VirtualBox

source: vbox/trunk/src/VBox/Devices/Network/DevE1000.cpp@ 87760

Last change on this file since 87760 was 87760, checked in by vboxsync, 4 years ago

VMM/TM,VMM/DevHlp: Require flag on timers that are to be used in ring-0 (and while refactoring a counte flag to check that all timers have been checked). Removed obsolete timer device helpers. bugref:9943

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 332.8 KB
Line 
1/* $Id: DevE1000.cpp 87760 2021-02-15 22:45:27Z vboxsync $ */
2/** @file
3 * DevE1000 - Intel 82540EM Ethernet Controller Emulation.
4 *
5 * Implemented in accordance with the specification:
6 *
7 * PCI/PCI-X Family of Gigabit Ethernet Controllers Software Developer's Manual
8 * 82540EP/EM, 82541xx, 82544GC/EI, 82545GM/EM, 82546GB/EB, and 82547xx
9 *
10 * 317453-002 Revision 3.5
11 *
12 * @todo IPv6 checksum offloading support
13 * @todo Flexible Filter / Wakeup (optional?)
14 */
15
16/*
17 * Copyright (C) 2007-2020 Oracle Corporation
18 *
19 * This file is part of VirtualBox Open Source Edition (OSE), as
20 * available from http://www.virtualbox.org. This file is free software;
21 * you can redistribute it and/or modify it under the terms of the GNU
22 * General Public License (GPL) as published by the Free Software
23 * Foundation, in version 2 as it comes in the "COPYING" file of the
24 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
25 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_DEV_E1000
33#include <iprt/crc.h>
34#include <iprt/ctype.h>
35#include <iprt/net.h>
36#include <iprt/semaphore.h>
37#include <iprt/string.h>
38#include <iprt/time.h>
39#include <iprt/uuid.h>
40#include <VBox/vmm/pdmdev.h>
41#include <VBox/vmm/pdmnetifs.h>
42#include <VBox/vmm/pdmnetinline.h>
43#include <VBox/param.h>
44#include "VBoxDD.h"
45
46#include "DevEEPROM.h"
47#include "DevE1000Phy.h"
48
49
50/*********************************************************************************************************************************
51* Defined Constants And Macros *
52*********************************************************************************************************************************/
53/** @name E1000 Build Options
54 * @{ */
55/** @def E1K_INIT_RA0
56 * E1K_INIT_RA0 forces E1000 to set the first entry in Receive Address filter
57 * table to MAC address obtained from CFGM. Most guests read MAC address from
58 * EEPROM and write it to RA[0] explicitly, but Mac OS X seems to depend on it
59 * being already set (see @bugref{4657}).
60 */
61#define E1K_INIT_RA0
62/** @def E1K_LSC_ON_RESET
63 * E1K_LSC_ON_RESET causes e1000 to generate Link Status Change
64 * interrupt after hard reset. This makes the E1K_LSC_ON_SLU option unnecessary.
65 * With unplugged cable, LSC is triggerred for 82543GC only.
66 */
67#define E1K_LSC_ON_RESET
68/** @def E1K_LSC_ON_SLU
69 * E1K_LSC_ON_SLU causes E1000 to generate Link Status Change interrupt when
70 * the guest driver brings up the link via STATUS.LU bit. Again the only guest
71 * that requires it is Mac OS X (see @bugref{4657}).
72 */
73//#define E1K_LSC_ON_SLU
74/** @def E1K_INIT_LINKUP_DELAY
75 * E1K_INIT_LINKUP_DELAY prevents the link going up while the driver is still
76 * in init (see @bugref{8624}).
77 */
78#define E1K_INIT_LINKUP_DELAY_US (2000 * 1000)
79/** @def E1K_IMS_INT_DELAY_NS
80 * E1K_IMS_INT_DELAY_NS prevents interrupt storms in Windows guests on enabling
81 * interrupts (see @bugref{8624}).
82 */
83#define E1K_IMS_INT_DELAY_NS 100
84/** @def E1K_TX_DELAY
85 * E1K_TX_DELAY aims to improve guest-host transfer rate for TCP streams by
86 * preventing packets to be sent immediately. It allows to send several
87 * packets in a batch reducing the number of acknowledgments. Note that it
88 * effectively disables R0 TX path, forcing sending in R3.
89 */
90//#define E1K_TX_DELAY 150
91/** @def E1K_USE_TX_TIMERS
92 * E1K_USE_TX_TIMERS aims to reduce the number of generated TX interrupts if a
93 * guest driver set the delays via the Transmit Interrupt Delay Value (TIDV)
94 * register. Enabling it showed no positive effects on existing guests so it
95 * stays disabled. See sections 3.2.7.1 and 3.4.3.1 in "8254x Family of Gigabit
96 * Ethernet Controllers Software Developer’s Manual" for more detailed
97 * explanation.
98 */
99//#define E1K_USE_TX_TIMERS
100/** @def E1K_NO_TAD
101 * E1K_NO_TAD disables one of two timers enabled by E1K_USE_TX_TIMERS, the
102 * Transmit Absolute Delay time. This timer sets the maximum time interval
103 * during which TX interrupts can be postponed (delayed). It has no effect
104 * if E1K_USE_TX_TIMERS is not defined.
105 */
106//#define E1K_NO_TAD
107/** @def E1K_REL_DEBUG
108 * E1K_REL_DEBUG enables debug logging of l1, l2, l3 in release build.
109 */
110//#define E1K_REL_DEBUG
111/** @def E1K_INT_STATS
112 * E1K_INT_STATS enables collection of internal statistics used for
113 * debugging of delayed interrupts, etc.
114 */
115#define E1K_INT_STATS
116/** @def E1K_WITH_MSI
117 * E1K_WITH_MSI enables rudimentary MSI support. Not implemented.
118 */
119//#define E1K_WITH_MSI
120/** @def E1K_WITH_TX_CS
121 * E1K_WITH_TX_CS protects e1kXmitPending with a critical section.
122 */
123#define E1K_WITH_TX_CS
124/** @def E1K_WITH_TXD_CACHE
125 * E1K_WITH_TXD_CACHE causes E1000 to fetch multiple TX descriptors in a
126 * single physical memory read (or two if it wraps around the end of TX
127 * descriptor ring). It is required for proper functioning of bandwidth
128 * resource control as it allows to compute exact sizes of packets prior
129 * to allocating their buffers (see @bugref{5582}).
130 */
131#define E1K_WITH_TXD_CACHE
132/** @def E1K_WITH_RXD_CACHE
133 * E1K_WITH_RXD_CACHE causes E1000 to fetch multiple RX descriptors in a
134 * single physical memory read (or two if it wraps around the end of RX
135 * descriptor ring). Intel's packet driver for DOS needs this option in
136 * order to work properly (see @bugref{6217}).
137 */
138#define E1K_WITH_RXD_CACHE
139/** @def E1K_WITH_PREREG_MMIO
140 * E1K_WITH_PREREG_MMIO enables a new style MMIO registration and is
141 * currently only done for testing the relateted PDM, IOM and PGM code. */
142//#define E1K_WITH_PREREG_MMIO
143/* @} */
144/* End of Options ************************************************************/
145
146#ifdef E1K_WITH_TXD_CACHE
147/**
148 * E1K_TXD_CACHE_SIZE specifies the maximum number of TX descriptors stored
149 * in the state structure. It limits the amount of descriptors loaded in one
150 * batch read. For example, Linux guest may use up to 20 descriptors per
151 * TSE packet. The largest TSE packet seen (Windows guest) was 45 descriptors.
152 */
153# define E1K_TXD_CACHE_SIZE 64u
154#endif /* E1K_WITH_TXD_CACHE */
155
156#ifdef E1K_WITH_RXD_CACHE
157/**
158 * E1K_RXD_CACHE_SIZE specifies the maximum number of RX descriptors stored
159 * in the state structure. It limits the amount of descriptors loaded in one
160 * batch read. For example, XP guest adds 15 RX descriptors at a time.
161 */
162# define E1K_RXD_CACHE_SIZE 16u
163#endif /* E1K_WITH_RXD_CACHE */
164
165
166/* Little helpers ************************************************************/
167#undef htons
168#undef ntohs
169#undef htonl
170#undef ntohl
171#define htons(x) ((((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8))
172#define ntohs(x) htons(x)
173#define htonl(x) ASMByteSwapU32(x)
174#define ntohl(x) htonl(x)
175
176#ifndef DEBUG
177# ifdef E1K_REL_DEBUG
178# define DEBUG
179# define E1kLog(a) LogRel(a)
180# define E1kLog2(a) LogRel(a)
181# define E1kLog3(a) LogRel(a)
182# define E1kLogX(x, a) LogRel(a)
183//# define E1kLog3(a) do {} while (0)
184# else
185# define E1kLog(a) do {} while (0)
186# define E1kLog2(a) do {} while (0)
187# define E1kLog3(a) do {} while (0)
188# define E1kLogX(x, a) do {} while (0)
189# endif
190#else
191# define E1kLog(a) Log(a)
192# define E1kLog2(a) Log2(a)
193# define E1kLog3(a) Log3(a)
194# define E1kLogX(x, a) LogIt(x, LOG_GROUP, a)
195//# define E1kLog(a) do {} while (0)
196//# define E1kLog2(a) do {} while (0)
197//# define E1kLog3(a) do {} while (0)
198#endif
199
200#if 0
201# define LOG_ENABLED
202# define E1kLogRel(a) LogRel(a)
203# undef Log6
204# define Log6(a) LogRel(a)
205#else
206# define E1kLogRel(a) do { } while (0)
207#endif
208
209//#undef DEBUG
210
211#define E1K_RELOCATE(p, o) *(RTHCUINTPTR *)&p += o
212
213#define E1K_INC_CNT32(cnt) \
214do { \
215 if (cnt < UINT32_MAX) \
216 cnt++; \
217} while (0)
218
219#define E1K_ADD_CNT64(cntLo, cntHi, val) \
220do { \
221 uint64_t u64Cnt = RT_MAKE_U64(cntLo, cntHi); \
222 uint64_t tmp = u64Cnt; \
223 u64Cnt += val; \
224 if (tmp > u64Cnt ) \
225 u64Cnt = UINT64_MAX; \
226 cntLo = (uint32_t)u64Cnt; \
227 cntHi = (uint32_t)(u64Cnt >> 32); \
228} while (0)
229
230#ifdef E1K_INT_STATS
231# define E1K_INC_ISTAT_CNT(cnt) do { ++cnt; } while (0)
232#else /* E1K_INT_STATS */
233# define E1K_INC_ISTAT_CNT(cnt) do { } while (0)
234#endif /* E1K_INT_STATS */
235
236
237/*****************************************************************************/
238
239typedef uint32_t E1KCHIP;
240#define E1K_CHIP_82540EM 0
241#define E1K_CHIP_82543GC 1
242#define E1K_CHIP_82545EM 2
243
244#ifdef IN_RING3
245/** Different E1000 chips. */
246static const struct E1kChips
247{
248 uint16_t uPCIVendorId;
249 uint16_t uPCIDeviceId;
250 uint16_t uPCISubsystemVendorId;
251 uint16_t uPCISubsystemId;
252 const char *pcszName;
253} g_aChips[] =
254{
255 /* Vendor Device SSVendor SubSys Name */
256 { 0x8086,
257 /* Temporary code, as MSI-aware driver dislike 0x100E. How to do that right? */
258# ifdef E1K_WITH_MSI
259 0x105E,
260# else
261 0x100E,
262# endif
263 0x8086, 0x001E, "82540EM" }, /* Intel 82540EM-A in Intel PRO/1000 MT Desktop */
264 { 0x8086, 0x1004, 0x8086, 0x1004, "82543GC" }, /* Intel 82543GC in Intel PRO/1000 T Server */
265 { 0x8086, 0x100F, 0x15AD, 0x0750, "82545EM" } /* Intel 82545EM-A in VMWare Network Adapter */
266};
267#endif /* IN_RING3 */
268
269
270/* The size of register area mapped to I/O space */
271#define E1K_IOPORT_SIZE 0x8
272/* The size of memory-mapped register area */
273#define E1K_MM_SIZE 0x20000
274
275#define E1K_MAX_TX_PKT_SIZE 16288
276#define E1K_MAX_RX_PKT_SIZE 16384
277
278/*****************************************************************************/
279
280/** Gets the specfieid bits from the register. */
281#define GET_BITS(reg, bits) ((reg & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT)
282#define GET_BITS_V(val, reg, bits) ((val & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT)
283#define BITS(reg, bits, bitval) (bitval << reg##_##bits##_SHIFT)
284#define SET_BITS(reg, bits, bitval) do { reg = (reg & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0)
285#define SET_BITS_V(val, reg, bits, bitval) do { val = (val & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0)
286
287#define CTRL_SLU UINT32_C(0x00000040)
288#define CTRL_MDIO UINT32_C(0x00100000)
289#define CTRL_MDC UINT32_C(0x00200000)
290#define CTRL_MDIO_DIR UINT32_C(0x01000000)
291#define CTRL_MDC_DIR UINT32_C(0x02000000)
292#define CTRL_RESET UINT32_C(0x04000000)
293#define CTRL_VME UINT32_C(0x40000000)
294
295#define STATUS_LU UINT32_C(0x00000002)
296#define STATUS_TXOFF UINT32_C(0x00000010)
297
298#define EECD_EE_WIRES UINT32_C(0x0F)
299#define EECD_EE_REQ UINT32_C(0x40)
300#define EECD_EE_GNT UINT32_C(0x80)
301
302#define EERD_START UINT32_C(0x00000001)
303#define EERD_DONE UINT32_C(0x00000010)
304#define EERD_DATA_MASK UINT32_C(0xFFFF0000)
305#define EERD_DATA_SHIFT 16
306#define EERD_ADDR_MASK UINT32_C(0x0000FF00)
307#define EERD_ADDR_SHIFT 8
308
309#define MDIC_DATA_MASK UINT32_C(0x0000FFFF)
310#define MDIC_DATA_SHIFT 0
311#define MDIC_REG_MASK UINT32_C(0x001F0000)
312#define MDIC_REG_SHIFT 16
313#define MDIC_PHY_MASK UINT32_C(0x03E00000)
314#define MDIC_PHY_SHIFT 21
315#define MDIC_OP_WRITE UINT32_C(0x04000000)
316#define MDIC_OP_READ UINT32_C(0x08000000)
317#define MDIC_READY UINT32_C(0x10000000)
318#define MDIC_INT_EN UINT32_C(0x20000000)
319#define MDIC_ERROR UINT32_C(0x40000000)
320
321#define TCTL_EN UINT32_C(0x00000002)
322#define TCTL_PSP UINT32_C(0x00000008)
323
324#define RCTL_EN UINT32_C(0x00000002)
325#define RCTL_UPE UINT32_C(0x00000008)
326#define RCTL_MPE UINT32_C(0x00000010)
327#define RCTL_LPE UINT32_C(0x00000020)
328#define RCTL_LBM_MASK UINT32_C(0x000000C0)
329#define RCTL_LBM_SHIFT 6
330#define RCTL_RDMTS_MASK UINT32_C(0x00000300)
331#define RCTL_RDMTS_SHIFT 8
332#define RCTL_LBM_TCVR UINT32_C(3) /**< PHY or external SerDes loopback. */
333#define RCTL_MO_MASK UINT32_C(0x00003000)
334#define RCTL_MO_SHIFT 12
335#define RCTL_BAM UINT32_C(0x00008000)
336#define RCTL_BSIZE_MASK UINT32_C(0x00030000)
337#define RCTL_BSIZE_SHIFT 16
338#define RCTL_VFE UINT32_C(0x00040000)
339#define RCTL_CFIEN UINT32_C(0x00080000)
340#define RCTL_CFI UINT32_C(0x00100000)
341#define RCTL_BSEX UINT32_C(0x02000000)
342#define RCTL_SECRC UINT32_C(0x04000000)
343
344#define ICR_TXDW UINT32_C(0x00000001)
345#define ICR_TXQE UINT32_C(0x00000002)
346#define ICR_LSC UINT32_C(0x00000004)
347#define ICR_RXDMT0 UINT32_C(0x00000010)
348#define ICR_RXT0 UINT32_C(0x00000080)
349#define ICR_TXD_LOW UINT32_C(0x00008000)
350#define RDTR_FPD UINT32_C(0x80000000)
351
352#define PBA_st ((PBAST*)(pThis->auRegs + PBA_IDX))
353typedef struct
354{
355 unsigned rxa : 7;
356 unsigned rxa_r : 9;
357 unsigned txa : 16;
358} PBAST;
359AssertCompileSize(PBAST, 4);
360
361#define TXDCTL_WTHRESH_MASK 0x003F0000
362#define TXDCTL_WTHRESH_SHIFT 16
363#define TXDCTL_LWTHRESH_MASK 0xFE000000
364#define TXDCTL_LWTHRESH_SHIFT 25
365
366#define RXCSUM_PCSS_MASK UINT32_C(0x000000FF)
367#define RXCSUM_PCSS_SHIFT 0
368
369/** @name Register access macros
370 * @remarks These ASSUME alocal variable @a pThis of type PE1KSTATE.
371 * @{ */
372#define CTRL pThis->auRegs[CTRL_IDX]
373#define STATUS pThis->auRegs[STATUS_IDX]
374#define EECD pThis->auRegs[EECD_IDX]
375#define EERD pThis->auRegs[EERD_IDX]
376#define CTRL_EXT pThis->auRegs[CTRL_EXT_IDX]
377#define FLA pThis->auRegs[FLA_IDX]
378#define MDIC pThis->auRegs[MDIC_IDX]
379#define FCAL pThis->auRegs[FCAL_IDX]
380#define FCAH pThis->auRegs[FCAH_IDX]
381#define FCT pThis->auRegs[FCT_IDX]
382#define VET pThis->auRegs[VET_IDX]
383#define ICR pThis->auRegs[ICR_IDX]
384#define ITR pThis->auRegs[ITR_IDX]
385#define ICS pThis->auRegs[ICS_IDX]
386#define IMS pThis->auRegs[IMS_IDX]
387#define IMC pThis->auRegs[IMC_IDX]
388#define RCTL pThis->auRegs[RCTL_IDX]
389#define FCTTV pThis->auRegs[FCTTV_IDX]
390#define TXCW pThis->auRegs[TXCW_IDX]
391#define RXCW pThis->auRegs[RXCW_IDX]
392#define TCTL pThis->auRegs[TCTL_IDX]
393#define TIPG pThis->auRegs[TIPG_IDX]
394#define AIFS pThis->auRegs[AIFS_IDX]
395#define LEDCTL pThis->auRegs[LEDCTL_IDX]
396#define PBA pThis->auRegs[PBA_IDX]
397#define FCRTL pThis->auRegs[FCRTL_IDX]
398#define FCRTH pThis->auRegs[FCRTH_IDX]
399#define RDFH pThis->auRegs[RDFH_IDX]
400#define RDFT pThis->auRegs[RDFT_IDX]
401#define RDFHS pThis->auRegs[RDFHS_IDX]
402#define RDFTS pThis->auRegs[RDFTS_IDX]
403#define RDFPC pThis->auRegs[RDFPC_IDX]
404#define RDBAL pThis->auRegs[RDBAL_IDX]
405#define RDBAH pThis->auRegs[RDBAH_IDX]
406#define RDLEN pThis->auRegs[RDLEN_IDX]
407#define RDH pThis->auRegs[RDH_IDX]
408#define RDT pThis->auRegs[RDT_IDX]
409#define RDTR pThis->auRegs[RDTR_IDX]
410#define RXDCTL pThis->auRegs[RXDCTL_IDX]
411#define RADV pThis->auRegs[RADV_IDX]
412#define RSRPD pThis->auRegs[RSRPD_IDX]
413#define TXDMAC pThis->auRegs[TXDMAC_IDX]
414#define TDFH pThis->auRegs[TDFH_IDX]
415#define TDFT pThis->auRegs[TDFT_IDX]
416#define TDFHS pThis->auRegs[TDFHS_IDX]
417#define TDFTS pThis->auRegs[TDFTS_IDX]
418#define TDFPC pThis->auRegs[TDFPC_IDX]
419#define TDBAL pThis->auRegs[TDBAL_IDX]
420#define TDBAH pThis->auRegs[TDBAH_IDX]
421#define TDLEN pThis->auRegs[TDLEN_IDX]
422#define TDH pThis->auRegs[TDH_IDX]
423#define TDT pThis->auRegs[TDT_IDX]
424#define TIDV pThis->auRegs[TIDV_IDX]
425#define TXDCTL pThis->auRegs[TXDCTL_IDX]
426#define TADV pThis->auRegs[TADV_IDX]
427#define TSPMT pThis->auRegs[TSPMT_IDX]
428#define CRCERRS pThis->auRegs[CRCERRS_IDX]
429#define ALGNERRC pThis->auRegs[ALGNERRC_IDX]
430#define SYMERRS pThis->auRegs[SYMERRS_IDX]
431#define RXERRC pThis->auRegs[RXERRC_IDX]
432#define MPC pThis->auRegs[MPC_IDX]
433#define SCC pThis->auRegs[SCC_IDX]
434#define ECOL pThis->auRegs[ECOL_IDX]
435#define MCC pThis->auRegs[MCC_IDX]
436#define LATECOL pThis->auRegs[LATECOL_IDX]
437#define COLC pThis->auRegs[COLC_IDX]
438#define DC pThis->auRegs[DC_IDX]
439#define TNCRS pThis->auRegs[TNCRS_IDX]
440/* #define SEC pThis->auRegs[SEC_IDX] Conflict with sys/time.h */
441#define CEXTERR pThis->auRegs[CEXTERR_IDX]
442#define RLEC pThis->auRegs[RLEC_IDX]
443#define XONRXC pThis->auRegs[XONRXC_IDX]
444#define XONTXC pThis->auRegs[XONTXC_IDX]
445#define XOFFRXC pThis->auRegs[XOFFRXC_IDX]
446#define XOFFTXC pThis->auRegs[XOFFTXC_IDX]
447#define FCRUC pThis->auRegs[FCRUC_IDX]
448#define PRC64 pThis->auRegs[PRC64_IDX]
449#define PRC127 pThis->auRegs[PRC127_IDX]
450#define PRC255 pThis->auRegs[PRC255_IDX]
451#define PRC511 pThis->auRegs[PRC511_IDX]
452#define PRC1023 pThis->auRegs[PRC1023_IDX]
453#define PRC1522 pThis->auRegs[PRC1522_IDX]
454#define GPRC pThis->auRegs[GPRC_IDX]
455#define BPRC pThis->auRegs[BPRC_IDX]
456#define MPRC pThis->auRegs[MPRC_IDX]
457#define GPTC pThis->auRegs[GPTC_IDX]
458#define GORCL pThis->auRegs[GORCL_IDX]
459#define GORCH pThis->auRegs[GORCH_IDX]
460#define GOTCL pThis->auRegs[GOTCL_IDX]
461#define GOTCH pThis->auRegs[GOTCH_IDX]
462#define RNBC pThis->auRegs[RNBC_IDX]
463#define RUC pThis->auRegs[RUC_IDX]
464#define RFC pThis->auRegs[RFC_IDX]
465#define ROC pThis->auRegs[ROC_IDX]
466#define RJC pThis->auRegs[RJC_IDX]
467#define MGTPRC pThis->auRegs[MGTPRC_IDX]
468#define MGTPDC pThis->auRegs[MGTPDC_IDX]
469#define MGTPTC pThis->auRegs[MGTPTC_IDX]
470#define TORL pThis->auRegs[TORL_IDX]
471#define TORH pThis->auRegs[TORH_IDX]
472#define TOTL pThis->auRegs[TOTL_IDX]
473#define TOTH pThis->auRegs[TOTH_IDX]
474#define TPR pThis->auRegs[TPR_IDX]
475#define TPT pThis->auRegs[TPT_IDX]
476#define PTC64 pThis->auRegs[PTC64_IDX]
477#define PTC127 pThis->auRegs[PTC127_IDX]
478#define PTC255 pThis->auRegs[PTC255_IDX]
479#define PTC511 pThis->auRegs[PTC511_IDX]
480#define PTC1023 pThis->auRegs[PTC1023_IDX]
481#define PTC1522 pThis->auRegs[PTC1522_IDX]
482#define MPTC pThis->auRegs[MPTC_IDX]
483#define BPTC pThis->auRegs[BPTC_IDX]
484#define TSCTC pThis->auRegs[TSCTC_IDX]
485#define TSCTFC pThis->auRegs[TSCTFC_IDX]
486#define RXCSUM pThis->auRegs[RXCSUM_IDX]
487#define WUC pThis->auRegs[WUC_IDX]
488#define WUFC pThis->auRegs[WUFC_IDX]
489#define WUS pThis->auRegs[WUS_IDX]
490#define MANC pThis->auRegs[MANC_IDX]
491#define IPAV pThis->auRegs[IPAV_IDX]
492#define WUPL pThis->auRegs[WUPL_IDX]
493/** @} */
494
495/**
496 * Indices of memory-mapped registers in register table.
497 */
498typedef enum
499{
500 CTRL_IDX,
501 STATUS_IDX,
502 EECD_IDX,
503 EERD_IDX,
504 CTRL_EXT_IDX,
505 FLA_IDX,
506 MDIC_IDX,
507 FCAL_IDX,
508 FCAH_IDX,
509 FCT_IDX,
510 VET_IDX,
511 ICR_IDX,
512 ITR_IDX,
513 ICS_IDX,
514 IMS_IDX,
515 IMC_IDX,
516 RCTL_IDX,
517 FCTTV_IDX,
518 TXCW_IDX,
519 RXCW_IDX,
520 TCTL_IDX,
521 TIPG_IDX,
522 AIFS_IDX,
523 LEDCTL_IDX,
524 PBA_IDX,
525 FCRTL_IDX,
526 FCRTH_IDX,
527 RDFH_IDX,
528 RDFT_IDX,
529 RDFHS_IDX,
530 RDFTS_IDX,
531 RDFPC_IDX,
532 RDBAL_IDX,
533 RDBAH_IDX,
534 RDLEN_IDX,
535 RDH_IDX,
536 RDT_IDX,
537 RDTR_IDX,
538 RXDCTL_IDX,
539 RADV_IDX,
540 RSRPD_IDX,
541 TXDMAC_IDX,
542 TDFH_IDX,
543 TDFT_IDX,
544 TDFHS_IDX,
545 TDFTS_IDX,
546 TDFPC_IDX,
547 TDBAL_IDX,
548 TDBAH_IDX,
549 TDLEN_IDX,
550 TDH_IDX,
551 TDT_IDX,
552 TIDV_IDX,
553 TXDCTL_IDX,
554 TADV_IDX,
555 TSPMT_IDX,
556 CRCERRS_IDX,
557 ALGNERRC_IDX,
558 SYMERRS_IDX,
559 RXERRC_IDX,
560 MPC_IDX,
561 SCC_IDX,
562 ECOL_IDX,
563 MCC_IDX,
564 LATECOL_IDX,
565 COLC_IDX,
566 DC_IDX,
567 TNCRS_IDX,
568 SEC_IDX,
569 CEXTERR_IDX,
570 RLEC_IDX,
571 XONRXC_IDX,
572 XONTXC_IDX,
573 XOFFRXC_IDX,
574 XOFFTXC_IDX,
575 FCRUC_IDX,
576 PRC64_IDX,
577 PRC127_IDX,
578 PRC255_IDX,
579 PRC511_IDX,
580 PRC1023_IDX,
581 PRC1522_IDX,
582 GPRC_IDX,
583 BPRC_IDX,
584 MPRC_IDX,
585 GPTC_IDX,
586 GORCL_IDX,
587 GORCH_IDX,
588 GOTCL_IDX,
589 GOTCH_IDX,
590 RNBC_IDX,
591 RUC_IDX,
592 RFC_IDX,
593 ROC_IDX,
594 RJC_IDX,
595 MGTPRC_IDX,
596 MGTPDC_IDX,
597 MGTPTC_IDX,
598 TORL_IDX,
599 TORH_IDX,
600 TOTL_IDX,
601 TOTH_IDX,
602 TPR_IDX,
603 TPT_IDX,
604 PTC64_IDX,
605 PTC127_IDX,
606 PTC255_IDX,
607 PTC511_IDX,
608 PTC1023_IDX,
609 PTC1522_IDX,
610 MPTC_IDX,
611 BPTC_IDX,
612 TSCTC_IDX,
613 TSCTFC_IDX,
614 RXCSUM_IDX,
615 WUC_IDX,
616 WUFC_IDX,
617 WUS_IDX,
618 MANC_IDX,
619 IPAV_IDX,
620 WUPL_IDX,
621 MTA_IDX,
622 RA_IDX,
623 VFTA_IDX,
624 IP4AT_IDX,
625 IP6AT_IDX,
626 WUPM_IDX,
627 FFLT_IDX,
628 FFMT_IDX,
629 FFVT_IDX,
630 PBM_IDX,
631 RA_82542_IDX,
632 MTA_82542_IDX,
633 VFTA_82542_IDX,
634 E1K_NUM_OF_REGS
635} E1kRegIndex;
636
637#define E1K_NUM_OF_32BIT_REGS MTA_IDX
638/** The number of registers with strictly increasing offset. */
639#define E1K_NUM_OF_BINARY_SEARCHABLE (WUPL_IDX + 1)
640
641
642/**
643 * Define E1000-specific EEPROM layout.
644 */
645struct E1kEEPROM
646{
647 public:
648 EEPROM93C46 eeprom;
649
650#ifdef IN_RING3
651 /**
652 * Initialize EEPROM content.
653 *
654 * @param macAddr MAC address of E1000.
655 */
656 void init(RTMAC &macAddr)
657 {
658 eeprom.init();
659 memcpy(eeprom.m_au16Data, macAddr.au16, sizeof(macAddr.au16));
660 eeprom.m_au16Data[0x04] = 0xFFFF;
661 /*
662 * bit 3 - full support for power management
663 * bit 10 - full duplex
664 */
665 eeprom.m_au16Data[0x0A] = 0x4408;
666 eeprom.m_au16Data[0x0B] = 0x001E;
667 eeprom.m_au16Data[0x0C] = 0x8086;
668 eeprom.m_au16Data[0x0D] = 0x100E;
669 eeprom.m_au16Data[0x0E] = 0x8086;
670 eeprom.m_au16Data[0x0F] = 0x3040;
671 eeprom.m_au16Data[0x21] = 0x7061;
672 eeprom.m_au16Data[0x22] = 0x280C;
673 eeprom.m_au16Data[0x23] = 0x00C8;
674 eeprom.m_au16Data[0x24] = 0x00C8;
675 eeprom.m_au16Data[0x2F] = 0x0602;
676 updateChecksum();
677 };
678
679 /**
680 * Compute the checksum as required by E1000 and store it
681 * in the last word.
682 */
683 void updateChecksum()
684 {
685 uint16_t u16Checksum = 0;
686
687 for (int i = 0; i < eeprom.SIZE-1; i++)
688 u16Checksum += eeprom.m_au16Data[i];
689 eeprom.m_au16Data[eeprom.SIZE-1] = 0xBABA - u16Checksum;
690 };
691
692 /**
693 * First 6 bytes of EEPROM contain MAC address.
694 *
695 * @returns MAC address of E1000.
696 */
697 void getMac(PRTMAC pMac)
698 {
699 memcpy(pMac->au16, eeprom.m_au16Data, sizeof(pMac->au16));
700 };
701
702 uint32_t read()
703 {
704 return eeprom.read();
705 }
706
707 void write(uint32_t u32Wires)
708 {
709 eeprom.write(u32Wires);
710 }
711
712 bool readWord(uint32_t u32Addr, uint16_t *pu16Value)
713 {
714 return eeprom.readWord(u32Addr, pu16Value);
715 }
716
717 int load(PCPDMDEVHLPR3 pHlp, PSSMHANDLE pSSM)
718 {
719 return eeprom.load(pHlp, pSSM);
720 }
721
722 void save(PCPDMDEVHLPR3 pHlp, PSSMHANDLE pSSM)
723 {
724 eeprom.save(pHlp, pSSM);
725 }
726#endif /* IN_RING3 */
727};
728
729
730#define E1K_SPEC_VLAN(s) (s & 0xFFF)
731#define E1K_SPEC_CFI(s) (!!((s>>12) & 0x1))
732#define E1K_SPEC_PRI(s) ((s>>13) & 0x7)
733
734struct E1kRxDStatus
735{
736 /** @name Descriptor Status field (3.2.3.1)
737 * @{ */
738 unsigned fDD : 1; /**< Descriptor Done. */
739 unsigned fEOP : 1; /**< End of packet. */
740 unsigned fIXSM : 1; /**< Ignore checksum indication. */
741 unsigned fVP : 1; /**< VLAN, matches VET. */
742 unsigned : 1;
743 unsigned fTCPCS : 1; /**< RCP Checksum calculated on the packet. */
744 unsigned fIPCS : 1; /**< IP Checksum calculated on the packet. */
745 unsigned fPIF : 1; /**< Passed in-exact filter */
746 /** @} */
747 /** @name Descriptor Errors field (3.2.3.2)
748 * (Only valid when fEOP and fDD are set.)
749 * @{ */
750 unsigned fCE : 1; /**< CRC or alignment error. */
751 unsigned : 4; /**< Reserved, varies with different models... */
752 unsigned fTCPE : 1; /**< TCP/UDP checksum error. */
753 unsigned fIPE : 1; /**< IP Checksum error. */
754 unsigned fRXE : 1; /**< RX Data error. */
755 /** @} */
756 /** @name Descriptor Special field (3.2.3.3)
757 * @{ */
758 unsigned u16Special : 16; /**< VLAN: Id, Canonical form, Priority. */
759 /** @} */
760};
761typedef struct E1kRxDStatus E1KRXDST;
762
763struct E1kRxDesc_st
764{
765 uint64_t u64BufAddr; /**< Address of data buffer */
766 uint16_t u16Length; /**< Length of data in buffer */
767 uint16_t u16Checksum; /**< Packet checksum */
768 E1KRXDST status;
769};
770typedef struct E1kRxDesc_st E1KRXDESC;
771AssertCompileSize(E1KRXDESC, 16);
772
773#define E1K_DTYP_LEGACY -1
774#define E1K_DTYP_CONTEXT 0
775#define E1K_DTYP_DATA 1
776
777struct E1kTDLegacy
778{
779 uint64_t u64BufAddr; /**< Address of data buffer */
780 struct TDLCmd_st
781 {
782 unsigned u16Length : 16;
783 unsigned u8CSO : 8;
784 /* CMD field : 8 */
785 unsigned fEOP : 1;
786 unsigned fIFCS : 1;
787 unsigned fIC : 1;
788 unsigned fRS : 1;
789 unsigned fRPS : 1;
790 unsigned fDEXT : 1;
791 unsigned fVLE : 1;
792 unsigned fIDE : 1;
793 } cmd;
794 struct TDLDw3_st
795 {
796 /* STA field */
797 unsigned fDD : 1;
798 unsigned fEC : 1;
799 unsigned fLC : 1;
800 unsigned fTURSV : 1;
801 /* RSV field */
802 unsigned u4RSV : 4;
803 /* CSS field */
804 unsigned u8CSS : 8;
805 /* Special field*/
806 unsigned u16Special: 16;
807 } dw3;
808};
809
810/**
811 * TCP/IP Context Transmit Descriptor, section 3.3.6.
812 */
813struct E1kTDContext
814{
815 struct CheckSum_st
816 {
817 /** TSE: Header start. !TSE: Checksum start. */
818 unsigned u8CSS : 8;
819 /** Checksum offset - where to store it. */
820 unsigned u8CSO : 8;
821 /** Checksum ending (inclusive) offset, 0 = end of packet. */
822 unsigned u16CSE : 16;
823 } ip;
824 struct CheckSum_st tu;
825 struct TDCDw2_st
826 {
827 /** TSE: The total number of payload bytes for this context. Sans header. */
828 unsigned u20PAYLEN : 20;
829 /** The descriptor type - E1K_DTYP_CONTEXT (0). */
830 unsigned u4DTYP : 4;
831 /** TUCMD field, 8 bits
832 * @{ */
833 /** TSE: TCP (set) or UDP (clear). */
834 unsigned fTCP : 1;
835 /** TSE: IPv4 (set) or IPv6 (clear) - for finding the payload length field in
836 * the IP header. Does not affect the checksumming.
837 * @remarks 82544GC/EI interprets a cleared field differently. */
838 unsigned fIP : 1;
839 /** TSE: TCP segmentation enable. When clear the context describes */
840 unsigned fTSE : 1;
841 /** Report status (only applies to dw3.fDD for here). */
842 unsigned fRS : 1;
843 /** Reserved, MBZ. */
844 unsigned fRSV1 : 1;
845 /** Descriptor extension, must be set for this descriptor type. */
846 unsigned fDEXT : 1;
847 /** Reserved, MBZ. */
848 unsigned fRSV2 : 1;
849 /** Interrupt delay enable. */
850 unsigned fIDE : 1;
851 /** @} */
852 } dw2;
853 struct TDCDw3_st
854 {
855 /** Descriptor Done. */
856 unsigned fDD : 1;
857 /** Reserved, MBZ. */
858 unsigned u7RSV : 7;
859 /** TSO: The header (prototype) length (Ethernet[, VLAN tag], IP, TCP/UDP. */
860 unsigned u8HDRLEN : 8;
861 /** TSO: Maximum segment size. */
862 unsigned u16MSS : 16;
863 } dw3;
864};
865typedef struct E1kTDContext E1KTXCTX;
866
867/**
868 * TCP/IP Data Transmit Descriptor, section 3.3.7.
869 */
870struct E1kTDData
871{
872 uint64_t u64BufAddr; /**< Address of data buffer */
873 struct TDDCmd_st
874 {
875 /** The total length of data pointed to by this descriptor. */
876 unsigned u20DTALEN : 20;
877 /** The descriptor type - E1K_DTYP_DATA (1). */
878 unsigned u4DTYP : 4;
879 /** @name DCMD field, 8 bits (3.3.7.1).
880 * @{ */
881 /** End of packet. Note TSCTFC update. */
882 unsigned fEOP : 1;
883 /** Insert Ethernet FCS/CRC (requires fEOP to be set). */
884 unsigned fIFCS : 1;
885 /** Use the TSE context when set and the normal when clear. */
886 unsigned fTSE : 1;
887 /** Report status (dw3.STA). */
888 unsigned fRS : 1;
889 /** Reserved. 82544GC/EI defines this report packet set (RPS). */
890 unsigned fRPS : 1;
891 /** Descriptor extension, must be set for this descriptor type. */
892 unsigned fDEXT : 1;
893 /** VLAN enable, requires CTRL.VME, auto enables FCS/CRC.
894 * Insert dw3.SPECIAL after ethernet header. */
895 unsigned fVLE : 1;
896 /** Interrupt delay enable. */
897 unsigned fIDE : 1;
898 /** @} */
899 } cmd;
900 struct TDDDw3_st
901 {
902 /** @name STA field (3.3.7.2)
903 * @{ */
904 unsigned fDD : 1; /**< Descriptor done. */
905 unsigned fEC : 1; /**< Excess collision. */
906 unsigned fLC : 1; /**< Late collision. */
907 /** Reserved, except for the usual oddball (82544GC/EI) where it's called TU. */
908 unsigned fTURSV : 1;
909 /** @} */
910 unsigned u4RSV : 4; /**< Reserved field, MBZ. */
911 /** @name POPTS (Packet Option) field (3.3.7.3)
912 * @{ */
913 unsigned fIXSM : 1; /**< Insert IP checksum. */
914 unsigned fTXSM : 1; /**< Insert TCP/UDP checksum. */
915 unsigned u6RSV : 6; /**< Reserved, MBZ. */
916 /** @} */
917 /** @name SPECIAL field - VLAN tag to be inserted after ethernet header.
918 * Requires fEOP, fVLE and CTRL.VME to be set.
919 * @{ */
920 unsigned u16Special: 16; /**< VLAN: Id, Canonical form, Priority. */
921 /** @} */
922 } dw3;
923};
924typedef struct E1kTDData E1KTXDAT;
925
926union E1kTxDesc
927{
928 struct E1kTDLegacy legacy;
929 struct E1kTDContext context;
930 struct E1kTDData data;
931};
932typedef union E1kTxDesc E1KTXDESC;
933AssertCompileSize(E1KTXDESC, 16);
934
935#define RA_CTL_AS 0x0003
936#define RA_CTL_AV 0x8000
937
938union E1kRecAddr
939{
940 uint32_t au32[32];
941 struct RAArray
942 {
943 uint8_t addr[6];
944 uint16_t ctl;
945 } array[16];
946};
947typedef struct E1kRecAddr::RAArray E1KRAELEM;
948typedef union E1kRecAddr E1KRA;
949AssertCompileSize(E1KRA, 8*16);
950
951#define E1K_IP_RF UINT16_C(0x8000) /**< reserved fragment flag */
952#define E1K_IP_DF UINT16_C(0x4000) /**< dont fragment flag */
953#define E1K_IP_MF UINT16_C(0x2000) /**< more fragments flag */
954#define E1K_IP_OFFMASK UINT16_C(0x1fff) /**< mask for fragmenting bits */
955
956/** @todo use+extend RTNETIPV4 */
957struct E1kIpHeader
958{
959 /* type of service / version / header length */
960 uint16_t tos_ver_hl;
961 /* total length */
962 uint16_t total_len;
963 /* identification */
964 uint16_t ident;
965 /* fragment offset field */
966 uint16_t offset;
967 /* time to live / protocol*/
968 uint16_t ttl_proto;
969 /* checksum */
970 uint16_t chksum;
971 /* source IP address */
972 uint32_t src;
973 /* destination IP address */
974 uint32_t dest;
975};
976AssertCompileSize(struct E1kIpHeader, 20);
977
978#define E1K_TCP_FIN UINT16_C(0x01)
979#define E1K_TCP_SYN UINT16_C(0x02)
980#define E1K_TCP_RST UINT16_C(0x04)
981#define E1K_TCP_PSH UINT16_C(0x08)
982#define E1K_TCP_ACK UINT16_C(0x10)
983#define E1K_TCP_URG UINT16_C(0x20)
984#define E1K_TCP_ECE UINT16_C(0x40)
985#define E1K_TCP_CWR UINT16_C(0x80)
986#define E1K_TCP_FLAGS UINT16_C(0x3f)
987
988/** @todo use+extend RTNETTCP */
989struct E1kTcpHeader
990{
991 uint16_t src;
992 uint16_t dest;
993 uint32_t seqno;
994 uint32_t ackno;
995 uint16_t hdrlen_flags;
996 uint16_t wnd;
997 uint16_t chksum;
998 uint16_t urgp;
999};
1000AssertCompileSize(struct E1kTcpHeader, 20);
1001
1002
1003#ifdef E1K_WITH_TXD_CACHE
1004/** The current Saved state version. */
1005# define E1K_SAVEDSTATE_VERSION 4
1006/** Saved state version for VirtualBox 4.2 with VLAN tag fields. */
1007# define E1K_SAVEDSTATE_VERSION_VBOX_42_VTAG 3
1008#else /* !E1K_WITH_TXD_CACHE */
1009/** The current Saved state version. */
1010# define E1K_SAVEDSTATE_VERSION 3
1011#endif /* !E1K_WITH_TXD_CACHE */
1012/** Saved state version for VirtualBox 4.1 and earlier.
1013 * These did not include VLAN tag fields. */
1014#define E1K_SAVEDSTATE_VERSION_VBOX_41 2
1015/** Saved state version for VirtualBox 3.0 and earlier.
1016 * This did not include the configuration part nor the E1kEEPROM. */
1017#define E1K_SAVEDSTATE_VERSION_VBOX_30 1
1018
1019/**
1020 * E1000 shared device state.
1021 *
1022 * This is shared between ring-0 and ring-3.
1023 */
1024typedef struct E1KSTATE
1025{
1026 char szPrf[8]; /**< Log prefix, e.g. E1000#1. */
1027
1028 /** Handle to PCI region \#0, the MMIO region. */
1029 IOMIOPORTHANDLE hMmioRegion;
1030 /** Handle to PCI region \#2, the I/O ports. */
1031 IOMIOPORTHANDLE hIoPorts;
1032
1033 /** Receive Interrupt Delay Timer. */
1034 TMTIMERHANDLE hRIDTimer;
1035 /** Receive Absolute Delay Timer. */
1036 TMTIMERHANDLE hRADTimer;
1037 /** Transmit Interrupt Delay Timer. */
1038 TMTIMERHANDLE hTIDTimer;
1039 /** Transmit Absolute Delay Timer. */
1040 TMTIMERHANDLE hTADTimer;
1041 /** Transmit Delay Timer. */
1042 TMTIMERHANDLE hTXDTimer;
1043 /** Late Interrupt Timer. */
1044 TMTIMERHANDLE hIntTimer;
1045 /** Link Up(/Restore) Timer. */
1046 TMTIMERHANDLE hLUTimer;
1047
1048 /** Transmit task. */
1049 PDMTASKHANDLE hTxTask;
1050
1051 /** Critical section - what is it protecting? */
1052 PDMCRITSECT cs;
1053 /** RX Critical section. */
1054 PDMCRITSECT csRx;
1055#ifdef E1K_WITH_TX_CS
1056 /** TX Critical section. */
1057 PDMCRITSECT csTx;
1058#endif /* E1K_WITH_TX_CS */
1059 /** MAC address obtained from the configuration. */
1060 RTMAC macConfigured;
1061 uint16_t u16Padding0;
1062 /** EMT: Last time the interrupt was acknowledged. */
1063 uint64_t u64AckedAt;
1064 /** All: Used for eliminating spurious interrupts. */
1065 bool fIntRaised;
1066 /** EMT: false if the cable is disconnected by the GUI. */
1067 bool fCableConnected;
1068 /** EMT: Compute Ethernet CRC for RX packets. */
1069 bool fEthernetCRC;
1070 /** All: throttle interrupts. */
1071 bool fItrEnabled;
1072 /** All: throttle RX interrupts. */
1073 bool fItrRxEnabled;
1074 /** All: Delay TX interrupts using TIDV/TADV. */
1075 bool fTidEnabled;
1076 bool afPadding[2];
1077 /** Link up delay (in milliseconds). */
1078 uint32_t cMsLinkUpDelay;
1079
1080 /** All: Device register storage. */
1081 uint32_t auRegs[E1K_NUM_OF_32BIT_REGS];
1082 /** TX/RX: Status LED. */
1083 PDMLED led;
1084 /** TX/RX: Number of packet being sent/received to show in debug log. */
1085 uint32_t u32PktNo;
1086
1087 /** EMT: Offset of the register to be read via IO. */
1088 uint32_t uSelectedReg;
1089 /** EMT: Multicast Table Array. */
1090 uint32_t auMTA[128];
1091 /** EMT: Receive Address registers. */
1092 E1KRA aRecAddr;
1093 /** EMT: VLAN filter table array. */
1094 uint32_t auVFTA[128];
1095 /** EMT: Receive buffer size. */
1096 uint16_t u16RxBSize;
1097 /** EMT: Locked state -- no state alteration possible. */
1098 bool fLocked;
1099 /** EMT: */
1100 bool fDelayInts;
1101 /** All: */
1102 bool fIntMaskUsed;
1103
1104 /** N/A: */
1105 bool volatile fMaybeOutOfSpace;
1106 /** EMT: Gets signalled when more RX descriptors become available. */
1107 SUPSEMEVENT hEventMoreRxDescAvail;
1108#ifdef E1K_WITH_RXD_CACHE
1109 /** RX: Fetched RX descriptors. */
1110 E1KRXDESC aRxDescriptors[E1K_RXD_CACHE_SIZE];
1111 //uint64_t aRxDescAddr[E1K_RXD_CACHE_SIZE];
1112 /** RX: Actual number of fetched RX descriptors. */
1113 uint32_t nRxDFetched;
1114 /** RX: Index in cache of RX descriptor being processed. */
1115 uint32_t iRxDCurrent;
1116#endif /* E1K_WITH_RXD_CACHE */
1117
1118 /** TX: Context used for TCP segmentation packets. */
1119 E1KTXCTX contextTSE;
1120 /** TX: Context used for ordinary packets. */
1121 E1KTXCTX contextNormal;
1122#ifdef E1K_WITH_TXD_CACHE
1123 /** TX: Fetched TX descriptors. */
1124 E1KTXDESC aTxDescriptors[E1K_TXD_CACHE_SIZE];
1125 /** TX: Actual number of fetched TX descriptors. */
1126 uint8_t nTxDFetched;
1127 /** TX: Index in cache of TX descriptor being processed. */
1128 uint8_t iTxDCurrent;
1129 /** TX: Will this frame be sent as GSO. */
1130 bool fGSO;
1131 /** Alignment padding. */
1132 bool fReserved;
1133 /** TX: Number of bytes in next packet. */
1134 uint32_t cbTxAlloc;
1135
1136#endif /* E1K_WITH_TXD_CACHE */
1137 /** GSO context. u8Type is set to PDMNETWORKGSOTYPE_INVALID when not
1138 * applicable to the current TSE mode. */
1139 PDMNETWORKGSO GsoCtx;
1140 /** Scratch space for holding the loopback / fallback scatter / gather
1141 * descriptor. */
1142 union
1143 {
1144 PDMSCATTERGATHER Sg;
1145 uint8_t padding[8 * sizeof(RTUINTPTR)];
1146 } uTxFallback;
1147 /** TX: Transmit packet buffer use for TSE fallback and loopback. */
1148 uint8_t aTxPacketFallback[E1K_MAX_TX_PKT_SIZE];
1149 /** TX: Number of bytes assembled in TX packet buffer. */
1150 uint16_t u16TxPktLen;
1151 /** TX: False will force segmentation in e1000 instead of sending frames as GSO. */
1152 bool fGSOEnabled;
1153 /** TX: IP checksum has to be inserted if true. */
1154 bool fIPcsum;
1155 /** TX: TCP/UDP checksum has to be inserted if true. */
1156 bool fTCPcsum;
1157 /** TX: VLAN tag has to be inserted if true. */
1158 bool fVTag;
1159 /** TX: TCI part of VLAN tag to be inserted. */
1160 uint16_t u16VTagTCI;
1161 /** TX TSE fallback: Number of payload bytes remaining in TSE context. */
1162 uint32_t u32PayRemain;
1163 /** TX TSE fallback: Number of header bytes remaining in TSE context. */
1164 uint16_t u16HdrRemain;
1165 /** TX TSE fallback: Flags from template header. */
1166 uint16_t u16SavedFlags;
1167 /** TX TSE fallback: Partial checksum from template header. */
1168 uint32_t u32SavedCsum;
1169 /** ?: Emulated controller type. */
1170 E1KCHIP eChip;
1171
1172 /** EMT: Physical interface emulation. */
1173 PHY phy;
1174
1175#if 0
1176 /** Alignment padding. */
1177 uint8_t Alignment[HC_ARCH_BITS == 64 ? 8 : 4];
1178#endif
1179
1180 STAMCOUNTER StatReceiveBytes;
1181 STAMCOUNTER StatTransmitBytes;
1182#if defined(VBOX_WITH_STATISTICS)
1183 STAMPROFILEADV StatMMIOReadRZ;
1184 STAMPROFILEADV StatMMIOReadR3;
1185 STAMPROFILEADV StatMMIOWriteRZ;
1186 STAMPROFILEADV StatMMIOWriteR3;
1187 STAMPROFILEADV StatEEPROMRead;
1188 STAMPROFILEADV StatEEPROMWrite;
1189 STAMPROFILEADV StatIOReadRZ;
1190 STAMPROFILEADV StatIOReadR3;
1191 STAMPROFILEADV StatIOWriteRZ;
1192 STAMPROFILEADV StatIOWriteR3;
1193 STAMPROFILEADV StatLateIntTimer;
1194 STAMCOUNTER StatLateInts;
1195 STAMCOUNTER StatIntsRaised;
1196 STAMCOUNTER StatIntsPrevented;
1197 STAMPROFILEADV StatReceive;
1198 STAMPROFILEADV StatReceiveCRC;
1199 STAMPROFILEADV StatReceiveFilter;
1200 STAMPROFILEADV StatReceiveStore;
1201 STAMPROFILEADV StatTransmitRZ;
1202 STAMPROFILEADV StatTransmitR3;
1203 STAMPROFILE StatTransmitSendRZ;
1204 STAMPROFILE StatTransmitSendR3;
1205 STAMPROFILE StatRxOverflow;
1206 STAMCOUNTER StatRxOverflowWakeupRZ;
1207 STAMCOUNTER StatRxOverflowWakeupR3;
1208 STAMCOUNTER StatTxDescCtxNormal;
1209 STAMCOUNTER StatTxDescCtxTSE;
1210 STAMCOUNTER StatTxDescLegacy;
1211 STAMCOUNTER StatTxDescData;
1212 STAMCOUNTER StatTxDescTSEData;
1213 STAMCOUNTER StatTxPathFallback;
1214 STAMCOUNTER StatTxPathGSO;
1215 STAMCOUNTER StatTxPathRegular;
1216 STAMCOUNTER StatPHYAccesses;
1217 STAMCOUNTER aStatRegWrites[E1K_NUM_OF_REGS];
1218 STAMCOUNTER aStatRegReads[E1K_NUM_OF_REGS];
1219#endif /* VBOX_WITH_STATISTICS */
1220
1221#ifdef E1K_INT_STATS
1222 /* Internal stats */
1223 uint64_t u64ArmedAt;
1224 uint64_t uStatMaxTxDelay;
1225 uint32_t uStatInt;
1226 uint32_t uStatIntTry;
1227 uint32_t uStatIntLower;
1228 uint32_t uStatNoIntICR;
1229 int32_t iStatIntLost;
1230 int32_t iStatIntLostOne;
1231 uint32_t uStatIntIMS;
1232 uint32_t uStatIntSkip;
1233 uint32_t uStatIntLate;
1234 uint32_t uStatIntMasked;
1235 uint32_t uStatIntEarly;
1236 uint32_t uStatIntRx;
1237 uint32_t uStatIntTx;
1238 uint32_t uStatIntICS;
1239 uint32_t uStatIntRDTR;
1240 uint32_t uStatIntRXDMT0;
1241 uint32_t uStatIntTXQE;
1242 uint32_t uStatTxNoRS;
1243 uint32_t uStatTxIDE;
1244 uint32_t uStatTxDelayed;
1245 uint32_t uStatTxDelayExp;
1246 uint32_t uStatTAD;
1247 uint32_t uStatTID;
1248 uint32_t uStatRAD;
1249 uint32_t uStatRID;
1250 uint32_t uStatRxFrm;
1251 uint32_t uStatTxFrm;
1252 uint32_t uStatDescCtx;
1253 uint32_t uStatDescDat;
1254 uint32_t uStatDescLeg;
1255 uint32_t uStatTx1514;
1256 uint32_t uStatTx2962;
1257 uint32_t uStatTx4410;
1258 uint32_t uStatTx5858;
1259 uint32_t uStatTx7306;
1260 uint32_t uStatTx8754;
1261 uint32_t uStatTx16384;
1262 uint32_t uStatTx32768;
1263 uint32_t uStatTxLarge;
1264 uint32_t uStatAlign;
1265#endif /* E1K_INT_STATS */
1266} E1KSTATE;
1267/** Pointer to the E1000 device state. */
1268typedef E1KSTATE *PE1KSTATE;
1269
1270/**
1271 * E1000 ring-3 device state
1272 *
1273 * @implements PDMINETWORKDOWN
1274 * @implements PDMINETWORKCONFIG
1275 * @implements PDMILEDPORTS
1276 */
1277typedef struct E1KSTATER3
1278{
1279 PDMIBASE IBase;
1280 PDMINETWORKDOWN INetworkDown;
1281 PDMINETWORKCONFIG INetworkConfig;
1282 /** LED interface */
1283 PDMILEDPORTS ILeds;
1284 /** Attached network driver. */
1285 R3PTRTYPE(PPDMIBASE) pDrvBase;
1286 R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector;
1287
1288 /** Pointer to the shared state. */
1289 R3PTRTYPE(PE1KSTATE) pShared;
1290
1291 /** Device instance. */
1292 PPDMDEVINSR3 pDevInsR3;
1293 /** Attached network driver. */
1294 PPDMINETWORKUPR3 pDrvR3;
1295 /** The scatter / gather buffer used for the current outgoing packet. */
1296 R3PTRTYPE(PPDMSCATTERGATHER) pTxSgR3;
1297
1298 /** EMT: EEPROM emulation */
1299 E1kEEPROM eeprom;
1300} E1KSTATER3;
1301/** Pointer to the E1000 ring-3 device state. */
1302typedef E1KSTATER3 *PE1KSTATER3;
1303
1304
1305/**
1306 * E1000 ring-0 device state
1307 */
1308typedef struct E1KSTATER0
1309{
1310 /** Device instance. */
1311 PPDMDEVINSR0 pDevInsR0;
1312 /** Attached network driver. */
1313 PPDMINETWORKUPR0 pDrvR0;
1314 /** The scatter / gather buffer used for the current outgoing packet - R0. */
1315 R0PTRTYPE(PPDMSCATTERGATHER) pTxSgR0;
1316} E1KSTATER0;
1317/** Pointer to the E1000 ring-0 device state. */
1318typedef E1KSTATER0 *PE1KSTATER0;
1319
1320
1321/**
1322 * E1000 raw-mode device state
1323 */
1324typedef struct E1KSTATERC
1325{
1326 /** Device instance. */
1327 PPDMDEVINSRC pDevInsRC;
1328 /** Attached network driver. */
1329 PPDMINETWORKUPRC pDrvRC;
1330 /** The scatter / gather buffer used for the current outgoing packet. */
1331 RCPTRTYPE(PPDMSCATTERGATHER) pTxSgRC;
1332} E1KSTATERC;
1333/** Pointer to the E1000 raw-mode device state. */
1334typedef E1KSTATERC *PE1KSTATERC;
1335
1336
1337/** @def PE1KSTATECC
1338 * Pointer to the instance data for the current context. */
1339#ifdef IN_RING3
1340typedef E1KSTATER3 E1KSTATECC;
1341typedef PE1KSTATER3 PE1KSTATECC;
1342#elif defined(IN_RING0)
1343typedef E1KSTATER0 E1KSTATECC;
1344typedef PE1KSTATER0 PE1KSTATECC;
1345#elif defined(IN_RC)
1346typedef E1KSTATERC E1KSTATECC;
1347typedef PE1KSTATERC PE1KSTATECC;
1348#else
1349# error "Not IN_RING3, IN_RING0 or IN_RC"
1350#endif
1351
1352
1353#ifndef VBOX_DEVICE_STRUCT_TESTCASE
1354
1355/* Forward declarations ******************************************************/
1356static int e1kXmitPending(PPDMDEVINS pDevIns, PE1KSTATE pThis, bool fOnWorkerThread);
1357
1358/**
1359 * E1000 register read handler.
1360 */
1361typedef int (FNE1KREGREAD)(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value);
1362/**
1363 * E1000 register write handler.
1364 */
1365typedef int (FNE1KREGWRITE)(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value);
1366
1367static FNE1KREGREAD e1kRegReadUnimplemented;
1368static FNE1KREGWRITE e1kRegWriteUnimplemented;
1369static FNE1KREGREAD e1kRegReadAutoClear;
1370static FNE1KREGREAD e1kRegReadDefault;
1371static FNE1KREGWRITE e1kRegWriteDefault;
1372#if 0 /* unused */
1373static FNE1KREGREAD e1kRegReadCTRL;
1374#endif
1375static FNE1KREGWRITE e1kRegWriteCTRL;
1376static FNE1KREGREAD e1kRegReadEECD;
1377static FNE1KREGWRITE e1kRegWriteEECD;
1378static FNE1KREGWRITE e1kRegWriteEERD;
1379static FNE1KREGWRITE e1kRegWriteMDIC;
1380static FNE1KREGREAD e1kRegReadICR;
1381static FNE1KREGWRITE e1kRegWriteICR;
1382static FNE1KREGWRITE e1kRegWriteICS;
1383static FNE1KREGWRITE e1kRegWriteIMS;
1384static FNE1KREGWRITE e1kRegWriteIMC;
1385static FNE1KREGWRITE e1kRegWriteRCTL;
1386static FNE1KREGWRITE e1kRegWritePBA;
1387static FNE1KREGWRITE e1kRegWriteRDT;
1388static FNE1KREGWRITE e1kRegWriteRDTR;
1389static FNE1KREGWRITE e1kRegWriteTDT;
1390static FNE1KREGREAD e1kRegReadMTA;
1391static FNE1KREGWRITE e1kRegWriteMTA;
1392static FNE1KREGREAD e1kRegReadRA;
1393static FNE1KREGWRITE e1kRegWriteRA;
1394static FNE1KREGREAD e1kRegReadVFTA;
1395static FNE1KREGWRITE e1kRegWriteVFTA;
1396
1397/**
1398 * Register map table.
1399 *
1400 * Override pfnRead and pfnWrite to get register-specific behavior.
1401 */
1402static const struct E1kRegMap_st
1403{
1404 /** Register offset in the register space. */
1405 uint32_t offset;
1406 /** Size in bytes. Registers of size > 4 are in fact tables. */
1407 uint32_t size;
1408 /** Readable bits. */
1409 uint32_t readable;
1410 /** Writable bits. */
1411 uint32_t writable;
1412 /** Read callback. */
1413 FNE1KREGREAD *pfnRead;
1414 /** Write callback. */
1415 FNE1KREGWRITE *pfnWrite;
1416 /** Abbreviated name. */
1417 const char *abbrev;
1418 /** Full name. */
1419 const char *name;
1420} g_aE1kRegMap[E1K_NUM_OF_REGS] =
1421{
1422 /* offset size read mask write mask read callback write callback abbrev full name */
1423 /*------- ------- ---------- ---------- ----------------------- ------------------------ ---------- ------------------------------*/
1424 { 0x00000, 0x00004, 0xDBF31BE9, 0xDBF31BE9, e1kRegReadDefault , e1kRegWriteCTRL , "CTRL" , "Device Control" },
1425 { 0x00008, 0x00004, 0x0000FDFF, 0x00000000, e1kRegReadDefault , e1kRegWriteUnimplemented, "STATUS" , "Device Status" },
1426 { 0x00010, 0x00004, 0x000027F0, 0x00000070, e1kRegReadEECD , e1kRegWriteEECD , "EECD" , "EEPROM/Flash Control/Data" },
1427 { 0x00014, 0x00004, 0xFFFFFF10, 0xFFFFFF00, e1kRegReadDefault , e1kRegWriteEERD , "EERD" , "EEPROM Read" },
1428 { 0x00018, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CTRL_EXT", "Extended Device Control" },
1429 { 0x0001c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FLA" , "Flash Access (N/A)" },
1430 { 0x00020, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteMDIC , "MDIC" , "MDI Control" },
1431 { 0x00028, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAL" , "Flow Control Address Low" },
1432 { 0x0002c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAH" , "Flow Control Address High" },
1433 { 0x00030, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCT" , "Flow Control Type" },
1434 { 0x00038, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "VET" , "VLAN EtherType" },
1435 { 0x000c0, 0x00004, 0x0001F6DF, 0x0001F6DF, e1kRegReadICR , e1kRegWriteICR , "ICR" , "Interrupt Cause Read" },
1436 { 0x000c4, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "ITR" , "Interrupt Throttling" },
1437 { 0x000c8, 0x00004, 0x00000000, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteICS , "ICS" , "Interrupt Cause Set" },
1438 { 0x000d0, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteIMS , "IMS" , "Interrupt Mask Set/Read" },
1439 { 0x000d8, 0x00004, 0x00000000, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteIMC , "IMC" , "Interrupt Mask Clear" },
1440 { 0x00100, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteRCTL , "RCTL" , "Receive Control" },
1441 { 0x00170, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCTTV" , "Flow Control Transmit Timer Value" },
1442 { 0x00178, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXCW" , "Transmit Configuration Word (N/A)" },
1443 { 0x00180, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXCW" , "Receive Configuration Word (N/A)" },
1444 { 0x00400, 0x00004, 0x017FFFFA, 0x017FFFFA, e1kRegReadDefault , e1kRegWriteDefault , "TCTL" , "Transmit Control" },
1445 { 0x00410, 0x00004, 0x3FFFFFFF, 0x3FFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TIPG" , "Transmit IPG" },
1446 { 0x00458, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "AIFS" , "Adaptive IFS Throttle - AIT" },
1447 { 0x00e00, 0x00004, 0xCFCFCFCF, 0xCFCFCFCF, e1kRegReadDefault , e1kRegWriteDefault , "LEDCTL" , "LED Control" },
1448 { 0x01000, 0x00004, 0xFFFF007F, 0x0000007F, e1kRegReadDefault , e1kRegWritePBA , "PBA" , "Packet Buffer Allocation" },
1449 { 0x02160, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTL" , "Flow Control Receive Threshold Low" },
1450 { 0x02168, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTH" , "Flow Control Receive Threshold High" },
1451 { 0x02410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFH" , "Receive Data FIFO Head" },
1452 { 0x02418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFT" , "Receive Data FIFO Tail" },
1453 { 0x02420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFHS" , "Receive Data FIFO Head Saved Register" },
1454 { 0x02428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFTS" , "Receive Data FIFO Tail Saved Register" },
1455 { 0x02430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFPC" , "Receive Data FIFO Packet Count" },
1456 { 0x02800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAL" , "Receive Descriptor Base Low" },
1457 { 0x02804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAH" , "Receive Descriptor Base High" },
1458 { 0x02808, 0x00004, 0x000FFF80, 0x000FFF80, e1kRegReadDefault , e1kRegWriteDefault , "RDLEN" , "Receive Descriptor Length" },
1459 { 0x02810, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDH" , "Receive Descriptor Head" },
1460 { 0x02818, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteRDT , "RDT" , "Receive Descriptor Tail" },
1461 { 0x02820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteRDTR , "RDTR" , "Receive Delay Timer" },
1462 { 0x02828, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXDCTL" , "Receive Descriptor Control" },
1463 { 0x0282c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "RADV" , "Receive Interrupt Absolute Delay Timer" },
1464 { 0x02c00, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RSRPD" , "Receive Small Packet Detect Interrupt" },
1465 { 0x03000, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXDMAC" , "TX DMA Control (N/A)" },
1466 { 0x03410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFH" , "Transmit Data FIFO Head" },
1467 { 0x03418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFT" , "Transmit Data FIFO Tail" },
1468 { 0x03420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFHS" , "Transmit Data FIFO Head Saved Register" },
1469 { 0x03428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFTS" , "Transmit Data FIFO Tail Saved Register" },
1470 { 0x03430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFPC" , "Transmit Data FIFO Packet Count" },
1471 { 0x03800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAL" , "Transmit Descriptor Base Low" },
1472 { 0x03804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAH" , "Transmit Descriptor Base High" },
1473 { 0x03808, 0x00004, 0x000FFF80, 0x000FFF80, e1kRegReadDefault , e1kRegWriteDefault , "TDLEN" , "Transmit Descriptor Length" },
1474 { 0x03810, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDH" , "Transmit Descriptor Head" },
1475 { 0x03818, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteTDT , "TDT" , "Transmit Descriptor Tail" },
1476 { 0x03820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TIDV" , "Transmit Interrupt Delay Value" },
1477 { 0x03828, 0x00004, 0xFF3F3F3F, 0xFF3F3F3F, e1kRegReadDefault , e1kRegWriteDefault , "TXDCTL" , "Transmit Descriptor Control" },
1478 { 0x0382c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TADV" , "Transmit Absolute Interrupt Delay Timer" },
1479 { 0x03830, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TSPMT" , "TCP Segmentation Pad and Threshold" },
1480 { 0x04000, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CRCERRS" , "CRC Error Count" },
1481 { 0x04004, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ALGNERRC", "Alignment Error Count" },
1482 { 0x04008, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SYMERRS" , "Symbol Error Count" },
1483 { 0x0400c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXERRC" , "RX Error Count" },
1484 { 0x04010, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MPC" , "Missed Packets Count" },
1485 { 0x04014, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SCC" , "Single Collision Count" },
1486 { 0x04018, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ECOL" , "Excessive Collisions Count" },
1487 { 0x0401c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MCC" , "Multiple Collision Count" },
1488 { 0x04020, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "LATECOL" , "Late Collisions Count" },
1489 { 0x04028, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "COLC" , "Collision Count" },
1490 { 0x04030, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "DC" , "Defer Count" },
1491 { 0x04034, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TNCRS" , "Transmit - No CRS" },
1492 { 0x04038, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SEC" , "Sequence Error Count" },
1493 { 0x0403c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CEXTERR" , "Carrier Extension Error Count" },
1494 { 0x04040, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RLEC" , "Receive Length Error Count" },
1495 { 0x04048, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONRXC" , "XON Received Count" },
1496 { 0x0404c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONTXC" , "XON Transmitted Count" },
1497 { 0x04050, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFRXC" , "XOFF Received Count" },
1498 { 0x04054, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFTXC" , "XOFF Transmitted Count" },
1499 { 0x04058, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRUC" , "FC Received Unsupported Count" },
1500 { 0x0405c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC64" , "Packets Received (64 Bytes) Count" },
1501 { 0x04060, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC127" , "Packets Received (65-127 Bytes) Count" },
1502 { 0x04064, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC255" , "Packets Received (128-255 Bytes) Count" },
1503 { 0x04068, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC511" , "Packets Received (256-511 Bytes) Count" },
1504 { 0x0406c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1023" , "Packets Received (512-1023 Bytes) Count" },
1505 { 0x04070, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1522" , "Packets Received (1024-Max Bytes)" },
1506 { 0x04074, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPRC" , "Good Packets Received Count" },
1507 { 0x04078, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPRC" , "Broadcast Packets Received Count" },
1508 { 0x0407c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPRC" , "Multicast Packets Received Count" },
1509 { 0x04080, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPTC" , "Good Packets Transmitted Count" },
1510 { 0x04088, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCL" , "Good Octets Received Count (Low)" },
1511 { 0x0408c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCH" , "Good Octets Received Count (Hi)" },
1512 { 0x04090, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCL" , "Good Octets Transmitted Count (Low)" },
1513 { 0x04094, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCH" , "Good Octets Transmitted Count (Hi)" },
1514 { 0x040a0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RNBC" , "Receive No Buffers Count" },
1515 { 0x040a4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RUC" , "Receive Undersize Count" },
1516 { 0x040a8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RFC" , "Receive Fragment Count" },
1517 { 0x040ac, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "ROC" , "Receive Oversize Count" },
1518 { 0x040b0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RJC" , "Receive Jabber Count" },
1519 { 0x040b4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPRC" , "Management Packets Received Count" },
1520 { 0x040b8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPDC" , "Management Packets Dropped Count" },
1521 { 0x040bc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPTC" , "Management Pkts Transmitted Count" },
1522 { 0x040c0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORL" , "Total Octets Received (Lo)" },
1523 { 0x040c4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORH" , "Total Octets Received (Hi)" },
1524 { 0x040c8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTL" , "Total Octets Transmitted (Lo)" },
1525 { 0x040cc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTH" , "Total Octets Transmitted (Hi)" },
1526 { 0x040d0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPR" , "Total Packets Received" },
1527 { 0x040d4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPT" , "Total Packets Transmitted" },
1528 { 0x040d8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC64" , "Packets Transmitted (64 Bytes) Count" },
1529 { 0x040dc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC127" , "Packets Transmitted (65-127 Bytes) Count" },
1530 { 0x040e0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC255" , "Packets Transmitted (128-255 Bytes) Count" },
1531 { 0x040e4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC511" , "Packets Transmitted (256-511 Bytes) Count" },
1532 { 0x040e8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1023" , "Packets Transmitted (512-1023 Bytes) Count" },
1533 { 0x040ec, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1522" , "Packets Transmitted (1024 Bytes or Greater) Count" },
1534 { 0x040f0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPTC" , "Multicast Packets Transmitted Count" },
1535 { 0x040f4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPTC" , "Broadcast Packets Transmitted Count" },
1536 { 0x040f8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TSCTC" , "TCP Segmentation Context Transmitted Count" },
1537 { 0x040fc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TSCTFC" , "TCP Segmentation Context Tx Fail Count" },
1538 { 0x05000, 0x00004, 0x000007FF, 0x000007FF, e1kRegReadDefault , e1kRegWriteDefault , "RXCSUM" , "Receive Checksum Control" },
1539 { 0x05800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUC" , "Wakeup Control" },
1540 { 0x05808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUFC" , "Wakeup Filter Control" },
1541 { 0x05810, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUS" , "Wakeup Status" },
1542 { 0x05820, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "MANC" , "Management Control" },
1543 { 0x05838, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IPAV" , "IP Address Valid" },
1544 { 0x05900, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPL" , "Wakeup Packet Length" },
1545 { 0x05200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA" , "Multicast Table Array (n)" },
1546 { 0x05400, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA" , "Receive Address (64-bit) (n)" },
1547 { 0x05600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA" , "VLAN Filter Table Array (n)" },
1548 { 0x05840, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP4AT" , "IPv4 Address Table" },
1549 { 0x05880, 0x00010, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP6AT" , "IPv6 Address Table" },
1550 { 0x05a00, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPM" , "Wakeup Packet Memory" },
1551 { 0x05f00, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFLT" , "Flexible Filter Length Table" },
1552 { 0x09000, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFMT" , "Flexible Filter Mask Table" },
1553 { 0x09800, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFVT" , "Flexible Filter Value Table" },
1554 { 0x10000, 0x10000, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "PBM" , "Packet Buffer Memory (n)" },
1555 { 0x00040, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA82542" , "Receive Address (64-bit) (n) (82542)" },
1556 { 0x00200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA82542", "Multicast Table Array (n) (82542)" },
1557 { 0x00600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA82542", "VLAN Filter Table Array (n) (82542)" }
1558};
1559
1560#ifdef LOG_ENABLED
1561
1562/**
1563 * Convert U32 value to hex string. Masked bytes are replaced with dots.
1564 *
1565 * @remarks The mask has half-byte byte (not bit) granularity (e.g. 0000000F).
1566 *
1567 * @returns The buffer.
1568 *
1569 * @param u32 The word to convert into string.
1570 * @param mask Selects which bytes to convert.
1571 * @param buf Where to put the result.
1572 */
1573static char *e1kU32toHex(uint32_t u32, uint32_t mask, char *buf)
1574{
1575 for (char *ptr = buf + 7; ptr >= buf; --ptr, u32 >>=4, mask >>=4)
1576 {
1577 if (mask & 0xF)
1578 *ptr = (u32 & 0xF) + ((u32 & 0xF) > 9 ? '7' : '0');
1579 else
1580 *ptr = '.';
1581 }
1582 buf[8] = 0;
1583 return buf;
1584}
1585
1586/**
1587 * Returns timer name for debug purposes.
1588 *
1589 * @returns The timer name.
1590 *
1591 * @param pThis The device state structure.
1592 * @param hTimer The timer to name.
1593 */
1594DECLINLINE(const char *) e1kGetTimerName(PE1KSTATE pThis, TMTIMERHANDLE hTimer)
1595{
1596 if (hTimer == pThis->hTIDTimer)
1597 return "TID";
1598 if (hTimer == pThis->hTADTimer)
1599 return "TAD";
1600 if (hTimer == pThis->hRIDTimer)
1601 return "RID";
1602 if (hTimer == pThis->hRADTimer)
1603 return "RAD";
1604 if (hTimer == pThis->hIntTimer)
1605 return "Int";
1606 if (hTimer == pThis->hTXDTimer)
1607 return "TXD";
1608 if (hTimer == pThis->hLUTimer)
1609 return "LinkUp";
1610 return "unknown";
1611}
1612
1613#endif /* LOG_ENABLED */
1614
1615/**
1616 * Arm a timer.
1617 *
1618 * @param pDevIns The device instance.
1619 * @param pThis Pointer to the device state structure.
1620 * @param hTimer The timer to arm.
1621 * @param uExpireIn Expiration interval in microseconds.
1622 */
1623DECLINLINE(void) e1kArmTimer(PPDMDEVINS pDevIns, PE1KSTATE pThis, TMTIMERHANDLE hTimer, uint32_t uExpireIn)
1624{
1625 if (pThis->fLocked)
1626 return;
1627
1628 E1kLog2(("%s Arming %s timer to fire in %d usec...\n",
1629 pThis->szPrf, e1kGetTimerName(pThis, hTimer), uExpireIn));
1630 int rc = PDMDevHlpTimerSetMicro(pDevIns, hTimer, uExpireIn);
1631 AssertRC(rc);
1632}
1633
1634#ifdef IN_RING3
1635/**
1636 * Cancel a timer.
1637 *
1638 * @param pDevIns The device instance.
1639 * @param pThis Pointer to the device state structure.
1640 * @param pTimer Pointer to the timer.
1641 */
1642DECLINLINE(void) e1kCancelTimer(PPDMDEVINS pDevIns, PE1KSTATE pThis, TMTIMERHANDLE hTimer)
1643{
1644 E1kLog2(("%s Stopping %s timer...\n",
1645 pThis->szPrf, e1kGetTimerName(pThis, hTimer)));
1646 int rc = PDMDevHlpTimerStop(pDevIns, hTimer);
1647 if (RT_FAILURE(rc))
1648 E1kLog2(("%s e1kCancelTimer: TMTimerStop(%s) failed with %Rrc\n",
1649 pThis->szPrf, e1kGetTimerName(pThis, hTimer), rc));
1650 RT_NOREF_PV(pThis);
1651}
1652#endif /* IN_RING3 */
1653
1654#define e1kCsEnter(ps, rc) PDMDevHlpCritSectEnter(pDevIns, &ps->cs, rc)
1655#define e1kCsLeave(ps) PDMDevHlpCritSectLeave(pDevIns, &ps->cs)
1656
1657#define e1kCsRxEnter(ps, rc) PDMDevHlpCritSectEnter(pDevIns, &ps->csRx, rc)
1658#define e1kCsRxLeave(ps) PDMDevHlpCritSectLeave(pDevIns, &ps->csRx)
1659#define e1kCsRxIsOwner(ps) PDMDevHlpCritSectIsOwner(pDevIns, &ps->csRx)
1660
1661#ifndef E1K_WITH_TX_CS
1662# define e1kCsTxEnter(ps, rc) VINF_SUCCESS
1663# define e1kCsTxLeave(ps) do { } while (0)
1664#else /* E1K_WITH_TX_CS */
1665# define e1kCsTxEnter(ps, rc) PDMDevHlpCritSectEnter(pDevIns, &ps->csTx, rc)
1666# define e1kCsTxLeave(ps) PDMDevHlpCritSectLeave(pDevIns, &ps->csTx)
1667# define e1kCsTxIsOwner(ps) PDMDevHlpCritSectIsOwner(pDevIns, &ps->csTx)
1668#endif /* E1K_WITH_TX_CS */
1669
1670
1671#ifdef E1K_WITH_TXD_CACHE
1672/*
1673 * Transmit Descriptor Register Context
1674 */
1675struct E1kTxDContext
1676{
1677 uint32_t tdlen;
1678 uint32_t tdh;
1679 uint32_t tdt;
1680};
1681typedef struct E1kTxDContext E1KTXDC, *PE1KTXDC;
1682
1683DECLINLINE(bool) e1kUpdateTxDContext(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KTXDC pContext)
1684{
1685 Assert(e1kCsTxIsOwner(pThis));
1686 if (!e1kCsTxIsOwner(pThis))
1687 {
1688 memset(pContext, 0, sizeof(E1KTXDC));
1689 return false;
1690 }
1691 pContext->tdlen = TDLEN;
1692 pContext->tdh = TDH;
1693 pContext->tdt = TDT;
1694 uint32_t cTxRingSize = pContext->tdlen / sizeof(E1KTXDESC);
1695#ifdef DEBUG
1696 if (pContext->tdh >= cTxRingSize)
1697 {
1698 Log(("%s e1kUpdateTxDContext: will return false because TDH too big (%u >= %u)\n",
1699 pThis->szPrf, pContext->tdh, cTxRingSize));
1700 return VINF_SUCCESS;
1701 }
1702 if (pContext->tdt >= cTxRingSize)
1703 {
1704 Log(("%s e1kUpdateTxDContext: will return false because TDT too big (%u >= %u)\n",
1705 pThis->szPrf, pContext->tdt, cTxRingSize));
1706 return VINF_SUCCESS;
1707 }
1708#endif /* DEBUG */
1709 return pContext->tdh < cTxRingSize && pContext->tdt < cTxRingSize;
1710}
1711#endif /* E1K_WITH_TXD_CACHE */
1712#ifdef E1K_WITH_RXD_CACHE
1713/*
1714 * Receive Descriptor Register Context
1715 */
1716struct E1kRxDContext
1717{
1718 uint32_t rdlen;
1719 uint32_t rdh;
1720 uint32_t rdt;
1721};
1722typedef struct E1kRxDContext E1KRXDC, *PE1KRXDC;
1723
1724DECLINLINE(bool) e1kUpdateRxDContext(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KRXDC pContext, const char *pcszCallee)
1725{
1726 Assert(e1kCsRxIsOwner(pThis));
1727 if (!e1kCsRxIsOwner(pThis))
1728 return false;
1729 pContext->rdlen = RDLEN;
1730 pContext->rdh = RDH;
1731 pContext->rdt = RDT;
1732 uint32_t cRxRingSize = pContext->rdlen / sizeof(E1KRXDESC);
1733#ifdef DEBUG
1734 if (pContext->rdh >= cRxRingSize)
1735 {
1736 Log(("%s e1kUpdateRxDContext: called from %s, will return false because RDH too big (%u >= %u)\n",
1737 pThis->szPrf, pcszCallee, pContext->rdh, cRxRingSize));
1738 return VINF_SUCCESS;
1739 }
1740 if (pContext->rdt >= cRxRingSize)
1741 {
1742 Log(("%s e1kUpdateRxDContext: called from %s, will return false because RDT too big (%u >= %u)\n",
1743 pThis->szPrf, pcszCallee, pContext->rdt, cRxRingSize));
1744 return VINF_SUCCESS;
1745 }
1746#else /* !DEBUG */
1747 RT_NOREF(pcszCallee);
1748#endif /* !DEBUG */
1749 return pContext->rdh < cRxRingSize && pContext->rdt < cRxRingSize; // && (RCTL & RCTL_EN);
1750}
1751#endif /* E1K_WITH_RXD_CACHE */
1752
1753/**
1754 * Wakeup the RX thread.
1755 */
1756static void e1kWakeupReceive(PPDMDEVINS pDevIns, PE1KSTATE pThis)
1757{
1758 if ( pThis->fMaybeOutOfSpace
1759 && pThis->hEventMoreRxDescAvail != NIL_SUPSEMEVENT)
1760 {
1761 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatRxOverflowWakeup));
1762 E1kLog(("%s Waking up Out-of-RX-space semaphore\n", pThis->szPrf));
1763 int rc = PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEventMoreRxDescAvail);
1764 AssertRC(rc);
1765 }
1766}
1767
1768#ifdef IN_RING3
1769
1770/**
1771 * Hardware reset. Revert all registers to initial values.
1772 *
1773 * @param pDevIns The device instance.
1774 * @param pThis The device state structure.
1775 * @param pThisCC The current context instance data.
1776 */
1777static void e1kR3HardReset(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC)
1778{
1779 E1kLog(("%s Hard reset triggered\n", pThis->szPrf));
1780 /* No interrupts should survive device reset, see @bugref(9556). */
1781 if (pThis->fIntRaised)
1782 {
1783 /* Lower(0) INTA(0) */
1784 PDMDevHlpPCISetIrq(pDevIns, 0, 0);
1785 pThis->fIntRaised = false;
1786 E1kLog(("%s e1kR3HardReset: Lowered IRQ: ICR=%08x\n", pThis->szPrf, ICR));
1787 }
1788 memset(pThis->auRegs, 0, sizeof(pThis->auRegs));
1789 memset(pThis->aRecAddr.au32, 0, sizeof(pThis->aRecAddr.au32));
1790#ifdef E1K_INIT_RA0
1791 memcpy(pThis->aRecAddr.au32, pThis->macConfigured.au8,
1792 sizeof(pThis->macConfigured.au8));
1793 pThis->aRecAddr.array[0].ctl |= RA_CTL_AV;
1794#endif /* E1K_INIT_RA0 */
1795 STATUS = 0x0081; /* SPEED=10b (1000 Mb/s), FD=1b (Full Duplex) */
1796 EECD = 0x0100; /* EE_PRES=1b (EEPROM present) */
1797 CTRL = 0x0a09; /* FRCSPD=1b SPEED=10b LRST=1b FD=1b */
1798 TSPMT = 0x01000400;/* TSMT=0400h TSPBP=0100h */
1799 Assert(GET_BITS(RCTL, BSIZE) == 0);
1800 pThis->u16RxBSize = 2048;
1801
1802 uint16_t u16LedCtl = 0x0602; /* LED0/LINK_UP#, LED2/LINK100# */
1803 pThisCC->eeprom.readWord(0x2F, &u16LedCtl); /* Read LEDCTL defaults from EEPROM */
1804 LEDCTL = 0x07008300 | (((uint32_t)u16LedCtl & 0xCF00) << 8) | (u16LedCtl & 0xCF); /* Only LED0 and LED2 defaults come from EEPROM */
1805
1806 /* Reset promiscuous mode */
1807 if (pThisCC->pDrvR3)
1808 pThisCC->pDrvR3->pfnSetPromiscuousMode(pThisCC->pDrvR3, false);
1809
1810#ifdef E1K_WITH_TXD_CACHE
1811 int rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY);
1812 if (RT_LIKELY(rc == VINF_SUCCESS))
1813 {
1814 pThis->nTxDFetched = 0;
1815 pThis->iTxDCurrent = 0;
1816 pThis->fGSO = false;
1817 pThis->cbTxAlloc = 0;
1818 e1kCsTxLeave(pThis);
1819 }
1820#endif /* E1K_WITH_TXD_CACHE */
1821#ifdef E1K_WITH_RXD_CACHE
1822 if (RT_LIKELY(e1kCsRxEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS))
1823 {
1824 pThis->iRxDCurrent = pThis->nRxDFetched = 0;
1825 e1kCsRxLeave(pThis);
1826 }
1827#endif /* E1K_WITH_RXD_CACHE */
1828#ifdef E1K_LSC_ON_RESET
1829 E1kLog(("%s Will trigger LSC in %d seconds...\n",
1830 pThis->szPrf, pThis->cMsLinkUpDelay / 1000));
1831 e1kArmTimer(pDevIns, pThis, pThis->hLUTimer, pThis->cMsLinkUpDelay * 1000);
1832#endif /* E1K_LSC_ON_RESET */
1833}
1834
1835#endif /* IN_RING3 */
1836
1837/**
1838 * Compute Internet checksum.
1839 *
1840 * @remarks Refer to http://www.netfor2.com/checksum.html for short intro.
1841 *
1842 * @param pThis The device state structure.
1843 * @param cpPacket The packet.
1844 * @param cb The size of the packet.
1845 * @param pszText A string denoting direction of packet transfer.
1846 *
1847 * @return The 1's complement of the 1's complement sum.
1848 *
1849 * @thread E1000_TX
1850 */
1851static uint16_t e1kCSum16(const void *pvBuf, size_t cb)
1852{
1853 uint32_t csum = 0;
1854 uint16_t *pu16 = (uint16_t *)pvBuf;
1855
1856 while (cb > 1)
1857 {
1858 csum += *pu16++;
1859 cb -= 2;
1860 }
1861 if (cb)
1862 csum += *(uint8_t*)pu16;
1863 while (csum >> 16)
1864 csum = (csum >> 16) + (csum & 0xFFFF);
1865 Assert(csum < 65536);
1866 return (uint16_t)~csum;
1867}
1868
1869/**
1870 * Dump a packet to debug log.
1871 *
1872 * @param pDevIns The device instance.
1873 * @param pThis The device state structure.
1874 * @param cpPacket The packet.
1875 * @param cb The size of the packet.
1876 * @param pszText A string denoting direction of packet transfer.
1877 * @thread E1000_TX
1878 */
1879DECLINLINE(void) e1kPacketDump(PPDMDEVINS pDevIns, PE1KSTATE pThis, const uint8_t *cpPacket, size_t cb, const char *pszText)
1880{
1881#ifdef DEBUG
1882 if (RT_LIKELY(e1kCsEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS))
1883 {
1884 Log4(("%s --- %s packet #%d: %RTmac => %RTmac (%d bytes) ---\n",
1885 pThis->szPrf, pszText, ++pThis->u32PktNo, cpPacket+6, cpPacket, cb));
1886 if (ntohs(*(uint16_t*)(cpPacket+12)) == 0x86DD)
1887 {
1888 Log4(("%s --- IPv6: %RTnaipv6 => %RTnaipv6\n",
1889 pThis->szPrf, cpPacket+14+8, cpPacket+14+24));
1890 if (*(cpPacket+14+6) == 0x6)
1891 Log4(("%s --- TCP: seq=%x ack=%x\n", pThis->szPrf,
1892 ntohl(*(uint32_t*)(cpPacket+14+40+4)), ntohl(*(uint32_t*)(cpPacket+14+40+8))));
1893 }
1894 else if (ntohs(*(uint16_t*)(cpPacket+12)) == 0x800)
1895 {
1896 Log4(("%s --- IPv4: %RTnaipv4 => %RTnaipv4\n",
1897 pThis->szPrf, *(uint32_t*)(cpPacket+14+12), *(uint32_t*)(cpPacket+14+16)));
1898 if (*(cpPacket+14+6) == 0x6)
1899 Log4(("%s --- TCP: seq=%x ack=%x\n", pThis->szPrf,
1900 ntohl(*(uint32_t*)(cpPacket+14+20+4)), ntohl(*(uint32_t*)(cpPacket+14+20+8))));
1901 }
1902 E1kLog3(("%.*Rhxd\n", cb, cpPacket));
1903 e1kCsLeave(pThis);
1904 }
1905#else
1906 if (RT_LIKELY(e1kCsEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS))
1907 {
1908 if (ntohs(*(uint16_t*)(cpPacket+12)) == 0x86DD)
1909 E1kLogRel(("E1000: %s packet #%d, %RTmac => %RTmac, %RTnaipv6 => %RTnaipv6, seq=%x ack=%x\n",
1910 pszText, ++pThis->u32PktNo, cpPacket+6, cpPacket, cpPacket+14+8, cpPacket+14+24,
1911 ntohl(*(uint32_t*)(cpPacket+14+40+4)), ntohl(*(uint32_t*)(cpPacket+14+40+8))));
1912 else
1913 E1kLogRel(("E1000: %s packet #%d, %RTmac => %RTmac, %RTnaipv4 => %RTnaipv4, seq=%x ack=%x\n",
1914 pszText, ++pThis->u32PktNo, cpPacket+6, cpPacket,
1915 *(uint32_t*)(cpPacket+14+12), *(uint32_t*)(cpPacket+14+16),
1916 ntohl(*(uint32_t*)(cpPacket+14+20+4)), ntohl(*(uint32_t*)(cpPacket+14+20+8))));
1917 e1kCsLeave(pThis);
1918 }
1919 RT_NOREF2(cb, pszText);
1920#endif
1921}
1922
1923/**
1924 * Determine the type of transmit descriptor.
1925 *
1926 * @returns Descriptor type. See E1K_DTYP_XXX defines.
1927 *
1928 * @param pDesc Pointer to descriptor union.
1929 * @thread E1000_TX
1930 */
1931DECLINLINE(int) e1kGetDescType(E1KTXDESC *pDesc)
1932{
1933 if (pDesc->legacy.cmd.fDEXT)
1934 return pDesc->context.dw2.u4DTYP;
1935 return E1K_DTYP_LEGACY;
1936}
1937
1938
1939#ifdef E1K_WITH_RXD_CACHE
1940/**
1941 * Return the number of RX descriptor that belong to the hardware.
1942 *
1943 * @returns the number of available descriptors in RX ring.
1944 * @param pRxdc The receive descriptor register context.
1945 * @thread ???
1946 */
1947DECLINLINE(uint32_t) e1kGetRxLen(PE1KRXDC pRxdc)
1948{
1949 /**
1950 * Make sure RDT won't change during computation. EMT may modify RDT at
1951 * any moment.
1952 */
1953 uint32_t rdt = pRxdc->rdt;
1954 return (pRxdc->rdh > rdt ? pRxdc->rdlen/sizeof(E1KRXDESC) : 0) + rdt - pRxdc->rdh;
1955}
1956
1957DECLINLINE(unsigned) e1kRxDInCache(PE1KSTATE pThis)
1958{
1959 return pThis->nRxDFetched > pThis->iRxDCurrent ?
1960 pThis->nRxDFetched - pThis->iRxDCurrent : 0;
1961}
1962
1963DECLINLINE(unsigned) e1kRxDIsCacheEmpty(PE1KSTATE pThis)
1964{
1965 return pThis->iRxDCurrent >= pThis->nRxDFetched;
1966}
1967
1968/**
1969 * Load receive descriptors from guest memory. The caller needs to be in Rx
1970 * critical section.
1971 *
1972 * We need two physical reads in case the tail wrapped around the end of RX
1973 * descriptor ring.
1974 *
1975 * @returns the actual number of descriptors fetched.
1976 * @param pDevIns The device instance.
1977 * @param pThis The device state structure.
1978 * @thread EMT, RX
1979 */
1980DECLINLINE(unsigned) e1kRxDPrefetch(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KRXDC pRxdc)
1981{
1982 E1kLog3(("%s e1kRxDPrefetch: RDH=%x RDT=%x RDLEN=%x "
1983 "iRxDCurrent=%x nRxDFetched=%x\n",
1984 pThis->szPrf, pRxdc->rdh, pRxdc->rdt, pRxdc->rdlen, pThis->iRxDCurrent, pThis->nRxDFetched));
1985 /* We've already loaded pThis->nRxDFetched descriptors past RDH. */
1986 unsigned nDescsAvailable = e1kGetRxLen(pRxdc) - e1kRxDInCache(pThis);
1987 unsigned nDescsToFetch = RT_MIN(nDescsAvailable, E1K_RXD_CACHE_SIZE - pThis->nRxDFetched);
1988 unsigned nDescsTotal = pRxdc->rdlen / sizeof(E1KRXDESC);
1989 Assert(nDescsTotal != 0);
1990 if (nDescsTotal == 0)
1991 return 0;
1992 unsigned nFirstNotLoaded = (pRxdc->rdh + e1kRxDInCache(pThis)) % nDescsTotal;
1993 unsigned nDescsInSingleRead = RT_MIN(nDescsToFetch, nDescsTotal - nFirstNotLoaded);
1994 E1kLog3(("%s e1kRxDPrefetch: nDescsAvailable=%u nDescsToFetch=%u "
1995 "nDescsTotal=%u nFirstNotLoaded=0x%x nDescsInSingleRead=%u\n",
1996 pThis->szPrf, nDescsAvailable, nDescsToFetch, nDescsTotal,
1997 nFirstNotLoaded, nDescsInSingleRead));
1998 if (nDescsToFetch == 0)
1999 return 0;
2000 E1KRXDESC* pFirstEmptyDesc = &pThis->aRxDescriptors[pThis->nRxDFetched];
2001 PDMDevHlpPCIPhysRead(pDevIns,
2002 ((uint64_t)RDBAH << 32) + RDBAL + nFirstNotLoaded * sizeof(E1KRXDESC),
2003 pFirstEmptyDesc, nDescsInSingleRead * sizeof(E1KRXDESC));
2004 // uint64_t addrBase = ((uint64_t)RDBAH << 32) + RDBAL;
2005 // unsigned i, j;
2006 // for (i = pThis->nRxDFetched; i < pThis->nRxDFetched + nDescsInSingleRead; ++i)
2007 // {
2008 // pThis->aRxDescAddr[i] = addrBase + (nFirstNotLoaded + i - pThis->nRxDFetched) * sizeof(E1KRXDESC);
2009 // E1kLog3(("%s aRxDescAddr[%d] = %p\n", pThis->szPrf, i, pThis->aRxDescAddr[i]));
2010 // }
2011 E1kLog3(("%s Fetched %u RX descriptors at %08x%08x(0x%x), RDLEN=%08x, RDH=%08x, RDT=%08x\n",
2012 pThis->szPrf, nDescsInSingleRead,
2013 RDBAH, RDBAL + pRxdc->rdh * sizeof(E1KRXDESC),
2014 nFirstNotLoaded, pRxdc->rdlen, pRxdc->rdh, pRxdc->rdt));
2015 if (nDescsToFetch > nDescsInSingleRead)
2016 {
2017 PDMDevHlpPCIPhysRead(pDevIns,
2018 ((uint64_t)RDBAH << 32) + RDBAL,
2019 pFirstEmptyDesc + nDescsInSingleRead,
2020 (nDescsToFetch - nDescsInSingleRead) * sizeof(E1KRXDESC));
2021 // Assert(i == pThis->nRxDFetched + nDescsInSingleRead);
2022 // for (j = 0; i < pThis->nRxDFetched + nDescsToFetch; ++i, ++j)
2023 // {
2024 // pThis->aRxDescAddr[i] = addrBase + j * sizeof(E1KRXDESC);
2025 // E1kLog3(("%s aRxDescAddr[%d] = %p\n", pThis->szPrf, i, pThis->aRxDescAddr[i]));
2026 // }
2027 E1kLog3(("%s Fetched %u RX descriptors at %08x%08x\n",
2028 pThis->szPrf, nDescsToFetch - nDescsInSingleRead,
2029 RDBAH, RDBAL));
2030 }
2031 pThis->nRxDFetched += nDescsToFetch;
2032 return nDescsToFetch;
2033}
2034
2035# ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */
2036/**
2037 * Dump receive descriptor to debug log.
2038 *
2039 * @param pThis The device state structure.
2040 * @param pDesc Pointer to the descriptor.
2041 * @thread E1000_RX
2042 */
2043static void e1kPrintRDesc(PE1KSTATE pThis, E1KRXDESC *pDesc)
2044{
2045 RT_NOREF2(pThis, pDesc);
2046 E1kLog2(("%s <-- Receive Descriptor (%d bytes):\n", pThis->szPrf, pDesc->u16Length));
2047 E1kLog2((" Address=%16LX Length=%04X Csum=%04X\n",
2048 pDesc->u64BufAddr, pDesc->u16Length, pDesc->u16Checksum));
2049 E1kLog2((" STA: %s %s %s %s %s %s %s ERR: %s %s %s %s SPECIAL: %s VLAN=%03x PRI=%x\n",
2050 pDesc->status.fPIF ? "PIF" : "pif",
2051 pDesc->status.fIPCS ? "IPCS" : "ipcs",
2052 pDesc->status.fTCPCS ? "TCPCS" : "tcpcs",
2053 pDesc->status.fVP ? "VP" : "vp",
2054 pDesc->status.fIXSM ? "IXSM" : "ixsm",
2055 pDesc->status.fEOP ? "EOP" : "eop",
2056 pDesc->status.fDD ? "DD" : "dd",
2057 pDesc->status.fRXE ? "RXE" : "rxe",
2058 pDesc->status.fIPE ? "IPE" : "ipe",
2059 pDesc->status.fTCPE ? "TCPE" : "tcpe",
2060 pDesc->status.fCE ? "CE" : "ce",
2061 E1K_SPEC_CFI(pDesc->status.u16Special) ? "CFI" :"cfi",
2062 E1K_SPEC_VLAN(pDesc->status.u16Special),
2063 E1K_SPEC_PRI(pDesc->status.u16Special)));
2064}
2065# endif /* IN_RING3 */
2066#endif /* E1K_WITH_RXD_CACHE */
2067
2068/**
2069 * Dump transmit descriptor to debug log.
2070 *
2071 * @param pThis The device state structure.
2072 * @param pDesc Pointer to descriptor union.
2073 * @param pszDir A string denoting direction of descriptor transfer
2074 * @thread E1000_TX
2075 */
2076static void e1kPrintTDesc(PE1KSTATE pThis, E1KTXDESC *pDesc, const char *pszDir,
2077 unsigned uLevel = RTLOGGRPFLAGS_LEVEL_2)
2078{
2079 RT_NOREF4(pThis, pDesc, pszDir, uLevel);
2080
2081 /*
2082 * Unfortunately we cannot use our format handler here, we want R0 logging
2083 * as well.
2084 */
2085 switch (e1kGetDescType(pDesc))
2086 {
2087 case E1K_DTYP_CONTEXT:
2088 E1kLogX(uLevel, ("%s %s Context Transmit Descriptor %s\n",
2089 pThis->szPrf, pszDir, pszDir));
2090 E1kLogX(uLevel, (" IPCSS=%02X IPCSO=%02X IPCSE=%04X TUCSS=%02X TUCSO=%02X TUCSE=%04X\n",
2091 pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE,
2092 pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE));
2093 E1kLogX(uLevel, (" TUCMD:%s%s%s %s %s PAYLEN=%04x HDRLEN=%04x MSS=%04x STA: %s\n",
2094 pDesc->context.dw2.fIDE ? " IDE":"",
2095 pDesc->context.dw2.fRS ? " RS" :"",
2096 pDesc->context.dw2.fTSE ? " TSE":"",
2097 pDesc->context.dw2.fIP ? "IPv4":"IPv6",
2098 pDesc->context.dw2.fTCP ? "TCP":"UDP",
2099 pDesc->context.dw2.u20PAYLEN,
2100 pDesc->context.dw3.u8HDRLEN,
2101 pDesc->context.dw3.u16MSS,
2102 pDesc->context.dw3.fDD?"DD":""));
2103 break;
2104 case E1K_DTYP_DATA:
2105 E1kLogX(uLevel, ("%s %s Data Transmit Descriptor (%d bytes) %s\n",
2106 pThis->szPrf, pszDir, pDesc->data.cmd.u20DTALEN, pszDir));
2107 E1kLogX(uLevel, (" Address=%16LX DTALEN=%05X\n",
2108 pDesc->data.u64BufAddr,
2109 pDesc->data.cmd.u20DTALEN));
2110 E1kLogX(uLevel, (" DCMD:%s%s%s%s%s%s%s STA:%s%s%s POPTS:%s%s SPECIAL:%s VLAN=%03x PRI=%x\n",
2111 pDesc->data.cmd.fIDE ? " IDE" :"",
2112 pDesc->data.cmd.fVLE ? " VLE" :"",
2113 pDesc->data.cmd.fRPS ? " RPS" :"",
2114 pDesc->data.cmd.fRS ? " RS" :"",
2115 pDesc->data.cmd.fTSE ? " TSE" :"",
2116 pDesc->data.cmd.fIFCS? " IFCS":"",
2117 pDesc->data.cmd.fEOP ? " EOP" :"",
2118 pDesc->data.dw3.fDD ? " DD" :"",
2119 pDesc->data.dw3.fEC ? " EC" :"",
2120 pDesc->data.dw3.fLC ? " LC" :"",
2121 pDesc->data.dw3.fTXSM? " TXSM":"",
2122 pDesc->data.dw3.fIXSM? " IXSM":"",
2123 E1K_SPEC_CFI(pDesc->data.dw3.u16Special) ? "CFI" :"cfi",
2124 E1K_SPEC_VLAN(pDesc->data.dw3.u16Special),
2125 E1K_SPEC_PRI(pDesc->data.dw3.u16Special)));
2126 break;
2127 case E1K_DTYP_LEGACY:
2128 E1kLogX(uLevel, ("%s %s Legacy Transmit Descriptor (%d bytes) %s\n",
2129 pThis->szPrf, pszDir, pDesc->legacy.cmd.u16Length, pszDir));
2130 E1kLogX(uLevel, (" Address=%16LX DTALEN=%05X\n",
2131 pDesc->data.u64BufAddr,
2132 pDesc->legacy.cmd.u16Length));
2133 E1kLogX(uLevel, (" CMD:%s%s%s%s%s%s%s STA:%s%s%s CSO=%02x CSS=%02x SPECIAL:%s VLAN=%03x PRI=%x\n",
2134 pDesc->legacy.cmd.fIDE ? " IDE" :"",
2135 pDesc->legacy.cmd.fVLE ? " VLE" :"",
2136 pDesc->legacy.cmd.fRPS ? " RPS" :"",
2137 pDesc->legacy.cmd.fRS ? " RS" :"",
2138 pDesc->legacy.cmd.fIC ? " IC" :"",
2139 pDesc->legacy.cmd.fIFCS? " IFCS":"",
2140 pDesc->legacy.cmd.fEOP ? " EOP" :"",
2141 pDesc->legacy.dw3.fDD ? " DD" :"",
2142 pDesc->legacy.dw3.fEC ? " EC" :"",
2143 pDesc->legacy.dw3.fLC ? " LC" :"",
2144 pDesc->legacy.cmd.u8CSO,
2145 pDesc->legacy.dw3.u8CSS,
2146 E1K_SPEC_CFI(pDesc->legacy.dw3.u16Special) ? "CFI" :"cfi",
2147 E1K_SPEC_VLAN(pDesc->legacy.dw3.u16Special),
2148 E1K_SPEC_PRI(pDesc->legacy.dw3.u16Special)));
2149 break;
2150 default:
2151 E1kLog(("%s %s Invalid Transmit Descriptor %s\n",
2152 pThis->szPrf, pszDir, pszDir));
2153 break;
2154 }
2155}
2156
2157/**
2158 * Raise an interrupt later.
2159 *
2160 * @param pThis The device state structure.
2161 */
2162DECLINLINE(void) e1kPostponeInterrupt(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint64_t nsDeadline)
2163{
2164 if (!PDMDevHlpTimerIsActive(pDevIns, pThis->hIntTimer))
2165 PDMDevHlpTimerSetNano(pDevIns, pThis->hIntTimer, nsDeadline);
2166}
2167
2168/**
2169 * Raise interrupt if not masked.
2170 *
2171 * @param pThis The device state structure.
2172 */
2173static int e1kRaiseInterrupt(PPDMDEVINS pDevIns, PE1KSTATE pThis, int rcBusy, uint32_t u32IntCause = 0)
2174{
2175 int rc = e1kCsEnter(pThis, rcBusy);
2176 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2177 return rc;
2178
2179 E1K_INC_ISTAT_CNT(pThis->uStatIntTry);
2180 ICR |= u32IntCause;
2181 if (ICR & IMS)
2182 {
2183 if (pThis->fIntRaised)
2184 {
2185 E1K_INC_ISTAT_CNT(pThis->uStatIntSkip);
2186 E1kLog2(("%s e1kRaiseInterrupt: Already raised, skipped. ICR&IMS=%08x\n",
2187 pThis->szPrf, ICR & IMS));
2188 }
2189 else
2190 {
2191 uint64_t tsNow = PDMDevHlpTimerGet(pDevIns, pThis->hIntTimer);
2192 if (!!ITR && tsNow - pThis->u64AckedAt < ITR * 256
2193 && pThis->fItrEnabled && (pThis->fItrRxEnabled || !(ICR & ICR_RXT0)))
2194 {
2195 E1K_INC_ISTAT_CNT(pThis->uStatIntEarly);
2196 E1kLog2(("%s e1kRaiseInterrupt: Too early to raise again: %d ns < %d ns.\n",
2197 pThis->szPrf, (uint32_t)(tsNow - pThis->u64AckedAt), ITR * 256));
2198 e1kPostponeInterrupt(pDevIns, pThis, ITR * 256);
2199 }
2200 else
2201 {
2202
2203 /* Since we are delivering the interrupt now
2204 * there is no need to do it later -- stop the timer.
2205 */
2206 PDMDevHlpTimerStop(pDevIns, pThis->hIntTimer);
2207 E1K_INC_ISTAT_CNT(pThis->uStatInt);
2208 STAM_COUNTER_INC(&pThis->StatIntsRaised);
2209 /* Got at least one unmasked interrupt cause */
2210 pThis->fIntRaised = true;
2211 /* Raise(1) INTA(0) */
2212 E1kLogRel(("E1000: irq RAISED icr&mask=0x%x, icr=0x%x\n", ICR & IMS, ICR));
2213 PDMDevHlpPCISetIrq(pDevIns, 0, 1);
2214 E1kLog(("%s e1kRaiseInterrupt: Raised. ICR&IMS=%08x\n",
2215 pThis->szPrf, ICR & IMS));
2216 }
2217 }
2218 }
2219 else
2220 {
2221 E1K_INC_ISTAT_CNT(pThis->uStatIntMasked);
2222 E1kLog2(("%s e1kRaiseInterrupt: Not raising, ICR=%08x, IMS=%08x\n",
2223 pThis->szPrf, ICR, IMS));
2224 }
2225 e1kCsLeave(pThis);
2226 return VINF_SUCCESS;
2227}
2228
2229/**
2230 * Compute the physical address of the descriptor.
2231 *
2232 * @returns the physical address of the descriptor.
2233 *
2234 * @param baseHigh High-order 32 bits of descriptor table address.
2235 * @param baseLow Low-order 32 bits of descriptor table address.
2236 * @param idxDesc The descriptor index in the table.
2237 */
2238DECLINLINE(RTGCPHYS) e1kDescAddr(uint32_t baseHigh, uint32_t baseLow, uint32_t idxDesc)
2239{
2240 AssertCompile(sizeof(E1KRXDESC) == sizeof(E1KTXDESC));
2241 return ((uint64_t)baseHigh << 32) + baseLow + idxDesc * sizeof(E1KRXDESC);
2242}
2243
2244#ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */
2245/**
2246 * Advance the head pointer of the receive descriptor queue.
2247 *
2248 * @remarks RDH always points to the next available RX descriptor.
2249 *
2250 * @param pDevIns The device instance.
2251 * @param pThis The device state structure.
2252 */
2253DECLINLINE(void) e1kAdvanceRDH(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KRXDC pRxdc)
2254{
2255 Assert(e1kCsRxIsOwner(pThis));
2256 //e1kCsEnter(pThis, RT_SRC_POS);
2257 if (++pRxdc->rdh * sizeof(E1KRXDESC) >= pRxdc->rdlen)
2258 pRxdc->rdh = 0;
2259 RDH = pRxdc->rdh; /* Sync the actual register and RXDC */
2260#ifdef E1K_WITH_RXD_CACHE
2261 /*
2262 * We need to fetch descriptors now as the guest may advance RDT all the way
2263 * to RDH as soon as we generate RXDMT0 interrupt. This is mostly to provide
2264 * compatibility with Phar Lap ETS, see @bugref(7346). Note that we do not
2265 * check if the receiver is enabled. It must be, otherwise we won't get here
2266 * in the first place.
2267 *
2268 * Note that we should have moved both RDH and iRxDCurrent by now.
2269 */
2270 if (e1kRxDIsCacheEmpty(pThis))
2271 {
2272 /* Cache is empty, reset it and check if we can fetch more. */
2273 pThis->iRxDCurrent = pThis->nRxDFetched = 0;
2274 E1kLog3(("%s e1kAdvanceRDH: Rx cache is empty, RDH=%x RDT=%x "
2275 "iRxDCurrent=%x nRxDFetched=%x\n",
2276 pThis->szPrf, pRxdc->rdh, pRxdc->rdt, pThis->iRxDCurrent, pThis->nRxDFetched));
2277 e1kRxDPrefetch(pDevIns, pThis, pRxdc);
2278 }
2279#endif /* E1K_WITH_RXD_CACHE */
2280 /*
2281 * Compute current receive queue length and fire RXDMT0 interrupt
2282 * if we are low on receive buffers
2283 */
2284 uint32_t uRQueueLen = pRxdc->rdh>pRxdc->rdt ? pRxdc->rdlen/sizeof(E1KRXDESC)-pRxdc->rdh+pRxdc->rdt : pRxdc->rdt-pRxdc->rdh;
2285 /*
2286 * The minimum threshold is controlled by RDMTS bits of RCTL:
2287 * 00 = 1/2 of RDLEN
2288 * 01 = 1/4 of RDLEN
2289 * 10 = 1/8 of RDLEN
2290 * 11 = reserved
2291 */
2292 uint32_t uMinRQThreshold = pRxdc->rdlen / sizeof(E1KRXDESC) / (2 << GET_BITS(RCTL, RDMTS));
2293 if (uRQueueLen <= uMinRQThreshold)
2294 {
2295 E1kLogRel(("E1000: low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x\n", pRxdc->rdh, pRxdc->rdt, uRQueueLen, uMinRQThreshold));
2296 E1kLog2(("%s Low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x, raise an interrupt\n",
2297 pThis->szPrf, pRxdc->rdh, pRxdc->rdt, uRQueueLen, uMinRQThreshold));
2298 E1K_INC_ISTAT_CNT(pThis->uStatIntRXDMT0);
2299 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_RXDMT0);
2300 }
2301 E1kLog2(("%s e1kAdvanceRDH: at exit RDH=%x RDT=%x len=%x\n",
2302 pThis->szPrf, pRxdc->rdh, pRxdc->rdt, uRQueueLen));
2303 //e1kCsLeave(pThis);
2304}
2305#endif /* IN_RING3 */
2306
2307#ifdef E1K_WITH_RXD_CACHE
2308
2309# ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */
2310
2311/**
2312 * Obtain the next RX descriptor from RXD cache, fetching descriptors from the
2313 * RX ring if the cache is empty.
2314 *
2315 * Note that we cannot advance the cache pointer (iRxDCurrent) yet as it will
2316 * go out of sync with RDH which will cause trouble when EMT checks if the
2317 * cache is empty to do pre-fetch @bugref(6217).
2318 *
2319 * @param pDevIns The device instance.
2320 * @param pThis The device state structure.
2321 * @thread RX
2322 */
2323DECLINLINE(E1KRXDESC *) e1kRxDGet(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KRXDC pRxdc)
2324{
2325 Assert(e1kCsRxIsOwner(pThis));
2326 /* Check the cache first. */
2327 if (pThis->iRxDCurrent < pThis->nRxDFetched)
2328 return &pThis->aRxDescriptors[pThis->iRxDCurrent];
2329 /* Cache is empty, reset it and check if we can fetch more. */
2330 pThis->iRxDCurrent = pThis->nRxDFetched = 0;
2331 if (e1kRxDPrefetch(pDevIns, pThis, pRxdc))
2332 return &pThis->aRxDescriptors[pThis->iRxDCurrent];
2333 /* Out of Rx descriptors. */
2334 return NULL;
2335}
2336
2337
2338/**
2339 * Return the RX descriptor obtained with e1kRxDGet() and advance the cache
2340 * pointer. The descriptor gets written back to the RXD ring.
2341 *
2342 * @param pDevIns The device instance.
2343 * @param pThis The device state structure.
2344 * @param pDesc The descriptor being "returned" to the RX ring.
2345 * @thread RX
2346 */
2347DECLINLINE(void) e1kRxDPut(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KRXDESC* pDesc, PE1KRXDC pRxdc)
2348{
2349 Assert(e1kCsRxIsOwner(pThis));
2350 pThis->iRxDCurrent++;
2351 // Assert(pDesc >= pThis->aRxDescriptors);
2352 // Assert(pDesc < pThis->aRxDescriptors + E1K_RXD_CACHE_SIZE);
2353 // uint64_t addr = e1kDescAddr(RDBAH, RDBAL, RDH);
2354 // uint32_t rdh = RDH;
2355 // Assert(pThis->aRxDescAddr[pDesc - pThis->aRxDescriptors] == addr);
2356 PDMDevHlpPCIPhysWrite(pDevIns, e1kDescAddr(RDBAH, RDBAL, pRxdc->rdh), pDesc, sizeof(E1KRXDESC));
2357 /*
2358 * We need to print the descriptor before advancing RDH as it may fetch new
2359 * descriptors into the cache.
2360 */
2361 e1kPrintRDesc(pThis, pDesc);
2362 e1kAdvanceRDH(pDevIns, pThis, pRxdc);
2363}
2364
2365/**
2366 * Store a fragment of received packet at the specifed address.
2367 *
2368 * @param pDevIns The device instance.
2369 * @param pThis The device state structure.
2370 * @param pDesc The next available RX descriptor.
2371 * @param pvBuf The fragment.
2372 * @param cb The size of the fragment.
2373 */
2374static void e1kStoreRxFragment(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KRXDESC *pDesc, const void *pvBuf, size_t cb)
2375{
2376 STAM_PROFILE_ADV_START(&pThis->StatReceiveStore, a);
2377 E1kLog2(("%s e1kStoreRxFragment: store fragment of %04X at %016LX, EOP=%d\n",
2378 pThis->szPrf, cb, pDesc->u64BufAddr, pDesc->status.fEOP));
2379 PDMDevHlpPCIPhysWrite(pDevIns, pDesc->u64BufAddr, pvBuf, cb);
2380 pDesc->u16Length = (uint16_t)cb;
2381 Assert(pDesc->u16Length == cb);
2382 STAM_PROFILE_ADV_STOP(&pThis->StatReceiveStore, a);
2383 RT_NOREF(pThis);
2384}
2385
2386# endif /* IN_RING3 */
2387
2388#else /* !E1K_WITH_RXD_CACHE */
2389
2390/**
2391 * Store a fragment of received packet that fits into the next available RX
2392 * buffer.
2393 *
2394 * @remarks Trigger the RXT0 interrupt if it is the last fragment of the packet.
2395 *
2396 * @param pDevIns The device instance.
2397 * @param pThis The device state structure.
2398 * @param pDesc The next available RX descriptor.
2399 * @param pvBuf The fragment.
2400 * @param cb The size of the fragment.
2401 */
2402static void e1kStoreRxFragment(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KRXDESC *pDesc, const void *pvBuf, size_t cb)
2403{
2404 STAM_PROFILE_ADV_START(&pThis->StatReceiveStore, a);
2405 E1kLog2(("%s e1kStoreRxFragment: store fragment of %04X at %016LX, EOP=%d\n", pThis->szPrf, cb, pDesc->u64BufAddr, pDesc->status.fEOP));
2406 PDMDevHlpPCIPhysWrite(pDevIns, pDesc->u64BufAddr, pvBuf, cb);
2407 pDesc->u16Length = (uint16_t)cb; Assert(pDesc->u16Length == cb);
2408 /* Write back the descriptor */
2409 PDMDevHlpPCIPhysWrite(pDevIns, e1kDescAddr(RDBAH, RDBAL, RDH), pDesc, sizeof(E1KRXDESC));
2410 e1kPrintRDesc(pThis, pDesc);
2411 E1kLogRel(("E1000: Wrote back RX desc, RDH=%x\n", RDH));
2412 /* Advance head */
2413 e1kAdvanceRDH(pDevIns, pThis);
2414 //E1kLog2(("%s e1kStoreRxFragment: EOP=%d RDTR=%08X RADV=%08X\n", pThis->szPrf, pDesc->fEOP, RDTR, RADV));
2415 if (pDesc->status.fEOP)
2416 {
2417 /* Complete packet has been stored -- it is time to let the guest know. */
2418#ifdef E1K_USE_RX_TIMERS
2419 if (RDTR)
2420 {
2421 /* Arm the timer to fire in RDTR usec (discard .024) */
2422 e1kArmTimer(pDevIns, pThis, pThis->hRIDTimer, RDTR);
2423 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
2424 if (RADV != 0 && !PDMDevHlpTimerIsActive(pDevIns, pThis->CTX_SUFF(pRADTimer)))
2425 e1kArmTimer(pThis, pThis->hRADTimer, RADV);
2426 }
2427 else
2428 {
2429#endif
2430 /* 0 delay means immediate interrupt */
2431 E1K_INC_ISTAT_CNT(pThis->uStatIntRx);
2432 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_RXT0);
2433#ifdef E1K_USE_RX_TIMERS
2434 }
2435#endif
2436 }
2437 STAM_PROFILE_ADV_STOP(&pThis->StatReceiveStore, a);
2438}
2439
2440#endif /* !E1K_WITH_RXD_CACHE */
2441
2442/**
2443 * Returns true if it is a broadcast packet.
2444 *
2445 * @returns true if destination address indicates broadcast.
2446 * @param pvBuf The ethernet packet.
2447 */
2448DECLINLINE(bool) e1kIsBroadcast(const void *pvBuf)
2449{
2450 static const uint8_t s_abBcastAddr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
2451 return memcmp(pvBuf, s_abBcastAddr, sizeof(s_abBcastAddr)) == 0;
2452}
2453
2454/**
2455 * Returns true if it is a multicast packet.
2456 *
2457 * @remarks returns true for broadcast packets as well.
2458 * @returns true if destination address indicates multicast.
2459 * @param pvBuf The ethernet packet.
2460 */
2461DECLINLINE(bool) e1kIsMulticast(const void *pvBuf)
2462{
2463 return (*(char*)pvBuf) & 1;
2464}
2465
2466#ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */
2467/**
2468 * Set IXSM, IPCS and TCPCS flags according to the packet type.
2469 *
2470 * @remarks We emulate checksum offloading for major packets types only.
2471 *
2472 * @returns VBox status code.
2473 * @param pThis The device state structure.
2474 * @param pFrame The available data.
2475 * @param cb Number of bytes available in the buffer.
2476 * @param status Bit fields containing status info.
2477 */
2478static int e1kRxChecksumOffload(PE1KSTATE pThis, const uint8_t *pFrame, size_t cb, E1KRXDST *pStatus)
2479{
2480 /** @todo
2481 * It is not safe to bypass checksum verification for packets coming
2482 * from real wire. We currently unable to tell where packets are
2483 * coming from so we tell the driver to ignore our checksum flags
2484 * and do verification in software.
2485 */
2486# if 0
2487 uint16_t uEtherType = ntohs(*(uint16_t*)(pFrame + 12));
2488
2489 E1kLog2(("%s e1kRxChecksumOffload: EtherType=%x\n", pThis->szPrf, uEtherType));
2490
2491 switch (uEtherType)
2492 {
2493 case 0x800: /* IPv4 */
2494 {
2495 pStatus->fIXSM = false;
2496 pStatus->fIPCS = true;
2497 PRTNETIPV4 pIpHdr4 = (PRTNETIPV4)(pFrame + 14);
2498 /* TCP/UDP checksum offloading works with TCP and UDP only */
2499 pStatus->fTCPCS = pIpHdr4->ip_p == 6 || pIpHdr4->ip_p == 17;
2500 break;
2501 }
2502 case 0x86DD: /* IPv6 */
2503 pStatus->fIXSM = false;
2504 pStatus->fIPCS = false;
2505 pStatus->fTCPCS = true;
2506 break;
2507 default: /* ARP, VLAN, etc. */
2508 pStatus->fIXSM = true;
2509 break;
2510 }
2511# else
2512 pStatus->fIXSM = true;
2513 RT_NOREF_PV(pThis); RT_NOREF_PV(pFrame); RT_NOREF_PV(cb);
2514# endif
2515 return VINF_SUCCESS;
2516}
2517#endif /* IN_RING3 */
2518
2519/**
2520 * Pad and store received packet.
2521 *
2522 * @remarks Make sure that the packet appears to upper layer as one coming
2523 * from real Ethernet: pad it and insert FCS.
2524 *
2525 * @returns VBox status code.
2526 * @param pDevIns The device instance.
2527 * @param pThis The device state structure.
2528 * @param pvBuf The available data.
2529 * @param cb Number of bytes available in the buffer.
2530 * @param status Bit fields containing status info.
2531 */
2532static int e1kHandleRxPacket(PPDMDEVINS pDevIns, PE1KSTATE pThis, const void *pvBuf, size_t cb, E1KRXDST status)
2533{
2534#if defined(IN_RING3) /** @todo Remove this extra copying, it's gonna make us run out of kernel / hypervisor stack! */
2535 uint8_t rxPacket[E1K_MAX_RX_PKT_SIZE];
2536 uint8_t *ptr = rxPacket;
2537# ifdef E1K_WITH_RXD_CACHE
2538 E1KRXDC rxdc;
2539# endif /* E1K_WITH_RXD_CACHE */
2540
2541 int rc = e1kCsRxEnter(pThis, VERR_SEM_BUSY);
2542 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2543 return rc;
2544# ifdef E1K_WITH_RXD_CACHE
2545 if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kHandleRxPacket")))
2546 {
2547 e1kCsRxLeave(pThis);
2548 E1kLog(("%s e1kHandleRxPacket: failed to update Rx context, returning VINF_SUCCESS\n", pThis->szPrf));
2549 return VINF_SUCCESS;
2550 }
2551# endif /* E1K_WITH_RXD_CACHE */
2552
2553 if (cb > 70) /* unqualified guess */
2554 pThis->led.Asserted.s.fReading = pThis->led.Actual.s.fReading = 1;
2555
2556 Assert(cb <= E1K_MAX_RX_PKT_SIZE);
2557 Assert(cb > 16);
2558 size_t cbMax = ((RCTL & RCTL_LPE) ? E1K_MAX_RX_PKT_SIZE - 4 : 1518) - (status.fVP ? 0 : 4);
2559 E1kLog3(("%s Max RX packet size is %u\n", pThis->szPrf, cbMax));
2560 if (status.fVP)
2561 {
2562 /* VLAN packet -- strip VLAN tag in VLAN mode */
2563 if ((CTRL & CTRL_VME) && cb > 16)
2564 {
2565 uint16_t *u16Ptr = (uint16_t*)pvBuf;
2566 memcpy(rxPacket, pvBuf, 12); /* Copy src and dst addresses */
2567 status.u16Special = RT_BE2H_U16(u16Ptr[7]); /* Extract VLAN tag */
2568 memcpy(rxPacket + 12, (uint8_t*)pvBuf + 16, cb - 16); /* Copy the rest of the packet */
2569 cb -= 4;
2570 E1kLog3(("%s Stripped tag for VLAN %u (cb=%u)\n",
2571 pThis->szPrf, status.u16Special, cb));
2572 }
2573 else
2574 {
2575 status.fVP = false; /* Set VP only if we stripped the tag */
2576 memcpy(rxPacket, pvBuf, cb);
2577 }
2578 }
2579 else
2580 memcpy(rxPacket, pvBuf, cb);
2581 /* Pad short packets */
2582 if (cb < 60)
2583 {
2584 memset(rxPacket + cb, 0, 60 - cb);
2585 cb = 60;
2586 }
2587 if (!(RCTL & RCTL_SECRC) && cb <= cbMax)
2588 {
2589 STAM_PROFILE_ADV_START(&pThis->StatReceiveCRC, a);
2590 /*
2591 * Add FCS if CRC stripping is not enabled. Since the value of CRC
2592 * is ignored by most of drivers we may as well save us the trouble
2593 * of calculating it (see EthernetCRC CFGM parameter).
2594 */
2595 if (pThis->fEthernetCRC)
2596 *(uint32_t*)(rxPacket + cb) = RTCrc32(rxPacket, cb);
2597 cb += sizeof(uint32_t);
2598 STAM_PROFILE_ADV_STOP(&pThis->StatReceiveCRC, a);
2599 E1kLog3(("%s Added FCS (cb=%u)\n", pThis->szPrf, cb));
2600 }
2601 /* Compute checksum of complete packet */
2602 size_t cbCSumStart = RT_MIN(GET_BITS(RXCSUM, PCSS), cb);
2603 uint16_t checksum = e1kCSum16(rxPacket + cbCSumStart, cb - cbCSumStart);
2604 e1kRxChecksumOffload(pThis, rxPacket, cb, &status);
2605
2606 /* Update stats */
2607 E1K_INC_CNT32(GPRC);
2608 if (e1kIsBroadcast(pvBuf))
2609 E1K_INC_CNT32(BPRC);
2610 else if (e1kIsMulticast(pvBuf))
2611 E1K_INC_CNT32(MPRC);
2612 /* Update octet receive counter */
2613 E1K_ADD_CNT64(GORCL, GORCH, cb);
2614 STAM_REL_COUNTER_ADD(&pThis->StatReceiveBytes, cb);
2615 if (cb == 64)
2616 E1K_INC_CNT32(PRC64);
2617 else if (cb < 128)
2618 E1K_INC_CNT32(PRC127);
2619 else if (cb < 256)
2620 E1K_INC_CNT32(PRC255);
2621 else if (cb < 512)
2622 E1K_INC_CNT32(PRC511);
2623 else if (cb < 1024)
2624 E1K_INC_CNT32(PRC1023);
2625 else
2626 E1K_INC_CNT32(PRC1522);
2627
2628 E1K_INC_ISTAT_CNT(pThis->uStatRxFrm);
2629
2630# ifdef E1K_WITH_RXD_CACHE
2631 while (cb > 0)
2632 {
2633 E1KRXDESC *pDesc = e1kRxDGet(pDevIns, pThis, &rxdc);
2634
2635 if (pDesc == NULL)
2636 {
2637 E1kLog(("%s Out of receive buffers, dropping the packet "
2638 "(cb=%u, in_cache=%u, RDH=%x RDT=%x)\n",
2639 pThis->szPrf, cb, e1kRxDInCache(pThis), rxdc.rdh, rxdc.rdt));
2640 break;
2641 }
2642# else /* !E1K_WITH_RXD_CACHE */
2643 if (RDH == RDT)
2644 {
2645 E1kLog(("%s Out of receive buffers, dropping the packet\n",
2646 pThis->szPrf));
2647 }
2648 /* Store the packet to receive buffers */
2649 while (RDH != RDT)
2650 {
2651 /* Load the descriptor pointed by head */
2652 E1KRXDESC desc, *pDesc = &desc;
2653 PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(RDBAH, RDBAL, RDH), &desc, sizeof(desc));
2654# endif /* !E1K_WITH_RXD_CACHE */
2655 if (pDesc->u64BufAddr)
2656 {
2657 uint16_t u16RxBufferSize = pThis->u16RxBSize; /* see @bugref{9427} */
2658
2659 /* Update descriptor */
2660 pDesc->status = status;
2661 pDesc->u16Checksum = checksum;
2662 pDesc->status.fDD = true;
2663
2664 /*
2665 * We need to leave Rx critical section here or we risk deadlocking
2666 * with EMT in e1kRegWriteRDT when the write is to an unallocated
2667 * page or has an access handler associated with it.
2668 * Note that it is safe to leave the critical section here since
2669 * e1kRegWriteRDT() never modifies RDH. It never touches already
2670 * fetched RxD cache entries either.
2671 */
2672 if (cb > u16RxBufferSize)
2673 {
2674 pDesc->status.fEOP = false;
2675 e1kCsRxLeave(pThis);
2676 e1kStoreRxFragment(pDevIns, pThis, pDesc, ptr, u16RxBufferSize);
2677 rc = e1kCsRxEnter(pThis, VERR_SEM_BUSY);
2678 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2679 return rc;
2680# ifdef E1K_WITH_RXD_CACHE
2681 if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kHandleRxPacket")))
2682 {
2683 e1kCsRxLeave(pThis);
2684 E1kLog(("%s e1kHandleRxPacket: failed to update Rx context, returning VINF_SUCCESS\n", pThis->szPrf));
2685 return VINF_SUCCESS;
2686 }
2687# endif /* E1K_WITH_RXD_CACHE */
2688 ptr += u16RxBufferSize;
2689 cb -= u16RxBufferSize;
2690 }
2691 else
2692 {
2693 pDesc->status.fEOP = true;
2694 e1kCsRxLeave(pThis);
2695 e1kStoreRxFragment(pDevIns, pThis, pDesc, ptr, cb);
2696# ifdef E1K_WITH_RXD_CACHE
2697 rc = e1kCsRxEnter(pThis, VERR_SEM_BUSY);
2698 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2699 return rc;
2700 if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kHandleRxPacket")))
2701 {
2702 e1kCsRxLeave(pThis);
2703 E1kLog(("%s e1kHandleRxPacket: failed to update Rx context, returning VINF_SUCCESS\n", pThis->szPrf));
2704 return VINF_SUCCESS;
2705 }
2706 cb = 0;
2707# else /* !E1K_WITH_RXD_CACHE */
2708 pThis->led.Actual.s.fReading = 0;
2709 return VINF_SUCCESS;
2710# endif /* !E1K_WITH_RXD_CACHE */
2711 }
2712 /*
2713 * Note: RDH is advanced by e1kStoreRxFragment if E1K_WITH_RXD_CACHE
2714 * is not defined.
2715 */
2716 }
2717# ifdef E1K_WITH_RXD_CACHE
2718 /* Write back the descriptor. */
2719 pDesc->status.fDD = true;
2720 e1kRxDPut(pDevIns, pThis, pDesc, &rxdc);
2721# else /* !E1K_WITH_RXD_CACHE */
2722 else
2723 {
2724 /* Write back the descriptor. */
2725 pDesc->status.fDD = true;
2726 PDMDevHlpPCIPhysWrite(pDevIns, e1kDescAddr(RDBAH, RDBAL, RDH), pDesc, sizeof(E1KRXDESC));
2727 e1kAdvanceRDH(pDevIns, pThis);
2728 }
2729# endif /* !E1K_WITH_RXD_CACHE */
2730 }
2731
2732 if (cb > 0)
2733 E1kLog(("%s Out of receive buffers, dropping %u bytes", pThis->szPrf, cb));
2734
2735 pThis->led.Actual.s.fReading = 0;
2736
2737 e1kCsRxLeave(pThis);
2738# ifdef E1K_WITH_RXD_CACHE
2739 /* Complete packet has been stored -- it is time to let the guest know. */
2740# ifdef E1K_USE_RX_TIMERS
2741 if (RDTR)
2742 {
2743 /* Arm the timer to fire in RDTR usec (discard .024) */
2744 e1kArmTimer(pThis, pThis->hRIDTimer, RDTR);
2745 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
2746 if (RADV != 0 && !PDMDevHlpTimerIsActive(pDevIns, pThis->hRADTimer))
2747 e1kArmTimer(pThis, pThis->hRADTimer, RADV);
2748 }
2749 else
2750 {
2751# endif /* E1K_USE_RX_TIMERS */
2752 /* 0 delay means immediate interrupt */
2753 E1K_INC_ISTAT_CNT(pThis->uStatIntRx);
2754 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_RXT0);
2755# ifdef E1K_USE_RX_TIMERS
2756 }
2757# endif /* E1K_USE_RX_TIMERS */
2758# endif /* E1K_WITH_RXD_CACHE */
2759
2760 return VINF_SUCCESS;
2761#else /* !IN_RING3 */
2762 RT_NOREF(pDevIns, pThis, pvBuf, cb, status);
2763 return VERR_INTERNAL_ERROR_2;
2764#endif /* !IN_RING3 */
2765}
2766
2767
2768#ifdef IN_RING3
2769/**
2770 * Bring the link up after the configured delay, 5 seconds by default.
2771 *
2772 * @param pDevIns The device instance.
2773 * @param pThis The device state structure.
2774 * @thread any
2775 */
2776DECLINLINE(void) e1kBringLinkUpDelayed(PPDMDEVINS pDevIns, PE1KSTATE pThis)
2777{
2778 E1kLog(("%s Will bring up the link in %d seconds...\n",
2779 pThis->szPrf, pThis->cMsLinkUpDelay / 1000));
2780 e1kArmTimer(pDevIns, pThis, pThis->hLUTimer, pThis->cMsLinkUpDelay * 1000);
2781}
2782
2783/**
2784 * Bring up the link immediately.
2785 *
2786 * @param pDevIns The device instance.
2787 * @param pThis The device state structure.
2788 * @param pThisCC The current context instance data.
2789 */
2790DECLINLINE(void) e1kR3LinkUp(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC)
2791{
2792 E1kLog(("%s Link is up\n", pThis->szPrf));
2793 STATUS |= STATUS_LU;
2794 Phy::setLinkStatus(&pThis->phy, true);
2795 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_LSC);
2796 if (pThisCC->pDrvR3)
2797 pThisCC->pDrvR3->pfnNotifyLinkChanged(pThisCC->pDrvR3, PDMNETWORKLINKSTATE_UP);
2798 /* Trigger processing of pending TX descriptors (see @bugref{8942}). */
2799 PDMDevHlpTaskTrigger(pDevIns, pThis->hTxTask);
2800}
2801
2802/**
2803 * Bring down the link immediately.
2804 *
2805 * @param pDevIns The device instance.
2806 * @param pThis The device state structure.
2807 * @param pThisCC The current context instance data.
2808 */
2809DECLINLINE(void) e1kR3LinkDown(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC)
2810{
2811 E1kLog(("%s Link is down\n", pThis->szPrf));
2812 STATUS &= ~STATUS_LU;
2813#ifdef E1K_LSC_ON_RESET
2814 Phy::setLinkStatus(&pThis->phy, false);
2815#endif /* E1K_LSC_ON_RESET */
2816 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_LSC);
2817 if (pThisCC->pDrvR3)
2818 pThisCC->pDrvR3->pfnNotifyLinkChanged(pThisCC->pDrvR3, PDMNETWORKLINKSTATE_DOWN);
2819}
2820
2821/**
2822 * Bring down the link temporarily.
2823 *
2824 * @param pDevIns The device instance.
2825 * @param pThis The device state structure.
2826 * @param pThisCC The current context instance data.
2827 */
2828DECLINLINE(void) e1kR3LinkDownTemp(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC)
2829{
2830 E1kLog(("%s Link is down temporarily\n", pThis->szPrf));
2831 STATUS &= ~STATUS_LU;
2832 Phy::setLinkStatus(&pThis->phy, false);
2833 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_LSC);
2834 /*
2835 * Notifying the associated driver that the link went down (even temporarily)
2836 * seems to be the right thing, but it was not done before. This may cause
2837 * a regression if the driver does not expect the link to go down as a result
2838 * of sending PDMNETWORKLINKSTATE_DOWN_RESUME to this device. Earlier versions
2839 * of code notified the driver that the link was up! See @bugref{7057}.
2840 */
2841 if (pThisCC->pDrvR3)
2842 pThisCC->pDrvR3->pfnNotifyLinkChanged(pThisCC->pDrvR3, PDMNETWORKLINKSTATE_DOWN);
2843 e1kBringLinkUpDelayed(pDevIns, pThis);
2844}
2845#endif /* IN_RING3 */
2846
2847#if 0 /* unused */
2848/**
2849 * Read handler for Device Status register.
2850 *
2851 * Get the link status from PHY.
2852 *
2853 * @returns VBox status code.
2854 *
2855 * @param pThis The device state structure.
2856 * @param offset Register offset in memory-mapped frame.
2857 * @param index Register index in register array.
2858 * @param mask Used to implement partial reads (8 and 16-bit).
2859 */
2860static int e1kRegReadCTRL(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
2861{
2862 E1kLog(("%s e1kRegReadCTRL: mdio dir=%s mdc dir=%s mdc=%d\n",
2863 pThis->szPrf, (CTRL & CTRL_MDIO_DIR)?"OUT":"IN ",
2864 (CTRL & CTRL_MDC_DIR)?"OUT":"IN ", !!(CTRL & CTRL_MDC)));
2865 if ((CTRL & CTRL_MDIO_DIR) == 0 && (CTRL & CTRL_MDC))
2866 {
2867 /* MDC is high and MDIO pin is used for input, read MDIO pin from PHY */
2868 if (Phy::readMDIO(&pThis->phy))
2869 *pu32Value = CTRL | CTRL_MDIO;
2870 else
2871 *pu32Value = CTRL & ~CTRL_MDIO;
2872 E1kLog(("%s e1kRegReadCTRL: Phy::readMDIO(%d)\n",
2873 pThis->szPrf, !!(*pu32Value & CTRL_MDIO)));
2874 }
2875 else
2876 {
2877 /* MDIO pin is used for output, ignore it */
2878 *pu32Value = CTRL;
2879 }
2880 return VINF_SUCCESS;
2881}
2882#endif /* unused */
2883
2884/**
2885 * A callback used by PHY to indicate that the link needs to be updated due to
2886 * reset of PHY.
2887 *
2888 * @param pDevIns The device instance.
2889 * @thread any
2890 */
2891void e1kPhyLinkResetCallback(PPDMDEVINS pDevIns)
2892{
2893 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
2894
2895 /* Make sure we have cable connected and MAC can talk to PHY */
2896 if (pThis->fCableConnected && (CTRL & CTRL_SLU))
2897 e1kArmTimer(pDevIns, pThis, pThis->hLUTimer, E1K_INIT_LINKUP_DELAY_US);
2898}
2899
2900/**
2901 * Write handler for Device Control register.
2902 *
2903 * Handles reset.
2904 *
2905 * @param pThis The device state structure.
2906 * @param offset Register offset in memory-mapped frame.
2907 * @param index Register index in register array.
2908 * @param value The value to store.
2909 * @param mask Used to implement partial writes (8 and 16-bit).
2910 * @thread EMT
2911 */
2912static int e1kRegWriteCTRL(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
2913{
2914 int rc = VINF_SUCCESS;
2915
2916 if (value & CTRL_RESET)
2917 { /* RST */
2918#ifndef IN_RING3
2919 return VINF_IOM_R3_MMIO_WRITE;
2920#else
2921 e1kR3HardReset(pDevIns, pThis, PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC));
2922#endif
2923 }
2924 else
2925 {
2926#ifdef E1K_LSC_ON_SLU
2927 /*
2928 * When the guest changes 'Set Link Up' bit from 0 to 1 we check if
2929 * the link is down and the cable is connected, and if they are we
2930 * bring the link up, see @bugref{8624}.
2931 */
2932 if ( (value & CTRL_SLU)
2933 && !(CTRL & CTRL_SLU)
2934 && pThis->fCableConnected
2935 && !(STATUS & STATUS_LU))
2936 {
2937 /* It should take about 2 seconds for the link to come up */
2938 e1kArmTimer(pDevIns, pThis, pThis->hLUTimer, E1K_INIT_LINKUP_DELAY_US);
2939 }
2940#else /* !E1K_LSC_ON_SLU */
2941 if ( (value & CTRL_SLU)
2942 && !(CTRL & CTRL_SLU)
2943 && pThis->fCableConnected
2944 && !PDMDevHlpTimerIsActive(pDevIns, pThis->hLUTimer))
2945 {
2946 /* PXE does not use LSC interrupts, see @bugref{9113}. */
2947 STATUS |= STATUS_LU;
2948 }
2949#endif /* !E1K_LSC_ON_SLU */
2950 if ((value & CTRL_VME) != (CTRL & CTRL_VME))
2951 {
2952 E1kLog(("%s VLAN Mode %s\n", pThis->szPrf, (value & CTRL_VME) ? "Enabled" : "Disabled"));
2953 }
2954 Log7(("%s e1kRegWriteCTRL: mdio dir=%s mdc dir=%s mdc=%s mdio=%d\n",
2955 pThis->szPrf, (value & CTRL_MDIO_DIR)?"OUT":"IN ",
2956 (value & CTRL_MDC_DIR)?"OUT":"IN ", (value & CTRL_MDC)?"HIGH":"LOW ", !!(value & CTRL_MDIO)));
2957 if (value & CTRL_MDC)
2958 {
2959 if (value & CTRL_MDIO_DIR)
2960 {
2961 Log7(("%s e1kRegWriteCTRL: Phy::writeMDIO(%d)\n", pThis->szPrf, !!(value & CTRL_MDIO)));
2962 /* MDIO direction pin is set to output and MDC is high, write MDIO pin value to PHY */
2963 Phy::writeMDIO(&pThis->phy, !!(value & CTRL_MDIO), pDevIns);
2964 }
2965 else
2966 {
2967 if (Phy::readMDIO(&pThis->phy))
2968 value |= CTRL_MDIO;
2969 else
2970 value &= ~CTRL_MDIO;
2971 Log7(("%s e1kRegWriteCTRL: Phy::readMDIO(%d)\n", pThis->szPrf, !!(value & CTRL_MDIO)));
2972 }
2973 }
2974 rc = e1kRegWriteDefault(pDevIns, pThis, offset, index, value);
2975 }
2976
2977 return rc;
2978}
2979
2980/**
2981 * Write handler for EEPROM/Flash Control/Data register.
2982 *
2983 * Handles EEPROM access requests; forwards writes to EEPROM device if access has been granted.
2984 *
2985 * @param pThis The device state structure.
2986 * @param offset Register offset in memory-mapped frame.
2987 * @param index Register index in register array.
2988 * @param value The value to store.
2989 * @param mask Used to implement partial writes (8 and 16-bit).
2990 * @thread EMT
2991 */
2992static int e1kRegWriteEECD(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
2993{
2994 RT_NOREF(pDevIns, offset, index);
2995#ifdef IN_RING3
2996 /* So far we are concerned with lower byte only */
2997 if ((EECD & EECD_EE_GNT) || pThis->eChip == E1K_CHIP_82543GC)
2998 {
2999 /* Access to EEPROM granted -- forward 4-wire bits to EEPROM device */
3000 /* Note: 82543GC does not need to request EEPROM access */
3001 STAM_PROFILE_ADV_START(&pThis->StatEEPROMWrite, a);
3002 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
3003 pThisCC->eeprom.write(value & EECD_EE_WIRES);
3004 STAM_PROFILE_ADV_STOP(&pThis->StatEEPROMWrite, a);
3005 }
3006 if (value & EECD_EE_REQ)
3007 EECD |= EECD_EE_REQ|EECD_EE_GNT;
3008 else
3009 EECD &= ~EECD_EE_GNT;
3010 //e1kRegWriteDefault(pThis, offset, index, value );
3011
3012 return VINF_SUCCESS;
3013#else /* !IN_RING3 */
3014 RT_NOREF(pThis, value);
3015 return VINF_IOM_R3_MMIO_WRITE;
3016#endif /* !IN_RING3 */
3017}
3018
3019/**
3020 * Read handler for EEPROM/Flash Control/Data register.
3021 *
3022 * Lower 4 bits come from EEPROM device if EEPROM access has been granted.
3023 *
3024 * @returns VBox status code.
3025 *
3026 * @param pThis The device state structure.
3027 * @param offset Register offset in memory-mapped frame.
3028 * @param index Register index in register array.
3029 * @param mask Used to implement partial reads (8 and 16-bit).
3030 * @thread EMT
3031 */
3032static int e1kRegReadEECD(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
3033{
3034#ifdef IN_RING3
3035 uint32_t value = 0; /* Get rid of false positive in parfait. */
3036 int rc = e1kRegReadDefault(pDevIns, pThis, offset, index, &value);
3037 if (RT_SUCCESS(rc))
3038 {
3039 if ((value & EECD_EE_GNT) || pThis->eChip == E1K_CHIP_82543GC)
3040 {
3041 /* Note: 82543GC does not need to request EEPROM access */
3042 /* Access to EEPROM granted -- get 4-wire bits to EEPROM device */
3043 STAM_PROFILE_ADV_START(&pThis->StatEEPROMRead, a);
3044 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
3045 value |= pThisCC->eeprom.read();
3046 STAM_PROFILE_ADV_STOP(&pThis->StatEEPROMRead, a);
3047 }
3048 *pu32Value = value;
3049 }
3050
3051 return rc;
3052#else /* !IN_RING3 */
3053 RT_NOREF_PV(pDevIns); RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); RT_NOREF_PV(pu32Value);
3054 return VINF_IOM_R3_MMIO_READ;
3055#endif /* !IN_RING3 */
3056}
3057
3058/**
3059 * Write handler for EEPROM Read register.
3060 *
3061 * Handles EEPROM word access requests, reads EEPROM and stores the result
3062 * into DATA field.
3063 *
3064 * @param pThis The device state structure.
3065 * @param offset Register offset in memory-mapped frame.
3066 * @param index Register index in register array.
3067 * @param value The value to store.
3068 * @param mask Used to implement partial writes (8 and 16-bit).
3069 * @thread EMT
3070 */
3071static int e1kRegWriteEERD(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3072{
3073#ifdef IN_RING3
3074 /* Make use of 'writable' and 'readable' masks. */
3075 e1kRegWriteDefault(pDevIns, pThis, offset, index, value);
3076 /* DONE and DATA are set only if read was triggered by START. */
3077 if (value & EERD_START)
3078 {
3079 STAM_PROFILE_ADV_START(&pThis->StatEEPROMRead, a);
3080 uint16_t tmp;
3081 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
3082 if (pThisCC->eeprom.readWord(GET_BITS_V(value, EERD, ADDR), &tmp))
3083 SET_BITS(EERD, DATA, tmp);
3084 EERD |= EERD_DONE;
3085 STAM_PROFILE_ADV_STOP(&pThis->StatEEPROMRead, a);
3086 }
3087
3088 return VINF_SUCCESS;
3089#else /* !IN_RING3 */
3090 RT_NOREF_PV(pDevIns); RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); RT_NOREF_PV(value);
3091 return VINF_IOM_R3_MMIO_WRITE;
3092#endif /* !IN_RING3 */
3093}
3094
3095
3096/**
3097 * Write handler for MDI Control register.
3098 *
3099 * Handles PHY read/write requests; forwards requests to internal PHY device.
3100 *
3101 * @param pThis The device state structure.
3102 * @param offset Register offset in memory-mapped frame.
3103 * @param index Register index in register array.
3104 * @param value The value to store.
3105 * @param mask Used to implement partial writes (8 and 16-bit).
3106 * @thread EMT
3107 */
3108static int e1kRegWriteMDIC(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3109{
3110 if (value & MDIC_INT_EN)
3111 {
3112 E1kLog(("%s ERROR! Interrupt at the end of an MDI cycle is not supported yet.\n",
3113 pThis->szPrf));
3114 }
3115 else if (value & MDIC_READY)
3116 {
3117 E1kLog(("%s ERROR! Ready bit is not reset by software during write operation.\n",
3118 pThis->szPrf));
3119 }
3120 else if (GET_BITS_V(value, MDIC, PHY) != 1)
3121 {
3122 E1kLog(("%s WARNING! Access to invalid PHY detected, phy=%d.\n",
3123 pThis->szPrf, GET_BITS_V(value, MDIC, PHY)));
3124 /*
3125 * Some drivers scan the MDIO bus for a PHY. We can work with these
3126 * drivers if we set MDIC_READY and MDIC_ERROR when there isn't a PHY
3127 * at the requested address, see @bugref{7346}.
3128 */
3129 MDIC = MDIC_READY | MDIC_ERROR;
3130 }
3131 else
3132 {
3133 /* Store the value */
3134 e1kRegWriteDefault(pDevIns, pThis, offset, index, value);
3135 STAM_COUNTER_INC(&pThis->StatPHYAccesses);
3136 /* Forward op to PHY */
3137 if (value & MDIC_OP_READ)
3138 SET_BITS(MDIC, DATA, Phy::readRegister(&pThis->phy, GET_BITS_V(value, MDIC, REG), pDevIns));
3139 else
3140 Phy::writeRegister(&pThis->phy, GET_BITS_V(value, MDIC, REG), value & MDIC_DATA_MASK, pDevIns);
3141 /* Let software know that we are done */
3142 MDIC |= MDIC_READY;
3143 }
3144
3145 return VINF_SUCCESS;
3146}
3147
3148/**
3149 * Write handler for Interrupt Cause Read register.
3150 *
3151 * Bits corresponding to 1s in 'value' will be cleared in ICR register.
3152 *
3153 * @param pThis The device state structure.
3154 * @param offset Register offset in memory-mapped frame.
3155 * @param index Register index in register array.
3156 * @param value The value to store.
3157 * @param mask Used to implement partial writes (8 and 16-bit).
3158 * @thread EMT
3159 */
3160static int e1kRegWriteICR(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3161{
3162 ICR &= ~value;
3163
3164 RT_NOREF_PV(pDevIns); RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index);
3165 return VINF_SUCCESS;
3166}
3167
3168/**
3169 * Read handler for Interrupt Cause Read register.
3170 *
3171 * Reading this register acknowledges all interrupts.
3172 *
3173 * @returns VBox status code.
3174 *
3175 * @param pThis The device state structure.
3176 * @param offset Register offset in memory-mapped frame.
3177 * @param index Register index in register array.
3178 * @param mask Not used.
3179 * @thread EMT
3180 */
3181static int e1kRegReadICR(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
3182{
3183 int rc = e1kCsEnter(pThis, VINF_IOM_R3_MMIO_READ);
3184 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3185 return rc;
3186
3187 uint32_t value = 0;
3188 rc = e1kRegReadDefault(pDevIns, pThis, offset, index, &value);
3189 if (RT_SUCCESS(rc))
3190 {
3191 if (value)
3192 {
3193 if (!pThis->fIntRaised)
3194 E1K_INC_ISTAT_CNT(pThis->uStatNoIntICR);
3195 /*
3196 * Not clearing ICR causes QNX to hang as it reads ICR in a loop
3197 * with disabled interrupts.
3198 */
3199 //if (IMS)
3200 if (1)
3201 {
3202 /*
3203 * Interrupts were enabled -- we are supposedly at the very
3204 * beginning of interrupt handler
3205 */
3206 E1kLogRel(("E1000: irq lowered, icr=0x%x\n", ICR));
3207 E1kLog(("%s e1kRegReadICR: Lowered IRQ (%08x)\n", pThis->szPrf, ICR));
3208 /* Clear all pending interrupts */
3209 ICR = 0;
3210 pThis->fIntRaised = false;
3211 /* Lower(0) INTA(0) */
3212 PDMDevHlpPCISetIrq(pDevIns, 0, 0);
3213
3214 pThis->u64AckedAt = PDMDevHlpTimerGet(pDevIns, pThis->hIntTimer);
3215 if (pThis->fIntMaskUsed)
3216 pThis->fDelayInts = true;
3217 }
3218 else
3219 {
3220 /*
3221 * Interrupts are disabled -- in windows guests ICR read is done
3222 * just before re-enabling interrupts
3223 */
3224 E1kLog(("%s e1kRegReadICR: Suppressing auto-clear due to disabled interrupts (%08x)\n", pThis->szPrf, ICR));
3225 }
3226 }
3227 *pu32Value = value;
3228 }
3229 e1kCsLeave(pThis);
3230
3231 return rc;
3232}
3233
3234/**
3235 * Write handler for Interrupt Cause Set register.
3236 *
3237 * Bits corresponding to 1s in 'value' will be set in ICR register.
3238 *
3239 * @param pThis The device state structure.
3240 * @param offset Register offset in memory-mapped frame.
3241 * @param index Register index in register array.
3242 * @param value The value to store.
3243 * @param mask Used to implement partial writes (8 and 16-bit).
3244 * @thread EMT
3245 */
3246static int e1kRegWriteICS(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3247{
3248 RT_NOREF_PV(offset); RT_NOREF_PV(index);
3249 E1K_INC_ISTAT_CNT(pThis->uStatIntICS);
3250 return e1kRaiseInterrupt(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE, value & g_aE1kRegMap[ICS_IDX].writable);
3251}
3252
3253/**
3254 * Write handler for Interrupt Mask Set register.
3255 *
3256 * Will trigger pending interrupts.
3257 *
3258 * @param pThis The device state structure.
3259 * @param offset Register offset in memory-mapped frame.
3260 * @param index Register index in register array.
3261 * @param value The value to store.
3262 * @param mask Used to implement partial writes (8 and 16-bit).
3263 * @thread EMT
3264 */
3265static int e1kRegWriteIMS(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3266{
3267 RT_NOREF_PV(offset); RT_NOREF_PV(index);
3268
3269 IMS |= value;
3270 E1kLogRel(("E1000: irq enabled, RDH=%x RDT=%x TDH=%x TDT=%x\n", RDH, RDT, TDH, TDT));
3271 E1kLog(("%s e1kRegWriteIMS: IRQ enabled\n", pThis->szPrf));
3272 /*
3273 * We cannot raise an interrupt here as it will occasionally cause an interrupt storm
3274 * in Windows guests (see @bugref{8624}, @bugref{5023}).
3275 */
3276 if ((ICR & IMS) && !pThis->fLocked)
3277 {
3278 E1K_INC_ISTAT_CNT(pThis->uStatIntIMS);
3279 e1kPostponeInterrupt(pDevIns, pThis, E1K_IMS_INT_DELAY_NS);
3280 }
3281
3282 return VINF_SUCCESS;
3283}
3284
3285/**
3286 * Write handler for Interrupt Mask Clear register.
3287 *
3288 * Bits corresponding to 1s in 'value' will be cleared in IMS register.
3289 *
3290 * @param pThis The device state structure.
3291 * @param offset Register offset in memory-mapped frame.
3292 * @param index Register index in register array.
3293 * @param value The value to store.
3294 * @param mask Used to implement partial writes (8 and 16-bit).
3295 * @thread EMT
3296 */
3297static int e1kRegWriteIMC(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3298{
3299 RT_NOREF_PV(offset); RT_NOREF_PV(index);
3300
3301 int rc = e1kCsEnter(pThis, VINF_IOM_R3_MMIO_WRITE);
3302 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3303 return rc;
3304 if (pThis->fIntRaised)
3305 {
3306 /*
3307 * Technically we should reset fIntRaised in ICR read handler, but it will cause
3308 * Windows to freeze since it may receive an interrupt while still in the very beginning
3309 * of interrupt handler.
3310 */
3311 E1K_INC_ISTAT_CNT(pThis->uStatIntLower);
3312 STAM_COUNTER_INC(&pThis->StatIntsPrevented);
3313 E1kLogRel(("E1000: irq lowered (IMC), icr=0x%x\n", ICR));
3314 /* Lower(0) INTA(0) */
3315 PDMDevHlpPCISetIrq(pDevIns, 0, 0);
3316 pThis->fIntRaised = false;
3317 E1kLog(("%s e1kRegWriteIMC: Lowered IRQ: ICR=%08x\n", pThis->szPrf, ICR));
3318 }
3319 IMS &= ~value;
3320 E1kLog(("%s e1kRegWriteIMC: IRQ disabled\n", pThis->szPrf));
3321 e1kCsLeave(pThis);
3322
3323 return VINF_SUCCESS;
3324}
3325
3326/**
3327 * Write handler for Receive Control register.
3328 *
3329 * @param pThis The device state structure.
3330 * @param offset Register offset in memory-mapped frame.
3331 * @param index Register index in register array.
3332 * @param value The value to store.
3333 * @param mask Used to implement partial writes (8 and 16-bit).
3334 * @thread EMT
3335 */
3336static int e1kRegWriteRCTL(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3337{
3338 /* Update promiscuous mode */
3339 bool fBecomePromiscous = !!(value & (RCTL_UPE | RCTL_MPE));
3340 if (fBecomePromiscous != !!( RCTL & (RCTL_UPE | RCTL_MPE)))
3341 {
3342 /* Promiscuity has changed, pass the knowledge on. */
3343#ifndef IN_RING3
3344 return VINF_IOM_R3_MMIO_WRITE;
3345#else
3346 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
3347 if (pThisCC->pDrvR3)
3348 pThisCC->pDrvR3->pfnSetPromiscuousMode(pThisCC->pDrvR3, fBecomePromiscous);
3349#endif
3350 }
3351
3352 /* Adjust receive buffer size */
3353 unsigned cbRxBuf = 2048 >> GET_BITS_V(value, RCTL, BSIZE);
3354 if (value & RCTL_BSEX)
3355 cbRxBuf *= 16;
3356 if (cbRxBuf > E1K_MAX_RX_PKT_SIZE)
3357 cbRxBuf = E1K_MAX_RX_PKT_SIZE;
3358 if (cbRxBuf != pThis->u16RxBSize)
3359 E1kLog2(("%s e1kRegWriteRCTL: Setting receive buffer size to %d (old %d)\n",
3360 pThis->szPrf, cbRxBuf, pThis->u16RxBSize));
3361 Assert(cbRxBuf < 65536);
3362 pThis->u16RxBSize = (uint16_t)cbRxBuf;
3363
3364 /* Update the register */
3365 return e1kRegWriteDefault(pDevIns, pThis, offset, index, value);
3366}
3367
3368/**
3369 * Write handler for Packet Buffer Allocation register.
3370 *
3371 * TXA = 64 - RXA.
3372 *
3373 * @param pThis The device state structure.
3374 * @param offset Register offset in memory-mapped frame.
3375 * @param index Register index in register array.
3376 * @param value The value to store.
3377 * @param mask Used to implement partial writes (8 and 16-bit).
3378 * @thread EMT
3379 */
3380static int e1kRegWritePBA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3381{
3382 e1kRegWriteDefault(pDevIns, pThis, offset, index, value);
3383 PBA_st->txa = 64 - PBA_st->rxa;
3384
3385 return VINF_SUCCESS;
3386}
3387
3388/**
3389 * Write handler for Receive Descriptor Tail register.
3390 *
3391 * @remarks Write into RDT forces switch to HC and signal to
3392 * e1kR3NetworkDown_WaitReceiveAvail().
3393 *
3394 * @returns VBox status code.
3395 *
3396 * @param pThis The device state structure.
3397 * @param offset Register offset in memory-mapped frame.
3398 * @param index Register index in register array.
3399 * @param value The value to store.
3400 * @param mask Used to implement partial writes (8 and 16-bit).
3401 * @thread EMT
3402 */
3403static int e1kRegWriteRDT(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3404{
3405#ifndef IN_RING3
3406 /* XXX */
3407// return VINF_IOM_R3_MMIO_WRITE;
3408#endif
3409 int rc = e1kCsRxEnter(pThis, VINF_IOM_R3_MMIO_WRITE);
3410 if (RT_LIKELY(rc == VINF_SUCCESS))
3411 {
3412 E1kLog(("%s e1kRegWriteRDT\n", pThis->szPrf));
3413#ifndef E1K_WITH_RXD_CACHE
3414 /*
3415 * Some drivers advance RDT too far, so that it equals RDH. This
3416 * somehow manages to work with real hardware but not with this
3417 * emulated device. We can work with these drivers if we just
3418 * write 1 less when we see a driver writing RDT equal to RDH,
3419 * see @bugref{7346}.
3420 */
3421 if (value == RDH)
3422 {
3423 if (RDH == 0)
3424 value = (RDLEN / sizeof(E1KRXDESC)) - 1;
3425 else
3426 value = RDH - 1;
3427 }
3428#endif /* !E1K_WITH_RXD_CACHE */
3429 rc = e1kRegWriteDefault(pDevIns, pThis, offset, index, value);
3430#ifdef E1K_WITH_RXD_CACHE
3431 E1KRXDC rxdc;
3432 if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kRegWriteRDT")))
3433 {
3434 e1kCsRxLeave(pThis);
3435 E1kLog(("%s e1kRegWriteRDT: failed to update Rx context, returning VINF_SUCCESS\n", pThis->szPrf));
3436 return VINF_SUCCESS;
3437 }
3438 /*
3439 * We need to fetch descriptors now as RDT may go whole circle
3440 * before we attempt to store a received packet. For example,
3441 * Intel's DOS drivers use 2 (!) RX descriptors with the total ring
3442 * size being only 8 descriptors! Note that we fetch descriptors
3443 * only when the cache is empty to reduce the number of memory reads
3444 * in case of frequent RDT writes. Don't fetch anything when the
3445 * receiver is disabled either as RDH, RDT, RDLEN can be in some
3446 * messed up state.
3447 * Note that despite the cache may seem empty, meaning that there are
3448 * no more available descriptors in it, it may still be used by RX
3449 * thread which has not yet written the last descriptor back but has
3450 * temporarily released the RX lock in order to write the packet body
3451 * to descriptor's buffer. At this point we still going to do prefetch
3452 * but it won't actually fetch anything if there are no unused slots in
3453 * our "empty" cache (nRxDFetched==E1K_RXD_CACHE_SIZE). We must not
3454 * reset the cache here even if it appears empty. It will be reset at
3455 * a later point in e1kRxDGet().
3456 */
3457 if (e1kRxDIsCacheEmpty(pThis) && (RCTL & RCTL_EN))
3458 e1kRxDPrefetch(pDevIns, pThis, &rxdc);
3459#endif /* E1K_WITH_RXD_CACHE */
3460 e1kCsRxLeave(pThis);
3461 if (RT_SUCCESS(rc))
3462 {
3463 /* Signal that we have more receive descriptors available. */
3464 e1kWakeupReceive(pDevIns, pThis);
3465 }
3466 }
3467 return rc;
3468}
3469
3470/**
3471 * Write handler for Receive Delay Timer register.
3472 *
3473 * @param pThis The device state structure.
3474 * @param offset Register offset in memory-mapped frame.
3475 * @param index Register index in register array.
3476 * @param value The value to store.
3477 * @param mask Used to implement partial writes (8 and 16-bit).
3478 * @thread EMT
3479 */
3480static int e1kRegWriteRDTR(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
3481{
3482 e1kRegWriteDefault(pDevIns, pThis, offset, index, value);
3483 if (value & RDTR_FPD)
3484 {
3485 /* Flush requested, cancel both timers and raise interrupt */
3486#ifdef E1K_USE_RX_TIMERS
3487 e1kCancelTimer(pDevIns, pThis, pThis->hRIDTimer);
3488 e1kCancelTimer(pDevIns, pThis, pThis->hRADTimer);
3489#endif
3490 E1K_INC_ISTAT_CNT(pThis->uStatIntRDTR);
3491 return e1kRaiseInterrupt(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE, ICR_RXT0);
3492 }
3493
3494 return VINF_SUCCESS;
3495}
3496
3497DECLINLINE(uint32_t) e1kGetTxLen(PE1KTXDC pTxdc)
3498{
3499 /**
3500 * Make sure TDT won't change during computation. EMT may modify TDT at
3501 * any moment.
3502 */
3503 uint32_t tdt = pTxdc->tdt;
3504 return (pTxdc->tdh > tdt ? pTxdc->tdlen/sizeof(E1KTXDESC) : 0) + tdt - pTxdc->tdh;
3505}
3506
3507#ifdef IN_RING3
3508
3509# ifdef E1K_TX_DELAY
3510/**
3511 * Transmit Delay Timer handler.
3512 *
3513 * @remarks We only get here when the timer expires.
3514 *
3515 * @param pDevIns Pointer to device instance structure.
3516 * @param pTimer Pointer to the timer.
3517 * @param pvUser NULL.
3518 * @thread EMT
3519 */
3520static DECLCALLBACK(void) e1kR3TxDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3521{
3522 PE1KSTATE pThis = (PE1KSTATE)pvUser;
3523 Assert(PDMCritSectIsOwner(&pThis->csTx));
3524
3525 E1K_INC_ISTAT_CNT(pThis->uStatTxDelayExp);
3526# ifdef E1K_INT_STATS
3527 uint64_t u64Elapsed = RTTimeNanoTS() - pThis->u64ArmedAt;
3528 if (u64Elapsed > pThis->uStatMaxTxDelay)
3529 pThis->uStatMaxTxDelay = u64Elapsed;
3530# endif
3531 int rc = e1kXmitPending(pDevIns, pThis, false /*fOnWorkerThread*/);
3532 AssertMsg(RT_SUCCESS(rc) || rc == VERR_TRY_AGAIN, ("%Rrc\n", rc));
3533}
3534# endif /* E1K_TX_DELAY */
3535
3536//# ifdef E1K_USE_TX_TIMERS
3537
3538/**
3539 * Transmit Interrupt Delay Timer handler.
3540 *
3541 * @remarks We only get here when the timer expires.
3542 *
3543 * @param pDevIns Pointer to device instance structure.
3544 * @param pTimer Pointer to the timer.
3545 * @param pvUser NULL.
3546 * @thread EMT
3547 */
3548static DECLCALLBACK(void) e1kR3TxIntDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3549{
3550 RT_NOREF(pDevIns);
3551 RT_NOREF(pTimer);
3552 PE1KSTATE pThis = (PE1KSTATE)pvUser;
3553
3554 E1K_INC_ISTAT_CNT(pThis->uStatTID);
3555 /* Cancel absolute delay timer as we have already got attention */
3556# ifndef E1K_NO_TAD
3557 e1kCancelTimer(pDevIns, pThis, pThis->hTADTimer);
3558# endif
3559 e1kRaiseInterrupt(pDevIns, pThis, ICR_TXDW);
3560}
3561
3562/**
3563 * Transmit Absolute Delay Timer handler.
3564 *
3565 * @remarks We only get here when the timer expires.
3566 *
3567 * @param pDevIns Pointer to device instance structure.
3568 * @param pTimer Pointer to the timer.
3569 * @param pvUser NULL.
3570 * @thread EMT
3571 */
3572static DECLCALLBACK(void) e1kR3TxAbsDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3573{
3574 RT_NOREF(pDevIns);
3575 RT_NOREF(pTimer);
3576 PE1KSTATE pThis = (PE1KSTATE)pvUser;
3577
3578 E1K_INC_ISTAT_CNT(pThis->uStatTAD);
3579 /* Cancel interrupt delay timer as we have already got attention */
3580 e1kCancelTimer(pDevIns, pThis, pThis->hTIDTimer);
3581 e1kRaiseInterrupt(pDevIns, pThis, ICR_TXDW);
3582}
3583
3584//# endif /* E1K_USE_TX_TIMERS */
3585# ifdef E1K_USE_RX_TIMERS
3586
3587/**
3588 * Receive Interrupt Delay Timer handler.
3589 *
3590 * @remarks We only get here when the timer expires.
3591 *
3592 * @param pDevIns Pointer to device instance structure.
3593 * @param pTimer Pointer to the timer.
3594 * @param pvUser NULL.
3595 * @thread EMT
3596 */
3597static DECLCALLBACK(void) e1kR3RxIntDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3598{
3599 PE1KSTATE pThis = (PE1KSTATE)pvUser;
3600
3601 E1K_INC_ISTAT_CNT(pThis->uStatRID);
3602 /* Cancel absolute delay timer as we have already got attention */
3603 e1kCancelTimer(pDevIns, pThis, pThis->hRADTimer);
3604 e1kRaiseInterrupt(pDevIns, pThis, ICR_RXT0);
3605}
3606
3607/**
3608 * Receive Absolute Delay Timer handler.
3609 *
3610 * @remarks We only get here when the timer expires.
3611 *
3612 * @param pDevIns Pointer to device instance structure.
3613 * @param pTimer Pointer to the timer.
3614 * @param pvUser NULL.
3615 * @thread EMT
3616 */
3617static DECLCALLBACK(void) e1kR3RxAbsDelayTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3618{
3619 PE1KSTATE pThis = (PE1KSTATE)pvUser;
3620
3621 E1K_INC_ISTAT_CNT(pThis->uStatRAD);
3622 /* Cancel interrupt delay timer as we have already got attention */
3623 e1kCancelTimer(pDevIns, pThis, pThis->hRIDTimer);
3624 e1kRaiseInterrupt(pDevIns, pThis, ICR_RXT0);
3625}
3626
3627# endif /* E1K_USE_RX_TIMERS */
3628
3629/**
3630 * Late Interrupt Timer handler.
3631 *
3632 * @param pDevIns Pointer to device instance structure.
3633 * @param pTimer Pointer to the timer.
3634 * @param pvUser NULL.
3635 * @thread EMT
3636 */
3637static DECLCALLBACK(void) e1kR3LateIntTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3638{
3639 RT_NOREF(pDevIns, pTimer);
3640 PE1KSTATE pThis = (PE1KSTATE)pvUser;
3641
3642 STAM_PROFILE_ADV_START(&pThis->StatLateIntTimer, a);
3643 STAM_COUNTER_INC(&pThis->StatLateInts);
3644 E1K_INC_ISTAT_CNT(pThis->uStatIntLate);
3645# if 0
3646 if (pThis->iStatIntLost > -100)
3647 pThis->iStatIntLost--;
3648# endif
3649 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, 0);
3650 STAM_PROFILE_ADV_STOP(&pThis->StatLateIntTimer, a);
3651}
3652
3653/**
3654 * Link Up Timer handler.
3655 *
3656 * @param pDevIns Pointer to device instance structure.
3657 * @param pTimer Pointer to the timer.
3658 * @param pvUser NULL.
3659 * @thread EMT
3660 */
3661static DECLCALLBACK(void) e1kR3LinkUpTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
3662{
3663 RT_NOREF(pTimer);
3664 PE1KSTATE pThis = (PE1KSTATE)pvUser;
3665 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
3666
3667 /*
3668 * This can happen if we set the link status to down when the Link up timer was
3669 * already armed (shortly after e1kLoadDone() or when the cable was disconnected
3670 * and connect+disconnect the cable very quick. Moreover, 82543GC triggers LSC
3671 * on reset even if the cable is unplugged (see @bugref{8942}).
3672 */
3673 if (pThis->fCableConnected)
3674 {
3675 /* 82543GC does not have an internal PHY */
3676 if (pThis->eChip == E1K_CHIP_82543GC || (CTRL & CTRL_SLU))
3677 e1kR3LinkUp(pDevIns, pThis, pThisCC);
3678 }
3679# ifdef E1K_LSC_ON_RESET
3680 else if (pThis->eChip == E1K_CHIP_82543GC)
3681 e1kR3LinkDown(pDevIns, pThis, pThisCC);
3682# endif /* E1K_LSC_ON_RESET */
3683}
3684
3685#endif /* IN_RING3 */
3686
3687/**
3688 * Sets up the GSO context according to the TSE new context descriptor.
3689 *
3690 * @param pGso The GSO context to setup.
3691 * @param pCtx The context descriptor.
3692 */
3693DECLINLINE(void) e1kSetupGsoCtx(PPDMNETWORKGSO pGso, E1KTXCTX const *pCtx)
3694{
3695 pGso->u8Type = PDMNETWORKGSOTYPE_INVALID;
3696
3697 /*
3698 * See if the context descriptor describes something that could be TCP or
3699 * UDP over IPv[46].
3700 */
3701 /* Check the header ordering and spacing: 1. Ethernet, 2. IP, 3. TCP/UDP. */
3702 if (RT_UNLIKELY( pCtx->ip.u8CSS < sizeof(RTNETETHERHDR) ))
3703 {
3704 E1kLog(("e1kSetupGsoCtx: IPCSS=%#x\n", pCtx->ip.u8CSS));
3705 return;
3706 }
3707 if (RT_UNLIKELY( pCtx->tu.u8CSS < (size_t)pCtx->ip.u8CSS + (pCtx->dw2.fIP ? RTNETIPV4_MIN_LEN : RTNETIPV6_MIN_LEN) ))
3708 {
3709 E1kLog(("e1kSetupGsoCtx: TUCSS=%#x\n", pCtx->tu.u8CSS));
3710 return;
3711 }
3712 if (RT_UNLIKELY( pCtx->dw2.fTCP
3713 ? pCtx->dw3.u8HDRLEN < (size_t)pCtx->tu.u8CSS + RTNETTCP_MIN_LEN
3714 : pCtx->dw3.u8HDRLEN != (size_t)pCtx->tu.u8CSS + RTNETUDP_MIN_LEN ))
3715 {
3716 E1kLog(("e1kSetupGsoCtx: HDRLEN=%#x TCP=%d\n", pCtx->dw3.u8HDRLEN, pCtx->dw2.fTCP));
3717 return;
3718 }
3719
3720 /* The end of the TCP/UDP checksum should stop at the end of the packet or at least after the headers. */
3721 if (RT_UNLIKELY( pCtx->tu.u16CSE > 0 && pCtx->tu.u16CSE <= pCtx->dw3.u8HDRLEN ))
3722 {
3723 E1kLog(("e1kSetupGsoCtx: TUCSE=%#x HDRLEN=%#x\n", pCtx->tu.u16CSE, pCtx->dw3.u8HDRLEN));
3724 return;
3725 }
3726
3727 /* IPv4 checksum offset. */
3728 if (RT_UNLIKELY( pCtx->dw2.fIP && (size_t)pCtx->ip.u8CSO - pCtx->ip.u8CSS != RT_UOFFSETOF(RTNETIPV4, ip_sum) ))
3729 {
3730 E1kLog(("e1kSetupGsoCtx: IPCSO=%#x IPCSS=%#x\n", pCtx->ip.u8CSO, pCtx->ip.u8CSS));
3731 return;
3732 }
3733
3734 /* TCP/UDP checksum offsets. */
3735 if (RT_UNLIKELY( (size_t)pCtx->tu.u8CSO - pCtx->tu.u8CSS
3736 != ( pCtx->dw2.fTCP
3737 ? RT_UOFFSETOF(RTNETTCP, th_sum)
3738 : RT_UOFFSETOF(RTNETUDP, uh_sum) ) ))
3739 {
3740 E1kLog(("e1kSetupGsoCtx: TUCSO=%#x TUCSS=%#x TCP=%d\n", pCtx->ip.u8CSO, pCtx->ip.u8CSS, pCtx->dw2.fTCP));
3741 return;
3742 }
3743
3744 /*
3745 * Because of internal networking using a 16-bit size field for GSO context
3746 * plus frame, we have to make sure we don't exceed this.
3747 */
3748 if (RT_UNLIKELY( pCtx->dw3.u8HDRLEN + pCtx->dw2.u20PAYLEN > VBOX_MAX_GSO_SIZE ))
3749 {
3750 E1kLog(("e1kSetupGsoCtx: HDRLEN(=%#x) + PAYLEN(=%#x) = %#x, max is %#x\n",
3751 pCtx->dw3.u8HDRLEN, pCtx->dw2.u20PAYLEN, pCtx->dw3.u8HDRLEN + pCtx->dw2.u20PAYLEN, VBOX_MAX_GSO_SIZE));
3752 return;
3753 }
3754
3755 /*
3756 * We're good for now - we'll do more checks when seeing the data.
3757 * So, figure the type of offloading and setup the context.
3758 */
3759 if (pCtx->dw2.fIP)
3760 {
3761 if (pCtx->dw2.fTCP)
3762 {
3763 pGso->u8Type = PDMNETWORKGSOTYPE_IPV4_TCP;
3764 pGso->cbHdrsSeg = pCtx->dw3.u8HDRLEN;
3765 }
3766 else
3767 {
3768 pGso->u8Type = PDMNETWORKGSOTYPE_IPV4_UDP;
3769 pGso->cbHdrsSeg = pCtx->tu.u8CSS; /* IP header only */
3770 }
3771 /** @todo Detect IPv4-IPv6 tunneling (need test setup since linux doesn't do
3772 * this yet it seems)... */
3773 }
3774 else
3775 {
3776 pGso->cbHdrsSeg = pCtx->dw3.u8HDRLEN; /** @todo IPv6 UFO */
3777 if (pCtx->dw2.fTCP)
3778 pGso->u8Type = PDMNETWORKGSOTYPE_IPV6_TCP;
3779 else
3780 pGso->u8Type = PDMNETWORKGSOTYPE_IPV6_UDP;
3781 }
3782 pGso->offHdr1 = pCtx->ip.u8CSS;
3783 pGso->offHdr2 = pCtx->tu.u8CSS;
3784 pGso->cbHdrsTotal = pCtx->dw3.u8HDRLEN;
3785 pGso->cbMaxSeg = pCtx->dw3.u16MSS + (pGso->u8Type == PDMNETWORKGSOTYPE_IPV4_UDP ? pGso->offHdr2 : 0);
3786 Assert(PDMNetGsoIsValid(pGso, sizeof(*pGso), pGso->cbMaxSeg * 5));
3787 E1kLog2(("e1kSetupGsoCtx: mss=%#x hdr=%#x hdrseg=%#x hdr1=%#x hdr2=%#x %s\n",
3788 pGso->cbMaxSeg, pGso->cbHdrsTotal, pGso->cbHdrsSeg, pGso->offHdr1, pGso->offHdr2, PDMNetGsoTypeName((PDMNETWORKGSOTYPE)pGso->u8Type) ));
3789}
3790
3791/**
3792 * Checks if we can use GSO processing for the current TSE frame.
3793 *
3794 * @param pThis The device state structure.
3795 * @param pGso The GSO context.
3796 * @param pData The first data descriptor of the frame.
3797 * @param pCtx The TSO context descriptor.
3798 */
3799DECLINLINE(bool) e1kCanDoGso(PE1KSTATE pThis, PCPDMNETWORKGSO pGso, E1KTXDAT const *pData, E1KTXCTX const *pCtx)
3800{
3801 if (!pData->cmd.fTSE)
3802 {
3803 E1kLog2(("e1kCanDoGso: !TSE\n"));
3804 return false;
3805 }
3806 if (pData->cmd.fVLE) /** @todo VLAN tagging. */
3807 {
3808 E1kLog(("e1kCanDoGso: VLE\n"));
3809 return false;
3810 }
3811 if (RT_UNLIKELY(!pThis->fGSOEnabled))
3812 {
3813 E1kLog3(("e1kCanDoGso: GSO disabled via CFGM\n"));
3814 return false;
3815 }
3816
3817 switch ((PDMNETWORKGSOTYPE)pGso->u8Type)
3818 {
3819 case PDMNETWORKGSOTYPE_IPV4_TCP:
3820 case PDMNETWORKGSOTYPE_IPV4_UDP:
3821 if (!pData->dw3.fIXSM)
3822 {
3823 E1kLog(("e1kCanDoGso: !IXSM (IPv4)\n"));
3824 return false;
3825 }
3826 if (!pData->dw3.fTXSM)
3827 {
3828 E1kLog(("e1kCanDoGso: !TXSM (IPv4)\n"));
3829 return false;
3830 }
3831 /** @todo what more check should we perform here? Ethernet frame type? */
3832 E1kLog2(("e1kCanDoGso: OK, IPv4\n"));
3833 return true;
3834
3835 case PDMNETWORKGSOTYPE_IPV6_TCP:
3836 case PDMNETWORKGSOTYPE_IPV6_UDP:
3837 if (pData->dw3.fIXSM && pCtx->ip.u8CSO)
3838 {
3839 E1kLog(("e1kCanDoGso: IXSM (IPv6)\n"));
3840 return false;
3841 }
3842 if (!pData->dw3.fTXSM)
3843 {
3844 E1kLog(("e1kCanDoGso: TXSM (IPv6)\n"));
3845 return false;
3846 }
3847 /** @todo what more check should we perform here? Ethernet frame type? */
3848 E1kLog2(("e1kCanDoGso: OK, IPv4\n"));
3849 return true;
3850
3851 default:
3852 Assert(pGso->u8Type == PDMNETWORKGSOTYPE_INVALID);
3853 E1kLog2(("e1kCanDoGso: e1kSetupGsoCtx failed\n"));
3854 return false;
3855 }
3856}
3857
3858/**
3859 * Frees the current xmit buffer.
3860 *
3861 * @param pThis The device state structure.
3862 */
3863static void e1kXmitFreeBuf(PE1KSTATE pThis, PE1KSTATECC pThisCC)
3864{
3865 PPDMSCATTERGATHER pSg = pThisCC->CTX_SUFF(pTxSg);
3866 if (pSg)
3867 {
3868 pThisCC->CTX_SUFF(pTxSg) = NULL;
3869
3870 if (pSg->pvAllocator != pThis)
3871 {
3872 PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv);
3873 if (pDrv)
3874 pDrv->pfnFreeBuf(pDrv, pSg);
3875 }
3876 else
3877 {
3878 /* loopback */
3879 AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t));
3880 Assert(pSg->fFlags == (PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3));
3881 pSg->fFlags = 0;
3882 pSg->pvAllocator = NULL;
3883 }
3884 }
3885}
3886
3887#ifndef E1K_WITH_TXD_CACHE
3888/**
3889 * Allocates an xmit buffer.
3890 *
3891 * @returns See PDMINETWORKUP::pfnAllocBuf.
3892 * @param pThis The device state structure.
3893 * @param cbMin The minimum frame size.
3894 * @param fExactSize Whether cbMin is exact or if we have to max it
3895 * out to the max MTU size.
3896 * @param fGso Whether this is a GSO frame or not.
3897 */
3898DECLINLINE(int) e1kXmitAllocBuf(PE1KSTATE pThis, PE1KSTATECC pThisCC, size_t cbMin, bool fExactSize, bool fGso)
3899{
3900 /* Adjust cbMin if necessary. */
3901 if (!fExactSize)
3902 cbMin = RT_MAX(cbMin, E1K_MAX_TX_PKT_SIZE);
3903
3904 /* Deal with existing buffer (descriptor screw up, reset, etc). */
3905 if (RT_UNLIKELY(pThisCC->CTX_SUFF(pTxSg)))
3906 e1kXmitFreeBuf(pThis, pThisCC);
3907 Assert(pThisCC->CTX_SUFF(pTxSg) == NULL);
3908
3909 /*
3910 * Allocate the buffer.
3911 */
3912 PPDMSCATTERGATHER pSg;
3913 if (RT_LIKELY(GET_BITS(RCTL, LBM) != RCTL_LBM_TCVR))
3914 {
3915 PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv);
3916 if (RT_UNLIKELY(!pDrv))
3917 return VERR_NET_DOWN;
3918 int rc = pDrv->pfnAllocBuf(pDrv, cbMin, fGso ? &pThis->GsoCtx : NULL, &pSg);
3919 if (RT_FAILURE(rc))
3920 {
3921 /* Suspend TX as we are out of buffers atm */
3922 STATUS |= STATUS_TXOFF;
3923 return rc;
3924 }
3925 }
3926 else
3927 {
3928 /* Create a loopback using the fallback buffer and preallocated SG. */
3929 AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t));
3930 pSg = &pThis->uTxFallback.Sg;
3931 pSg->fFlags = PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3;
3932 pSg->cbUsed = 0;
3933 pSg->cbAvailable = 0;
3934 pSg->pvAllocator = pThis;
3935 pSg->pvUser = NULL; /* No GSO here. */
3936 pSg->cSegs = 1;
3937 pSg->aSegs[0].pvSeg = pThis->aTxPacketFallback;
3938 pSg->aSegs[0].cbSeg = sizeof(pThis->aTxPacketFallback);
3939 }
3940
3941 pThisCC->CTX_SUFF(pTxSg) = pSg;
3942 return VINF_SUCCESS;
3943}
3944#else /* E1K_WITH_TXD_CACHE */
3945/**
3946 * Allocates an xmit buffer.
3947 *
3948 * @returns See PDMINETWORKUP::pfnAllocBuf.
3949 * @param pThis The device state structure.
3950 * @param cbMin The minimum frame size.
3951 * @param fExactSize Whether cbMin is exact or if we have to max it
3952 * out to the max MTU size.
3953 * @param fGso Whether this is a GSO frame or not.
3954 */
3955DECLINLINE(int) e1kXmitAllocBuf(PE1KSTATE pThis, PE1KSTATECC pThisCC, bool fGso)
3956{
3957 /* Deal with existing buffer (descriptor screw up, reset, etc). */
3958 if (RT_UNLIKELY(pThisCC->CTX_SUFF(pTxSg)))
3959 e1kXmitFreeBuf(pThis, pThisCC);
3960 Assert(pThisCC->CTX_SUFF(pTxSg) == NULL);
3961
3962 /*
3963 * Allocate the buffer.
3964 */
3965 PPDMSCATTERGATHER pSg;
3966 if (RT_LIKELY(GET_BITS(RCTL, LBM) != RCTL_LBM_TCVR))
3967 {
3968 if (pThis->cbTxAlloc == 0)
3969 {
3970 /* Zero packet, no need for the buffer */
3971 return VINF_SUCCESS;
3972 }
3973 if (fGso && pThis->GsoCtx.u8Type == PDMNETWORKGSOTYPE_INVALID)
3974 {
3975 E1kLog3(("Invalid GSO context, won't allocate this packet, cb=%u %s%s\n",
3976 pThis->cbTxAlloc, pThis->fVTag ? "VLAN " : "", pThis->fGSO ? "GSO " : ""));
3977 /* No valid GSO context is available, ignore this packet. */
3978 pThis->cbTxAlloc = 0;
3979 return VINF_SUCCESS;
3980 }
3981
3982 PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv);
3983 if (RT_UNLIKELY(!pDrv))
3984 return VERR_NET_DOWN;
3985 int rc = pDrv->pfnAllocBuf(pDrv, pThis->cbTxAlloc, fGso ? &pThis->GsoCtx : NULL, &pSg);
3986 if (RT_FAILURE(rc))
3987 {
3988 /* Suspend TX as we are out of buffers atm */
3989 STATUS |= STATUS_TXOFF;
3990 return rc;
3991 }
3992 E1kLog3(("%s Allocated buffer for TX packet: cb=%u %s%s\n",
3993 pThis->szPrf, pThis->cbTxAlloc,
3994 pThis->fVTag ? "VLAN " : "",
3995 pThis->fGSO ? "GSO " : ""));
3996 }
3997 else
3998 {
3999 /* Create a loopback using the fallback buffer and preallocated SG. */
4000 AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t));
4001 pSg = &pThis->uTxFallback.Sg;
4002 pSg->fFlags = PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3;
4003 pSg->cbUsed = 0;
4004 pSg->cbAvailable = sizeof(pThis->aTxPacketFallback);
4005 pSg->pvAllocator = pThis;
4006 pSg->pvUser = NULL; /* No GSO here. */
4007 pSg->cSegs = 1;
4008 pSg->aSegs[0].pvSeg = pThis->aTxPacketFallback;
4009 pSg->aSegs[0].cbSeg = sizeof(pThis->aTxPacketFallback);
4010 }
4011 pThis->cbTxAlloc = 0;
4012
4013 pThisCC->CTX_SUFF(pTxSg) = pSg;
4014 return VINF_SUCCESS;
4015}
4016#endif /* E1K_WITH_TXD_CACHE */
4017
4018/**
4019 * Checks if it's a GSO buffer or not.
4020 *
4021 * @returns true / false.
4022 * @param pTxSg The scatter / gather buffer.
4023 */
4024DECLINLINE(bool) e1kXmitIsGsoBuf(PDMSCATTERGATHER const *pTxSg)
4025{
4026#if 0
4027 if (!pTxSg)
4028 E1kLog(("e1kXmitIsGsoBuf: pTxSG is NULL\n"));
4029 if (pTxSg && pTxSg->pvUser)
4030 E1kLog(("e1kXmitIsGsoBuf: pvUser is NULL\n"));
4031#endif
4032 return pTxSg && pTxSg->pvUser /* GSO indicator */;
4033}
4034
4035#ifndef E1K_WITH_TXD_CACHE
4036/**
4037 * Load transmit descriptor from guest memory.
4038 *
4039 * @param pDevIns The device instance.
4040 * @param pDesc Pointer to descriptor union.
4041 * @param addr Physical address in guest context.
4042 * @thread E1000_TX
4043 */
4044DECLINLINE(void) e1kLoadDesc(PPDMDEVINS pDevIns, E1KTXDESC *pDesc, RTGCPHYS addr)
4045{
4046 PDMDevHlpPCIPhysRead(pDevIns, addr, pDesc, sizeof(E1KTXDESC));
4047}
4048#else /* E1K_WITH_TXD_CACHE */
4049/**
4050 * Load transmit descriptors from guest memory.
4051 *
4052 * We need two physical reads in case the tail wrapped around the end of TX
4053 * descriptor ring.
4054 *
4055 * @returns the actual number of descriptors fetched.
4056 * @param pDevIns The device instance.
4057 * @param pThis The device state structure.
4058 * @thread E1000_TX
4059 */
4060DECLINLINE(unsigned) e1kTxDLoadMore(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KTXDC pTxdc)
4061{
4062 Assert(pThis->iTxDCurrent == 0);
4063 /* We've already loaded pThis->nTxDFetched descriptors past TDH. */
4064 unsigned nDescsAvailable = e1kGetTxLen(pTxdc) - pThis->nTxDFetched;
4065 /* The following two lines ensure that pThis->nTxDFetched never overflows. */
4066 AssertCompile(E1K_TXD_CACHE_SIZE < (256 * sizeof(pThis->nTxDFetched)));
4067 unsigned nDescsToFetch = RT_MIN(nDescsAvailable, E1K_TXD_CACHE_SIZE - pThis->nTxDFetched);
4068 unsigned nDescsTotal = pTxdc->tdlen / sizeof(E1KTXDESC);
4069 Assert(nDescsTotal != 0);
4070 if (nDescsTotal == 0)
4071 return 0;
4072 unsigned nFirstNotLoaded = (pTxdc->tdh + pThis->nTxDFetched) % nDescsTotal;
4073 unsigned nDescsInSingleRead = RT_MIN(nDescsToFetch, nDescsTotal - nFirstNotLoaded);
4074 E1kLog3(("%s e1kTxDLoadMore: nDescsAvailable=%u nDescsToFetch=%u nDescsTotal=%u nFirstNotLoaded=0x%x nDescsInSingleRead=%u\n",
4075 pThis->szPrf, nDescsAvailable, nDescsToFetch, nDescsTotal,
4076 nFirstNotLoaded, nDescsInSingleRead));
4077 if (nDescsToFetch == 0)
4078 return 0;
4079 E1KTXDESC* pFirstEmptyDesc = &pThis->aTxDescriptors[pThis->nTxDFetched];
4080 PDMDevHlpPCIPhysRead(pDevIns,
4081 ((uint64_t)TDBAH << 32) + TDBAL + nFirstNotLoaded * sizeof(E1KTXDESC),
4082 pFirstEmptyDesc, nDescsInSingleRead * sizeof(E1KTXDESC));
4083 E1kLog3(("%s Fetched %u TX descriptors at %08x%08x(0x%x), TDLEN=%08x, TDH=%08x, TDT=%08x\n",
4084 pThis->szPrf, nDescsInSingleRead,
4085 TDBAH, TDBAL + pTxdc->tdh * sizeof(E1KTXDESC),
4086 nFirstNotLoaded, pTxdc->tdlen, pTxdc->tdh, pTxdc->tdt));
4087 if (nDescsToFetch > nDescsInSingleRead)
4088 {
4089 PDMDevHlpPCIPhysRead(pDevIns,
4090 ((uint64_t)TDBAH << 32) + TDBAL,
4091 pFirstEmptyDesc + nDescsInSingleRead,
4092 (nDescsToFetch - nDescsInSingleRead) * sizeof(E1KTXDESC));
4093 E1kLog3(("%s Fetched %u TX descriptors at %08x%08x\n",
4094 pThis->szPrf, nDescsToFetch - nDescsInSingleRead,
4095 TDBAH, TDBAL));
4096 }
4097 pThis->nTxDFetched += (uint8_t)nDescsToFetch;
4098 return nDescsToFetch;
4099}
4100
4101/**
4102 * Load transmit descriptors from guest memory only if there are no loaded
4103 * descriptors.
4104 *
4105 * @returns true if there are descriptors in cache.
4106 * @param pDevIns The device instance.
4107 * @param pThis The device state structure.
4108 * @thread E1000_TX
4109 */
4110DECLINLINE(bool) e1kTxDLazyLoad(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KTXDC pTxdc)
4111{
4112 if (pThis->nTxDFetched == 0)
4113 return e1kTxDLoadMore(pDevIns, pThis, pTxdc) != 0;
4114 return true;
4115}
4116#endif /* E1K_WITH_TXD_CACHE */
4117
4118/**
4119 * Write back transmit descriptor to guest memory.
4120 *
4121 * @param pDevIns The device instance.
4122 * @param pThis The device state structure.
4123 * @param pDesc Pointer to descriptor union.
4124 * @param addr Physical address in guest context.
4125 * @thread E1000_TX
4126 */
4127DECLINLINE(void) e1kWriteBackDesc(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KTXDESC *pDesc, RTGCPHYS addr)
4128{
4129 /* Only the last half of the descriptor has to be written back. */
4130 e1kPrintTDesc(pThis, pDesc, "^^^");
4131 PDMDevHlpPCIPhysWrite(pDevIns, addr, pDesc, sizeof(E1KTXDESC));
4132}
4133
4134/**
4135 * Transmit complete frame.
4136 *
4137 * @remarks We skip the FCS since we're not responsible for sending anything to
4138 * a real ethernet wire.
4139 *
4140 * @param pDevIns The device instance.
4141 * @param pThis The device state structure.
4142 * @param pThisCC The current context instance data.
4143 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4144 * @thread E1000_TX
4145 */
4146static void e1kTransmitFrame(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC, bool fOnWorkerThread)
4147{
4148 PPDMSCATTERGATHER pSg = pThisCC->CTX_SUFF(pTxSg);
4149 uint32_t cbFrame = pSg ? (uint32_t)pSg->cbUsed : 0;
4150 Assert(!pSg || pSg->cSegs == 1);
4151
4152 if (cbFrame > 70) /* unqualified guess */
4153 pThis->led.Asserted.s.fWriting = pThis->led.Actual.s.fWriting = 1;
4154
4155#ifdef E1K_INT_STATS
4156 if (cbFrame <= 1514)
4157 E1K_INC_ISTAT_CNT(pThis->uStatTx1514);
4158 else if (cbFrame <= 2962)
4159 E1K_INC_ISTAT_CNT(pThis->uStatTx2962);
4160 else if (cbFrame <= 4410)
4161 E1K_INC_ISTAT_CNT(pThis->uStatTx4410);
4162 else if (cbFrame <= 5858)
4163 E1K_INC_ISTAT_CNT(pThis->uStatTx5858);
4164 else if (cbFrame <= 7306)
4165 E1K_INC_ISTAT_CNT(pThis->uStatTx7306);
4166 else if (cbFrame <= 8754)
4167 E1K_INC_ISTAT_CNT(pThis->uStatTx8754);
4168 else if (cbFrame <= 16384)
4169 E1K_INC_ISTAT_CNT(pThis->uStatTx16384);
4170 else if (cbFrame <= 32768)
4171 E1K_INC_ISTAT_CNT(pThis->uStatTx32768);
4172 else
4173 E1K_INC_ISTAT_CNT(pThis->uStatTxLarge);
4174#endif /* E1K_INT_STATS */
4175
4176 /* Add VLAN tag */
4177 if (cbFrame > 12 && pThis->fVTag)
4178 {
4179 E1kLog3(("%s Inserting VLAN tag %08x\n",
4180 pThis->szPrf, RT_BE2H_U16((uint16_t)VET) | (RT_BE2H_U16(pThis->u16VTagTCI) << 16)));
4181 memmove((uint8_t*)pSg->aSegs[0].pvSeg + 16, (uint8_t*)pSg->aSegs[0].pvSeg + 12, cbFrame - 12);
4182 *((uint32_t*)pSg->aSegs[0].pvSeg + 3) = RT_BE2H_U16((uint16_t)VET) | (RT_BE2H_U16(pThis->u16VTagTCI) << 16);
4183 pSg->cbUsed += 4;
4184 cbFrame += 4;
4185 Assert(pSg->cbUsed == cbFrame);
4186 Assert(pSg->cbUsed <= pSg->cbAvailable);
4187 }
4188/* E1kLog2(("%s < < < Outgoing packet. Dump follows: > > >\n"
4189 "%.*Rhxd\n"
4190 "%s < < < < < < < < < < < < < End of dump > > > > > > > > > > > >\n",
4191 pThis->szPrf, cbFrame, pSg->aSegs[0].pvSeg, pThis->szPrf));*/
4192
4193 /* Update the stats */
4194 E1K_INC_CNT32(TPT);
4195 E1K_ADD_CNT64(TOTL, TOTH, cbFrame);
4196 E1K_INC_CNT32(GPTC);
4197 if (pSg && e1kIsBroadcast(pSg->aSegs[0].pvSeg))
4198 E1K_INC_CNT32(BPTC);
4199 else if (pSg && e1kIsMulticast(pSg->aSegs[0].pvSeg))
4200 E1K_INC_CNT32(MPTC);
4201 /* Update octet transmit counter */
4202 E1K_ADD_CNT64(GOTCL, GOTCH, cbFrame);
4203 if (pThisCC->CTX_SUFF(pDrv))
4204 STAM_REL_COUNTER_ADD(&pThis->StatTransmitBytes, cbFrame);
4205 if (cbFrame == 64)
4206 E1K_INC_CNT32(PTC64);
4207 else if (cbFrame < 128)
4208 E1K_INC_CNT32(PTC127);
4209 else if (cbFrame < 256)
4210 E1K_INC_CNT32(PTC255);
4211 else if (cbFrame < 512)
4212 E1K_INC_CNT32(PTC511);
4213 else if (cbFrame < 1024)
4214 E1K_INC_CNT32(PTC1023);
4215 else
4216 E1K_INC_CNT32(PTC1522);
4217
4218 E1K_INC_ISTAT_CNT(pThis->uStatTxFrm);
4219
4220 /*
4221 * Dump and send the packet.
4222 */
4223 int rc = VERR_NET_DOWN;
4224 if (pSg && pSg->pvAllocator != pThis)
4225 {
4226 e1kPacketDump(pDevIns, pThis, (uint8_t const *)pSg->aSegs[0].pvSeg, cbFrame, "--> Outgoing");
4227
4228 pThisCC->CTX_SUFF(pTxSg) = NULL;
4229 PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv);
4230 if (pDrv)
4231 {
4232 /* Release critical section to avoid deadlock in CanReceive */
4233 //e1kCsLeave(pThis);
4234 STAM_PROFILE_START(&pThis->CTX_SUFF_Z(StatTransmitSend), a);
4235 rc = pDrv->pfnSendBuf(pDrv, pSg, fOnWorkerThread);
4236 STAM_PROFILE_STOP(&pThis->CTX_SUFF_Z(StatTransmitSend), a);
4237 //e1kCsEnter(pThis, RT_SRC_POS);
4238 }
4239 }
4240 else if (pSg)
4241 {
4242 Assert(pSg->aSegs[0].pvSeg == pThis->aTxPacketFallback);
4243 e1kPacketDump(pDevIns, pThis, (uint8_t const *)pSg->aSegs[0].pvSeg, cbFrame, "--> Loopback");
4244
4245 /** @todo do we actually need to check that we're in loopback mode here? */
4246 if (GET_BITS(RCTL, LBM) == RCTL_LBM_TCVR)
4247 {
4248 E1KRXDST status;
4249 RT_ZERO(status);
4250 status.fPIF = true;
4251 e1kHandleRxPacket(pDevIns, pThis, pSg->aSegs[0].pvSeg, cbFrame, status);
4252 rc = VINF_SUCCESS;
4253 }
4254 e1kXmitFreeBuf(pThis, pThisCC);
4255 }
4256 else
4257 rc = VERR_NET_DOWN;
4258 if (RT_FAILURE(rc))
4259 {
4260 E1kLogRel(("E1000: ERROR! pfnSend returned %Rrc\n", rc));
4261 /** @todo handle VERR_NET_DOWN and VERR_NET_NO_BUFFER_SPACE. Signal error ? */
4262 }
4263
4264 pThis->led.Actual.s.fWriting = 0;
4265}
4266
4267/**
4268 * Compute and write internet checksum (e1kCSum16) at the specified offset.
4269 *
4270 * @param pThis The device state structure.
4271 * @param pPkt Pointer to the packet.
4272 * @param u16PktLen Total length of the packet.
4273 * @param cso Offset in packet to write checksum at.
4274 * @param css Offset in packet to start computing
4275 * checksum from.
4276 * @param cse Offset in packet to stop computing
4277 * checksum at.
4278 * @param fUdp Replace 0 checksum with all 1s.
4279 * @thread E1000_TX
4280 */
4281static void e1kInsertChecksum(PE1KSTATE pThis, uint8_t *pPkt, uint16_t u16PktLen, uint8_t cso, uint8_t css, uint16_t cse, bool fUdp = false)
4282{
4283 RT_NOREF1(pThis);
4284
4285 if (css >= u16PktLen)
4286 {
4287 E1kLog2(("%s css(%X) is greater than packet length-1(%X), checksum is not inserted\n",
4288 pThis->szPrf, cso, u16PktLen));
4289 return;
4290 }
4291
4292 if (cso >= u16PktLen - 1)
4293 {
4294 E1kLog2(("%s cso(%X) is greater than packet length-2(%X), checksum is not inserted\n",
4295 pThis->szPrf, cso, u16PktLen));
4296 return;
4297 }
4298
4299 if (cse == 0 || cse >= u16PktLen)
4300 cse = u16PktLen - 1;
4301 else if (cse < css)
4302 {
4303 E1kLog2(("%s css(%X) is greater than cse(%X), checksum is not inserted\n",
4304 pThis->szPrf, css, cse));
4305 return;
4306 }
4307
4308 uint16_t u16ChkSum = e1kCSum16(pPkt + css, cse - css + 1);
4309 if (fUdp && u16ChkSum == 0)
4310 u16ChkSum = ~u16ChkSum; /* 0 means no checksum computed in case of UDP (see @bugref{9883}) */
4311 E1kLog2(("%s Inserting csum: %04X at %02X, old value: %04X\n", pThis->szPrf,
4312 u16ChkSum, cso, *(uint16_t*)(pPkt + cso)));
4313 *(uint16_t*)(pPkt + cso) = u16ChkSum;
4314}
4315
4316/**
4317 * Add a part of descriptor's buffer to transmit frame.
4318 *
4319 * @remarks data.u64BufAddr is used unconditionally for both data
4320 * and legacy descriptors since it is identical to
4321 * legacy.u64BufAddr.
4322 *
4323 * @param pDevIns The device instance.
4324 * @param pThis The device state structure.
4325 * @param pDesc Pointer to the descriptor to transmit.
4326 * @param u16Len Length of buffer to the end of segment.
4327 * @param fSend Force packet sending.
4328 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4329 * @thread E1000_TX
4330 */
4331#ifndef E1K_WITH_TXD_CACHE
4332static void e1kFallbackAddSegment(PPDMDEVINS pDevIns, PE1KSTATE pThis, RTGCPHYS PhysAddr, uint16_t u16Len, bool fSend, bool fOnWorkerThread)
4333{
4334 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
4335 /* TCP header being transmitted */
4336 struct E1kTcpHeader *pTcpHdr = (struct E1kTcpHeader *)(pThis->aTxPacketFallback + pThis->contextTSE.tu.u8CSS);
4337 /* IP header being transmitted */
4338 struct E1kIpHeader *pIpHdr = (struct E1kIpHeader *)(pThis->aTxPacketFallback + pThis->contextTSE.ip.u8CSS);
4339
4340 E1kLog3(("%s e1kFallbackAddSegment: Length=%x, remaining payload=%x, header=%x, send=%RTbool\n",
4341 pThis->szPrf, u16Len, pThis->u32PayRemain, pThis->u16HdrRemain, fSend));
4342 Assert(pThis->u32PayRemain + pThis->u16HdrRemain > 0);
4343
4344 PDMDevHlpPCIPhysRead(pDevIns, PhysAddr, pThis->aTxPacketFallback + pThis->u16TxPktLen, u16Len);
4345 E1kLog3(("%s Dump of the segment:\n"
4346 "%.*Rhxd\n"
4347 "%s --- End of dump ---\n",
4348 pThis->szPrf, u16Len, pThis->aTxPacketFallback + pThis->u16TxPktLen, pThis->szPrf));
4349 pThis->u16TxPktLen += u16Len;
4350 E1kLog3(("%s e1kFallbackAddSegment: pThis->u16TxPktLen=%x\n",
4351 pThis->szPrf, pThis->u16TxPktLen));
4352 if (pThis->u16HdrRemain > 0)
4353 {
4354 /* The header was not complete, check if it is now */
4355 if (u16Len >= pThis->u16HdrRemain)
4356 {
4357 /* The rest is payload */
4358 u16Len -= pThis->u16HdrRemain;
4359 pThis->u16HdrRemain = 0;
4360 /* Save partial checksum and flags */
4361 pThis->u32SavedCsum = pTcpHdr->chksum;
4362 pThis->u16SavedFlags = pTcpHdr->hdrlen_flags;
4363 /* Clear FIN and PSH flags now and set them only in the last segment */
4364 pTcpHdr->hdrlen_flags &= ~htons(E1K_TCP_FIN | E1K_TCP_PSH);
4365 }
4366 else
4367 {
4368 /* Still not */
4369 pThis->u16HdrRemain -= u16Len;
4370 E1kLog3(("%s e1kFallbackAddSegment: Header is still incomplete, 0x%x bytes remain.\n",
4371 pThis->szPrf, pThis->u16HdrRemain));
4372 return;
4373 }
4374 }
4375
4376 pThis->u32PayRemain -= u16Len;
4377
4378 if (fSend)
4379 {
4380 /* Leave ethernet header intact */
4381 /* IP Total Length = payload + headers - ethernet header */
4382 pIpHdr->total_len = htons(pThis->u16TxPktLen - pThis->contextTSE.ip.u8CSS);
4383 E1kLog3(("%s e1kFallbackAddSegment: End of packet, pIpHdr->total_len=%x\n",
4384 pThis->szPrf, ntohs(pIpHdr->total_len)));
4385 /* Update IP Checksum */
4386 pIpHdr->chksum = 0;
4387 e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen,
4388 pThis->contextTSE.ip.u8CSO,
4389 pThis->contextTSE.ip.u8CSS,
4390 pThis->contextTSE.ip.u16CSE);
4391
4392 /* Update TCP flags */
4393 /* Restore original FIN and PSH flags for the last segment */
4394 if (pThis->u32PayRemain == 0)
4395 {
4396 pTcpHdr->hdrlen_flags = pThis->u16SavedFlags;
4397 E1K_INC_CNT32(TSCTC);
4398 }
4399 /* Add TCP length to partial pseudo header sum */
4400 uint32_t csum = pThis->u32SavedCsum
4401 + htons(pThis->u16TxPktLen - pThis->contextTSE.tu.u8CSS);
4402 while (csum >> 16)
4403 csum = (csum >> 16) + (csum & 0xFFFF);
4404 pTcpHdr->chksum = csum;
4405 /* Compute final checksum */
4406 e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen,
4407 pThis->contextTSE.tu.u8CSO,
4408 pThis->contextTSE.tu.u8CSS,
4409 pThis->contextTSE.tu.u16CSE);
4410
4411 /*
4412 * Transmit it. If we've use the SG already, allocate a new one before
4413 * we copy of the data.
4414 */
4415 PPDMSCATTERGATHER pTxSg = pThisCC->CTX_SUFF(pTxSg);
4416 if (!pTxSg)
4417 {
4418 e1kXmitAllocBuf(pThis, pThisCC, pThis->u16TxPktLen + (pThis->fVTag ? 4 : 0), true /*fExactSize*/, false /*fGso*/);
4419 pTxSg = pThisCC->CTX_SUFF(pTxSg);
4420 }
4421 if (pTxSg)
4422 {
4423 Assert(pThis->u16TxPktLen <= pThisCC->CTX_SUFF(pTxSg)->cbAvailable);
4424 Assert(pTxSg->cSegs == 1);
4425 if (pThis->CCCTX_SUFF(pTxSg)->aSegs[0].pvSeg != pThis->aTxPacketFallback)
4426 memcpy(pTxSg->aSegs[0].pvSeg, pThis->aTxPacketFallback, pThis->u16TxPktLen);
4427 pTxSg->cbUsed = pThis->u16TxPktLen;
4428 pTxSg->aSegs[0].cbSeg = pThis->u16TxPktLen;
4429 }
4430 e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread);
4431
4432 /* Update Sequence Number */
4433 pTcpHdr->seqno = htonl(ntohl(pTcpHdr->seqno) + pThis->u16TxPktLen
4434 - pThis->contextTSE.dw3.u8HDRLEN);
4435 /* Increment IP identification */
4436 pIpHdr->ident = htons(ntohs(pIpHdr->ident) + 1);
4437 }
4438}
4439#else /* E1K_WITH_TXD_CACHE */
4440static int e1kFallbackAddSegment(PPDMDEVINS pDevIns, PE1KSTATE pThis, RTGCPHYS PhysAddr, uint16_t u16Len, bool fSend, bool fOnWorkerThread)
4441{
4442 int rc = VINF_SUCCESS;
4443 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
4444 /* TCP header being transmitted */
4445 struct E1kTcpHeader *pTcpHdr = (struct E1kTcpHeader *)(pThis->aTxPacketFallback + pThis->contextTSE.tu.u8CSS);
4446 /* IP header being transmitted */
4447 struct E1kIpHeader *pIpHdr = (struct E1kIpHeader *)(pThis->aTxPacketFallback + pThis->contextTSE.ip.u8CSS);
4448
4449 E1kLog3(("%s e1kFallbackAddSegment: Length=%x, remaining payload=%x, header=%x, send=%RTbool\n",
4450 pThis->szPrf, u16Len, pThis->u32PayRemain, pThis->u16HdrRemain, fSend));
4451 AssertReturn(pThis->u32PayRemain + pThis->u16HdrRemain > 0, VINF_SUCCESS);
4452
4453 if (pThis->u16TxPktLen + u16Len <= sizeof(pThis->aTxPacketFallback))
4454 PDMDevHlpPCIPhysRead(pDevIns, PhysAddr, pThis->aTxPacketFallback + pThis->u16TxPktLen, u16Len);
4455 else
4456 E1kLog(("%s e1kFallbackAddSegment: writing beyond aTxPacketFallback, u16TxPktLen=%d(0x%x) + u16Len=%d(0x%x) > %d\n",
4457 pThis->szPrf, pThis->u16TxPktLen, pThis->u16TxPktLen, u16Len, u16Len, sizeof(pThis->aTxPacketFallback)));
4458 E1kLog3(("%s Dump of the segment:\n"
4459 "%.*Rhxd\n"
4460 "%s --- End of dump ---\n",
4461 pThis->szPrf, u16Len, pThis->aTxPacketFallback + pThis->u16TxPktLen, pThis->szPrf));
4462 pThis->u16TxPktLen += u16Len;
4463 E1kLog3(("%s e1kFallbackAddSegment: pThis->u16TxPktLen=%x\n",
4464 pThis->szPrf, pThis->u16TxPktLen));
4465 if (pThis->u16HdrRemain > 0)
4466 {
4467 /* The header was not complete, check if it is now */
4468 if (u16Len >= pThis->u16HdrRemain)
4469 {
4470 /* The rest is payload */
4471 u16Len -= pThis->u16HdrRemain;
4472 pThis->u16HdrRemain = 0;
4473 /* Save partial checksum and flags */
4474 pThis->u32SavedCsum = pTcpHdr->chksum;
4475 pThis->u16SavedFlags = pTcpHdr->hdrlen_flags;
4476 /* Clear FIN and PSH flags now and set them only in the last segment */
4477 pTcpHdr->hdrlen_flags &= ~htons(E1K_TCP_FIN | E1K_TCP_PSH);
4478 }
4479 else
4480 {
4481 /* Still not */
4482 pThis->u16HdrRemain -= u16Len;
4483 E1kLog3(("%s e1kFallbackAddSegment: Header is still incomplete, 0x%x bytes remain.\n",
4484 pThis->szPrf, pThis->u16HdrRemain));
4485 return rc;
4486 }
4487 }
4488
4489 if (u16Len > pThis->u32PayRemain)
4490 pThis->u32PayRemain = 0;
4491 else
4492 pThis->u32PayRemain -= u16Len;
4493
4494 if (fSend)
4495 {
4496 /* Leave ethernet header intact */
4497 /* IP Total Length = payload + headers - ethernet header */
4498 pIpHdr->total_len = htons(pThis->u16TxPktLen - pThis->contextTSE.ip.u8CSS);
4499 E1kLog3(("%s e1kFallbackAddSegment: End of packet, pIpHdr->total_len=%x\n",
4500 pThis->szPrf, ntohs(pIpHdr->total_len)));
4501 /* Update IP Checksum */
4502 pIpHdr->chksum = 0;
4503 e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen,
4504 pThis->contextTSE.ip.u8CSO,
4505 pThis->contextTSE.ip.u8CSS,
4506 pThis->contextTSE.ip.u16CSE);
4507
4508 /* Update TCP flags */
4509 /* Restore original FIN and PSH flags for the last segment */
4510 if (pThis->u32PayRemain == 0)
4511 {
4512 pTcpHdr->hdrlen_flags = pThis->u16SavedFlags;
4513 E1K_INC_CNT32(TSCTC);
4514 }
4515 /* Add TCP length to partial pseudo header sum */
4516 uint32_t csum = pThis->u32SavedCsum
4517 + htons(pThis->u16TxPktLen - pThis->contextTSE.tu.u8CSS);
4518 while (csum >> 16)
4519 csum = (csum >> 16) + (csum & 0xFFFF);
4520 Assert(csum < 65536);
4521 pTcpHdr->chksum = (uint16_t)csum;
4522 /* Compute final checksum */
4523 e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen,
4524 pThis->contextTSE.tu.u8CSO,
4525 pThis->contextTSE.tu.u8CSS,
4526 pThis->contextTSE.tu.u16CSE);
4527
4528 /*
4529 * Transmit it.
4530 */
4531 PPDMSCATTERGATHER pTxSg = pThisCC->CTX_SUFF(pTxSg);
4532 if (pTxSg)
4533 {
4534 /* Make sure the packet fits into the allocated buffer */
4535 size_t cbCopy = RT_MIN(pThis->u16TxPktLen, pThisCC->CTX_SUFF(pTxSg)->cbAvailable);
4536#ifdef DEBUG
4537 if (pThis->u16TxPktLen > pTxSg->cbAvailable)
4538 E1kLog(("%s e1kFallbackAddSegment: truncating packet, u16TxPktLen=%d(0x%x) > cbAvailable=%d(0x%x)\n",
4539 pThis->szPrf, pThis->u16TxPktLen, pThis->u16TxPktLen, pTxSg->cbAvailable, pTxSg->cbAvailable));
4540#endif /* DEBUG */
4541 Assert(pTxSg->cSegs == 1);
4542 if (pTxSg->aSegs[0].pvSeg != pThis->aTxPacketFallback)
4543 memcpy(pTxSg->aSegs[0].pvSeg, pThis->aTxPacketFallback, cbCopy);
4544 pTxSg->cbUsed = cbCopy;
4545 pTxSg->aSegs[0].cbSeg = cbCopy;
4546 }
4547 e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread);
4548
4549 /* Update Sequence Number */
4550 pTcpHdr->seqno = htonl(ntohl(pTcpHdr->seqno) + pThis->u16TxPktLen
4551 - pThis->contextTSE.dw3.u8HDRLEN);
4552 /* Increment IP identification */
4553 pIpHdr->ident = htons(ntohs(pIpHdr->ident) + 1);
4554
4555 /* Allocate new buffer for the next segment. */
4556 if (pThis->u32PayRemain)
4557 {
4558 pThis->cbTxAlloc = RT_MIN(pThis->u32PayRemain,
4559 pThis->contextTSE.dw3.u16MSS)
4560 + pThis->contextTSE.dw3.u8HDRLEN;
4561 /* Do not add VLAN tags to empty packets. */
4562 if (pThis->fVTag && pThis->cbTxAlloc > 0)
4563 pThis->cbTxAlloc += 4;
4564 rc = e1kXmitAllocBuf(pThis, pThisCC, false /* fGSO */);
4565 }
4566 }
4567
4568 return rc;
4569}
4570#endif /* E1K_WITH_TXD_CACHE */
4571
4572#ifndef E1K_WITH_TXD_CACHE
4573/**
4574 * TCP segmentation offloading fallback: Add descriptor's buffer to transmit
4575 * frame.
4576 *
4577 * We construct the frame in the fallback buffer first and the copy it to the SG
4578 * buffer before passing it down to the network driver code.
4579 *
4580 * @returns true if the frame should be transmitted, false if not.
4581 *
4582 * @param pThis The device state structure.
4583 * @param pDesc Pointer to the descriptor to transmit.
4584 * @param cbFragment Length of descriptor's buffer.
4585 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4586 * @thread E1000_TX
4587 */
4588static bool e1kFallbackAddToFrame(PE1KSTATE pThis, E1KTXDESC *pDesc, uint32_t cbFragment, bool fOnWorkerThread)
4589{
4590 PPDMSCATTERGATHER pTxSg = pThisCC->CTX_SUFF(pTxSg);
4591 Assert(e1kGetDescType(pDesc) == E1K_DTYP_DATA);
4592 Assert(pDesc->data.cmd.fTSE);
4593 Assert(!e1kXmitIsGsoBuf(pTxSg));
4594
4595 uint16_t u16MaxPktLen = pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw3.u16MSS;
4596 Assert(u16MaxPktLen != 0);
4597 Assert(u16MaxPktLen < E1K_MAX_TX_PKT_SIZE);
4598
4599 /*
4600 * Carve out segments.
4601 */
4602 do
4603 {
4604 /* Calculate how many bytes we have left in this TCP segment */
4605 uint32_t cb = u16MaxPktLen - pThis->u16TxPktLen;
4606 if (cb > cbFragment)
4607 {
4608 /* This descriptor fits completely into current segment */
4609 cb = cbFragment;
4610 e1kFallbackAddSegment(pDevIns, pThis, pDesc->data.u64BufAddr, cb, pDesc->data.cmd.fEOP /*fSend*/, fOnWorkerThread);
4611 }
4612 else
4613 {
4614 e1kFallbackAddSegment(pDevIns, pThis, pDesc->data.u64BufAddr, cb, true /*fSend*/, fOnWorkerThread);
4615 /*
4616 * Rewind the packet tail pointer to the beginning of payload,
4617 * so we continue writing right beyond the header.
4618 */
4619 pThis->u16TxPktLen = pThis->contextTSE.dw3.u8HDRLEN;
4620 }
4621
4622 pDesc->data.u64BufAddr += cb;
4623 cbFragment -= cb;
4624 } while (cbFragment > 0);
4625
4626 if (pDesc->data.cmd.fEOP)
4627 {
4628 /* End of packet, next segment will contain header. */
4629 if (pThis->u32PayRemain != 0)
4630 E1K_INC_CNT32(TSCTFC);
4631 pThis->u16TxPktLen = 0;
4632 e1kXmitFreeBuf(pThis, PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC));
4633 }
4634
4635 return false;
4636}
4637#else /* E1K_WITH_TXD_CACHE */
4638/**
4639 * TCP segmentation offloading fallback: Add descriptor's buffer to transmit
4640 * frame.
4641 *
4642 * We construct the frame in the fallback buffer first and the copy it to the SG
4643 * buffer before passing it down to the network driver code.
4644 *
4645 * @returns error code
4646 *
4647 * @param pDevIns The device instance.
4648 * @param pThis The device state structure.
4649 * @param pDesc Pointer to the descriptor to transmit.
4650 * @param cbFragment Length of descriptor's buffer.
4651 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4652 * @thread E1000_TX
4653 */
4654static int e1kFallbackAddToFrame(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KTXDESC *pDesc, bool fOnWorkerThread)
4655{
4656#ifdef VBOX_STRICT
4657 PPDMSCATTERGATHER pTxSg = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC)->CTX_SUFF(pTxSg);
4658 Assert(e1kGetDescType(pDesc) == E1K_DTYP_DATA);
4659 Assert(pDesc->data.cmd.fTSE);
4660 Assert(!e1kXmitIsGsoBuf(pTxSg));
4661#endif
4662
4663 uint16_t u16MaxPktLen = pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw3.u16MSS;
4664 /* We cannot produce empty packets, ignore all TX descriptors (see @bugref{9571}) */
4665 if (u16MaxPktLen == 0)
4666 return VINF_SUCCESS;
4667
4668 /*
4669 * Carve out segments.
4670 */
4671 int rc = VINF_SUCCESS;
4672 do
4673 {
4674 /* Calculate how many bytes we have left in this TCP segment */
4675 uint16_t cb = u16MaxPktLen - pThis->u16TxPktLen;
4676 if (cb > pDesc->data.cmd.u20DTALEN)
4677 {
4678 /* This descriptor fits completely into current segment */
4679 cb = (uint16_t)pDesc->data.cmd.u20DTALEN; /* u20DTALEN at this point is guarantied to fit into 16 bits. */
4680 rc = e1kFallbackAddSegment(pDevIns, pThis, pDesc->data.u64BufAddr, cb, pDesc->data.cmd.fEOP /*fSend*/, fOnWorkerThread);
4681 }
4682 else
4683 {
4684 rc = e1kFallbackAddSegment(pDevIns, pThis, pDesc->data.u64BufAddr, cb, true /*fSend*/, fOnWorkerThread);
4685 /*
4686 * Rewind the packet tail pointer to the beginning of payload,
4687 * so we continue writing right beyond the header.
4688 */
4689 pThis->u16TxPktLen = pThis->contextTSE.dw3.u8HDRLEN;
4690 }
4691
4692 pDesc->data.u64BufAddr += cb;
4693 pDesc->data.cmd.u20DTALEN -= cb;
4694 } while (pDesc->data.cmd.u20DTALEN > 0 && RT_SUCCESS(rc));
4695
4696 if (pDesc->data.cmd.fEOP)
4697 {
4698 /* End of packet, next segment will contain header. */
4699 if (pThis->u32PayRemain != 0)
4700 E1K_INC_CNT32(TSCTFC);
4701 pThis->u16TxPktLen = 0;
4702 e1kXmitFreeBuf(pThis, PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC));
4703 }
4704
4705 return VINF_SUCCESS; /// @todo consider rc;
4706}
4707#endif /* E1K_WITH_TXD_CACHE */
4708
4709
4710/**
4711 * Add descriptor's buffer to transmit frame.
4712 *
4713 * This deals with GSO and normal frames, e1kFallbackAddToFrame deals with the
4714 * TSE frames we cannot handle as GSO.
4715 *
4716 * @returns true on success, false on failure.
4717 *
4718 * @param pDevIns The device instance.
4719 * @param pThisCC The current context instance data.
4720 * @param pThis The device state structure.
4721 * @param PhysAddr The physical address of the descriptor buffer.
4722 * @param cbFragment Length of descriptor's buffer.
4723 * @thread E1000_TX
4724 */
4725static bool e1kAddToFrame(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC, RTGCPHYS PhysAddr, uint32_t cbFragment)
4726{
4727 PPDMSCATTERGATHER pTxSg = pThisCC->CTX_SUFF(pTxSg);
4728 bool const fGso = e1kXmitIsGsoBuf(pTxSg);
4729 uint32_t const cbNewPkt = cbFragment + pThis->u16TxPktLen;
4730
4731 LogFlow(("%s e1kAddToFrame: ENTER cbFragment=%d u16TxPktLen=%d cbUsed=%d cbAvailable=%d fGSO=%s\n",
4732 pThis->szPrf, cbFragment, pThis->u16TxPktLen, pTxSg->cbUsed, pTxSg->cbAvailable,
4733 fGso ? "true" : "false"));
4734 PCPDMNETWORKGSO pGso = (PCPDMNETWORKGSO)pTxSg->pvUser;
4735 if (pGso)
4736 {
4737 if (RT_UNLIKELY(pGso->cbMaxSeg == 0))
4738 {
4739 E1kLog(("%s zero-sized fragments are not allowed\n", pThis->szPrf));
4740 return false;
4741 }
4742 if (RT_UNLIKELY(pGso->u8Type == PDMNETWORKGSOTYPE_IPV4_UDP))
4743 {
4744 E1kLog(("%s UDP fragmentation is no longer supported\n", pThis->szPrf));
4745 return false;
4746 }
4747 }
4748 if (RT_UNLIKELY( !fGso && cbNewPkt > E1K_MAX_TX_PKT_SIZE ))
4749 {
4750 E1kLog(("%s Transmit packet is too large: %u > %u(max)\n", pThis->szPrf, cbNewPkt, E1K_MAX_TX_PKT_SIZE));
4751 return false;
4752 }
4753 if (RT_UNLIKELY( cbNewPkt > pTxSg->cbAvailable ))
4754 {
4755 E1kLog(("%s Transmit packet is too large: %u > %u(max)\n", pThis->szPrf, cbNewPkt, pTxSg->cbAvailable));
4756 return false;
4757 }
4758
4759 if (RT_LIKELY(pTxSg))
4760 {
4761 Assert(pTxSg->cSegs == 1);
4762 if (pTxSg->cbUsed != pThis->u16TxPktLen)
4763 E1kLog(("%s e1kAddToFrame: pTxSg->cbUsed=%d(0x%x) != u16TxPktLen=%d(0x%x)\n",
4764 pThis->szPrf, pTxSg->cbUsed, pTxSg->cbUsed, pThis->u16TxPktLen, pThis->u16TxPktLen));
4765
4766 PDMDevHlpPCIPhysRead(pDevIns, PhysAddr, (uint8_t *)pTxSg->aSegs[0].pvSeg + pThis->u16TxPktLen, cbFragment);
4767
4768 pTxSg->cbUsed = cbNewPkt;
4769 }
4770 pThis->u16TxPktLen = cbNewPkt;
4771
4772 return true;
4773}
4774
4775
4776/**
4777 * Write the descriptor back to guest memory and notify the guest.
4778 *
4779 * @param pThis The device state structure.
4780 * @param pDesc Pointer to the descriptor have been transmitted.
4781 * @param addr Physical address of the descriptor in guest memory.
4782 * @thread E1000_TX
4783 */
4784static void e1kDescReport(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KTXDESC *pDesc, RTGCPHYS addr)
4785{
4786 /*
4787 * We fake descriptor write-back bursting. Descriptors are written back as they are
4788 * processed.
4789 */
4790 /* Let's pretend we process descriptors. Write back with DD set. */
4791 /*
4792 * Prior to r71586 we tried to accomodate the case when write-back bursts
4793 * are enabled without actually implementing bursting by writing back all
4794 * descriptors, even the ones that do not have RS set. This caused kernel
4795 * panics with Linux SMP kernels, as the e1000 driver tried to free up skb
4796 * associated with written back descriptor if it happened to be a context
4797 * descriptor since context descriptors do not have skb associated to them.
4798 * Starting from r71586 we write back only the descriptors with RS set,
4799 * which is a little bit different from what the real hardware does in
4800 * case there is a chain of data descritors where some of them have RS set
4801 * and others do not. It is very uncommon scenario imho.
4802 * We need to check RPS as well since some legacy drivers use it instead of
4803 * RS even with newer cards.
4804 */
4805 if (pDesc->legacy.cmd.fRS || pDesc->legacy.cmd.fRPS)
4806 {
4807 pDesc->legacy.dw3.fDD = 1; /* Descriptor Done */
4808 e1kWriteBackDesc(pDevIns, pThis, pDesc, addr);
4809 if (pDesc->legacy.cmd.fEOP)
4810 {
4811//#ifdef E1K_USE_TX_TIMERS
4812 if (pThis->fTidEnabled && pDesc->legacy.cmd.fIDE)
4813 {
4814 E1K_INC_ISTAT_CNT(pThis->uStatTxIDE);
4815 //if (pThis->fIntRaised)
4816 //{
4817 // /* Interrupt is already pending, no need for timers */
4818 // ICR |= ICR_TXDW;
4819 //}
4820 //else {
4821 /* Arm the timer to fire in TIVD usec (discard .024) */
4822 e1kArmTimer(pDevIns, pThis, pThis->hTIDTimer, TIDV);
4823# ifndef E1K_NO_TAD
4824 /* If absolute timer delay is enabled and the timer is not running yet, arm it. */
4825 E1kLog2(("%s Checking if TAD timer is running\n",
4826 pThis->szPrf));
4827 if (TADV != 0 && !PDMDevHlpTimerIsActive(pDevIns, pThis->hTADTimer))
4828 e1kArmTimer(pDevIns, pThis, pThis->hTADTimer, TADV);
4829# endif /* E1K_NO_TAD */
4830 }
4831 else
4832 {
4833 if (pThis->fTidEnabled)
4834 {
4835 E1kLog2(("%s No IDE set, cancel TAD timer and raise interrupt\n",
4836 pThis->szPrf));
4837 /* Cancel both timers if armed and fire immediately. */
4838# ifndef E1K_NO_TAD
4839 PDMDevHlpTimerStop(pDevIns, pThis->hTADTimer);
4840# endif
4841 PDMDevHlpTimerStop(pDevIns, pThis->hTIDTimer);
4842 }
4843//#endif /* E1K_USE_TX_TIMERS */
4844 E1K_INC_ISTAT_CNT(pThis->uStatIntTx);
4845 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_TXDW);
4846//#ifdef E1K_USE_TX_TIMERS
4847 }
4848//#endif /* E1K_USE_TX_TIMERS */
4849 }
4850 }
4851 else
4852 {
4853 E1K_INC_ISTAT_CNT(pThis->uStatTxNoRS);
4854 }
4855}
4856
4857#ifndef E1K_WITH_TXD_CACHE
4858
4859/**
4860 * Process Transmit Descriptor.
4861 *
4862 * E1000 supports three types of transmit descriptors:
4863 * - legacy data descriptors of older format (context-less).
4864 * - data the same as legacy but providing new offloading capabilities.
4865 * - context sets up the context for following data descriptors.
4866 *
4867 * @param pDevIns The device instance.
4868 * @param pThis The device state structure.
4869 * @param pThisCC The current context instance data.
4870 * @param pDesc Pointer to descriptor union.
4871 * @param addr Physical address of descriptor in guest memory.
4872 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
4873 * @thread E1000_TX
4874 */
4875static int e1kXmitDesc(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC, E1KTXDESC *pDesc,
4876 RTGCPHYS addr, bool fOnWorkerThread)
4877{
4878 int rc = VINF_SUCCESS;
4879 uint32_t cbVTag = 0;
4880
4881 e1kPrintTDesc(pThis, pDesc, "vvv");
4882
4883//#ifdef E1K_USE_TX_TIMERS
4884 if (pThis->fTidEnabled)
4885 e1kCancelTimer(pDevIns, pThis, pThis->hTIDTimer);
4886//#endif /* E1K_USE_TX_TIMERS */
4887
4888 switch (e1kGetDescType(pDesc))
4889 {
4890 case E1K_DTYP_CONTEXT:
4891 if (pDesc->context.dw2.fTSE)
4892 {
4893 pThis->contextTSE = pDesc->context;
4894 pThis->u32PayRemain = pDesc->context.dw2.u20PAYLEN;
4895 pThis->u16HdrRemain = pDesc->context.dw3.u8HDRLEN;
4896 e1kSetupGsoCtx(&pThis->GsoCtx, &pDesc->context);
4897 STAM_COUNTER_INC(&pThis->StatTxDescCtxTSE);
4898 }
4899 else
4900 {
4901 pThis->contextNormal = pDesc->context;
4902 STAM_COUNTER_INC(&pThis->StatTxDescCtxNormal);
4903 }
4904 E1kLog2(("%s %s context updated: IP CSS=%02X, IP CSO=%02X, IP CSE=%04X"
4905 ", TU CSS=%02X, TU CSO=%02X, TU CSE=%04X\n", pThis->szPrf,
4906 pDesc->context.dw2.fTSE ? "TSE" : "Normal",
4907 pDesc->context.ip.u8CSS,
4908 pDesc->context.ip.u8CSO,
4909 pDesc->context.ip.u16CSE,
4910 pDesc->context.tu.u8CSS,
4911 pDesc->context.tu.u8CSO,
4912 pDesc->context.tu.u16CSE));
4913 E1K_INC_ISTAT_CNT(pThis->uStatDescCtx);
4914 e1kDescReport(pThis, pDesc, addr);
4915 break;
4916
4917 case E1K_DTYP_DATA:
4918 {
4919 if (pDesc->data.cmd.u20DTALEN == 0 || pDesc->data.u64BufAddr == 0)
4920 {
4921 E1kLog2(("% Empty data descriptor, skipped.\n", pThis->szPrf));
4922 /** @todo Same as legacy when !TSE. See below. */
4923 break;
4924 }
4925 STAM_COUNTER_INC(pDesc->data.cmd.fTSE?
4926 &pThis->StatTxDescTSEData:
4927 &pThis->StatTxDescData);
4928 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
4929 E1K_INC_ISTAT_CNT(pThis->uStatDescDat);
4930
4931 /*
4932 * The last descriptor of non-TSE packet must contain VLE flag.
4933 * TSE packets have VLE flag in the first descriptor. The later
4934 * case is taken care of a bit later when cbVTag gets assigned.
4935 *
4936 * 1) pDesc->data.cmd.fEOP && !pDesc->data.cmd.fTSE
4937 */
4938 if (pDesc->data.cmd.fEOP && !pDesc->data.cmd.fTSE)
4939 {
4940 pThis->fVTag = pDesc->data.cmd.fVLE;
4941 pThis->u16VTagTCI = pDesc->data.dw3.u16Special;
4942 }
4943 /*
4944 * First fragment: Allocate new buffer and save the IXSM and TXSM
4945 * packet options as these are only valid in the first fragment.
4946 */
4947 if (pThis->u16TxPktLen == 0)
4948 {
4949 pThis->fIPcsum = pDesc->data.dw3.fIXSM;
4950 pThis->fTCPcsum = pDesc->data.dw3.fTXSM;
4951 E1kLog2(("%s Saving checksum flags:%s%s; \n", pThis->szPrf,
4952 pThis->fIPcsum ? " IP" : "",
4953 pThis->fTCPcsum ? " TCP/UDP" : ""));
4954 if (pDesc->data.cmd.fTSE)
4955 {
4956 /* 2) pDesc->data.cmd.fTSE && pThis->u16TxPktLen == 0 */
4957 pThis->fVTag = pDesc->data.cmd.fVLE;
4958 pThis->u16VTagTCI = pDesc->data.dw3.u16Special;
4959 cbVTag = pThis->fVTag ? 4 : 0;
4960 }
4961 else if (pDesc->data.cmd.fEOP)
4962 cbVTag = pDesc->data.cmd.fVLE ? 4 : 0;
4963 else
4964 cbVTag = 4;
4965 E1kLog3(("%s About to allocate TX buffer: cbVTag=%u\n", pThis->szPrf, cbVTag));
4966 if (e1kCanDoGso(pThis, &pThis->GsoCtx, &pDesc->data, &pThis->contextTSE))
4967 rc = e1kXmitAllocBuf(pThis, pThisCC, pThis->contextTSE.dw2.u20PAYLEN + pThis->contextTSE.dw3.u8HDRLEN + cbVTag,
4968 true /*fExactSize*/, true /*fGso*/);
4969 else if (pDesc->data.cmd.fTSE)
4970 rc = e1kXmitAllocBuf(pThis, pThisCC, , pThis->contextTSE.dw3.u16MSS + pThis->contextTSE.dw3.u8HDRLEN + cbVTag,
4971 pDesc->data.cmd.fTSE /*fExactSize*/, false /*fGso*/);
4972 else
4973 rc = e1kXmitAllocBuf(pThis, pThisCC, pDesc->data.cmd.u20DTALEN + cbVTag,
4974 pDesc->data.cmd.fEOP /*fExactSize*/, false /*fGso*/);
4975
4976 /**
4977 * @todo: Perhaps it is not that simple for GSO packets! We may
4978 * need to unwind some changes.
4979 */
4980 if (RT_FAILURE(rc))
4981 {
4982 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
4983 break;
4984 }
4985 /** @todo Is there any way to indicating errors other than collisions? Like
4986 * VERR_NET_DOWN. */
4987 }
4988
4989 /*
4990 * Add the descriptor data to the frame. If the frame is complete,
4991 * transmit it and reset the u16TxPktLen field.
4992 */
4993 if (e1kXmitIsGsoBuf(pThisCC->CTX_SUFF(pTxSg)))
4994 {
4995 STAM_COUNTER_INC(&pThis->StatTxPathGSO);
4996 bool fRc = e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
4997 if (pDesc->data.cmd.fEOP)
4998 {
4999 if ( fRc
5000 && pThisCC->CTX_SUFF(pTxSg)
5001 && pThisCC->CTX_SUFF(pTxSg)->cbUsed == (size_t)pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN)
5002 {
5003 e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread);
5004 E1K_INC_CNT32(TSCTC);
5005 }
5006 else
5007 {
5008 if (fRc)
5009 E1kLog(("%s bad GSO/TSE %p or %u < %u\n" , pThis->szPrf,
5010 pThisCC->CTX_SUFF(pTxSg), pThisCC->CTX_SUFF(pTxSg) ? pThisCC->CTX_SUFF(pTxSg)->cbUsed : 0,
5011 pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN));
5012 e1kXmitFreeBuf(pThis);
5013 E1K_INC_CNT32(TSCTFC);
5014 }
5015 pThis->u16TxPktLen = 0;
5016 }
5017 }
5018 else if (!pDesc->data.cmd.fTSE)
5019 {
5020 STAM_COUNTER_INC(&pThis->StatTxPathRegular);
5021 bool fRc = e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
5022 if (pDesc->data.cmd.fEOP)
5023 {
5024 if (fRc && pThisCC->CTX_SUFF(pTxSg))
5025 {
5026 Assert(pThisCC->CTX_SUFF(pTxSg)->cSegs == 1);
5027 if (pThis->fIPcsum)
5028 e1kInsertChecksum(pThis, (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen,
5029 pThis->contextNormal.ip.u8CSO,
5030 pThis->contextNormal.ip.u8CSS,
5031 pThis->contextNormal.ip.u16CSE);
5032 if (pThis->fTCPcsum)
5033 e1kInsertChecksum(pThis, (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen,
5034 pThis->contextNormal.tu.u8CSO,
5035 pThis->contextNormal.tu.u8CSS,
5036 pThis->contextNormal.tu.u16CSE,
5037 !pThis->contextNormal.dw2.fTCP);
5038 e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread);
5039 }
5040 else
5041 e1kXmitFreeBuf(pThis);
5042 pThis->u16TxPktLen = 0;
5043 }
5044 }
5045 else
5046 {
5047 STAM_COUNTER_INC(&pThis->StatTxPathFallback);
5048 e1kFallbackAddToFrame(pDevIns, pThis, pDesc, pDesc->data.cmd.u20DTALEN, fOnWorkerThread);
5049 }
5050
5051 e1kDescReport(pThis, pDesc, addr);
5052 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5053 break;
5054 }
5055
5056 case E1K_DTYP_LEGACY:
5057 if (pDesc->legacy.cmd.u16Length == 0 || pDesc->legacy.u64BufAddr == 0)
5058 {
5059 E1kLog(("%s Empty legacy descriptor, skipped.\n", pThis->szPrf));
5060 /** @todo 3.3.3, Length/Buffer Address: RS set -> write DD when processing. */
5061 break;
5062 }
5063 STAM_COUNTER_INC(&pThis->StatTxDescLegacy);
5064 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
5065
5066 /* First fragment: allocate new buffer. */
5067 if (pThis->u16TxPktLen == 0)
5068 {
5069 if (pDesc->legacy.cmd.fEOP)
5070 cbVTag = pDesc->legacy.cmd.fVLE ? 4 : 0;
5071 else
5072 cbVTag = 4;
5073 E1kLog3(("%s About to allocate TX buffer: cbVTag=%u\n", pThis->szPrf, cbVTag));
5074 /** @todo reset status bits? */
5075 rc = e1kXmitAllocBuf(pThis, pThisCC, pDesc->legacy.cmd.u16Length + cbVTag, pDesc->legacy.cmd.fEOP, false /*fGso*/);
5076 if (RT_FAILURE(rc))
5077 {
5078 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5079 break;
5080 }
5081
5082 /** @todo Is there any way to indicating errors other than collisions? Like
5083 * VERR_NET_DOWN. */
5084 }
5085
5086 /* Add fragment to frame. */
5087 if (e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->legacy.cmd.u16Length))
5088 {
5089 E1K_INC_ISTAT_CNT(pThis->uStatDescLeg);
5090
5091 /* Last fragment: Transmit and reset the packet storage counter. */
5092 if (pDesc->legacy.cmd.fEOP)
5093 {
5094 pThis->fVTag = pDesc->legacy.cmd.fVLE;
5095 pThis->u16VTagTCI = pDesc->legacy.dw3.u16Special;
5096 /** @todo Offload processing goes here. */
5097 e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread);
5098 pThis->u16TxPktLen = 0;
5099 }
5100 }
5101 /* Last fragment + failure: free the buffer and reset the storage counter. */
5102 else if (pDesc->legacy.cmd.fEOP)
5103 {
5104 e1kXmitFreeBuf(pThis);
5105 pThis->u16TxPktLen = 0;
5106 }
5107
5108 e1kDescReport(pThis, pDesc, addr);
5109 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5110 break;
5111
5112 default:
5113 E1kLog(("%s ERROR Unsupported transmit descriptor type: 0x%04x\n",
5114 pThis->szPrf, e1kGetDescType(pDesc)));
5115 break;
5116 }
5117
5118 return rc;
5119}
5120
5121#else /* E1K_WITH_TXD_CACHE */
5122
5123/**
5124 * Process Transmit Descriptor.
5125 *
5126 * E1000 supports three types of transmit descriptors:
5127 * - legacy data descriptors of older format (context-less).
5128 * - data the same as legacy but providing new offloading capabilities.
5129 * - context sets up the context for following data descriptors.
5130 *
5131 * @param pDevIns The device instance.
5132 * @param pThis The device state structure.
5133 * @param pThisCC The current context instance data.
5134 * @param pDesc Pointer to descriptor union.
5135 * @param addr Physical address of descriptor in guest memory.
5136 * @param fOnWorkerThread Whether we're on a worker thread or an EMT.
5137 * @param cbPacketSize Size of the packet as previously computed.
5138 * @thread E1000_TX
5139 */
5140static int e1kXmitDesc(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC, E1KTXDESC *pDesc,
5141 RTGCPHYS addr, bool fOnWorkerThread)
5142{
5143 int rc = VINF_SUCCESS;
5144
5145 e1kPrintTDesc(pThis, pDesc, "vvv");
5146
5147 if (pDesc->legacy.dw3.fDD)
5148 {
5149 E1kLog(("%s e1kXmitDesc: skipping bad descriptor ^^^\n", pThis->szPrf));
5150 e1kDescReport(pDevIns, pThis, pDesc, addr);
5151 return VINF_SUCCESS;
5152 }
5153
5154//#ifdef E1K_USE_TX_TIMERS
5155 if (pThis->fTidEnabled)
5156 PDMDevHlpTimerStop(pDevIns, pThis->hTIDTimer);
5157//#endif /* E1K_USE_TX_TIMERS */
5158
5159 switch (e1kGetDescType(pDesc))
5160 {
5161 case E1K_DTYP_CONTEXT:
5162 /* The caller have already updated the context */
5163 E1K_INC_ISTAT_CNT(pThis->uStatDescCtx);
5164 e1kDescReport(pDevIns, pThis, pDesc, addr);
5165 break;
5166
5167 case E1K_DTYP_DATA:
5168 {
5169 STAM_COUNTER_INC(pDesc->data.cmd.fTSE?
5170 &pThis->StatTxDescTSEData:
5171 &pThis->StatTxDescData);
5172 E1K_INC_ISTAT_CNT(pThis->uStatDescDat);
5173 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
5174 if (pDesc->data.cmd.u20DTALEN == 0 || pDesc->data.u64BufAddr == 0)
5175 {
5176 E1kLog2(("% Empty data descriptor, skipped.\n", pThis->szPrf));
5177 if (pDesc->data.cmd.fEOP)
5178 {
5179 e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread);
5180 pThis->u16TxPktLen = 0;
5181 }
5182 }
5183 else
5184 {
5185 /*
5186 * Add the descriptor data to the frame. If the frame is complete,
5187 * transmit it and reset the u16TxPktLen field.
5188 */
5189 if (e1kXmitIsGsoBuf(pThisCC->CTX_SUFF(pTxSg)))
5190 {
5191 STAM_COUNTER_INC(&pThis->StatTxPathGSO);
5192 bool fRc = e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
5193 if (pDesc->data.cmd.fEOP)
5194 {
5195 if ( fRc
5196 && pThisCC->CTX_SUFF(pTxSg)
5197 && pThisCC->CTX_SUFF(pTxSg)->cbUsed == (size_t)pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN)
5198 {
5199 e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread);
5200 E1K_INC_CNT32(TSCTC);
5201 }
5202 else
5203 {
5204 if (fRc)
5205 E1kLog(("%s bad GSO/TSE %p or %u < %u\n" , pThis->szPrf,
5206 pThisCC->CTX_SUFF(pTxSg), pThisCC->CTX_SUFF(pTxSg) ? pThisCC->CTX_SUFF(pTxSg)->cbUsed : 0,
5207 pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN));
5208 e1kXmitFreeBuf(pThis, pThisCC);
5209 E1K_INC_CNT32(TSCTFC);
5210 }
5211 pThis->u16TxPktLen = 0;
5212 }
5213 }
5214 else if (!pDesc->data.cmd.fTSE)
5215 {
5216 STAM_COUNTER_INC(&pThis->StatTxPathRegular);
5217 bool fRc = e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN);
5218 if (pDesc->data.cmd.fEOP)
5219 {
5220 if (fRc && pThisCC->CTX_SUFF(pTxSg))
5221 {
5222 Assert(pThisCC->CTX_SUFF(pTxSg)->cSegs == 1);
5223 if (pThis->fIPcsum)
5224 e1kInsertChecksum(pThis, (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen,
5225 pThis->contextNormal.ip.u8CSO,
5226 pThis->contextNormal.ip.u8CSS,
5227 pThis->contextNormal.ip.u16CSE);
5228 if (pThis->fTCPcsum)
5229 e1kInsertChecksum(pThis, (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen,
5230 pThis->contextNormal.tu.u8CSO,
5231 pThis->contextNormal.tu.u8CSS,
5232 pThis->contextNormal.tu.u16CSE,
5233 !pThis->contextNormal.dw2.fTCP);
5234 e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread);
5235 }
5236 else
5237 e1kXmitFreeBuf(pThis, pThisCC);
5238 pThis->u16TxPktLen = 0;
5239 }
5240 }
5241 else
5242 {
5243 STAM_COUNTER_INC(&pThis->StatTxPathFallback);
5244 rc = e1kFallbackAddToFrame(pDevIns, pThis, pDesc, fOnWorkerThread);
5245 }
5246 }
5247 e1kDescReport(pDevIns, pThis, pDesc, addr);
5248 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5249 break;
5250 }
5251
5252 case E1K_DTYP_LEGACY:
5253 STAM_COUNTER_INC(&pThis->StatTxDescLegacy);
5254 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
5255 if (pDesc->legacy.cmd.u16Length == 0 || pDesc->legacy.u64BufAddr == 0)
5256 {
5257 E1kLog(("%s Empty legacy descriptor, skipped.\n", pThis->szPrf));
5258 }
5259 else
5260 {
5261 /* Add fragment to frame. */
5262 if (e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->legacy.cmd.u16Length))
5263 {
5264 E1K_INC_ISTAT_CNT(pThis->uStatDescLeg);
5265
5266 /* Last fragment: Transmit and reset the packet storage counter. */
5267 if (pDesc->legacy.cmd.fEOP)
5268 {
5269 if (pDesc->legacy.cmd.fIC)
5270 {
5271 e1kInsertChecksum(pThis,
5272 (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg,
5273 pThis->u16TxPktLen,
5274 pDesc->legacy.cmd.u8CSO,
5275 pDesc->legacy.dw3.u8CSS,
5276 0);
5277 }
5278 e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread);
5279 pThis->u16TxPktLen = 0;
5280 }
5281 }
5282 /* Last fragment + failure: free the buffer and reset the storage counter. */
5283 else if (pDesc->legacy.cmd.fEOP)
5284 {
5285 e1kXmitFreeBuf(pThis, pThisCC);
5286 pThis->u16TxPktLen = 0;
5287 }
5288 }
5289 e1kDescReport(pDevIns, pThis, pDesc, addr);
5290 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5291 break;
5292
5293 default:
5294 E1kLog(("%s ERROR Unsupported transmit descriptor type: 0x%04x\n",
5295 pThis->szPrf, e1kGetDescType(pDesc)));
5296 break;
5297 }
5298
5299 return rc;
5300}
5301
5302DECLINLINE(void) e1kUpdateTxContext(PE1KSTATE pThis, E1KTXDESC *pDesc)
5303{
5304 if (pDesc->context.dw2.fTSE)
5305 {
5306 pThis->contextTSE = pDesc->context;
5307 uint32_t cbMaxSegmentSize = pThis->contextTSE.dw3.u16MSS + pThis->contextTSE.dw3.u8HDRLEN + 4; /*VTAG*/
5308 if (RT_UNLIKELY(cbMaxSegmentSize > E1K_MAX_TX_PKT_SIZE))
5309 {
5310 pThis->contextTSE.dw3.u16MSS = E1K_MAX_TX_PKT_SIZE - pThis->contextTSE.dw3.u8HDRLEN - 4; /*VTAG*/
5311 LogRelMax(10, ("%s: Transmit packet is too large: %u > %u(max). Adjusted MSS to %u.\n",
5312 pThis->szPrf, cbMaxSegmentSize, E1K_MAX_TX_PKT_SIZE, pThis->contextTSE.dw3.u16MSS));
5313 }
5314 pThis->u32PayRemain = pThis->contextTSE.dw2.u20PAYLEN;
5315 pThis->u16HdrRemain = pThis->contextTSE.dw3.u8HDRLEN;
5316 e1kSetupGsoCtx(&pThis->GsoCtx, &pThis->contextTSE);
5317 STAM_COUNTER_INC(&pThis->StatTxDescCtxTSE);
5318 }
5319 else
5320 {
5321 pThis->contextNormal = pDesc->context;
5322 STAM_COUNTER_INC(&pThis->StatTxDescCtxNormal);
5323 }
5324 E1kLog2(("%s %s context updated: IP CSS=%02X, IP CSO=%02X, IP CSE=%04X"
5325 ", TU CSS=%02X, TU CSO=%02X, TU CSE=%04X\n", pThis->szPrf,
5326 pDesc->context.dw2.fTSE ? "TSE" : "Normal",
5327 pDesc->context.ip.u8CSS,
5328 pDesc->context.ip.u8CSO,
5329 pDesc->context.ip.u16CSE,
5330 pDesc->context.tu.u8CSS,
5331 pDesc->context.tu.u8CSO,
5332 pDesc->context.tu.u16CSE));
5333}
5334
5335static bool e1kLocateTxPacket(PE1KSTATE pThis)
5336{
5337 LogFlow(("%s e1kLocateTxPacket: ENTER cbTxAlloc=%d\n",
5338 pThis->szPrf, pThis->cbTxAlloc));
5339 /* Check if we have located the packet already. */
5340 if (pThis->cbTxAlloc)
5341 {
5342 LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d\n",
5343 pThis->szPrf, pThis->cbTxAlloc));
5344 return true;
5345 }
5346
5347 bool fTSE = false;
5348 uint32_t cbPacket = 0;
5349
5350 for (int i = pThis->iTxDCurrent; i < pThis->nTxDFetched; ++i)
5351 {
5352 E1KTXDESC *pDesc = &pThis->aTxDescriptors[i];
5353 switch (e1kGetDescType(pDesc))
5354 {
5355 case E1K_DTYP_CONTEXT:
5356 if (cbPacket == 0)
5357 e1kUpdateTxContext(pThis, pDesc);
5358 else
5359 E1kLog(("%s e1kLocateTxPacket: ignoring a context descriptor in the middle of a packet, cbPacket=%d\n",
5360 pThis->szPrf, cbPacket));
5361 continue;
5362 case E1K_DTYP_LEGACY:
5363 /* Skip invalid descriptors. */
5364 if (cbPacket > 0 && (pThis->fGSO || fTSE))
5365 {
5366 E1kLog(("%s e1kLocateTxPacket: ignoring a legacy descriptor in the segmentation context, cbPacket=%d\n",
5367 pThis->szPrf, cbPacket));
5368 pDesc->legacy.dw3.fDD = true; /* Make sure it is skipped by processing */
5369 continue;
5370 }
5371 /* Skip empty descriptors. */
5372 if (!pDesc->legacy.u64BufAddr || !pDesc->legacy.cmd.u16Length)
5373 break;
5374 cbPacket += pDesc->legacy.cmd.u16Length;
5375 pThis->fGSO = false;
5376 break;
5377 case E1K_DTYP_DATA:
5378 /* Skip invalid descriptors. */
5379 if (cbPacket > 0 && (bool)pDesc->data.cmd.fTSE != fTSE)
5380 {
5381 E1kLog(("%s e1kLocateTxPacket: ignoring %sTSE descriptor in the %ssegmentation context, cbPacket=%d\n",
5382 pThis->szPrf, pDesc->data.cmd.fTSE ? "" : "non-", fTSE ? "" : "non-", cbPacket));
5383 pDesc->data.dw3.fDD = true; /* Make sure it is skipped by processing */
5384 continue;
5385 }
5386 /* Skip empty descriptors. */
5387 if (!pDesc->data.u64BufAddr || !pDesc->data.cmd.u20DTALEN)
5388 break;
5389 if (cbPacket == 0)
5390 {
5391 /*
5392 * The first fragment: save IXSM and TXSM options
5393 * as these are only valid in the first fragment.
5394 */
5395 pThis->fIPcsum = pDesc->data.dw3.fIXSM;
5396 pThis->fTCPcsum = pDesc->data.dw3.fTXSM;
5397 fTSE = pDesc->data.cmd.fTSE;
5398 /*
5399 * TSE descriptors have VLE bit properly set in
5400 * the first fragment.
5401 */
5402 if (fTSE)
5403 {
5404 pThis->fVTag = pDesc->data.cmd.fVLE;
5405 pThis->u16VTagTCI = pDesc->data.dw3.u16Special;
5406 }
5407 pThis->fGSO = e1kCanDoGso(pThis, &pThis->GsoCtx, &pDesc->data, &pThis->contextTSE);
5408 }
5409 cbPacket += pDesc->data.cmd.u20DTALEN;
5410 break;
5411 default:
5412 AssertMsgFailed(("Impossible descriptor type!"));
5413 continue;
5414 }
5415 if (pDesc->legacy.cmd.fEOP)
5416 {
5417 /*
5418 * Non-TSE descriptors have VLE bit properly set in
5419 * the last fragment.
5420 */
5421 if (!fTSE)
5422 {
5423 pThis->fVTag = pDesc->data.cmd.fVLE;
5424 pThis->u16VTagTCI = pDesc->data.dw3.u16Special;
5425 }
5426 /*
5427 * Compute the required buffer size. If we cannot do GSO but still
5428 * have to do segmentation we allocate the first segment only.
5429 */
5430 pThis->cbTxAlloc = (!fTSE || pThis->fGSO) ?
5431 cbPacket :
5432 RT_MIN(cbPacket, pThis->contextTSE.dw3.u16MSS + pThis->contextTSE.dw3.u8HDRLEN);
5433 /* Do not add VLAN tags to empty packets. */
5434 if (pThis->fVTag && pThis->cbTxAlloc > 0)
5435 pThis->cbTxAlloc += 4;
5436 LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d cbPacket=%d%s%s\n",
5437 pThis->szPrf, pThis->cbTxAlloc, cbPacket,
5438 pThis->fGSO ? " GSO" : "", fTSE ? " TSE" : ""));
5439 return true;
5440 }
5441 }
5442
5443 if (cbPacket == 0 && pThis->nTxDFetched - pThis->iTxDCurrent > 0)
5444 {
5445 /* All descriptors were empty, we need to process them as a dummy packet */
5446 LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d, zero packet!\n",
5447 pThis->szPrf, pThis->cbTxAlloc));
5448 return true;
5449 }
5450 LogFlow(("%s e1kLocateTxPacket: RET false cbTxAlloc=%d cbPacket=%d\n",
5451 pThis->szPrf, pThis->cbTxAlloc, cbPacket));
5452 return false;
5453}
5454
5455static int e1kXmitPacket(PPDMDEVINS pDevIns, PE1KSTATE pThis, bool fOnWorkerThread, PE1KTXDC pTxdc)
5456{
5457 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
5458 int rc = VINF_SUCCESS;
5459
5460 LogFlow(("%s e1kXmitPacket: ENTER current=%d fetched=%d\n",
5461 pThis->szPrf, pThis->iTxDCurrent, pThis->nTxDFetched));
5462
5463 while (pThis->iTxDCurrent < pThis->nTxDFetched)
5464 {
5465 E1KTXDESC *pDesc = &pThis->aTxDescriptors[pThis->iTxDCurrent];
5466 E1kLog3(("%s About to process new TX descriptor at %08x%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
5467 pThis->szPrf, TDBAH, TDBAL + pTxdc->tdh * sizeof(E1KTXDESC), pTxdc->tdlen, pTxdc->tdh, pTxdc->tdt));
5468 rc = e1kXmitDesc(pDevIns, pThis, pThisCC, pDesc, e1kDescAddr(TDBAH, TDBAL, pTxdc->tdh), fOnWorkerThread);
5469 if (RT_FAILURE(rc))
5470 break;
5471 if (++pTxdc->tdh * sizeof(E1KTXDESC) >= pTxdc->tdlen)
5472 pTxdc->tdh = 0;
5473 TDH = pTxdc->tdh; /* Sync the actual register and TXDC */
5474 uint32_t uLowThreshold = GET_BITS(TXDCTL, LWTHRESH)*8;
5475 if (uLowThreshold != 0 && e1kGetTxLen(pTxdc) <= uLowThreshold)
5476 {
5477 E1kLog2(("%s Low on transmit descriptors, raise ICR.TXD_LOW, len=%x thresh=%x\n",
5478 pThis->szPrf, e1kGetTxLen(pTxdc), GET_BITS(TXDCTL, LWTHRESH)*8));
5479 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_TXD_LOW);
5480 }
5481 ++pThis->iTxDCurrent;
5482 if (e1kGetDescType(pDesc) != E1K_DTYP_CONTEXT && pDesc->legacy.cmd.fEOP)
5483 break;
5484 }
5485
5486 LogFlow(("%s e1kXmitPacket: RET %Rrc current=%d fetched=%d\n",
5487 pThis->szPrf, rc, pThis->iTxDCurrent, pThis->nTxDFetched));
5488 return rc;
5489}
5490
5491#endif /* E1K_WITH_TXD_CACHE */
5492#ifndef E1K_WITH_TXD_CACHE
5493
5494/**
5495 * Transmit pending descriptors.
5496 *
5497 * @returns VBox status code. VERR_TRY_AGAIN is returned if we're busy.
5498 *
5499 * @param pDevIns The device instance.
5500 * @param pThis The E1000 state.
5501 * @param fOnWorkerThread Whether we're on a worker thread or on an EMT.
5502 */
5503static int e1kXmitPending(PPDMDEVINS pDevIns, PE1KSTATE pThis, bool fOnWorkerThread)
5504{
5505 int rc = VINF_SUCCESS;
5506 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
5507
5508 /* Check if transmitter is enabled. */
5509 if (!(TCTL & TCTL_EN))
5510 return VINF_SUCCESS;
5511 /*
5512 * Grab the xmit lock of the driver as well as the E1K device state.
5513 */
5514 rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY);
5515 if (RT_LIKELY(rc == VINF_SUCCESS))
5516 {
5517 PPDMINETWORKUP pDrv = pThis->CTX_SUFF(pDrv);
5518 if (pDrv)
5519 {
5520 rc = pDrv->pfnBeginXmit(pDrv, fOnWorkerThread);
5521 if (RT_FAILURE(rc))
5522 {
5523 e1kCsTxLeave(pThis);
5524 return rc;
5525 }
5526 }
5527 /*
5528 * Process all pending descriptors.
5529 * Note! Do not process descriptors in locked state
5530 */
5531 while (TDH != TDT && !pThis->fLocked)
5532 {
5533 E1KTXDESC desc;
5534 E1kLog3(("%s About to process new TX descriptor at %08x%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
5535 pThis->szPrf, TDBAH, TDBAL + TDH * sizeof(desc), TDLEN, TDH, TDT));
5536
5537 e1kLoadDesc(pDevIns, &desc, ((uint64_t)TDBAH << 32) + TDBAL + TDH * sizeof(desc));
5538 rc = e1kXmitDesc(pDevIns, pThis, pThisCC, &desc, e1kDescAddr(TDBAH, TDBAL, TDH), fOnWorkerThread);
5539 /* If we failed to transmit descriptor we will try it again later */
5540 if (RT_FAILURE(rc))
5541 break;
5542 if (++TDH * sizeof(desc) >= TDLEN)
5543 TDH = 0;
5544
5545 if (e1kGetTxLen(pThis) <= GET_BITS(TXDCTL, LWTHRESH)*8)
5546 {
5547 E1kLog2(("%s Low on transmit descriptors, raise ICR.TXD_LOW, len=%x thresh=%x\n",
5548 pThis->szPrf, e1kGetTxLen(pThis), GET_BITS(TXDCTL, LWTHRESH)*8));
5549 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_TXD_LOW);
5550 }
5551
5552 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5553 }
5554
5555 /// @todo uncomment: pThis->uStatIntTXQE++;
5556 /// @todo uncomment: e1kRaiseInterrupt(pDevIns, pThis, ICR_TXQE);
5557 /*
5558 * Release the lock.
5559 */
5560 if (pDrv)
5561 pDrv->pfnEndXmit(pDrv);
5562 e1kCsTxLeave(pThis);
5563 }
5564
5565 return rc;
5566}
5567
5568#else /* E1K_WITH_TXD_CACHE */
5569
5570static void e1kDumpTxDCache(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KTXDC pTxdc)
5571{
5572 unsigned i, cDescs = pTxdc->tdlen / sizeof(E1KTXDESC);
5573 uint32_t tdh = pTxdc->tdh;
5574 LogRel(("E1000: -- Transmit Descriptors (%d total) --\n", cDescs));
5575 for (i = 0; i < cDescs; ++i)
5576 {
5577 E1KTXDESC desc;
5578 PDMDevHlpPCIPhysRead(pDevIns , e1kDescAddr(TDBAH, TDBAL, i), &desc, sizeof(desc));
5579 if (i == tdh)
5580 LogRel(("E1000: >>> "));
5581 LogRel(("E1000: %RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, i), &desc));
5582 }
5583 LogRel(("E1000: -- Transmit Descriptors in Cache (at %d (TDH %d)/ fetched %d / max %d) --\n",
5584 pThis->iTxDCurrent, pTxdc->tdh, pThis->nTxDFetched, E1K_TXD_CACHE_SIZE));
5585 if (tdh > pThis->iTxDCurrent)
5586 tdh -= pThis->iTxDCurrent;
5587 else
5588 tdh = cDescs + tdh - pThis->iTxDCurrent;
5589 for (i = 0; i < pThis->nTxDFetched; ++i)
5590 {
5591 if (i == pThis->iTxDCurrent)
5592 LogRel(("E1000: >>> "));
5593 if (cDescs)
5594 LogRel(("E1000: %RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, tdh++ % cDescs), &pThis->aTxDescriptors[i]));
5595 else
5596 LogRel(("E1000: <lost>: %R[e1ktxd]\n", &pThis->aTxDescriptors[i]));
5597 }
5598}
5599
5600/**
5601 * Transmit pending descriptors.
5602 *
5603 * @returns VBox status code. VERR_TRY_AGAIN is returned if we're busy.
5604 *
5605 * @param pDevIns The device instance.
5606 * @param pThis The E1000 state.
5607 * @param fOnWorkerThread Whether we're on a worker thread or on an EMT.
5608 */
5609static int e1kXmitPending(PPDMDEVINS pDevIns, PE1KSTATE pThis, bool fOnWorkerThread)
5610{
5611 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
5612 int rc = VINF_SUCCESS;
5613
5614 /* Check if transmitter is enabled. */
5615 if (!(TCTL & TCTL_EN))
5616 return VINF_SUCCESS;
5617 /*
5618 * Grab the xmit lock of the driver as well as the E1K device state.
5619 */
5620 PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv);
5621 if (pDrv)
5622 {
5623 rc = pDrv->pfnBeginXmit(pDrv, fOnWorkerThread);
5624 if (RT_FAILURE(rc))
5625 return rc;
5626 }
5627
5628 /*
5629 * Process all pending descriptors.
5630 * Note! Do not process descriptors in locked state
5631 */
5632 rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY);
5633 if (RT_LIKELY(rc == VINF_SUCCESS && (TCTL & TCTL_EN)))
5634 {
5635 E1KTXDC txdc;
5636 bool fTxContextValid = e1kUpdateTxDContext(pDevIns, pThis, &txdc);
5637 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a);
5638 /*
5639 * fIncomplete is set whenever we try to fetch additional descriptors
5640 * for an incomplete packet. If fail to locate a complete packet on
5641 * the next iteration we need to reset the cache or we risk to get
5642 * stuck in this loop forever.
5643 */
5644 bool fIncomplete = false;
5645 while (fTxContextValid && !pThis->fLocked && e1kTxDLazyLoad(pDevIns, pThis, &txdc))
5646 {
5647 while (e1kLocateTxPacket(pThis))
5648 {
5649 fIncomplete = false;
5650 /* Found a complete packet, allocate it. */
5651 rc = e1kXmitAllocBuf(pThis, pThisCC, pThis->fGSO);
5652 /* If we're out of bandwidth we'll come back later. */
5653 if (RT_FAILURE(rc))
5654 goto out;
5655 /* Copy the packet to allocated buffer and send it. */
5656 rc = e1kXmitPacket(pDevIns, pThis, fOnWorkerThread, &txdc);
5657 /* If we're out of bandwidth we'll come back later. */
5658 if (RT_FAILURE(rc))
5659 goto out;
5660 }
5661 uint8_t u8Remain = pThis->nTxDFetched - pThis->iTxDCurrent;
5662 if (RT_UNLIKELY(fIncomplete))
5663 {
5664 static bool fTxDCacheDumped = false;
5665 /*
5666 * The descriptor cache is full, but we were unable to find
5667 * a complete packet in it. Drop the cache and hope that
5668 * the guest driver can recover from network card error.
5669 */
5670 LogRel(("%s: No complete packets in%s TxD cache! "
5671 "Fetched=%d, current=%d, TX len=%d.\n",
5672 pThis->szPrf,
5673 u8Remain == E1K_TXD_CACHE_SIZE ? " full" : "",
5674 pThis->nTxDFetched, pThis->iTxDCurrent,
5675 e1kGetTxLen(&txdc)));
5676 if (!fTxDCacheDumped)
5677 {
5678 fTxDCacheDumped = true;
5679 e1kDumpTxDCache(pDevIns, pThis, &txdc);
5680 }
5681 pThis->iTxDCurrent = pThis->nTxDFetched = 0;
5682 /*
5683 * Returning an error at this point means Guru in R0
5684 * (see @bugref{6428}).
5685 */
5686# ifdef IN_RING3
5687 rc = VERR_NET_INCOMPLETE_TX_PACKET;
5688# else /* !IN_RING3 */
5689 rc = VINF_IOM_R3_MMIO_WRITE;
5690# endif /* !IN_RING3 */
5691 goto out;
5692 }
5693 if (u8Remain > 0)
5694 {
5695 Log4(("%s Incomplete packet at %d. Already fetched %d, "
5696 "%d more are available\n",
5697 pThis->szPrf, pThis->iTxDCurrent, u8Remain,
5698 e1kGetTxLen(&txdc) - u8Remain));
5699
5700 /*
5701 * A packet was partially fetched. Move incomplete packet to
5702 * the beginning of cache buffer, then load more descriptors.
5703 */
5704 memmove(pThis->aTxDescriptors,
5705 &pThis->aTxDescriptors[pThis->iTxDCurrent],
5706 u8Remain * sizeof(E1KTXDESC));
5707 pThis->iTxDCurrent = 0;
5708 pThis->nTxDFetched = u8Remain;
5709 e1kTxDLoadMore(pDevIns, pThis, &txdc);
5710 fIncomplete = true;
5711 }
5712 else
5713 pThis->nTxDFetched = 0;
5714 pThis->iTxDCurrent = 0;
5715 }
5716 if (!pThis->fLocked && GET_BITS(TXDCTL, LWTHRESH) == 0)
5717 {
5718 E1kLog2(("%s Out of transmit descriptors, raise ICR.TXD_LOW\n",
5719 pThis->szPrf));
5720 e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_TXD_LOW);
5721 }
5722out:
5723 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a);
5724
5725 /// @todo uncomment: pThis->uStatIntTXQE++;
5726 /// @todo uncomment: e1kRaiseInterrupt(pDevIns, pThis, ICR_TXQE);
5727
5728 e1kCsTxLeave(pThis);
5729 }
5730
5731
5732 /*
5733 * Release the lock.
5734 */
5735 if (pDrv)
5736 pDrv->pfnEndXmit(pDrv);
5737 return rc;
5738}
5739
5740#endif /* E1K_WITH_TXD_CACHE */
5741#ifdef IN_RING3
5742
5743/**
5744 * @interface_method_impl{PDMINETWORKDOWN,pfnXmitPending}
5745 */
5746static DECLCALLBACK(void) e1kR3NetworkDown_XmitPending(PPDMINETWORKDOWN pInterface)
5747{
5748 PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkDown);
5749 PE1KSTATE pThis = pThisCC->pShared;
5750 /* Resume suspended transmission */
5751 STATUS &= ~STATUS_TXOFF;
5752 e1kXmitPending(pThisCC->pDevInsR3, pThis, true /*fOnWorkerThread*/);
5753}
5754
5755/**
5756 * @callback_method_impl{FNPDMTASKDEV,
5757 * Executes e1kXmitPending at the behest of ring-0/raw-mode.}
5758 * @note Not executed on EMT.
5759 */
5760static DECLCALLBACK(void) e1kR3TxTaskCallback(PPDMDEVINS pDevIns, void *pvUser)
5761{
5762 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
5763 E1kLog2(("%s e1kR3TxTaskCallback:\n", pThis->szPrf));
5764
5765 int rc = e1kXmitPending(pDevIns, pThis, false /*fOnWorkerThread*/);
5766 AssertMsg(RT_SUCCESS(rc) || rc == VERR_TRY_AGAIN || rc == VERR_NET_DOWN, ("%Rrc\n", rc));
5767
5768 RT_NOREF(rc, pvUser);
5769}
5770
5771#endif /* IN_RING3 */
5772
5773/**
5774 * Write handler for Transmit Descriptor Tail register.
5775 *
5776 * @param pThis The device state structure.
5777 * @param offset Register offset in memory-mapped frame.
5778 * @param index Register index in register array.
5779 * @param value The value to store.
5780 * @param mask Used to implement partial writes (8 and 16-bit).
5781 * @thread EMT
5782 */
5783static int e1kRegWriteTDT(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5784{
5785 int rc = e1kRegWriteDefault(pDevIns, pThis, offset, index, value);
5786
5787 /* All descriptors starting with head and not including tail belong to us. */
5788 /* Process them. */
5789 E1kLog2(("%s e1kRegWriteTDT: TDBAL=%08x, TDBAH=%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n",
5790 pThis->szPrf, TDBAL, TDBAH, TDLEN, TDH, TDT));
5791
5792 /* Compose a temporary TX context, breaking TX CS rule, for debugging purposes. */
5793 /* If we decide to transmit, the TX critical section will be entered later in e1kXmitPending(). */
5794 E1KTXDC txdc;
5795 txdc.tdlen = TDLEN;
5796 txdc.tdh = TDH;
5797 txdc.tdt = TDT;
5798 /* Ignore TDT writes when the link is down. */
5799 if (txdc.tdh != txdc.tdt && (STATUS & STATUS_LU))
5800 {
5801 Log5(("E1000: TDT write: TDH=%08x, TDT=%08x, %d descriptors to process\n", txdc.tdh, txdc.tdt, e1kGetTxLen(&txdc)));
5802 E1kLog(("%s e1kRegWriteTDT: %d descriptors to process\n",
5803 pThis->szPrf, e1kGetTxLen(&txdc)));
5804
5805 /* Transmit pending packets if possible, defer it if we cannot do it
5806 in the current context. */
5807#ifdef E1K_TX_DELAY
5808 rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY);
5809 if (RT_LIKELY(rc == VINF_SUCCESS))
5810 {
5811 if (!PDMDevInsTimerIsActive(pDevIns, pThis->hTXDTimer))
5812 {
5813# ifdef E1K_INT_STATS
5814 pThis->u64ArmedAt = RTTimeNanoTS();
5815# endif
5816 e1kArmTimer(pDevIns, pThis, pThis->hTXDTimer, E1K_TX_DELAY);
5817 }
5818 E1K_INC_ISTAT_CNT(pThis->uStatTxDelayed);
5819 e1kCsTxLeave(pThis);
5820 return rc;
5821 }
5822 /* We failed to enter the TX critical section -- transmit as usual. */
5823#endif /* E1K_TX_DELAY */
5824#ifndef IN_RING3
5825 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
5826 if (!pThisCC->CTX_SUFF(pDrv))
5827 {
5828 PDMDevHlpTaskTrigger(pDevIns, pThis->hTxTask);
5829 rc = VINF_SUCCESS;
5830 }
5831 else
5832#endif
5833 {
5834 rc = e1kXmitPending(pDevIns, pThis, false /*fOnWorkerThread*/);
5835 if (rc == VERR_TRY_AGAIN)
5836 rc = VINF_SUCCESS;
5837#ifndef IN_RING3
5838 else if (rc == VERR_SEM_BUSY)
5839 rc = VINF_IOM_R3_MMIO_WRITE;
5840#endif
5841 AssertRC(rc);
5842 }
5843 }
5844
5845 return rc;
5846}
5847
5848/**
5849 * Write handler for Multicast Table Array registers.
5850 *
5851 * @param pThis The device state structure.
5852 * @param offset Register offset in memory-mapped frame.
5853 * @param index Register index in register array.
5854 * @param value The value to store.
5855 * @thread EMT
5856 */
5857static int e1kRegWriteMTA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5858{
5859 RT_NOREF_PV(pDevIns);
5860 AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->auMTA), VERR_DEV_IO_ERROR);
5861 pThis->auMTA[(offset - g_aE1kRegMap[index].offset) / sizeof(pThis->auMTA[0])] = value;
5862
5863 return VINF_SUCCESS;
5864}
5865
5866/**
5867 * Read handler for Multicast Table Array registers.
5868 *
5869 * @returns VBox status code.
5870 *
5871 * @param pThis The device state structure.
5872 * @param offset Register offset in memory-mapped frame.
5873 * @param index Register index in register array.
5874 * @thread EMT
5875 */
5876static int e1kRegReadMTA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5877{
5878 RT_NOREF_PV(pDevIns);
5879 AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->auMTA), VERR_DEV_IO_ERROR);
5880 *pu32Value = pThis->auMTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auMTA[0])];
5881
5882 return VINF_SUCCESS;
5883}
5884
5885/**
5886 * Write handler for Receive Address registers.
5887 *
5888 * @param pThis The device state structure.
5889 * @param offset Register offset in memory-mapped frame.
5890 * @param index Register index in register array.
5891 * @param value The value to store.
5892 * @thread EMT
5893 */
5894static int e1kRegWriteRA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5895{
5896 RT_NOREF_PV(pDevIns);
5897 AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->aRecAddr.au32), VERR_DEV_IO_ERROR);
5898 pThis->aRecAddr.au32[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->aRecAddr.au32[0])] = value;
5899
5900 return VINF_SUCCESS;
5901}
5902
5903/**
5904 * Read handler for Receive Address registers.
5905 *
5906 * @returns VBox status code.
5907 *
5908 * @param pThis The device state structure.
5909 * @param offset Register offset in memory-mapped frame.
5910 * @param index Register index in register array.
5911 * @thread EMT
5912 */
5913static int e1kRegReadRA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5914{
5915 RT_NOREF_PV(pDevIns);
5916 AssertReturn(offset - g_aE1kRegMap[index].offset< sizeof(pThis->aRecAddr.au32), VERR_DEV_IO_ERROR);
5917 *pu32Value = pThis->aRecAddr.au32[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->aRecAddr.au32[0])];
5918
5919 return VINF_SUCCESS;
5920}
5921
5922/**
5923 * Write handler for VLAN Filter Table Array registers.
5924 *
5925 * @param pThis The device state structure.
5926 * @param offset Register offset in memory-mapped frame.
5927 * @param index Register index in register array.
5928 * @param value The value to store.
5929 * @thread EMT
5930 */
5931static int e1kRegWriteVFTA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
5932{
5933 RT_NOREF_PV(pDevIns);
5934 AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->auVFTA), VINF_SUCCESS);
5935 pThis->auVFTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auVFTA[0])] = value;
5936
5937 return VINF_SUCCESS;
5938}
5939
5940/**
5941 * Read handler for VLAN Filter Table Array registers.
5942 *
5943 * @returns VBox status code.
5944 *
5945 * @param pThis The device state structure.
5946 * @param offset Register offset in memory-mapped frame.
5947 * @param index Register index in register array.
5948 * @thread EMT
5949 */
5950static int e1kRegReadVFTA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5951{
5952 RT_NOREF_PV(pDevIns);
5953 AssertReturn(offset - g_aE1kRegMap[index].offset< sizeof(pThis->auVFTA), VERR_DEV_IO_ERROR);
5954 *pu32Value = pThis->auVFTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auVFTA[0])];
5955
5956 return VINF_SUCCESS;
5957}
5958
5959/**
5960 * Read handler for unimplemented registers.
5961 *
5962 * Merely reports reads from unimplemented registers.
5963 *
5964 * @returns VBox status code.
5965 *
5966 * @param pThis The device state structure.
5967 * @param offset Register offset in memory-mapped frame.
5968 * @param index Register index in register array.
5969 * @thread EMT
5970 */
5971static int e1kRegReadUnimplemented(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5972{
5973 RT_NOREF(pDevIns, pThis, offset, index);
5974 E1kLog(("%s At %08X read (00000000) attempt from unimplemented register %s (%s)\n",
5975 pThis->szPrf, offset, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
5976 *pu32Value = 0;
5977
5978 return VINF_SUCCESS;
5979}
5980
5981/**
5982 * Default register read handler with automatic clear operation.
5983 *
5984 * Retrieves the value of register from register array in device state structure.
5985 * Then resets all bits.
5986 *
5987 * @remarks The 'mask' parameter is simply ignored as masking and shifting is
5988 * done in the caller.
5989 *
5990 * @returns VBox status code.
5991 *
5992 * @param pThis The device state structure.
5993 * @param offset Register offset in memory-mapped frame.
5994 * @param index Register index in register array.
5995 * @thread EMT
5996 */
5997static int e1kRegReadAutoClear(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
5998{
5999 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
6000 int rc = e1kRegReadDefault(pDevIns, pThis, offset, index, pu32Value);
6001 pThis->auRegs[index] = 0;
6002
6003 return rc;
6004}
6005
6006/**
6007 * Default register read handler.
6008 *
6009 * Retrieves the value of register from register array in device state structure.
6010 * Bits corresponding to 0s in 'readable' mask will always read as 0s.
6011 *
6012 * @remarks The 'mask' parameter is simply ignored as masking and shifting is
6013 * done in the caller.
6014 *
6015 * @returns VBox status code.
6016 *
6017 * @param pThis The device state structure.
6018 * @param offset Register offset in memory-mapped frame.
6019 * @param index Register index in register array.
6020 * @thread EMT
6021 */
6022static int e1kRegReadDefault(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value)
6023{
6024 RT_NOREF_PV(pDevIns); RT_NOREF_PV(offset);
6025
6026 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
6027 *pu32Value = pThis->auRegs[index] & g_aE1kRegMap[index].readable;
6028
6029 return VINF_SUCCESS;
6030}
6031
6032/**
6033 * Write handler for unimplemented registers.
6034 *
6035 * Merely reports writes to unimplemented registers.
6036 *
6037 * @param pThis The device state structure.
6038 * @param offset Register offset in memory-mapped frame.
6039 * @param index Register index in register array.
6040 * @param value The value to store.
6041 * @thread EMT
6042 */
6043
6044 static int e1kRegWriteUnimplemented(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
6045{
6046 RT_NOREF_PV(pDevIns); RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); RT_NOREF_PV(value);
6047
6048 E1kLog(("%s At %08X write attempt (%08X) to unimplemented register %s (%s)\n",
6049 pThis->szPrf, offset, value, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
6050
6051 return VINF_SUCCESS;
6052}
6053
6054/**
6055 * Default register write handler.
6056 *
6057 * Stores the value to the register array in device state structure. Only bits
6058 * corresponding to 1s both in 'writable' and 'mask' will be stored.
6059 *
6060 * @returns VBox status code.
6061 *
6062 * @param pThis The device state structure.
6063 * @param offset Register offset in memory-mapped frame.
6064 * @param index Register index in register array.
6065 * @param value The value to store.
6066 * @param mask Used to implement partial writes (8 and 16-bit).
6067 * @thread EMT
6068 */
6069
6070static int e1kRegWriteDefault(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value)
6071{
6072 RT_NOREF(pDevIns, offset);
6073
6074 AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR);
6075 pThis->auRegs[index] = (value & g_aE1kRegMap[index].writable)
6076 | (pThis->auRegs[index] & ~g_aE1kRegMap[index].writable);
6077
6078 return VINF_SUCCESS;
6079}
6080
6081/**
6082 * Search register table for matching register.
6083 *
6084 * @returns Index in the register table or -1 if not found.
6085 *
6086 * @param offReg Register offset in memory-mapped region.
6087 * @thread EMT
6088 */
6089static int e1kRegLookup(uint32_t offReg)
6090{
6091
6092#if 0
6093 int index;
6094
6095 for (index = 0; index < E1K_NUM_OF_REGS; index++)
6096 {
6097 if (g_aE1kRegMap[index].offset <= offReg && offReg < g_aE1kRegMap[index].offset + g_aE1kRegMap[index].size)
6098 {
6099 return index;
6100 }
6101 }
6102#else
6103 int iStart = 0;
6104 int iEnd = E1K_NUM_OF_BINARY_SEARCHABLE;
6105 for (;;)
6106 {
6107 int i = (iEnd - iStart) / 2 + iStart;
6108 uint32_t offCur = g_aE1kRegMap[i].offset;
6109 if (offReg < offCur)
6110 {
6111 if (i == iStart)
6112 break;
6113 iEnd = i;
6114 }
6115 else if (offReg >= offCur + g_aE1kRegMap[i].size)
6116 {
6117 i++;
6118 if (i == iEnd)
6119 break;
6120 iStart = i;
6121 }
6122 else
6123 return i;
6124 Assert(iEnd > iStart);
6125 }
6126
6127 for (unsigned i = E1K_NUM_OF_BINARY_SEARCHABLE; i < RT_ELEMENTS(g_aE1kRegMap); i++)
6128 if (offReg - g_aE1kRegMap[i].offset < g_aE1kRegMap[i].size)
6129 return (int)i;
6130
6131# ifdef VBOX_STRICT
6132 for (unsigned i = 0; i < RT_ELEMENTS(g_aE1kRegMap); i++)
6133 Assert(offReg - g_aE1kRegMap[i].offset >= g_aE1kRegMap[i].size);
6134# endif
6135
6136#endif
6137
6138 return -1;
6139}
6140
6141/**
6142 * Handle unaligned register read operation.
6143 *
6144 * Looks up and calls appropriate handler.
6145 *
6146 * @returns VBox status code.
6147 *
6148 * @param pDevIns The device instance.
6149 * @param pThis The device state structure.
6150 * @param offReg Register offset in memory-mapped frame.
6151 * @param pv Where to store the result.
6152 * @param cb Number of bytes to read.
6153 * @thread EMT
6154 * @remarks IOM takes care of unaligned and small reads via MMIO. For I/O port
6155 * accesses we have to take care of that ourselves.
6156 */
6157static int e1kRegReadUnaligned(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offReg, void *pv, uint32_t cb)
6158{
6159 uint32_t u32 = 0;
6160 uint32_t shift;
6161 int rc = VINF_SUCCESS;
6162 int index = e1kRegLookup(offReg);
6163#ifdef LOG_ENABLED
6164 char buf[9];
6165#endif
6166
6167 /*
6168 * From the spec:
6169 * For registers that should be accessed as 32-bit double words, partial writes (less than a 32-bit
6170 * double word) is ignored. Partial reads return all 32 bits of data regardless of the byte enables.
6171 */
6172
6173 /*
6174 * To be able to read bytes and short word we convert them to properly
6175 * shifted 32-bit words and masks. The idea is to keep register-specific
6176 * handlers simple. Most accesses will be 32-bit anyway.
6177 */
6178 uint32_t mask;
6179 switch (cb)
6180 {
6181 case 4: mask = 0xFFFFFFFF; break;
6182 case 2: mask = 0x0000FFFF; break;
6183 case 1: mask = 0x000000FF; break;
6184 default:
6185 return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "unsupported op size: offset=%#10x cb=%#10x\n", offReg, cb);
6186 }
6187 if (index >= 0)
6188 {
6189 RT_UNTRUSTED_VALIDATED_FENCE(); /* paranoia because of port I/O. */
6190 if (g_aE1kRegMap[index].readable)
6191 {
6192 /* Make the mask correspond to the bits we are about to read. */
6193 shift = (offReg - g_aE1kRegMap[index].offset) % sizeof(uint32_t) * 8;
6194 mask <<= shift;
6195 if (!mask)
6196 return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "Zero mask: offset=%#10x cb=%#10x\n", offReg, cb);
6197 /*
6198 * Read it. Pass the mask so the handler knows what has to be read.
6199 * Mask out irrelevant bits.
6200 */
6201 //rc = e1kCsEnter(pThis, VERR_SEM_BUSY, RT_SRC_POS);
6202 if (RT_UNLIKELY(rc != VINF_SUCCESS))
6203 return rc;
6204 //pThis->fDelayInts = false;
6205 //pThis->iStatIntLost += pThis->iStatIntLostOne;
6206 //pThis->iStatIntLostOne = 0;
6207 rc = g_aE1kRegMap[index].pfnRead(pDevIns, pThis, offReg & 0xFFFFFFFC, (uint32_t)index, &u32);
6208 u32 &= mask;
6209 //e1kCsLeave(pThis);
6210 E1kLog2(("%s At %08X read %s from %s (%s)\n",
6211 pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf), g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
6212 Log6(("%s At %08X read %s from %s (%s) [UNALIGNED]\n",
6213 pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf), g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
6214 /* Shift back the result. */
6215 u32 >>= shift;
6216 }
6217 else
6218 E1kLog(("%s At %08X read (%s) attempt from write-only register %s (%s)\n",
6219 pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf), g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
6220 if (IOM_SUCCESS(rc))
6221 STAM_COUNTER_INC(&pThis->aStatRegReads[index]);
6222 }
6223 else
6224 E1kLog(("%s At %08X read (%s) attempt from non-existing register\n",
6225 pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf)));
6226
6227 memcpy(pv, &u32, cb);
6228 return rc;
6229}
6230
6231/**
6232 * Handle 4 byte aligned and sized read operation.
6233 *
6234 * Looks up and calls appropriate handler.
6235 *
6236 * @returns VBox status code.
6237 *
6238 * @param pDevIns The device instance.
6239 * @param pThis The device state structure.
6240 * @param offReg Register offset in memory-mapped frame.
6241 * @param pu32 Where to store the result.
6242 * @thread EMT
6243 */
6244static VBOXSTRICTRC e1kRegReadAlignedU32(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offReg, uint32_t *pu32)
6245{
6246 Assert(!(offReg & 3));
6247
6248 /*
6249 * Lookup the register and check that it's readable.
6250 */
6251 VBOXSTRICTRC rc = VINF_SUCCESS;
6252 int idxReg = e1kRegLookup(offReg);
6253 if (RT_LIKELY(idxReg >= 0))
6254 {
6255 RT_UNTRUSTED_VALIDATED_FENCE(); /* paranoia because of port I/O. */
6256 if (RT_UNLIKELY(g_aE1kRegMap[idxReg].readable))
6257 {
6258 /*
6259 * Read it. Pass the mask so the handler knows what has to be read.
6260 * Mask out irrelevant bits.
6261 */
6262 //rc = e1kCsEnter(pThis, VERR_SEM_BUSY, RT_SRC_POS);
6263 //if (RT_UNLIKELY(rc != VINF_SUCCESS))
6264 // return rc;
6265 //pThis->fDelayInts = false;
6266 //pThis->iStatIntLost += pThis->iStatIntLostOne;
6267 //pThis->iStatIntLostOne = 0;
6268 rc = g_aE1kRegMap[idxReg].pfnRead(pDevIns, pThis, offReg & 0xFFFFFFFC, (uint32_t)idxReg, pu32);
6269 //e1kCsLeave(pThis);
6270 Log6(("%s At %08X read %08X from %s (%s)\n",
6271 pThis->szPrf, offReg, *pu32, g_aE1kRegMap[idxReg].abbrev, g_aE1kRegMap[idxReg].name));
6272 if (IOM_SUCCESS(rc))
6273 STAM_COUNTER_INC(&pThis->aStatRegReads[idxReg]);
6274 }
6275 else
6276 E1kLog(("%s At %08X read attempt from non-readable register %s (%s)\n",
6277 pThis->szPrf, offReg, g_aE1kRegMap[idxReg].abbrev, g_aE1kRegMap[idxReg].name));
6278 }
6279 else
6280 E1kLog(("%s At %08X read attempt from non-existing register\n", pThis->szPrf, offReg));
6281 return rc;
6282}
6283
6284/**
6285 * Handle 4 byte sized and aligned register write operation.
6286 *
6287 * Looks up and calls appropriate handler.
6288 *
6289 * @returns VBox status code.
6290 *
6291 * @param pDevIns The device instance.
6292 * @param pThis The device state structure.
6293 * @param offReg Register offset in memory-mapped frame.
6294 * @param u32Value The value to write.
6295 * @thread EMT
6296 */
6297static VBOXSTRICTRC e1kRegWriteAlignedU32(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offReg, uint32_t u32Value)
6298{
6299 VBOXSTRICTRC rc = VINF_SUCCESS;
6300 int index = e1kRegLookup(offReg);
6301 if (RT_LIKELY(index >= 0))
6302 {
6303 RT_UNTRUSTED_VALIDATED_FENCE(); /* paranoia because of port I/O. */
6304 if (RT_LIKELY(g_aE1kRegMap[index].writable))
6305 {
6306 /*
6307 * Write it. Pass the mask so the handler knows what has to be written.
6308 * Mask out irrelevant bits.
6309 */
6310 Log6(("%s At %08X write %08X to %s (%s)\n",
6311 pThis->szPrf, offReg, u32Value, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
6312 //rc = e1kCsEnter(pThis, VERR_SEM_BUSY, RT_SRC_POS);
6313 //if (RT_UNLIKELY(rc != VINF_SUCCESS))
6314 // return rc;
6315 //pThis->fDelayInts = false;
6316 //pThis->iStatIntLost += pThis->iStatIntLostOne;
6317 //pThis->iStatIntLostOne = 0;
6318 rc = g_aE1kRegMap[index].pfnWrite(pDevIns, pThis, offReg, (uint32_t)index, u32Value);
6319 //e1kCsLeave(pThis);
6320 }
6321 else
6322 E1kLog(("%s At %08X write attempt (%08X) to read-only register %s (%s)\n",
6323 pThis->szPrf, offReg, u32Value, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name));
6324 if (IOM_SUCCESS(rc))
6325 STAM_COUNTER_INC(&pThis->aStatRegWrites[index]);
6326 }
6327 else
6328 E1kLog(("%s At %08X write attempt (%08X) to non-existing register\n",
6329 pThis->szPrf, offReg, u32Value));
6330 return rc;
6331}
6332
6333
6334/* -=-=-=-=- MMIO and I/O Port Callbacks -=-=-=-=- */
6335
6336/**
6337 * @callback_method_impl{FNIOMMMIONEWREAD}
6338 */
6339static DECLCALLBACK(VBOXSTRICTRC) e1kMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, uint32_t cb)
6340{
6341 RT_NOREF2(pvUser, cb);
6342 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
6343 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatMMIORead), a);
6344
6345 Assert(off < E1K_MM_SIZE);
6346 Assert(cb == 4);
6347 Assert(!(off & 3));
6348
6349 VBOXSTRICTRC rcStrict = e1kRegReadAlignedU32(pDevIns, pThis, (uint32_t)off, (uint32_t *)pv);
6350
6351 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatMMIORead), a);
6352 return rcStrict;
6353}
6354
6355/**
6356 * @callback_method_impl{FNIOMMMIONEWWRITE}
6357 */
6358static DECLCALLBACK(VBOXSTRICTRC) e1kMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, uint32_t cb)
6359{
6360 RT_NOREF2(pvUser, cb);
6361 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
6362 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatMMIOWrite), a);
6363
6364 Assert(off < E1K_MM_SIZE);
6365 Assert(cb == 4);
6366 Assert(!(off & 3));
6367
6368 VBOXSTRICTRC rcStrict = e1kRegWriteAlignedU32(pDevIns, pThis, (uint32_t)off, *(uint32_t const *)pv);
6369
6370 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatMMIOWrite), a);
6371 return rcStrict;
6372}
6373
6374/**
6375 * @callback_method_impl{FNIOMIOPORTNEWIN}
6376 */
6377static DECLCALLBACK(VBOXSTRICTRC) e1kIOPortIn(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t *pu32, unsigned cb)
6378{
6379 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
6380 VBOXSTRICTRC rc;
6381 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIORead), a);
6382 RT_NOREF_PV(pvUser);
6383
6384 if (RT_LIKELY(cb == 4))
6385 switch (offPort)
6386 {
6387 case 0x00: /* IOADDR */
6388 *pu32 = pThis->uSelectedReg;
6389 Log9(("%s e1kIOPortIn: IOADDR(0), selecting register %#010x, val=%#010x\n", pThis->szPrf, pThis->uSelectedReg, *pu32));
6390 rc = VINF_SUCCESS;
6391 break;
6392
6393 case 0x04: /* IODATA */
6394 if (!(pThis->uSelectedReg & 3))
6395 rc = e1kRegReadAlignedU32(pDevIns, pThis, pThis->uSelectedReg, pu32);
6396 else /** @todo r=bird: I wouldn't be surprised if this unaligned branch wasn't necessary. */
6397 rc = e1kRegReadUnaligned(pDevIns, pThis, pThis->uSelectedReg, pu32, cb);
6398 if (rc == VINF_IOM_R3_MMIO_READ)
6399 rc = VINF_IOM_R3_IOPORT_READ;
6400 Log9(("%s e1kIOPortIn: IODATA(4), reading from selected register %#010x, val=%#010x\n", pThis->szPrf, pThis->uSelectedReg, *pu32));
6401 break;
6402
6403 default:
6404 E1kLog(("%s e1kIOPortIn: invalid port %#010x\n", pThis->szPrf, offPort));
6405 /** @todo r=bird: Check what real hardware returns here. */
6406 //rc = VERR_IOM_IOPORT_UNUSED; /* Why not? */
6407 rc = VINF_IOM_MMIO_UNUSED_00; /* used to return VINF_SUCCESS and not touch *pu32, which amounted to this. */
6408 break;
6409 }
6410 else
6411 {
6412 E1kLog(("%s e1kIOPortIn: invalid op size: offPort=%RTiop cb=%08x", pThis->szPrf, offPort, cb));
6413 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s e1kIOPortIn: invalid op size: offPort=%RTiop cb=%08x\n", pThis->szPrf, offPort, cb);
6414 *pu32 = 0; /** @todo r=bird: Check what real hardware returns here. (Didn't used to set a value here, picked zero as that's what we'd end up in most cases.) */
6415 }
6416 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIORead), a);
6417 return rc;
6418}
6419
6420
6421/**
6422 * @callback_method_impl{FNIOMIOPORTNEWOUT}
6423 */
6424static DECLCALLBACK(VBOXSTRICTRC) e1kIOPortOut(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t u32, unsigned cb)
6425{
6426 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
6427 VBOXSTRICTRC rc;
6428 STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIOWrite), a);
6429 RT_NOREF_PV(pvUser);
6430
6431 Log9(("%s e1kIOPortOut: offPort=%RTiop value=%08x\n", pThis->szPrf, offPort, u32));
6432 if (RT_LIKELY(cb == 4))
6433 {
6434 switch (offPort)
6435 {
6436 case 0x00: /* IOADDR */
6437 pThis->uSelectedReg = u32;
6438 Log9(("%s e1kIOPortOut: IOADDR(0), selected register %08x\n", pThis->szPrf, pThis->uSelectedReg));
6439 rc = VINF_SUCCESS;
6440 break;
6441
6442 case 0x04: /* IODATA */
6443 Log9(("%s e1kIOPortOut: IODATA(4), writing to selected register %#010x, value=%#010x\n", pThis->szPrf, pThis->uSelectedReg, u32));
6444 if (RT_LIKELY(!(pThis->uSelectedReg & 3)))
6445 {
6446 rc = e1kRegWriteAlignedU32(pDevIns, pThis, pThis->uSelectedReg, u32);
6447 if (rc == VINF_IOM_R3_MMIO_WRITE)
6448 rc = VINF_IOM_R3_IOPORT_WRITE;
6449 }
6450 else
6451 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS,
6452 "Spec violation: misaligned offset: %#10x, ignored.\n", pThis->uSelectedReg);
6453 break;
6454
6455 default:
6456 E1kLog(("%s e1kIOPortOut: invalid port %#010x\n", pThis->szPrf, offPort));
6457 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "invalid port %#010x\n", offPort);
6458 }
6459 }
6460 else
6461 {
6462 E1kLog(("%s e1kIOPortOut: invalid op size: offPort=%RTiop cb=%08x\n", pThis->szPrf, offPort, cb));
6463 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s: invalid op size: offPort=%RTiop cb=%#x\n", pThis->szPrf, offPort, cb);
6464 }
6465
6466 STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIOWrite), a);
6467 return rc;
6468}
6469
6470#ifdef IN_RING3
6471
6472/**
6473 * Dump complete device state to log.
6474 *
6475 * @param pThis Pointer to device state.
6476 */
6477static void e1kDumpState(PE1KSTATE pThis)
6478{
6479 RT_NOREF(pThis);
6480 for (int i = 0; i < E1K_NUM_OF_32BIT_REGS; ++i)
6481 E1kLog2(("%s: %8.8s = %08x\n", pThis->szPrf, g_aE1kRegMap[i].abbrev, pThis->auRegs[i]));
6482# ifdef E1K_INT_STATS
6483 LogRel(("%s: Interrupt attempts: %d\n", pThis->szPrf, pThis->uStatIntTry));
6484 LogRel(("%s: Interrupts raised : %d\n", pThis->szPrf, pThis->uStatInt));
6485 LogRel(("%s: Interrupts lowered: %d\n", pThis->szPrf, pThis->uStatIntLower));
6486 LogRel(("%s: ICR outside ISR : %d\n", pThis->szPrf, pThis->uStatNoIntICR));
6487 LogRel(("%s: IMS raised ints : %d\n", pThis->szPrf, pThis->uStatIntIMS));
6488 LogRel(("%s: Interrupts skipped: %d\n", pThis->szPrf, pThis->uStatIntSkip));
6489 LogRel(("%s: Masked interrupts : %d\n", pThis->szPrf, pThis->uStatIntMasked));
6490 LogRel(("%s: Early interrupts : %d\n", pThis->szPrf, pThis->uStatIntEarly));
6491 LogRel(("%s: Late interrupts : %d\n", pThis->szPrf, pThis->uStatIntLate));
6492 LogRel(("%s: Lost interrupts : %d\n", pThis->szPrf, pThis->iStatIntLost));
6493 LogRel(("%s: Interrupts by RX : %d\n", pThis->szPrf, pThis->uStatIntRx));
6494 LogRel(("%s: Interrupts by TX : %d\n", pThis->szPrf, pThis->uStatIntTx));
6495 LogRel(("%s: Interrupts by ICS : %d\n", pThis->szPrf, pThis->uStatIntICS));
6496 LogRel(("%s: Interrupts by RDTR: %d\n", pThis->szPrf, pThis->uStatIntRDTR));
6497 LogRel(("%s: Interrupts by RDMT: %d\n", pThis->szPrf, pThis->uStatIntRXDMT0));
6498 LogRel(("%s: Interrupts by TXQE: %d\n", pThis->szPrf, pThis->uStatIntTXQE));
6499 LogRel(("%s: TX int delay asked: %d\n", pThis->szPrf, pThis->uStatTxIDE));
6500 LogRel(("%s: TX delayed: %d\n", pThis->szPrf, pThis->uStatTxDelayed));
6501 LogRel(("%s: TX delay expired: %d\n", pThis->szPrf, pThis->uStatTxDelayExp));
6502 LogRel(("%s: TX no report asked: %d\n", pThis->szPrf, pThis->uStatTxNoRS));
6503 LogRel(("%s: TX abs timer expd : %d\n", pThis->szPrf, pThis->uStatTAD));
6504 LogRel(("%s: TX int timer expd : %d\n", pThis->szPrf, pThis->uStatTID));
6505 LogRel(("%s: RX abs timer expd : %d\n", pThis->szPrf, pThis->uStatRAD));
6506 LogRel(("%s: RX int timer expd : %d\n", pThis->szPrf, pThis->uStatRID));
6507 LogRel(("%s: TX CTX descriptors: %d\n", pThis->szPrf, pThis->uStatDescCtx));
6508 LogRel(("%s: TX DAT descriptors: %d\n", pThis->szPrf, pThis->uStatDescDat));
6509 LogRel(("%s: TX LEG descriptors: %d\n", pThis->szPrf, pThis->uStatDescLeg));
6510 LogRel(("%s: Received frames : %d\n", pThis->szPrf, pThis->uStatRxFrm));
6511 LogRel(("%s: Transmitted frames: %d\n", pThis->szPrf, pThis->uStatTxFrm));
6512 LogRel(("%s: TX frames up to 1514: %d\n", pThis->szPrf, pThis->uStatTx1514));
6513 LogRel(("%s: TX frames up to 2962: %d\n", pThis->szPrf, pThis->uStatTx2962));
6514 LogRel(("%s: TX frames up to 4410: %d\n", pThis->szPrf, pThis->uStatTx4410));
6515 LogRel(("%s: TX frames up to 5858: %d\n", pThis->szPrf, pThis->uStatTx5858));
6516 LogRel(("%s: TX frames up to 7306: %d\n", pThis->szPrf, pThis->uStatTx7306));
6517 LogRel(("%s: TX frames up to 8754: %d\n", pThis->szPrf, pThis->uStatTx8754));
6518 LogRel(("%s: TX frames up to 16384: %d\n", pThis->szPrf, pThis->uStatTx16384));
6519 LogRel(("%s: TX frames up to 32768: %d\n", pThis->szPrf, pThis->uStatTx32768));
6520 LogRel(("%s: Larger TX frames : %d\n", pThis->szPrf, pThis->uStatTxLarge));
6521 LogRel(("%s: Max TX Delay : %lld\n", pThis->szPrf, pThis->uStatMaxTxDelay));
6522# endif /* E1K_INT_STATS */
6523}
6524
6525
6526/* -=-=-=-=- PDMINETWORKDOWN -=-=-=-=- */
6527
6528/**
6529 * Check if the device can receive data now.
6530 * This must be called before the pfnRecieve() method is called.
6531 *
6532 * @returns Number of bytes the device can receive.
6533 * @param pDevIns The device instance.
6534 * @param pThis The instance data.
6535 * @thread EMT
6536 */
6537static int e1kCanReceive(PPDMDEVINS pDevIns, PE1KSTATE pThis)
6538{
6539#ifndef E1K_WITH_RXD_CACHE
6540 size_t cb;
6541
6542 if (RT_UNLIKELY(e1kCsRxEnter(pThis, VERR_SEM_BUSY) != VINF_SUCCESS))
6543 return VERR_NET_NO_BUFFER_SPACE;
6544
6545 if (RT_UNLIKELY(RDLEN == sizeof(E1KRXDESC)))
6546 {
6547 E1KRXDESC desc;
6548 PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(RDBAH, RDBAL, RDH), &desc, sizeof(desc));
6549 if (desc.status.fDD)
6550 cb = 0;
6551 else
6552 cb = pThis->u16RxBSize;
6553 }
6554 else if (RDH < RDT)
6555 cb = (RDT - RDH) * pThis->u16RxBSize;
6556 else if (RDH > RDT)
6557 cb = (RDLEN/sizeof(E1KRXDESC) - RDH + RDT) * pThis->u16RxBSize;
6558 else
6559 {
6560 cb = 0;
6561 E1kLogRel(("E1000: OUT of RX descriptors!\n"));
6562 }
6563 E1kLog2(("%s e1kCanReceive: at exit RDH=%d RDT=%d RDLEN=%d u16RxBSize=%d cb=%lu\n",
6564 pThis->szPrf, RDH, RDT, RDLEN, pThis->u16RxBSize, cb));
6565
6566 e1kCsRxLeave(pThis);
6567 return cb > 0 ? VINF_SUCCESS : VERR_NET_NO_BUFFER_SPACE;
6568#else /* E1K_WITH_RXD_CACHE */
6569 int rc = VINF_SUCCESS;
6570
6571 if (RT_UNLIKELY(e1kCsRxEnter(pThis, VERR_SEM_BUSY) != VINF_SUCCESS))
6572 return VERR_NET_NO_BUFFER_SPACE;
6573 E1KRXDC rxdc;
6574 if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kCanReceive")))
6575 {
6576 e1kCsRxLeave(pThis);
6577 E1kLog(("%s e1kCanReceive: failed to update Rx context, returning VERR_NET_NO_BUFFER_SPACE\n", pThis->szPrf));
6578 return VERR_NET_NO_BUFFER_SPACE;
6579 }
6580
6581 if (RT_UNLIKELY(rxdc.rdlen == sizeof(E1KRXDESC)))
6582 {
6583 E1KRXDESC desc;
6584 PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(RDBAH, RDBAL, rxdc.rdh), &desc, sizeof(desc));
6585 if (desc.status.fDD)
6586 rc = VERR_NET_NO_BUFFER_SPACE;
6587 }
6588 else if (e1kRxDIsCacheEmpty(pThis) && rxdc.rdh == rxdc.rdt)
6589 {
6590 /* Cache is empty, so is the RX ring. */
6591 rc = VERR_NET_NO_BUFFER_SPACE;
6592 }
6593 E1kLog2(("%s e1kCanReceive: at exit in_cache=%d RDH=%d RDT=%d RDLEN=%d"
6594 " u16RxBSize=%d rc=%Rrc\n", pThis->szPrf,
6595 e1kRxDInCache(pThis), rxdc.rdh, rxdc.rdt, rxdc.rdlen, pThis->u16RxBSize, rc));
6596
6597 e1kCsRxLeave(pThis);
6598 return rc;
6599#endif /* E1K_WITH_RXD_CACHE */
6600}
6601
6602/**
6603 * @interface_method_impl{PDMINETWORKDOWN,pfnWaitReceiveAvail}
6604 */
6605static DECLCALLBACK(int) e1kR3NetworkDown_WaitReceiveAvail(PPDMINETWORKDOWN pInterface, RTMSINTERVAL cMillies)
6606{
6607 PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkDown);
6608 PE1KSTATE pThis = pThisCC->pShared;
6609 PPDMDEVINS pDevIns = pThisCC->pDevInsR3;
6610
6611 int rc = e1kCanReceive(pDevIns, pThis);
6612
6613 if (RT_SUCCESS(rc))
6614 return VINF_SUCCESS;
6615 if (RT_UNLIKELY(cMillies == 0))
6616 return VERR_NET_NO_BUFFER_SPACE;
6617
6618 rc = VERR_INTERRUPTED;
6619 ASMAtomicXchgBool(&pThis->fMaybeOutOfSpace, true);
6620 STAM_PROFILE_START(&pThis->StatRxOverflow, a);
6621 VMSTATE enmVMState;
6622 while (RT_LIKELY( (enmVMState = PDMDevHlpVMState(pDevIns)) == VMSTATE_RUNNING
6623 || enmVMState == VMSTATE_RUNNING_LS))
6624 {
6625 int rc2 = e1kCanReceive(pDevIns, pThis);
6626 if (RT_SUCCESS(rc2))
6627 {
6628 rc = VINF_SUCCESS;
6629 break;
6630 }
6631 E1kLogRel(("E1000: e1kR3NetworkDown_WaitReceiveAvail: waiting cMillies=%u...\n", cMillies));
6632 E1kLog(("%s: e1kR3NetworkDown_WaitReceiveAvail: waiting cMillies=%u...\n", pThis->szPrf, cMillies));
6633 PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEventMoreRxDescAvail, cMillies);
6634 }
6635 STAM_PROFILE_STOP(&pThis->StatRxOverflow, a);
6636 ASMAtomicXchgBool(&pThis->fMaybeOutOfSpace, false);
6637
6638 return rc;
6639}
6640
6641
6642/**
6643 * Matches the packet addresses against Receive Address table. Looks for
6644 * exact matches only.
6645 *
6646 * @returns true if address matches.
6647 * @param pThis Pointer to the state structure.
6648 * @param pvBuf The ethernet packet.
6649 * @param cb Number of bytes available in the packet.
6650 * @thread EMT
6651 */
6652static bool e1kPerfectMatch(PE1KSTATE pThis, const void *pvBuf)
6653{
6654 for (unsigned i = 0; i < RT_ELEMENTS(pThis->aRecAddr.array); i++)
6655 {
6656 E1KRAELEM* ra = pThis->aRecAddr.array + i;
6657
6658 /* Valid address? */
6659 if (ra->ctl & RA_CTL_AV)
6660 {
6661 Assert((ra->ctl & RA_CTL_AS) < 2);
6662 //unsigned char *pAddr = (unsigned char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS);
6663 //E1kLog3(("%s Matching %02x:%02x:%02x:%02x:%02x:%02x against %02x:%02x:%02x:%02x:%02x:%02x...\n",
6664 // pThis->szPrf, pAddr[0], pAddr[1], pAddr[2], pAddr[3], pAddr[4], pAddr[5],
6665 // ra->addr[0], ra->addr[1], ra->addr[2], ra->addr[3], ra->addr[4], ra->addr[5]));
6666 /*
6667 * Address Select:
6668 * 00b = Destination address
6669 * 01b = Source address
6670 * 10b = Reserved
6671 * 11b = Reserved
6672 * Since ethernet header is (DA, SA, len) we can use address
6673 * select as index.
6674 */
6675 if (memcmp((char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS),
6676 ra->addr, sizeof(ra->addr)) == 0)
6677 return true;
6678 }
6679 }
6680
6681 return false;
6682}
6683
6684/**
6685 * Matches the packet addresses against Multicast Table Array.
6686 *
6687 * @remarks This is imperfect match since it matches not exact address but
6688 * a subset of addresses.
6689 *
6690 * @returns true if address matches.
6691 * @param pThis Pointer to the state structure.
6692 * @param pvBuf The ethernet packet.
6693 * @param cb Number of bytes available in the packet.
6694 * @thread EMT
6695 */
6696static bool e1kImperfectMatch(PE1KSTATE pThis, const void *pvBuf)
6697{
6698 /* Get bits 32..47 of destination address */
6699 uint16_t u16Bit = ((uint16_t*)pvBuf)[2];
6700
6701 unsigned offset = GET_BITS(RCTL, MO);
6702 /*
6703 * offset means:
6704 * 00b = bits 36..47
6705 * 01b = bits 35..46
6706 * 10b = bits 34..45
6707 * 11b = bits 32..43
6708 */
6709 if (offset < 3)
6710 u16Bit = u16Bit >> (4 - offset);
6711 return ASMBitTest(pThis->auMTA, u16Bit & 0xFFF);
6712}
6713
6714/**
6715 * Determines if the packet is to be delivered to upper layer.
6716 *
6717 * The following filters supported:
6718 * - Exact Unicast/Multicast
6719 * - Promiscuous Unicast/Multicast
6720 * - Multicast
6721 * - VLAN
6722 *
6723 * @returns true if packet is intended for this node.
6724 * @param pThis Pointer to the state structure.
6725 * @param pvBuf The ethernet packet.
6726 * @param cb Number of bytes available in the packet.
6727 * @param pStatus Bit field to store status bits.
6728 * @thread EMT
6729 */
6730static bool e1kAddressFilter(PE1KSTATE pThis, const void *pvBuf, size_t cb, E1KRXDST *pStatus)
6731{
6732 Assert(cb > 14);
6733 /* Assume that we fail to pass exact filter. */
6734 pStatus->fPIF = false;
6735 pStatus->fVP = false;
6736 /* Discard oversized packets */
6737 if (cb > E1K_MAX_RX_PKT_SIZE)
6738 {
6739 E1kLog(("%s ERROR: Incoming packet is too big, cb=%d > max=%d\n",
6740 pThis->szPrf, cb, E1K_MAX_RX_PKT_SIZE));
6741 E1K_INC_CNT32(ROC);
6742 return false;
6743 }
6744 else if (!(RCTL & RCTL_LPE) && cb > 1522)
6745 {
6746 /* When long packet reception is disabled packets over 1522 are discarded */
6747 E1kLog(("%s Discarding incoming packet (LPE=0), cb=%d\n",
6748 pThis->szPrf, cb));
6749 E1K_INC_CNT32(ROC);
6750 return false;
6751 }
6752
6753 uint16_t *u16Ptr = (uint16_t*)pvBuf;
6754 /* Compare TPID with VLAN Ether Type */
6755 if (RT_BE2H_U16(u16Ptr[6]) == VET)
6756 {
6757 pStatus->fVP = true;
6758 /* Is VLAN filtering enabled? */
6759 if (RCTL & RCTL_VFE)
6760 {
6761 /* It is 802.1q packet indeed, let's filter by VID */
6762 if (RCTL & RCTL_CFIEN)
6763 {
6764 E1kLog3(("%s VLAN filter: VLAN=%d CFI=%d RCTL_CFI=%d\n", pThis->szPrf,
6765 E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7])),
6766 E1K_SPEC_CFI(RT_BE2H_U16(u16Ptr[7])),
6767 !!(RCTL & RCTL_CFI)));
6768 if (E1K_SPEC_CFI(RT_BE2H_U16(u16Ptr[7])) != !!(RCTL & RCTL_CFI))
6769 {
6770 E1kLog2(("%s Packet filter: CFIs do not match in packet and RCTL (%d!=%d)\n",
6771 pThis->szPrf, E1K_SPEC_CFI(RT_BE2H_U16(u16Ptr[7])), !!(RCTL & RCTL_CFI)));
6772 return false;
6773 }
6774 }
6775 else
6776 E1kLog3(("%s VLAN filter: VLAN=%d\n", pThis->szPrf,
6777 E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7]))));
6778 if (!ASMBitTest(pThis->auVFTA, E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7]))))
6779 {
6780 E1kLog2(("%s Packet filter: no VLAN match (id=%d)\n",
6781 pThis->szPrf, E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7]))));
6782 return false;
6783 }
6784 }
6785 }
6786 /* Broadcast filtering */
6787 if (e1kIsBroadcast(pvBuf) && (RCTL & RCTL_BAM))
6788 return true;
6789 E1kLog2(("%s Packet filter: not a broadcast\n", pThis->szPrf));
6790 if (e1kIsMulticast(pvBuf))
6791 {
6792 /* Is multicast promiscuous enabled? */
6793 if (RCTL & RCTL_MPE)
6794 return true;
6795 E1kLog2(("%s Packet filter: no promiscuous multicast\n", pThis->szPrf));
6796 /* Try perfect matches first */
6797 if (e1kPerfectMatch(pThis, pvBuf))
6798 {
6799 pStatus->fPIF = true;
6800 return true;
6801 }
6802 E1kLog2(("%s Packet filter: no perfect match\n", pThis->szPrf));
6803 if (e1kImperfectMatch(pThis, pvBuf))
6804 return true;
6805 E1kLog2(("%s Packet filter: no imperfect match\n", pThis->szPrf));
6806 }
6807 else {
6808 /* Is unicast promiscuous enabled? */
6809 if (RCTL & RCTL_UPE)
6810 return true;
6811 E1kLog2(("%s Packet filter: no promiscuous unicast\n", pThis->szPrf));
6812 if (e1kPerfectMatch(pThis, pvBuf))
6813 {
6814 pStatus->fPIF = true;
6815 return true;
6816 }
6817 E1kLog2(("%s Packet filter: no perfect match\n", pThis->szPrf));
6818 }
6819 E1kLog2(("%s Packet filter: packet discarded\n", pThis->szPrf));
6820 return false;
6821}
6822
6823/**
6824 * @interface_method_impl{PDMINETWORKDOWN,pfnReceive}
6825 */
6826static DECLCALLBACK(int) e1kR3NetworkDown_Receive(PPDMINETWORKDOWN pInterface, const void *pvBuf, size_t cb)
6827{
6828 PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkDown);
6829 PE1KSTATE pThis = pThisCC->pShared;
6830 PPDMDEVINS pDevIns = pThisCC->pDevInsR3;
6831 int rc = VINF_SUCCESS;
6832
6833 /*
6834 * Drop packets if the VM is not running yet/anymore.
6835 */
6836 VMSTATE enmVMState = PDMDevHlpVMState(pDevIns);
6837 if ( enmVMState != VMSTATE_RUNNING
6838 && enmVMState != VMSTATE_RUNNING_LS)
6839 {
6840 E1kLog(("%s Dropping incoming packet as VM is not running.\n", pThis->szPrf));
6841 return VINF_SUCCESS;
6842 }
6843
6844 /* Discard incoming packets in locked state */
6845 if (!(RCTL & RCTL_EN) || pThis->fLocked || !(STATUS & STATUS_LU))
6846 {
6847 E1kLog(("%s Dropping incoming packet as receive operation is disabled.\n", pThis->szPrf));
6848 return VINF_SUCCESS;
6849 }
6850
6851 STAM_PROFILE_ADV_START(&pThis->StatReceive, a);
6852
6853 //if (!e1kCsEnter(pThis, RT_SRC_POS))
6854 // return VERR_PERMISSION_DENIED;
6855
6856 e1kPacketDump(pDevIns, pThis, (const uint8_t*)pvBuf, cb, "<-- Incoming");
6857
6858 /* Update stats */
6859 if (RT_LIKELY(e1kCsEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS))
6860 {
6861 E1K_INC_CNT32(TPR);
6862 E1K_ADD_CNT64(TORL, TORH, cb < 64? 64 : cb);
6863 e1kCsLeave(pThis);
6864 }
6865 STAM_PROFILE_ADV_START(&pThis->StatReceiveFilter, a);
6866 E1KRXDST status;
6867 RT_ZERO(status);
6868 bool fPassed = e1kAddressFilter(pThis, pvBuf, cb, &status);
6869 STAM_PROFILE_ADV_STOP(&pThis->StatReceiveFilter, a);
6870 if (fPassed)
6871 {
6872 rc = e1kHandleRxPacket(pDevIns, pThis, pvBuf, cb, status);
6873 }
6874 //e1kCsLeave(pThis);
6875 STAM_PROFILE_ADV_STOP(&pThis->StatReceive, a);
6876
6877 return rc;
6878}
6879
6880
6881/* -=-=-=-=- PDMILEDPORTS -=-=-=-=- */
6882
6883/**
6884 * @interface_method_impl{PDMILEDPORTS,pfnQueryStatusLed}
6885 */
6886static DECLCALLBACK(int) e1kR3QueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
6887{
6888 if (iLUN == 0)
6889 {
6890 PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, ILeds);
6891 *ppLed = &pThisCC->pShared->led;
6892 return VINF_SUCCESS;
6893 }
6894 return VERR_PDM_LUN_NOT_FOUND;
6895}
6896
6897
6898/* -=-=-=-=- PDMINETWORKCONFIG -=-=-=-=- */
6899
6900/**
6901 * @interface_method_impl{PDMINETWORKCONFIG,pfnGetMac}
6902 */
6903static DECLCALLBACK(int) e1kR3GetMac(PPDMINETWORKCONFIG pInterface, PRTMAC pMac)
6904{
6905 PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkConfig);
6906 pThisCC->eeprom.getMac(pMac);
6907 return VINF_SUCCESS;
6908}
6909
6910/**
6911 * @interface_method_impl{PDMINETWORKCONFIG,pfnGetLinkState}
6912 */
6913static DECLCALLBACK(PDMNETWORKLINKSTATE) e1kR3GetLinkState(PPDMINETWORKCONFIG pInterface)
6914{
6915 PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkConfig);
6916 PE1KSTATE pThis = pThisCC->pShared;
6917 if (STATUS & STATUS_LU)
6918 return PDMNETWORKLINKSTATE_UP;
6919 return PDMNETWORKLINKSTATE_DOWN;
6920}
6921
6922/**
6923 * @interface_method_impl{PDMINETWORKCONFIG,pfnSetLinkState}
6924 */
6925static DECLCALLBACK(int) e1kR3SetLinkState(PPDMINETWORKCONFIG pInterface, PDMNETWORKLINKSTATE enmState)
6926{
6927 PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkConfig);
6928 PE1KSTATE pThis = pThisCC->pShared;
6929 PPDMDEVINS pDevIns = pThisCC->pDevInsR3;
6930
6931 E1kLog(("%s e1kR3SetLinkState: enmState=%d\n", pThis->szPrf, enmState));
6932 switch (enmState)
6933 {
6934 case PDMNETWORKLINKSTATE_UP:
6935 pThis->fCableConnected = true;
6936 /* If link was down, bring it up after a while. */
6937 if (!(STATUS & STATUS_LU))
6938 e1kBringLinkUpDelayed(pDevIns, pThis);
6939 break;
6940 case PDMNETWORKLINKSTATE_DOWN:
6941 pThis->fCableConnected = false;
6942 /* Always set the phy link state to down, regardless of the STATUS_LU bit.
6943 * We might have to set the link state before the driver initializes us. */
6944 Phy::setLinkStatus(&pThis->phy, false);
6945 /* If link was up, bring it down. */
6946 if (STATUS & STATUS_LU)
6947 e1kR3LinkDown(pDevIns, pThis, pThisCC);
6948 break;
6949 case PDMNETWORKLINKSTATE_DOWN_RESUME:
6950 /*
6951 * There is not much sense in bringing down the link if it has not come up yet.
6952 * If it is up though, we bring it down temporarely, then bring it up again.
6953 */
6954 if (STATUS & STATUS_LU)
6955 e1kR3LinkDownTemp(pDevIns, pThis, pThisCC);
6956 break;
6957 default:
6958 ;
6959 }
6960 return VINF_SUCCESS;
6961}
6962
6963
6964/* -=-=-=-=- PDMIBASE -=-=-=-=- */
6965
6966/**
6967 * @interface_method_impl{PDMIBASE,pfnQueryInterface}
6968 */
6969static DECLCALLBACK(void *) e1kR3QueryInterface(struct PDMIBASE *pInterface, const char *pszIID)
6970{
6971 PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, IBase);
6972 Assert(&pThisCC->IBase == pInterface);
6973
6974 PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThisCC->IBase);
6975 PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKDOWN, &pThisCC->INetworkDown);
6976 PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKCONFIG, &pThisCC->INetworkConfig);
6977 PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThisCC->ILeds);
6978 return NULL;
6979}
6980
6981
6982/* -=-=-=-=- Saved State -=-=-=-=- */
6983
6984/**
6985 * Saves the configuration.
6986 *
6987 * @param pThis The E1K state.
6988 * @param pSSM The handle to the saved state.
6989 */
6990static void e1kSaveConfig(PCPDMDEVHLPR3 pHlp, PE1KSTATE pThis, PSSMHANDLE pSSM)
6991{
6992 pHlp->pfnSSMPutMem(pSSM, &pThis->macConfigured, sizeof(pThis->macConfigured));
6993 pHlp->pfnSSMPutU32(pSSM, pThis->eChip);
6994}
6995
6996/**
6997 * @callback_method_impl{FNSSMDEVLIVEEXEC,Save basic configuration.}
6998 */
6999static DECLCALLBACK(int) e1kLiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass)
7000{
7001 RT_NOREF(uPass);
7002 e1kSaveConfig(pDevIns->pHlpR3, PDMDEVINS_2_DATA(pDevIns, PE1KSTATE), pSSM);
7003 return VINF_SSM_DONT_CALL_AGAIN;
7004}
7005
7006/**
7007 * @callback_method_impl{FNSSMDEVSAVEPREP,Synchronize.}
7008 */
7009static DECLCALLBACK(int) e1kSavePrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
7010{
7011 RT_NOREF(pSSM);
7012 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7013
7014 int rc = e1kCsEnter(pThis, VERR_SEM_BUSY);
7015 if (RT_UNLIKELY(rc != VINF_SUCCESS))
7016 return rc;
7017 e1kCsLeave(pThis);
7018 return VINF_SUCCESS;
7019#if 0
7020 /* 1) Prevent all threads from modifying the state and memory */
7021 //pThis->fLocked = true;
7022 /* 2) Cancel all timers */
7023#ifdef E1K_TX_DELAY
7024 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTXDTimer));
7025#endif /* E1K_TX_DELAY */
7026//#ifdef E1K_USE_TX_TIMERS
7027 if (pThis->fTidEnabled)
7028 {
7029 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTIDTimer));
7030#ifndef E1K_NO_TAD
7031 e1kCancelTimer(pThis, pThis->CTX_SUFF(pTADTimer));
7032#endif /* E1K_NO_TAD */
7033 }
7034//#endif /* E1K_USE_TX_TIMERS */
7035#ifdef E1K_USE_RX_TIMERS
7036 e1kCancelTimer(pThis, pThis->CTX_SUFF(pRIDTimer));
7037 e1kCancelTimer(pThis, pThis->CTX_SUFF(pRADTimer));
7038#endif /* E1K_USE_RX_TIMERS */
7039 e1kCancelTimer(pThis, pThis->CTX_SUFF(pIntTimer));
7040 /* 3) Did I forget anything? */
7041 E1kLog(("%s Locked\n", pThis->szPrf));
7042 return VINF_SUCCESS;
7043#endif
7044}
7045
7046/**
7047 * @callback_method_impl{FNSSMDEVSAVEEXEC}
7048 */
7049static DECLCALLBACK(int) e1kSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
7050{
7051 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7052 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
7053 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
7054
7055 e1kSaveConfig(pHlp, pThis, pSSM);
7056 pThisCC->eeprom.save(pHlp, pSSM);
7057 e1kDumpState(pThis);
7058 pHlp->pfnSSMPutMem(pSSM, pThis->auRegs, sizeof(pThis->auRegs));
7059 pHlp->pfnSSMPutBool(pSSM, pThis->fIntRaised);
7060 Phy::saveState(pHlp, pSSM, &pThis->phy);
7061 pHlp->pfnSSMPutU32(pSSM, pThis->uSelectedReg);
7062 pHlp->pfnSSMPutMem(pSSM, pThis->auMTA, sizeof(pThis->auMTA));
7063 pHlp->pfnSSMPutMem(pSSM, &pThis->aRecAddr, sizeof(pThis->aRecAddr));
7064 pHlp->pfnSSMPutMem(pSSM, pThis->auVFTA, sizeof(pThis->auVFTA));
7065 pHlp->pfnSSMPutU64(pSSM, pThis->u64AckedAt);
7066 pHlp->pfnSSMPutU16(pSSM, pThis->u16RxBSize);
7067 //pHlp->pfnSSMPutBool(pSSM, pThis->fDelayInts);
7068 //pHlp->pfnSSMPutBool(pSSM, pThis->fIntMaskUsed);
7069 pHlp->pfnSSMPutU16(pSSM, pThis->u16TxPktLen);
7070/** @todo State wrt to the TSE buffer is incomplete, so little point in
7071 * saving this actually. */
7072 pHlp->pfnSSMPutMem(pSSM, pThis->aTxPacketFallback, pThis->u16TxPktLen);
7073 pHlp->pfnSSMPutBool(pSSM, pThis->fIPcsum);
7074 pHlp->pfnSSMPutBool(pSSM, pThis->fTCPcsum);
7075 pHlp->pfnSSMPutMem(pSSM, &pThis->contextTSE, sizeof(pThis->contextTSE));
7076 pHlp->pfnSSMPutMem(pSSM, &pThis->contextNormal, sizeof(pThis->contextNormal));
7077 pHlp->pfnSSMPutBool(pSSM, pThis->fVTag);
7078 pHlp->pfnSSMPutU16(pSSM, pThis->u16VTagTCI);
7079#ifdef E1K_WITH_TXD_CACHE
7080# if 0
7081 pHlp->pfnSSMPutU8(pSSM, pThis->nTxDFetched);
7082 pHlp->pfnSSMPutMem(pSSM, pThis->aTxDescriptors,
7083 pThis->nTxDFetched * sizeof(pThis->aTxDescriptors[0]));
7084# else
7085 /*
7086 * There is no point in storing TX descriptor cache entries as we can simply
7087 * fetch them again. Moreover, normally the cache is always empty when we
7088 * save the state. Store zero entries for compatibility.
7089 */
7090 pHlp->pfnSSMPutU8(pSSM, 0);
7091# endif
7092#endif /* E1K_WITH_TXD_CACHE */
7093/** @todo GSO requires some more state here. */
7094 E1kLog(("%s State has been saved\n", pThis->szPrf));
7095 return VINF_SUCCESS;
7096}
7097
7098#if 0
7099/**
7100 * @callback_method_impl{FNSSMDEVSAVEDONE}
7101 */
7102static DECLCALLBACK(int) e1kSaveDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
7103{
7104 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7105
7106 /* If VM is being powered off unlocking will result in assertions in PGM */
7107 if (PDMDevHlpGetVM(pDevIns)->enmVMState == VMSTATE_RUNNING)
7108 pThis->fLocked = false;
7109 else
7110 E1kLog(("%s VM is not running -- remain locked\n", pThis->szPrf));
7111 E1kLog(("%s Unlocked\n", pThis->szPrf));
7112 return VINF_SUCCESS;
7113}
7114#endif
7115
7116/**
7117 * @callback_method_impl{FNSSMDEVLOADPREP,Synchronize.}
7118 */
7119static DECLCALLBACK(int) e1kLoadPrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
7120{
7121 RT_NOREF(pSSM);
7122 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7123
7124 int rc = e1kCsEnter(pThis, VERR_SEM_BUSY);
7125 if (RT_UNLIKELY(rc != VINF_SUCCESS))
7126 return rc;
7127 e1kCsLeave(pThis);
7128 return VINF_SUCCESS;
7129}
7130
7131/**
7132 * @callback_method_impl{FNSSMDEVLOADEXEC}
7133 */
7134static DECLCALLBACK(int) e1kLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
7135{
7136 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7137 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
7138 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
7139 int rc;
7140
7141 if ( uVersion != E1K_SAVEDSTATE_VERSION
7142#ifdef E1K_WITH_TXD_CACHE
7143 && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_42_VTAG
7144#endif /* E1K_WITH_TXD_CACHE */
7145 && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_41
7146 && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_30)
7147 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
7148
7149 if ( uVersion > E1K_SAVEDSTATE_VERSION_VBOX_30
7150 || uPass != SSM_PASS_FINAL)
7151 {
7152 /* config checks */
7153 RTMAC macConfigured;
7154 rc = pHlp->pfnSSMGetMem(pSSM, &macConfigured, sizeof(macConfigured));
7155 AssertRCReturn(rc, rc);
7156 if ( memcmp(&macConfigured, &pThis->macConfigured, sizeof(macConfigured))
7157 && (uPass == 0 || !PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns)) )
7158 LogRel(("%s: The mac address differs: config=%RTmac saved=%RTmac\n", pThis->szPrf, &pThis->macConfigured, &macConfigured));
7159
7160 E1KCHIP eChip;
7161 rc = pHlp->pfnSSMGetU32(pSSM, &eChip);
7162 AssertRCReturn(rc, rc);
7163 if (eChip != pThis->eChip)
7164 return pHlp->pfnSSMSetCfgError(pSSM, RT_SRC_POS, N_("The chip type differs: config=%u saved=%u"), pThis->eChip, eChip);
7165 }
7166
7167 if (uPass == SSM_PASS_FINAL)
7168 {
7169 if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_30)
7170 {
7171 rc = pThisCC->eeprom.load(pHlp, pSSM);
7172 AssertRCReturn(rc, rc);
7173 }
7174 /* the state */
7175 pHlp->pfnSSMGetMem(pSSM, &pThis->auRegs, sizeof(pThis->auRegs));
7176 pHlp->pfnSSMGetBool(pSSM, &pThis->fIntRaised);
7177 /** @todo PHY could be made a separate device with its own versioning */
7178 Phy::loadState(pHlp, pSSM, &pThis->phy);
7179 pHlp->pfnSSMGetU32(pSSM, &pThis->uSelectedReg);
7180 pHlp->pfnSSMGetMem(pSSM, &pThis->auMTA, sizeof(pThis->auMTA));
7181 pHlp->pfnSSMGetMem(pSSM, &pThis->aRecAddr, sizeof(pThis->aRecAddr));
7182 pHlp->pfnSSMGetMem(pSSM, &pThis->auVFTA, sizeof(pThis->auVFTA));
7183 pHlp->pfnSSMGetU64(pSSM, &pThis->u64AckedAt);
7184 pHlp->pfnSSMGetU16(pSSM, &pThis->u16RxBSize);
7185 //pHlp->pfnSSMGetBool(pSSM, pThis->fDelayInts);
7186 //pHlp->pfnSSMGetBool(pSSM, pThis->fIntMaskUsed);
7187 rc = pHlp->pfnSSMGetU16(pSSM, &pThis->u16TxPktLen);
7188 AssertRCReturn(rc, rc);
7189 if (pThis->u16TxPktLen > sizeof(pThis->aTxPacketFallback))
7190 pThis->u16TxPktLen = sizeof(pThis->aTxPacketFallback);
7191 pHlp->pfnSSMGetMem(pSSM, &pThis->aTxPacketFallback[0], pThis->u16TxPktLen);
7192 pHlp->pfnSSMGetBool(pSSM, &pThis->fIPcsum);
7193 pHlp->pfnSSMGetBool(pSSM, &pThis->fTCPcsum);
7194 pHlp->pfnSSMGetMem(pSSM, &pThis->contextTSE, sizeof(pThis->contextTSE));
7195 rc = pHlp->pfnSSMGetMem(pSSM, &pThis->contextNormal, sizeof(pThis->contextNormal));
7196 AssertRCReturn(rc, rc);
7197 if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_41)
7198 {
7199 pHlp->pfnSSMGetBool(pSSM, &pThis->fVTag);
7200 rc = pHlp->pfnSSMGetU16(pSSM, &pThis->u16VTagTCI);
7201 AssertRCReturn(rc, rc);
7202 }
7203 else
7204 {
7205 pThis->fVTag = false;
7206 pThis->u16VTagTCI = 0;
7207 }
7208#ifdef E1K_WITH_TXD_CACHE
7209 if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_42_VTAG)
7210 {
7211 rc = pHlp->pfnSSMGetU8(pSSM, &pThis->nTxDFetched);
7212 AssertRCReturn(rc, rc);
7213 if (pThis->nTxDFetched)
7214 pHlp->pfnSSMGetMem(pSSM, pThis->aTxDescriptors,
7215 pThis->nTxDFetched * sizeof(pThis->aTxDescriptors[0]));
7216 }
7217 else
7218 pThis->nTxDFetched = 0;
7219 /**
7220 * @todo Perhaps we should not store TXD cache as the entries can be
7221 * simply fetched again from guest's memory. Or can't they?
7222 */
7223#endif /* E1K_WITH_TXD_CACHE */
7224#ifdef E1K_WITH_RXD_CACHE
7225 /*
7226 * There is no point in storing the RX descriptor cache in the saved
7227 * state, we just need to make sure it is empty.
7228 */
7229 pThis->iRxDCurrent = pThis->nRxDFetched = 0;
7230#endif /* E1K_WITH_RXD_CACHE */
7231 rc = pHlp->pfnSSMHandleGetStatus(pSSM);
7232 AssertRCReturn(rc, rc);
7233
7234 /* derived state */
7235 e1kSetupGsoCtx(&pThis->GsoCtx, &pThis->contextTSE);
7236
7237 E1kLog(("%s State has been restored\n", pThis->szPrf));
7238 e1kDumpState(pThis);
7239 }
7240 return VINF_SUCCESS;
7241}
7242
7243/**
7244 * @callback_method_impl{FNSSMDEVLOADDONE, Link status adjustments after loading.}
7245 */
7246static DECLCALLBACK(int) e1kLoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
7247{
7248 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7249 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
7250 RT_NOREF(pSSM);
7251
7252 /* Update promiscuous mode */
7253 if (pThisCC->pDrvR3)
7254 pThisCC->pDrvR3->pfnSetPromiscuousMode(pThisCC->pDrvR3, !!(RCTL & (RCTL_UPE | RCTL_MPE)));
7255
7256 /*
7257 * Force the link down here, since PDMNETWORKLINKSTATE_DOWN_RESUME is never
7258 * passed to us. We go through all this stuff if the link was up and we
7259 * wasn't teleported.
7260 */
7261 if ( (STATUS & STATUS_LU)
7262 && !PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns)
7263 && pThis->cMsLinkUpDelay)
7264 {
7265 e1kR3LinkDownTemp(pDevIns, pThis, pThisCC);
7266 }
7267 return VINF_SUCCESS;
7268}
7269
7270
7271
7272/* -=-=-=-=- Debug Info + Log Types -=-=-=-=- */
7273
7274/**
7275 * @callback_method_impl{FNRTSTRFORMATTYPE}
7276 */
7277static DECLCALLBACK(size_t) e1kFmtRxDesc(PFNRTSTROUTPUT pfnOutput,
7278 void *pvArgOutput,
7279 const char *pszType,
7280 void const *pvValue,
7281 int cchWidth,
7282 int cchPrecision,
7283 unsigned fFlags,
7284 void *pvUser)
7285{
7286 RT_NOREF(cchWidth, cchPrecision, fFlags, pvUser);
7287 AssertReturn(strcmp(pszType, "e1krxd") == 0, 0);
7288 E1KRXDESC* pDesc = (E1KRXDESC*)pvValue;
7289 if (!pDesc)
7290 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "NULL_RXD");
7291
7292 size_t cbPrintf = 0;
7293 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Address=%16LX Length=%04X Csum=%04X\n",
7294 pDesc->u64BufAddr, pDesc->u16Length, pDesc->u16Checksum);
7295 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, " STA: %s %s %s %s %s %s %s ERR: %s %s %s %s SPECIAL: %s VLAN=%03x PRI=%x",
7296 pDesc->status.fPIF ? "PIF" : "pif",
7297 pDesc->status.fIPCS ? "IPCS" : "ipcs",
7298 pDesc->status.fTCPCS ? "TCPCS" : "tcpcs",
7299 pDesc->status.fVP ? "VP" : "vp",
7300 pDesc->status.fIXSM ? "IXSM" : "ixsm",
7301 pDesc->status.fEOP ? "EOP" : "eop",
7302 pDesc->status.fDD ? "DD" : "dd",
7303 pDesc->status.fRXE ? "RXE" : "rxe",
7304 pDesc->status.fIPE ? "IPE" : "ipe",
7305 pDesc->status.fTCPE ? "TCPE" : "tcpe",
7306 pDesc->status.fCE ? "CE" : "ce",
7307 E1K_SPEC_CFI(pDesc->status.u16Special) ? "CFI" :"cfi",
7308 E1K_SPEC_VLAN(pDesc->status.u16Special),
7309 E1K_SPEC_PRI(pDesc->status.u16Special));
7310 return cbPrintf;
7311}
7312
7313/**
7314 * @callback_method_impl{FNRTSTRFORMATTYPE}
7315 */
7316static DECLCALLBACK(size_t) e1kFmtTxDesc(PFNRTSTROUTPUT pfnOutput,
7317 void *pvArgOutput,
7318 const char *pszType,
7319 void const *pvValue,
7320 int cchWidth,
7321 int cchPrecision,
7322 unsigned fFlags,
7323 void *pvUser)
7324{
7325 RT_NOREF(cchWidth, cchPrecision, fFlags, pvUser);
7326 AssertReturn(strcmp(pszType, "e1ktxd") == 0, 0);
7327 E1KTXDESC *pDesc = (E1KTXDESC*)pvValue;
7328 if (!pDesc)
7329 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "NULL_TXD");
7330
7331 size_t cbPrintf = 0;
7332 switch (e1kGetDescType(pDesc))
7333 {
7334 case E1K_DTYP_CONTEXT:
7335 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Type=Context\n"
7336 " IPCSS=%02X IPCSO=%02X IPCSE=%04X TUCSS=%02X TUCSO=%02X TUCSE=%04X\n"
7337 " TUCMD:%s%s%s %s %s PAYLEN=%04x HDRLEN=%04x MSS=%04x STA: %s",
7338 pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE,
7339 pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE,
7340 pDesc->context.dw2.fIDE ? " IDE":"",
7341 pDesc->context.dw2.fRS ? " RS" :"",
7342 pDesc->context.dw2.fTSE ? " TSE":"",
7343 pDesc->context.dw2.fIP ? "IPv4":"IPv6",
7344 pDesc->context.dw2.fTCP ? "TCP":"UDP",
7345 pDesc->context.dw2.u20PAYLEN,
7346 pDesc->context.dw3.u8HDRLEN,
7347 pDesc->context.dw3.u16MSS,
7348 pDesc->context.dw3.fDD?"DD":"");
7349 break;
7350 case E1K_DTYP_DATA:
7351 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Type=Data Address=%16LX DTALEN=%05X\n"
7352 " DCMD:%s%s%s%s%s%s%s STA:%s%s%s POPTS:%s%s SPECIAL:%s VLAN=%03x PRI=%x",
7353 pDesc->data.u64BufAddr,
7354 pDesc->data.cmd.u20DTALEN,
7355 pDesc->data.cmd.fIDE ? " IDE" :"",
7356 pDesc->data.cmd.fVLE ? " VLE" :"",
7357 pDesc->data.cmd.fRPS ? " RPS" :"",
7358 pDesc->data.cmd.fRS ? " RS" :"",
7359 pDesc->data.cmd.fTSE ? " TSE" :"",
7360 pDesc->data.cmd.fIFCS? " IFCS":"",
7361 pDesc->data.cmd.fEOP ? " EOP" :"",
7362 pDesc->data.dw3.fDD ? " DD" :"",
7363 pDesc->data.dw3.fEC ? " EC" :"",
7364 pDesc->data.dw3.fLC ? " LC" :"",
7365 pDesc->data.dw3.fTXSM? " TXSM":"",
7366 pDesc->data.dw3.fIXSM? " IXSM":"",
7367 E1K_SPEC_CFI(pDesc->data.dw3.u16Special) ? "CFI" :"cfi",
7368 E1K_SPEC_VLAN(pDesc->data.dw3.u16Special),
7369 E1K_SPEC_PRI(pDesc->data.dw3.u16Special));
7370 break;
7371 case E1K_DTYP_LEGACY:
7372 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Type=Legacy Address=%16LX DTALEN=%05X\n"
7373 " CMD:%s%s%s%s%s%s%s STA:%s%s%s CSO=%02x CSS=%02x SPECIAL:%s VLAN=%03x PRI=%x",
7374 pDesc->data.u64BufAddr,
7375 pDesc->legacy.cmd.u16Length,
7376 pDesc->legacy.cmd.fIDE ? " IDE" :"",
7377 pDesc->legacy.cmd.fVLE ? " VLE" :"",
7378 pDesc->legacy.cmd.fRPS ? " RPS" :"",
7379 pDesc->legacy.cmd.fRS ? " RS" :"",
7380 pDesc->legacy.cmd.fIC ? " IC" :"",
7381 pDesc->legacy.cmd.fIFCS? " IFCS":"",
7382 pDesc->legacy.cmd.fEOP ? " EOP" :"",
7383 pDesc->legacy.dw3.fDD ? " DD" :"",
7384 pDesc->legacy.dw3.fEC ? " EC" :"",
7385 pDesc->legacy.dw3.fLC ? " LC" :"",
7386 pDesc->legacy.cmd.u8CSO,
7387 pDesc->legacy.dw3.u8CSS,
7388 E1K_SPEC_CFI(pDesc->legacy.dw3.u16Special) ? "CFI" :"cfi",
7389 E1K_SPEC_VLAN(pDesc->legacy.dw3.u16Special),
7390 E1K_SPEC_PRI(pDesc->legacy.dw3.u16Special));
7391 break;
7392 default:
7393 cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Invalid Transmit Descriptor");
7394 break;
7395 }
7396
7397 return cbPrintf;
7398}
7399
7400/** Initializes debug helpers (logging format types). */
7401static int e1kInitDebugHelpers(void)
7402{
7403 int rc = VINF_SUCCESS;
7404 static bool s_fHelpersRegistered = false;
7405 if (!s_fHelpersRegistered)
7406 {
7407 s_fHelpersRegistered = true;
7408 rc = RTStrFormatTypeRegister("e1krxd", e1kFmtRxDesc, NULL);
7409 AssertRCReturn(rc, rc);
7410 rc = RTStrFormatTypeRegister("e1ktxd", e1kFmtTxDesc, NULL);
7411 AssertRCReturn(rc, rc);
7412 }
7413 return rc;
7414}
7415
7416/**
7417 * Status info callback.
7418 *
7419 * @param pDevIns The device instance.
7420 * @param pHlp The output helpers.
7421 * @param pszArgs The arguments.
7422 */
7423static DECLCALLBACK(void) e1kInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
7424{
7425 RT_NOREF(pszArgs);
7426 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7427 unsigned i;
7428 // bool fRcvRing = false;
7429 // bool fXmtRing = false;
7430
7431 /*
7432 * Parse args.
7433 if (pszArgs)
7434 {
7435 fRcvRing = strstr(pszArgs, "verbose") || strstr(pszArgs, "rcv");
7436 fXmtRing = strstr(pszArgs, "verbose") || strstr(pszArgs, "xmt");
7437 }
7438 */
7439
7440 /*
7441 * Show info.
7442 */
7443 pHlp->pfnPrintf(pHlp, "E1000 #%d: port=%04x mmio=%RGp mac-cfg=%RTmac %s%s%s\n",
7444 pDevIns->iInstance,
7445 PDMDevHlpIoPortGetMappingAddress(pDevIns, pThis->hIoPorts),
7446 PDMDevHlpMmioGetMappingAddress(pDevIns, pThis->hMmioRegion),
7447 &pThis->macConfigured, g_aChips[pThis->eChip].pcszName,
7448 pDevIns->fRCEnabled ? " RC" : "", pDevIns->fR0Enabled ? " R0" : "");
7449
7450 e1kCsEnter(pThis, VERR_INTERNAL_ERROR); /* Not sure why but PCNet does it */
7451
7452 for (i = 0; i < E1K_NUM_OF_32BIT_REGS; ++i)
7453 pHlp->pfnPrintf(pHlp, "%8.8s = %08x\n", g_aE1kRegMap[i].abbrev, pThis->auRegs[i]);
7454
7455 for (i = 0; i < RT_ELEMENTS(pThis->aRecAddr.array); i++)
7456 {
7457 E1KRAELEM* ra = pThis->aRecAddr.array + i;
7458 if (ra->ctl & RA_CTL_AV)
7459 {
7460 const char *pcszTmp;
7461 switch (ra->ctl & RA_CTL_AS)
7462 {
7463 case 0: pcszTmp = "DST"; break;
7464 case 1: pcszTmp = "SRC"; break;
7465 default: pcszTmp = "reserved";
7466 }
7467 pHlp->pfnPrintf(pHlp, "RA%02d: %s %RTmac\n", i, pcszTmp, ra->addr);
7468 }
7469 }
7470 unsigned cDescs = RDLEN / sizeof(E1KRXDESC);
7471 uint32_t rdh = RDH;
7472 pHlp->pfnPrintf(pHlp, "\n-- Receive Descriptors (%d total) --\n", cDescs);
7473 for (i = 0; i < cDescs; ++i)
7474 {
7475 E1KRXDESC desc;
7476 PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(RDBAH, RDBAL, i),
7477 &desc, sizeof(desc));
7478 if (i == rdh)
7479 pHlp->pfnPrintf(pHlp, ">>> ");
7480 pHlp->pfnPrintf(pHlp, "%RGp: %R[e1krxd]\n", e1kDescAddr(RDBAH, RDBAL, i), &desc);
7481 }
7482#ifdef E1K_WITH_RXD_CACHE
7483 pHlp->pfnPrintf(pHlp, "\n-- Receive Descriptors in Cache (at %d (RDH %d)/ fetched %d / max %d) --\n",
7484 pThis->iRxDCurrent, RDH, pThis->nRxDFetched, E1K_RXD_CACHE_SIZE);
7485 if (rdh > pThis->iRxDCurrent)
7486 rdh -= pThis->iRxDCurrent;
7487 else
7488 rdh = cDescs + rdh - pThis->iRxDCurrent;
7489 for (i = 0; i < pThis->nRxDFetched; ++i)
7490 {
7491 if (i == pThis->iRxDCurrent)
7492 pHlp->pfnPrintf(pHlp, ">>> ");
7493 if (cDescs)
7494 pHlp->pfnPrintf(pHlp, "%RGp: %R[e1krxd]\n",
7495 e1kDescAddr(RDBAH, RDBAL, rdh++ % cDescs),
7496 &pThis->aRxDescriptors[i]);
7497 else
7498 pHlp->pfnPrintf(pHlp, "<lost>: %R[e1krxd]\n",
7499 &pThis->aRxDescriptors[i]);
7500 }
7501#endif /* E1K_WITH_RXD_CACHE */
7502
7503 cDescs = TDLEN / sizeof(E1KTXDESC);
7504 uint32_t tdh = TDH;
7505 pHlp->pfnPrintf(pHlp, "\n-- Transmit Descriptors (%d total) --\n", cDescs);
7506 for (i = 0; i < cDescs; ++i)
7507 {
7508 E1KTXDESC desc;
7509 PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(TDBAH, TDBAL, i),
7510 &desc, sizeof(desc));
7511 if (i == tdh)
7512 pHlp->pfnPrintf(pHlp, ">>> ");
7513 pHlp->pfnPrintf(pHlp, "%RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, i), &desc);
7514 }
7515#ifdef E1K_WITH_TXD_CACHE
7516 pHlp->pfnPrintf(pHlp, "\n-- Transmit Descriptors in Cache (at %d (TDH %d)/ fetched %d / max %d) --\n",
7517 pThis->iTxDCurrent, TDH, pThis->nTxDFetched, E1K_TXD_CACHE_SIZE);
7518 if (tdh > pThis->iTxDCurrent)
7519 tdh -= pThis->iTxDCurrent;
7520 else
7521 tdh = cDescs + tdh - pThis->iTxDCurrent;
7522 for (i = 0; i < pThis->nTxDFetched; ++i)
7523 {
7524 if (i == pThis->iTxDCurrent)
7525 pHlp->pfnPrintf(pHlp, ">>> ");
7526 if (cDescs)
7527 pHlp->pfnPrintf(pHlp, "%RGp: %R[e1ktxd]\n",
7528 e1kDescAddr(TDBAH, TDBAL, tdh++ % cDescs),
7529 &pThis->aTxDescriptors[i]);
7530 else
7531 pHlp->pfnPrintf(pHlp, "<lost>: %R[e1ktxd]\n",
7532 &pThis->aTxDescriptors[i]);
7533 }
7534#endif /* E1K_WITH_TXD_CACHE */
7535
7536
7537#ifdef E1K_INT_STATS
7538 pHlp->pfnPrintf(pHlp, "Interrupt attempts: %d\n", pThis->uStatIntTry);
7539 pHlp->pfnPrintf(pHlp, "Interrupts raised : %d\n", pThis->uStatInt);
7540 pHlp->pfnPrintf(pHlp, "Interrupts lowered: %d\n", pThis->uStatIntLower);
7541 pHlp->pfnPrintf(pHlp, "ICR outside ISR : %d\n", pThis->uStatNoIntICR);
7542 pHlp->pfnPrintf(pHlp, "IMS raised ints : %d\n", pThis->uStatIntIMS);
7543 pHlp->pfnPrintf(pHlp, "Interrupts skipped: %d\n", pThis->uStatIntSkip);
7544 pHlp->pfnPrintf(pHlp, "Masked interrupts : %d\n", pThis->uStatIntMasked);
7545 pHlp->pfnPrintf(pHlp, "Early interrupts : %d\n", pThis->uStatIntEarly);
7546 pHlp->pfnPrintf(pHlp, "Late interrupts : %d\n", pThis->uStatIntLate);
7547 pHlp->pfnPrintf(pHlp, "Lost interrupts : %d\n", pThis->iStatIntLost);
7548 pHlp->pfnPrintf(pHlp, "Interrupts by RX : %d\n", pThis->uStatIntRx);
7549 pHlp->pfnPrintf(pHlp, "Interrupts by TX : %d\n", pThis->uStatIntTx);
7550 pHlp->pfnPrintf(pHlp, "Interrupts by ICS : %d\n", pThis->uStatIntICS);
7551 pHlp->pfnPrintf(pHlp, "Interrupts by RDTR: %d\n", pThis->uStatIntRDTR);
7552 pHlp->pfnPrintf(pHlp, "Interrupts by RDMT: %d\n", pThis->uStatIntRXDMT0);
7553 pHlp->pfnPrintf(pHlp, "Interrupts by TXQE: %d\n", pThis->uStatIntTXQE);
7554 pHlp->pfnPrintf(pHlp, "TX int delay asked: %d\n", pThis->uStatTxIDE);
7555 pHlp->pfnPrintf(pHlp, "TX delayed: %d\n", pThis->uStatTxDelayed);
7556 pHlp->pfnPrintf(pHlp, "TX delayed expired: %d\n", pThis->uStatTxDelayExp);
7557 pHlp->pfnPrintf(pHlp, "TX no report asked: %d\n", pThis->uStatTxNoRS);
7558 pHlp->pfnPrintf(pHlp, "TX abs timer expd : %d\n", pThis->uStatTAD);
7559 pHlp->pfnPrintf(pHlp, "TX int timer expd : %d\n", pThis->uStatTID);
7560 pHlp->pfnPrintf(pHlp, "RX abs timer expd : %d\n", pThis->uStatRAD);
7561 pHlp->pfnPrintf(pHlp, "RX int timer expd : %d\n", pThis->uStatRID);
7562 pHlp->pfnPrintf(pHlp, "TX CTX descriptors: %d\n", pThis->uStatDescCtx);
7563 pHlp->pfnPrintf(pHlp, "TX DAT descriptors: %d\n", pThis->uStatDescDat);
7564 pHlp->pfnPrintf(pHlp, "TX LEG descriