDX]
421#define TDBAH pThis->auRegs[TDBAH_IDX]
422#define TDLEN pThis->auRegs[TDLEN_IDX]
423#define TDH pThis->auRegs[TDH_IDX]
424#define TDT pThis->auRegs[TDT_IDX]
425#define TIDV pThis->auRegs[TIDV_IDX]
426#define TXDCTL pThis->auRegs[TXDCTL_IDX]
427#define TADV pThis->auRegs[TADV_IDX]
428#define TSPMT pThis->auRegs[TSPMT_IDX]
429#define CRCERRS pThis->auRegs[CRCERRS_IDX]
430#define ALGNERRC pThis->auRegs[ALGNERRC_IDX]
431#define SYMERRS pThis->auRegs[SYMERRS_IDX]
432#define RXERRC pThis->auRegs[RXERRC_IDX]
433#define MPC pThis->auRegs[MPC_IDX]
434#define SCC pThis->auRegs[SCC_IDX]
435#define ECOL pThis->auRegs[ECOL_IDX]
436#define MCC pThis->auRegs[MCC_IDX]
437#define LATECOL pThis->auRegs[LATECOL_IDX]
438#define COLC pThis->auRegs[COLC_IDX]
439#define DC pThis->auRegs[DC_IDX]
440#define TNCRS pThis->auRegs[TNCRS_IDX]
441/* #define SEC pThis->auRegs[SEC_IDX] Conflict with sys/time.h */
442#define CEXTERR pThis->auRegs[CEXTERR_IDX]
443#define RLEC pThis->auRegs[RLEC_IDX]
444#define XONRXC pThis->auRegs[XONRXC_IDX]
445#define XONTXC pThis->auRegs[XONTXC_IDX]
446#define XOFFRXC pThis->auRegs[XOFFRXC_IDX]
447#define XOFFTXC pThis->auRegs[XOFFTXC_IDX]
448#define FCRUC pThis->auRegs[FCRUC_IDX]
449#define PRC64 pThis->auRegs[PRC64_IDX]
450#define PRC127 pThis->auRegs[PRC127_IDX]
451#define PRC255 pThis->auRegs[PRC255_IDX]
452#define PRC511 pThis->auRegs[PRC511_IDX]
453#define PRC1023 pThis->auRegs[PRC1023_IDX]
454#define PRC1522 pThis->auRegs[PRC1522_IDX]
455#define GPRC pThis->auRegs[GPRC_IDX]
456#define BPRC pThis->auRegs[BPRC_IDX]
457#define MPRC pThis->auRegs[MPRC_IDX]
458#define GPTC pThis->auRegs[GPTC_IDX]
459#define GORCL pThis->auRegs[GORCL_IDX]
460#define GORCH pThis->auRegs[GORCH_IDX]
461#define GOTCL pThis->auRegs[GOTCL_IDX]
462#define GOTCH pThis->auRegs[GOTCH_IDX]
463#define RNBC pThis->auRegs[RNBC_IDX]
464#define RUC pThis->auRegs[RUC_IDX]
465#define RFC pThis->auRegs[RFC_IDX]
466#define ROC pThis->auRegs[ROC_IDX]
467#define RJC pThis->auRegs[RJC_IDX]
468#define MGTPRC pThis->auRegs[MGTPRC_IDX]
469#define MGTPDC pThis->auRegs[MGTPDC_IDX]
470#define MGTPTC pThis->auRegs[MGTPTC_IDX]
471#define TORL pThis->auRegs[TORL_IDX]
472#define TORH pThis->auRegs[TORH_IDX]
473#define TOTL pThis->auRegs[TOTL_IDX]
474#define TOTH pThis->auRegs[TOTH_IDX]
475#define TPR pThis->auRegs[TPR_IDX]
476#define TPT pThis->auRegs[TPT_IDX]
477#define PTC64 pThis->auRegs[PTC64_IDX]
478#define PTC127 pThis->auRegs[PTC127_IDX]
479#define PTC255 pThis->auRegs[PTC255_IDX]
480#define PTC511 pThis->auRegs[PTC511_IDX]
481#define PTC1023 pThis->auRegs[PTC1023_IDX]
482#define PTC1522 pThis->auRegs[PTC1522_IDX]
483#define MPTC pThis->auRegs[MPTC_IDX]
484#define BPTC pThis->auRegs[BPTC_IDX]
485#define TSCTC pThis->auRegs[TSCTC_IDX]
486#define TSCTFC pThis->auRegs[TSCTFC_IDX]
487#define RXCSUM pThis->auRegs[RXCSUM_IDX]
488#define WUC pThis->auRegs[WUC_IDX]
489#define WUFC pThis->auRegs[WUFC_IDX]
490#define WUS pThis->auRegs[WUS_IDX]
491#define MANC pThis->auRegs[MANC_IDX]
492#define IPAV pThis->auRegs[IPAV_IDX]
493#define WUPL pThis->auRegs[WUPL_IDX]
494/** @} */
495
496/**
497 * Indices of memory-mapped registers in register table.
498 */
499typedef enum
500{
501 CTRL_IDX,
502 STATUS_IDX,
503 EECD_IDX,
504 EERD_IDX,
505 CTRL_EXT_IDX,
506 FLA_IDX,
507 MDIC_IDX,
508 FCAL_IDX,
509 FCAH_IDX,
510 FCT_IDX,
511 VET_IDX,
512 ICR_IDX,
513 ITR_IDX,
514 ICS_IDX,
515 IMS_IDX,
516 IMC_IDX,
517 RCTL_IDX,
518 FCTTV_IDX,
519 TXCW_IDX,
520 RXCW_IDX,
521 TCTL_IDX,
522 TIPG_IDX,
523 AIFS_IDX,
524 LEDCTL_IDX,
525 PBA_IDX,
526 FCRTL_IDX,
527 FCRTH_IDX,
528 RDFH_IDX,
529 RDFT_IDX,
530 RDFHS_IDX,
531 RDFTS_IDX,
532 RDFPC_IDX,
533 RDBAL_IDX,
534 RDBAH_IDX,
535 RDLEN_IDX,
536 RDH_IDX,
537 RDT_IDX,
538 RDTR_IDX,
539 RXDCTL_IDX,
540 RADV_IDX,
541 RSRPD_IDX,
542 TXDMAC_IDX,
543 TDFH_IDX,
544 TDFT_IDX,
545 TDFHS_IDX,
546 TDFTS_IDX,
547 TDFPC_IDX,
548 TDBAL_IDX,
549 TDBAH_IDX,
550 TDLEN_IDX,
551 TDH_IDX,
552 TDT_IDX,
553 TIDV_IDX,
554 TXDCTL_IDX,
555 TADV_IDX,
556 TSPMT_IDX,
557 CRCERRS_IDX,
558 ALGNERRC_IDX,
559 SYMERRS_IDX,
560 RXERRC_IDX,
561 MPC_IDX,
562 SCC_IDX,
563 ECOL_IDX,
564 MCC_IDX,
565 LATECOL_IDX,
566 COLC_IDX,
567 DC_IDX,
568 TNCRS_IDX,
569 SEC_IDX,
570 CEXTERR_IDX,
571 RLEC_IDX,
572 XONRXC_IDX,
573 XONTXC_IDX,
574 XOFFRXC_IDX,
575 XOFFTXC_IDX,
576 FCRUC_IDX,
577 PRC64_IDX,
578 PRC127_IDX,
579 PRC255_IDX,
580 PRC511_IDX,
581 PRC1023_IDX,
582 PRC1522_IDX,
583 GPRC_IDX,
584 BPRC_IDX,
585 MPRC_IDX,
586 GPTC_IDX,
587 GORCL_IDX,
588 GORCH_IDX,
589 GOTCL_IDX,
590 GOTCH_IDX,
591 RNBC_IDX,
592 RUC_IDX,
593 RFC_IDX,
594 ROC_IDX,
595 RJC_IDX,
596 MGTPRC_IDX,
597 MGTPDC_IDX,
598 MGTPTC_IDX,
599 TORL_IDX,
600 TORH_IDX,
601 TOTL_IDX,
602 TOTH_IDX,
603 TPR_IDX,
604 TPT_IDX,
605 PTC64_IDX,
606 PTC127_IDX,
607 PTC255_IDX,
608 PTC511_IDX,
609 PTC1023_IDX,
610 PTC1522_IDX,
611 MPTC_IDX,
612 BPTC_IDX,
613 TSCTC_IDX,
614 TSCTFC_IDX,
615 RXCSUM_IDX,
616 WUC_IDX,
617 WUFC_IDX,
618 WUS_IDX,
619 MANC_IDX,
620 IPAV_IDX,
621 WUPL_IDX,
622 MTA_IDX,
623 RA_IDX,
624 VFTA_IDX,
625 IP4AT_IDX,
626 IP6AT_IDX,
627 WUPM_IDX,
628 FFLT_IDX,
629 FFMT_IDX,
630 FFVT_IDX,
631 PBM_IDX,
632 RA_82542_IDX,
633 MTA_82542_IDX,
634 VFTA_82542_IDX,
635 E1K_NUM_OF_REGS
636} E1kRegIndex;
637
638#define E1K_NUM_OF_32BIT_REGS MTA_IDX
639/** The number of registers with strictly increasing offset. */
640#define E1K_NUM_OF_BINARY_SEARCHABLE (WUPL_IDX + 1)
641
642
643/**
644 * Define E1000-specific EEPROM layout.
645 */
646struct E1kEEPROM
647{
648 public:
649 EEPROM93C46 eeprom;
650
651#ifdef IN_RING3
652 /**
653 * Initialize EEPROM content.
654 *
655 * @param macAddr MAC address of E1000.
656 */
657 void init(RTMAC &macAddr)
658 {
659 eeprom.init();
660 memcpy(eeprom.m_au16Data, macAddr.au16, sizeof(macAddr.au16));
661 eeprom.m_au16Data[0x04] = 0xFFFF;
662 /*
663 * bit 3 - full support for power management
664 * bit 10 - full duplex
665 */
666 eeprom.m_au16Data[0x0A] = 0x4408;
667 eeprom.m_au16Data[0x0B] = 0x001E;
668 eeprom.m_au16Data[0x0C] = 0x8086;
669 eeprom.m_au16Data[0x0D] = 0x100E;
670 eeprom.m_au16Data[0x0E] = 0x8086;
671 eeprom.m_au16Data[0x0F] = 0x3040;
672 eeprom.m_au16Data[0x21] = 0x7061;
673 eeprom.m_au16Data[0x22] = 0x280C;
674 eeprom.m_au16Data[0x23] = 0x00C8;
675 eeprom.m_au16Data[0x24] = 0x00C8;
676 eeprom.m_au16Data[0x2F] = 0x0602;
677 updateChecksum();
678 };
679
680 /**
681 * Compute the checksum as required by E1000 and store it
682 * in the last word.
683 */
684 void updateChecksum()
685 {
686 uint16_t u16Checksum = 0;
687
688 for (int i = 0; i < eeprom.SIZE-1; i++)
689 u16Checksum += eeprom.m_au16Data[i];
690 eeprom.m_au16Data[eeprom.SIZE-1] = 0xBABA - u16Checksum;
691 };
692
693 /**
694 * First 6 bytes of EEPROM contain MAC address.
695 *
696 * @returns MAC address of E1000.
697 */
698 void getMac(PRTMAC pMac)
699 {
700 memcpy(pMac->au16, eeprom.m_au16Data, sizeof(pMac->au16));
701 };
702
703 uint32_t read()
704 {
705 return eeprom.read();
706 }
707
708 void write(uint32_t u32Wires)
709 {
710 eeprom.write(u32Wires);
711 }
712
713 bool readWord(uint32_t u32Addr, uint16_t *pu16Value)
714 {
715 return eeprom.readWord(u32Addr, pu16Value);
716 }
717
718 int load(PSSMHANDLE pSSM)
719 {
720 return eeprom.load(pSSM);
721 }
722
723 void save(PSSMHANDLE pSSM)
724 {
725 eeprom.save(pSSM);
726 }
727#endif /* IN_RING3 */
728};
729
730
731#define E1K_SPEC_VLAN(s) (s & 0xFFF)
732#define E1K_SPEC_CFI(s) (!!((s>>12) & 0x1))
733#define E1K_SPEC_PRI(s) ((s>>13) & 0x7)
734
735struct E1kRxDStatus
736{
737 /** @name Descriptor Status field (3.2.3.1)
738 * @{ */
739 unsigned fDD : 1; /**< Descriptor Done. */
740 unsigned fEOP : 1; /**< End of packet. */
741 unsigned fIXSM : 1; /**< Ignore checksum indication. */
742 unsigned fVP : 1; /**< VLAN, matches VET. */
743 unsigned : 1;
744 unsigned fTCPCS : 1; /**< RCP Checksum calculated on the packet. */
745 unsigned fIPCS : 1; /**< IP Checksum calculated on the packet. */
746 unsigned fPIF : 1; /**< Passed in-exact filter */
747 /** @} */
748 /** @name Descriptor Errors field (3.2.3.2)
749 * (Only valid when fEOP and fDD are set.)
750 * @{ */
751 unsigned fCE : 1; /**< CRC or alignment error. */
752 unsigned : 4; /**< Reserved, varies with different models... */
753 unsigned fTCPE : 1; /**< TCP/UDP checksum error. */
754 unsigned fIPE : 1; /**< IP Checksum error. */
755 unsigned fRXE : 1; /**< RX Data error. */
756 /** @} */
757 /** @name Descriptor Special field (3.2.3.3)
758 * @{ */
759 unsigned u16Special : 16; /**< VLAN: Id, Canonical form, Priority. */
760 /** @} */
761};
762typedef struct E1kRxDStatus E1KRXDST;
763
764struct E1kRxDesc_st
765{
766 uint64_t u64BufAddr; /**< Address of data buffer */
767 uint16_t u16Length; /**< Length of data in buffer */
768 uint16_t u16Checksum; /**< Packet checksum */
769 E1KRXDST status;
770};
771typedef struct E1kRxDesc_st E1KRXDESC;
772AssertCompileSize(E1KRXDESC, 16);
773
774#define E1K_DTYP_LEGACY -1
775#define E1K_DTYP_CONTEXT 0
776#define E1K_DTYP_DATA 1
777
778struct E1kTDLegacy
779{
780 uint64_t u64BufAddr; /**< Address of data buffer */
781 struct TDLCmd_st
782 {
783 unsigned u16Length : 16;
784 unsigned u8CSO : 8;
785 /* CMD field : 8 */
786 unsigned fEOP : 1;
787 unsigned fIFCS : 1;
788 unsigned fIC : 1;
789 unsigned fRS : 1;
790 unsigned fRPS : 1;
791 unsigned fDEXT : 1;
792 unsigned fVLE : 1;
793 unsigned fIDE : 1;
794 } cmd;
795 struct TDLDw3_st
796 {
797 /* STA field */
798 unsigned fDD : 1;
799 unsigned fEC : 1;
800 unsigned fLC : 1;
801 unsigned fTURSV : 1;
802 /* RSV field */
803 unsigned u4RSV : 4;
804 /* CSS field */
805 unsigned u8CSS : 8;
806 /* Special field*/
807 unsigned u16Special: 16;
808 } dw3;
809};
810
811/**
812 * TCP/IP Context Transmit Descriptor, section 3.3.6.
813 */
814struct E1kTDContext
815{
816 struct CheckSum_st
817 {
818 /** TSE: Header start. !TSE: Checksum start. */
819 unsigned u8CSS : 8;
820 /** Checksum offset - where to store it. */
821 unsigned u8CSO : 8;
822 /** Checksum ending (inclusive) offset, 0 = end of packet. */
823 unsigned u16CSE : 16;
824 } ip;
825 struct CheckSum_st tu;
826 struct TDCDw2_st
827 {
828 /** TSE: The total number of payload bytes for this context. Sans header. */
829 unsigned u20PAYLEN : 20;
830 /** The descriptor type - E1K_DTYP_CONTEXT (0). */
831 unsigned u4DTYP : 4;
832 /** TUCMD field, 8 bits
833 * @{ */
834 /** TSE: TCP (set) or UDP (clear). */
835 unsigned fTCP : 1;
836 /** TSE: IPv4 (set) or IPv6 (clear) - for finding the payload length field in
837 * the IP header. Does not affect the checksumming.
838 * @remarks 82544GC/EI interprets a cleared field differently. */
839 unsigned fIP : 1;
840 /** TSE: TCP segmentation enable. When clear the context describes */
841 unsigned fTSE : 1;
842 /** Report status (only applies to dw3.fDD for here). */
843 unsigned fRS : 1;
844 /** Reserved, MBZ. */
845 unsigned fRSV1 : 1;
846 /** Descriptor extension, must be set for this descriptor type. */
847 unsigned fDEXT : 1;
848 /** Reserved, MBZ. */
849 unsigned fRSV2 : 1;
850 /** Interrupt delay enable. */
851 unsigned fIDE : 1;
852 /** @} */
853 } dw2;
854 struct TDCDw3_st
855 {
856 /** Descriptor Done. */
857 unsigned fDD : 1;
858 /** Reserved, MBZ. */
859 unsigned u7RSV : 7;
860 /** TSO: The header (prototype) length (Ethernet[, VLAN tag], IP, TCP/UDP. */
861 unsigned u8HDRLEN : 8;
862 /** TSO: Maximum segment size. */
863 unsigned u16MSS : 16;
864 } dw3;
865};
866typedef struct E1kTDContext E1KTXCTX;
867
868/**
869 * TCP/IP Data Transmit Descriptor, section 3.3.7.
870 */
871struct E1kTDData
872{
873 uint64_t u64BufAddr; /**< Address of data buffer */
874 struct TDDCmd_st
875 {
876 /** The total length of data pointed to by this descriptor. */
877 unsigned u20DTALEN : 20;
878 /** The descriptor type - E1K_DTYP_DATA (1). */
879 unsigned u4DTYP : 4;
880 /** @name DCMD field, 8 bits (3.3.7.1).
881 * @{ */
882 /** End of packet. Note TSCTFC update. */
883 unsigned fEOP : 1;
884 /** Insert Ethernet FCS/CRC (requires fEOP to be set). */
885 unsigned fIFCS : 1;
886 /** Use the TSE context when set and the normal when clear. */
887 unsigned fTSE : 1;
888 /** Report status (dw3.STA). */
889 unsigned fRS : 1;
890 /** Reserved. 82544GC/EI defines this report packet set (RPS). */
891 unsigned fRPS : 1;
892 /** Descriptor extension, must be set for this descriptor type. */
893 unsigned fDEXT : 1;
894 /** VLAN enable, requires CTRL.VME, auto enables FCS/CRC.
895 * Insert dw3.SPECIAL after ethernet header. */
896 unsigned fVLE : 1;
897 /** Interrupt delay enable. */
898 unsigned fIDE : 1;
899 /** @} */
900 } cmd;
901 struct TDDDw3_st
902 {
903 /** @name STA field (3.3.7.2)
904 * @{ */
905 unsigned fDD : 1; /**< Descriptor done. */
906 unsigned fEC : 1; /**< Excess collision. */
907 unsigned fLC : 1; /**< Late collision. */
908 /** Reserved, except for the usual oddball (82544GC/EI) where it's called TU. */
909 unsigned fTURSV : 1;
910 /** @} */
911 unsigned u4RSV : 4; /**< Reserved field, MBZ. */
912 /** @name POPTS (Packet Option) field (3.3.7.3)
913 * @{ */
914 unsigned fIXSM : 1; /**< Insert IP checksum. */
915 unsigned fTXSM : 1; /**< Insert TCP/UDP checksum. */
916 unsigned u6RSV : 6; /**< Reserved, MBZ. */
917 /** @} */
918 /** @name SPECIAL field - VLAN tag to be inserted after ethernet header.
919 * Requires fEOP, fVLE and CTRL.VME to be set.
920 * @{ */
921 unsigned u16Special: 16; /**< VLAN: Id, Canonical form, Priority. */
922 /** @} */
923 } dw3;
924};
925typedef struct E1kTDData E1KTXDAT;
926
927union E1kTxDesc
928{
929 struct E1kTDLegacy legacy;
930 struct E1kTDContext context;
931 struct E1kTDData data;
932};
933typedef union E1kTxDesc E1KTXDESC;
934AssertCompileSize(E1KTXDESC, 16);
935
936#define RA_CTL_AS 0x0003
937#define RA_CTL_AV 0x8000
938
939union E1kRecAddr
940{
941 uint32_t au32[32];
942 struct RAArray
943 {
944 uint8_t addr[6];
945 uint16_t ctl;
946 } array[16];
947};
948typedef struct E1kRecAddr::RAArray E1KRAELEM;
949typedef union E1kRecAddr E1KRA;
950AssertCompileSize(E1KRA, 8*16);
951
952#define E1K_IP_RF UINT16_C(0x8000) /**< reserved fragment flag */
953#define E1K_IP_DF UINT16_C(0x4000) /**< dont fragment flag */
954#define E1K_IP_MF UINT16_C(0x2000) /**< more fragments flag */
955#define E1K_IP_OFFMASK UINT16_C(0x1fff) /**< mask for fragmenting bits */
956
957/** @todo use+extend RTNETIPV4 */
958struct E1kIpHeader
959{
960 /* type of service / version / header length */
961 uint16_t tos_ver_hl;
962 /* total length */
963 uint16_t total_len;
964 /* identification */
965 uint16_t ident;
966 /* fragment offset field */
967 uint16_t offset;
968 /* time to live / protocol*/
969 uint16_t ttl_proto;
970 /* checksum */
971 uint16_t chksum;
972 /* source IP address */
973 uint32_t src;
974 /* destination IP address */
975 uint32_t dest;
976};
977AssertCompileSize(struct E1kIpHeader, 20);
978
979#define E1K_TCP_FIN UINT16_C(0x01)
980#define E1K_TCP_SYN UINT16_C(0x02)
981#define E1K_TCP_RST UINT16_C(0x04)
982#define E1K_TCP_PSH UINT16_C(0x08)
983#define E1K_TCP_ACK UINT16_C(0x10)
984#define E1K_TCP_URG UINT16_C(0x20)
985#define E1K_TCP_ECE UINT16_C(0x40)
986#define E1K_TCP_CWR UINT16_C(0x80)
987#define E1K_TCP_FLAGS UINT16_C(0x3f)
988
989/** @todo use+extend RTNETTCP */
990struct E1kTcpHeader
991{
992 uint16_t src;
993 uint16_t dest;
994 uint32_t seqno;
995 uint32_t ackno;
996 uint16_t hdrlen_flags;
997 uint16_t wnd;
998 uint16_t chksum;
999 uint16_t urgp;
1000};
1001AssertCompileSize(struct E1kTcpHeader, 20);
1002
1003
1004#ifdef E1K_WITH_TXD_CACHE
1005/** The current Saved state version. */
1006# define E1K_SAVEDSTATE_VERSION 4
1007/** Saved state version for VirtualBox 4.2 with VLAN tag fields. */
1008# define E1K_SAVEDSTATE_VERSION_VBOX_42_VTAG 3
1009#else /* !E1K_WITH_TXD_CACHE */
1010/** The current Saved state version. */
1011# define E1K_SAVEDSTATE_VERSION 3
1012#endif /* !E1K_WITH_TXD_CACHE */
1013/** Saved state version for VirtualBox 4.1 and earlier.
1014 * These did not include VLAN tag fields. */
1015#define E1K_SAVEDSTATE_VERSION_VBOX_41 2
1016/** Saved state version for VirtualBox 3.0 and earlier.
1017 * This did not include the configuration part nor the E1kEEPROM. */
1018#define E1K_SAVEDSTATE_VERSION_VBOX_30 1
1019
1020/**
1021 * Device state structure.
1022 *
1023 * Holds the current state of device.
1024 *
1025 * @implements PDMINETWORKDOWN
1026 * @implements PDMINETWORKCONFIG
1027 * @implements PDMILEDPORTS
1028 */
1029struct E1kState_st
1030{
1031 char szPrf[8]; /**< Log prefix, e.g. E1000#1. */
1032 PDMIBASE IBase;
1033 PDMINETWORKDOWN INetworkDown;
1034 PDMINETWORKCONFIG INetworkConfig;
1035 PDMILEDPORTS ILeds; /**< LED interface */
1036 R3PTRTYPE(PPDMIBASE) pDrvBase; /**< Attached network driver. */
1037 R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector;
1038
1039 PPDMDEVINSR3 pDevInsR3; /**< Device instance - R3. */
1040 R3PTRTYPE(PPDMQUEUE) pTxQueueR3; /**< Transmit queue - R3. */
1041 R3PTRTYPE(PPDMQUEUE) pCanRxQueueR3; /**< Rx wakeup signaller - R3. */
1042 PPDMINETWORKUPR3 pDrvR3; /**< Attached network driver - R3. */
1043 PTMTIMERR3 pRIDTimerR3; /**< Receive Interrupt Delay Timer - R3. */
1044 PTMTIMERR3 pRADTimerR3; /**< Receive Absolute Delay Timer - R3. */
1045 PTMTIMERR3 pTIDTimerR3; /**< Transmit Interrupt Delay Timer - R3. */
1046 PTMTIMERR3 pTADTimerR3; /**< Transmit Absolute Delay Timer - R3. */
1047 PTMTIMERR3 pTXDTimerR3; /**< Transmit Delay Timer - R3. */
1048 PTMTIMERR3 pIntTimerR3; /**< Late Interrupt Timer - R3. */
1049 PTMTIMERR3 pLUTimerR3; /**< Link Up(/Restore) Timer. */
1050 /** The scatter / gather buffer used for the current outgoing packet - R3. */
1051 R3PTRTYPE(PPDMSCATTERGATHER) pTxSgR3;
1052
1053 PPDMDEVINSR0 pDevInsR0; /**< Device instance - R0. */
1054 R0PTRTYPE(PPDMQUEUE) pTxQueueR0; /**< Transmit queue - R0. */
1055 R0PTRTYPE(PPDMQUEUE) pCanRxQueueR0; /**< Rx wakeup signaller - R0. */
1056 PPDMINETWORKUPR0 pDrvR0; /**< Attached network driver - R0. */
1057 PTMTIMERR0 pRIDTimerR0; /**< Receive Interrupt Delay Timer - R0. */
1058 PTMTIMERR0 pRADTimerR0; /**< Receive Absolute Delay Timer - R0. */
1059 PTMTIMERR0 pTIDTimerR0; /**< Transmit Interrupt Delay Timer - R0. */
1060 PTMTIMERR0 pTADTimerR0; /**< Transmit Absolute Delay Timer - R0. */
1061 PTMTIMERR0 pTXDTimerR0; /**< Transmit Delay Timer - R0. */
1062 PTMTIMERR0 pIntTimerR0; /**< Late Interrupt Timer - R0. */
1063 PTMTIMERR0 pLUTimerR0; /**< Link Up(/Restore) Timer - R0. */
1064 /** The scatter / gather buffer used for the current outgoing packet - R0. */
1065 R0PTRTYPE(PPDMSCATTERGATHER) pTxSgR0;
1066
1067 PPDMDEVINSRC pDevInsRC; /**< Device instance - RC. */
1068 RCPTRTYPE(PPDMQUEUE) pTxQueueRC; /**< Transmit queue - RC. */
1069 RCPTRTYPE(PPDMQUEUE) pCanRxQueueRC; /**< Rx wakeup signaller - RC. */
1070 PPDMINETWORKUPRC pDrvRC; /**< Attached network driver - RC. */
1071 PTMTIMERRC pRIDTimerRC; /**< Receive Interrupt Delay Timer - RC. */
1072 PTMTIMERRC pRADTimerRC; /**< Receive Absolute Delay Timer - RC. */
1073 PTMTIMERRC pTIDTimerRC; /**< Transmit Interrupt Delay Timer - RC. */
1074 PTMTIMERRC pTADTimerRC; /**< Transmit Absolute Delay Timer - RC. */
1075 PTMTIMERRC pTXDTimerRC; /**< Transmit Delay Timer - RC. */
1076 PTMTIMERRC pIntTimerRC; /**< Late Interrupt Timer - RC. */
1077 PTMTIMERRC pLUTimerRC; /**< Link Up(/Restore) Timer - RC. */
1078 /** The scatter / gather buffer used for the current outgoing packet - RC. */
1079 RCPTRTYPE(PPDMSCATTERGATHER) pTxSgRC;
1080 RTRCPTR RCPtrAlignment;
1081
1082#if HC_ARCH_BITS != 32
1083 uint32_t Alignment1;
1084#endif
1085 PDMCRITSECT cs; /**< Critical section - what is it protecting? */
1086 PDMCRITSECT csRx; /**< RX Critical section. */
1087#ifdef E1K_WITH_TX_CS
1088 PDMCRITSECT csTx; /**< TX Critical section. */
1089#endif /* E1K_WITH_TX_CS */
1090 /** Base address of memory-mapped registers. */
1091 RTGCPHYS addrMMReg;
1092 /** MAC address obtained from the configuration. */
1093 RTMAC macConfigured;
1094 /** Base port of I/O space region. */
1095 RTIOPORT IOPortBase;
1096 /** EMT: */
1097 PDMPCIDEV pciDevice;
1098 /** EMT: Last time the interrupt was acknowledged. */
1099 uint64_t u64AckedAt;
1100 /** All: Used for eliminating spurious interrupts. */
1101 bool fIntRaised;
1102 /** EMT: false if the cable is disconnected by the GUI. */
1103 bool fCableConnected;
1104 /** EMT: */
1105 bool fR0Enabled;
1106 /** EMT: */
1107 bool fRCEnabled;
1108 /** EMT: Compute Ethernet CRC for RX packets. */
1109 bool fEthernetCRC;
1110 /** All: throttle interrupts. */
1111 bool fItrEnabled;
1112 /** All: throttle RX interrupts. */
1113 bool fItrRxEnabled;
1114 /** All: Delay TX interrupts using TIDV/TADV. */
1115 bool fTidEnabled;
1116 /** Link up delay (in milliseconds). */
1117 uint32_t cMsLinkUpDelay;
1118
1119 /** All: Device register storage. */
1120 uint32_t auRegs[E1K_NUM_OF_32BIT_REGS];
1121 /** TX/RX: Status LED. */
1122 PDMLED led;
1123 /** TX/RX: Number of packet being sent/received to show in debug log. */
1124 uint32_t u32PktNo;
1125
1126 /** EMT: Offset of the register to be read via IO. */
1127 uint32_t uSelectedReg;
1128 /** EMT: Multicast Table Array. */
1129 uint32_t auMTA[128];
1130 /** EMT: Receive Address registers. */
1131 E1KRA aRecAddr;
1132 /** EMT: VLAN filter table array. */
1133 uint32_t auVFTA[128];
1134 /** EMT: Receive buffer size. */
1135 uint16_t u16RxBSize;
1136 /** EMT: Locked state -- no state alteration possible. */
1137 bool fLocked;
1138 /** EMT: */
1139 bool fDelayInts;
1140 /** All: */
1141 bool fIntMaskUsed;
1142
1143 /** N/A: */
1144 bool volatile fMaybeOutOfSpace;
1145 /** EMT: Gets signalled when more RX descriptors become available. */
1146 RTSEMEVENT hEventMoreRxDescAvail;
1147#ifdef E1K_WITH_RXD_CACHE
1148 /** RX: Fetched RX descriptors. */
1149 E1KRXDESC aRxDescriptors[E1K_RXD_CACHE_SIZE];
1150 //uint64_t aRxDescAddr[E1K_RXD_CACHE_SIZE];
1151 /** RX: Actual number of fetched RX descriptors. */
1152 uint32_t nRxDFetched;
1153 /** RX: Index in cache of RX descriptor being processed. */
1154 uint32_t iRxDCurrent;
1155#endif /* E1K_WITH_RXD_CACHE */
1156
1157 /** TX: Context used for TCP segmentation packets. */
1158 E1KTXCTX contextTSE;
1159 /** TX: Context used for ordinary packets. */
1160 E1KTXCTX contextNormal;
1161#ifdef E1K_WITH_TXD_CACHE
1162 /** TX: Fetched TX descriptors. */
1163 E1KTXDESC aTxDescriptors[E1K_TXD_CACHE_SIZE];
1164 /** TX: Actual number of fetched TX descriptors. */
1165 uint8_t nTxDFetched;
1166 /** TX: Index in cache of TX descriptor being processed. */
1167 uint8_t iTxDCurrent;
1168 /** TX: Will this frame be sent as GSO. */
1169 bool fGSO;
1170 /** Alignment padding. */
1171 bool fReserved;
1172 /** TX: Number of bytes in next packet. */
1173 uint32_t cbTxAlloc;
1174
1175#endif /* E1K_WITH_TXD_CACHE */
1176 /** GSO context. u8Type is set to PDMNETWORKGSOTYPE_INVALID when not
1177 * applicable to the current TSE mode. */
1178 PDMNETWORKGSO GsoCtx;
1179 /** Scratch space for holding the loopback / fallback scatter / gather
1180 * descriptor. */
1181 union
1182 {
1183 PDMSCATTERGATHER Sg;
1184 uint8_t padding[8 * sizeof(RTUINTPTR)];
1185 } uTxFallback;
1186 /** TX: Transmit packet buffer use for TSE fallback and loopback. */
1187 uint8_t aTxPacketFallback[E1K_MAX_TX_PKT_SIZE];
1188 /** TX: Number of bytes assembled in TX packet buffer. */
1189 uint16_t u16TxPktLen;
1190 /** TX: False will force segmentation in e1000 instead of sending frames as GSO. */
1191 bool fGSOEnabled;
1192 /** TX: IP checksum has to be inserted if true. */
1193 bool fIPcsum;
1194 /** TX: TCP/UDP checksum has to be inserted if true. */
1195 bool fTCPcsum;
1196 /** TX: VLAN tag has to be inserted if true. */
1197 bool fVTag;
1198 /** TX: TCI part of VLAN tag to be inserted. */
1199 uint16_t u16VTagTCI;
1200 /** TX TSE fallback: Number of payload bytes remaining in TSE context. */
1201 uint32_t u32PayRemain;
1202 /** TX TSE fallback: Number of header bytes remaining in TSE context. */
1203 uint16_t u16HdrRemain;
1204 /** TX TSE fallback: Flags from template header. */
1205 uint16_t u16SavedFlags;
1206 /** TX TSE fallback: Partial checksum from template header. */
1207 uint32_t u32SavedCsum;
1208 /** ?: Emulated controller type. */
1209 E1KCHIP eChip;
1210
1211 /** EMT: EEPROM emulation */
1212 E1kEEPROM eeprom;
1213 /** EMT: Physical interface emulation. */
1214 PHY phy;
1215
1216#if 0
1217 /** Alignment padding. */
1218 uint8_t Alignment[HC_ARCH_BITS == 64 ? 8 : 4];
1219#endif
1220
1221 STAMCOUNTER StatReceiveBytes;
1222 STAMCOUNTER StatTransmitBytes;
1223#if defined(VBOX_WITH_STATISTICS)
1224 STAMPROFILEADV StatMMIOReadRZ;
1225 STAMPROFILEADV StatMMIOReadR3;
1226 STAMPROFILEADV StatMMIOWriteRZ;
1227 STAMPROFILEADV StatMMIOWriteR3;
1228 STAMPROFILEADV StatEEPROMRead;
1229 STAMPROFILEADV StatEEPROMWrite;
1230 STAMPROFILEADV StatIOReadRZ;
1231 STAMPROFILEADV StatIOReadR3;
1232 STAMPROFILEADV StatIOWriteRZ;
1233 STAMPROFILEADV StatIOWriteR3;
1234 STAMPROFILEADV StatLateIntTimer;
1235 STAMCOUNTER StatLateInts;
1236 STAMCOUNTER StatIntsRaised;
1237 STAMCOUNTER StatIntsPrevented;
1238 STAMPROFILEADV StatReceive;
1239 STAMPROFILEADV StatReceiveCRC;
1240 STAMPROFILEADV StatReceiveFilter;
1241 STAMPROFILEADV StatReceiveStore;
1242 STAMPROFILEADV StatTransmitRZ;
1243 STAMPROFILEADV StatTransmitR3;
1244 STAMPROFILE StatTransmitSendRZ;
1245 STAMPROFILE StatTransmitSendR3;
1246 STAMPROFILE StatRxOverflow;
1247 STAMCOUNTER StatRxOverflowWakeup;
1248 STAMCOUNTER StatTxDescCtxNormal;
1249 STAMCOUNTER StatTxDescCtxTSE;
1250 STAMCOUNTER StatTxDescLegacy;
1251 STAMCOUNTER StatTxDescData;
1252 STAMCOUNTER StatTxDescTSEData;
1253 STAMCOUNTER StatTxPathFallback;
1254 STAMCOUNTER StatTxPathGSO;
1255 STAMCOUNTER StatTxPathRegular;
1256 STAMCOUNTER StatPHYAccesses;
1257 STAMCOUNTER aStatRegWrites[E1K_NUM_OF_REGS];
1258 STAMCOUNTER aStatRegReads[E1K_NUM_OF_REGS];
1259#endif /* VBOX_WITH_STATISTICS */
1260
1261#ifdef E1K_INT_STATS
1262 /* Internal stats */
1263 uint64_t u64ArmedAt;
1264 uint64_t uStatMaxTxDelay;
1265 uint32_t uStatInt;
1266 uint32_t uStatIntTry;
1267 uint32_t uStatIntLower;
1268 uint32_t uStatNoIntICR;
1269 int32_t iStatIntLost;
1270 int32_t iStatIntLostOne;
1271 uint32_t uStatIntIMS;
1272 uint32_t uStatIntSkip;
1273 uint32_t uStatIntLate;
1274 uint32_t uStatIntMasked;
1275 uint32_t uStatIntEarly;
1276 uint32_t uStatIntRx;
1277 uint32_t uStatIntTx;
1278 uint32_t uStatIntICS;
1279 uint32_t uStatIntRDTR;
1280 uint32_t uStatIntRXDMT0;
1281 uint32_t uStatIntTXQE;
1282 uint32_t uStatTxNoRS;
1283 uint32_t uStatTxIDE;
1284 uint32_t uStatTxDelayed;
1285 uint32_t uStatTxDelayExp;
1286 uint32_t uStatTAD;
1287 uint32_t uStatTID;
1288 uint32_t uStatRAD;
1289 uint32_t uStatRID;
1290 uint32_t uStatRxFrm;
1291 uint32_t uStatTxFrm;
1292 uint32_t uStatDescCtx;
1293 uint32_t uStatDescDat;
1294 uint32_t uStatDescLeg;
1295 uint32_t uStatTx1514;
1296 uint32_t uStatTx2962;
1297 uint32_t uStatTx4410;
1298 uint32_t uStatTx5858;
1299 uint32_t uStatTx7306;
1300 uint32_t uStatTx8754;
1301 uint32_t uStatTx16384;
1302 uint32_t uStatTx32768;
1303 uint32_t uStatTxLarge;
1304 uint32_t uStatAlign;
1305#endif /* E1K_INT_STATS */
1306};
1307typedef struct E1kState_st E1KSTATE;
1308/** Pointer to the E1000 device state. */
1309typedef E1KSTATE *PE1KSTATE;
1310
1311#ifndef VBOX_DEVICE_STRUCT_TESTCASE
1312
1313/* Forward declarations ******************************************************/
1314static int e1kXmitPending(PE1KSTATE pThis, bool fOnWorkerThread);
1315
1316static int e1kRegReadUnimplemented (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1317static int e1kRegWriteUnimplemented(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1318static int e1kRegReadAutoClear (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1319static int e1kRegReadDefault (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1320static int e1kRegWriteDefault (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1321#if 0 /* unused */
1322static int e1kRegReadCTRL (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1323#endif
1324static int e1kRegWriteCTRL (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1325static int e1kRegReadEECD (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1326static int e1kRegWriteEECD (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1327static int e1kRegWriteEERD (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1328static int e1kRegWriteMDIC (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1329static int e1kRegReadICR (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1330static int e1kRegWriteICR (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1331static int e1kRegWriteICS (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1332static int e1kRegWriteIMS (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1333static int e1kRegWriteIMC (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1334static int e1kRegWriteRCTL (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1335static int e1kRegWritePBA (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1336static int e1kRegWriteRDT (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1337static int e1kRegWriteRDTR (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1338static int e1kRegWriteTDT (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1339static int e1kRegReadMTA (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1340static int e1kRegWriteMTA (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1341static int e1kRegReadRA (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1342static int e1kRegWriteRA (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1343static int e1kRegReadVFTA (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1344static int e1kRegWriteVFTA (PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1345
1346/**
1347 * Register map table.
1348 *
1349 * Override pfnRead and pfnWrite to get register-specific behavior.
1350 */
1351static const struct E1kRegMap_st
1352{
1353 /** Register offset in the register space. */
1354 uint32_t offset;
1355 /** Size in bytes. Registers of size > 4 are in fact tables. */
1356 uint32_t size;
1357 /** Readable bits. */
1358 uint32_t readable;
1359 /** Writable bits. */
1360 uint32_t writable;
1361 /** Read callback. */
1362 int (*pfnRead)(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1363 /** Write callback. */
1364 int (*pfnWrite)(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1365 /** Abbreviated name. */
1366 const char *abbrev;
1367 /** Full name. */
1368 const char *name;
1369} g_aE1kRegMap[E1K_NUM_OF_REGS] =
1370{
1371 /* offset size read mask write mask read callback write callback abbrev full name */
1372 /*------- ------- ---------- ---------- ----------------------- ------------------------ ---------- ------------------------------*/
1373 { 0x00000, 0x00004, 0xDBF31BE9, 0xDBF31BE9, e1kRegReadDefault , e1kRegWriteCTRL , "CTRL" , "Device Control" },
1374 { 0x00008, 0x00004, 0x0000FDFF, 0x00000000, e1kRegReadDefault , e1kRegWriteUnimplemented, "STATUS" , "Device Status" },
1375 { 0x00010, 0x00004, 0x000027F0, 0x00000070, e1kRegReadEECD , e1kRegWriteEECD , "EECD" , "EEPROM/Flash Control/Data" },
1376 { 0x00014, 0x00004, 0xFFFFFF10, 0xFFFFFF00, e1kRegReadDefault , e1kRegWriteEERD , "EERD" , "EEPROM Read" },
1377 { 0x00018, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CTRL_EXT", "Extended Device Control" },
1378 { 0x0001c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FLA" , "Flash Access (N/A)" },
1379 { 0x00020, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteMDIC , "MDIC" , "MDI Control" },
1380 { 0x00028, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAL" , "Flow Control Address Low" },
1381 { 0x0002c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAH" , "Flow Control Address High" },
1382 { 0x00030, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCT" , "Flow Control Type" },
1383 { 0x00038, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "VET" , "VLAN EtherType" },
1384 { 0x000c0, 0x00004, 0x0001F6DF, 0x0001F6DF, e1kRegReadICR , e1kRegWriteICR , "ICR" , "Interrupt Cause Read" },
1385 { 0x000c4, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "ITR" , "Interrupt Throttling" },
1386 { 0x000c8, 0x00004, 0x00000000, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteICS , "ICS" , "Interrupt Cause Set" },
1387 { 0x000d0, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteIMS , "IMS" , "Interrupt Mask Set/Read" },
1388 { 0x000d8, 0x00004, 0x00000000, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteIMC , "IMC" , "Interrupt Mask Clear" },
1389 { 0x00100, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteRCTL , "RCTL" , "Receive Control" },
1390 { 0x00170, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCTTV" , "Flow Control Transmit Timer Value" },
1391 { 0x00178, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXCW" , "Transmit Configuration Word (N/A)" },
1392 { 0x00180, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXCW" , "Receive Configuration Word (N/A)" },
1393 { 0x00400, 0x00004, 0x017FFFFA, 0x017FFFFA, e1kRegReadDefault , e1kRegWriteDefault , "TCTL" , "Transmit Control" },
1394 { 0x00410, 0x00004, 0x3FFFFFFF, 0x3FFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TIPG" , "Transmit IPG" },
1395 { 0x00458, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "AIFS" , "Adaptive IFS Throttle - AIT" },
1396 { 0x00e00, 0x00004, 0xCFCFCFCF, 0xCFCFCFCF, e1kRegReadDefault , e1kRegWriteDefault , "LEDCTL" , "LED Control" },
1397 { 0x01000, 0x00004, 0xFFFF007F, 0x0000007F, e1kRegReadDefault , e1kRegWritePBA , "PBA" , "Packet Buffer Allocation" },
1398 { 0x02160, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTL" , "Flow Control Receive Threshold Low" },
1399 { 0x02168, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTH" , "Flow Control Receive Threshold High" },
1400 { 0x02410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFH" , "Receive Data FIFO Head" },
1401 { 0x02418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFT" , "Receive Data FIFO Tail" },
1402 { 0x02420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFHS" , "Receive Data FIFO Head Saved Register" },
1403 { 0x02428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFTS" , "Receive Data FIFO Tail Saved Register" },
1404 { 0x02430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFPC" , "Receive Data FIFO Packet Count" },
1405 { 0x02800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAL" , "Receive Descriptor Base Low" },
1406 { 0x02804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAH" , "Receive Descriptor Base High" },
1407 { 0x02808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDLEN" , "Receive Descriptor Length" },
1408 { 0x02810, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDH" , "Receive Descriptor Head" },
1409 { 0x02818, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteRDT , "RDT" , "Receive Descriptor Tail" },
1410 { 0x02820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteRDTR , "RDTR" , "Receive Delay Timer" },
1411 { 0x02828, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXDCTL" , "Receive Descriptor Control" },
1412 { 0x0282c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "RADV" , "Receive Interrupt Absolute Delay Timer" },
1413 { 0x02c00, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RSRPD" , "Receive Small Packet Detect Interrupt" },
1414 { 0x03000, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXDMAC" , "TX DMA Control (N/A)" },
1415 { 0x03410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFH" , "Transmit Data FIFO Head" },
1416 { 0x03418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFT" , "Transmit Data FIFO Tail" },
1417 { 0x03420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFHS" , "Transmit Data FIFO Head Saved Register" },
1418 { 0x03428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFTS" , "Transmit Data FIFO Tail Saved Register" },
1419 { 0x03430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFPC" , "Transmit Data FIFO Packet Count" },
1420 { 0x03800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAL" , "Transmit Descriptor Base Low" },
1421 { 0x03804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAH" , "Transmit Descriptor Base High" },
1422 { 0x03808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDLEN" , "Transmit Descriptor Length" },
1423 { 0x03810, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDH" , "Transmit Descriptor Head" },
1424 { 0x03818, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteTDT , "TDT" , "Transmit Descriptor Tail" },
1425 { 0x03820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TIDV" , "Transmit Interrupt Delay Value" },
1426 { 0x03828, 0x00004, 0xFF3F3F3F, 0xFF3F3F3F, e1kRegReadDefault , e1kRegWriteDefault , "TXDCTL" , "Transmit Descriptor Control" },
1427 { 0x0382c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TADV" , "Transmit Absolute Interrupt Delay Timer" },
1428 { 0x03830, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TSPMT" , "TCP Segmentation Pad and Threshold" },
1429 { 0x04000, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CRCERRS" , "CRC Error Count" },
1430 { 0x04004, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ALGNERRC", "Alignment Error Count" },
1431 { 0x04008, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SYMERRS" , "Symbol Error Count" },
1432 { 0x0400c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXERRC" , "RX Error Count" },
1433 { 0x04010, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MPC" , "Missed Packets Count" },
1434 { 0x04014, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SCC" , "Single Collision Count" },
1435 { 0x04018, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ECOL" , "Excessive Collisions Count" },
1436 { 0x0401c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MCC" , "Multiple Collision Count" },
1437 { 0x04020, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "LATECOL" , "Late Collisions Count" },
1438 { 0x04028, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "COLC" , "Collision Count" },
1439 { 0x04030, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "DC" , "Defer Count" },
1440 { 0x04034, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TNCRS" , "Transmit - No CRS" },
1441 { 0x04038, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SEC" , "Sequence Error Count" },
1442 { 0x0403c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CEXTERR" , "Carrier Extension Error Count" },
1443 { 0x04040, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RLEC" , "Receive Length Error Count" },
1444 { 0x04048, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONRXC" , "XON Received Count" },
1445 { 0x0404c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONTXC" , "XON Transmitted Count" },
1446 { 0x04050, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFRXC" , "XOFF Received Count" },
1447 { 0x04054, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFTXC" , "XOFF Transmitted Count" },
1448 { 0x04058, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRUC" , "FC Received Unsupported Count" },
1449 { 0x0405c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC64" , "Packets Received (64 Bytes) Count" },
1450 { 0x04060, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC127" , "Packets Received (65-127 Bytes) Count" },
1451 { 0x04064, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC255" , "Packets Received (128-255 Bytes) Count" },
1452 { 0x04068, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC511" , "Packets Received (256-511 Bytes) Count" },
1453 { 0x0406c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1023" , "Packets Received (512-1023 Bytes) Count" },
1454 { 0x04070, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1522" , "Packets Received (1024-Max Bytes)" },
1455 { 0x04074, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPRC" , "Good Packets Received Count" },
1456 { 0x04078, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPRC" , "Broadcast Packets Received Count" },
1457 { 0x0407c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPRC" , "Multicast Packets Received Count" },
1458 { 0x04080, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPTC" , "Good Packets Transmitted Count" },
1459 { 0x04088, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCL" , "Good Octets Received Count (Low)" },
1460 { 0x0408c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCH" , "Good Octets Received Count (Hi)" },
1461 { 0x04090, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCL" , "Good Octets Transmitted Count (Low)" },
1462 { 0x04094, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCH" , "Good Octets Transmitted Count (Hi)" },
1463 { 0x040a0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RNBC" , "Receive No Buffers Count" },
1464 { 0x040a4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RUC" , "Receive Undersize Count" },
1465 { 0x040a8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RFC" , "Receive Fragment Count" },
1466 { 0x040ac, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "ROC" , "Receive Oversize Count" },
1467 { 0x040b0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RJC" , "Receive Jabber Count" },
1468 { 0x040b4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPRC" , "Management Packets Received Count" },
1469 { 0x040b8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPDC" , "Management Packets Dropped Count" },
1470 { 0x040bc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPTC" , "Management Pkts Transmitted Count" },
1471 { 0x040c0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORL" , "Total Octets Received (Lo)" },
1472 { 0x040c4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORH" , "Total Octets Received (Hi)" },
1473 { 0x040c8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTL" , "Total Octets Transmitted (Lo)" },
1474 { 0x040cc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTH" , "Total Octets Transmitted (Hi)" },
1475 { 0x040d0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPR" , "Total Packets Received" },
1476 { 0x040d4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPT" , "Total Packets Transmitted" },
1477 { 0x040d8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC64" , "Packets Transmitted (64 Bytes) Count" },
1478 { 0x040dc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC127" , "Packets Transmitted (65-127 Bytes) Count" },
1479 { 0x040e0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC255" , "Packets Transmitted (128-255 Bytes) Count" },
1480 { 0x040e4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC511" , "Packets Transmitted (256-511 Bytes) Count" },
1481 { 0x040e8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1023" , "Packets Transmitted (512-1023 Bytes) Count" },
1482 { 0x040ec, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1522" , "Packets Transmitted (1024 Bytes or Greater) Count" },
1483 { 0x040f0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPTC" , "Multicast Packets Transmitted Count" },
1484 { 0x040f4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPTC" , "Broadcast Packets Transmitted Count" },
1485 { 0x040f8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TSCTC" , "TCP Segmentation Context Transmitted Count" },
1486 { 0x040fc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TSCTFC" , "TCP Segmentation Context Tx Fail Count" },
1487 { 0x05000, 0x00004, 0x000007FF, 0x000007FF, e1kRegReadDefault , e1kRegWriteDefault , "RXCSUM" , "Receive Checksum Control" },
1488 { 0x05800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUC" , "Wakeup Control" },
1489 { 0x05808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUFC" , "Wakeup Filter Control" },
1490 { 0x05810, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUS" , "Wakeup Status" },
1491 { 0x05820, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "MANC" , "Management Control" },
1492 { 0x05838, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IPAV" , "IP Address Valid" },
1493 { 0x05900, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPL" , "Wakeup Packet Length" },
1494 { 0x05200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA" , "Multicast Table Array (n)" },
1495 { 0x05400, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA" , "Receive Address (64-bit) (n)" },
1496 { 0x05600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA" , "VLAN Filter Table Array (n)" },
1497 { 0x05840, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP4AT" , "IPv4 Address Table" },
1498 { 0x05880, 0x00010, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP6AT" , "IPv6 Address Table" },
1499 { 0x05a00, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPM" , "Wakeup Packet Memory" },
1500 { 0x05f00, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFLT" , "Flexible Filter Length Table" },
1501 { 0x09000, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFMT" , "Flexible Filter Mask Table" },
1502 { 0x09800, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFVT" , "Flexible Filter Value Table" },
1503 { 0x10000, 0x10000, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "PBM" , "Packet Buffer Memory (n)" },
1504 { 0x00040, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA82542" , "Receive Address (64-bit) (n) (82542)" },
1505 { 0x00200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA82542", "Multicast Table Array (n) (82542)" },
1506 { 0x00600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA82542", "VLAN Filter Table Array (n) (82542)" }
1507};
1508
1509#ifdef LOG_ENABLED
1510
1511/**
1512 * Convert U32 value to hex string. Masked bytes are replaced with dots.
1513 *
1514 * @remarks The mask has byte (not bit) granularity (e.g. 000000FF).
1515 *
1516 * @returns The buffer.
1517 *
1518 * @param u32 The word to convert into string.
1519 * @param mask Selects which bytes to convert.
1520 * @param buf Where to put the result.
1521 */
1522static char *e1kU32toHex(uint32_t u32, uint32_t mask, char *buf)
1523{
1524 for (char *ptr = buf + 7; ptr >= buf; --ptr, u32 >>=4, mask >>=4)
1525 {
1526 if (mask & 0xF)
1527 *ptr = (u32 & 0xF) + ((u32 & 0xF) > 9 ? '7' : '0');
1528 else
1529 *ptr = '.';
1530 }
1531 buf[8] = 0;
1532 return buf;
1533}
1534
1535/**
1536 * Returns timer name for debug purposes.
1537 *
1538 * @returns The timer name.
1539 *
1540 * @param pThis The device state structure.
1541 * @param pTimer The timer to get the name for.
1542 */
1543DECLINLINE(const char *) e1kGetTimerName(PE1KSTATE pThis, PTMTIMER pTimer)
1544{
1545 if (pTimer == pThis->CTX_SUFF(pTIDTimer))
1546 return "TID";
1547 if (pTimer == pThis->CTX_SUFF(pTADTimer))
1548 return "TAD";
1549 if (pTimer == pThis->CTX_SUFF(pRIDTimer))
1550 return "RID";
1551 if (pTimer == pThis->CTX_SUFF(pRADTimer))
1552 return "RAD";
1553 if (pTimer == pThis->CTX_SUFF(pIntTimer))
1554 return "Int";
1555 if (pTimer == pThis->CTX_SUFF(pTXDTimer))
1556 return "TXD";
1557 if (pTimer == pThis->CTX_SUFF(pLUTimer))
1558 return "LinkUp";
1559 return "unknown";
1560}
1561
1562#endif /* DEBUG */
1563
1564/**
1565 * Arm a timer.
1566 *
1567 * @param pThis Pointer to the device state structure.
1568 * @param pTimer Pointer to the timer.
1569 * @param uExpireIn Expiration interval in microseconds.
1570 */
1571DECLINLINE(void) e1kArmTimer(PE1KSTATE pThis, PTMTIMER pTimer, uint32_t uExpireIn)
1572{
1573 if (pThis->fLocked)
1574 return;
1575
1576 E1kLog2(("%s Arming %s timer to fire in %d usec...\n",
1577 pThis->szPrf, e1kGetTimerName(pThis, pTimer), uExpireIn));
1578 TMTimerSetMicro(pTimer, uExpireIn);
1579}
1580
1581#ifdef IN_RING3
1582/**
1583 * Cancel a timer.
1584 *
1585 * @param pThis Pointer to the device state structure.
1586 * @param pTimer Pointer to the timer.
1587 */
1588DECLINLINE(void) e1kCancelTimer(PE1KSTATE pThis, PTMTIMER pTimer)
1589{
1590 E1kLog2(("%s Stopping %s timer...\n",
1591 pThis->szPrf, e1kGetTimerName(pThis, pTimer)));
1592 int rc = TMTimerStop(pTimer);
1593 if (RT_FAILURE(rc))
1594 E1kLog2(("%s e1kCancelTimer: TMTimerStop() failed with %Rrc\n",
1595 pThis->szPrf, rc));
1596 RT_NOREF1(pThis);
1597}
1598#endif /* IN_RING3 */
1599
1600#define e1kCsEnter(ps, rc) PDMCritSectEnter(&ps->cs, rc)
1601#define e1kCsLeave(ps) PDMCritSectLeave(&ps->cs)
1602
1603#define e1kCsRxEnter(ps, rc) PDMCritSectEnter(&ps->csRx, rc)
1604#define e1kCsRxLeave(ps) PDMCritSectLeave(&ps->csRx)
1605#define e1kCsRxIsOwner(ps) PDMCritSectIsOwner(&ps->csRx)
1606
1607#ifndef E1K_WITH_TX_CS
1608# define e1kCsTxEnter(ps, rc) VINF_SUCCESS
1609# define e1kCsTxLeave(ps) do { } while (0)
1610#else /* E1K_WITH_TX_CS */
1611# define e1kCsTxEnter(ps, rc) PDMCritSectEnter(&ps->csTx, rc)
1612# define e1kCsTxLeave(ps) PDMCritSectLeave(&ps->csTx)
1613#endif /* E1K_WITH_TX_CS */
1614
1615#ifdef IN_RING3
1616
1617/**
1618 * Wakeup the RX thread.
1619 */
1620static void e1kWakeupReceive(PPDMDEVINS pDevIns)
1621{
1622 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, PE1KSTATE);
1623 if ( pThis->fMaybeOutOfSpace
1624 && pThis->hEventMoreRxDescAvail != NIL_RTSEMEVENT)
1625 {
1626 STAM_COUNTER_INC(&pThis->StatRxOverflowWakeup);
1627 E1kLog(("%s Waking up Out-of-RX-space semaphore\n", pThis->szPrf));
1628 RTSemEventSignal(pThis->hEventMoreRxDescAvail);
1629 }
1630}
1631
1632/**
1633 * Hardware reset. Revert all registers to initial values.
1634 *
1635 * @param pThis The device state structure.
1636 */
1637static void e1kHardReset(PE1KSTATE pThis)
1638{
1639 E1kLog(("%s Hard reset triggered\n", pThis->szPrf));
1640 memset(pThis->auRegs, 0, sizeof(pThis->auRegs));
1641 memset(pThis->aRecAddr.au32, 0, sizeof(pThis->aRecAddr.au32));
1642#ifdef E1K_INIT_RA0
1643 memcpy(pThis->aRecAddr.au32, pThis->macConfigured.au8,
1644 sizeof(pThis->macConfigured.au8));
1645 pThis->aRecAddr.array[0].ctl |= RA_CTL_AV;
1646#endif /* E1K_INIT_RA0 */
1647 STATUS = 0x0081; /* SPEED=10b (1000 Mb/s), FD=1b (Full Duplex) */
1648 EECD = 0x0100; /* EE_PRES=1b (EEPROM present) */
1649 CTRL = 0x0a09; /* FRCSPD=1b SPEED=10b LRST=1b FD=1b */
1650 TSPMT = 0x01000400;/* TSMT=0400h TSPBP=0100h */
1651 Assert(GET_BITS(RCTL, BSIZE) == 0);
1652 pThis->u16RxBSize = 2048;
1653
1654 uint16_t u16LedCtl = 0x0602; /* LED0/LINK_UP#, LED2/LINK100# */
1655 pThis->eeprom.readWord(0x2F, &u16LedCtl); /* Read LEDCTL defaults from EEPROM */
1656 LEDCTL = 0x07008300 | (((uint32_t)u16LedCtl & 0xCF00) << 8) | (u16LedCtl & 0xCF); /* Only LED0 and LED2 defaults come from EEPROM */
1657
1658 /* Reset promiscuous mode */
1659 if (pThis->pDrvR3)
1660 pThis->pDrvR3->pfnSetPromiscuousMode(pThis->pDrvR3, false);
1661
1662#ifdef E1K_WITH_TXD_CACHE
1663 int rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY);
1664 if (RT_LIKELY(rc == VINF_SUCCESS))
1665 {
1666 pThis->nTxDFetched = 0;
1667 pThis->iTxDCurrent = 0;
1668 pThis->fGSO = false;
1669 pThis->cbTxAlloc = 0;
1670 e1kCsTxLeave(pThis);
1671 }
1672#endif /* E1K_WITH_TXD_CACHE */
1673#ifdef E1K_WITH_RXD_CACHE
1674 if (RT_LIKELY(e1kCsRxEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS))
1675 {
1676 pThis->iRxDCurrent = pThis->nRxDFetched = 0;
1677 e1kCsRxLeave(pThis);
1678 }
1679#endif /* E1K_WITH_RXD_CACHE */
1680#ifdef E1K_LSC_ON_RESET
1681 E1kLog(("%s Will trigger LSC in %d seconds...\n",
1682 pThis->szPrf, pThis->cMsLinkUpDelay / 1000));
1683 e1kArmTimer(pThis, pThis->CTX_SUFF(pLUTimer), pThis->cMsLinkUpDelay * 1000);
1684#endif /* E1K_LSC_ON_RESET */
1685}
1686
1687#endif /* IN_RING3 */
1688
1689/**
1690 * Compute Internet checksum.
1691 *
1692 * @remarks Refer to http://www.netfor2.com/checksum.html for short intro.
1693 *
1694 * @param pThis The device state structure.
1695 * @param cpPacket The packet.
1696 * @param cb The size of the packet.
1697 * @param pszText A string denoting direction of packet transfer.
1698 *
1699 * @return The 1's complement of the 1's complement sum.
1700 *
1701 * @thread E1000_TX
1702 */
1703static uint16_t e1kCSum16(const void *pvBuf, size_t cb)
1704{
1705 uint32_t csum = 0;
1706 uint16_t *pu16 = (uint16_t *)pvBuf;
1707
1708 while (cb > 1)
1709 {
1710 csum += *pu16++;
1711 cb -= 2;
1712 }
1713 if (cb)
1714 csum += *(uint8_t*)pu16;
1715 while (csum >> 16)
1716 csum = (csum >> 16) + (csum & 0xFFFF);
1717 return ~csum;
1718}
1719
1720/**
1721 * Dump a packet to debug log.
1722 *
1723 * @param pThis The device state structure.
1724 * @param cpPacket The packet.
1725 * @param cb The size of the packet.
1726 * @param pszText A string denoting direction of packet transfer.
1727 * @thread E1000_TX
1728 */
1729DECLINLINE(void) e1kPacketDump(PE1KSTATE pThis, const uint8_t *cpPacket, size_t cb, const char *pszText)
1730{
1731#ifdef DEBUG
1732 if (RT_LIKELY(e1kCsEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS))
1733 {
1734 Log4(("%s --- %s packet #%d: %RTmac => %RTmac (%d bytes) ---\n",
1735 pThis->szPrf, pszText, ++pThis->u32PktNo, cpPacket+6, cpPacket, cb));
1736 if (ntohs(*(uint16_t*)(cpPacket+12)) == 0x86DD)
1737 {
1738 Log4(("%s --- IPv6: %RTnaipv6 => %RTnaipv6\n",
1739 pThis->szPrf, cpPacket+14+8, cpPacket+14+24));
1740 if (*(cpPacket+14+6) == 0x6)
1741 Log4(("%s --- TCP: seq=%x ack=%x\n", pThis->szPrf,
1742 ntohl(*(uint32_t*)(cpPacket+14+40+4)), ntohl(*(uint32_t*)(cpPacket+14+40+8))));
1743 }
1744 else if (ntohs(*(uint16_t*)(cpPacket+12)) == 0x800)
1745 {
1746 Log4(("%s --- IPv4: %RTnaipv4 => %RTnaipv4\n",
1747 pThis->szPrf, *(uint32_t*)(cpPacket+14+12), *(uint32_t*)(cpPacket+14+16)));
1748 if (*(cpPacket+14+6) == 0x6)
1749 Log4(("%s --- TCP: seq=%x ack=%x\n", pThis->szPrf,
1750 ntohl(*(uint32_t*)(cpPacket+14+20+4)), ntohl(*(uint32_t*)(cpPacket+14+20+8))));
1751 }
1752 E1kLog3(("%.*Rhxd\n", cb, cpPacket));
1753 e1kCsLeave(pThis);
1754 }
1755#else
1756 if (RT_LIKELY(e1kCsEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS))
1757 {
1758 if (ntohs(*(uint16_t*)(cpPacket+12)) == 0x86DD)
1759 E1kLogRel(("E1000: %s packet #%d, %RTmac => %RTmac, %RTnaipv6 => %RTnaipv6, seq=%x ack=%x\n",
1760 pszText, ++pThis->u32PktNo, cpPacket+6, cpPacket, cpPacket+14+8, cpPacket+14+24,
1761 ntohl(*(uint32_t*)(cpPacket+14+40+4)), ntohl(*(uint32_t*)(cpPacket+14+40+8))));
1762 else
1763 E1kLogRel(("E1000: %s packet #%d, %RTmac => %RTmac, %RTnaipv4 => %RTnaipv4, seq=%x ack=%x\n",
1764 pszText, ++pThis->u32PktNo, cpPacket+6, cpPacket,
1765 *(uint32_t*)(cpPacket+14+12), *(uint32_t*)(cpPacket+14+16),
1766 ntohl(*(uint32_t*)(cpPacket+14+20+4)), ntohl(*(uint32_t*)(cpPacket+14+20+8))));
1767 e1kCsLeave(pThis);
1768 }
1769 RT_NOREF2(cb, pszText);
1770#endif
1771}
1772
1773/**
1774 * Determine the type of transmit descriptor.
1775 *
1776 * @returns Descriptor type. See E1K_DTYP_XXX defines.
1777 *
1778 * @param pDesc Pointer to descriptor union.
1779 * @thread E1000_TX
1780 */
1781DECLINLINE(int) e1kGetDescType(E1KTXDESC *pDesc)
1782{
1783 if (pDesc->legacy.cmd.fDEXT)
1784 return pDesc->context.dw2.u4DTYP;
1785 return E1K_DTYP_LEGACY;
1786}
1787
1788
1789#ifdef E1K_WITH_RXD_CACHE
1790/**
1791 * Return the number of RX descriptor that belong to the hardware.
1792 *
1793 * @returns the number of available descriptors in RX ring.
1794 * @param pThis The device state structure.
1795 * @thread ???
1796 */
1797DECLINLINE(uint32_t) e1kGetRxLen(PE1KSTATE pThis)
1798{
1799 /**
1800 * Make sure RDT won't change during computation. EMT may modify RDT at
1801 * any moment.
1802 */
1803 uint32_t rdt = RDT;
1804 return (RDH > rdt ? RDLEN/sizeof(E1KRXDESC) : 0) + rdt - RDH;
1805}
1806
1807DECLINLINE(unsigned) e1kRxDInCache(PE1KSTATE pThis)
1808{
1809 return pThis->nRxDFetched > pThis->iRxDCurrent ?
1810 pThis->nRxDFetched - pThis->iRxDCurrent : 0;
1811}
1812
1813DECLINLINE(unsigned) e1kRxDIsCacheEmpty(PE1KSTATE pThis)
1814{
1815 return pThis->iRxDCurrent >= pThis->nRxDFetched;
1816}
1817
1818/**
1819 * Load receive descriptors from guest memory. The caller needs to be in Rx
1820 * critical section.
1821 *
1822 * We need two physical reads in case the tail wrapped around the end of RX
1823 * descriptor ring.
1824 *
1825 * @returns the actual number of descriptors fetched.
1826 * @param pThis The device state structure.
1827 * @param pDesc Pointer to descriptor union.
1828 * @param addr Physical address in guest context.
1829 * @thread EMT, RX
1830 */
1831DECLINLINE(unsigned) e1kRxDPrefetch(PE1KSTATE pThis)
1832{
1833 /* We've already loaded pThis->nRxDFetched descriptors past RDH. */
1834 unsigned nDescsAvailable = e1kGetRxLen(pThis) - e1kRxDInCache(pThis);
1835 unsigned nDescsToFetch = RT_MIN(nDescsAvailable, E1K_RXD_CACHE_SIZE - pThis->nRxDFetched);
1836 unsigned nDescsTotal = RDLEN / sizeof(E1KRXDESC);
1837 Assert(nDescsTotal != 0);
1838 if (nDescsTotal == 0)
1839 return 0;
1840 unsigned nFirstNotLoaded = (RDH + e1kRxDInCache(pThis)) % nDescsTotal;
1841 unsigned nDescsInSingleRead = RT_MIN(nDescsToFetch, nDescsTotal - nFirstNotLoaded);
1842 E1kLog3(("%s e1kRxDPrefetch: nDescsAvailable=%u nDescsToFetch=%u "
1843 "nDescsTotal=%u nFirstNotLoaded=0x%x nDescsInSingleRead=%u\n",
1844 pThis->szPrf, nDescsAvailable, nDescsToFetch, nDescsTotal,
1845 nFirstNotLoaded, nDescsInSingleRead));
1846 if (nDescsToFetch == 0)
1847 return 0;
1848 E1KRXDESC* pFirstEmptyDesc = &pThis->aRxDescriptors[pThis->nRxDFetched];
1849 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns),
1850 ((uint64_t)RDBAH << 32) + RDBAL + nFirstNotLoaded * sizeof(E1KRXDESC),
1851 pFirstEmptyDesc, nDescsInSingleRead * sizeof(E1KRXDESC));
1852 // uint64_t addrBase = ((uint64_t)RDBAH << 32) + RDBAL;
1853 // unsigned i, j;
1854 // for (i = pThis->nRxDFetched; i < pThis->nRxDFetched + nDescsInSingleRead; ++i)
1855 // {
1856 // pThis->aRxDescAddr[i] = addrBase + (nFirstNotLoaded + i - pThis->nRxDFetched) * sizeof(E1KRXDESC);
1857 // E1kLog3(("%s aRxDescAddr[%d] = %p\n", pThis->szPrf, i, pThis->aRxDescAddr[i]));
1858 // }
1859 E1kLog3(("%s Fetched %u RX descriptors at %08x%08x(0x%x), RDLEN=%08x, RDH=%08x, RDT=%08x\n",
1860 pThis->szPrf, nDescsInSingleRead,
1861 RDBAH, RDBAL + RDH * sizeof(E1KRXDESC),
1862 nFirstNotLoaded, RDLEN, RDH, RDT));
1863 if (nDescsToFetch > nDescsInSingleRead)
1864 {
1865 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns),
1866 ((uint64_t)RDBAH << 32) + RDBAL,
1867 pFirstEmptyDesc + nDescsInSingleRead,
1868 (nDescsToFetch - nDescsInSingleRead) * sizeof(E1KRXDESC));
1869 // Assert(i == pThis->nRxDFetched + nDescsInSingleRead);
1870 // for (j = 0; i < pThis->nRxDFetched + nDescsToFetch; ++i, ++j)
1871 // {
1872 // pThis->aRxDescAddr[i] = addrBase + j * sizeof(E1KRXDESC);
1873 // E1kLog3(("%s aRxDescAddr[%d] = %p\n", pThis->szPrf, i, pThis->aRxDescAddr[i]));
1874 // }
1875 E1kLog3(("%s Fetched %u RX descriptors at %08x%08x\n",
1876 pThis->szPrf, nDescsToFetch - nDescsInSingleRead,
1877 RDBAH, RDBAL));
1878 }
1879 pThis->nRxDFetched += nDescsToFetch;
1880 return nDescsToFetch;
1881}
1882
1883# ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */
1884/**
1885 * Dump receive descriptor to debug log.
1886 *
1887 * @param pThis The device state structure.
1888 * @param pDesc Pointer to the descriptor.
1889 * @thread E1000_RX
1890 */
1891static void e1kPrintRDesc(PE1KSTATE pThis, E1KRXDESC *pDesc)
1892{
1893 RT_NOREF2(pThis, pDesc);
1894 E1kLog2(("%s <-- Receive Descriptor (%d bytes):\n", pThis->szPrf, pDesc->u16Length));
1895 E1kLog2((" Address=%16LX Length=%04X Csum=%04X\n",
1896 pDesc->u64BufAddr, pDesc->u16Length, pDesc->u16Checksum));
1897 E1kLog2((" STA: %s %s %s %s %s %s %s ERR: %s %s %s %s SPECIAL: %s VLAN=%03x PRI=%x\n",
1898 pDesc->status.fPIF ? "PIF" : "pif",
1899 pDesc->status.fIPCS ? "IPCS" : "ipcs",
1900 pDesc->status.fTCPCS ? "TCPCS" : "tcpcs",
1901 pDesc->status.fVP ? "VP" : "vp",
1902 pDesc->status.fIXSM ? "IXSM" : "ixsm",
1903 pDesc->status.fEOP ? "EOP" : "eop",
1904 pDesc->status.fDD ? "DD" : "dd",
1905 pDesc->status.fRXE ? "RXE" : "rxe",
1906 pDesc->status.fIPE ? "IPE" : "ipe",
1907 pDesc->status.fTCPE ? "TCPE" : "tcpe",
1908 pDesc->status.fCE ? "CE" : "ce",
1909 E1K_SPEC_CFI(pDesc->status.u16Special) ? "CFI" :"cfi",
1910 E1K_SPEC_VLAN(pDesc->status.u16Special),
1911 E1K_SPEC_PRI(pDesc->status.u16Special)));
1912}
1913# endif /* IN_RING3 */
1914#endif /* E1K_WITH_RXD_CACHE */
1915
1916/**
1917 * Dump transmit descriptor to debug log.
1918 *
1919 * @param pThis The device state structure.
1920 * @param pDesc Pointer to descriptor union.
1921 * @param pszDir A string denoting direction of descriptor transfer
1922 * @thread E1000_TX
1923 */
1924static void e1kPrintTDesc(PE1KSTATE pThis, E1KTXDESC *pDesc, const char *pszDir,
1925 unsigned uLevel = RTLOGGRPFLAGS_LEVEL_2)
1926{
1927 RT_NOREF4(pThis, pDesc, pszDir, uLevel);
1928
1929 /*
1930 * Unfortunately we cannot use our format handler here, we want R0 logging
1931 * as well.
1932 */
1933 switch (e1kGetDescType(pDesc))
1934 {
1935 case E1K_DTYP_CONTEXT:
1936 E1kLogX(uLevel, ("%s %s Context Transmit Descriptor %s\n",
1937 pThis->szPrf, pszDir, pszDir));
1938 E1kLogX(uLevel, (" IPCSS=%02X IPCSO=%02X IPCSE=%04X TUCSS=%02X TUCSO=%02X TUCSE=%04X\n",
1939 pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE,
1940 pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE));
1941 E1kLogX(uLevel, (" TUCMD:%s%s%s %s %s PAYLEN=%04x HDRLEN=%04x MSS=%04x STA: %s\n",
1942 pDesc->context.dw2.fIDE ? " IDE":"",
1943 pDesc->context.dw2.fRS ? " RS" :"",
1944 pDesc->context.dw2.fTSE ? " TSE":"",
1945 pDesc->context.dw2.fIP ? "IPv4":"IPv6",
1946 pDesc->context.dw2.fTCP ? "TCP":"UDP",
1947 pDesc->context.dw2.u20PAYLEN,
1948 pDesc->context.dw3.u8HDRLEN,
1949 pDesc->context.dw3.u16MSS,
1950 pDesc->context.dw3.fDD?"DD":""));
1951 break;
1952 case E1K_DTYP_DATA:
1953 E1kLogX(uLevel, ("%s %s Data Transmit Descriptor (%d bytes) %s\n",
1954 pThis->szPrf, pszDir, pDesc->data.cmd.u20DTALEN, pszDir));
1955 E1kLogX(uLevel, (" Address=%16LX DTALEN=%05X\n",
1956 pDesc->data.u64BufAddr,
1957 pDesc->data.cmd.u20DTALEN));
1958 E1kLogX(uLevel, (" DCMD:%s%s%s%s%s%s%s STA:%s%s%s POPTS:%s%s SPECIAL:%s VLAN=%03x PRI=%x\n",
1959 pDesc->data.cmd.fIDE ? " IDE" :"",
1960 pDesc->data.cmd.fVLE ? " VLE" :"",
1961 pDesc->data.cmd.fRPS ? " RPS" :"",
1962 pDesc->data.cmd.fRS ? " RS" :"",
1963 pDesc->data.cmd.fTSE ? " TSE" :"",
1964 pDesc->data.cmd.fIFCS? " IFCS":"",
1965 pDesc->data.cmd.fEOP ? " EOP" :"",
1966 pDesc->data.dw3.fDD ? " DD" :"",
1967 pDesc->data.dw3.fEC ? " EC" :"",
1968 pDesc->data.dw3.fLC ? " LC" :"",
1969 pDesc->data.dw3.fTXSM? " TXSM":"",
1970 pDesc->data.dw3.fIXSM? " IXSM":"",
1971 E1K_SPEC_CFI(pDesc->data.dw3.u16Special) ? "CFI" :"cfi",
1972 E1K_SPEC_VLAN(pDesc->data.dw3.u16Special),
1973 E1K_SPEC_PRI(pDesc->data.dw3.u16Special)));
1974 break;
1975 case E1K_DTYP_LEGACY:
1976 E1kLogX(uLevel, ("%s %s Legacy Transmit Descriptor (%d bytes) %s\n",
1977 pThis->szPrf, pszDir, pDesc->legacy.cmd.u16Length, pszDir));
1978 E1kLogX(uLevel, (" Address=%16LX DTALEN=%05X\n",
1979 pDesc->data.u64BufAddr,
1980 pDesc->legacy.cmd.u16Length));
1981 E1kLogX(uLevel, (" CMD:%s%s%s%s%s%s%s STA:%s%s%s CSO=%02x CSS=%02x SPECIAL:%s VLAN=%03x PRI=%x\n",
1982 pDesc->legacy.cmd.fIDE ? " IDE" :"",
1983 pDesc->legacy.cmd.fVLE ? " VLE" :"",
1984 pDesc->legacy.cmd.fRPS ? " RPS" :"",
1985 pDesc->legacy.cmd.fRS ? " RS" :"",
1986 pDesc->legacy.cmd.fIC ? " IC" :"",
1987 pDesc->legacy.cmd.fIFCS? " IFCS":"",
1988 pDesc->legacy.cmd.fEOP ? " EOP" :"",
1989 pDesc->legacy.dw3.fDD ? " DD" :"",
1990 pDesc->legacy.dw3.fEC ? " EC" :"",
1991 pDesc->legacy.dw3.fLC ? " LC" :"",
1992 pDesc->legacy.cmd.u8CSO,
1993 pDesc->legacy.dw3.u8CSS,
1994 E1K_SPEC_CFI(pDesc->legacy.dw3.u16Special) ? "CFI" :"cfi",
1995 E1K_SPEC_VLAN(pDesc->legacy.dw3.u16Special),
1996 E1K_SPEC_PRI(pDesc->legacy.dw3.u16Special)));
1997 break;
1998 default:
1999 E1kLog(("%s %s Invalid Transmit Descriptor %s\n",
2000 pThis->szPrf, pszDir, pszDir));
2001 break;
2002 }
2003}
2004
2005/**
2006 * Raise an interrupt later.
2007 *
2008 * @param pThis The device state structure.
2009 */
2010inline void e1kPostponeInterrupt(PE1KSTATE pThis, uint64_t uNanoseconds)
2011{
2012 if (!TMTimerIsActive(pThis->CTX_SUFF(pIntTimer)))
2013 TMTimerSetNano(pThis->CTX_SUFF(pIntTimer), uNanoseconds);
2014}
2015
2016/**
2017 * Raise interrupt if not masked.
2018 *
2019 * @param pThis The device state structure.
2020 */
2021static int e1kRaiseInterrupt(PE1KSTATE pThis, int rcBusy, uint32_t u32IntCause = 0)
2022{
2023 int rc = e1kCsEnter(pThis, rcBusy);
2024 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2025 return rc;
2026
2027 E1K_INC_ISTAT_CNT(pThis->uStatIntTry);
2028 ICR |= u32IntCause;
2029 if (ICR & IMS)
2030 {
2031 if (pThis->fIntRaised)
2032 {
2033 E1K_INC_ISTAT_CNT(pThis->uStatIntSkip);
2034 E1kLog2(("%s e1kRaiseInterrupt: Already raised, skipped. ICR&IMS=%08x\n",
2035 pThis->szPrf, ICR & IMS));
2036 }
2037 else
2038 {
2039 uint64_t tsNow = TMTimerGet(pThis->CTX_SUFF(pIntTimer));
2040 if (!!ITR && tsNow - pThis->u64AckedAt < ITR * 256
2041 && pThis->fItrEnabled && (pThis->fItrRxEnabled || !(ICR & ICR_RXT0)))
2042 {
2043 E1K_INC_ISTAT_CNT(pThis->uStatIntEarly);
2044 E1kLog2(("%s e1kRaiseInterrupt: Too early to raise again: %d ns < %d ns.\n",
2045 pThis->szPrf, (uint32_t)(tsNow - pThis->u64AckedAt), ITR * 256));
2046 e1kPostponeInterrupt(pThis, ITR * 256);
2047 }
2048 else
2049 {
2050
2051 /* Since we are delivering the interrupt now
2052 * there is no need to do it later -- stop the timer.
2053 */
2054 TMTimerStop(pThis->CTX_SUFF(pIntTimer));
2055 E1K_INC_ISTAT_CNT(pThis->uStatInt);
2056 STAM_COUNTER_INC(&pThis->StatIntsRaised);
2057 /* Got at least one unmasked interrupt cause */
2058 pThis->fIntRaised = true;
2059 /* Raise(1) INTA(0) */
2060 E1kLogRel(("E1000: irq RAISED icr&mask=0x%x, icr=0x%x\n", ICR & IMS, ICR));
2061 PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0, 1);
2062 E1kLog(("%s e1kRaiseInterrupt: Raised. ICR&IMS=%08x\n",
2063 pThis->szPrf, ICR & IMS));
2064 }
2065 }
2066 }
2067 else
2068 {
2069 E1K_INC_ISTAT_CNT(pThis->uStatIntMasked);
2070 E1kLog2(("%s e1kRaiseInterrupt: Not raising, ICR=%08x, IMS=%08x\n",
2071 pThis->szPrf, ICR, IMS));
2072 }
2073 e1kCsLeave(pThis);
2074 return VINF_SUCCESS;
2075}
2076
2077/**
2078 * Compute the physical address of the descriptor.
2079 *
2080 * @returns the physical address of the descriptor.
2081 *
2082 * @param baseHigh High-order 32 bits of descriptor table address.
2083 * @param baseLow Low-order 32 bits of descriptor table address.
2084 * @param idxDesc The descriptor index in the table.
2085 */
2086DECLINLINE(RTGCPHYS) e1kDescAddr(uint32_t baseHigh, uint32_t baseLow, uint32_t idxDesc)
2087{
2088 AssertCompile(sizeof(E1KRXDESC) == sizeof(E1KTXDESC));
2089 return ((uint64_t)baseHigh << 32) + baseLow + idxDesc * sizeof(E1KRXDESC);
2090}
2091
2092#ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */
2093/**
2094 * Advance the head pointer of the receive descriptor queue.
2095 *
2096 * @remarks RDH always points to the next available RX descriptor.
2097 *
2098 * @param pThis The device state structure.
2099 */
2100DECLINLINE(void) e1kAdvanceRDH(PE1KSTATE pThis)
2101{
2102 Assert(e1kCsRxIsOwner(pThis));
2103 //e1kCsEnter(pThis, RT_SRC_POS);
2104 if (++RDH * sizeof(E1KRXDESC) >= RDLEN)
2105 RDH = 0;
2106#ifdef E1K_WITH_RXD_CACHE
2107 /*
2108 * We need to fetch descriptors now as the guest may advance RDT all the way
2109 * to RDH as soon as we generate RXDMT0 interrupt. This is mostly to provide
2110 * compatibility with Phar Lap ETS, see @bugref(7346). Note that we do not
2111 * check if the receiver is enabled. It must be, otherwise we won't get here
2112 * in the first place.
2113 *
2114 * Note that we should have moved both RDH and iRxDCurrent by now.
2115 */
2116 if (e1kRxDIsCacheEmpty(pThis))
2117 {
2118 /* Cache is empty, reset it and check if we can fetch more. */
2119 pThis->iRxDCurrent = pThis->nRxDFetched = 0;
2120 E1kLog3(("%s e1kAdvanceRDH: Rx cache is empty, RDH=%x RDT=%x "
2121 "iRxDCurrent=%x nRxDFetched=%x\n",
2122 pThis->szPrf, RDH, RDT, pThis->iRxDCurrent, pThis->nRxDFetched));
2123 e1kRxDPrefetch(pThis);
2124 }
2125#endif /* E1K_WITH_RXD_CACHE */
2126 /*
2127 * Compute current receive queue length and fire RXDMT0 interrupt
2128 * if we are low on receive buffers
2129 */
2130 uint32_t uRQueueLen = RDH>RDT ? RDLEN/sizeof(E1KRXDESC)-RDH+RDT : RDT-RDH;
2131 /*
2132 * The minimum threshold is controlled by RDMTS bits of RCTL:
2133 * 00 = 1/2 of RDLEN
2134 * 01 = 1/4 of RDLEN
2135 * 10 = 1/8 of RDLEN
2136 * 11 = reserved
2137 */
2138 uint32_t uMinRQThreshold = RDLEN / sizeof(E1KRXDESC) / (2 << GET_BITS(RCTL, RDMTS));
2139 if (uRQueueLen <= uMinRQThreshold)
2140 {
2141 E1kLogRel(("E1000: low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x\n", RDH, RDT, uRQueueLen, uMinRQThreshold));
2142 E1kLog2(("%s Low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x, raise an interrupt\n",
2143 pThis->szPrf, RDH, RDT, uRQueueLen, uMinRQThreshold));
2144 E1K_INC_ISTAT_CNT(pThis->uStatIntRXDMT0);
2145 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_RXDMT0);
2146 }
2147 E1kLog2(("%s e1kAdvanceRDH: at exit RDH=%x RDT=%x len=%x\n",
2148 pThis->szPrf, RDH, RDT, uRQueueLen));
2149 //e1kCsLeave(pThis);
2150}
2151#endif /* IN_RING3 */
2152
2153#ifdef E1K_WITH_RXD_CACHE
2154
2155# ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */
2156
2157/**
2158 * Obtain the next RX descriptor from RXD cache, fetching descriptors from the
2159 * RX ring if the cache is empty.
2160 *
2161 * Note that we cannot advance the cache pointer (iRxDCurrent) yet as it will
2162 * go out of sync with RDH which will cause trouble when EMT checks if the
2163 * cache is empty to do pre-fetch @bugref(6217).
2164 *
2165 * @param pThis The device state structure.
2166 * @thread RX
2167 */
2168DECLINLINE(E1KRXDESC*) e1kRxDGet(PE1KSTATE pThis)
2169{
2170 Assert(e1kCsRxIsOwner(pThis));
2171 /* Check the cache first. */
2172 if (pThis->iRxDCurrent < pThis->nRxDFetched)
2173 return &pThis->aRxDescriptors[pThis->iRxDCurrent];
2174 /* Cache is empty, reset it and check if we can fetch more. */
2175 pThis->iRxDCurrent = pThis->nRxDFetched = 0;
2176 if (e1kRxDPrefetch(pThis))
2177 return &pThis->aRxDescriptors[pThis->iRxDCurrent];
2178 /* Out of Rx descriptors. */
2179 return NULL;
2180}
2181
2182
2183/**
2184 * Return the RX descriptor obtained with e1kRxDGet() and advance the cache
2185 * pointer. The descriptor gets written back to the RXD ring.
2186 *
2187 * @param pThis The device state structure.
2188 * @param pDesc The descriptor being "returned" to the RX ring.
2189 * @thread RX
2190 */
2191DECLINLINE(void) e1kRxDPut(PE1KSTATE pThis, E1KRXDESC* pDesc)
2192{
2193 Assert(e1kCsRxIsOwner(pThis));
2194 pThis->iRxDCurrent++;
2195 // Assert(pDesc >= pThis->aRxDescriptors);
2196 // Assert(pDesc < pThis->aRxDescriptors + E1K_RXD_CACHE_SIZE);
2197 // uint64_t addr = e1kDescAddr(RDBAH, RDBAL, RDH);
2198 // uint32_t rdh = RDH;
2199 // Assert(pThis->aRxDescAddr[pDesc - pThis->aRxDescriptors] == addr);
2200 PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns),
2201 e1kDescAddr(RDBAH, RDBAL, RDH),
2202 pDesc, sizeof(E1KRXDESC));
2203 /*
2204 * We need to print the descriptor before advancing RDH as it may fetch new
2205 * descriptors into the cache.
2206 */
2207 e1kPrintRDesc(pThis, pDesc);
2208 e1kAdvanceRDH(pThis);
2209}
2210
2211/**
2212 * Store a fragment of received packet at the specifed address.
2213 *
2214 * @param pThis The device state structure.
2215 * @param pDesc The next available RX descriptor.
2216 * @param pvBuf The fragment.
2217 * @param cb The size of the fragment.
2218 */
2219static DECLCALLBACK(void) e1kStoreRxFragment(PE1KSTATE pThis, E1KRXDESC *pDesc, const void *pvBuf, size_t cb)
2220{
2221 STAM_PROFILE_ADV_START(&pThis->StatReceiveStore, a);
2222 E1kLog2(("%s e1kStoreRxFragment: store fragment of %04X at %016LX, EOP=%d\n",
2223 pThis->szPrf, cb, pDesc->u64BufAddr, pDesc->status.fEOP));
2224 PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pDesc->u64BufAddr, pvBuf, cb);
2225 pDesc->u16Length = (uint16_t)cb; Assert(pDesc->u16Length == cb);
2226 STAM_PROFILE_ADV_STOP(&pThis->StatReceiveStore, a);
2227}
2228
2229# endif /* IN_RING3 */
2230
2231#else /* !E1K_WITH_RXD_CACHE */
2232
2233/**
2234 * Store a fragment of received packet that fits into the next available RX
2235 * buffer.
2236 *
2237 * @remarks Trigger the RXT0 interrupt if it is the last fragment of the packet.
2238 *
2239 * @param pThis The device state structure.
2240 * @param pDesc The next available RX descriptor.
2241 * @param pvBuf The fragment.
2242 * @param cb The size of the fragment.
2243 */
2244static DECLCALLBACK(void) e1kStoreRxFragment(PE1KSTATE pThis, E1KRXDESC *pDesc, const void *pvBuf, size_t cb)
2245{
2246 STAM_PROFILE_ADV_START(&pThis->StatReceiveStore, a);
2247 E1kLog2(("%s e1kStoreRxFragment: store fragment of %04X at %016LX, EOP=%d\n", pThis->szPrf, cb, pDesc->u64BufAddr, pDesc->status.fEOP));
2248 PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pDesc->u64BufAddr, pvBuf, cb);
2249 pDesc->u16Length = (uint16_t)cb; Assert(pDesc->u16Length == cb);
2250 /* Write back the descriptor */
2251 PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), e1kDescAddr(RDBAH, RDBAL, RDH), pDesc, sizeof(E1KRXDESC));
2252 e1kPrintRDesc(pThis, pDesc);
2253 E1kLogRel(("E1000: Wrote back RX desc, RDH=%x\n", RDH));
2254 /* Advance head */
2255 e1kAdvanceRDH(pThis);
2256 //E1kLog2(("%s e1kStoreRxFragment: EOP=%d RDTR=%08X RADV=%08X\n", pThis->szPrf, pDesc->fEOP, RDTR, RADV));
2257 if (pDesc->status.fEOP)
2258 {
2259 /* Complete packet has been stored -- it is time to let the guest know. */
2260#ifdef E1K_USE_RX_TIMERS
2261 if (RDTR)
2262 {
2263 /* Arm the timer to fire in RDTR usec (discard .024) */
2264 e1kArmTimer(pThis, pThis->CTX_SUFF(pRIDTimer), RDTR);
2265 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
2266 if (RADV != 0 && !TMTimerIsActive(pThis->CTX_SUFF(pRADTimer)))
2267 e1kArmTimer(pThis, pThis->CTX_SUFF(pRADTimer), RADV);
2268 }
2269 else
2270 {
2271#endif
2272 /* 0 delay means immediate interrupt */
2273 E1K_INC_ISTAT_CNT(pThis->uStatIntRx);
2274 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_RXT0);
2275#ifdef E1K_USE_RX_TIMERS
2276 }
2277#endif
2278 }
2279 STAM_PROFILE_ADV_STOP(&pThis->StatReceiveStore, a);
2280}
2281
2282#endif /* !E1K_WITH_RXD_CACHE */
2283
2284/**
2285 * Returns true if it is a broadcast packet.
2286 *
2287 * @returns true if destination address indicates broadcast.
2288 * @param pvBuf The ethernet packet.
2289 */
2290DECLINLINE(bool) e1kIsBroadcast(const void *pvBuf)
2291{
2292 static const uint8_t s_abBcastAddr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
2293 return memcmp(pvBuf, s_abBcastAddr, sizeof(s_abBcastAddr)) == 0;
2294}
2295
2296/**
2297 * Returns true if it is a multicast packet.
2298 *
2299 * @remarks returns true for broadcast packets as well.
2300 * @returns true if destination address indicates multicast.
2301 * @param pvBuf The ethernet packet.
2302 */
2303DECLINLINE(bool) e1kIsMulticast(const void *pvBuf)
2304{
2305 return (*(char*)pvBuf) & 1;
2306}
2307
2308#ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */
2309/**
2310 * Set IXSM, IPCS and TCPCS flags according to the packet type.
2311 *
2312 * @remarks We emulate checksum offloading for major packets types only.
2313 *
2314 * @returns VBox status code.
2315 * @param pThis The device state structure.
2316 * @param pFrame The available data.
2317 * @param cb Number of bytes available in the buffer.
2318 * @param status Bit fields containing status info.
2319 */
2320static int e1kRxChecksumOffload(PE1KSTATE pThis, const uint8_t *pFrame, size_t cb, E1KRXDST *pStatus)
2321{
2322 /** @todo
2323 * It is not safe to bypass checksum verification for packets coming
2324 * from real wire. We currently unable to tell where packets are
2325 * coming from so we tell the driver to ignore our checksum flags
2326 * and do verification in software.
2327 */
2328# if 0
2329 uint16_t uEtherType = ntohs(*(uint16_t*)(pFrame + 12));
2330
2331 E1kLog2(("%s e1kRxChecksumOffload: EtherType=%x\n", pThis->szPrf, uEtherType));
2332
2333 switch (uEtherType)
2334 {
2335 case 0x800: /* IPv4 */
2336 {
2337 pStatus->fIXSM = false;
2338 pStatus->fIPCS = true;
2339 PRTNETIPV4 pIpHdr4 = (PRTNETIPV4)(pFrame + 14);
2340 /* TCP/UDP checksum offloading works with TCP and UDP only */
2341 pStatus->fTCPCS = pIpHdr4->ip_p == 6 || pIpHdr4->ip_p == 17;
2342 break;
2343 }
2344 case 0x86DD: /* IPv6 */
2345 pStatus->fIXSM = false;
2346 pStatus->fIPCS = false;
2347 pStatus->fTCPCS = true;
2348 break;
2349 default: /* ARP, VLAN, etc. */
2350 pStatus->fIXSM = true;
2351 break;
2352 }
2353# else
2354 pStatus->fIXSM = true;
2355 RT_NOREF_PV(pThis); RT_NOREF_PV(pFrame); RT_NOREF_PV(cb);
2356# endif
2357 return VINF_SUCCESS;
2358}
2359#endif /* IN_RING3 */
2360
2361/**
2362 * Pad and store received packet.
2363 *
2364 * @remarks Make sure that the packet appears to upper layer as one coming
2365 * from real Ethernet: pad it and insert FCS.
2366 *
2367 * @returns VBox status code.
2368 * @param pThis The device state structure.
2369 * @param pvBuf The available data.
2370 * @param cb Number of bytes available in the buffer.
2371 * @param status Bit fields containing status info.
2372 */
2373static int e1kHandleRxPacket(PE1KSTATE pThis, const void *pvBuf, size_t cb, E1KRXDST status)
2374{
2375#if defined(IN_RING3) /** @todo Remove this extra copying, it's gonna make us run out of kernel / hypervisor stack! */
2376 uint8_t rxPacket[E1K_MAX_RX_PKT_SIZE];
2377 uint8_t *ptr = rxPacket;
2378
2379 int rc = e1kCsRxEnter(pThis, VERR_SEM_BUSY);
2380 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2381 return rc;
2382
2383 if (cb > 70) /* unqualified guess */
2384 pThis->led.Asserted.s.fReading = pThis->led.Actual.s.fReading = 1;
2385
2386 Assert(cb <= E1K_MAX_RX_PKT_SIZE);
2387 Assert(cb > 16);
2388 size_t cbMax = ((RCTL & RCTL_LPE) ? E1K_MAX_RX_PKT_SIZE - 4 : 1518) - (status.fVP ? 0 : 4);
2389 E1kLog3(("%s Max RX packet size is %u\n", pThis->szPrf, cbMax));
2390 if (status.fVP)
2391 {
2392 /* VLAN packet -- strip VLAN tag in VLAN mode */
2393 if ((CTRL & CTRL_VME) && cb > 16)
2394 {
2395 uint16_t *u16Ptr = (uint16_t*)pvBuf;
2396 memcpy(rxPacket, pvBuf, 12); /* Copy src and dst addresses */
2397 status.u16Special = RT_BE2H_U16(u16Ptr[7]); /* Extract VLAN tag */
2398 memcpy(rxPacket + 12, (uint8_t*)pvBuf + 16, cb - 16); /* Copy the rest of the packet */
2399 cb -= 4;
2400 E1kLog3(("%s Stripped tag for VLAN %u (cb=%u)\n",
2401 pThis->szPrf, status.u16Special, cb));
2402 }
2403 else
2404 status.fVP = false; /* Set VP only if we stripped the tag */
2405 }
2406 else
2407 memcpy(rxPacket, pvBuf, cb);
2408 /* Pad short packets */
2409 if (cb < 60)
2410 {
2411 memset(rxPacket + cb, 0, 60 - cb);
2412 cb = 60;
2413 }
2414 if (!(RCTL & RCTL_SECRC) && cb <= cbMax)
2415 {
2416 STAM_PROFILE_ADV_START(&pThis->StatReceiveCRC, a);
2417 /*
2418 * Add FCS if CRC stripping is not enabled. Since the value of CRC
2419 * is ignored by most of drivers we may as well save us the trouble
2420 * of calculating it (see EthernetCRC CFGM parameter).
2421 */
2422 if (pThis->fEthernetCRC)
2423 *(uint32_t*)(rxPacket + cb) = RTCrc32(rxPacket, cb);
2424 cb += sizeof(uint32_t);
2425 STAM_PROFILE_ADV_STOP(&pThis->StatReceiveCRC, a);
2426 E1kLog3(("%s Added FCS (cb=%u)\n", pThis->szPrf, cb));
2427 }
2428 /* Compute checksum of complete packet */
2429 uint16_t checksum = e1kCSum16(rxPacket + GET_BITS(RXCSUM, PCSS), cb);
2430 e1kRxChecksumOffload(pThis, rxPacket, cb, &status);
2431
2432 /* Update stats */
2433 E1K_INC_CNT32(GPRC);
2434 if (e1kIsBroadcast(pvBuf))
2435 E1K_INC_CNT32(BPRC);
2436 else if (e1kIsMulticast(pvBuf))
2437 E1K_INC_CNT32(MPRC);
2438 /* Update octet receive counter */
2439 E1K_ADD_CNT64(GORCL, GORCH, cb);
2440 STAM_REL_COUNTER_ADD(&pThis->StatReceiveBytes, cb);
2441 if (cb == 64)
2442 E1K_INC_CNT32(PRC64);
2443 else if (cb < 128)
2444 E1K_INC_CNT32(PRC127);
2445 else if (cb < 256)
2446 E1K_INC_CNT32(PRC255);
2447 else if (cb < 512)
2448 E1K_INC_CNT32(PRC511);
2449 else if (cb < 1024)
2450 E1K_INC_CNT32(PRC1023);
2451 else
2452 E1K_INC_CNT32(PRC1522);
2453
2454 E1K_INC_ISTAT_CNT(pThis->uStatRxFrm);
2455
2456# ifdef E1K_WITH_RXD_CACHE
2457 while (cb > 0)
2458 {
2459 E1KRXDESC *pDesc = e1kRxDGet(pThis);
2460
2461 if (pDesc == NULL)
2462 {
2463 E1kLog(("%s Out of receive buffers, dropping the packet "
2464 "(cb=%u, in_cache=%u, RDH=%x RDT=%x)\n",
2465 pThis->szPrf, cb, e1kRxDInCache(pThis), RDH, RDT));
2466 break;
2467 }
2468# else /* !E1K_WITH_RXD_CACHE */
2469 if (RDH == RDT)
2470 {
2471 E1kLog(("%s Out of receive buffers, dropping the packet\n",
2472 pThis->szPrf));
2473 }
2474 /* Store the packet to receive buffers */
2475 while (RDH != RDT)
2476 {
2477 /* Load the descriptor pointed by head */
2478 E1KRXDESC desc, *pDesc = &desc;
2479 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), e1kDescAddr(RDBAH, RDBAL, RDH),
2480 &desc, sizeof(desc));
2481# endif /* !E1K_WITH_RXD_CACHE */
2482 if (pDesc->u64BufAddr)
2483 {
2484 /* Update descriptor */
2485 pDesc->status = status;
2486 pDesc->u16Checksum = checksum;
2487 pDesc->status.fDD = true;
2488
2489 /*
2490 * We need to leave Rx critical section here or we risk deadlocking
2491 * with EMT in e1kRegWriteRDT when the write is to an unallocated
2492 * page or has an access handler associated with it.
2493 * Note that it is safe to leave the critical section here since
2494 * e1kRegWriteRDT() never modifies RDH. It never touches already
2495 * fetched RxD cache entries either.
2496 */
2497 if (cb > pThis->u16RxBSize)
2498 {
2499 pDesc->status.fEOP = false;
2500 e1kCsRxLeave(pThis);
2501 e1kStoreRxFragment(pThis, pDesc, ptr, pThis->u16RxBSize);
2502 rc = e1kCsRxEnter(pThis, VERR_SEM_BUSY);
2503 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2504 return rc;
2505 ptr += pThis->u16RxBSize;
2506 cb -= pThis->u16RxBSize;
2507 }
2508 else
2509 {
2510 pDesc->status.fEOP = true;
2511 e1kCsRxLeave(pThis);
2512 e1kStoreRxFragment(pThis, pDesc, ptr, cb);
2513# ifdef E1K_WITH_RXD_CACHE
2514 rc = e1kCsRxEnter(pThis, VERR_SEM_BUSY);
2515 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2516 return rc;
2517 cb = 0;
2518# else /* !E1K_WITH_RXD_CACHE */
2519 pThis->led.Actual.s.fReading = 0;
2520 return VINF_SUCCESS;
2521# endif /* !E1K_WITH_RXD_CACHE */
2522 }
2523 /*
2524 * Note: RDH is advanced by e1kStoreRxFragment if E1K_WITH_RXD_CACHE
2525 * is not defined.
2526 */
2527 }
2528# ifdef E1K_WITH_RXD_CACHE
2529 /* Write back the descriptor. */
2530 pDesc->status.fDD = true;
2531 e1kRxDPut(pThis, pDesc);
2532# else /* !E1K_WITH_RXD_CACHE */
2533 else
2534 {
2535 /* Write back the descriptor. */
2536 pDesc->status.fDD = true;
2537 PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns),
2538 e1kDescAddr(RDBAH, RDBAL, RDH),
2539 pDesc, sizeof(E1KRXDESC));
2540 e1kAdvanceRDH(pThis);
2541 }
2542# endif /* !E1K_WITH_RXD_CACHE */
2543 }
2544
2545 if (cb > 0)
2546 E1kLog(("%s Out of receive buffers, dropping %u bytes", pThis->szPrf, cb));
2547
2548 pThis->led.Actual.s.fReading = 0;
2549
2550 e1kCsRxLeave(pThis);
2551# ifdef E1K_WITH_RXD_CACHE
2552 /* Complete packet has been stored -- it is time to let the guest know. */
2553# ifdef E1K_USE_RX_TIMERS
2554 if (RDTR)
2555 {
2556 /* Arm the timer to fire in RDTR usec (discard .024) */
2557 e1kArmTimer(pThis, pThis->CTX_SUFF(pRIDTimer), RDTR);
2558 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
2559 if (RADV != 0 && !TMTimerIsActive(pThis->CTX_SUFF(pRADTimer)))
2560 e1kArmTimer(pThis, pThis->CTX_SUFF(pRADTimer), RADV);
2561 }
2562 else
2563 {
2564# endif /* E1K_USE_RX_TIMERS */
2565 /* 0 delay means immediate interrupt */
2566 E1K_INC_ISTAT_CNT(pThis->uStatIntRx);
2567 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_RXT0);
2568# ifdef E1K_USE_RX_TIMERS
2569 }
2570# endif /* E1K_USE_RX_TIMERS */
2571# endif /* E1K_WITH_RXD_CACHE */
2572
2573 return VINF_SUCCESS;
2574#else /* !IN_RING3 */
2575 RT_NOREF_PV(pThis); RT_NOREF_PV(pvBuf); RT_NOREF_PV(cb); RT_NOREF_PV(status);
2576 return VERR_INTERNAL_ERROR_2;
2577#endif /* !IN_RING3 */
2578}
2579
2580
2581#ifdef IN_RING3
2582/**
2583 * Bring the link up after the configured delay, 5 seconds by default.
2584 *
2585 * @param pThis The device state structure.
2586 * @thread any
2587 */
2588DECLINLINE(void) e1kBringLinkUpDelayed(PE1KSTATE pThis)
2589{
2590 E1kLog(("%s Will bring up the link in %d seconds...\n",
2591 pThis->szPrf, pThis->cMsLinkUpDelay / 1000));
2592 e1kArmTimer(pThis, pThis->CTX_SUFF(pLUTimer), pThis->cMsLinkUpDelay * 1000);
2593}
2594
2595/**
2596 * Bring up the link immediately.
2597 *
2598 * @param pThis The device state structure.
2599 */
2600DECLINLINE(void) e1kR3LinkUp(PE1KSTATE pThis)
2601{
2602 E1kLog(("%s Link is up\n", pThis->szPrf));
2603 STATUS |= STATUS_LU;
2604 Phy::setLinkStatus(&pThis->phy, true);
2605 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_LSC);
2606 if (pThis->pDrvR3)
2607 pThis->pDrvR3->pfnNotifyLinkChanged(pThis->pDrvR3, PDMNETWORKLINKSTATE_UP);
2608 /* Process pending TX descriptors (see @bugref{8942}) */
2609 PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pThis->CTX_SUFF(pTxQueue));
2610 if (RT_UNLIKELY(pItem))
2611 PDMQueueInsert(pThis->CTX_SUFF(pTxQueue), pItem);
2612}
2613
2614/**
2615 * Bring down the link immediately.
2616 *
2617 * @param pThis The device state structure.
2618 */
2619DECLINLINE(void) e1kR3LinkDown(PE1KSTATE pThis)
2620{
2621 E1kLog(("%s Link is down\n", pThis->szPrf));
2622 STATUS &= ~STATUS_LU;
2623#ifdef E1K_LSC_ON_RESET
2624 Phy::setLinkStatus(&pThis->phy, false);
2625#endif /* E1K_LSC_ON_RESET */
2626 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_LSC);
2627 if (pThis->pDrvR3)
2628 pThis->pDrvR3->pfnNotifyLinkChanged(pThis->pDrvR3, PDMNETWORKLINKSTATE_DOWN);
2629}
2630
2631/**
2632 * Bring down the link temporarily.
2633 *
2634 * @param pThis The device state structure.
2635 */
2636DECLINLINE(void) e1kR3LinkDownTemp(PE1KSTATE pThis)
2637{
2638 E1kLog(("%s Link is down temporarily\n", pThis->szPrf));
2639 STATUS &= ~STATUS_LU;
2640 Phy::setLinkStatus(&pThis->phy, false);
2641 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_LSC);
2642 /*
2643 * Notifying the associated driver that the link went down (even temporarily)
2644 * seems to be the right thing, but it was not done before. This may cause
2645 * a regression if the driver does not expect the link to go down as a result
2646 * of sending PDMNETWORKLINKSTATE_DOWN_RESUME to this device. Earlier versions
2647 * of code notified the driver that the link was up! See @bugref{7057}.
2648 */
2649 if (pThis->pDrvR3)
2650 pThis->pDrvR3->pfnNotifyLinkChanged(pThis->pDrvR3, PDMNETWORKLINKSTATE_DOWN);
2651 e1kBringLinkUpDelayed(pThis);
2652}
2653#endif /* IN_RING3 */
2654
2655#if 0 /* unused */
2656/**
2657 * Read handler for Device Status register.
2658 *
2659 * Get the link status from PHY.
2660 *
2661 * @returns VBox status code.
2662 *
2663 * @param pThis The device state structure.
2664 * @param offset Register offset in memory-mapped frame.
2665 * @param index Register index in register array.
2666 * @param mask Used to implement partial reads (8 and 16-bit).
2667 */
2668static int e1kRegReadCTRL(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
2669{
2670 E1kLog(("%s e1kRegReadCTRL: mdio dir=%s mdc dir=%s mdc=%d\n",
2671 pThis->szPrf, (CTRL & CTRL_MDIO_DIR)?"OUT":"IN ",
2672 (CTRL & CTRL_MDC_DIR)?"OUT":"IN ", !!(CTRL & CTRL_MDC)));
2673 if ((CTRL & CTRL_MDIO_DIR) == 0 && (CTRL & CTRL_MDC))
2674 {
2675 /* MDC is high and MDIO pin is used for input, read MDIO pin from PHY */
2676 if (Phy::readMDIO(&pThis->phy))
2677 *pu32Value = CTRL | CTRL_MDIO;
2678 else
2679 *pu32Value = CTRL & ~CTRL_MDIO;
2680 E1kLog(("%s e1kRegReadCTRL: Phy::readMDIO(%d)\n",
2681 pThis->szPrf, !!(*pu32Value & CTRL_MDIO)));
2682 }
2683 else
2684 {
2685 /* MDIO pin is used for output, ignore it */
2686 *pu32Value = CTRL;
2687 }
2688 return VINF_SUCCESS;
2689}
2690#endif /* unused */
2691
2692/**
2693 * A callback used by PHY to indicate that the link needs to be updated due to
2694 * reset of PHY.
2695 *
2696 * @param pPhy A pointer to phy member of the device state structure.
2697 * @thread any
2698 */
2699void e1kPhyLinkResetCallback(PPHY pPhy)
2700{
2701 /* PHY is aggregated into e1000, get pThis from pPhy. */
2702 PE1KSTATE pThis = RT_FROM_MEMBER(pPhy, E1KSTATE, phy);
2703 /* Make sure we have cable connected and MAC can talk to PHY */
2704 if (pThis->fCableConnected && (CTRL & CTRL_SLU))
2705 e1kArmTimer(pThis, pThis->CTX_SUFF(pLUTimer), E1K_INIT_LINKUP_DELAY_US);
2706}
2707
2708/**
2709 * Write handler for Device Control register.
2710 *
2711 * Handles reset.
2712 *
2713 * @param pThis The device state structure.
2714 * @param offset Register offset in memory-mapped frame.
2715 * @param index Register index in register array.
2716 * @param value The value to store.
2717 * @param mask Used to implement partial writes (8 and 16-bit).
2718 * @thread EMT
2719 */
2720static int e1kRegWriteCTRL(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
2721{
2722 int rc = VINF_SUCCESS;
2723
2724 if (value & CTRL_RESET)
2725 { /* RST */
2726#ifndef IN_RING3
2727 return VINF_IOM_R3_MMIO_WRITE;
2728#else
2729 e1kHardReset(pThis);
2730#endif
2731 }
2732 else
2733 {
2734#ifdef E1K_LSC_ON_SLU
2735 /*
2736 * When the guest changes 'Set Link Up' bit from 0 to 1 we check if
2737 * the link is down and the cable is connected, and if they are we
2738 * bring the link up, see @bugref{8624}.
2739 */
2740 if ( (value & CTRL_SLU)
2741 && !(CTRL & CTRL_SLU)
2742 && pThis->fCableConnected
2743 && !(STATUS & STATUS_LU))
2744 {
2745 /* It should take about 2 seconds for the link to come up */
2746 e1kArmTimer(pThis, pThis->CTX_SUFF(pLUTimer), E1K_INIT_LINKUP_DELAY_US);
2747 }
2748#else /* !E1K_LSC_ON_SLU */
2749 if ( (value & CTRL_SLU)
2750 && !(CTRL & CTRL_SLU)
2751 && pThis->fCableConnected
2752 && !TMTimerIsActive(pThis->CTX_SUFF(pLUTimer)))
2753 {
2754 /* PXE does not use LSC interrupts, see @bugref{9113}. */
2755 STATUS |= STATUS_LU;
2756 }
2757#endif /* !E1K_LSC_ON_SLU */
2758 if ((value & CTRL_VME) != (CTRL & CTRL_VME))
2759 {
2760 E1kLog(("%s VLAN Mode %s\n", pThis->szPrf, (value & CTRL_VME) ? "Enabled" : "Disabled"));
2761 }
2762 Log7(("%s e1kRegWriteCTRL: mdio dir=%s mdc dir=%s mdc=%s mdio=%d\n",
2763 pThis->szPrf, (value & CTRL_MDIO_DIR)?"OUT":"IN ",
2764 (value & CTRL_MDC_DIR)?"OUT":"IN ", (value & CTRL_MDC)?"HIGH":"LOW ", !!(value & CTRL_MDIO)));
2765 if (value & CTRL_MDC)
2766 {
2767 if (value & CTRL_MDIO_DIR)
2768 {
2769 Log7(("%s e1kRegWriteCTRL: Phy::writeMDIO(%d)\n", pThis->szPrf, !!(value & CTRL_MDIO)));
2770 /* MDIO direction pin is set to output and MDC is high, write MDIO pin value to PHY */
2771 Phy::writeMDIO(&pThis->phy, !!(value & CTRL_MDIO));
2772 }
2773 else
2774 {
2775 if (Phy::readMDIO(&pThis->phy))
2776 value |= CTRL_MDIO;
2777 else
2778 value &= ~CTRL_MDIO;
2779 Log7(("%s e1kRegWriteCTRL: Phy::readMDIO(%d)\n", pThis->szPrf, !!(value & CTRL_MDIO)));
2780 }
2781 }
2782 rc = e1kRegWriteDefault(pThis, offset, index, value);
2783 }
2784
2785 return rc;
2786}
2787
2788/**
2789 * Write handler for EEPROM/Flash Control/Data register.
2790 *
2791 * Handles EEPROM access requests; forwards writes to EEPROM device if access has been granted.
2792 *
2793 * @param pThis The device state structure.
2794 * @param offset Register offset in memory-mapped frame.
2795 * @param index Register index in register array.
2796 * @param value The value to store.
2797 * @param mask Used to implement partial writes (8 and 16-bit).
2798 * @thread EMT
2799 */
2800static int e1kRegWriteEECD(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
2801{
2802 RT_NOREF(offset, index);
2803#ifdef IN_RING3
2804 /* So far we are concerned with lower byte only */
2805 if ((EECD & EECD_EE_GNT) || pThis->eChip == E1K_CHIP_82543GC)
2806 {
2807 /* Access to EEPROM granted -- forward 4-wire bits to EEPROM device */
2808 /* Note: 82543GC does not need to request EEPROM access */
2809 STAM_PROFILE_ADV_START(&pThis->StatEEPROMWrite, a);
2810 pThis->eeprom.write(value & EECD_EE_WIRES);
2811 STAM_PROFILE_ADV_STOP(&pThis->StatEEPROMWrite, a);
2812 }
2813 if (value & EECD_EE_REQ)
2814 EECD |= EECD_EE_REQ|EECD_EE_GNT;
2815 else
2816 EECD &= ~EECD_EE_GNT;
2817 //e1kRegWriteDefault(pThis, offset, index, value );
2818
2819 return VINF_SUCCESS;
2820#else /* !IN_RING3 */
2821 RT_NOREF(pThis, value);
2822 return VINF_IOM_R3_MMIO_WRITE;
2823#endif /* !IN_RING3 */
2824}
2825
2826/**
2827 * Read handler for EEPROM/Flash Control/Data register.
2828 *
2829 * Lower 4 bits come from EEPROM device if EEPROM access has been granted.
2830 *
2831 * @returns VBox status code.
2832 *
2833 * @param pThis The device state structure.
2834 * @param offset Register offset in memory-mapped frame.
2835 * @param index Register index in register array.
2836 * @param mask Used to implement partial reads (8 and 16-bit).
2837 * @thread EMT
2838 */
2839static int e1kRegReadEECD(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
2840{
2841#ifdef IN_RING3
2842 uint32_t value;
2843 int rc = e1kRegReadDefault(pThis, offset, index, &value);
2844 if (RT_SUCCESS(rc))
2845 {
2846 if ((value & EECD_EE_GNT) || pThis->eChip == E1K_CHIP_82543GC)
2847 {
2848 /* Note: 82543GC does not need to request EEPROM access */
2849 /* Access to EEPROM granted -- get 4-wire bits to EEPROM device */
2850 STAM_PROFILE_ADV_START(&pThis->StatEEPROMRead, a);
2851 value |= pThis->eeprom.read();
2852 STAM_PROFILE_ADV_STOP(&pThis->StatEEPROMRead, a);
2853 }
2854 *pu32Value = value;
2855 }
2856
2857 return rc;
2858#else /* !IN_RING3 */
2859 RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); RT_NOREF_PV(pu32Value);
2860 return VINF_IOM_R3_MMIO_READ;
2861#endif /* !IN_RING3 */
2862}
2863
2864/**
2865 * Write handler for EEPROM Read register.
2866 *
2867 * Handles EEPROM word access requests, reads EEPROM and stores the result
2868 * into DATA field.
2869 *
2870 * @param pThis The device state structure.
2871 * @param offset Register offset in memory-mapped frame.
2872 * @param index Register index in register array.
2873 * @param value The value to store.
2874 * @param mask Used to implement partial writes (8 and 16-bit).
2875 * @thread EMT
2876 */
2877static int e1kRegWriteEERD(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
2878{
2879#ifdef IN_RING3
2880 /* Make use of 'writable' and 'readable' masks. */
2881 e1kRegWriteDefault(pThis, offset, index, value);
2882 /* DONE and DATA are set only if read was triggered by START. */
2883 if (value & EERD_START)
2884 {
2885 uint16_t tmp;
2886 STAM_PROFILE_ADV_START(&pThis->StatEEPROMRead, a);
2887 if (pThis->eeprom.readWord(GET_BITS_V(value, EERD, ADDR), &tmp))
2888 SET_BITS(EERD, DATA, tmp);
2889 EERD |= EERD_DONE;
2890 STAM_PROFILE_ADV_STOP(&pThis->StatEEPROMRead, a);
2891 }
2892
2893 return VINF_SUCCESS;
2894#else /* !IN_RING3 */
2895 RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); RT_NOREF_PV(value);
2896 return VINF_IOM_R3_MMIO_WRITE;
2897#endif /* !IN_RING3 */
2898}
2899
2900
2901/**
2902 * Write handler for MDI Control register.
2903 *
2904 * Handles PHY read/write requests; forwards requests to internal PHY device.
2905 *
2906 * @param pThis The device state structure.
2907 * @param offset Register offset in memory-mapped frame.
2908 * @param index Register index in register array.
2909 * @param value The value to store.
2910 * @param mask Used to implement partial writes (8 and 16-bit).
2911 * @thread EMT
2912 */
2913static int e1kRegWriteMDIC(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
2914{
2915 if (value & MDIC_INT_EN)
2916 {
2917 E1kLog(("%s ERROR! Interrupt at the end of an MDI cycle is not supported yet.\n",
2918 pThis->szPrf));
2919 }
2920 else if (value & MDIC_READY)
2921 {
2922 E1kLog(("%s ERROR! Ready bit is not reset by software during write operation.\n",
2923 pThis->szPrf));
2924 }
2925 else if (GET_BITS_V(value, MDIC, PHY) != 1)
2926 {
2927 E1kLog(("%s WARNING! Access to invalid PHY detected, phy=%d.\n",
2928 pThis->szPrf, GET_BITS_V(value, MDIC, PHY)));
2929 /*
2930 * Some drivers scan the MDIO bus for a PHY. We can work with these
2931 * drivers if we set MDIC_READY and MDIC_ERROR when there isn't a PHY
2932 * at the requested address, see @bugref{7346}.
2933 */
2934 MDIC = MDIC_READY | MDIC_ERROR;
2935 }
2936 else
2937 {
2938 /* Store the value */
2939 e1kRegWriteDefault(pThis, offset, index, value);
2940 STAM_COUNTER_INC(&pThis->StatPHYAccesses);
2941 /* Forward op to PHY */
2942 if (value & MDIC_OP_READ)
2943 SET_BITS(MDIC, DATA, Phy::readRegister(&pThis->phy, GET_BITS_V(value, MDIC, REG)));
2944 else
2945 Phy::writeRegister(&pThis->phy, GET_BITS_V(value, MDIC, REG), value & MDIC_DATA_MASK);
2946 /* Let software know that we are done */
2947 MDIC |= MDIC_READY;
2948 }
2949
2950 return VINF_SUCCESS;
2951}
2952
2953/**
2954 * Write handler for Interrupt Cause Read register.
2955 *
2956 * Bits corresponding to 1s in 'value' will be cleared in ICR register.
2957 *
2958 * @param pThis The device state structure.
2959 * @param offset Register offset in memory-mapped frame.
2960 * @param index Register index in register array.
2961 * @param value The value to store.
2962 * @param mask Used to implement partial writes (8 and 16-bit).
2963 * @thread EMT
2964 */
2965static int e1kRegWriteICR(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
2966{
2967 ICR &= ~value;
2968
2969 RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index);
2970 return VINF_SUCCESS;
2971}
2972
2973/**
2974 * Read handler for Interrupt Cause Read register.
2975 *
2976 * Reading this register acknowledges all interrupts.
2977 *
2978 * @returns VBox status code.
2979 *
2980 * @param pThis The device state structure.
2981 * @param offset Register offset in memory-mapped frame.
2982 * @param index Register index in register array.
2983 * @param mask Not used.
2984 * @thread EMT
2985 */
2986static int e1kRegReadICR(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
2987{
2988 int rc = e1kCsEnter(pThis, VINF_IOM_R3_MMIO_READ);
2989 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2990 return rc;
2991
2992 uint32_t value = 0;
2993 rc = e1kRegReadDefault(pThis, offset, index, &value);
2994 if (RT_SUCCESS(rc))
2995 {
2996 if (value)
2997 {
2998 if (!pThis->fIntRaised)
2999 E1K_INC_ISTAT_CNT(pThis->uStatNoIntICR);
3000 /*
3001 * Not clearing ICR causes QNX to hang as it reads ICR in a loop
3002 * with disabled interrupts.
3003 */
3004 //if (IMS)
3005 if (1)
3006 {
3007 /*
3008 * Interrupts were enabled -- we are supposedly at the very
3009 * beginning of interrupt handler
3010 */
3011 E1kLogRel(("E1000: irq lowered, icr=0x%x\n", ICR));
3012 E1kLog(("%s e1kRegReadICR: Lowered IRQ (%08x)\n", pThis->szPrf, ICR));
3013 /* Clear all pending interrupts */
3014 ICR = 0;
3015 pThis->fIntRaised = false;
3016 /* Lower(0) INTA(0) */
3017 PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0, 0);
3018
3019 pThis->u64AckedAt = TMTimerGet(pThis->CTX_SUFF(pIntTimer));
3020 if (pThis->fIntMaskUsed)
3021 pThis->fDelayInts = true;
3022 }
3023 else
3024 {
3025 /*
3026 * Interrupts are disabled -- in windows guests ICR read is done
3027 * just before re-enabling interrupts
3028 */
3029 E1kLog(("%s e1kRegReadICR: Suppressing auto-clear due to disabled interrupts (%08x)\n", pThis->szPrf, ICR));
3030 }
3031 }
3032 *pu32Value = value;
3033 }
3034 e1kCsLeave(pThis);
3035
3036 return rc;
3037}
3038
3039/**
3040 * Write handler for Interrupt Cause Set register.
3041 *
3042 * Bits corresponding to 1s in 'value' will be set in ICR register.
3043 *
3044 * @param pThis The device state structure.
3045 * @param offset Register offset in memory-mapped frame.
3046 * @param index Register index in register array.
3047 * @param value The value to store.
3048 * @param mask Used to implement partial writes (8 and 16-bit).
3049 * @thread EMT
3050 */
3051static int e1kRegWriteICS(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3052{
3053 RT_NOREF_PV(offset); RT_NOREF_PV(index);
3054 E1K_INC_ISTAT_CNT(pThis->uStatIntICS);
3055 return e1kRaiseInterrupt(pThis, VINF_IOM_R3_MMIO_WRITE, value & g_aE1kRegMap[ICS_IDX].writable);
3056}
3057
3058/**
3059 * Write handler for Interrupt Mask Set register.
3060 *
3061 * Will trigger pending interrupts.
3062 *
3063 * @param pThis The device state structure.
3064 * @param offset Register offset in memory-mapped frame.
3065 * @param index Register index in register array.
3066 * @param value The value to store.
3067 * @param mask Used to implement partial writes (8 and 16-bit).
3068 * @thread EMT
3069 */
3070static int e1kRegWriteIMS(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3071{
3072 RT_NOREF_PV(offset); RT_NOREF_PV(index);
3073
3074 IMS |= value;
3075 E1kLogRel(("E1000: irq enabled, RDH=%x RDT=%x TDH=%x TDT=%x\n", RDH, RDT, TDH, TDT));
3076 E1kLog(("%s e1kRegWriteIMS: IRQ enabled\n", pThis->szPrf));
3077 /*
3078 * We cannot raise an interrupt here as it will occasionally cause an interrupt storm
3079 * in Windows guests (see @bugref{8624}, @bugref{5023}).
3080 */
3081 if ((ICR & IMS) && !pThis->fLocked)
3082 {
3083 E1K_INC_ISTAT_CNT(pThis->uStatIntIMS);
3084 e1kPostponeInterrupt(pThis, E1K_IMS_INT_DELAY_NS);
3085 }
3086
3087 return VINF_SUCCESS;
3088}
3089
3090/**
3091 * Write handler for Interrupt Mask Clear register.
3092 *
3093 * Bits corresponding to 1s in 'value' will be cleared in IMS register.
3094 *
3095 * @param pThis The device state structure.
3096 * @param offset Register offset in memory-mapped frame.
3097 * @param index Register index in register array.
3098 * @param value The value to store.
3099 * @param mask Used to implement partial writes (8 and 16-bit).
3100 * @thread EMT
3101 */
3102static int e1kRegWriteIMC(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3103{
3104 RT_NOREF_PV(offset); RT_NOREF_PV(index);
3105
3106 int rc = e1kCsEnter(pThis, VINF_IOM_R3_MMIO_WRITE);
3107 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3108 return rc;
3109 if (pThis->fIntRaised)
3110 {
3111 /*
3112 * Technically we should reset fIntRaised in ICR read handler, but it will cause
3113 * Windows to freeze since it may receive an interrupt while still in the very beginning
3114 * of interrupt handler.
3115 */
3116 E1K_INC_ISTAT_CNT(pThis->uStatIntLower);
3117 STAM_COUNTER_INC(&pThis->StatIntsPrevented);
3118 E1kLogRel(("E1000: irq lowered (IMC), icr=0x%x\n", ICR));
3119 /* Lower(0) INTA(0) */
3120 PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0, 0);
3121 pThis->fIntRaised = false;
3122 E1kLog(("%s e1kRegWriteIMC: Lowered IRQ: ICR=%08x\n", pThis->szPrf, ICR));
3123 }
3124 IMS &= ~value;
3125 E1kLog(("%s e1kRegWriteIMC: IRQ disabled\n", pThis->szPrf));
3126 e1kCsLeave(pThis);
3127
3128 return VINF_SUCCESS;
3129}
3130
3131/**
3132 * Write handler for Receive Control register.
3133 *
3134 * @param pThis The device state structure.
3135 * @param offset Register offset in memory-mapped frame.
3136 * @param index Register index in register array.
3137 * @param value The value to store.
3138 * @param mask Used to implement partial writes (8 and 16-bit).
3139 * @thread EMT
3140 */
3141static int e1kRegWriteRCTL(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3142{
3143 /* Update promiscuous mode */
3144 bool fBecomePromiscous = !!(value & (RCTL_UPE | RCTL_MPE));
3145 if (fBecomePromiscous != !!( RCTL & (RCTL_UPE | RCTL_MPE)))
3146 {
3147 /* Promiscuity has changed, pass the knowledge on. */
3148#ifndef IN_RING3
3149 return VINF_IOM_R3_MMIO_WRITE;
3150#else
3151 if (pThis->pDrvR3)
3152 pThis->pDrvR3->pfnSetPromiscuousMode(pThis->pDrvR3, fBecomePromiscous);
3153#endif
3154 }
3155
3156 /* Adjust receive buffer size */
3157 unsigned cbRxBuf = 2048 >> GET_BITS_V(value, RCTL, BSIZE);
3158 if (value & RCTL_BSEX)
3159 cbRxBuf *= 16;
3160 if (cbRxBuf != pThis->u16RxBSize)
3161 E1kLog2(("%s e1kRegWriteRCTL: Setting receive buffer size to %d (old %d)\n",
3162 pThis->szPrf, cbRxBuf, pThis->u16RxBSize));
3163 pThis->u16RxBSize = cbRxBuf;
3164
3165 /* Update the register */
3166 e1kRegWriteDefault(pThis, offset, index, value);
3167
3168 return VINF_SUCCESS;
3169}
3170
3171/**
3172 * Write handler for Packet Buffer Allocation register.
3173 *
3174 * TXA = 64 - RXA.
3175 *
3176 * @param pThis The device state structure.
3177 * @param offset Register offset in memory-mapped frame.
3178 * @param index Register index in register array.
3179 * @param value The value to store.
3180 * @param mask Used to implement partial writes (8 and 16-bit).
3181 * @thread EMT
3182 */
3183static int e1kRegWritePBA(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3184{
3185 e1kRegWriteDefault(pThis, offset, index, value);
3186 PBA_st->txa = 64 - PBA_st->rxa;
3187
3188 return VINF_SUCCESS;
3189}
3190
3191/**
3192 * Write handler for Receive Descriptor Tail register.
3193 *
3194 * @remarks Write into RDT forces switch to HC and signal to
3195 * e1kR3NetworkDown_WaitReceiveAvail().
3196 *
3197 * @returns VBox status code.
3198 *
3199 * @param pThis The device state structure.
3200 * @param offset Register offset in memory-mapped frame.
3201 * @param index Register index in register array.
3202 * @param value The value to store.
3203 * @param mask Used to implement partial writes (8 and 16-bit).
3204 * @thread EMT
3205 */
3206static int e1kRegWriteRDT(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3207{
3208#ifndef IN_RING3
3209 /* XXX */
3210// return VINF_IOM_R3_MMIO_WRITE;
3211#endif
3212 int rc = e1kCsRxEnter(pThis, VINF_IOM_R3_MMIO_WRITE);
3213 if (RT_LIKELY(rc == VINF_SUCCESS))
3214 {
3215 E1kLog(("%s e1kRegWriteRDT\n", pThis->szPrf));
3216#ifndef E1K_WITH_RXD_CACHE
3217 /*
3218 * Some drivers advance RDT too far, so that it equals RDH. This
3219 * somehow manages to work with real hardware but not with this
3220 * emulated device. We can work with these drivers if we just
3221 * write 1 less when we see a driver writing RDT equal to RDH,
3222 * see @bugref{7346}.
3223 */
3224 if (value == RDH)
3225 {
3226 if (RDH == 0)
3227 value = (RDLEN / sizeof(E1KRXDESC)) - 1;
3228 else
3229 value = RDH - 1;
3230 }
3231#endif /* !E1K_WITH_RXD_CACHE */
3232 rc = e1kRegWriteDefault(pThis, offset, index, value);
3233#ifdef E1K_WITH_RXD_CACHE
3234 /*
3235 * We need to fetch descriptors now as RDT may go whole circle
3236 * before we attempt to store a received packet. For example,
3237 * Intel's DOS drivers use 2 (!) RX descriptors with the total ring
3238 * size being only 8 descriptors! Note that we fetch descriptors
3239 * only when the cache is empty to reduce the number of memory reads
3240 * in case of frequent RDT writes. Don't fetch anything when the
3241 * receiver is disabled either as RDH, RDT, RDLEN can be in some
3242 * messed up state.
3243 * Note that despite the cache may seem empty, meaning that there are
3244 * no more available descriptors in it, it may still be used by RX
3245 * thread which has not yet written the last descriptor back but has
3246 * temporarily released the RX lock in order to write the packet body
3247 * to descriptor's buffer. At this point we still going to do prefetch
3248 * but it won't actually fetch anything if there are no unused slots in
3249 * our "empty" cache (nRxDFetched==E1K_RXD_CACHE_SIZE). We must not
3250 * reset the cache here even if it appears empty. It will be reset at
3251 * a later point in e1kRxDGet().
3252 */
3253 if (e1kRxDIsCacheEmpty(pThis) && (RCTL & RCTL_EN))
3254 e1kRxDPrefetch(pThis);
3255#endif /* E1K_WITH_RXD_CACHE */
3256 e1kCsRxLeave(pThis);
3257 if (RT_SUCCESS(rc))
3258 {
3259/** @todo bird: Use SUPSem* for this so we can signal it in ring-0 as well
3260 * without requiring any context switches. We should also check the
3261 * wait condition before bothering to queue the item as we're currently
3262 * queuing thousands of items per second here in a normal transmit
3263 * scenario. Expect performance changes when fixing this! */
3264#ifdef IN_RING3
3265 /* Signal that we have more receive descriptors available. */
3266 e1kWakeupReceive(pThis->CTX_SUFF(pDevIns));
3267#else
3268 PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pThis->CTX_SUFF(pCanRxQueue));
3269 if (pItem)
3270 PDMQueueInsert(pThis->CTX_SUFF(pCanRxQueue), pItem);
3271#endif
3272 }
3273 }
3274 return rc;
3275}
3276
3277/**
3278 * Write handler for Receive Delay Timer register.
3279 *
3280 * @param pThis The device state structure.
3281 * @param offset Register offset in memory-mapped frame.
3282 * @param index Register index in register array.
3283 * @param value The value to store.
3284 * @param mask Used to implement partial writes (8 and 16-bit).
3285 * @thread EMT
3286 */
3287static int e1kRegWriteRDTR(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3288{
3289 e1kRegWriteDefault(pThis, offset, index, value);
3290 if (value & RDTR_FPD)
3291 {
3292 /* Flush requested, cancel both timers and raise interrupt */
3293#ifdef E1K_USE_RX_TIMERS
3294 e1kCancelTimer(pThis, pThis->CTX_SUFF(pRIDTimer));
3295 e1kCancelTimer(pThis, pThis->CTX_SUFF(pRADTimer));
3296#endif
3297 E1K_INC_ISTAT_CNT(pThis->uStatIntRDTR);
3298 return e1kRaiseInterrupt(pThis, VINF_IOM_R3_MMIO_WRITE, ICR_RXT0);
3299 }
3300
3301 return VINF_SUCCESS;
3302}
3303
3304DECLINLINE(uint32_t) e1kGetTxLen(PE1KSTATE pThis)
3305{
3306 /**
3307 * Make sure TDT won't change during computation. EMT may modify TDT at
3308 * any moment.
3309 */
3310 uint32_t tdt = TDT;
3311 return (TDH>tdt ? TDLEN/sizeof(E1KTXDESC) : 0) + tdt - TDH;
3312}
3313
3314#ifdef IN_RING3
3315
3316# ifdef E1K_TX_DELAY
3317/**
3318 * Transmit Delay Timer handler.
3319 *
3320 * @remarks We only get here when the timer expires.
3321 *
3322 * @param pDevIns Pointer to device instance structure.
3323 * @param pTimer Pointer to the timer.
3324 * @param pvUser NULL.
3325 * @thread EMT
3326 */
3327static DECLCALLBACK(void) e1kTxDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3328{
3329 PE1KSTATE pThis = (PE1KSTATE )pvUser;
3330 Assert(PDMCritSectIsOwner(&pThis->csTx));
3331
3332 E1K_INC_ISTAT_CNT(pThis->uStatTxDelayExp);
3333# ifdef E1K_INT_STATS
3334 uint64_t u64Elapsed = RTTimeNanoTS() - pThis->u64ArmedAt;
3335 if (u64Elapsed > pThis->uStatMaxTxDelay)
3336 pThis->uStatMaxTxDelay = u64Elapsed;
3337# endif
3338 int rc = e1kXmitPending(pThis, false /*fOnWorkerThread*/);
3339 AssertMsg(RT_SUCCESS(rc) || rc == VERR_TRY_AGAIN, ("%Rrc\n", rc));
3340}
3341# endif /* E1K_TX_DELAY */
3342
3343//# ifdef E1K_USE_TX_TIMERS
3344
3345/**
3346 * Transmit Interrupt Delay Timer handler.
3347 *
3348 * @remarks We only get here when the timer expires.
3349 *
3350 * @param pDevIns Pointer to device instance structure.
3351 * @param pTimer Pointer to the timer.
3352 * @param pvUser NULL.
3353 * @thread EMT
3354 */
3355static DECLCALLBACK(void) e1kTxIntDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3356{
3357 RT_NOREF(pDevIns);
3358 RT_NOREF(pTimer);
3359 PE1KSTATE pThis = (PE1KSTATE )pvUser;
3360
3361 E1K_INC_ISTAT_CNT(pThis->uStatTID);
3362 /* Cancel absolute delay timer as we have already got attention */
3363# ifndef E1K_NO_TAD
3364 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTADTimer));
3365# endif
3366 e1kRaiseInterrupt(pThis, ICR_TXDW);
3367}
3368
3369/**
3370 * Transmit Absolute Delay Timer handler.
3371 *
3372 * @remarks We only get here when the timer expires.
3373 *
3374 * @param pDevIns Pointer to device instance structure.
3375 * @param pTimer Pointer to the timer.
3376 * @param pvUser NULL.
3377 * @thread EMT
3378 */
3379static DECLCALLBACK(void) e1kTxAbsDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3380{
3381 RT_NOREF(pDevIns);
3382 RT_NOREF(pTimer);
3383 PE1KSTATE pThis = (PE1KSTATE )pvUser;
3384
3385 E1K_INC_ISTAT_CNT(pThis->uStatTAD);
3386 /* Cancel interrupt delay timer as we have already got attention */
3387 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTIDTimer));
3388 e1kRaiseInterrupt(pThis, ICR_TXDW);
3389}
3390
3391//# endif /* E1K_USE_TX_TIMERS */
3392# ifdef E1K_USE_RX_TIMERS
3393
3394/**
3395 * Receive Interrupt Delay Timer handler.
3396 *
3397 * @remarks We only get here when the timer expires.
3398 *
3399 * @param pDevIns Pointer to device instance structure.
3400 * @param pTimer Pointer to the timer.
3401 * @param pvUser NULL.
3402 * @thread EMT
3403 */
3404static DECLCALLBACK(void) e1kRxIntDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3405{
3406 PE1KSTATE pThis = (PE1KSTATE )pvUser;
3407
3408 E1K_INC_ISTAT_CNT(pThis->uStatRID);
3409 /* Cancel absolute delay timer as we have already got attention */
3410 e1kCancelTimer(pThis, pThis->CTX_SUFF(pRADTimer));
3411 e1kRaiseInterrupt(pThis, ICR_RXT0);
3412}
3413
3414/**
3415 * Receive Absolute Delay Timer handler.
3416 *
3417 * @remarks We only get here when the timer expires.
3418 *
3419 * @param pDevIns Pointer to device instance structure.
3420 * @param pTimer Pointer to the timer.
3421 * @param pvUser NULL.
3422 * @thread EMT
3423 */
3424static DECLCALLBACK(void) e1kRxAbsDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3425{
3426 PE1KSTATE pThis = (PE1KSTATE )pvUser;
3427
3428 E1K_INC_ISTAT_CNT(pThis->uStatRAD);
3429 /* Cancel interrupt delay timer as we have already got attention */
3430 e1kCancelTimer(pThis, pThis->CTX_SUFF(pRIDTimer));
3431 e1kRaiseInterrupt(pThis, ICR_RXT0);
3432}
3433
3434# endif /* E1K_USE_RX_TIMERS */
3435
3436/**
3437 * Late Interrupt Timer handler.
3438 *
3439 * @param pDevIns Pointer to device instance structure.
3440 * @param pTimer Pointer to the timer.
3441 * @param pvUser NULL.
3442 * @thread EMT
3443 */
3444static DECLCALLBACK(void) e1kLateIntTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3445{
3446 RT_NOREF(pDevIns, pTimer);
3447 PE1KSTATE pThis = (PE1KSTATE )pvUser;
3448
3449 STAM_PROFILE_ADV_START(&pThis->StatLateIntTimer, a);
3450 STAM_COUNTER_INC(&pThis->StatLateInts);
3451 E1K_INC_ISTAT_CNT(pThis->uStatIntLate);
3452# if 0
3453 if (pThis->iStatIntLost > -100)
3454 pThis->iStatIntLost--;
3455# endif
3456 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, 0);
3457 STAM_PROFILE_ADV_STOP(&pThis->StatLateIntTimer, a);
3458}
3459
3460/**
3461 * Link Up Timer handler.
3462 *
3463 * @param pDevIns Pointer to device instance structure.
3464 * @param pTimer Pointer to the timer.
3465 * @param pvUser NULL.
3466 * @thread EMT
3467 */
3468static DECLCALLBACK(void) e1kLinkUpTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3469{
3470 RT_NOREF(pDevIns, pTimer);
3471 PE1KSTATE pThis = (PE1KSTATE )pvUser;
3472
3473 /*
3474 * This can happen if we set the link status to down when the Link up timer was
3475 * already armed (shortly after e1kLoadDone() or when the cable was disconnected
3476 * and connect+disconnect the cable very quick. Moreover, 82543GC triggers LSC
3477 * on reset even if the cable is unplugged (see @bugref{8942}).
3478 */
3479 if (pThis->fCableConnected)
3480 {
3481 /* 82543GC does not have an internal PHY */
3482 if (pThis->eChip == E1K_CHIP_82543GC || (CTRL & CTRL_SLU))
3483 e1kR3LinkUp(pThis);
3484 }
3485#ifdef E1K_LSC_ON_RESET
3486 else if (pThis->eChip == E1K_CHIP_82543GC)
3487 e1kR3LinkDown(pThis);
3488#endif /* E1K_LSC_ON_RESET */
3489}
3490
3491#endif /* IN_RING3 */
3492
3493/**
3494 * Sets up the GSO context according to the TSE new context descriptor.
3495 *
3496 * @param pGso The GSO context to setup.
3497 * @param pCtx The context descriptor.
3498 */
3499DECLINLINE(void) e1kSetupGsoCtx(PPDMNETWORKGSO pGso, E1KTXCTX const *pCtx)
3500{
3501 pGso->u8Type = PDMNETWORKGSOTYPE_INVALID;
3502
3503 /*
3504 * See if the context descriptor describes something that could be TCP or
3505 * UDP over IPv[46].
3506 */
3507 /* Check the header ordering and spacing: 1. Ethernet, 2. IP, 3. TCP/UDP. */
3508 if (RT_UNLIKELY( pCtx->ip.u8CSS < sizeof(RTNETETHERHDR) ))
3509 {
3510 E1kLog(("e1kSetupGsoCtx: IPCSS=%#x\n", pCtx->ip.u8CSS));
3511 return;
3512 }
3513 if (RT_UNLIKELY( pCtx->tu.u8CSS < (size_t)pCtx->ip.u8CSS + (pCtx->dw2.fIP ? RTNETIPV4_MIN_LEN : RTNETIPV6_MIN_LEN) ))
3514 {
3515 E1kLog(("e1kSetupGsoCtx: TUCSS=%#x\n", pCtx->tu.u8CSS));
3516 return;
3517 }
3518 if (RT_UNLIKELY( pCtx->dw2.fTCP
3519 ? pCtx->dw3.u8HDRLEN < (size_t)pCtx->tu.u8CSS + RTNETTCP_MIN_LEN
3520 : pCtx->dw3.u8HDRLEN != (size_t)pCtx->tu.u8CSS + RTNETUDP_MIN_LEN ))
3521 {
3522 E1kLog(("e1kSetupGsoCtx: HDRLEN=%#x TCP=%d\n", pCtx->dw3.u8HDRLEN, pCtx->dw2.fTCP));
3523 return;
3524 }
3525
3526 /* The end of the TCP/UDP checksum should stop at the end of the packet or at least after the headers. */
3527 if (RT_UNLIKELY( pCtx->tu.u16CSE > 0 && pCtx->tu.u16CSE <= pCtx->dw3.u8HDRLEN ))
3528 {
3529 E1kLog(("e1kSetupGsoCtx: TUCSE=%#x HDRLEN=%#x\n", pCtx->tu.u16CSE, pCtx->dw3.u8HDRLEN));
3530 return;
3531 }
3532
3533 /* IPv4 checksum offset. */
3534 if (RT_UNLIKELY( pCtx->dw2.fIP && (size_t)pCtx->ip.u8CSO - pCtx->ip.u8CSS != RT_UOFFSETOF(RTNETIPV4, ip_sum) ))
3535 {
3536 E1kLog(("e1kSetupGsoCtx: IPCSO=%#x IPCSS=%#x\n", pCtx->ip.u8CSO, pCtx->ip.u8CSS));
3537 return;
3538 }
3539
3540 /* TCP/UDP checksum offsets. */
3541 if (RT_UNLIKELY( (size_t)pCtx->tu.u8CSO - pCtx->tu.u8CSS
3542 != ( pCtx->dw2.fTCP
3543 ? RT_UOFFSETOF(RTNETTCP, th_sum)
3544 : RT_UOFFSETOF(RTNETUDP, uh_sum) ) ))
3545 {
3546 E1kLog(("e1kSetupGsoCtx: TUCSO=%#x TUCSS=%#x TCP=%d\n", pCtx->ip.u8CSO, pCtx->ip.u8CSS, pCtx->dw2.fTCP));
3547 return;
3548 }
3549
3550 /*
3551 * Because of internal networking using a 16-bit size field for GSO context
3552 * plus frame, we have to make sure we don't exceed this.
3553 */
3554 if (RT_UNLIKELY( pCtx->dw3.u8HDRLEN + pCtx->dw2.u20PAYLEN > VBOX_MAX_GSO_SIZE ))
3555 {
3556 E1kLog(("e1kSetupGsoCtx: HDRLEN(=%#x) + PAYLEN(=%#x) = %#x, max is %#x\n",
3557 pCtx->dw3.u8HDRLEN, pCtx->dw2.u20PAYLEN, pCtx->dw3.u8HDRLEN + pCtx->dw2.u20PAYLEN, VBOX_MAX_GSO_SIZE));
3558 return;
3559 }
3560
3561 /*
3562 * We're good for now - we'll do more checks when seeing the data.
3563 * So, figure the type of offloading and setup the context.
3564 */
3565 if (pCtx->dw2.fIP)
3566 {
3567 if (pCtx->dw2.fTCP)
3568 {
3569 pGso->u8Type = PDMNETWORKGSOTYPE_IPV4_TCP;
3570 pGso->cbHdrsSeg = pCtx->dw3.u8HDRLEN;
3571 }
3572 else
3573 {
3574 pGso->u8Type = PDMNETWORKGSOTYPE_IPV4_UDP;
3575 pGso->cbHdrsSeg = pCtx->tu.u8CSS; /* IP header only */
3576 }
3577 /** @todo Detect IPv4-IPv6 tunneling (need test setup since linux doesn't do
3578 * this yet it seems)... */
3579 }
3580 else
3581 {
3582 pGso->cbHdrsSeg = pCtx->dw3.u8HDRLEN; /** @todo IPv6 UFO */
3583 if (pCtx->dw2.fTCP)
3584 pGso->u8Type = PDMNETWORKGSOTYPE_IPV6_TCP;
3585 else
3586 pGso->u8Type = PDMNETWORKGSOTYPE_IPV6_UDP;
3587 }
3588 pGso->offHdr1 = pCtx->ip.u8CSS;
3589 pGso->offHdr2 = pCtx->tu.u8CSS;
3590 pGso->cbHdrsTotal = pCtx->dw3.u8HDRLEN;
3591 pGso->cbMaxSeg = pCtx->dw3.u16MSS;
3592 Assert(PDMNetGsoIsValid(pGso, sizeof(*pGso), pGso->cbMaxSeg * 5));
3593 E1kLog2(("e1kSetupGsoCtx: mss=%#x hdr=%#x hdrseg=%#x hdr1=%#x hdr2=%#x %s\n",
3594 pGso->cbMaxSeg, pGso->cbHdrsTotal, pGso->cbHdrsSeg, pGso->offHdr1, pGso->offHdr2, PDMNetGsoTypeName((PDMNETWORKGSOTYPE)pGso->u8Type) ));
3595}
3596
3597/**
3598 * Checks if we can use GSO processing for the current TSE frame.
3599 *
3600 * @param pThis The device state structure.
3601 * @param pGso The GSO context.
3602 * @param pData The first data descriptor of the frame.
3603 * @param pCtx The TSO context descriptor.
3604 */
3605DECLINLINE(bool) e1kCanDoGso(PE1KSTATE pThis, PCPDMNETWORKGSO pGso, E1KTXDAT const *pData, E1KTXCTX const *pCtx)
3606{
3607 if (!pData->cmd.fTSE)
3608 {
3609 E1kLog2(("e1kCanDoGso: !TSE\n"));
3610 return false;
3611 }
3612 if (pData->cmd.fVLE) /** @todo VLAN tagging. */
3613 {
3614 E1kLog(("e1kCanDoGso: VLE\n"));
3615 return false;
3616 }
3617 if (RT_UNLIKELY(!pThis->fGSOEnabled))
3618 {
3619 E1kLog3(("e1kCanDoGso: GSO disabled via CFGM\n"));
3620 return false;
3621 }
3622
3623 switch ((PDMNETWORKGSOTYPE)pGso->u8Type)
3624 {
3625 case PDMNETWORKGSOTYPE_IPV4_TCP:
3626 case PDMNETWORKGSOTYPE_IPV4_UDP:
3627 if (!pData->dw3.fIXSM)
3628 {
3629 E1kLog(("e1kCanDoGso: !IXSM (IPv4)\n"));
3630 return false;
3631 }
3632 if (!pData->dw3.fTXSM)
3633 {
3634 E1kLog(("e1kCanDoGso: !TXSM (IPv4)\n"));
3635 return false;
3636 }
3637 /** @todo what more check should we perform here? Ethernet frame type? */
3638 E1kLog2(("e1kCanDoGso: OK, IPv4\n"));
3639 return true;
3640
3641 case PDMNETWORKGSOTYPE_IPV6_TCP:
3642 case PDMNETWORKGSOTYPE_IPV6_UDP:
3643 if (pData->dw3.fIXSM && pCtx->ip.u8CSO)
3644 {
3645 E1kLog(("e1kCanDoGso: IXSM (IPv6)\n"));
3646 return false;
3647 }
3648 if (!pData->dw3.fTXSM)
3649 {
3650 E1kLog(("e1kCanDoGso: TXSM (IPv6)\n"));
3651 return false;
3652 }
3653 /** @todo what more check should we perform here? Ethernet frame type? */
3654 E1kLog2(("e1kCanDoGso: OK, IPv4\n"));
3655 return true;
3656
3657 default:
3658 Assert(pGso->u8Type == PDMNETWORKGSOTYPE_INVALID);
3659 E1kLog2(("e1kCanDoGso: e1kSetupGsoCtx failed\n"));
3660 return false;
3661 }
3662}
3663
3664/**
3665 * Frees the current xmit buffer.
3666 *
3667 * @param pThis The device state structure.
3668 */
3669static void e1kXmitFreeBuf(PE1KSTATE pThis)
3670{
3671 PPDMSCATTERGATHER pSg = pThis->CTX_SUFF(pTxSg);
3672 if (pSg)
3673 {
3674 pThis->CTX_SUFF(pTxSg) = NULL;
3675
3676 if (pSg->pvAllocator != pThis)
3677 {
3678 PPDMINETWORKUP pDrv = pThis->CTX_SUFF(pDrv);
3679 if (pDrv)
3680 pDrv->pfnFreeBuf(pDrv, pSg);
3681 }
3682 else
3683 {
3684 /* loopback */
3685 AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t));
3686 Assert(pSg->fFlags == (PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3));
3687 pSg->fFlags = 0;
3688 pSg->pvAllocator = NULL;
3689 }
3690 }
3691}
3692
3693#ifndef E1K_WITH_TXD_CACHE
3694/**
3695 * Allocates an xmit buffer.
3696 *
3697 * @returns See PDMINETWORKUP::pfnAllocBuf.
3698 * @param pThis The device state structure.
3699 * @param cbMin The minimum frame size.
3700 * @param fExactSize Whether cbMin is exact or if we have to max it
3701 * out to the max MTU size.
3702 * @param fGso Whether this is a GSO frame or not.
3703 */
3704DECLINLINE(int) e1kXmitAllocBuf(PE1KSTATE pThis, size_t cbMin, bool fExactSize, bool fGso)
3705{
3706 /* Adjust cbMin if necessary. */
3707 if (!fExactSize)
3708 cbMin = RT_MAX(cbMin, E1K_MAX_TX_PKT_SIZE);
3709
3710 /* Deal with existing buffer (descriptor screw up, reset, etc). */
3711 if (RT_UNLIKELY(pThis->CTX_SUFF(pTxSg)))
3712 e1kXmitFreeBuf(pThis);
3713 Assert(pThis->CTX_SUFF(pTxSg) == NULL);
3714
3715 /*
3716 * Allocate the buffer.
3717 */
3718 PPDMSCATTERGATHER pSg;
3719 if (RT_LIKELY(GET_BITS(RCTL, LBM) != RCTL_LBM_TCVR))
3720 {
3721 PPDMINETWORKUP pDrv = pThis->CTX_SUFF(pDrv);
3722 if (RT_UNLIKELY(!pDrv))
3723 return VERR_NET_DOWN;
3724 int rc = pDrv->pfnAllocBuf(pDrv, cbMin, fGso ? &pThis->GsoCtx : NULL, &pSg);
3725 if (RT_FAILURE(rc))
3726 {
3727 /* Suspend TX as we are out of buffers atm */
3728 STATUS |= STATUS_TXOFF;
3729 return rc;
3730 }
3731 }
3732 else
3733 {
3734 /* Create a loopback using the fallback buffer and preallocated SG. */
3735 AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t));
3736 pSg = &pThis->uTxFallback.Sg;
3737 pSg->fFlags = PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3;
3738 pSg->cbUsed = 0;
3739 pSg->cbAvailable = 0;
3740 pSg->pvAllocator = pThis;
3741 pSg->pvUser = NULL; /* No GSO here. */
3742 pSg->cSegs = 1;
3743 pSg->aSegs[0].pvSeg = pThis->aTxPacketFallback;
3744 pSg->aSegs[0].cbSeg = sizeof(pThis->aTxPacketFallback);
3745 }
3746
3747 pThis->CTX_SUFF(pTxSg) = pSg;
3748 return VINF_SUCCESS;
3749}
3750#else /* E1K_WITH_TXD_CACHE */
3751/**
3752 * Allocates an xmit buffer.
3753 *
3754 * @returns See PDMINETWORKUP::pfnAllocBuf.
3755 * @param pThis The device state structure.
3756 * @param cbMin The minimum frame size.
3757 * @param fExactSize Whether cbMin is exact or if we have to max it
3758 * out to the max MTU size.
3759 * @param fGso Whether this is a GSO frame or not.
3760 */
3761DECLINLINE(int) e1kXmitAllocBuf(PE1KSTATE pThis, bool fGso)
3762{
3763 /* Deal with existing buffer (descriptor screw up, reset, etc). */
3764 if (RT_UNLIKELY(pThis->CTX_SUFF(pTxSg)))
3765 e1kXmitFreeBuf(pThis);
3766 Assert(pThis->CTX_SUFF(pTxSg) == NULL);
3767
3768 /*
3769 * Allocate the buffer.
3770 */
3771 PPDMSCATTERGATHER pSg;
3772 if (RT_LIKELY(GET_BITS(RCTL, LBM) != RCTL_LBM_TCVR))
3773 {
3774 if (pThis->cbTxAlloc == 0)
3775 {
3776 /* Zero packet, no need for the buffer */
3777 return VINF_SUCCESS;
3778 }
3779
3780 PPDMINETWORKUP pDrv = pThis->CTX_SUFF(pDrv);
3781 if (RT_UNLIKELY(!pDrv))
3782 return VERR_NET_DOWN;
3783 int rc = pDrv->pfnAllocBuf(pDrv, pThis->cbTxAlloc, fGso ? &pThis->GsoCtx : NULL, &pSg);
3784 if (RT_FAILURE(rc))
3785 {
3786 /* Suspend TX as we are out of buffers atm */
3787 STATUS |= STATUS_TXOFF;
3788 return rc;
3789 }
3790 E1kLog3(("%s Allocated buffer for TX packet: cb=%u %s%s\n",
3791 pThis->szPrf, pThis->cbTxAlloc,
3792 pThis->fVTag ? "VLAN " : "",
3793 pThis->fGSO ? "GSO " : ""));
3794 }
3795 else
3796 {
3797 /* Create a loopback using the fallback buffer and preallocated SG. */
3798 AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t));
3799 pSg = &pThis->uTxFallback.Sg;
3800 pSg->fFlags = PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3;
3801 pSg->cbUsed = 0;
3802 pSg->cbAvailable = 0;
3803 pSg->pvAllocator = pThis;
3804 pSg->pvUser = NULL; /* No GSO here. */
3805 pSg->cSegs = 1;
3806 pSg->aSegs[0].pvSeg = pThis->aTxPacketFallback;
3807 pSg->aSegs[0].cbSeg = sizeof(pThis->aTxPacketFallback);
3808 }
3809 pThis->cbTxAlloc = 0;
3810
3811 pThis->CTX_SUFF(pTxSg) = pSg;
3812 return VINF_SUCCESS;
3813}
3814#endif /* E1K_WITH_TXD_CACHE */
3815
3816/**
3817 * Checks if it's a GSO buffer or not.
3818 *
3819 * @returns true / false.
3820 * @param pTxSg The scatter / gather buffer.
3821 */
3822DECLINLINE(bool) e1kXmitIsGsoBuf(PDMSCATTERGATHER const *pTxSg)
3823{
3824#if 0
3825 if (!pTxSg)
3826 E1kLog(("e1kXmitIsGsoBuf: pTxSG is NULL\n"));
3827 if (pTxSg && pTxSg->pvUser)
3828 E1kLog(("e1kXmitIsGsoBuf: pvUser is NULL\n"));
3829#endif
3830 return pTxSg && pTxSg->pvUser /* GSO indicator */;
3831}
3832
3833#ifndef E1K_WITH_TXD_CACHE
3834/**
3835 * Load transmit descriptor from guest memory.
3836 *
3837 * @param pThis The device state structure.
3838 * @param pDesc Pointer to descriptor union.
3839 * @param addr Physical address in guest context.
3840 * @thread E1000_TX
3841 */
3842DECLINLINE(void) e1kLoadDesc(PE1KSTATE pThis, E1KTXDESC *pDesc, RTGCPHYS addr)
3843{
3844 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), addr, pDesc, sizeof(E1KTXDESC));
3845}
3846#else /* E1K_WITH_TXD_CACHE */
3847/**
3848 * Load transmit descriptors from guest memory.
3849 *
3850 * We need two physical reads in case the tail wrapped around the end of TX
3851 * descriptor ring.
3852 *
3853 * @returns the actual number of descriptors fetched.
3854 * @param pThis The device state structure.
3855 * @param pDesc Pointer to descriptor union.
3856 * @param addr Physical address in guest context.
3857 * @thread E1000_TX
3858 */
3859DECLINLINE(unsigned) e1kTxDLoadMore(PE1KSTATE pThis)
3860{
3861 Assert(pThis->iTxDCurrent == 0);
3862 /* We've already loaded pThis->nTxDFetched descriptors past TDH. */
3863 unsigned nDescsAvailable = e1kGetTxLen(pThis) - pThis->nTxDFetched;
3864 unsigned nDescsToFetch = RT_MIN(nDescsAvailable, E1K_TXD_CACHE_SIZE - pThis->nTxDFetched);
3865 unsigned nDescsTotal = TDLEN / sizeof(E1KTXDESC);
3866 unsigned nFirstNotLoaded = (TDH + pThis->nTxDFetched) % nDescsTotal;
3867 unsigned nDescsInSingleRead = RT_MIN(nDescsToFetch, nDescsTotal - nFirstNotLoaded);
3868 E1kLog3(("%s e1kTxDLoadMore: nDescsAvailable=%u nDescsToFetch=%u "
3869 "nDescsTotal=%u nFirstNotLoaded=0x%x nDescsInSingleRead=%u\n",
3870 pThis->szPrf, nDescsAvailable, nDescsToFetch, nDescsTotal,
3871 nFirstNotLoaded, nDescsInSingleRead));
3872 if (nDescsToFetch == 0)
3873 return 0;
3874 E1KTXDESC* pFirstEmptyDesc = &pThis->aTxDescriptors[pThis->nTxDFetched];
3875 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns),
3876 ((uint64_t)TDBAH << 32) + TDBAL + nFirstNotLoaded * sizeof(E1KTXDESC),
3877 pFirstEmptyDesc, nDescsInSingleRead * sizeof(E1KTXDESC));
3878 E1kLog3(("%s Fetched %u TX descriptors at %08x%08x(0x%x), TDLEN=%08x, TDH=%08x, TDT=%08x\n",
3879 pThis->szPrf, nDescsInSingleRead,
3880 TDBAH, TDBAL + TDH * sizeof(E1KTXDESC),
3881 nFirstNotLoaded, TDLEN, TDH, TDT));
3882 if (nDescsToFetch > nDescsInSingleRead)
3883 {
3884 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns),
3885 ((uint64_t)TDBAH << 32) + TDBAL,
3886 pFirstEmptyDesc + nDescsInSingleRead,
3887 (nDescsToFetch - nDescsInSingleRead) * sizeof(E1KTXDESC));
3888 E1kLog3(("%s Fetched %u TX descriptors at %08x%08x\n",
3889 pThis->szPrf, nDescsToFetch - nDescsInSingleRead,
3890 TDBAH, TDBAL));
3891 }
3892 pThis->nTxDFetched += nDescsToFetch;
3893 return nDescsToFetch;
3894}
3895
3896/**
3897 * Load transmit descriptors from guest memory only if there are no loaded
3898 * descriptors.
3899 *
3900 * @returns true if there are descriptors in cache.
3901 * @param pThis The device state structure.
3902 * @param pDesc Pointer to descriptor union.
3903 * @param addr Physical address in guest context.
3904 * @thread E1000_TX
3905 */
3906DECLINLINE(bool) e1kTxDLazyLoad(PE1KSTATE pThis)
3907{
3908 if (pThis->nTxDFetched == 0)
3909 return e1kTxDLoadMore(pThis) != 0;
3910 return true;
3911}
3912#endif /* E1K_WITH_TXD_CACHE */
3913
3914/**
3915 * Write back transmit descriptor to guest memory.
3916 *
3917 * @param pThis The device state structure.
3918 * @param pDesc Pointer to descriptor union.
3919 * @param addr Physical address in guest context.
3920 * @thread E1000_TX
3921 */
3922DECLINLINE(void) e1kWriteBackDesc(PE1KSTATE pThis, E1KTXDESC *pDesc, RTGCPHYS addr)
3923{
3924 /* Only the last half of the descriptor has to be written back. */
3925 e1kPrintTDesc(pThis, pDesc, "^^^");
3926 PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), addr, pDesc, sizeof(E1KTXDESC));
3927}
3928
3929/**
3930 * Transmit complete frame.
3931 *
3932 * @remarks We skip the FCS since we're not responsible for sending anything to
3933 * a real ethernet wire.
3934 *
3935 * @param pThis The device state structure.
3936 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
3937 * @thread E1000_TX
3938 */
3939static void e1kTransmitFrame(PE1KSTATE pThis, bool fOnWorkerThread)
3940{
3941 PPDMSCATTERGATHER pSg = pThis->CTX_SUFF(pTxSg);
3942 uint32_t cbFrame = pSg ? (uint32_t)pSg->cbUsed : 0;
3943 Assert(!pSg || pSg->cSegs == 1);
3944
3945 if (cbFrame > 70) /* unqualified guess */
3946 pThis->led.Asserted.s.fWriting = pThis->led.Actual.s.fWriting = 1;
3947
3948#ifdef E1K_INT_STATS
3949 if (cbFrame <= 1514)
3950 E1K_INC_ISTAT_CNT(pThis->uStatTx1514);
3951 else if (cbFrame <= 2962)
3952 E1K_INC_ISTAT_CNT(pThis->uStatTx2962);
3953 else if (cbFrame <= 4410)
3954 E1K_INC_ISTAT_CNT(pThis->uStatTx4410);
3955 else if (cbFrame <= 5858)
3956 E1K_INC_ISTAT_CNT(pThis->uStatTx5858);
3957 else if (cbFrame <= 7306)
3958 E1K_INC_ISTAT_CNT(pThis->uStatTx7306);
3959 else if (cbFrame <= 8754)
3960 E1K_INC_ISTAT_CNT(pThis->uStatTx8754);
3961 else if (cbFrame <= 16384)
3962 E1K_INC_ISTAT_CNT(pThis->uStatTx16384);
3963 else if (cbFrame <= 32768)
3964 E1K_INC_ISTAT_CNT(pThis->uStatTx32768);
3965 else
3966 E1K_INC_ISTAT_CNT(pThis->uStatTxLarge);
3967#endif /* E1K_INT_STATS */
3968
3969 /* Add VLAN tag */
3970 if (cbFrame > 12 && pThis->fVTag)
3971 {
3972 E1kLog3(("%s Inserting VLAN tag %08x\n",
3973 pThis->szPrf, RT_BE2H_U16(VET) | (RT_BE2H_U16(pThis->u16VTagTCI) << 16)));
3974 memmove((uint8_t*)pSg->aSegs[0].pvSeg + 16, (uint8_t*)pSg->aSegs[0].pvSeg + 12, cbFrame - 12);
3975 *((uint32_t*)pSg->aSegs[0].pvSeg + 3) = RT_BE2H_U16(VET) | (RT_BE2H_U16(pThis->u16VTagTCI) << 16);
3976 pSg->cbUsed += 4;
3977 cbFrame += 4;
3978 Assert(pSg->cbUsed == cbFrame);
3979 Assert(pSg->cbUsed <= pSg->cbAvailable);
3980 }
3981/* E1kLog2(("%s < < < Outgoing packet. Dump follows: > > >\n"
3982 "%.*Rhxd\n"
3983 "%s < < < < < < < < < < < < < End of dump > > > > > > > > > > > >\n",
3984 pThis->szPrf, cbFrame, pSg->aSegs[0].pvSeg, pThis->szPrf));*/
3985
3986 /* Update the stats */
3987 E1K_INC_CNT32(TPT);
3988 E1K_ADD_CNT64(TOTL, TOTH, cbFrame);
3989 E1K_INC_CNT32(GPTC);
3990 if (pSg && e1kIsBroadcast(pSg->aSegs[0].pvSeg))
3991 E1K_INC_CNT32(BPTC);
3992 else if (pSg && e1kIsMulticast(pSg->aSegs[0].pvSeg))
3993 E1K_INC_CNT32(MPTC);
3994 /* Update octet transmit counter */
3995 E1K_ADD_CNT64(GOTCL, GOTCH, cbFrame);
3996 if (pThis->CTX_SUFF(pDrv))
3997 STAM_REL_COUNTER_ADD(&pThis->StatTransmitBytes, cbFrame);
3998 if (cbFrame == 64)
3999 E1K_INC_CNT32(PTC64);
4000 else if (cbFrame < 128)
4001 E1K_INC_CNT32(PTC127);
4002 else if (cbFrame < 256)
4003 E1K_INC_CNT32(PTC255);
4004 else if (cbFrame < 512)
4005 E1K_INC_CNT32(PTC511);
4006 else if (cbFrame < 1024)
4007 E1K_INC_CNT32(PTC1023);
4008 else
4009 E1K_INC_CNT32(PTC1522);
4010
4011 E1K_INC_ISTAT_CNT(pThis->uStatTxFrm);
4012
4013 /*
4014 * Dump and send the packet.
4015 */
4016 int rc = VERR_NET_DOWN;
4017 if (pSg && pSg->pvAllocator != pThis)
4018 {
4019 e1kPacketDump(pThis, (uint8_t const *)pSg->aSegs[0].pvSeg, cbFrame, "--> Outgoing");
4020
4021 pThis->CTX_SUFF(pTxSg) = NULL;
4022 PPDMINETWORKUP pDrv = pThis->CTX_SUFF(pDrv);
4023 if (pDrv)
4024 {
4025 /* Release critical section to avoid deadlock in CanReceive */
4026 //e1kCsLeave(pThis);
4027 STAM_PROFILE_START(&pThis->CTX_SUFF_Z(StatTransmitSend), a);
4028 rc = pDrv->pfnSendBuf(pDrv, pSg, fOnWorkerThread);
4029 STAM_PROFILE_STOP(&pThis->CTX_SUFF_Z(StatTransmitSend), a);
4030 //e1kCsEnter(pThis, RT_SRC_POS);
4031 }
4032 }
4033 else if (pSg)
4034 {
4035 Assert(pSg->aSegs[0].pvSeg == pThis->aTxPacketFallback);
4036 e1kPacketDump(pThis, (uint8_t const *)pSg->aSegs[0].pvSeg, cbFrame, "--> Loopback");
4037
4038 /** @todo do we actually need to check that we're in loopback mode here? */
4039 if (GET_BITS(RCTL, LBM) == RCTL_LBM_TCVR)
4040 {
4041 E1KRXDST status;
4042 RT_ZERO(status);
4043 status.fPIF = true;
4044 e1kHandleRxPacket(pThis, pSg->aSegs[0].pvSeg, cbFrame, status);
4045 rc = VINF_SUCCESS;
4046 }
4047 e1kXmitFreeBuf(pThis);
4048 }
4049 else
4050 rc = VERR_NET_DOWN;
4051 if (RT_FAILURE(rc))
4052 {
4053 E1kLogRel(("E1000: ERROR! pfnSend returned %Rrc\n", rc));
4054 /** @todo handle VERR_NET_DOWN and VERR_NET_NO_BUFFER_SPACE. Signal error ? */
4055 }
4056
4057 pThis->led.Actual.s.fWriting = 0;
4058}
4059
4060/**
4061 * Compute and write internet checksum (e1kCSum16) at the specified offset.
4062 *
4063 * @param pThis The device state structure.
4064 * @param pPkt Pointer to the packet.
4065 * @param u16PktLen Total length of the packet.
4066 * @param cso Offset in packet to write checksum at.
4067 * @param css Offset in packet to start computing
4068 * checksum from.
4069 * @param cse Offset in packet to stop computing
4070 * checksum at.
4071 * @thread E1000_TX
4072 */
4073static void e1kInsertChecksum(PE1KSTATE pThis, uint8_t *pPkt, uint16_t u16PktLen, uint8_t cso, uint8_t css, uint16_t cse)
4074{
4075 RT_NOREF1(pThis);
4076
4077 if (css >= u16PktLen)
4078 {
4079 E1kLog2(("%s css(%X) is greater than packet length-1(%X), checksum is not inserted\n",
4080 pThis->szPrf, cso, u16PktLen));
4081 return;
4082 }
4083
4084 if (cso >= u16PktLen - 1)
4085 {
4086 E1kLog2(("%s cso(%X) is greater than packet length-2(%X), checksum is not inserted\n",
4087 pThis->szPrf, cso, u16PktLen));
4088 return;
4089 }
4090
4091 if (cse == 0)
4092 cse = u16PktLen - 1;
4093 else if (cse < css)
4094 {
4095 E1kLog2(("%s css(%X) is greater than cse(%X), checksum is not inserted\n",
4096 pThis->szPrf, css, cse));
4097 return;
4098 }
4099
4100 uint16_t u16ChkSum = e1kCSum16(pPkt + css, cse - css + 1);
4101 E1kLog2(("%s Inserting csum: %04X at %02X, old value: %04X\n", pThis->szPrf,
4102 u16ChkSum, cso, *(uint16_t*)(pPkt + cso)));
4103 *(uint16_t*)(pPkt + cso) = u16ChkSum;
4104}
4105
4106/**
4107 * Add a part of descriptor's buffer to transmit frame.
4108 *
4109 * @remarks data.u64BufAddr is used unconditionally for both data
4110 * and legacy descriptors since it is identical to
4111 * legacy.u64BufAddr.
4112 *
4113 * @param pThis The device state structure.
4114 * @param pDesc Pointer to the descriptor to transmit.
4115 * @param u16Len Length of buffer to the end of segment.
4116 * @param fSend Force packet sending.
4117 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4118 * @thread E1000_TX
4119 */
4120#ifndef E1K_WITH_TXD_CACHE
4121static void e1kFallbackAddSegment(PE1KSTATE pThis, RTGCPHYS PhysAddr, uint16_t u16Len, bool fSend, bool fOnWorkerThread)
4122{
4123 /* TCP header being transmitted */
4124 struct E1kTcpHeader *pTcpHdr = (struct E1kTcpHeader *)
4125 (pThis->aTxPacketFallback + pThis->contextTSE.tu.u8CSS);
4126 /* IP header being transmitted */
4127 struct E1kIpHeader *pIpHdr = (struct E1kIpHeader *)
4128 (pThis->aTxPacketFallback + pThis->contextTSE.ip.u8CSS);
4129
4130 E1kLog3(("%s e1kFallbackAddSegment: Length=%x, remaining payload=%x, header=%x, send=%RTbool\n",
4131 pThis->szPrf, u16Len, pThis->u32PayRemain, pThis->u16HdrRemain, fSend));
4132 Assert(pThis->u32PayRemain + pThis->u16HdrRemain > 0);
4133
4134 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), PhysAddr,
4135 pThis->aTxPacketFallback + pThis->u16TxPktLen, u16Len);
4136 E1kLog3(("%s Dump of the segment:\n"
4137 "%.*Rhxd\n"
4138 "%s --- End of dump ---\n",
4139 pThis->szPrf, u16Len, pThis->aTxPacketFallback + pThis->u16TxPktLen, pThis->szPrf));
4140 pThis->u16TxPktLen += u16Len;
4141 E1kLog3(("%s e1kFallbackAddSegment: pThis->u16TxPktLen=%x\n",
4142 pThis->szPrf, pThis->u16TxPktLen));
4143 if (pThis->u16HdrRemain > 0)
4144 {
4145 /* The header was not complete, check if it is now */
4146 if (u16Len >= pThis->u16HdrRemain)
4147 {
4148 /* The rest is payload */
4149 u16Len -= pThis->u16HdrRemain;
4150 pThis->u16HdrRemain = 0;
4151 /* Save partial checksum and flags */
4152 pThis->u32SavedCsum = pTcpHdr->chksum;
4153 pThis->u16SavedFlags = pTcpHdr->hdrlen_flags;
4154 /* Clear FIN and PSH flags now and set them only in the last segment */
4155 pTcpHdr->hdrlen_flags &= ~htons(E1K_TCP_FIN | E1K_TCP_PSH);
4156 }
4157 else
4158 {
4159 /* Still not */
4160 pThis->u16HdrRemain -= u16Len;
4161 E1kLog3(("%s e1kFallbackAddSegment: Header is still incomplete, 0x%x bytes remain.\n",
4162 pThis->szPrf, pThis->u16HdrRemain));
4163 return;
4164 }
4165 }
4166
4167 pThis->u32PayRemain -= u16Len;
4168
4169 if (fSend)
4170 {
4171 /* Leave ethernet header intact */
4172 /* IP Total Length = payload + headers - ethernet header */
4173 pIpHdr->total_len = htons(pThis->u16TxPktLen - pThis->contextTSE.ip.u8CSS);
4174 E1kLog3(("%s e1kFallbackAddSegment: End of packet, pIpHdr->total_len=%x\n",
4175 pThis->szPrf, ntohs(pIpHdr->total_len)));
4176 /* Update IP Checksum */
4177 pIpHdr->chksum = 0;
4178 e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen,
4179 pThis->contextTSE.ip.u8CSO,
4180 pThis->contextTSE.ip.u8CSS,
4181 pThis->contextTSE.ip.u16CSE);
4182
4183 /* Update TCP flags */
4184 /* Restore original FIN and PSH flags for the last segment */
4185 if (pThis->u32PayRemain == 0)
4186 {
4187 pTcpHdr->hdrlen_flags = pThis->u16SavedFlags;
4188 E1K_INC_CNT32(TSCTC);
4189 }
4190 /* Add TCP length to partial pseudo header sum */
4191 uint32_t csum = pThis->u32SavedCsum
4192 + htons(pThis->u16TxPktLen - pThis->contextTSE.tu.u8CSS);
4193 while (csum >> 16)
4194 csum = (csum >> 16) + (csum & 0xFFFF);
4195 pTcpHdr->chksum = csum;
4196 /* Compute final checksum */
4197 e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen,
4198 pThis->contextTSE.tu.u8CSO,
4199 pThis->contextTSE.tu.u8CSS,
4200 pThis->contextTSE.tu.u16CSE);
4201
4202 /*
4203 * Transmit it. If we've use the SG already, allocate a new one before
4204 * we copy of the data.
4205 */
4206 if (!pThis->CTX_SUFF(pTxSg))
4207 e1kXmitAllocBuf(pThis, pThis->u16TxPktLen + (pThis->fVTag ? 4 : 0), true /*fExactSize*/, false /*fGso*/);
4208 if (pThis->CTX_SUFF(pTxSg))
4209 {
4210 Assert(pThis->u16TxPktLen <= pThis->CTX_SUFF(pTxSg)->cbAvailable);
4211 Assert(pThis->CTX_SUFF(pTxSg)->cSegs == 1);
4212 if (pThis->CTX_SUFF(pTxSg)->aSegs[0].pvSeg != pThis->aTxPacketFallback)
4213 memcpy(pThis->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->aTxPacketFallback, pThis->u16TxPktLen);
4214 pThis->CTX_SUFF(pTxSg)->cbUsed = pThis->u16TxPktLen;
4215 pThis->CTX_SUFF(pTxSg)->aSegs[0].cbSeg = pThis->u16TxPktLen;
4216 }
4217 e1kTransmitFrame(pThis, fOnWorkerThread);
4218
4219 /* Update Sequence Number */
4220 pTcpHdr->seqno = htonl(ntohl(pTcpHdr->seqno) + pThis->u16TxPktLen
4221 - pThis->contextTSE.dw3.u8HDRLEN);
4222 /* Increment IP identification */
4223 pIpHdr->ident = htons(ntohs(pIpHdr->ident) + 1);
4224 }
4225}
4226#else /* E1K_WITH_TXD_CACHE */
4227static int e1kFallbackAddSegment(PE1KSTATE pThis, RTGCPHYS PhysAddr, uint16_t u16Len, bool fSend, bool fOnWorkerThread)
4228{
4229 int rc = VINF_SUCCESS;
4230 /* TCP header being transmitted */
4231 struct E1kTcpHeader *pTcpHdr = (struct E1kTcpHeader *)
4232 (pThis->aTxPacketFallback + pThis->contextTSE.tu.u8CSS);
4233 /* IP header being transmitted */
4234 struct E1kIpHeader *pIpHdr = (struct E1kIpHeader *)
4235 (pThis->aTxPacketFallback + pThis->contextTSE.ip.u8CSS);
4236
4237 E1kLog3(("%s e1kFallbackAddSegment: Length=%x, remaining payload=%x, header=%x, send=%RTbool\n",
4238 pThis->szPrf, u16Len, pThis->u32PayRemain, pThis->u16HdrRemain, fSend));
4239 Assert(pThis->u32PayRemain + pThis->u16HdrRemain > 0);
4240
4241 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), PhysAddr,
4242 pThis->aTxPacketFallback + pThis->u16TxPktLen, u16Len);
4243 E1kLog3(("%s Dump of the segment:\n"
4244 "%.*Rhxd\n"
4245 "%s --- End of dump ---\n",
4246 pThis->szPrf, u16Len, pThis->aTxPacketFallback + pThis->u16TxPktLen, pThis->szPrf));
4247 pThis->u16TxPktLen += u16Len;
4248 E1kLog3(("%s e1kFallbackAddSegment: pThis->u16TxPktLen=%x\n",
4249 pThis->szPrf, pThis->u16TxPktLen));
4250 if (pThis->u16HdrRemain > 0)
4251 {
4252 /* The header was not complete, check if it is now */
4253 if (u16Len >= pThis->u16HdrRemain)
4254 {
4255 /* The rest is payload */
4256 u16Len -= pThis->u16HdrRemain;
4257 pThis->u16HdrRemain = 0;
4258 /* Save partial checksum and flags */
4259 pThis->u32SavedCsum = pTcpHdr->chksum;
4260 pThis->u16SavedFlags = pTcpHdr->hdrlen_flags;
4261 /* Clear FIN and PSH flags now and set them only in the last segment */
4262 pTcpHdr->hdrlen_flags &= ~htons(E1K_TCP_FIN | E1K_TCP_PSH);
4263 }
4264 else
4265 {
4266 /* Still not */
4267 pThis->u16HdrRemain -= u16Len;
4268 E1kLog3(("%s e1kFallbackAddSegment: Header is still incomplete, 0x%x bytes remain.\n",
4269 pThis->szPrf, pThis->u16HdrRemain));
4270 return rc;
4271 }
4272 }
4273
4274 pThis->u32PayRemain -= u16Len;
4275
4276 if (fSend)
4277 {
4278 /* Leave ethernet header intact */
4279 /* IP Total Length = payload + headers - ethernet header */
4280 pIpHdr->total_len = htons(pThis->u16TxPktLen - pThis->contextTSE.ip.u8CSS);
4281 E1kLog3(("%s e1kFallbackAddSegment: End of packet, pIpHdr->total_len=%x\n",
4282 pThis->szPrf, ntohs(pIpHdr->total_len)));
4283 /* Update IP Checksum */
4284 pIpHdr->chksum = 0;
4285 e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen,
4286 pThis->contextTSE.ip.u8CSO,
4287 pThis->contextTSE.ip.u8CSS,
4288 pThis->contextTSE.ip.u16CSE);
4289
4290 /* Update TCP flags */
4291 /* Restore original FIN and PSH flags for the last segment */
4292 if (pThis->u32PayRemain == 0)
4293 {
4294 pTcpHdr->hdrlen_flags = pThis->u16SavedFlags;
4295 E1K_INC_CNT32(TSCTC);
4296 }
4297 /* Add TCP length to partial pseudo header sum */
4298 uint32_t csum = pThis->u32SavedCsum
4299 + htons(pThis->u16TxPktLen - pThis->contextTSE.tu.u8CSS);
4300 while (csum >> 16)
4301 csum = (csum >> 16) + (csum & 0xFFFF);
4302 pTcpHdr->chksum = csum;
4303 /* Compute final checksum */
4304 e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen,
4305 pThis->contextTSE.tu.u8CSO,
4306 pThis->contextTSE.tu.u8CSS,
4307 pThis->contextTSE.tu.u16CSE);
4308
4309 /*
4310 * Transmit it.
4311 */
4312 if (pThis->CTX_SUFF(pTxSg))
4313 {
4314 Assert(pThis->u16TxPktLen <= pThis->CTX_SUFF(pTxSg)->cbAvailable);
4315 Assert(pThis->CTX_SUFF(pTxSg)->cSegs == 1);
4316 if (pThis->CTX_SUFF(pTxSg)->aSegs[0].pvSeg != pThis->aTxPacketFallback)
4317 memcpy(pThis->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->aTxPacketFallback, pThis->u16TxPktLen);
4318 pThis->CTX_SUFF(pTxSg)->cbUsed = pThis->u16TxPktLen;
4319 pThis->CTX_SUFF(pTxSg)->aSegs[0].cbSeg = pThis->u16TxPktLen;
4320 }
4321 e1kTransmitFrame(pThis, fOnWorkerThread);
4322
4323 /* Update Sequence Number */
4324 pTcpHdr->seqno = htonl(ntohl(pTcpHdr->seqno) + pThis->u16TxPktLen
4325 - pThis->contextTSE.dw3.u8HDRLEN);
4326 /* Increment IP identification */
4327 pIpHdr->ident = htons(ntohs(pIpHdr->ident) + 1);
4328
4329 /* Allocate new buffer for the next segment. */
4330 if (pThis->u32PayRemain)
4331 {
4332 pThis->cbTxAlloc = RT_MIN(pThis->u32PayRemain,
4333 pThis->contextTSE.dw3.u16MSS)
4334 + pThis->contextTSE.dw3.u8HDRLEN
4335 + (pThis->fVTag ? 4 : 0);
4336 rc = e1kXmitAllocBuf(pThis, false /* fGSO */);
4337 }
4338 }
4339
4340 return rc;
4341}
4342#endif /* E1K_WITH_TXD_CACHE */
4343
4344#ifndef E1K_WITH_TXD_CACHE
4345/**
4346 * TCP segmentation offloading fallback: Add descriptor's buffer to transmit
4347 * frame.
4348 *
4349 * We construct the frame in the fallback buffer first and the copy it to the SG
4350 * buffer before passing it down to the network driver code.
4351 *
4352 * @returns true if the frame should be transmitted, false if not.
4353 *
4354 * @param pThis The device state structure.
4355 * @param pDesc Pointer to the descriptor to transmit.
4356 * @param cbFragment Length of descriptor's buffer.
4357 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4358 * @thread E1000_TX
4359 */
4360static bool e1kFallbackAddToFrame(PE1KSTATE pThis, E1KTXDESC *pDesc, uint32_t cbFragment, bool fOnWorkerThread)
4361{
4362 PPDMSCATTERGATHER pTxSg = pThis->CTX_SUFF(pTxSg);
4363 Assert(e1kGetDescType(pDesc) == E1K_DTYP_DATA);
4364 Assert(pDesc->data.cmd.fTSE);
4365 Assert(!e1kXmitIsGsoBuf(pTxSg));
4366
4367 uint16_t u16MaxPktLen = pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw3.u16MSS;
4368 Assert(u16MaxPktLen != 0);
4369 Assert(u16MaxPktLen < E1K_MAX_TX_PKT_SIZE);
4370
4371 /*
4372 * Carve out segments.
4373 */
4374 do
4375 {
4376 /* Calculate how many bytes we have left in this TCP segment */
4377 uint32_t cb = u16MaxPktLen - pThis->u16TxPktLen;
4378 if (cb > cbFragment)
4379 {
4380 /* This descriptor fits completely into current segment */
4381 cb = cbFragment;
4382 e1kFallbackAddSegment(pThis, pDesc->data.u64BufAddr, cb, pDesc->data.cmd.fEOP /*fSend*/, fOnWorkerThread);
4383 }
4384 else
4385 {
4386 e1kFallbackAddSegment(pThis, pDesc->data.u64BufAddr, cb, true /*fSend*/, fOnWorkerThread);
4387 /*
4388 * Rewind the packet tail pointer to the beginning of payload,
4389 * so we continue writing right beyond the header.
4390 */
4391 pThis->u16TxPktLen = pThis->contextTSE.dw3.u8HDRLEN;
4392 }
4393
4394 pDesc->data.u64BufAddr += cb;
4395 cbFragment -= cb;
4396 } while (cbFragment > 0);
4397
4398 if (pDesc->data.cmd.fEOP)
4399 {
4400 /* End of packet, next segment will contain header. */
4401 if (pThis->u32PayRemain != 0)
4402 E1K_INC_CNT32(TSCTFC);
4403 pThis->u16TxPktLen = 0;
4404 e1kXmitFreeBuf(pThis);
4405 }
4406
4407 return false;
4408}
4409#else /* E1K_WITH_TXD_CACHE */
4410/**
4411 * TCP segmentation offloading fallback: Add descriptor's buffer to transmit
4412 * frame.
4413 *
4414 * We construct the frame in the fallback buffer first and the copy it to the SG
4415 * buffer before passing it down to the network driver code.
4416 *
4417 * @returns error code
4418 *
4419 * @param pThis The device state structure.
4420 * @param pDesc Pointer to the descriptor to transmit.
4421 * @param cbFragment Length of descriptor's buffer.
4422 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4423 * @thread E1000_TX
4424 */
4425static int e1kFallbackAddToFrame(PE1KSTATE pThis, E1KTXDESC *pDesc, bool fOnWorkerThread)
4426{
4427#ifdef VBOX_STRICT
4428 PPDMSCATTERGATHER pTxSg = pThis->CTX_SUFF(pTxSg);
4429 Assert(e1kGetDescType(pDesc) == E1K_DTYP_DATA);
4430 Assert(pDesc->data.cmd.fTSE);
4431 Assert(!e1kXmitIsGsoBuf(pTxSg));
4432#endif
4433
4434 uint16_t u16MaxPktLen = pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw3.u16MSS;
4435
4436 /*
4437 * Carve out segments.
4438 */
4439 int rc = VINF_SUCCESS;
4440 do
4441 {
4442 /* Calculate how many bytes we have left in this TCP segment */
4443 uint32_t cb = u16MaxPktLen - pThis->u16TxPktLen;
4444 if (cb > pDesc->data.cmd.u20DTALEN)
4445 {
4446 /* This descriptor fits completely into current segment */
4447 cb = pDesc->data.cmd.u20DTALEN;
4448 rc = e1kFallbackAddSegment(pThis, pDesc->data.u64BufAddr, cb, pDesc->data.cmd.fEOP /*fSend*/, fOnWorkerThread);
4449 }
4450 else
4451 {
4452 rc = e1kFallbackAddSegment(pThis, pDesc->data.u64BufAddr, cb, true /*fSend*/, fOnWorkerThread);
4453 /*
4454 * Rewind the packet tail pointer to the beginning of payload,
4455 * so we continue writing right beyond the header.
4456 */
4457 pThis->u16TxPktLen = pThis->contextTSE.dw3.u8HDRLEN;
4458 }
4459
4460 pDesc->data.u64BufAddr += cb;
4461 pDesc->data.cmd.u20DTALEN -= cb;
4462 } while (pDesc->data.cmd.u20DTALEN > 0 && RT_SUCCESS(rc));
4463
4464 if (pDesc->data.cmd.fEOP)
4465 {
4466 /* End of packet, next segment will contain header. */
4467 if (pThis->u32PayRemain != 0)
4468 E1K_INC_CNT32(TSCTFC);
4469 pThis->u16TxPktLen = 0;
4470 e1kXmitFreeBuf(pThis);
4471 }
4472
4473 return VINF_SUCCESS; /// @todo consider rc;
4474}
4475#endif /* E1K_WITH_TXD_CACHE */
4476
4477
4478/**
4479 * Add descriptor's buffer to transmit frame.
4480 *
4481 * This deals with GSO and normal frames, e1kFallbackAddToFrame deals with the
4482 * TSE frames we cannot handle as GSO.
4483 *
4484 * @returns true on success, false on failure.
4485 *
4486 * @param pThis The device state structure.
4487 * @param PhysAddr The physical address of the descriptor buffer.
4488 * @param cbFragment Length of descriptor's buffer.
4489 * @thread E1000_TX
4490 */
4491static bool e1kAddToFrame(PE1KSTATE pThis, RTGCPHYS PhysAddr, uint32_t cbFragment)
4492{
4493 PPDMSCATTERGATHER pTxSg = pThis->CTX_SUFF(pTxSg);
4494 bool const fGso = e1kXmitIsGsoBuf(pTxSg);
4495 uint32_t const cbNewPkt = cbFragment + pThis->u16TxPktLen;
4496
4497 if (RT_UNLIKELY( !fGso && cbNewPkt > E1K_MAX_TX_PKT_SIZE ))
4498 {
4499 E1kLog(("%s Transmit packet is too large: %u > %u(max)\n", pThis->szPrf, cbNewPkt, E1K_MAX_TX_PKT_SIZE));
4500 return false;
4501 }
4502 if (RT_UNLIKELY( fGso && cbNewPkt > pTxSg->cbAvailable ))
4503 {
4504 E1kLog(("%s Transmit packet is too large: %u > %u(max)/GSO\n", pThis->szPrf, cbNewPkt, pTxSg->cbAvailable));
4505 return false;
4506 }
4507
4508 if (RT_LIKELY(pTxSg))
4509 {
4510 Assert(pTxSg->cSegs == 1);
4511 Assert(pTxSg->cbUsed == pThis->u16TxPktLen);
4512
4513 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), PhysAddr,
4514 (uint8_t *)pTxSg->aSegs[0].pvSeg + pThis->u16TxPktLen, cbFragment);
4515
4516 pTxSg->cbUsed = cbNewPkt;
4517 }
4518 pThis->u16TxPktLen = cbNewPkt;
4519
4520 return true;
4521}
4522
4523
4524/**
4525 * Write the descriptor back to guest memory and notify the guest.
4526 *
4527 * @param pThis The device state structure.
4528 * @param pDesc Pointer to the descriptor have been transmitted.
4529 * @param addr Physical address of the descriptor in guest memory.
4530 * @thread E1000_TX
4531 */
4532static void e1kDescReport(PE1KSTATE pThis, E1KTXDESC *pDesc, RTGCPHYS addr)
4533{
4534 /*
4535 * We fake descriptor write-back bursting. Descriptors are written back as they are
4536 * processed.
4537 */
4538 /* Let's pretend we process descriptors. Write back with DD set. */
4539 /*
4540 * Prior to r71586 we tried to accomodate the case when write-back bursts
4541 * are enabled without actually implementing bursting by writing back all
4542 * descriptors, even the ones that do not have RS set. This caused kernel
4543 * panics with Linux SMP kernels, as the e1000 driver tried to free up skb
4544 * associated with written back descriptor if it happened to be a context
4545 * descriptor since context descriptors do not have skb associated to them.
4546 * Starting from r71586 we write back only the descriptors with RS set,
4547 * which is a little bit different from what the real hardware does in
4548 * case there is a chain of data descritors where some of them have RS set
4549 * and others do not. It is very uncommon scenario imho.
4550 * We need to check RPS as well since some legacy drivers use it instead of
4551 * RS even with newer cards.
4552 */
4553 if (pDesc->legacy.cmd.fRS || pDesc->legacy.cmd.fRPS)
4554 {
4555 pDesc->legacy.dw3.fDD = 1; /* Descriptor Done */
4556 e1kWriteBackDesc(pThis, pDesc, addr);
4557 if (pDesc->legacy.cmd.fEOP)
4558 {
4559//#ifdef E1K_USE_TX_TIMERS
4560 if (pThis->fTidEnabled && pDesc->legacy.cmd.fIDE)
4561 {
4562 E1K_INC_ISTAT_CNT(pThis->uStatTxIDE);
4563 //if (pThis->fIntRaised)
4564 //{
4565 // /* Interrupt is already pending, no need for timers */
4566 // ICR |= ICR_TXDW;
4567 //}
4568 //else {
4569 /* Arm the timer to fire in TIVD usec (discard .024) */
4570 e1kArmTimer(pThis, pThis->CTX_SUFF(pTIDTimer), TIDV);
4571# ifndef E1K_NO_TAD
4572 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
4573 E1kLog2(("%s Checking if TAD timer is running\n",
4574 pThis->szPrf));
4575 if (TADV != 0 && !TMTimerIsActive(pThis->CTX_SUFF(pTADTimer)))
4576 e1kArmTimer(pThis, pThis->CTX_SUFF(pTADTimer), TADV);
4577# endif /* E1K_NO_TAD */
4578 }
4579 else
4580 {
4581 if (pThis->fTidEnabled)
4582 {
4583 E1kLog2(("%s No IDE set, cancel TAD timer and raise interrupt\n",
4584 pThis->szPrf));
4585 /* Cancel both timers if armed and fire immediately. */
4586# ifndef E1K_NO_TAD
4587 TMTimerStop(pThis->CTX_SUFF(pTADTimer));
4588# endif
4589 TMTimerStop(pThis->CTX_SUFF(pTIDTimer));
4590 }
4591//#endif /* E1K_USE_TX_TIMERS */
4592 E1K_INC_ISTAT_CNT(pThis->uStatIntTx);
4593 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_TXDW);
4594//#ifdef E1K_USE_TX_TIMERS
4595 }
4596//#endif /* E1K_USE_TX_TIMERS */
4597 }
4598 }
4599 else
4600 {
4601 E1K_INC_ISTAT_CNT(pThis->uStatTxNoRS);
4602 }
4603}
4604
4605#ifndef E1K_WITH_TXD_CACHE
4606
4607/**
4608 * Process Transmit Descriptor.
4609 *
4610 * E1000 supports three types of transmit descriptors:
4611 * - legacy data descriptors of older format (context-less).
4612 * - data the same as legacy but providing new offloading capabilities.
4613 * - context sets up the context for following data descriptors.
4614 *
4615 * @param pThis The device state structure.
4616 * @param pDesc Pointer to descriptor union.
4617 * @param addr Physical address of descriptor in guest memory.
4618 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4619 * @thread E1000_TX
4620 */
4621static int e1kXmitDesc(PE1KSTATE pThis, E1KTXDESC *pDesc, RTGCPHYS addr, bool fOnWorkerThread)
4622{
4623 int rc = VINF_SUCCESS;
4624 uint32_t cbVTag = 0;
4625
4626 e1kPrintTDesc(pThis, pDesc, "vvv");
4627
4628//#ifdef E1K_USE_TX_TIMERS
4629 if (pThis->fTidEnabled)
4630 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTIDTimer));
4631//#endif /* E1K_USE_TX_TIMERS */
4632
4633 switch (e1kGetDescType(pDesc))
4634 {
4635 case E1K_DTYP_CONTEXT:
4636 if (pDesc->context.dw2.fTSE)
4637 {
4638 pThis->contextTSE = pDesc->context;
4639 pThis->u32PayRemain = pDesc->context.dw2.u20PAYLEN;
4640 pThis->u16HdrRemain = pDesc->context.dw3.u8HDRLEN;
4641 e1kSetupGsoCtx(&pThis->GsoCtx, &pDesc->context);
4642 STAM_COUNTER_INC(&pThis->StatTxDescCtxTSE);
4643 }
4644 else
4645 {
4646 pThis->contextNormal = pDesc->context;
4647 STAM_COUNTER_INC(&pThis->StatTxDescCtxNormal);
4648 }
4649 E1kLog2(("%s %s context updated: IP CSS=%02X, IP CSO=%02X, IP CSE=%04X"
4650 ", TU CSS=%02X, TU CSO=%02X, TU CSE=%04X\n", pThis->szPrf,
4651 pDesc->context.dw2.fTSE ? "TSE" : "Normal",
4652 pDesc->context.ip.u8CSS,
4653 pDesc->context.ip.u8CSO,
4654 pDesc->context.ip.u16CSE,
4655 pDesc->context.tu.u8CSS,
4656 pDesc->context.tu.u8CSO,
4657 pDesc->context.tu.u16CSE));
4658 E1K_INC_ISTAT_CNT(pThis->uStatDescCtx);
4659 e1kDescReport(pThis, pDesc, addr);
4660 break;
4661
4662 case E1K_DTYP_DATA:
4663 {
4664 if (pDesc->data.cmd.u20DTALEN == 0 || pDesc->data.u64BufAddr == 0)
4665 {
4666 E1kLog2(("% Empty data descriptor, skipped.\n", pThis->szPrf));
4667 /** @todo Same as legacy when !TSE. See below. */
4668 break;
4669 }
4670 STAM_COUNTER_INC(pDesc->data.cmd.fTSE?
4671 &pThis->StatTxDescTSEData:
4672 &pThis->StatTxDescData);
4673 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
4674 E1K_INC_ISTAT_CNT(pThis->uStatDescDat);
4675
4676 /*
4677 * The last descriptor of non-TSE packet must contain VLE flag.
4678 * TSE packets have VLE flag in the first descriptor. The later
4679 * case is taken care of a bit later when cbVTag gets assigned.
4680 *
4681 * 1) pDesc->data.cmd.fEOP && !pDesc->data.cmd.fTSE
4682 */
4683 if (pDesc->data.cmd.fEOP && !pDesc->data.cmd.fTSE)
4684 {
4685 pThis->fVTag = pDesc->data.cmd.fVLE;
4686 pThis->u16VTagTCI = pDesc->data.dw3.u16Special;
4687 }
4688 /*
4689 * First fragment: Allocate new buffer and save the IXSM and TXSM
4690 * packet options as these are only valid in the first fragment.
4691 */
4692 if (pThis->u16TxPktLen == 0)
4693 {
4694 pThis->fIPcsum = pDesc->data.dw3.fIXSM;
4695 pThis->fTCPcsum = pDesc->data.dw3.fTXSM;
4696 E1kLog2(("%s Saving checksum flags:%s%s; \n", pThis->szPrf,
4697 pThis->fIPcsum ? " IP" : "",
4698 pThis->fTCPcsum ? " TCP/UDP" : ""));
4699 if (pDesc->data.cmd.fTSE)
4700 {
4701 /* 2) pDesc->data.cmd.fTSE && pThis->u16TxPktLen == 0 */
4702 pThis->fVTag = pDesc->data.cmd.fVLE;
4703 pThis->u16VTagTCI = pDesc->data.dw3.u16Special;
4704 cbVTag = pThis->fVTag ? 4 : 0;
4705 }
4706 else if (pDesc->data.cmd.fEOP)
4707 cbVTag = pDesc->data.cmd.fVLE ? 4 : 0;
4708 else
4709 cbVTag = 4;
4710 E1kLog3(("%s About to allocate TX buffer: cbVTag=%u\n", pThis->szPrf, cbVTag));
4711 if (e1kCanDoGso(pThis, &pThis->GsoCtx, &pDesc->data, &pThis->contextTSE))
4712 rc = e1kXmitAllocBuf(pThis, pThis->contextTSE.dw2.u20PAYLEN + pThis->contextTSE.dw3.u8HDRLEN + cbVTag,
4713 true /*fExactSize*/, true /*fGso*/);
4714 else if (pDesc->data.cmd.fTSE)
4715 rc = e1kXmitAllocBuf(pThis, pThis->contextTSE.dw3.u16MSS + pThis->contextTSE.dw3.u8HDRLEN + cbVTag,
4716 pDesc->data.cmd.fTSE /*fExactSize*/, false /*fGso*/);
4717 else
4718 rc = e1kXmitAllocBuf(pThis, pDesc->data.cmd.u20DTALEN + cbVTag,
4719 pDesc->data.cmd.fEOP /*fExactSize*/, false /*fGso*/);
4720
4721 /**
4722 * @todo: Perhaps it is not that simple for GSO packets! We may
4723 * need to unwind some changes.
4724 */
4725 if (RT_FAILURE(rc))
4726 {
4727 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
4728 break;
4729 }
4730 /** @todo Is there any way to indicating errors other than collisions? Like
4731 * VERR_NET_DOWN. */
4732 }
4733
4734 /*
4735 * Add the descriptor data to the frame. If the frame is complete,
4736 * transmit it and reset the u16TxPktLen field.
4737 */
4738 if (e1kXmitIsGsoBuf(pThis->CTX_SUFF(pTxSg)))
4739 {
4740 STAM_COUNTER_INC(&pThis->StatTxPathGSO);
4741 bool fRc = e1kAddToFrame(pThis, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
4742 if (pDesc->data.cmd.fEOP)
4743 {
4744 if ( fRc
4745 && pThis->CTX_SUFF(pTxSg)
4746 && pThis->CTX_SUFF(pTxSg)->cbUsed == (size_t)pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN)
4747 {
4748 e1kTransmitFrame(pThis, fOnWorkerThread);
4749 E1K_INC_CNT32(TSCTC);
4750 }
4751 else
4752 {
4753 if (fRc)
4754 E1kLog(("%s bad GSO/TSE %p or %u < %u\n" , pThis->szPrf,
4755 pThis->CTX_SUFF(pTxSg), pThis->CTX_SUFF(pTxSg) ? pThis->CTX_SUFF(pTxSg)->cbUsed : 0,
4756 pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN));
4757 e1kXmitFreeBuf(pThis);
4758 E1K_INC_CNT32(TSCTFC);
4759 }
4760 pThis->u16TxPktLen = 0;
4761 }
4762 }
4763 else if (!pDesc->data.cmd.fTSE)
4764 {
4765 STAM_COUNTER_INC(&pThis->StatTxPathRegular);
4766 bool fRc = e1kAddToFrame(pThis, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
4767 if (pDesc->data.cmd.fEOP)
4768 {
4769 if (fRc && pThis->CTX_SUFF(pTxSg))
4770 {
4771 Assert(pThis->CTX_SUFF(pTxSg)->cSegs == 1);
4772 if (pThis->fIPcsum)
4773 e1kInsertChecksum(pThis, (uint8_t *)pThis->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen,
4774 pThis->contextNormal.ip.u8CSO,
4775 pThis->contextNormal.ip.u8CSS,
4776 pThis->contextNormal.ip.u16CSE);
4777 if (pThis->fTCPcsum)
4778 e1kInsertChecksum(pThis, (uint8_t *)pThis->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen,
4779 pThis->contextNormal.tu.u8CSO,
4780 pThis->contextNormal.tu.u8CSS,
4781 pThis->contextNormal.tu.u16CSE);
4782 e1kTransmitFrame(pThis, fOnWorkerThread);
4783 }
4784 else
4785 e1kXmitFreeBuf(pThis);
4786 pThis->u16TxPktLen = 0;
4787 }
4788 }
4789 else
4790 {
4791 STAM_COUNTER_INC(&pThis->StatTxPathFallback);
4792 e1kFallbackAddToFrame(pThis, pDesc, pDesc->data.cmd.u20DTALEN, fOnWorkerThread);
4793 }
4794
4795 e1kDescReport(pThis, pDesc, addr);
4796 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
4797 break;
4798 }
4799
4800 case E1K_DTYP_LEGACY:
4801 if (pDesc->legacy.cmd.u16Length == 0 || pDesc->legacy.u64BufAddr == 0)
4802 {
4803 E1kLog(("%s Empty legacy descriptor, skipped.\n", pThis->szPrf));
4804 /** @todo 3.3.3, Length/Buffer Address: RS set -> write DD when processing. */
4805 break;
4806 }
4807 STAM_COUNTER_INC(&pThis->StatTxDescLegacy);
4808 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
4809
4810 /* First fragment: allocate new buffer. */
4811 if (pThis->u16TxPktLen == 0)
4812 {
4813 if (pDesc->legacy.cmd.fEOP)
4814 cbVTag = pDesc->legacy.cmd.fVLE ? 4 : 0;
4815 else
4816 cbVTag = 4;
4817 E1kLog3(("%s About to allocate TX buffer: cbVTag=%u\n", pThis->szPrf, cbVTag));
4818 /** @todo reset status bits? */
4819 rc = e1kXmitAllocBuf(pThis, pDesc->legacy.cmd.u16Length + cbVTag, pDesc->legacy.cmd.fEOP, false /*fGso*/);
4820 if (RT_FAILURE(rc))
4821 {
4822 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
4823 break;
4824 }
4825
4826 /** @todo Is there any way to indicating errors other than collisions? Like
4827 * VERR_NET_DOWN. */
4828 }
4829
4830 /* Add fragment to frame. */
4831 if (e1kAddToFrame(pThis, pDesc->data.u64BufAddr, pDesc->legacy.cmd.u16Length))
4832 {
4833 E1K_INC_ISTAT_CNT(pThis->uStatDescLeg);
4834
4835 /* Last fragment: Transmit and reset the packet storage counter. */
4836 if (pDesc->legacy.cmd.fEOP)
4837 {
4838 pThis->fVTag = pDesc->legacy.cmd.fVLE;
4839 pThis->u16VTagTCI = pDesc->legacy.dw3.u16Special;
4840 /** @todo Offload processing goes here. */
4841 e1kTransmitFrame(pThis, fOnWorkerThread);
4842 pThis->u16TxPktLen = 0;
4843 }
4844 }
4845 /* Last fragment + failure: free the buffer and reset the storage counter. */
4846 else if (pDesc->legacy.cmd.fEOP)
4847 {
4848 e1kXmitFreeBuf(pThis);
4849 pThis->u16TxPktLen = 0;
4850 }
4851
4852 e1kDescReport(pThis, pDesc, addr);
4853 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
4854 break;
4855
4856 default:
4857 E1kLog(("%s ERROR Unsupported transmit descriptor type: 0x%04x\n",
4858 pThis->szPrf, e1kGetDescType(pDesc)));
4859 break;
4860 }
4861
4862 return rc;
4863}
4864
4865#else /* E1K_WITH_TXD_CACHE */
4866
4867/**
4868 * Process Transmit Descriptor.
4869 *
4870 * E1000 supports three types of transmit descriptors:
4871 * - legacy data descriptors of older format (context-less).
4872 * - data the same as legacy but providing new offloading capabilities.
4873 * - context sets up the context for following data descriptors.
4874 *
4875 * @param pThis The device state structure.
4876 * @param pDesc Pointer to descriptor union.
4877 * @param addr Physical address of descriptor in guest memory.
4878 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4879 * @param cbPacketSize Size of the packet as previously computed.
4880 * @thread E1000_TX
4881 */
4882static int e1kXmitDesc(PE1KSTATE pThis, E1KTXDESC *pDesc, RTGCPHYS addr,
4883 bool fOnWorkerThread)
4884{
4885 int rc = VINF_SUCCESS;
4886
4887 e1kPrintTDesc(pThis, pDesc, "vvv");
4888
4889//#ifdef E1K_USE_TX_TIMERS
4890 if (pThis->fTidEnabled)
4891 TMTimerStop(pThis->CTX_SUFF(pTIDTimer));
4892//#endif /* E1K_USE_TX_TIMERS */
4893
4894 switch (e1kGetDescType(pDesc))
4895 {
4896 case E1K_DTYP_CONTEXT:
4897 /* The caller have already updated the context */
4898 E1K_INC_ISTAT_CNT(pThis->uStatDescCtx);
4899 e1kDescReport(pThis, pDesc, addr);
4900 break;
4901
4902 case E1K_DTYP_DATA:
4903 {
4904 STAM_COUNTER_INC(pDesc->data.cmd.fTSE?
4905 &pThis->StatTxDescTSEData:
4906 &pThis->StatTxDescData);
4907 E1K_INC_ISTAT_CNT(pThis->uStatDescDat);
4908 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
4909 if (pDesc->data.cmd.u20DTALEN == 0 || pDesc->data.u64BufAddr == 0)
4910 {
4911 E1kLog2(("% Empty data descriptor, skipped.\n", pThis->szPrf));
4912 }
4913 else
4914 {
4915 /*
4916 * Add the descriptor data to the frame. If the frame is complete,
4917 * transmit it and reset the u16TxPktLen field.
4918 */
4919 if (e1kXmitIsGsoBuf(pThis->CTX_SUFF(pTxSg)))
4920 {
4921 STAM_COUNTER_INC(&pThis->StatTxPathGSO);
4922 bool fRc = e1kAddToFrame(pThis, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
4923 if (pDesc->data.cmd.fEOP)
4924 {
4925 if ( fRc
4926 && pThis->CTX_SUFF(pTxSg)
4927 && pThis->CTX_SUFF(pTxSg)->cbUsed == (size_t)pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN)
4928 {
4929 e1kTransmitFrame(pThis, fOnWorkerThread);
4930 E1K_INC_CNT32(TSCTC);
4931 }
4932 else
4933 {
4934 if (fRc)
4935 E1kLog(("%s bad GSO/TSE %p or %u < %u\n" , pThis->szPrf,
4936 pThis->CTX_SUFF(pTxSg), pThis->CTX_SUFF(pTxSg) ? pThis->CTX_SUFF(pTxSg)->cbUsed : 0,
4937 pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN));
4938 e1kXmitFreeBuf(pThis);
4939 E1K_INC_CNT32(TSCTFC);
4940 }
4941 pThis->u16TxPktLen = 0;
4942 }
4943 }
4944 else if (!pDesc->data.cmd.fTSE)
4945 {
4946 STAM_COUNTER_INC(&pThis->StatTxPathRegular);
4947 bool fRc = e1kAddToFrame(pThis, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
4948 if (pDesc->data.cmd.fEOP)
4949 {
4950 if (fRc && pThis->CTX_SUFF(pTxSg))
4951 {
4952 Assert(pThis->CTX_SUFF(pTxSg)->cSegs == 1);
4953 if (pThis->fIPcsum)
4954 e1kInsertChecksum(pThis, (uint8_t *)pThis->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen,
4955 pThis->contextNormal.ip.u8CSO,
4956 pThis->contextNormal.ip.u8CSS,
4957 pThis->contextNormal.ip.u16CSE);
4958 if (pThis->fTCPcsum)
4959 e1kInsertChecksum(pThis, (uint8_t *)pThis->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen,
4960 pThis->contextNormal.tu.u8CSO,
4961 pThis->contextNormal.tu.u8CSS,
4962 pThis->contextNormal.tu.u16CSE);
4963 e1kTransmitFrame(pThis, fOnWorkerThread);
4964 }
4965 else
4966 e1kXmitFreeBuf(pThis);
4967 pThis->u16TxPktLen = 0;
4968 }
4969 }
4970 else
4971 {
4972 STAM_COUNTER_INC(&pThis->StatTxPathFallback);
4973 rc = e1kFallbackAddToFrame(pThis, pDesc, fOnWorkerThread);
4974 }
4975 }
4976 e1kDescReport(pThis, pDesc, addr);
4977 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
4978 break;
4979 }
4980
4981 case E1K_DTYP_LEGACY:
4982 STAM_COUNTER_INC(&pThis->StatTxDescLegacy);
4983 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
4984 if (pDesc->legacy.cmd.u16Length == 0 || pDesc->legacy.u64BufAddr == 0)
4985 {
4986 E1kLog(("%s Empty legacy descriptor, skipped.\n", pThis->szPrf));
4987 }
4988 else
4989 {
4990 /* Add fragment to frame. */
4991 if (e1kAddToFrame(pThis, pDesc->data.u64BufAddr, pDesc->legacy.cmd.u16Length))
4992 {
4993 E1K_INC_ISTAT_CNT(pThis->uStatDescLeg);
4994
4995 /* Last fragment: Transmit and reset the packet storage counter. */
4996 if (pDesc->legacy.cmd.fEOP)
4997 {
4998 if (pDesc->legacy.cmd.fIC)
4999 {
5000 e1kInsertChecksum(pThis,
5001 (uint8_t *)pThis->CTX_SUFF(pTxSg)->aSegs[0].pvSeg,
5002 pThis->u16TxPktLen,
5003 pDesc->legacy.cmd.u8CSO,
5004 pDesc->legacy.dw3.u8CSS,
5005 0);
5006 }
5007 e1kTransmitFrame(pThis, fOnWorkerThread);
5008 pThis->u16TxPktLen = 0;
5009 }
5010 }
5011 /* Last fragment + failure: free the buffer and reset the storage counter. */
5012 else if (pDesc->legacy.cmd.fEOP)
5013 {
5014 e1kXmitFreeBuf(pThis);
5015 pThis->u16TxPktLen = 0;
5016 }
5017 }
5018 e1kDescReport(pThis, pDesc, addr);
5019 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5020 break;
5021
5022 default:
5023 E1kLog(("%s ERROR Unsupported transmit descriptor type: 0x%04x\n",
5024 pThis->szPrf, e1kGetDescType(pDesc)));
5025 break;
5026 }
5027
5028 return rc;
5029}
5030
5031DECLINLINE(void) e1kUpdateTxContext(PE1KSTATE pThis, E1KTXDESC *pDesc)
5032{
5033 if (pDesc->context.dw2.fTSE)
5034 {
5035 pThis->contextTSE = pDesc->context;
5036 uint32_t cbMaxSegmentSize = pThis->contextTSE.dw3.u16MSS + pThis->contextTSE.dw3.u8HDRLEN + 4; /*VTAG*/
5037 if (RT_UNLIKELY(cbMaxSegmentSize > E1K_MAX_TX_PKT_SIZE))
5038 {
5039 pThis->contextTSE.dw3.u16MSS = E1K_MAX_TX_PKT_SIZE - pThis->contextTSE.dw3.u8HDRLEN - 4; /*VTAG*/
5040 LogRelMax(10, ("%s: Transmit packet is too large: %u > %u(max). Adjusted MSS to %u.\n",
5041 pThis->szPrf, cbMaxSegmentSize, E1K_MAX_TX_PKT_SIZE, pThis->contextTSE.dw3.u16MSS));
5042 }
5043 pThis->u32PayRemain = pThis->contextTSE.dw2.u20PAYLEN;
5044 pThis->u16HdrRemain = pThis->contextTSE.dw3.u8HDRLEN;
5045 e1kSetupGsoCtx(&pThis->GsoCtx, &pThis->contextTSE);
5046 STAM_COUNTER_INC(&pThis->StatTxDescCtxTSE);
5047 }
5048 else
5049 {
5050 pThis->contextNormal = pDesc->context;
5051 STAM_COUNTER_INC(&pThis->StatTxDescCtxNormal);
5052 }
5053 E1kLog2(("%s %s context updated: IP CSS=%02X, IP CSO=%02X, IP CSE=%04X"
5054 ", TU CSS=%02X, TU CSO=%02X, TU CSE=%04X\n", pThis->szPrf,
5055 pDesc->context.dw2.fTSE ? "TSE" : "Normal",
5056 pDesc->context.ip.u8CSS,
5057 pDesc->context.ip.u8CSO,
5058 pDesc->context.ip.u16CSE,
5059 pDesc->context.tu.u8CSS,
5060 pDesc->context.tu.u8CSO,
5061 pDesc->context.tu.u16CSE));
5062}
5063
5064static bool e1kLocateTxPacket(PE1KSTATE pThis)
5065{
5066 LogFlow(("%s e1kLocateTxPacket: ENTER cbTxAlloc=%d\n",
5067 pThis->szPrf, pThis->cbTxAlloc));
5068 /* Check if we have located the packet already. */
5069 if (pThis->cbTxAlloc)
5070 {
5071 LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d\n",
5072 pThis->szPrf, pThis->cbTxAlloc));
5073 return true;
5074 }
5075
5076 bool fTSE = false;
5077 uint32_t cbPacket = 0;
5078
5079 for (int i = pThis->iTxDCurrent; i < pThis->nTxDFetched; ++i)
5080 {
5081 E1KTXDESC *pDesc = &pThis->aTxDescriptors[i];
5082 switch (e1kGetDescType(pDesc))
5083 {
5084 case E1K_DTYP_CONTEXT:
5085 e1kUpdateTxContext(pThis, pDesc);
5086 continue;
5087 case E1K_DTYP_LEGACY:
5088 /* Skip empty descriptors. */
5089 if (!pDesc->legacy.u64BufAddr || !pDesc->legacy.cmd.u16Length)
5090 break;
5091 cbPacket += pDesc->legacy.cmd.u16Length;
5092 pThis->fGSO = false;
5093 break;
5094 case E1K_DTYP_DATA:
5095 /* Skip empty descriptors. */
5096 if (!pDesc->data.u64BufAddr || !pDesc->data.cmd.u20DTALEN)
5097 break;
5098 if (cbPacket == 0)
5099 {
5100 /*
5101 * The first fragment: save IXSM and TXSM options
5102 * as these are only valid in the first fragment.
5103 */
5104 pThis->fIPcsum = pDesc->data.dw3.fIXSM;
5105 pThis->fTCPcsum = pDesc->data.dw3.fTXSM;
5106 fTSE = pDesc->data.cmd.fTSE;
5107 /*
5108 * TSE descriptors have VLE bit properly set in
5109 * the first fragment.
5110 */
5111 if (fTSE)
5112 {
5113 pThis->fVTag = pDesc->data.cmd.fVLE;
5114 pThis->u16VTagTCI = pDesc->data.dw3.u16Special;
5115 }
5116 pThis->fGSO = e1kCanDoGso(pThis, &pThis->GsoCtx, &pDesc->data, &pThis->contextTSE);
5117 }
5118 cbPacket += pDesc->data.cmd.u20DTALEN;
5119 break;
5120 default:
5121 AssertMsgFailed(("Impossible descriptor type!"));
5122 }
5123 if (pDesc->legacy.cmd.fEOP)
5124 {
5125 /*
5126 * Non-TSE descriptors have VLE bit properly set in
5127 * the last fragment.
5128 */
5129 if (!fTSE)
5130 {
5131 pThis->fVTag = pDesc->data.cmd.fVLE;
5132 pThis->u16VTagTCI = pDesc->data.dw3.u16Special;
5133 }
5134 /*
5135 * Compute the required buffer size. If we cannot do GSO but still
5136 * have to do segmentation we allocate the first segment only.
5137 */
5138 pThis->cbTxAlloc = (!fTSE || pThis->fGSO) ?
5139 cbPacket :
5140 RT_MIN(cbPacket, pThis->contextTSE.dw3.u16MSS + pThis->contextTSE.dw3.u8HDRLEN);
5141 if (pThis->fVTag)
5142 pThis->cbTxAlloc += 4;
5143 LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d\n",
5144 pThis->szPrf, pThis->cbTxAlloc));
5145 return true;
5146 }
5147 }
5148
5149 if (cbPacket == 0 && pThis->nTxDFetched - pThis->iTxDCurrent > 0)
5150 {
5151 /* All descriptors were empty, we need to process them as a dummy packet */
5152 LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d, zero packet!\n",
5153 pThis->szPrf, pThis->cbTxAlloc));
5154 return true;
5155 }
5156 LogFlow(("%s e1kLocateTxPacket: RET false cbTxAlloc=%d\n",
5157 pThis->szPrf, pThis->cbTxAlloc));
5158 return false;
5159}
5160
5161static int e1kXmitPacket(PE1KSTATE pThis, bool fOnWorkerThread)
5162{
5163 int rc = VINF_SUCCESS;
5164
5165 LogFlow(("%s e1kXmitPacket: ENTER current=%d fetched=%d\n",
5166 pThis->szPrf, pThis->iTxDCurrent, pThis->nTxDFetched));
5167
5168 while (pThis->iTxDCurrent < pThis->nTxDFetched)
5169 {
5170 E1KTXDESC *pDesc = &pThis->aTxDescriptors[pThis->iTxDCurrent];
5171 E1kLog3(("%s About to process new TX descriptor at %08x%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
5172 pThis->szPrf, TDBAH, TDBAL + TDH * sizeof(E1KTXDESC), TDLEN, TDH, TDT));
5173 rc = e1kXmitDesc(pThis, pDesc, e1kDescAddr(TDBAH, TDBAL, TDH), fOnWorkerThread);
5174 if (RT_FAILURE(rc))
5175 break;
5176 if (++TDH * sizeof(E1KTXDESC) >= TDLEN)
5177 TDH = 0;
5178 uint32_t uLowThreshold = GET_BITS(TXDCTL, LWTHRESH)*8;
5179 if (uLowThreshold != 0 && e1kGetTxLen(pThis) <= uLowThreshold)
5180 {
5181 E1kLog2(("%s Low on transmit descriptors, raise ICR.TXD_LOW, len=%x thresh=%x\n",
5182 pThis->szPrf, e1kGetTxLen(pThis), GET_BITS(TXDCTL, LWTHRESH)*8));
5183 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_TXD_LOW);
5184 }
5185 ++pThis->iTxDCurrent;
5186 if (e1kGetDescType(pDesc) != E1K_DTYP_CONTEXT && pDesc->legacy.cmd.fEOP)
5187 break;
5188 }
5189
5190 LogFlow(("%s e1kXmitPacket: RET %Rrc current=%d fetched=%d\n",
5191 pThis->szPrf, rc, pThis->iTxDCurrent, pThis->nTxDFetched));
5192 return rc;
5193}
5194
5195#endif /* E1K_WITH_TXD_CACHE */
5196#ifndef E1K_WITH_TXD_CACHE
5197
5198/**
5199 * Transmit pending descriptors.
5200 *
5201 * @returns VBox status code. VERR_TRY_AGAIN is returned if we're busy.
5202 *
5203 * @param pThis The E1000 state.
5204 * @param fOnWorkerThread Whether we're on a worker thread or on an EMT.
5205 */
5206static int e1kXmitPending(PE1KSTATE pThis, bool fOnWorkerThread)
5207{
5208 int rc = VINF_SUCCESS;
5209
5210 /* Check if transmitter is enabled. */
5211 if (!(TCTL & TCTL_EN))
5212 return VINF_SUCCESS;
5213 /*
5214 * Grab the xmit lock of the driver as well as the E1K device state.
5215 */
5216 rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY);
5217 if (RT_LIKELY(rc == VINF_SUCCESS))
5218 {
5219 PPDMINETWORKUP pDrv = pThis->CTX_SUFF(pDrv);
5220 if (pDrv)
5221 {
5222 rc = pDrv->pfnBeginXmit(pDrv, fOnWorkerThread);
5223 if (RT_FAILURE(rc))
5224 {
5225 e1kCsTxLeave(pThis);
5226 return rc;
5227 }
5228 }
5229 /*
5230 * Process all pending descriptors.
5231 * Note! Do not process descriptors in locked state
5232 */
5233 while (TDH != TDT && !pThis->fLocked)
5234 {
5235 E1KTXDESC desc;
5236 E1kLog3(("%s About to process new TX descriptor at %08x%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
5237 pThis->szPrf, TDBAH, TDBAL + TDH * sizeof(desc), TDLEN, TDH, TDT));
5238
5239 e1kLoadDesc(pThis, &desc, ((uint64_t)TDBAH << 32) + TDBAL + TDH * sizeof(desc));
5240 rc = e1kXmitDesc(pThis, &desc, e1kDescAddr(TDBAH, TDBAL, TDH), fOnWorkerThread);
5241 /* If we failed to transmit descriptor we will try it again later */
5242 if (RT_FAILURE(rc))
5243 break;
5244 if (++TDH * sizeof(desc) >= TDLEN)
5245 TDH = 0;
5246
5247 if (e1kGetTxLen(pThis) <= GET_BITS(TXDCTL, LWTHRESH)*8)
5248 {
5249 E1kLog2(("%s Low on transmit descriptors, raise ICR.TXD_LOW, len=%x thresh=%x\n",
5250 pThis->szPrf, e1kGetTxLen(pThis), GET_BITS(TXDCTL, LWTHRESH)*8));
5251 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_TXD_LOW);
5252 }
5253
5254 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5255 }
5256
5257 /// @todo uncomment: pThis->uStatIntTXQE++;
5258 /// @todo uncomment: e1kRaiseInterrupt(pThis, ICR_TXQE);
5259 /*
5260 * Release the lock.
5261 */
5262 if (pDrv)
5263 pDrv->pfnEndXmit(pDrv);
5264 e1kCsTxLeave(pThis);
5265 }
5266
5267 return rc;
5268}
5269
5270#else /* E1K_WITH_TXD_CACHE */
5271
5272static void e1kDumpTxDCache(PE1KSTATE pThis)
5273{
5274 unsigned i, cDescs = TDLEN / sizeof(E1KTXDESC);
5275 uint32_t tdh = TDH;
5276 LogRel(("E1000: -- Transmit Descriptors (%d total) --\n", cDescs));
5277 for (i = 0; i < cDescs; ++i)
5278 {
5279 E1KTXDESC desc;
5280 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), e1kDescAddr(TDBAH, TDBAL, i),
5281 &desc, sizeof(desc));
5282 if (i == tdh)
5283 LogRel(("E1000: >>> "));
5284 LogRel(("E1000: %RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, i), &desc));
5285 }
5286 LogRel(("E1000: -- Transmit Descriptors in Cache (at %d (TDH %d)/ fetched %d / max %d) --\n",
5287 pThis->iTxDCurrent, TDH, pThis->nTxDFetched, E1K_TXD_CACHE_SIZE));
5288 if (tdh > pThis->iTxDCurrent)
5289 tdh -= pThis->iTxDCurrent;
5290 else
5291 tdh = cDescs + tdh - pThis->iTxDCurrent;
5292 for (i = 0; i < pThis->nTxDFetched; ++i)
5293 {
5294 if (i == pThis->iTxDCurrent)
5295 LogRel(("E1000: >>> "));
5296 LogRel(("E1000: %RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, tdh++ % cDescs), &pThis->aTxDescriptors[i]));
5297 }
5298}
5299
5300/**
5301 * Transmit pending descriptors.
5302 *
5303 * @returns VBox status code. VERR_TRY_AGAIN is returned if we're busy.
5304 *
5305 * @param pThis The E1000 state.
5306 * @param fOnWorkerThread Whether we're on a worker thread or on an EMT.
5307 */
5308static int e1kXmitPending(PE1KSTATE pThis, bool fOnWorkerThread)
5309{
5310 int rc = VINF_SUCCESS;
5311
5312 /* Check if transmitter is enabled. */
5313 if (!(TCTL & TCTL_EN))
5314 return VINF_SUCCESS;
5315 /*
5316 * Grab the xmit lock of the driver as well as the E1K device state.
5317 */
5318 PPDMINETWORKUP pDrv = pThis->CTX_SUFF(pDrv);
5319 if (pDrv)
5320 {
5321 rc = pDrv->pfnBeginXmit(pDrv, fOnWorkerThread);
5322 if (RT_FAILURE(rc))
5323 return rc;
5324 }
5325
5326 /*
5327 * Process all pending descriptors.
5328 * Note! Do not process descriptors in locked state
5329 */
5330 rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY);
5331 if (RT_LIKELY(rc == VINF_SUCCESS))
5332 {
5333 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
5334 /*
5335 * fIncomplete is set whenever we try to fetch additional descriptors
5336 * for an incomplete packet. If fail to locate a complete packet on
5337 * the next iteration we need to reset the cache or we risk to get
5338 * stuck in this loop forever.
5339 */
5340 bool fIncomplete = false;
5341 while (!pThis->fLocked && e1kTxDLazyLoad(pThis))
5342 {
5343 while (e1kLocateTxPacket(pThis))
5344 {
5345 fIncomplete = false;
5346 /* Found a complete packet, allocate it. */
5347 rc = e1kXmitAllocBuf(pThis, pThis->fGSO);
5348 /* If we're out of bandwidth we'll come back later. */
5349 if (RT_FAILURE(rc))
5350 goto out;
5351 /* Copy the packet to allocated buffer and send it. */
5352 rc = e1kXmitPacket(pThis, fOnWorkerThread);
5353 /* If we're out of bandwidth we'll come back later. */
5354 if (RT_FAILURE(rc))
5355 goto out;
5356 }
5357 uint8_t u8Remain = pThis->nTxDFetched - pThis->iTxDCurrent;
5358 if (RT_UNLIKELY(fIncomplete))
5359 {
5360 static bool fTxDCacheDumped = false;
5361 /*
5362 * The descriptor cache is full, but we were unable to find
5363 * a complete packet in it. Drop the cache and hope that
5364 * the guest driver can recover from network card error.
5365 */
5366 LogRel(("%s: No complete packets in%s TxD cache! "
5367 "Fetched=%d, current=%d, TX len=%d.\n",
5368 pThis->szPrf,
5369 u8Remain == E1K_TXD_CACHE_SIZE ? " full" : "",
5370 pThis->nTxDFetched, pThis->iTxDCurrent,
5371 e1kGetTxLen(pThis)));
5372 if (!fTxDCacheDumped)
5373 {
5374 fTxDCacheDumped = true;
5375 e1kDumpTxDCache(pThis);
5376 }
5377 pThis->iTxDCurrent = pThis->nTxDFetched = 0;
5378 /*
5379 * Returning an error at this point means Guru in R0
5380 * (see @bugref{6428}).
5381 */
5382# ifdef IN_RING3
5383 rc = VERR_NET_INCOMPLETE_TX_PACKET;
5384# else /* !IN_RING3 */
5385 rc = VINF_IOM_R3_MMIO_WRITE;
5386# endif /* !IN_RING3 */
5387 goto out;
5388 }
5389 if (u8Remain > 0)
5390 {
5391 Log4(("%s Incomplete packet at %d. Already fetched %d, "
5392 "%d more are available\n",
5393 pThis->szPrf, pThis->iTxDCurrent, u8Remain,
5394 e1kGetTxLen(pThis) - u8Remain));
5395
5396 /*
5397 * A packet was partially fetched. Move incomplete packet to
5398 * the beginning of cache buffer, then load more descriptors.
5399 */
5400 memmove(pThis->aTxDescriptors,
5401 &pThis->aTxDescriptors[pThis->iTxDCurrent],
5402 u8Remain * sizeof(E1KTXDESC));
5403 pThis->iTxDCurrent = 0;
5404 pThis->nTxDFetched = u8Remain;
5405 e1kTxDLoadMore(pThis);
5406 fIncomplete = true;
5407 }
5408 else
5409 pThis->nTxDFetched = 0;
5410 pThis->iTxDCurrent = 0;
5411 }
5412 if (!pThis->fLocked && GET_BITS(TXDCTL, LWTHRESH) == 0)
5413 {
5414 E1kLog2(("%s Out of transmit descriptors, raise ICR.TXD_LOW\n",
5415 pThis->szPrf));
5416 e1kRaiseInterrupt(pThis, VERR_SEM_BUSY, ICR_TXD_LOW);
5417 }
5418out:
5419 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5420
5421 /// @todo uncomment: pThis->uStatIntTXQE++;
5422 /// @todo uncomment: e1kRaiseInterrupt(pThis, ICR_TXQE);
5423
5424 e1kCsTxLeave(pThis);
5425 }
5426
5427
5428 /*
5429 * Release the lock.
5430 */
5431 if (pDrv)
5432 pDrv->pfnEndXmit(pDrv);
5433 return rc;
5434}
5435
5436#endif /* E1K_WITH_TXD_CACHE */
5437#ifdef IN_RING3
5438
5439/**
5440 * @interface_method_impl{PDMINETWORKDOWN,pfnXmitPending}
5441 */
5442static DECLCALLBACK(void) e1kR3NetworkDown_XmitPending(PPDMINETWORKDOWN pInterface)
5443{
5444 PE1KSTATE pThis = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkDown);
5445 /* Resume suspended transmission */
5446 STATUS &= ~STATUS_TXOFF;
5447 e1kXmitPending(pThis, true /*fOnWorkerThread*/);
5448}
5449
5450/**
5451 * Callback for consuming from transmit queue. It gets called in R3 whenever
5452 * we enqueue something in R0/GC.
5453 *
5454 * @returns true
5455 * @param pDevIns Pointer to device instance structure.
5456 * @param pItem Pointer to the element being dequeued (not used).
5457 * @thread ???
5458 */
5459static DECLCALLBACK(bool) e1kTxQueueConsumer(PPDMDEVINS pDevIns, PPDMQUEUEITEMCORE pItem)
5460{
5461 NOREF(pItem);
5462 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, PE1KSTATE);
5463 E1kLog2(("%s e1kTxQueueConsumer:\n", pThis->szPrf));
5464
5465 int rc = e1kXmitPending(pThis, false /*fOnWorkerThread*/); NOREF(rc);
5466#ifndef DEBUG_andy /** @todo r=andy Happens for me a lot, mute this for me. */
5467 AssertMsg(RT_SUCCESS(rc) || rc == VERR_TRY_AGAIN, ("%Rrc\n", rc));
5468#endif
5469 return true;
5470}
5471
5472/**
5473 * Handler for the wakeup signaller queue.
5474 */
5475static DECLCALLBACK(bool) e1kCanRxQueueConsumer(PPDMDEVINS pDevIns, PPDMQUEUEITEMCORE pItem)
5476{
5477 RT_NOREF(pItem);
5478 e1kWakeupReceive(pDevIns);
5479 return true;
5480}
5481
5482#endif /* IN_RING3 */
5483
5484/**
5485 * Write handler for Transmit Descriptor Tail register.
5486 *
5487 * @param pThis The device state structure.
5488 * @param offset Register offset in memory-mapped frame.
5489 * @param index Register index in register array.
5490 * @param value The value to store.
5491 * @param mask Used to implement partial writes (8 and 16-bit).
5492 * @thread EMT
5493 */
5494static int e1kRegWriteTDT(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5495{
5496 int rc = e1kRegWriteDefault(pThis, offset, index, value);
5497
5498 /* All descriptors starting with head and not including tail belong to us. */
5499 /* Process them. */
5500 E1kLog2(("%s e1kRegWriteTDT: TDBAL=%08x, TDBAH=%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
5501 pThis->szPrf, TDBAL, TDBAH, TDLEN, TDH, TDT));
5502
5503 /* Ignore TDT writes when the link is down. */
5504 if (TDH != TDT && (STATUS & STATUS_LU))
5505 {
5506 Log5(("E1000: TDT write: TDH=%08x, TDT=%08x, %d descriptors to process\n", TDH, TDT, e1kGetTxLen(pThis)));
5507 E1kLog(("%s e1kRegWriteTDT: %d descriptors to process\n",
5508 pThis->szPrf, e1kGetTxLen(pThis)));
5509
5510 /* Transmit pending packets if possible, defer it if we cannot do it
5511 in the current context. */
5512#ifdef E1K_TX_DELAY
5513 rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY);
5514 if (RT_LIKELY(rc == VINF_SUCCESS))
5515 {
5516 if (!TMTimerIsActive(pThis->CTX_SUFF(pTXDTimer)))
5517 {
5518#ifdef E1K_INT_STATS
5519 pThis->u64ArmedAt = RTTimeNanoTS();
5520#endif
5521 e1kArmTimer(pThis, pThis->CTX_SUFF(pTXDTimer), E1K_TX_DELAY);
5522 }
5523 E1K_INC_ISTAT_CNT(pThis->uStatTxDelayed);
5524 e1kCsTxLeave(pThis);
5525 return rc;
5526 }
5527 /* We failed to enter the TX critical section -- transmit as usual. */
5528#endif /* E1K_TX_DELAY */
5529#ifndef IN_RING3
5530 if (!pThis->CTX_SUFF(pDrv))
5531 {
5532 PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pThis->CTX_SUFF(pTxQueue));
5533 if (RT_UNLIKELY(pItem))
5534 PDMQueueInsert(pThis->CTX_SUFF(pTxQueue), pItem);
5535 }
5536 else
5537#endif
5538 {
5539 rc = e1kXmitPending(pThis, false /*fOnWorkerThread*/);
5540 if (rc == VERR_TRY_AGAIN)
5541 rc = VINF_SUCCESS;
5542 else if (rc == VERR_SEM_BUSY)
5543 rc = VINF_IOM_R3_MMIO_WRITE;
5544 AssertRC(rc);
5545 }
5546 }
5547
5548 return rc;
5549}
5550
5551/**
5552 * Write handler for Multicast Table Array registers.
5553 *
5554 * @param pThis The device state structure.
5555 * @param offset Register offset in memory-mapped frame.
5556 * @param index Register index in register array.
5557 * @param value The value to store.
5558 * @thread EMT
5559 */
5560static int e1kRegWriteMTA(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5561{
5562 AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->auMTA), VERR_DEV_IO_ERROR);
5563 pThis->auMTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auMTA[0])] = value;
5564
5565 return VINF_SUCCESS;
5566}
5567
5568/**
5569 * Read handler for Multicast Table Array registers.
5570 *
5571 * @returns VBox status code.
5572 *
5573 * @param pThis The device state structure.
5574 * @param offset Register offset in memory-mapped frame.
5575 * @param index Register index in register array.
5576 * @thread EMT
5577 */
5578static int e1kRegReadMTA(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5579{
5580 AssertReturn(offset - g_aE1kRegMap[index].offset< sizeof(pThis->auMTA), VERR_DEV_IO_ERROR);
5581 *pu32Value = pThis->auMTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auMTA[0])];
5582
5583 return VINF_SUCCESS;
5584}
5585
5586/**
5587 * Write handler for Receive Address registers.
5588 *
5589 * @param pThis The device state structure.
5590 * @param offset Register offset in memory-mapped frame.
5591 * @param index Register index in register array.
5592 * @param value The value to store.
5593 * @thread EMT
5594 */
5595static int e1kRegWriteRA(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5596{
5597 AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->aRecAddr.au32), VERR_DEV_IO_ERROR);
5598 pThis->aRecAddr.au32[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->aRecAddr.au32[0])] = value;
5599
5600 return VINF_SUCCESS;
5601}
5602
5603/**
5604 * Read handler for Receive Address registers.
5605 *
5606 * @returns VBox status code.
5607 *
5608 * @param pThis The device state structure.
5609 * @param offset Register offset in memory-mapped frame.
5610 * @param index Register index in register array.
5611 * @thread EMT
5612 */
5613static int e1kRegReadRA(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5614{
5615 AssertReturn(offset - g_aE1kRegMap[index].offset< sizeof(pThis->aRecAddr.au32), VERR_DEV_IO_ERROR);
5616 *pu32Value = pThis->aRecAddr.au32[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->aRecAddr.au32[0])];
5617
5618 return VINF_SUCCESS;
5619}
5620
5621/**
5622 * Write handler for VLAN Filter Table Array registers.
5623 *
5624 * @param pThis The device state structure.
5625 * @param offset Register offset in memory-mapped frame.
5626 * @param index Register index in register array.
5627 * @param value The value to store.
5628 * @thread EMT
5629 */
5630static int e1kRegWriteVFTA(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5631{
5632 AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->auVFTA), VINF_SUCCESS);
5633 pThis->auVFTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auVFTA[0])] = value;
5634
5635 return VINF_SUCCESS;
5636}
5637
5638/**
5639 * Read handler for VLAN Filter Table Array registers.
5640 *
5641 * @returns VBox status code.
5642 *
5643 * @param pThis The device state structure.
5644 * @param offset Register offset in memory-mapped frame.
5645 * @param index Register index in register array.
5646 * @thread EMT
5647 */
5648static int e1kRegReadVFTA(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5649{
5650 AssertReturn(offset - g_aE1kRegMap[index].offset< sizeof(pThis->auVFTA), VERR_DEV_IO_ERROR);
5651 *pu32Value = pThis->auVFTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auVFTA[0])];
5652
5653 return VINF_SUCCESS;
5654}
5655
5656/**
5657 * Read handler for unimplemented registers.
5658 *
5659 * Merely reports reads from unimplemented registers.
5660 *
5661 * @returns VBox status code.
5662 *
5663 * @param pThis The device state structure.
5664 * @param offset Register offset in memory-mapped frame.
5665 * @param index Register index in register array.
5666 * @thread EMT
5667 */
5668static int e1kRegReadUnimplemented(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5669{
5670 RT_NOREF3(pThis, offset, index);
5671 E1kLog(("%s At %08X read (00000000) attempt from unimplemented register %s (%s)\n",
5672 pThis->szPrf, offset, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
5673 *pu32Value = 0;
5674
5675 return VINF_SUCCESS;
5676}
5677
5678/**
5679 * Default register read handler with automatic clear operation.
5680 *
5681 * Retrieves the value of register from register array in device state structure.
5682 * Then resets all bits.
5683 *
5684 * @remarks The 'mask' parameter is simply ignored as masking and shifting is
5685 * done in the caller.
5686 *
5687 * @returns VBox status code.
5688 *
5689 * @param pThis The device state structure.
5690 * @param offset Register offset in memory-mapped frame.
5691 * @param index Register index in register array.
5692 * @thread EMT
5693 */
5694static int e1kRegReadAutoClear(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5695{
5696 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
5697 int rc = e1kRegReadDefault(pThis, offset, index, pu32Value);
5698 pThis->auRegs[index] = 0;
5699
5700 return rc;
5701}
5702
5703/**
5704 * Default register read handler.
5705 *
5706 * Retrieves the value of register from register array in device state structure.
5707 * Bits corresponding to 0s in 'readable' mask will always read as 0s.
5708 *
5709 * @remarks The 'mask' parameter is simply ignored as masking and shifting is
5710 * done in the caller.
5711 *
5712 * @returns VBox status code.
5713 *
5714 * @param pThis The device state structure.
5715 * @param offset Register offset in memory-mapped frame.
5716 * @param index Register index in register array.
5717 * @thread EMT
5718 */
5719static int e1kRegReadDefault(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5720{
5721 RT_NOREF_PV(offset);
5722
5723 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
5724 *pu32Value = pThis->auRegs[index] & g_aE1kRegMap[index].readable;
5725
5726 return VINF_SUCCESS;
5727}
5728
5729/**
5730 * Write handler for unimplemented registers.
5731 *
5732 * Merely reports writes to unimplemented registers.
5733 *
5734 * @param pThis The device state structure.
5735 * @param offset Register offset in memory-mapped frame.
5736 * @param index Register index in register array.
5737 * @param value The value to store.
5738 * @thread EMT
5739 */
5740
5741 static int e1kRegWriteUnimplemented(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5742{
5743 RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); RT_NOREF_PV(value);
5744
5745 E1kLog(("%s At %08X write attempt (%08X) to unimplemented register %s (%s)\n",
5746 pThis->szPrf, offset, value, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
5747
5748 return VINF_SUCCESS;
5749}
5750
5751/**
5752 * Default register write handler.
5753 *
5754 * Stores the value to the register array in device state structure. Only bits
5755 * corresponding to 1s both in 'writable' and 'mask' will be stored.
5756 *
5757 * @returns VBox status code.
5758 *
5759 * @param pThis The device state structure.
5760 * @param offset Register offset in memory-mapped frame.
5761 * @param index Register index in register array.
5762 * @param value The value to store.
5763 * @param mask Used to implement partial writes (8 and 16-bit).
5764 * @thread EMT
5765 */
5766
5767static int e1kRegWriteDefault(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5768{
5769 RT_NOREF_PV(offset);
5770
5771 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
5772 pThis->auRegs[index] = (value & g_aE1kRegMap[index].writable)
5773 | (pThis->auRegs[index] & ~g_aE1kRegMap[index].writable);
5774
5775 return VINF_SUCCESS;
5776}
5777
5778/**
5779 * Search register table for matching register.
5780 *
5781 * @returns Index in the register table or -1 if not found.
5782 *
5783 * @param offReg Register offset in memory-mapped region.
5784 * @thread EMT
5785 */
5786static int e1kRegLookup(uint32_t offReg)
5787{
5788
5789#if 0
5790 int index;
5791
5792 for (index = 0; index < E1K_NUM_OF_REGS; index++)
5793 {
5794 if (g_aE1kRegMap[index].offset <= offReg && offReg < g_aE1kRegMap[index].offset + g_aE1kRegMap[index].size)
5795 {
5796 return index;
5797 }
5798 }
5799#else
5800 int iStart = 0;
5801 int iEnd = E1K_NUM_OF_BINARY_SEARCHABLE;
5802 for (;;)
5803 {
5804 int i = (iEnd - iStart) / 2 + iStart;
5805 uint32_t offCur = g_aE1kRegMap[i].offset;
5806 if (offReg < offCur)
5807 {
5808 if (i == iStart)
5809 break;
5810 iEnd = i;
5811 }
5812 else if (offReg >= offCur + g_aE1kRegMap[i].size)
5813 {
5814 i++;
5815 if (i == iEnd)
5816 break;
5817 iStart = i;
5818 }
5819 else
5820 return i;
5821 Assert(iEnd > iStart);
5822 }
5823
5824 for (unsigned i = E1K_NUM_OF_BINARY_SEARCHABLE; i < RT_ELEMENTS(g_aE1kRegMap); i++)
5825 if (offReg - g_aE1kRegMap[i].offset < g_aE1kRegMap[i].size)
5826 return i;
5827
5828# ifdef VBOX_STRICT
5829 for (unsigned i = 0; i < RT_ELEMENTS(g_aE1kRegMap); i++)
5830 Assert(offReg - g_aE1kRegMap[i].offset >= g_aE1kRegMap[i].size);
5831# endif
5832
5833#endif
5834
5835 return -1;
5836}
5837
5838/**
5839 * Handle unaligned register read operation.
5840 *
5841 * Looks up and calls appropriate handler.
5842 *
5843 * @returns VBox status code.
5844 *
5845 * @param pThis The device state structure.
5846 * @param offReg Register offset in memory-mapped frame.
5847 * @param pv Where to store the result.
5848 * @param cb Number of bytes to read.
5849 * @thread EMT
5850 * @remarks IOM takes care of unaligned and small reads via MMIO. For I/O port
5851 * accesses we have to take care of that ourselves.
5852 */
5853static int e1kRegReadUnaligned(PE1KSTATE pThis, uint32_t offReg, void *pv, uint32_t cb)
5854{
5855 uint32_t u32 = 0;
5856 uint32_t shift;
5857 int rc = VINF_SUCCESS;
5858 int index = e1kRegLookup(offReg);
5859#ifdef LOG_ENABLED
5860 char buf[9];
5861#endif
5862
5863 /*
5864 * From the spec:
5865 * For registers that should be accessed as 32-bit double words, partial writes (less than a 32-bit
5866 * double word) is ignored. Partial reads return all 32 bits of data regardless of the byte enables.
5867 */
5868
5869 /*
5870 * To be able to read bytes and short word we convert them to properly
5871 * shifted 32-bit words and masks. The idea is to keep register-specific
5872 * handlers simple. Most accesses will be 32-bit anyway.
5873 */
5874 uint32_t mask;
5875 switch (cb)
5876 {
5877 case 4: mask = 0xFFFFFFFF; break;
5878 case 2: mask = 0x0000FFFF; break;
5879 case 1: mask = 0x000000FF; break;
5880 default:
5881 return PDMDevHlpDBGFStop(pThis->CTX_SUFF(pDevIns), RT_SRC_POS,
5882 "unsupported op size: offset=%#10x cb=%#10x\n", offReg, cb);
5883 }
5884 if (index != -1)
5885 {
5886 RT_UNTRUSTED_VALIDATED_FENCE(); /* paranoia because of port I/O. */
5887 if (g_aE1kRegMap[index].readable)
5888 {
5889 /* Make the mask correspond to the bits we are about to read. */
5890 shift = (offReg - g_aE1kRegMap[index].offset) % sizeof(uint32_t) * 8;
5891 mask <<= shift;
5892 if (!mask)
5893 return PDMDevHlpDBGFStop(pThis->CTX_SUFF(pDevIns), RT_SRC_POS, "Zero mask: offset=%#10x cb=%#10x\n", offReg, cb);
5894 /*
5895 * Read it. Pass the mask so the handler knows what has to be read.
5896 * Mask out irrelevant bits.
5897 */
5898 //rc = e1kCsEnter(pThis, VERR_SEM_BUSY, RT_SRC_POS);
5899 if (RT_UNLIKELY(rc != VINF_SUCCESS))
5900 return rc;
5901 //pThis->fDelayInts = false;
5902 //pThis->iStatIntLost += pThis->iStatIntLostOne;
5903 //pThis->iStatIntLostOne = 0;
5904 rc = g_aE1kRegMap[index].pfnRead(pThis, offReg & 0xFFFFFFFC, index, &u32);
5905 u32 &= mask;
5906 //e1kCsLeave(pThis);
5907 E1kLog2(("%s At %08X read %s from %s (%s)\n",
5908 pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf), g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
5909 Log6(("%s At %08X read %s from %s (%s) [UNALIGNED]\n",
5910 pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf), g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
5911 /* Shift back the result. */
5912 u32 >>= shift;
5913 }
5914 else
5915 E1kLog(("%s At %08X read (%s) attempt from write-only register %s (%s)\n",
5916 pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf), g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
5917 if (IOM_SUCCESS(rc))
5918 STAM_COUNTER_INC(&pThis->aStatRegReads[index]);
5919 }
5920 else
5921 E1kLog(("%s At %08X read (%s) attempt from non-existing register\n",
5922 pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf)));
5923
5924 memcpy(pv, &u32, cb);
5925 return rc;
5926}
5927
5928/**
5929 * Handle 4 byte aligned and sized read operation.
5930 *
5931 * Looks up and calls appropriate handler.
5932 *
5933 * @returns VBox status code.
5934 *
5935 * @param pThis The device state structure.
5936 * @param offReg Register offset in memory-mapped frame.
5937 * @param pu32 Where to store the result.
5938 * @thread EMT
5939 */
5940static int e1kRegReadAlignedU32(PE1KSTATE pThis, uint32_t offReg, uint32_t *pu32)
5941{
5942 Assert(!(offReg & 3));
5943
5944 /*
5945 * Lookup the register and check that it's readable.
5946 */
5947 int rc = VINF_SUCCESS;
5948 int idxReg = e1kRegLookup(offReg);
5949 if (RT_LIKELY(idxReg != -1))
5950 {
5951 RT_UNTRUSTED_VALIDATED_FENCE(); /* paranoia because of port I/O. */
5952 if (RT_UNLIKELY(g_aE1kRegMap[idxReg].readable))
5953 {
5954 /*
5955 * Read it. Pass the mask so the handler knows what has to be read.
5956 * Mask out irrelevant bits.
5957 */
5958 //rc = e1kCsEnter(pThis, VERR_SEM_BUSY, RT_SRC_POS);
5959 //if (RT_UNLIKELY(rc != VINF_SUCCESS))
5960 // return rc;
5961 //pThis->fDelayInts = false;
5962 //pThis->iStatIntLost += pThis->iStatIntLostOne;
5963 //pThis->iStatIntLostOne = 0;
5964 rc = g_aE1kRegMap[idxReg].pfnRead(pThis, offReg & 0xFFFFFFFC, idxReg, pu32);
5965 //e1kCsLeave(pThis);
5966 Log6(("%s At %08X read %08X from %s (%s)\n",
5967 pThis->szPrf, offReg, *pu32, g_aE1kRegMap[idxReg].abbrev, g_aE1kRegMap[idxReg].name));
5968 if (IOM_SUCCESS(rc))
5969 STAM_COUNTER_INC(&pThis->aStatRegReads[idxReg]);
5970 }
5971 else
5972 E1kLog(("%s At %08X read attempt from non-readable register %s (%s)\n",
5973 pThis->szPrf, offReg, g_aE1kRegMap[idxReg].abbrev, g_aE1kRegMap[idxReg].name));
5974 }
5975 else
5976 E1kLog(("%s At %08X read attempt from non-existing register\n", pThis->szPrf, offReg));
5977 return rc;
5978}
5979
5980/**
5981 * Handle 4 byte sized and aligned register write operation.
5982 *
5983 * Looks up and calls appropriate handler.
5984 *
5985 * @returns VBox status code.
5986 *
5987 * @param pThis The device state structure.
5988 * @param offReg Register offset in memory-mapped frame.
5989 * @param u32Value The value to write.
5990 * @thread EMT
5991 */
5992static int e1kRegWriteAlignedU32(PE1KSTATE pThis, uint32_t offReg, uint32_t u32Value)
5993{
5994 int rc = VINF_SUCCESS;
5995 int index = e1kRegLookup(offReg);
5996 if (RT_LIKELY(index != -1))
5997 {
5998 RT_UNTRUSTED_VALIDATED_FENCE(); /* paranoia because of port I/O. */
5999 if (RT_LIKELY(g_aE1kRegMap[index].writable))
6000 {
6001 /*
6002 * Write it. Pass the mask so the handler knows what has to be written.
6003 * Mask out irrelevant bits.
6004 */
6005 Log6(("%s At %08X write %08X to %s (%s)\n",
6006 pThis->szPrf, offReg, u32Value, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
6007 //rc = e1kCsEnter(pThis, VERR_SEM_BUSY, RT_SRC_POS);
6008 //if (RT_UNLIKELY(rc != VINF_SUCCESS))
6009 // return rc;
6010 //pThis->fDelayInts = false;
6011 //pThis->iStatIntLost += pThis->iStatIntLostOne;
6012 //pThis->iStatIntLostOne = 0;
6013 rc = g_aE1kRegMap[index].pfnWrite(pThis, offReg, index, u32Value);
6014 //e1kCsLeave(pThis);
6015 }
6016 else
6017 E1kLog(("%s At %08X write attempt (%08X) to read-only register %s (%s)\n",
6018 pThis->szPrf, offReg, u32Value, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
6019 if (IOM_SUCCESS(rc))
6020 STAM_COUNTER_INC(&pThis->aStatRegWrites[index]);
6021 }
6022 else
6023 E1kLog(("%s At %08X write attempt (%08X) to non-existing register\n",
6024 pThis->szPrf, offReg, u32Value));
6025 return rc;
6026}
6027
6028
6029/* -=-=-=-=- MMIO and I/O Port Callbacks -=-=-=-=- */
6030
6031/**
6032 * @callback_method_impl{FNIOMMMIOREAD}
6033 */
6034PDMBOTHCBDECL(int) e1kMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
6035{
6036 RT_NOREF2(pvUser, cb);
6037 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, PE1KSTATE);
6038 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatMMIORead), a);
6039
6040 uint32_t offReg = GCPhysAddr - pThis->addrMMReg;
6041 Assert(offReg < E1K_MM_SIZE);
6042 Assert(cb == 4);
6043 Assert(!(GCPhysAddr & 3));
6044
6045 int rc = e1kRegReadAlignedU32(pThis, offReg, (uint32_t *)pv);
6046
6047 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatMMIORead), a);
6048 return rc;
6049}
6050
6051/**
6052 * @callback_method_impl{FNIOMMMIOWRITE}
6053 */
6054PDMBOTHCBDECL(int) e1kMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
6055{
6056 RT_NOREF2(pvUser, cb);
6057 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, PE1KSTATE);
6058 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatMMIOWrite), a);
6059
6060 uint32_t offReg = GCPhysAddr - pThis->addrMMReg;
6061 Assert(offReg < E1K_MM_SIZE);
6062 Assert(cb == 4);
6063 Assert(!(GCPhysAddr & 3));
6064
6065 int rc = e1kRegWriteAlignedU32(pThis, offReg, *(uint32_t const *)pv);
6066
6067 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatMMIOWrite), a);
6068 return rc;
6069}
6070
6071/**
6072 * @callback_method_impl{FNIOMIOPORTIN}
6073 */
6074PDMBOTHCBDECL(int) e1kIOPortIn(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT uPort, uint32_t *pu32, unsigned cb)
6075{
6076 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, PE1KSTATE);
6077 int rc;
6078 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIORead), a);
6079 RT_NOREF_PV(pvUser);
6080
6081 uPort -= pThis->IOPortBase;
6082 if (RT_LIKELY(cb == 4))
6083 switch (uPort)
6084 {
6085 case 0x00: /* IOADDR */
6086 *pu32 = pThis->uSelectedReg;
6087 E1kLog2(("%s e1kIOPortIn: IOADDR(0), selecting register %#010x, val=%#010x\n", pThis->szPrf, pThis->uSelectedReg, *pu32));
6088 rc = VINF_SUCCESS;
6089 break;
6090
6091 case 0x04: /* IODATA */
6092 if (!(pThis->uSelectedReg & 3))
6093 rc = e1kRegReadAlignedU32(pThis, pThis->uSelectedReg, pu32);
6094 else /** @todo r=bird: I wouldn't be surprised if this unaligned branch wasn't necessary. */
6095 rc = e1kRegReadUnaligned(pThis, pThis->uSelectedReg, pu32, cb);
6096 if (rc == VINF_IOM_R3_MMIO_READ)
6097 rc = VINF_IOM_R3_IOPORT_READ;
6098 E1kLog2(("%s e1kIOPortIn: IODATA(4), reading from selected register %#010x, val=%#010x\n", pThis->szPrf, pThis->uSelectedReg, *pu32));
6099 break;
6100
6101 default:
6102 E1kLog(("%s e1kIOPortIn: invalid port %#010x\n", pThis->szPrf, uPort));
6103 //rc = VERR_IOM_IOPORT_UNUSED; /* Why not? */
6104 rc = VINF_SUCCESS;
6105 }
6106 else
6107 {
6108 E1kLog(("%s e1kIOPortIn: invalid op size: uPort=%RTiop cb=%08x", pThis->szPrf, uPort, cb));
6109 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s e1kIOPortIn: invalid op size: uPort=%RTiop cb=%08x\n", pThis->szPrf, uPort, cb);
6110 }
6111 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIORead), a);
6112 return rc;
6113}
6114
6115
6116/**
6117 * @callback_method_impl{FNIOMIOPORTOUT}
6118 */
6119PDMBOTHCBDECL(int) e1kIOPortOut(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT uPort, uint32_t u32, unsigned cb)
6120{
6121 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, PE1KSTATE);
6122 int rc;
6123 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIOWrite), a);
6124 RT_NOREF_PV(pvUser);
6125
6126 E1kLog2(("%s e1kIOPortOut: uPort=%RTiop value=%08x\n", pThis->szPrf, uPort, u32));
6127 if (RT_LIKELY(cb == 4))
6128 {
6129 uPort -= pThis->IOPortBase;
6130 switch (uPort)
6131 {
6132 case 0x00: /* IOADDR */
6133 pThis->uSelectedReg = u32;
6134 E1kLog2(("%s e1kIOPortOut: IOADDR(0), selected register %08x\n", pThis->szPrf, pThis->uSelectedReg));
6135 rc = VINF_SUCCESS;
6136 break;
6137
6138 case 0x04: /* IODATA */
6139 E1kLog2(("%s e1kIOPortOut: IODATA(4), writing to selected register %#010x, value=%#010x\n", pThis->szPrf, pThis->uSelectedReg, u32));
6140 if (RT_LIKELY(!(pThis->uSelectedReg & 3)))
6141 {
6142 rc = e1kRegWriteAlignedU32(pThis, pThis->uSelectedReg, u32);
6143 if (rc == VINF_IOM_R3_MMIO_WRITE)
6144 rc = VINF_IOM_R3_IOPORT_WRITE;
6145 }
6146 else
6147 rc = PDMDevHlpDBGFStop(pThis->CTX_SUFF(pDevIns), RT_SRC_POS,
6148 "Spec violation: misaligned offset: %#10x, ignored.\n", pThis->uSelectedReg);
6149 break;
6150
6151 default:
6152 E1kLog(("%s e1kIOPortOut: invalid port %#010x\n", pThis->szPrf, uPort));
6153 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "invalid port %#010x\n", uPort);
6154 }
6155 }
6156 else
6157 {
6158 E1kLog(("%s e1kIOPortOut: invalid op size: uPort=%RTiop cb=%08x\n", pThis->szPrf, uPort, cb));
6159 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s: invalid op size: uPort=%RTiop cb=%#x\n", pThis->szPrf, uPort, cb);
6160 }
6161
6162 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIOWrite), a);
6163 return rc;
6164}
6165
6166#ifdef IN_RING3
6167
6168/**
6169 * Dump complete device state to log.
6170 *
6171 * @param pThis Pointer to device state.
6172 */
6173static void e1kDumpState(PE1KSTATE pThis)
6174{
6175 RT_NOREF(pThis);
6176 for (int i = 0; i < E1K_NUM_OF_32BIT_REGS; ++i)
6177 E1kLog2(("%s: %8.8s = %08x\n", pThis->szPrf, g_aE1kRegMap[i].abbrev, pThis->auRegs[i]));
6178# ifdef E1K_INT_STATS
6179 LogRel(("%s: Interrupt attempts: %d\n", pThis->szPrf, pThis->uStatIntTry));
6180 LogRel(("%s: Interrupts raised : %d\n", pThis->szPrf, pThis->uStatInt));
6181 LogRel(("%s: Interrupts lowered: %d\n", pThis->szPrf, pThis->uStatIntLower));
6182 LogRel(("%s: ICR outside ISR : %d\n", pThis->szPrf, pThis->uStatNoIntICR));
6183 LogRel(("%s: IMS raised ints : %d\n", pThis->szPrf, pThis->uStatIntIMS));
6184 LogRel(("%s: Interrupts skipped: %d\n", pThis->szPrf, pThis->uStatIntSkip));
6185 LogRel(("%s: Masked interrupts : %d\n", pThis->szPrf, pThis->uStatIntMasked));
6186 LogRel(("%s: Early interrupts : %d\n", pThis->szPrf, pThis->uStatIntEarly));
6187 LogRel(("%s: Late interrupts : %d\n", pThis->szPrf, pThis->uStatIntLate));
6188 LogRel(("%s: Lost interrupts : %d\n", pThis->szPrf, pThis->iStatIntLost));
6189 LogRel(("%s: Interrupts by RX : %d\n", pThis->szPrf, pThis->uStatIntRx));
6190 LogRel(("%s: Interrupts by TX : %d\n", pThis->szPrf, pThis->uStatIntTx));
6191 LogRel(("%s: Interrupts by ICS : %d\n", pThis->szPrf, pThis->uStatIntICS));
6192 LogRel(("%s: Interrupts by RDTR: %d\n", pThis->szPrf, pThis->uStatIntRDTR));
6193 LogRel(("%s: Interrupts by RDMT: %d\n", pThis->szPrf, pThis->uStatIntRXDMT0));
6194 LogRel(("%s: Interrupts by TXQE: %d\n", pThis->szPrf, pThis->uStatIntTXQE));
6195 LogRel(("%s: TX int delay asked: %d\n", pThis->szPrf, pThis->uStatTxIDE));
6196 LogRel(("%s: TX delayed: %d\n", pThis->szPrf, pThis->uStatTxDelayed));
6197 LogRel(("%s: TX delay expired: %d\n", pThis->szPrf, pThis->uStatTxDelayExp));
6198 LogRel(("%s: TX no report asked: %d\n", pThis->szPrf, pThis->uStatTxNoRS));
6199 LogRel(("%s: TX abs timer expd : %d\n", pThis->szPrf, pThis->uStatTAD));
6200 LogRel(("%s: TX int timer expd : %d\n", pThis->szPrf, pThis->uStatTID));
6201 LogRel(("%s: RX abs timer expd : %d\n", pThis->szPrf, pThis->uStatRAD));
6202 LogRel(("%s: RX int timer expd : %d\n", pThis->szPrf, pThis->uStatRID));
6203 LogRel(("%s: TX CTX descriptors: %d\n", pThis->szPrf, pThis->uStatDescCtx));
6204 LogRel(("%s: TX DAT descriptors: %d\n", pThis->szPrf, pThis->uStatDescDat));
6205 LogRel(("%s: TX LEG descriptors: %d\n", pThis->szPrf, pThis->uStatDescLeg));
6206 LogRel(("%s: Received frames : %d\n", pThis->szPrf, pThis->uStatRxFrm));
6207 LogRel(("%s: Transmitted frames: %d\n", pThis->szPrf, pThis->uStatTxFrm));
6208 LogRel(("%s: TX frames up to 1514: %d\n", pThis->szPrf, pThis->uStatTx1514));
6209 LogRel(("%s: TX frames up to 2962: %d\n", pThis->szPrf, pThis->uStatTx2962));
6210 LogRel(("%s: TX frames up to 4410: %d\n", pThis->szPrf, pThis->uStatTx4410));
6211 LogRel(("%s: TX frames up to 5858: %d\n", pThis->szPrf, pThis->uStatTx5858));
6212 LogRel(("%s: TX frames up to 7306: %d\n", pThis->szPrf, pThis->uStatTx7306));
6213 LogRel(("%s: TX frames up to 8754: %d\n", pThis->szPrf, pThis->uStatTx8754));
6214 LogRel(("%s: TX frames up to 16384: %d\n", pThis->szPrf, pThis->uStatTx16384));
6215 LogRel(("%s: TX frames up to 32768: %d\n", pThis->szPrf, pThis->uStatTx32768));
6216 LogRel(("%s: Larger TX frames : %d\n", pThis->szPrf, pThis->uStatTxLarge));
6217 LogRel(("%s: Max TX Delay : %lld\n", pThis->szPrf, pThis->uStatMaxTxDelay));
6218# endif /* E1K_INT_STATS */
6219}
6220
6221/**
6222 * @callback_method_impl{FNPCIIOREGIONMAP}
6223 */
6224static DECLCALLBACK(int) e1kMap(PPDMDEVINS pDevIns, PPDMPCIDEV pPciDev, uint32_t iRegion,
6225 RTGCPHYS GCPhysAddress, RTGCPHYS cb, PCIADDRESSSPACE enmType)
6226{
6227 RT_NOREF(pPciDev, iRegion);
6228 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE *);
6229 int rc;
6230
6231 switch (enmType)
6232 {
6233 case PCI_ADDRESS_SPACE_IO:
6234 pThis->IOPortBase = (RTIOPORT)GCPhysAddress;
6235 rc = PDMDevHlpIOPortRegister(pDevIns, pThis->IOPortBase, cb, NULL /*pvUser*/,
6236 e1kIOPortOut, e1kIOPortIn, NULL, NULL, "E1000");
6237 if (pThis->fR0Enabled && RT_SUCCESS(rc))
6238 rc = PDMDevHlpIOPortRegisterR0(pDevIns, pThis->IOPortBase, cb, NIL_RTR0PTR /*pvUser*/,
6239 "e1kIOPortOut", "e1kIOPortIn", NULL, NULL, "E1000");
6240 if (pThis->fRCEnabled && RT_SUCCESS(rc))
6241 rc = PDMDevHlpIOPortRegisterRC(pDevIns, pThis->IOPortBase, cb, NIL_RTRCPTR /*pvUser*/,
6242 "e1kIOPortOut", "e1kIOPortIn", NULL, NULL, "E1000");
6243 break;
6244
6245 case PCI_ADDRESS_SPACE_MEM:
6246 /*
6247 * From the spec:
6248 * For registers that should be accessed as 32-bit double words,
6249 * partial writes (less than a 32-bit double word) is ignored.
6250 * Partial reads return all 32 bits of data regardless of the
6251 * byte enables.
6252 */
6253#ifdef E1K_WITH_PREREG_MMIO
6254 pThis->addrMMReg = GCPhysAddress;
6255 if (GCPhysAddress == NIL_RTGCPHYS)
6256 rc = VINF_SUCCESS;
6257 else
6258 {
6259 Assert(!(GCPhysAddress & 7));
6260 rc = PDMDevHlpMMIOExMap(pDevIns, pPciDev, iRegion, GCPhysAddress);
6261 }
6262#else
6263 pThis->addrMMReg = GCPhysAddress; Assert(!(GCPhysAddress & 7));
6264 rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/,
6265 IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_ONLY_DWORD,
6266 e1kMMIOWrite, e1kMMIORead, "E1000");
6267 if (pThis->fR0Enabled && RT_SUCCESS(rc))
6268 rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/,
6269 "e1kMMIOWrite", "e1kMMIORead");
6270 if (pThis->fRCEnabled && RT_SUCCESS(rc))
6271 rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/,
6272 "e1kMMIOWrite", "e1kMMIORead");
6273#endif
6274 break;
6275
6276 default:
6277 /* We should never get here */
6278 AssertMsgFailed(("Invalid PCI address space param in map callback"));
6279 rc = VERR_INTERNAL_ERROR;
6280 break;
6281 }
6282 return rc;
6283}
6284
6285
6286/* -=-=-=-=- PDMINETWORKDOWN -=-=-=-=- */
6287
6288/**
6289 * Check if the device can receive data now.
6290 * This must be called before the pfnRecieve() method is called.
6291 *
6292 * @returns Number of bytes the device can receive.
6293 * @param pInterface Pointer to the interface structure containing the called function pointer.
6294 * @thread EMT
6295 */
6296static int e1kCanReceive(PE1KSTATE pThis)
6297{
6298#ifndef E1K_WITH_RXD_CACHE
6299 size_t cb;
6300
6301 if (RT_UNLIKELY(e1kCsRxEnter(pThis, VERR_SEM_BUSY) != VINF_SUCCESS))
6302 return VERR_NET_NO_BUFFER_SPACE;
6303
6304 if (RT_UNLIKELY(RDLEN == sizeof(E1KRXDESC)))
6305 {
6306 E1KRXDESC desc;
6307 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), e1kDescAddr(RDBAH, RDBAL, RDH),
6308 &desc, sizeof(desc));
6309 if (desc.status.fDD)
6310 cb = 0;
6311 else
6312 cb = pThis->u16RxBSize;
6313 }
6314 else if (RDH < RDT)
6315 cb = (RDT - RDH) * pThis->u16RxBSize;
6316 else if (RDH > RDT)
6317 cb = (RDLEN/sizeof(E1KRXDESC) - RDH + RDT) * pThis->u16RxBSize;
6318 else
6319 {
6320 cb = 0;
6321 E1kLogRel(("E1000: OUT of RX descriptors!\n"));
6322 }
6323 E1kLog2(("%s e1kCanReceive: at exit RDH=%d RDT=%d RDLEN=%d u16RxBSize=%d cb=%lu\n",
6324 pThis->szPrf, RDH, RDT, RDLEN, pThis->u16RxBSize, cb));
6325
6326 e1kCsRxLeave(pThis);
6327 return cb > 0 ? VINF_SUCCESS : VERR_NET_NO_BUFFER_SPACE;
6328#else /* E1K_WITH_RXD_CACHE */
6329 int rc = VINF_SUCCESS;
6330
6331 if (RT_UNLIKELY(e1kCsRxEnter(pThis, VERR_SEM_BUSY) != VINF_SUCCESS))
6332 return VERR_NET_NO_BUFFER_SPACE;
6333
6334 if (RT_UNLIKELY(RDLEN == sizeof(E1KRXDESC)))
6335 {
6336 E1KRXDESC desc;
6337 PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), e1kDescAddr(RDBAH, RDBAL, RDH),
6338 &desc, sizeof(desc));
6339 if (desc.status.fDD)
6340 rc = VERR_NET_NO_BUFFER_SPACE;
6341 }
6342 else if (e1kRxDIsCacheEmpty(pThis) && RDH == RDT)
6343 {
6344 /* Cache is empty, so is the RX ring. */
6345 rc = VERR_NET_NO_BUFFER_SPACE;
6346 }
6347 E1kLog2(("%s e1kCanReceive: at exit in_cache=%d RDH=%d RDT=%d RDLEN=%d"
6348 " u16RxBSize=%d rc=%Rrc\n", pThis->szPrf,
6349 e1kRxDInCache(pThis), RDH, RDT, RDLEN, pThis->u16RxBSize, rc));
6350
6351 e1kCsRxLeave(pThis);
6352 return rc;
6353#endif /* E1K_WITH_RXD_CACHE */
6354}
6355
6356/**
6357 * @interface_method_impl{PDMINETWORKDOWN,pfnWaitReceiveAvail}
6358 */
6359static DECLCALLBACK(int) e1kR3NetworkDown_WaitReceiveAvail(PPDMINETWORKDOWN pInterface, RTMSINTERVAL cMillies)
6360{
6361 PE1KSTATE pThis = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkDown);
6362 int rc = e1kCanReceive(pThis);
6363
6364 if (RT_SUCCESS(rc))
6365 return VINF_SUCCESS;
6366 if (RT_UNLIKELY(cMillies == 0))
6367 return VERR_NET_NO_BUFFER_SPACE;
6368
6369 rc = VERR_INTERRUPTED;
6370 ASMAtomicXchgBool(&pThis->fMaybeOutOfSpace, true);
6371 STAM_PROFILE_START(&pThis->StatRxOverflow, a);
6372 VMSTATE enmVMState;
6373 while (RT_LIKELY( (enmVMState = PDMDevHlpVMState(pThis->CTX_SUFF(pDevIns))) == VMSTATE_RUNNING
6374 || enmVMState == VMSTATE_RUNNING_LS))
6375 {
6376 int rc2 = e1kCanReceive(pThis);
6377 if (RT_SUCCESS(rc2))
6378 {
6379 rc = VINF_SUCCESS;
6380 break;
6381 }
6382 E1kLogRel(("E1000: e1kR3NetworkDown_WaitReceiveAvail: waiting cMillies=%u...\n", cMillies));
6383 E1kLog(("%s: e1kR3NetworkDown_WaitReceiveAvail: waiting cMillies=%u...\n", pThis->szPrf, cMillies));
6384 RTSemEventWait(pThis->hEventMoreRxDescAvail, cMillies);
6385 }
6386 STAM_PROFILE_STOP(&pThis->StatRxOverflow, a);
6387 ASMAtomicXchgBool(&pThis->fMaybeOutOfSpace, false);
6388
6389 return rc;
6390}
6391
6392
6393/**
6394 * Matches the packet addresses against Receive Address table. Looks for
6395 * exact matches only.
6396 *
6397 * @returns true if address matches.
6398 * @param pThis Pointer to the state structure.
6399 * @param pvBuf The ethernet packet.
6400 * @param cb Number of bytes available in the packet.
6401 * @thread EMT
6402 */
6403static bool e1kPerfectMatch(PE1KSTATE pThis, const void *pvBuf)
6404{
6405 for (unsigned i = 0; i < RT_ELEMENTS(pThis->aRecAddr.array); i++)
6406 {
6407 E1KRAELEM* ra = pThis->aRecAddr.array + i;
6408
6409 /* Valid address? */
6410 if (ra->ctl & RA_CTL_AV)
6411 {
6412 Assert((ra->ctl & RA_CTL_AS) < 2);
6413 //unsigned char *pAddr = (unsigned char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS);
6414 //E1kLog3(("%s Matching %02x:%02x:%02x:%02x:%02x:%02x against %02x:%02x:%02x:%02x:%02x:%02x...\n",
6415 // pThis->szPrf, pAddr[0], pAddr[1], pAddr[2], pAddr[3], pAddr[4], pAddr[5],
6416 // ra->addr[0], ra->addr[1], ra->addr[2], ra->addr[3], ra->addr[4], ra->addr[5]));
6417 /*
6418 * Address Select:
6419 * 00b = Destination address
6420 * 01b = Source address
6421 * 10b = Reserved
6422 * 11b = Reserved
6423 * Since ethernet header is (DA, SA, len) we can use address
6424 * select as index.
6425 */
6426 if (memcmp((char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS),
6427 ra->addr, sizeof(ra->addr)) == 0)
6428 return true;
6429 }
6430 }
6431
6432 return false;
6433}
6434
6435/**
6436 * Matches the packet addresses against Multicast Table Array.
6437 *
6438 * @remarks This is imperfect match since it matches not exact address but
6439 * a subset of addresses.
6440 *
6441 * @returns true if address matches.
6442 * @param pThis Pointer to the state structure.
6443 * @param pvBuf The ethernet packet.
6444 * @param cb Number of bytes available in the packet.
6445 * @thread EMT
6446 */
6447static bool e1kImperfectMatch(PE1KSTATE pThis, const void *pvBuf)
6448{
6449 /* Get bits 32..47 of destination address */
6450 uint16_t u16Bit = ((uint16_t*)pvBuf)[2];
6451
6452 unsigned offset = GET_BITS(RCTL, MO);
6453 /*
6454 * offset means:
6455 * 00b = bits 36..47
6456 * 01b = bits 35..46
6457 * 10b = bits 34..45
6458 * 11b = bits 32..43
6459 */
6460 if (offset < 3)
6461 u16Bit = u16Bit >> (4 - offset);
6462 return ASMBitTest(pThis->auMTA, u16Bit & 0xFFF);
6463}
6464
6465/**
6466 * Determines if the packet is to be delivered to upper layer.
6467 *
6468 * The following filters supported:
6469 * - Exact Unicast/Multicast
6470 * - Promiscuous Unicast/Multicast
6471 * - Multicast
6472 * - VLAN
6473 *
6474 * @returns true if packet is intended for this node.
6475 * @param pThis Pointer to the state structure.
6476 * @param pvBuf The ethernet packet.
6477 * @param cb Number of bytes available in the packet.
6478 * @param pStatus Bit field to store status bits.
6479 * @thread EMT
6480 */
6481static bool e1kAddressFilter(PE1KSTATE pThis, const void *pvBuf, size_t cb, E1KRXDST *pStatus)
6482{
6483 Assert(cb > 14);
6484 /* Assume that we fail to pass exact filter. */
6485 pStatus->fPIF = false;
6486 pStatus->fVP = false;
6487 /* Discard oversized packets */
6488 if (cb > E1K_MAX_RX_PKT_SIZE)
6489 {
6490 E1kLog(("%s ERROR: Incoming packet is too big, cb=%d > max=%d\n",
6491 pThis->szPrf, cb, E1K_MAX_RX_PKT_SIZE));
6492 E1K_INC_CNT32(ROC);
6493 return false;
6494 }
6495 else if (!(RCTL & RCTL_LPE) && cb > 1522)
6496 {
6497 /* When long packet reception is disabled packets over 1522 are discarded */
6498 E1kLog(("%s Discarding incoming packet (LPE=0), cb=%d\n",
6499 pThis->szPrf, cb));
6500 E1K_INC_CNT32(ROC);
6501 return false;
6502 }
6503
6504 uint16_t *u16Ptr = (uint16_t*)pvBuf;
6505 /* Compare TPID with VLAN Ether Type */
6506 if (RT_BE2H_U16(u16Ptr[6]) == VET)
6507 {
6508 pStatus->fVP = true;
6509 /* Is VLAN filtering enabled? */
6510 if (RCTL & RCTL_VFE)
6511 {
6512 /* It is 802.1q packet indeed, let's filter by VID */
6513 if (RCTL & RCTL_CFIEN)
6514 {
6515 E1kLog3(("%s VLAN filter: VLAN=%d CFI=%d RCTL_CFI=%d\n", pThis->szPrf,
6516 E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7])),
6517 E1K_SPEC_CFI(RT_BE2H_U16(u16Ptr[7])),
6518 !!(RCTL & RCTL_CFI)));
6519 if (E1K_SPEC_CFI(RT_BE2H_U16(u16Ptr[7])) != !!(RCTL & RCTL_CFI))
6520 {
6521 E1kLog2(("%s Packet filter: CFIs do not match in packet and RCTL (%d!=%d)\n",
6522 pThis->szPrf, E1K_SPEC_CFI(RT_BE2H_U16(u16Ptr[7])), !!(RCTL & RCTL_CFI)));
6523 return false;
6524 }
6525 }
6526 else
6527 E1kLog3(("%s VLAN filter: VLAN=%d\n", pThis->szPrf,
6528 E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7]))));
6529 if (!ASMBitTest(pThis->auVFTA, E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7]))))
6530 {
6531 E1kLog2(("%s Packet filter: no VLAN match (id=%d)\n",
6532 pThis->szPrf, E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7]))));
6533 return false;
6534 }
6535 }
6536 }
6537 /* Broadcast filtering */
6538 if (e1kIsBroadcast(pvBuf) && (RCTL & RCTL_BAM))
6539 return true;
6540 E1kLog2(("%s Packet filter: not a broadcast\n", pThis->szPrf));
6541 if (e1kIsMulticast(pvBuf))
6542 {
6543 /* Is multicast promiscuous enabled? */
6544 if (RCTL & RCTL_MPE)
6545 return true;
6546 E1kLog2(("%s Packet filter: no promiscuous multicast\n", pThis->szPrf));
6547 /* Try perfect matches first */
6548 if (e1kPerfectMatch(pThis, pvBuf))
6549 {
6550 pStatus->fPIF = true;
6551 return true;
6552 }
6553 E1kLog2(("%s Packet filter: no perfect match\n", pThis->szPrf));
6554 if (e1kImperfectMatch(pThis, pvBuf))
6555 return true;
6556 E1kLog2(("%s Packet filter: no imperfect match\n", pThis->szPrf));
6557 }
6558 else {
6559 /* Is unicast promiscuous enabled? */
6560 if (RCTL & RCTL_UPE)
6561 return true;
6562 E1kLog2(("%s Packet filter: no promiscuous unicast\n", pThis->szPrf));
6563 if (e1kPerfectMatch(pThis, pvBuf))
6564 {
6565 pStatus->fPIF = true;
6566 return true;
6567 }
6568 E1kLog2(("%s Packet filter: no perfect match\n", pThis->szPrf));
6569 }
6570 E1kLog2(("%s Packet filter: packet discarded\n", pThis->szPrf));
6571 return false;
6572}
6573
6574/**
6575 * @interface_method_impl{PDMINETWORKDOWN,pfnReceive}
6576 */
6577static DECLCALLBACK(int) e1kR3NetworkDown_Receive(PPDMINETWORKDOWN pInterface, const void *pvBuf, size_t cb)
6578{
6579 PE1KSTATE pThis = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkDown);
6580 int rc = VINF_SUCCESS;
6581
6582 /*
6583 * Drop packets if the VM is not running yet/anymore.
6584 */
6585 VMSTATE enmVMState = PDMDevHlpVMState(STATE_TO_DEVINS(pThis));
6586 if ( enmVMState != VMSTATE_RUNNING
6587 && enmVMState != VMSTATE_RUNNING_LS)
6588 {
6589 E1kLog(("%s Dropping incoming packet as VM is not running.\n", pThis->szPrf));
6590 return VINF_SUCCESS;
6591 }
6592
6593 /* Discard incoming packets in locked state */
6594 if (!(RCTL & RCTL_EN) || pThis->fLocked || !(STATUS & STATUS_LU))
6595 {
6596 E1kLog(("%s Dropping incoming packet as receive operation is disabled.\n", pThis->szPrf));
6597 return VINF_SUCCESS;
6598 }
6599
6600 STAM_PROFILE_ADV_START(&pThis->StatReceive, a);
6601
6602 //if (!e1kCsEnter(pThis, RT_SRC_POS))
6603 // return VERR_PERMISSION_DENIED;
6604
6605 e1kPacketDump(pThis, (const uint8_t*)pvBuf, cb, "<-- Incoming");
6606
6607 /* Update stats */
6608 if (RT_LIKELY(e1kCsEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS))
6609 {
6610 E1K_INC_CNT32(TPR);
6611 E1K_ADD_CNT64(TORL, TORH, cb < 64? 64 : cb);
6612 e1kCsLeave(pThis);
6613 }
6614 STAM_PROFILE_ADV_START(&pThis->StatReceiveFilter, a);
6615 E1KRXDST status;
6616 RT_ZERO(status);
6617 bool fPassed = e1kAddressFilter(pThis, pvBuf, cb, &status);
6618 STAM_PROFILE_ADV_STOP(&pThis->StatReceiveFilter, a);
6619 if (fPassed)
6620 {
6621 rc = e1kHandleRxPacket(pThis, pvBuf, cb, status);
6622 }
6623 //e1kCsLeave(pThis);
6624 STAM_PROFILE_ADV_STOP(&pThis->StatReceive, a);
6625
6626 return rc;
6627}
6628
6629
6630/* -=-=-=-=- PDMILEDPORTS -=-=-=-=- */
6631
6632/**
6633 * @interface_method_impl{PDMILEDPORTS,pfnQueryStatusLed}
6634 */
6635static DECLCALLBACK(int) e1kR3QueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
6636{
6637 PE1KSTATE pThis = RT_FROM_MEMBER(pInterface, E1KSTATE, ILeds);
6638 int rc = VERR_PDM_LUN_NOT_FOUND;
6639
6640 if (iLUN == 0)
6641 {
6642 *ppLed = &pThis->led;
6643 rc = VINF_SUCCESS;
6644 }
6645 return rc;
6646}
6647
6648
6649/* -=-=-=-=- PDMINETWORKCONFIG -=-=-=-=- */
6650
6651/**
6652 * @interface_method_impl{PDMINETWORKCONFIG,pfnGetMac}
6653 */
6654static DECLCALLBACK(int) e1kR3GetMac(PPDMINETWORKCONFIG pInterface, PRTMAC pMac)
6655{
6656 PE1KSTATE pThis = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkConfig);
6657 pThis->eeprom.getMac(pMac);
6658 return VINF_SUCCESS;
6659}
6660
6661/**
6662 * @interface_method_impl{PDMINETWORKCONFIG,pfnGetLinkState}
6663 */
6664static DECLCALLBACK(PDMNETWORKLINKSTATE) e1kR3GetLinkState(PPDMINETWORKCONFIG pInterface)
6665{
6666 PE1KSTATE pThis = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkConfig);
6667 if (STATUS & STATUS_LU)
6668 return PDMNETWORKLINKSTATE_UP;
6669 return PDMNETWORKLINKSTATE_DOWN;
6670}
6671
6672/**
6673 * @interface_method_impl{PDMINETWORKCONFIG,pfnSetLinkState}
6674 */
6675static DECLCALLBACK(int) e1kR3SetLinkState(PPDMINETWORKCONFIG pInterface, PDMNETWORKLINKSTATE enmState)
6676{
6677 PE1KSTATE pThis = RT_FROM_MEMBER(pInterface, E1KSTATE, INetworkConfig);
6678
6679 E1kLog(("%s e1kR3SetLinkState: enmState=%d\n", pThis->szPrf, enmState));
6680 switch (enmState)
6681 {
6682 case PDMNETWORKLINKSTATE_UP:
6683 pThis->fCableConnected = true;
6684 /* If link was down, bring it up after a while. */
6685 if (!(STATUS & STATUS_LU))
6686 e1kBringLinkUpDelayed(pThis);
6687 break;
6688 case PDMNETWORKLINKSTATE_DOWN:
6689 pThis->fCableConnected = false;
6690 /* Always set the phy link state to down, regardless of the STATUS_LU bit.
6691 * We might have to set the link state before the driver initializes us. */
6692 Phy::setLinkStatus(&pThis->phy, false);
6693 /* If link was up, bring it down. */
6694 if (STATUS & STATUS_LU)
6695 e1kR3LinkDown(pThis);
6696 break;
6697 case PDMNETWORKLINKSTATE_DOWN_RESUME:
6698 /*
6699 * There is not much sense in bringing down the link if it has not come up yet.
6700 * If it is up though, we bring it down temporarely, then bring it up again.
6701 */
6702 if (STATUS & STATUS_LU)
6703 e1kR3LinkDownTemp(pThis);
6704 break;
6705 default:
6706 ;
6707 }
6708 return VINF_SUCCESS;
6709}
6710
6711
6712/* -=-=-=-=- PDMIBASE -=-=-=-=- */
6713
6714/**
6715 * @interface_method_impl{PDMIBASE,pfnQueryInterface}
6716 */
6717static DECLCALLBACK(void *) e1kR3QueryInterface(struct PDMIBASE *pInterface, const char *pszIID)
6718{
6719 PE1KSTATE pThis = RT_FROM_MEMBER(pInterface, E1KSTATE, IBase);
6720 Assert(&pThis->IBase == pInterface);
6721
6722 PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase);
6723 PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKDOWN, &pThis->INetworkDown);
6724 PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKCONFIG, &pThis->INetworkConfig);
6725 PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThis->ILeds);
6726 return NULL;
6727}
6728
6729
6730/* -=-=-=-=- Saved State -=-=-=-=- */
6731
6732/**
6733 * Saves the configuration.
6734 *
6735 * @param pThis The E1K state.
6736 * @param pSSM The handle to the saved state.
6737 */
6738static void e1kSaveConfig(PE1KSTATE pThis, PSSMHANDLE pSSM)
6739{
6740 SSMR3PutMem(pSSM, &pThis->macConfigured, sizeof(pThis->macConfigured));
6741 SSMR3PutU32(pSSM, pThis->eChip);
6742}
6743
6744/**
6745 * @callback_method_impl{FNSSMDEVLIVEEXEC,Save basic configuration.}
6746 */
6747static DECLCALLBACK(int) e1kLiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass)
6748{
6749 RT_NOREF(uPass);
6750 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
6751 e1kSaveConfig(pThis, pSSM);
6752 return VINF_SSM_DONT_CALL_AGAIN;
6753}
6754
6755/**
6756 * @callback_method_impl{FNSSMDEVSAVEPREP,Synchronize.}
6757 */
6758static DECLCALLBACK(int) e1kSavePrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
6759{
6760 RT_NOREF(pSSM);
6761 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
6762
6763 int rc = e1kCsEnter(pThis, VERR_SEM_BUSY);
6764 if (RT_UNLIKELY(rc != VINF_SUCCESS))
6765 return rc;
6766 e1kCsLeave(pThis);
6767 return VINF_SUCCESS;
6768#if 0
6769 /* 1) Prevent all threads from modifying the state and memory */
6770 //pThis->fLocked = true;
6771 /* 2) Cancel all timers */
6772#ifdef E1K_TX_DELAY
6773 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTXDTimer));
6774#endif /* E1K_TX_DELAY */
6775//#ifdef E1K_USE_TX_TIMERS
6776 if (pThis->fTidEnabled)
6777 {
6778 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTIDTimer));
6779#ifndef E1K_NO_TAD
6780 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTADTimer));
6781#endif /* E1K_NO_TAD */
6782 }
6783//#endif /* E1K_USE_TX_TIMERS */
6784#ifdef E1K_USE_RX_TIMERS
6785 e1kCancelTimer(pThis, pThis->CTX_SUFF(pRIDTimer));
6786 e1kCancelTimer(pThis, pThis->CTX_SUFF(pRADTimer));
6787#endif /* E1K_USE_RX_TIMERS */
6788 e1kCancelTimer(pThis, pThis->CTX_SUFF(pIntTimer));
6789 /* 3) Did I forget anything? */
6790 E1kLog(("%s Locked\n", pThis->szPrf));
6791 return VINF_SUCCESS;
6792#endif
6793}
6794
6795/**
6796 * @callback_method_impl{FNSSMDEVSAVEEXEC}
6797 */
6798static DECLCALLBACK(int) e1kSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
6799{
6800 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
6801
6802 e1kSaveConfig(pThis, pSSM);
6803 pThis->eeprom.save(pSSM);
6804 e1kDumpState(pThis);
6805 SSMR3PutMem(pSSM, pThis->auRegs, sizeof(pThis->auRegs));
6806 SSMR3PutBool(pSSM, pThis->fIntRaised);
6807 Phy::saveState(pSSM, &pThis->phy);
6808 SSMR3PutU32(pSSM, pThis->uSelectedReg);
6809 SSMR3PutMem(pSSM, pThis->auMTA, sizeof(pThis->auMTA));
6810 SSMR3PutMem(pSSM, &pThis->aRecAddr, sizeof(pThis->aRecAddr));
6811 SSMR3PutMem(pSSM, pThis->auVFTA, sizeof(pThis->auVFTA));
6812 SSMR3PutU64(pSSM, pThis->u64AckedAt);
6813 SSMR3PutU16(pSSM, pThis->u16RxBSize);
6814 //SSMR3PutBool(pSSM, pThis->fDelayInts);
6815 //SSMR3PutBool(pSSM, pThis->fIntMaskUsed);
6816 SSMR3PutU16(pSSM, pThis->u16TxPktLen);
6817/** @todo State wrt to the TSE buffer is incomplete, so little point in
6818 * saving this actually. */
6819 SSMR3PutMem(pSSM, pThis->aTxPacketFallback, pThis->u16TxPktLen);
6820 SSMR3PutBool(pSSM, pThis->fIPcsum);
6821 SSMR3PutBool(pSSM, pThis->fTCPcsum);
6822 SSMR3PutMem(pSSM, &pThis->contextTSE, sizeof(pThis->contextTSE));
6823 SSMR3PutMem(pSSM, &pThis->contextNormal, sizeof(pThis->contextNormal));
6824 SSMR3PutBool(pSSM, pThis->fVTag);
6825 SSMR3PutU16(pSSM, pThis->u16VTagTCI);
6826#ifdef E1K_WITH_TXD_CACHE
6827#if 0
6828 SSMR3PutU8(pSSM, pThis->nTxDFetched);
6829 SSMR3PutMem(pSSM, pThis->aTxDescriptors,
6830 pThis->nTxDFetched * sizeof(pThis->aTxDescriptors[0]));
6831#else
6832 /*
6833 * There is no point in storing TX descriptor cache entries as we can simply
6834 * fetch them again. Moreover, normally the cache is always empty when we
6835 * save the state. Store zero entries for compatibility.
6836 */
6837 SSMR3PutU8(pSSM, 0);
6838#endif
6839#endif /* E1K_WITH_TXD_CACHE */
6840/** @todo GSO requires some more state here. */
6841 E1kLog(("%s State has been saved\n", pThis->szPrf));
6842 return VINF_SUCCESS;
6843}
6844
6845#if 0
6846/**
6847 * @callback_method_impl{FNSSMDEVSAVEDONE}
6848 */
6849static DECLCALLBACK(int) e1kSaveDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
6850{
6851 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
6852
6853 /* If VM is being powered off unlocking will result in assertions in PGM */
6854 if (PDMDevHlpGetVM(pDevIns)->enmVMState == VMSTATE_RUNNING)
6855 pThis->fLocked = false;
6856 else
6857 E1kLog(("%s VM is not running -- remain locked\n", pThis->szPrf));
6858 E1kLog(("%s Unlocked\n", pThis->szPrf));
6859 return VINF_SUCCESS;
6860}
6861#endif
6862
6863/**
6864 * @callback_method_impl{FNSSMDEVLOADPREP,Synchronize.}
6865 */
6866static DECLCALLBACK(int) e1kLoadPrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
6867{
6868 RT_NOREF(pSSM);
6869 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
6870
6871 int rc = e1kCsEnter(pThis, VERR_SEM_BUSY);
6872 if (RT_UNLIKELY(rc != VINF_SUCCESS))
6873 return rc;
6874 e1kCsLeave(pThis);
6875 return VINF_SUCCESS;
6876}
6877
6878/**
6879 * @callback_method_impl{FNSSMDEVLOADEXEC}
6880 */
6881static DECLCALLBACK(int) e1kLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
6882{
6883 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
6884 int rc;
6885
6886 if ( uVersion != E1K_SAVEDSTATE_VERSION
6887#ifdef E1K_WITH_TXD_CACHE
6888 && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_42_VTAG
6889#endif /* E1K_WITH_TXD_CACHE */
6890 && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_41
6891 && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_30)
6892 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
6893
6894 if ( uVersion > E1K_SAVEDSTATE_VERSION_VBOX_30
6895 || uPass != SSM_PASS_FINAL)
6896 {
6897 /* config checks */
6898 RTMAC macConfigured;
6899 rc = SSMR3GetMem(pSSM, &macConfigured, sizeof(macConfigured));
6900 AssertRCReturn(rc, rc);
6901 if ( memcmp(&macConfigured, &pThis->macConfigured, sizeof(macConfigured))
6902 && (uPass == 0 || !PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns)) )
6903 LogRel(("%s: The mac address differs: config=%RTmac saved=%RTmac\n", pThis->szPrf, &pThis->macConfigured, &macConfigured));
6904
6905 E1KCHIP eChip;
6906 rc = SSMR3GetU32(pSSM, &eChip);
6907 AssertRCReturn(rc, rc);
6908 if (eChip != pThis->eChip)
6909 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("The chip type differs: config=%u saved=%u"), pThis->eChip, eChip);
6910 }
6911
6912 if (uPass == SSM_PASS_FINAL)
6913 {
6914 if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_30)
6915 {
6916 rc = pThis->eeprom.load(pSSM);
6917 AssertRCReturn(rc, rc);
6918 }
6919 /* the state */
6920 SSMR3GetMem(pSSM, &pThis->auRegs, sizeof(pThis->auRegs));
6921 SSMR3GetBool(pSSM, &pThis->fIntRaised);
6922 /** @todo PHY could be made a separate device with its own versioning */
6923 Phy::loadState(pSSM, &pThis->phy);
6924 SSMR3GetU32(pSSM, &pThis->uSelectedReg);
6925 SSMR3GetMem(pSSM, &pThis->auMTA, sizeof(pThis->auMTA));
6926 SSMR3GetMem(pSSM, &pThis->aRecAddr, sizeof(pThis->aRecAddr));
6927 SSMR3GetMem(pSSM, &pThis->auVFTA, sizeof(pThis->auVFTA));
6928 SSMR3GetU64(pSSM, &pThis->u64AckedAt);
6929 SSMR3GetU16(pSSM, &pThis->u16RxBSize);
6930 //SSMR3GetBool(pSSM, pThis->fDelayInts);
6931 //SSMR3GetBool(pSSM, pThis->fIntMaskUsed);
6932 SSMR3GetU16(pSSM, &pThis->u16TxPktLen);
6933 SSMR3GetMem(pSSM, &pThis->aTxPacketFallback[0], pThis->u16TxPktLen);
6934 SSMR3GetBool(pSSM, &pThis->fIPcsum);
6935 SSMR3GetBool(pSSM, &pThis->fTCPcsum);
6936 SSMR3GetMem(pSSM, &pThis->contextTSE, sizeof(pThis->contextTSE));
6937 rc = SSMR3GetMem(pSSM, &pThis->contextNormal, sizeof(pThis->contextNormal));
6938 AssertRCReturn(rc, rc);
6939 if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_41)
6940 {
6941 SSMR3GetBool(pSSM, &pThis->fVTag);
6942 rc = SSMR3GetU16(pSSM, &pThis->u16VTagTCI);
6943 AssertRCReturn(rc, rc);
6944 }
6945 else
6946 {
6947 pThis->fVTag = false;
6948 pThis->u16VTagTCI = 0;
6949 }
6950#ifdef E1K_WITH_TXD_CACHE
6951 if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_42_VTAG)
6952 {
6953 rc = SSMR3GetU8(pSSM, &pThis->nTxDFetched);
6954 AssertRCReturn(rc, rc);
6955 if (pThis->nTxDFetched)
6956 SSMR3GetMem(pSSM, pThis->aTxDescriptors,
6957 pThis->nTxDFetched * sizeof(pThis->aTxDescriptors[0]));
6958 }
6959 else
6960 pThis->nTxDFetched = 0;
6961 /*
6962 * @todo: Perhaps we should not store TXD cache as the entries can be
6963 * simply fetched again from guest's memory. Or can't they?
6964 */
6965#endif /* E1K_WITH_TXD_CACHE */
6966#ifdef E1K_WITH_RXD_CACHE
6967 /*
6968 * There is no point in storing the RX descriptor cache in the saved
6969 * state, we just need to make sure it is empty.
6970 */
6971 pThis->iRxDCurrent = pThis->nRxDFetched = 0;
6972#endif /* E1K_WITH_RXD_CACHE */
6973 /* derived state */
6974 e1kSetupGsoCtx(&pThis->GsoCtx, &pThis->contextTSE);
6975
6976 E1kLog(("%s State has been restored\n", pThis->szPrf));
6977 e1kDumpState(pThis);
6978 }
6979 return VINF_SUCCESS;
6980}
6981
6982/**
6983 * @callback_method_impl{FNSSMDEVLOADDONE, Link status adjustments after loading.}
6984 */
6985static DECLCALLBACK(int) e1kLoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
6986{
6987 RT_NOREF(pSSM);
6988 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
6989
6990 /* Update promiscuous mode */
6991 if (pThis->pDrvR3)
6992 pThis->pDrvR3->pfnSetPromiscuousMode(pThis->pDrvR3,
6993 !!(RCTL & (RCTL_UPE | RCTL_MPE)));
6994
6995 /*
6996 * Force the link down here, since PDMNETWORKLINKSTATE_DOWN_RESUME is never
6997 * passed to us. We go through all this stuff if the link was up and we
6998 * wasn't teleported.
6999 */
7000 if ( (STATUS & STATUS_LU)
7001 && !PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns)
7002 && pThis->cMsLinkUpDelay)
7003 {
7004 e1kR3LinkDownTemp(pThis);
7005 }
7006 return VINF_SUCCESS;
7007}
7008
7009
7010
7011/* -=-=-=-=- Debug Info + Log Types -=-=-=-=- */
7012
7013/**
7014 * @callback_method_impl{FNRTSTRFORMATTYPE}
7015 */
7016static DECLCALLBACK(size_t) e1kFmtRxDesc(PFNRTSTROUTPUT pfnOutput,
7017 void *pvArgOutput,
7018 const char *pszType,
7019 void const *pvValue,
7020 int cchWidth,
7021 int cchPrecision,
7022 unsigned fFlags,
7023 void *pvUser)
7024{
7025 RT_NOREF(cchWidth, cchPrecision, fFlags, pvUser);
7026 AssertReturn(strcmp(pszType, "e1krxd") == 0, 0);
7027 E1KRXDESC* pDesc = (E1KRXDESC*)pvValue;
7028 if (!pDesc)
7029 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "NULL_RXD");
7030
7031 size_t cbPrintf = 0;
7032 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Address=%16LX Length=%04X Csum=%04X\n",
7033 pDesc->u64BufAddr, pDesc->u16Length, pDesc->u16Checksum);
7034 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, " STA: %s %s %s %s %s %s %s ERR: %s %s %s %s SPECIAL: %s VLAN=%03x PRI=%x",
7035 pDesc->status.fPIF ? "PIF" : "pif",
7036 pDesc->status.fIPCS ? "IPCS" : "ipcs",
7037 pDesc->status.fTCPCS ? "TCPCS" : "tcpcs",
7038 pDesc->status.fVP ? "VP" : "vp",
7039 pDesc->status.fIXSM ? "IXSM" : "ixsm",
7040 pDesc->status.fEOP ? "EOP" : "eop",
7041 pDesc->status.fDD ? "DD" : "dd",
7042 pDesc->status.fRXE ? "RXE" : "rxe",
7043 pDesc->status.fIPE ? "IPE" : "ipe",
7044 pDesc->status.fTCPE ? "TCPE" : "tcpe",
7045 pDesc->status.fCE ? "CE" : "ce",
7046 E1K_SPEC_CFI(pDesc->status.u16Special) ? "CFI" :"cfi",
7047 E1K_SPEC_VLAN(pDesc->status.u16Special),
7048 E1K_SPEC_PRI(pDesc->status.u16Special));
7049 return cbPrintf;
7050}
7051
7052/**
7053 * @callback_method_impl{FNRTSTRFORMATTYPE}
7054 */
7055static DECLCALLBACK(size_t) e1kFmtTxDesc(PFNRTSTROUTPUT pfnOutput,
7056 void *pvArgOutput,
7057 const char *pszType,
7058 void const *pvValue,
7059 int cchWidth,
7060 int cchPrecision,
7061 unsigned fFlags,
7062 void *pvUser)
7063{
7064 RT_NOREF(cchWidth, cchPrecision, fFlags, pvUser);
7065 AssertReturn(strcmp(pszType, "e1ktxd") == 0, 0);
7066 E1KTXDESC *pDesc = (E1KTXDESC*)pvValue;
7067 if (!pDesc)
7068 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "NULL_TXD");
7069
7070 size_t cbPrintf = 0;
7071 switch (e1kGetDescType(pDesc))
7072 {
7073 case E1K_DTYP_CONTEXT:
7074 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Type=Context\n"
7075 " IPCSS=%02X IPCSO=%02X IPCSE=%04X TUCSS=%02X TUCSO=%02X TUCSE=%04X\n"
7076 " TUCMD:%s%s%s %s %s PAYLEN=%04x HDRLEN=%04x MSS=%04x STA: %s",
7077 pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE,
7078 pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE,
7079 pDesc->context.dw2.fIDE ? " IDE":"",
7080 pDesc->context.dw2.fRS ? " RS" :"",
7081 pDesc->context.dw2.fTSE ? " TSE":"",
7082 pDesc->context.dw2.fIP ? "IPv4":"IPv6",
7083 pDesc->context.dw2.fTCP ? "TCP":"UDP",
7084 pDesc->context.dw2.u20PAYLEN,
7085 pDesc->context.dw3.u8HDRLEN,
7086 pDesc->context.dw3.u16MSS,
7087 pDesc->context.dw3.fDD?"DD":"");
7088 break;
7089 case E1K_DTYP_DATA:
7090 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Type=Data Address=%16LX DTALEN=%05X\n"
7091 " DCMD:%s%s%s%s%s%s%s STA:%s%s%s POPTS:%s%s SPECIAL:%s VLAN=%03x PRI=%x",
7092 pDesc->data.u64BufAddr,
7093 pDesc->data.cmd.u20DTALEN,
7094 pDesc->data.cmd.fIDE ? " IDE" :"",
7095 pDesc->data.cmd.fVLE ? " VLE" :"",
7096 pDesc->data.cmd.fRPS ? " RPS" :"",
7097 pDesc->data.cmd.fRS ? " RS" :"",
7098 pDesc->data.cmd.fTSE ? " TSE" :"",
7099 pDesc->data.cmd.fIFCS? " IFCS":"",
7100 pDesc->data.cmd.fEOP ? " EOP" :"",
7101 pDesc->data.dw3.fDD ? " DD" :"",
7102 pDesc->data.dw3.fEC ? " EC" :"",
7103 pDesc->data.dw3.fLC ? " LC" :"",
7104 pDesc->data.dw3.fTXSM? " TXSM":"",
7105 pDesc->data.dw3.fIXSM? " IXSM":"",
7106 E1K_SPEC_CFI(pDesc->data.dw3.u16Special) ? "CFI" :"cfi",
7107 E1K_SPEC_VLAN(pDesc->data.dw3.u16Special),
7108 E1K_SPEC_PRI(pDesc->data.dw3.u16Special));
7109 break;
7110 case E1K_DTYP_LEGACY:
7111 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Type=Legacy Address=%16LX DTALEN=%05X\n"
7112 " CMD:%s%s%s%s%s%s%s STA:%s%s%s CSO=%02x CSS=%02x SPECIAL:%s VLAN=%03x PRI=%x",
7113 pDesc->data.u64BufAddr,
7114 pDesc->legacy.cmd.u16Length,
7115 pDesc->legacy.cmd.fIDE ? " IDE" :"",
7116 pDesc->legacy.cmd.fVLE ? " VLE" :"",
7117 pDesc->legacy.cmd.fRPS ? " RPS" :"",
7118 pDesc->legacy.cmd.fRS ? " RS" :"",
7119 pDesc->legacy.cmd.fIC ? " IC" :"",
7120 pDesc->legacy.cmd.fIFCS? " IFCS":"",
7121 pDesc->legacy.cmd.fEOP ? " EOP" :"",
7122 pDesc->legacy.dw3.fDD ? " DD" :"",
7123 pDesc->legacy.dw3.fEC ? " EC" :"",
7124 pDesc->legacy.dw3.fLC ? " LC" :"",
7125 pDesc->legacy.cmd.u8CSO,
7126 pDesc->legacy.dw3.u8CSS,
7127 E1K_SPEC_CFI(pDesc->legacy.dw3.u16Special) ? "CFI" :"cfi",
7128 E1K_SPEC_VLAN(pDesc->legacy.dw3.u16Special),
7129 E1K_SPEC_PRI(pDesc->legacy.dw3.u16Special));
7130 break;
7131 default:
7132 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Invalid Transmit Descriptor");
7133 break;
7134 }
7135
7136 return cbPrintf;
7137}
7138
7139/** Initializes debug helpers (logging format types). */
7140static int e1kInitDebugHelpers(void)
7141{
7142 int rc = VINF_SUCCESS;
7143 static bool s_fHelpersRegistered = false;
7144 if (!s_fHelpersRegistered)
7145 {
7146 s_fHelpersRegistered = true;
7147 rc = RTStrFormatTypeRegister("e1krxd", e1kFmtRxDesc, NULL);
7148 AssertRCReturn(rc, rc);
7149 rc = RTStrFormatTypeRegister("e1ktxd", e1kFmtTxDesc, NULL);
7150 AssertRCReturn(rc, rc);
7151 }
7152 return rc;
7153}
7154
7155/**
7156 * Status info callback.
7157 *
7158 * @param pDevIns The device instance.
7159 * @param pHlp The output helpers.
7160 * @param pszArgs The arguments.
7161 */
7162static DECLCALLBACK(void) e1kInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
7163{
7164 RT_NOREF(pszArgs);
7165 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
7166 unsigned i;
7167 // bool fRcvRing = false;
7168 // bool fXmtRing = false;
7169
7170 /*
7171 * Parse args.
7172 if (pszArgs)
7173 {
7174 fRcvRing = strstr(pszArgs, "verbose") || strstr(pszArgs, "rcv");
7175 fXmtRing = strstr(pszArgs, "verbose") || strstr(pszArgs, "xmt");
7176 }
7177 */
7178
7179 /*
7180 * Show info.
7181 */
7182 pHlp->pfnPrintf(pHlp, "E1000 #%d: port=%RTiop mmio=%RGp mac-cfg=%RTmac %s%s%s\n",
7183 pDevIns->iInstance, pThis->IOPortBase, pThis->addrMMReg,
7184 &pThis->macConfigured, g_aChips[pThis->eChip].pcszName,
7185 pThis->fRCEnabled ? " GC" : "", pThis->fR0Enabled ? " R0" : "");
7186
7187 e1kCsEnter(pThis, VERR_INTERNAL_ERROR); /* Not sure why but PCNet does it */
7188
7189 for (i = 0; i < E1K_NUM_OF_32BIT_REGS; ++i)
7190 pHlp->pfnPrintf(pHlp, "%8.8s = %08x\n", g_aE1kRegMap[i].abbrev, pThis->auRegs[i]);
7191
7192 for (i = 0; i < RT_ELEMENTS(pThis->aRecAddr.array); i++)
7193 {
7194 E1KRAELEM* ra = pThis->aRecAddr.array + i;
7195 if (ra->ctl & RA_CTL_AV)
7196 {
7197 const char *pcszTmp;
7198 switch (ra->ctl & RA_CTL_AS)
7199 {
7200 case 0: pcszTmp = "DST"; break;
7201 case 1: pcszTmp = "SRC"; break;
7202 default: pcszTmp = "reserved";
7203 }
7204 pHlp->pfnPrintf(pHlp, "RA%02d: %s %RTmac\n", i, pcszTmp, ra->addr);
7205 }
7206 }
7207 unsigned cDescs = RDLEN / sizeof(E1KRXDESC);
7208 uint32_t rdh = RDH;
7209 pHlp->pfnPrintf(pHlp, "\n-- Receive Descriptors (%d total) --\n", cDescs);
7210 for (i = 0; i < cDescs; ++i)
7211 {
7212 E1KRXDESC desc;
7213 PDMDevHlpPhysRead(pDevIns, e1kDescAddr(RDBAH, RDBAL, i),
7214 &desc, sizeof(desc));
7215 if (i == rdh)
7216 pHlp->pfnPrintf(pHlp, ">>> ");
7217 pHlp->pfnPrintf(pHlp, "%RGp: %R[e1krxd]\n", e1kDescAddr(RDBAH, RDBAL, i), &desc);
7218 }
7219#ifdef E1K_WITH_RXD_CACHE
7220 pHlp->pfnPrintf(pHlp, "\n-- Receive Descriptors in Cache (at %d (RDH %d)/ fetched %d / max %d) --\n",
7221 pThis->iRxDCurrent, RDH, pThis->nRxDFetched, E1K_RXD_CACHE_SIZE);
7222 if (rdh > pThis->iRxDCurrent)
7223 rdh -= pThis->iRxDCurrent;
7224 else
7225 rdh = cDescs + rdh - pThis->iRxDCurrent;
7226 for (i = 0; i < pThis->nRxDFetched; ++i)
7227 {
7228 if (i == pThis->iRxDCurrent)
7229 pHlp->pfnPrintf(pHlp, ">>> ");
7230 pHlp->pfnPrintf(pHlp, "%RGp: %R[e1krxd]\n",
7231 e1kDescAddr(RDBAH, RDBAL, rdh++ % cDescs),
7232 &pThis->aRxDescriptors[i]);
7233 }
7234#endif /* E1K_WITH_RXD_CACHE */
7235
7236 cDescs = TDLEN / sizeof(E1KTXDESC);
7237 uint32_t tdh = TDH;
7238 pHlp->pfnPrintf(pHlp, "\n-- Transmit Descriptors (%d total) --\n", cDescs);
7239 for (i = 0; i < cDescs; ++i)
7240 {
7241 E1KTXDESC desc;
7242 PDMDevHlpPhysRead(pDevIns, e1kDescAddr(TDBAH, TDBAL, i),
7243 &desc, sizeof(desc));
7244 if (i == tdh)
7245 pHlp->pfnPrintf(pHlp, ">>> ");
7246 pHlp->pfnPrintf(pHlp, "%RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, i), &desc);
7247 }
7248#ifdef E1K_WITH_TXD_CACHE
7249 pHlp->pfnPrintf(pHlp, "\n-- Transmit Descriptors in Cache (at %d (TDH %d)/ fetched %d / max %d) --\n",
7250 pThis->iTxDCurrent, TDH, pThis->nTxDFetched, E1K_TXD_CACHE_SIZE);
7251 if (tdh > pThis->iTxDCurrent)
7252 tdh -= pThis->iTxDCurrent;
7253 else
7254 tdh = cDescs + tdh - pThis->iTxDCurrent;
7255 for (i = 0; i < pThis->nTxDFetched; ++i)
7256 {
7257 if (i == pThis->iTxDCurrent)
7258 pHlp->pfnPrintf(pHlp, ">>> ");
7259 pHlp->pfnPrintf(pHlp, "%RGp: %R[e1ktxd]\n",
7260 e1kDescAddr(TDBAH, TDBAL, tdh++ % cDescs),
7261 &pThis->aTxDescriptors[i]);
7262 }
7263#endif /* E1K_WITH_TXD_CACHE */
7264
7265
7266#ifdef E1K_INT_STATS
7267 pHlp->pfnPrintf(pHlp, "Interrupt attempts: %d\n", pThis->uStatIntTry);
7268 pHlp->pfnPrintf(pHlp, "Interrupts raised : %d\n", pThis->uStatInt);
7269 pHlp->pfnPrintf(pHlp, "Interrupts lowered: %d\n", pThis->uStatIntLower);
7270 pHlp->pfnPrintf(pHlp, "ICR outside ISR : %d\n", pThis->uStatNoIntICR);
7271 pHlp->pfnPrintf(pHlp, "IMS raised ints : %d\n", pThis->uStatIntIMS);
7272 pHlp->pfnPrintf(pHlp, "Interrupts skipped: %d\n", pThis->uStatIntSkip);
7273 pHlp->pfnPrintf(pHlp, "Masked interrupts : %d\n", pThis->uStatIntMasked);
7274 pHlp->pfnPrintf(pHlp, "Early interrupts : %d\n", pThis->uStatIntEarly);
7275 pHlp->pfnPrintf(pHlp, "Late interrupts : %d\n", pThis->uStatIntLate);
7276 pHlp->pfnPrintf(pHlp, "Lost interrupts : %d\n", pThis->iStatIntLost);
7277 pHlp->pfnPrintf(pHlp, "Interrupts by RX : %d\n", pThis->uStatIntRx);
7278 pHlp->pfnPrintf(pHlp, "Interrupts by TX : %d\n", pThis->uStatIntTx);
7279 pHlp->pfnPrintf(pHlp, "Interrupts by ICS : %d\n", pThis->uStatIntICS);
7280 pHlp->pfnPrintf(pHlp, "Interrupts by RDTR: %d\n", pThis->uStatIntRDTR);
7281 pHlp->pfnPrintf(pHlp, "Interrupts by RDMT: %d\n", pThis->uStatIntRXDMT0);
7282 pHlp->pfnPrintf(pHlp, "Interrupts by TXQE: %d\n", pThis->uStatIntTXQE);
7283 pHlp->pfnPrintf(pHlp, "TX int delay asked: %d\n", pThis->uStatTxIDE);
7284 pHlp->pfnPrintf(pHlp, "TX delayed: %d\n", pThis->uStatTxDelayed);
7285 pHlp->pfnPrintf(pHlp, "TX delayed expired: %d\n", pThis->uStatTxDelayExp);
7286 pHlp->pfnPrintf(pHlp, "TX no report asked: %d\n", pThis->uStatTxNoRS);
7287 pHlp->pfnPrintf(pHlp, "TX abs timer expd : %d\n", pThis->uStatTAD);
7288 pHlp->pfnPrintf(pHlp, "TX int timer expd : %d\n", pThis->uStatTID);
7289 pHlp->pfnPrintf(pHlp, "RX abs timer expd : %d\n", pThis->uStatRAD);
7290 pHlp->pfnPrintf(pHlp, "RX int timer expd : %d\n", pThis->uStatRID);
7291 pHlp->pfnPrintf(pHlp, "TX CTX descriptors: %d\n", pThis->uStatDescCtx);
7292 pHlp->pfnPrintf(pHlp, "TX DAT descriptors: %d\n", pThis->uStatDescDat);
7293 pHlp->pfnPrintf(pHlp, "TX LEG descriptors: %d\n", pThis->uStatDescLeg);
7294 pHlp->pfnPrintf(pHlp, "Received frames : %d\n", pThis->uStatRxFrm);
7295 pHlp->pfnPrintf(pHlp, "Transmitted frames: %d\n", pThis->uStatTxFrm);
7296 pHlp->pfnPrintf(pHlp, "TX frames up to 1514: %d\n", pThis->uStatTx1514);
7297 pHlp->pfnPrintf(pHlp, "TX frames up to 2962: %d\n", pThis->uStatTx2962);
7298 pHlp->pfnPrintf(pHlp, "TX frames up to 4410: %d\n", pThis->uStatTx4410);
7299 pHlp->pfnPrintf(pHlp, "TX frames up to 5858: %d\n", pThis->uStatTx5858);
7300 pHlp->pfnPrintf(pHlp, "TX frames up to 7306: %d\n", pThis->uStatTx7306);
7301 pHlp->pfnPrintf(pHlp, "TX frames up to 8754: %d\n", pThis->uStatTx8754);
7302 pHlp->pfnPrintf(pHlp, "TX frames up to 16384: %d\n", pThis->uStatTx16384);
7303 pHlp->pfnPrintf(pHlp, "TX frames up to 32768: %d\n", pThis->uStatTx32768);
7304 pHlp->pfnPrintf(pHlp, "Larger TX frames : %d\n", pThis->uStatTxLarge);
7305#endif /* E1K_INT_STATS */
7306
7307 e1kCsLeave(pThis);
7308}
7309
7310
7311
7312/* -=-=-=-=- PDMDEVREG -=-=-=-=- */
7313
7314/**
7315 * Detach notification.
7316 *
7317 * One port on the network card has been disconnected from the network.
7318 *
7319 * @param pDevIns The device instance.
7320 * @param iLUN The logical unit which is being detached.
7321 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
7322 */
7323static DECLCALLBACK(void) e1kR3Detach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
7324{
7325 RT_NOREF(fFlags);
7326 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
7327 Log(("%s e1kR3Detach:\n", pThis->szPrf));
7328
7329 AssertLogRelReturnVoid(iLUN == 0);
7330
7331 PDMCritSectEnter(&pThis->cs, VERR_SEM_BUSY);
7332
7333 /** @todo r=pritesh still need to check if i missed
7334 * to clean something in this function
7335 */
7336
7337 /*
7338 * Zero some important members.
7339 */
7340 pThis->pDrvBase = NULL;
7341 pThis->pDrvR3 = NULL;
7342 pThis->pDrvR0 = NIL_RTR0PTR;
7343 pThis->pDrvRC = NIL_RTRCPTR;
7344
7345 PDMCritSectLeave(&pThis->cs);
7346}
7347
7348/**
7349 * Attach the Network attachment.
7350 *
7351 * One port on the network card has been connected to a network.
7352 *
7353 * @returns VBox status code.
7354 * @param pDevIns The device instance.
7355 * @param iLUN The logical unit which is being attached.
7356 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
7357 *
7358 * @remarks This code path is not used during construction.
7359 */
7360static DECLCALLBACK(int) e1kR3Attach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
7361{
7362 RT_NOREF(fFlags);
7363 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
7364 LogFlow(("%s e1kR3Attach:\n", pThis->szPrf));
7365
7366 AssertLogRelReturn(iLUN == 0, VERR_PDM_NO_SUCH_LUN);
7367
7368 PDMCritSectEnter(&pThis->cs, VERR_SEM_BUSY);
7369
7370 /*
7371 * Attach the driver.
7372 */
7373 int rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThis->IBase, &pThis->pDrvBase, "Network Port");
7374 if (RT_SUCCESS(rc))
7375 {
7376 if (rc == VINF_NAT_DNS)
7377 {
7378#ifdef RT_OS_LINUX
7379 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "NoDNSforNAT",
7380 N_("A Domain Name Server (DNS) for NAT networking could not be determined. Please check your /etc/resolv.conf for <tt>nameserver</tt> entries. Either add one manually (<i>man resolv.conf</i>) or ensure that your host is correctly connected to an ISP. If you ignore this warning the guest will not be able to perform nameserver lookups and it will probably observe delays if trying so"));
7381#else
7382 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "NoDNSforNAT",
7383 N_("A Domain Name Server (DNS) for NAT networking could not be determined. Ensure that your host is correctly connected to an ISP. If you ignore this warning the guest will not be able to perform nameserver lookups and it will probably observe delays if trying so"));
7384#endif
7385 }
7386 pThis->pDrvR3 = PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMINETWORKUP);
7387 AssertMsgStmt(pThis->pDrvR3, ("Failed to obtain the PDMINETWORKUP interface!\n"),
7388 rc = VERR_PDM_MISSING_INTERFACE_BELOW);
7389 if (RT_SUCCESS(rc))
7390 {
7391 PPDMIBASER0 pBaseR0 = PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMIBASER0);
7392 pThis->pDrvR0 = pBaseR0 ? pBaseR0->pfnQueryInterface(pBaseR0, PDMINETWORKUP_IID) : NIL_RTR0PTR;
7393
7394 PPDMIBASERC pBaseRC = PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMIBASERC);
7395 pThis->pDrvRC = pBaseRC ? pBaseRC->pfnQueryInterface(pBaseRC, PDMINETWORKUP_IID) : NIL_RTR0PTR;
7396 }
7397 }
7398 else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER
7399 || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME)
7400 {
7401 /* This should never happen because this function is not called
7402 * if there is no driver to attach! */
7403 Log(("%s No attached driver!\n", pThis->szPrf));
7404 }
7405
7406 /*
7407 * Temporary set the link down if it was up so that the guest
7408 * will know that we have change the configuration of the
7409 * network card
7410 */
7411 if ((STATUS & STATUS_LU) && RT_SUCCESS(rc))
7412 e1kR3LinkDownTemp(pThis);
7413
7414 PDMCritSectLeave(&pThis->cs);
7415 return rc;
7416
7417}
7418
7419/**
7420 * @copydoc FNPDMDEVPOWEROFF
7421 */
7422static DECLCALLBACK(void) e1kR3PowerOff(PPDMDEVINS pDevIns)
7423{
7424 /* Poke thread waiting for buffer space. */
7425 e1kWakeupReceive(pDevIns);
7426}
7427
7428/**
7429 * @copydoc FNPDMDEVRESET
7430 */
7431static DECLCALLBACK(void) e1kR3Reset(PPDMDEVINS pDevIns)
7432{
7433 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
7434#ifdef E1K_TX_DELAY
7435 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTXDTimer));
7436#endif /* E1K_TX_DELAY */
7437 e1kCancelTimer(pThis, pThis->CTX_SUFF(pIntTimer));
7438 e1kCancelTimer(pThis, pThis->CTX_SUFF(pLUTimer));
7439 e1kXmitFreeBuf(pThis);
7440 pThis->u16TxPktLen = 0;
7441 pThis->fIPcsum = false;
7442 pThis->fTCPcsum = false;
7443 pThis->fIntMaskUsed = false;
7444 pThis->fDelayInts = false;
7445 pThis->fLocked = false;
7446 pThis->u64AckedAt = 0;
7447 e1kHardReset(pThis);
7448}
7449
7450/**
7451 * @copydoc FNPDMDEVSUSPEND
7452 */
7453static DECLCALLBACK(void) e1kR3Suspend(PPDMDEVINS pDevIns)
7454{
7455 /* Poke thread waiting for buffer space. */
7456 e1kWakeupReceive(pDevIns);
7457}
7458
7459/**
7460 * Device relocation callback.
7461 *
7462 * When this callback is called the device instance data, and if the
7463 * device have a GC component, is being relocated, or/and the selectors
7464 * have been changed. The device must use the chance to perform the
7465 * necessary pointer relocations and data updates.
7466 *
7467 * Before the GC code is executed the first time, this function will be
7468 * called with a 0 delta so GC pointer calculations can be one in one place.
7469 *
7470 * @param pDevIns Pointer to the device instance.
7471 * @param offDelta The relocation delta relative to the old location.
7472 *
7473 * @remark A relocation CANNOT fail.
7474 */
7475static DECLCALLBACK(void) e1kR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
7476{
7477 RT_NOREF(offDelta);
7478 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
7479 pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
7480 pThis->pTxQueueRC = PDMQueueRCPtr(pThis->pTxQueueR3);
7481 pThis->pCanRxQueueRC = PDMQueueRCPtr(pThis->pCanRxQueueR3);
7482#ifdef E1K_USE_RX_TIMERS
7483 pThis->pRIDTimerRC = TMTimerRCPtr(pThis->pRIDTimerR3);
7484 pThis->pRADTimerRC = TMTimerRCPtr(pThis->pRADTimerR3);
7485#endif /* E1K_USE_RX_TIMERS */
7486//#ifdef E1K_USE_TX_TIMERS
7487 if (pThis->fTidEnabled)
7488 {
7489 pThis->pTIDTimerRC = TMTimerRCPtr(pThis->pTIDTimerR3);
7490# ifndef E1K_NO_TAD
7491 pThis->pTADTimerRC = TMTimerRCPtr(pThis->pTADTimerR3);
7492# endif /* E1K_NO_TAD */
7493 }
7494//#endif /* E1K_USE_TX_TIMERS */
7495#ifdef E1K_TX_DELAY
7496 pThis->pTXDTimerRC = TMTimerRCPtr(pThis->pTXDTimerR3);
7497#endif /* E1K_TX_DELAY */
7498 pThis->pIntTimerRC = TMTimerRCPtr(pThis->pIntTimerR3);
7499 pThis->pLUTimerRC = TMTimerRCPtr(pThis->pLUTimerR3);
7500}
7501
7502/**
7503 * Destruct a device instance.
7504 *
7505 * We need to free non-VM resources only.
7506 *
7507 * @returns VBox status code.
7508 * @param pDevIns The device instance data.
7509 * @thread EMT
7510 */
7511static DECLCALLBACK(int) e1kR3Destruct(PPDMDEVINS pDevIns)
7512{
7513 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
7514 PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns);
7515
7516 e1kDumpState(pThis);
7517 E1kLog(("%s Destroying instance\n", pThis->szPrf));
7518 if (PDMCritSectIsInitialized(&pThis->cs))
7519 {
7520 if (pThis->hEventMoreRxDescAvail != NIL_RTSEMEVENT)
7521 {
7522 RTSemEventSignal(pThis->hEventMoreRxDescAvail);
7523 RTSemEventDestroy(pThis->hEventMoreRxDescAvail);
7524 pThis->hEventMoreRxDescAvail = NIL_RTSEMEVENT;
7525 }
7526#ifdef E1K_WITH_TX_CS
7527 PDMR3CritSectDelete(&pThis->csTx);
7528#endif /* E1K_WITH_TX_CS */
7529 PDMR3CritSectDelete(&pThis->csRx);
7530 PDMR3CritSectDelete(&pThis->cs);
7531 }
7532 return VINF_SUCCESS;
7533}
7534
7535
7536/**
7537 * Set PCI configuration space registers.
7538 *
7539 * @param pci Reference to PCI device structure.
7540 * @thread EMT
7541 */
7542static DECLCALLBACK(void) e1kConfigurePciDev(PPDMPCIDEV pPciDev, E1KCHIP eChip)
7543{
7544 Assert(eChip < RT_ELEMENTS(g_aChips));
7545 /* Configure PCI Device, assume 32-bit mode ******************************/
7546 PCIDevSetVendorId(pPciDev, g_aChips[eChip].uPCIVendorId);
7547 PCIDevSetDeviceId(pPciDev, g_aChips[eChip].uPCIDeviceId);
7548 PCIDevSetWord( pPciDev, VBOX_PCI_SUBSYSTEM_VENDOR_ID, g_aChips[eChip].uPCISubsystemVendorId);
7549 PCIDevSetWord( pPciDev, VBOX_PCI_SUBSYSTEM_ID, g_aChips[eChip].uPCISubsystemId);
7550
7551 PCIDevSetWord( pPciDev, VBOX_PCI_COMMAND, 0x0000);
7552 /* DEVSEL Timing (medium device), 66 MHz Capable, New capabilities */
7553 PCIDevSetWord( pPciDev, VBOX_PCI_STATUS,
7554 VBOX_PCI_STATUS_DEVSEL_MEDIUM | VBOX_PCI_STATUS_CAP_LIST | VBOX_PCI_STATUS_66MHZ);
7555 /* Stepping A2 */
7556 PCIDevSetByte( pPciDev, VBOX_PCI_REVISION_ID, 0x02);
7557 /* Ethernet adapter */
7558 PCIDevSetByte( pPciDev, VBOX_PCI_CLASS_PROG, 0x00);
7559 PCIDevSetWord( pPciDev, VBOX_PCI_CLASS_DEVICE, 0x0200);
7560 /* normal single function Ethernet controller */
7561 PCIDevSetByte( pPciDev, VBOX_PCI_HEADER_TYPE, 0x00);
7562 /* Memory Register Base Address */
7563 PCIDevSetDWord(pPciDev, VBOX_PCI_BASE_ADDRESS_0, 0x00000000);
7564 /* Memory Flash Base Address */
7565 PCIDevSetDWord(pPciDev, VBOX_PCI_BASE_ADDRESS_1, 0x00000000);
7566 /* IO Register Base Address */
7567 PCIDevSetDWord(pPciDev, VBOX_PCI_BASE_ADDRESS_2, 0x00000001);
7568 /* Expansion ROM Base Address */
7569 PCIDevSetDWord(pPciDev, VBOX_PCI_ROM_ADDRESS, 0x00000000);
7570 /* Capabilities Pointer */
7571 PCIDevSetByte( pPciDev, VBOX_PCI_CAPABILITY_LIST, 0xDC);
7572 /* Interrupt Pin: INTA# */
7573 PCIDevSetByte( pPciDev, VBOX_PCI_INTERRUPT_PIN, 0x01);
7574 /* Max_Lat/Min_Gnt: very high priority and time slice */
7575 PCIDevSetByte( pPciDev, VBOX_PCI_MIN_GNT, 0xFF);
7576 PCIDevSetByte( pPciDev, VBOX_PCI_MAX_LAT, 0x00);
7577
7578 /* PCI Power Management Registers ****************************************/
7579 /* Capability ID: PCI Power Management Registers */
7580 PCIDevSetByte( pPciDev, 0xDC, VBOX_PCI_CAP_ID_PM);
7581 /* Next Item Pointer: PCI-X */
7582 PCIDevSetByte( pPciDev, 0xDC + 1, 0xE4);
7583 /* Power Management Capabilities: PM disabled, DSI */
7584 PCIDevSetWord( pPciDev, 0xDC + 2,
7585 0x0002 | VBOX_PCI_PM_CAP_DSI);
7586 /* Power Management Control / Status Register: PM disabled */
7587 PCIDevSetWord( pPciDev, 0xDC + 4, 0x0000);
7588 /* PMCSR_BSE Bridge Support Extensions: Not supported */
7589 PCIDevSetByte( pPciDev, 0xDC + 6, 0x00);
7590 /* Data Register: PM disabled, always 0 */
7591 PCIDevSetByte( pPciDev, 0xDC + 7, 0x00);
7592
7593 /* PCI-X Configuration Registers *****************************************/
7594 /* Capability ID: PCI-X Configuration Registers */
7595 PCIDevSetByte( pPciDev, 0xE4, VBOX_PCI_CAP_ID_PCIX);
7596#ifdef E1K_WITH_MSI
7597 PCIDevSetByte( pPciDev, 0xE4 + 1, 0x80);
7598#else
7599 /* Next Item Pointer: None (Message Signalled Interrupts are disabled) */
7600 PCIDevSetByte( pPciDev, 0xE4 + 1, 0x00);
7601#endif
7602 /* PCI-X Command: Enable Relaxed Ordering */
7603 PCIDevSetWord( pPciDev, 0xE4 + 2, VBOX_PCI_X_CMD_ERO);
7604 /* PCI-X Status: 32-bit, 66MHz*/
7605 /** @todo is this value really correct? fff8 doesn't look like actual PCI address */
7606 PCIDevSetDWord(pPciDev, 0xE4 + 4, 0x0040FFF8);
7607}
7608
7609/**
7610 * @interface_method_impl{PDMDEVREG,pfnConstruct}
7611 */
7612static DECLCALLBACK(int) e1kR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
7613{
7614 PE1KSTATE pThis = PDMINS_2_DATA(pDevIns, E1KSTATE*);
7615 int rc;
7616 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
7617
7618 /*
7619 * Initialize the instance data (state).
7620 * Note! Caller has initialized it to ZERO already.
7621 */
7622 RTStrPrintf(pThis->szPrf, sizeof(pThis->szPrf), "E1000#%d", iInstance);
7623 E1kLog(("%s Constructing new instance sizeof(E1KRXDESC)=%d\n", pThis->szPrf, sizeof(E1KRXDESC)));
7624 pThis->hEventMoreRxDescAvail = NIL_RTSEMEVENT;
7625 pThis->pDevInsR3 = pDevIns;
7626 pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
7627 pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
7628 pThis->u16TxPktLen = 0;
7629 pThis->fIPcsum = false;
7630 pThis->fTCPcsum = false;
7631 pThis->fIntMaskUsed = false;
7632 pThis->fDelayInts = false;
7633 pThis->fLocked = false;
7634 pThis->u64AckedAt = 0;
7635 pThis->led.u32Magic = PDMLED_MAGIC;
7636 pThis->u32PktNo = 1;
7637
7638 /* Interfaces */
7639 pThis->IBase.pfnQueryInterface = e1kR3QueryInterface;
7640
7641 pThis->INetworkDown.pfnWaitReceiveAvail = e1kR3NetworkDown_WaitReceiveAvail;
7642 pThis->INetworkDown.pfnReceive = e1kR3NetworkDown_Receive;
7643 pThis->INetworkDown.pfnXmitPending = e1kR3NetworkDown_XmitPending;
7644
7645 pThis->ILeds.pfnQueryStatusLed = e1kR3QueryStatusLed;
7646
7647 pThis->INetworkConfig.pfnGetMac = e1kR3GetMac;
7648 pThis->INetworkConfig.pfnGetLinkState = e1kR3GetLinkState;
7649 pThis->INetworkConfig.pfnSetLinkState = e1kR3SetLinkState;
7650
7651 /*
7652 * Internal validations.
7653 */
7654 for (uint32_t iReg = 1; iReg < E1K_NUM_OF_BINARY_SEARCHABLE; iReg++)
7655 AssertLogRelMsgReturn( g_aE1kRegMap[iReg].offset > g_aE1kRegMap[iReg - 1].offset
7656 && g_aE1kRegMap[iReg].offset + g_aE1kRegMap[iReg].size
7657 >= g_aE1kRegMap[iReg - 1].offset + g_aE1kRegMap[iReg - 1].size,
7658 ("%s@%#xLB%#x vs %s@%#xLB%#x\n",
7659 g_aE1kRegMap[iReg].abbrev, g_aE1kRegMap[iReg].offset, g_aE1kRegMap[iReg].size,
7660 g_aE1kRegMap[iReg - 1].abbrev, g_aE1kRegMap[iReg - 1].offset, g_aE1kRegMap[iReg - 1].size),
7661 VERR_INTERNAL_ERROR_4);
7662
7663 /*
7664 * Validate configuration.
7665 */
7666 if (!CFGMR3AreValuesValid(pCfg, "MAC\0" "CableConnected\0" "AdapterType\0"
7667 "LineSpeed\0" "GCEnabled\0" "R0Enabled\0"
7668 "ItrEnabled\0" "ItrRxEnabled\0"
7669 "EthernetCRC\0" "GSOEnabled\0" "LinkUpDelay\0"))
7670 return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
7671 N_("Invalid configuration for E1000 device"));
7672
7673 /** @todo LineSpeed unused! */
7674
7675 /* Get config params */
7676 rc = CFGMR3QueryBytes(pCfg, "MAC", pThis->macConfigured.au8, sizeof(pThis->macConfigured.au8));
7677 if (RT_FAILURE(rc))
7678 return PDMDEV_SET_ERROR(pDevIns, rc,
7679 N_("Configuration error: Failed to get MAC address"));
7680 rc = CFGMR3QueryBool(pCfg, "CableConnected", &pThis->fCableConnected);
7681 if (RT_FAILURE(rc))
7682 return PDMDEV_SET_ERROR(pDevIns, rc,
7683 N_("Configuration error: Failed to get the value of 'CableConnected'"));
7684 rc = CFGMR3QueryU32(pCfg, "AdapterType", (uint32_t*)&pThis->eChip);
7685 if (RT_FAILURE(rc))
7686 return PDMDEV_SET_ERROR(pDevIns, rc,
7687 N_("Configuration error: Failed to get the value of 'AdapterType'"));
7688 Assert(pThis->eChip <= E1K_CHIP_82545EM);
7689 rc = CFGMR3QueryBoolDef(pCfg, "GCEnabled", &pThis->fRCEnabled, true);
7690 if (RT_FAILURE(rc))
7691 return PDMDEV_SET_ERROR(pDevIns, rc,
7692 N_("Configuration error: Failed to get the value of 'GCEnabled'"));
7693
7694 rc = CFGMR3QueryBoolDef(pCfg, "R0Enabled", &pThis->fR0Enabled, true);
7695 if (RT_FAILURE(rc))
7696 return PDMDEV_SET_ERROR(pDevIns, rc,
7697 N_("Configuration error: Failed to get the value of 'R0Enabled'"));
7698
7699 rc = CFGMR3QueryBoolDef(pCfg, "EthernetCRC", &pThis->fEthernetCRC, true);
7700 if (RT_FAILURE(rc))
7701 return PDMDEV_SET_ERROR(pDevIns, rc,
7702 N_("Configuration error: Failed to get the value of 'EthernetCRC'"));
7703
7704 rc = CFGMR3QueryBoolDef(pCfg, "GSOEnabled", &pThis->fGSOEnabled, true);
7705 if (RT_FAILURE(rc))
7706 return PDMDEV_SET_ERROR(pDevIns, rc,
7707 N_("Configuration error: Failed to get the value of 'GSOEnabled'"));
7708
7709 rc = CFGMR3QueryBoolDef(pCfg, "ItrEnabled", &pThis->fItrEnabled, false);
7710 if (RT_FAILURE(rc))
7711 return PDMDEV_SET_ERROR(pDevIns, rc,
7712 N_("Configuration error: Failed to get the value of 'ItrEnabled'"));
7713
7714 rc = CFGMR3QueryBoolDef(pCfg, "ItrRxEnabled", &pThis->fItrRxEnabled, true);
7715 if (RT_FAILURE(rc))
7716 return PDMDEV_SET_ERROR(pDevIns, rc,
7717 N_("Configuration error: Failed to get the value of 'ItrRxEnabled'"));
7718
7719 rc = CFGMR3QueryBoolDef(pCfg, "TidEnabled", &pThis->fTidEnabled, false);
7720 if (RT_FAILURE(rc))
7721 return PDMDEV_SET_ERROR(pDevIns, rc,
7722 N_("Configuration error: Failed to get the value of 'TidEnabled'"));
7723
7724 rc = CFGMR3QueryU32Def(pCfg, "LinkUpDelay", (uint32_t*)&pThis->cMsLinkUpDelay, 3000); /* ms */
7725 if (RT_FAILURE(rc))
7726 return PDMDEV_SET_ERROR(pDevIns, rc,
7727 N_("Configuration error: Failed to get the value of 'LinkUpDelay'"));
7728 Assert(pThis->cMsLinkUpDelay <= 300000); /* less than 5 minutes */
7729 if (pThis->cMsLinkUpDelay > 5000)
7730 LogRel(("%s: WARNING! Link up delay is set to %u seconds!\n", pThis->szPrf, pThis->cMsLinkUpDelay / 1000));
7731 else if (pThis->cMsLinkUpDelay == 0)
7732 LogRel(("%s: WARNING! Link up delay is disabled!\n", pThis->szPrf));
7733
7734 LogRel(("%s: Chip=%s LinkUpDelay=%ums EthernetCRC=%s GSO=%s Itr=%s ItrRx=%s TID=%s R0=%s GC=%s\n", pThis->szPrf,
7735 g_aChips[pThis->eChip].pcszName, pThis->cMsLinkUpDelay,
7736 pThis->fEthernetCRC ? "on" : "off",
7737 pThis->fGSOEnabled ? "enabled" : "disabled",
7738 pThis->fItrEnabled ? "enabled" : "disabled",
7739 pThis->fItrRxEnabled ? "enabled" : "disabled",
7740 pThis->fTidEnabled ? "enabled" : "disabled",
7741 pThis->fR0Enabled ? "enabled" : "disabled",
7742 pThis->fRCEnabled ? "enabled" : "disabled"));
7743
7744 /* Initialize the EEPROM. */
7745 pThis->eeprom.init(pThis->macConfigured);
7746
7747 /* Initialize internal PHY. */
7748 Phy::init(&pThis->phy, iInstance, pThis->eChip == E1K_CHIP_82543GC ? PHY_EPID_M881000 : PHY_EPID_M881011);
7749
7750 /* Initialize critical sections. We do our own locking. */
7751 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
7752 AssertRCReturn(rc, rc);
7753
7754 rc = PDMDevHlpCritSectInit(pDevIns, &pThis->cs, RT_SRC_POS, "E1000#%d", iInstance);
7755 if (RT_FAILURE(rc))
7756 return rc;
7757 rc = PDMDevHlpCritSectInit(pDevIns, &pThis->csRx, RT_SRC_POS, "E1000#%dRX", iInstance);
7758 if (RT_FAILURE(rc))
7759 return rc;
7760#ifdef E1K_WITH_TX_CS
7761 rc = PDMDevHlpCritSectInit(pDevIns, &pThis->csTx, RT_SRC_POS, "E1000#%dTX", iInstance);
7762 if (RT_FAILURE(rc))
7763 return rc;
7764#endif /* E1K_WITH_TX_CS */
7765
7766 /* Saved state registration. */
7767 rc = PDMDevHlpSSMRegisterEx(pDevIns, E1K_SAVEDSTATE_VERSION, sizeof(E1KSTATE), NULL,
7768 NULL, e1kLiveExec, NULL,
7769 e1kSavePrep, e1kSaveExec, NULL,
7770 e1kLoadPrep, e1kLoadExec, e1kLoadDone);
7771 if (RT_FAILURE(rc))
7772 return rc;
7773
7774 /* Set PCI config registers and register ourselves with the PCI bus. */
7775 e1kConfigurePciDev(&pThis->pciDevice, pThis->eChip);
7776 rc = PDMDevHlpPCIRegister(pDevIns, &pThis->pciDevice);
7777 if (RT_FAILURE(rc))
7778 return rc;
7779
7780#ifdef E1K_WITH_MSI
7781 PDMMSIREG MsiReg;
7782 RT_ZERO(MsiReg);
7783 MsiReg.cMsiVectors = 1;
7784 MsiReg.iMsiCapOffset = 0x80;
7785 MsiReg.iMsiNextOffset = 0x0;
7786 MsiReg.fMsi64bit = false;
7787 rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg);
7788 AssertRCReturn(rc, rc);
7789#endif
7790
7791
7792 /* Map our registers to memory space (region 0, see e1kConfigurePCI)*/
7793 rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, E1K_MM_SIZE, PCI_ADDRESS_SPACE_MEM, e1kMap);
7794 if (RT_FAILURE(rc))
7795 return rc;
7796#ifdef E1K_WITH_PREREG_MMIO
7797 rc = PDMDevHlpMMIOExPreRegister(pDevIns, 0, E1K_MM_SIZE, IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_ONLY_DWORD, "E1000",
7798 NULL /*pvUserR3*/, e1kMMIOWrite, e1kMMIORead, NULL /*pfnFillR3*/,
7799 NIL_RTR0PTR /*pvUserR0*/, pThis->fR0Enabled ? "e1kMMIOWrite" : NULL,
7800 pThis->fR0Enabled ? "e1kMMIORead" : NULL, NULL /*pszFillR0*/,
7801 NIL_RTRCPTR /*pvUserRC*/, pThis->fRCEnabled ? "e1kMMIOWrite" : NULL,
7802 pThis->fRCEnabled ? "e1kMMIORead" : NULL, NULL /*pszFillRC*/);
7803 AssertLogRelRCReturn(rc, rc);
7804#endif
7805 /* Map our registers to IO space (region 2, see e1kConfigurePCI) */
7806 rc = PDMDevHlpPCIIORegionRegister(pDevIns, 2, E1K_IOPORT_SIZE, PCI_ADDRESS_SPACE_IO, e1kMap);
7807 if (RT_FAILURE(rc))
7808 return rc;
7809
7810 /* Create transmit queue */
7811 rc = PDMDevHlpQueueCreate(pDevIns, sizeof(PDMQUEUEITEMCORE), 1, 0,
7812 e1kTxQueueConsumer, true, "E1000-Xmit", &pThis->pTxQueueR3);
7813 if (RT_FAILURE(rc))
7814 return rc;
7815 pThis->pTxQueueR0 = PDMQueueR0Ptr(pThis->pTxQueueR3);
7816 pThis->pTxQueueRC = PDMQueueRCPtr(pThis->pTxQueueR3);
7817
7818 /* Create the RX notifier signaller. */
7819 rc = PDMDevHlpQueueCreate(pDevIns, sizeof(PDMQUEUEITEMCORE), 1, 0,
7820 e1kCanRxQueueConsumer, true, "E1000-Rcv", &pThis->pCanRxQueueR3);
7821 if (RT_FAILURE(rc))
7822 return rc;
7823 pThis->pCanRxQueueR0 = PDMQueueR0Ptr(pThis->pCanRxQueueR3);
7824 pThis->pCanRxQueueRC = PDMQueueRCPtr(pThis->pCanRxQueueR3);
7825
7826#ifdef E1K_TX_DELAY
7827 /* Create Transmit Delay Timer */
7828 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kTxDelayTimer, pThis,
7829 TMTIMER_FLAGS_NO_CRIT_SECT,
7830 "E1000 Transmit Delay Timer", &pThis->pTXDTimerR3);
7831 if (RT_FAILURE(rc))
7832 return rc;
7833 pThis->pTXDTimerR0 = TMTimerR0Ptr(pThis->pTXDTimerR3);
7834 pThis->pTXDTimerRC = TMTimerRCPtr(pThis->pTXDTimerR3);
7835 TMR3TimerSetCritSect(pThis->pTXDTimerR3, &pThis->csTx);
7836#endif /* E1K_TX_DELAY */
7837
7838//#ifdef E1K_USE_TX_TIMERS
7839 if (pThis->fTidEnabled)
7840 {
7841 /* Create Transmit Interrupt Delay Timer */
7842 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kTxIntDelayTimer, pThis,
7843 TMTIMER_FLAGS_NO_CRIT_SECT,
7844 "E1000 Transmit Interrupt Delay Timer", &pThis->pTIDTimerR3);
7845 if (RT_FAILURE(rc))
7846 return rc;
7847 pThis->pTIDTimerR0 = TMTimerR0Ptr(pThis->pTIDTimerR3);
7848 pThis->pTIDTimerRC = TMTimerRCPtr(pThis->pTIDTimerR3);
7849
7850# ifndef E1K_NO_TAD
7851 /* Create Transmit Absolute Delay Timer */
7852 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kTxAbsDelayTimer, pThis,
7853 TMTIMER_FLAGS_NO_CRIT_SECT,
7854 "E1000 Transmit Absolute Delay Timer", &pThis->pTADTimerR3);
7855 if (RT_FAILURE(rc))
7856 return rc;
7857 pThis->pTADTimerR0 = TMTimerR0Ptr(pThis->pTADTimerR3);
7858 pThis->pTADTimerRC = TMTimerRCPtr(pThis->pTADTimerR3);
7859# endif /* E1K_NO_TAD */
7860 }
7861//#endif /* E1K_USE_TX_TIMERS */
7862
7863#ifdef E1K_USE_RX_TIMERS
7864 /* Create Receive Interrupt Delay Timer */
7865 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kRxIntDelayTimer, pThis,
7866 TMTIMER_FLAGS_NO_CRIT_SECT,
7867 "E1000 Receive Interrupt Delay Timer", &pThis->pRIDTimerR3);
7868 if (RT_FAILURE(rc))
7869 return rc;
7870 pThis->pRIDTimerR0 = TMTimerR0Ptr(pThis->pRIDTimerR3);
7871 pThis->pRIDTimerRC = TMTimerRCPtr(pThis->pRIDTimerR3);
7872
7873 /* Create Receive Absolute Delay Timer */
7874 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kRxAbsDelayTimer, pThis,
7875 TMTIMER_FLAGS_NO_CRIT_SECT,
7876 "E1000 Receive Absolute Delay Timer", &pThis->pRADTimerR3);
7877 if (RT_FAILURE(rc))
7878 return rc;
7879 pThis->pRADTimerR0 = TMTimerR0Ptr(pThis->pRADTimerR3);
7880 pThis->pRADTimerRC = TMTimerRCPtr(pThis->pRADTimerR3);
7881#endif /* E1K_USE_RX_TIMERS */
7882
7883 /* Create Late Interrupt Timer */
7884 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kLateIntTimer, pThis,
7885 TMTIMER_FLAGS_NO_CRIT_SECT,
7886 "E1000 Late Interrupt Timer", &pThis->pIntTimerR3);
7887 if (RT_FAILURE(rc))
7888 return rc;
7889 pThis->pIntTimerR0 = TMTimerR0Ptr(pThis->pIntTimerR3);
7890 pThis->pIntTimerRC = TMTimerRCPtr(pThis->pIntTimerR3);
7891
7892 /* Create Link Up Timer */
7893 rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kLinkUpTimer, pThis,
7894 TMTIMER_FLAGS_NO_CRIT_SECT,
7895 "E1000 Link Up Timer", &pThis->pLUTimerR3);
7896 if (RT_FAILURE(rc))
7897 return rc;
7898 pThis->pLUTimerR0 = TMTimerR0Ptr(pThis->pLUTimerR3);
7899 pThis->pLUTimerRC = TMTimerRCPtr(pThis->pLUTimerR3);
7900
7901 /* Register the info item */
7902 char szTmp[20];
7903 RTStrPrintf(szTmp, sizeof(szTmp), "e1k%d", iInstance);
7904 PDMDevHlpDBGFInfoRegister(pDevIns, szTmp, "E1000 info.", e1kInfo);
7905
7906 /* Status driver */
7907 PPDMIBASE pBase;
7908 rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThis->IBase, &pBase, "Status Port");
7909 if (RT_FAILURE(rc))
7910 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the status LUN"));
7911 pThis->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS);
7912
7913 /* Network driver */
7914 rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThis->IBase, &pThis->pDrvBase, "Network Port");
7915 if (RT_SUCCESS(rc))
7916 {
7917 if (rc == VINF_NAT_DNS)
7918 PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "NoDNSforNAT",
7919 N_("A Domain Name Server (DNS) for NAT networking could not be determined. Ensure that your host is correctly connected to an ISP. If you ignore this warning the guest will not be able to perform nameserver lookups and it will probably observe delays if trying so"));
7920 pThis->pDrvR3 = PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMINETWORKUP);
7921 AssertMsgReturn(pThis->pDrvR3, ("Failed to obtain the PDMINETWORKUP interface!\n"), VERR_PDM_MISSING_INTERFACE_BELOW);
7922
7923 pThis->pDrvR0 = PDMIBASER0_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMIBASER0), PDMINETWORKUP);
7924 pThis->pDrvRC = PDMIBASERC_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMIBASERC), PDMINETWORKUP);
7925 }
7926 else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER
7927 || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME)
7928 {
7929 /* No error! */
7930 E1kLog(("%s This adapter is not attached to any network!\n", pThis->szPrf));
7931 }
7932 else
7933 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the network LUN"));
7934
7935 rc = RTSemEventCreate(&pThis->hEventMoreRxDescAvail);
7936 if (RT_FAILURE(rc))
7937 return rc;
7938
7939 rc = e1kInitDebugHelpers();
7940 if (RT_FAILURE(rc))
7941 return rc;
7942
7943 e1kHardReset(pThis);
7944
7945 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceiveBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data received", "/Public/Net/E1k%u/BytesReceived", iInstance);
7946 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data transmitted", "/Public/Net/E1k%u/BytesTransmitted", iInstance);
7947
7948 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceiveBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data received", "/Devices/E1k%d/ReceiveBytes", iInstance);
7949 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data transmitted", "/Devices/E1k%d/TransmitBytes", iInstance);
7950
7951#if defined(VBOX_WITH_STATISTICS)
7952 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatMMIOReadRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in RZ", "/Devices/E1k%d/MMIO/ReadRZ", iInstance);
7953 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatMMIOReadR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in R3", "/Devices/E1k%d/MMIO/ReadR3", iInstance);
7954 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatMMIOWriteRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in RZ", "/Devices/E1k%d/MMIO/WriteRZ", iInstance);
7955 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatMMIOWriteR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in R3", "/Devices/E1k%d/MMIO/WriteR3", iInstance);
7956 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatEEPROMRead, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM reads", "/Devices/E1k%d/EEPROM/Read", iInstance);
7957 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatEEPROMWrite, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM writes", "/Devices/E1k%d/EEPROM/Write", iInstance);
7958 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIOReadRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in RZ", "/Devices/E1k%d/IO/ReadRZ", iInstance);
7959 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIOReadR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in R3", "/Devices/E1k%d/IO/ReadR3", iInstance);
7960 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIOWriteRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in RZ", "/Devices/E1k%d/IO/WriteRZ", iInstance);
7961 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIOWriteR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in R3", "/Devices/E1k%d/IO/WriteR3", iInstance);
7962 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatLateIntTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling late int timer", "/Devices/E1k%d/LateInt/Timer", iInstance);
7963 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatLateInts, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of late interrupts", "/Devices/E1k%d/LateInt/Occured", iInstance);
7964 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIntsRaised, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of raised interrupts", "/Devices/E1k%d/Interrupts/Raised", iInstance);
7965 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIntsPrevented, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of prevented interrupts", "/Devices/E1k%d/Interrupts/Prevented", iInstance);
7966 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceive, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive", "/Devices/E1k%d/Receive/Total", iInstance);
7967 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceiveCRC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive checksumming", "/Devices/E1k%d/Receive/CRC", iInstance);
7968 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceiveFilter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive filtering", "/Devices/E1k%d/Receive/Filter", iInstance);
7969 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceiveStore, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive storing", "/Devices/E1k%d/Receive/Store", iInstance);
7970 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatRxOverflow, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_OCCURENCE, "Profiling RX overflows", "/Devices/E1k%d/RxOverflow", iInstance);
7971 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatRxOverflowWakeup, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Nr of RX overflow wakeups", "/Devices/E1k%d/RxOverflowWakeup", iInstance);
7972 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling transmits in RZ", "/Devices/E1k%d/Transmit/TotalRZ", iInstance);
7973 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling transmits in R3", "/Devices/E1k%d/Transmit/TotalR3", iInstance);
7974 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitSendRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in RZ", "/Devices/E1k%d/Transmit/SendRZ", iInstance);
7975 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitSendR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in R3", "/Devices/E1k%d/Transmit/SendR3", iInstance);
7976
7977 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTxDescCtxNormal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of normal context descriptors","/Devices/E1k%d/TxDesc/ContexNormal", iInstance);
7978 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTxDescCtxTSE, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSE context descriptors", "/Devices/E1k%d/TxDesc/ContextTSE", iInstance);
7979 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTxDescData, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TX data descriptors", "/Devices/E1k%d/TxDesc/Data", iInstance);
7980 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTxDescLegacy, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TX legacy descriptors", "/Devices/E1k%d/TxDesc/Legacy", iInstance);
7981 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTxDescTSEData, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TX TSE data descriptors", "/Devices/E1k%d/TxDesc/TSEData", iInstance);
7982 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTxPathFallback, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Fallback TSE descriptor path", "/Devices/E1k%d/TxPath/Fallback", iInstance);
7983 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTxPathGSO, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "GSO TSE descriptor path", "/Devices/E1k%d/TxPath/GSO", iInstance);
7984 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTxPathRegular, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Regular descriptor path", "/Devices/E1k%d/TxPath/Normal", iInstance);
7985 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatPHYAccesses, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of PHY accesses", "/Devices/E1k%d/PHYAccesses", iInstance);
7986 for (unsigned iReg = 0; iReg < E1K_NUM_OF_REGS; iReg++)
7987 {
7988 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aStatRegReads[iReg], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES,
7989 g_aE1kRegMap[iReg].name, "/Devices/E1k%d/Regs/%s-Reads", iInstance, g_aE1kRegMap[iReg].abbrev);
7990 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aStatRegWrites[iReg], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES,
7991 g_aE1kRegMap[iReg].name, "/Devices/E1k%d/Regs/%s-Writes", iInstance, g_aE1kRegMap[iReg].abbrev);
7992 }
7993#endif /* VBOX_WITH_STATISTICS */
7994
7995#ifdef E1K_INT_STATS
7996 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->u64ArmedAt, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "u64ArmedAt", "/Devices/E1k%d/u64ArmedAt", iInstance);
7997 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatMaxTxDelay, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatMaxTxDelay", "/Devices/E1k%d/uStatMaxTxDelay", iInstance);
7998 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatInt, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatInt", "/Devices/E1k%d/uStatInt", iInstance);
7999 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntTry, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntTry", "/Devices/E1k%d/uStatIntTry", iInstance);
8000 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntLower, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntLower", "/Devices/E1k%d/uStatIntLower", iInstance);
8001 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatNoIntICR, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatNoIntICR", "/Devices/E1k%d/uStatNoIntICR", iInstance);
8002 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->iStatIntLost, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "iStatIntLost", "/Devices/E1k%d/iStatIntLost", iInstance);
8003 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->iStatIntLostOne, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "iStatIntLostOne", "/Devices/E1k%d/iStatIntLostOne", iInstance);
8004 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntIMS, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntIMS", "/Devices/E1k%d/uStatIntIMS", iInstance);
8005 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntSkip, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntSkip", "/Devices/E1k%d/uStatIntSkip", iInstance);
8006 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntLate, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntLate", "/Devices/E1k%d/uStatIntLate", iInstance);
8007 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntMasked, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntMasked", "/Devices/E1k%d/uStatIntMasked", iInstance);
8008 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntEarly, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntEarly", "/Devices/E1k%d/uStatIntEarly", iInstance);
8009 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntRx, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntRx", "/Devices/E1k%d/uStatIntRx", iInstance);
8010 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntTx, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntTx", "/Devices/E1k%d/uStatIntTx", iInstance);
8011 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntICS, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntICS", "/Devices/E1k%d/uStatIntICS", iInstance);
8012 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntRDTR, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntRDTR", "/Devices/E1k%d/uStatIntRDTR", iInstance);
8013 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntRXDMT0, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntRXDMT0", "/Devices/E1k%d/uStatIntRXDMT0", iInstance);
8014 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatIntTXQE, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatIntTXQE", "/Devices/E1k%d/uStatIntTXQE", iInstance);
8015 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTxNoRS, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTxNoRS", "/Devices/E1k%d/uStatTxNoRS", iInstance);
8016 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTxIDE, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTxIDE", "/Devices/E1k%d/uStatTxIDE", iInstance);
8017 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTxDelayed, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTxDelayed", "/Devices/E1k%d/uStatTxDelayed", iInstance);
8018 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTxDelayExp, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTxDelayExp", "/Devices/E1k%d/uStatTxDelayExp", iInstance);
8019 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTAD, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTAD", "/Devices/E1k%d/uStatTAD", iInstance);
8020 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTID, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTID", "/Devices/E1k%d/uStatTID", iInstance);
8021 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatRAD, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatRAD", "/Devices/E1k%d/uStatRAD", iInstance);
8022 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatRID, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatRID", "/Devices/E1k%d/uStatRID", iInstance);
8023 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatRxFrm, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatRxFrm", "/Devices/E1k%d/uStatRxFrm", iInstance);
8024 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTxFrm, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTxFrm", "/Devices/E1k%d/uStatTxFrm", iInstance);
8025 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatDescCtx, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatDescCtx", "/Devices/E1k%d/uStatDescCtx", iInstance);
8026 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatDescDat, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatDescDat", "/Devices/E1k%d/uStatDescDat", iInstance);
8027 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatDescLeg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatDescLeg", "/Devices/E1k%d/uStatDescLeg", iInstance);
8028 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTx1514, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTx1514", "/Devices/E1k%d/uStatTx1514", iInstance);
8029 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTx2962, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTx2962", "/Devices/E1k%d/uStatTx2962", iInstance);
8030 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTx4410, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTx4410", "/Devices/E1k%d/uStatTx4410", iInstance);
8031 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTx5858, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTx5858", "/Devices/E1k%d/uStatTx5858", iInstance);
8032 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTx7306, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTx7306", "/Devices/E1k%d/uStatTx7306", iInstance);
8033 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTx8754, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTx8754", "/Devices/E1k%d/uStatTx8754", iInstance);
8034 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTx16384, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTx16384", "/Devices/E1k%d/uStatTx16384", iInstance);
8035 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTx32768, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTx32768", "/Devices/E1k%d/uStatTx32768", iInstance);
8036 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->uStatTxLarge, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "uStatTxLarge", "/Devices/E1k%d/uStatTxLarge", iInstance);
8037#endif /* E1K_INT_STATS */
8038
8039 return VINF_SUCCESS;
8040}
8041
8042/**
8043 * The device registration structure.
8044 */
8045const PDMDEVREG g_DeviceE1000 =
8046{
8047 /* Structure version. PDM_DEVREG_VERSION defines the current version. */
8048 PDM_DEVREG_VERSION,
8049 /* Device name. */
8050 "e1000",
8051 /* Name of guest context module (no path).
8052 * Only evalutated if PDM_DEVREG_FLAGS_RC is set. */
8053 "VBoxDDRC.rc",
8054 /* Name of ring-0 module (no path).
8055 * Only evalutated if PDM_DEVREG_FLAGS_RC is set. */
8056 "VBoxDDR0.r0",
8057 /* The description of the device. The UTF-8 string pointed to shall, like this structure,
8058 * remain unchanged from registration till VM destruction. */
8059 "Intel PRO/1000 MT Desktop Ethernet.\n",
8060
8061 /* Flags, combination of the PDM_DEVREG_FLAGS_* \#defines. */
8062 PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
8063 /* Device class(es), combination of the PDM_DEVREG_CLASS_* \#defines. */
8064 PDM_DEVREG_CLASS_NETWORK,
8065 /* Maximum number of instances (per VM). */
8066 ~0U,
8067 /* Size of the instance data. */
8068 sizeof(E1KSTATE),
8069
8070 /* pfnConstruct */
8071 e1kR3Construct,
8072 /* pfnDestruct */
8073 e1kR3Destruct,
8074 /* pfnRelocate */
8075 e1kR3Relocate,
8076 /* pfnMemSetup */
8077 NULL,
8078 /* pfnPowerOn */
8079 NULL,
8080 /* pfnReset */
8081 e1kR3Reset,
8082 /* pfnSuspend */
8083 e1kR3Suspend,
8084 /* pfnResume */
8085 NULL,
8086 /* pfnAttach */
8087 e1kR3Attach,
8088 /* pfnDeatch */
8089 e1kR3Detach,
8090 /* pfnQueryInterface */
8091 NULL,
8092 /* pfnInitComplete */
8093 NULL,
8094 /* pfnPowerOff */
8095 e1kR3PowerOff,
8096 /* pfnSoftReset */
8097 NULL,
8098
8099 /* u32VersionEnd */
8100 PDM_DEVREG_VERSION
8101};
8102
8103#endif /* IN_RING3 */
8104#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette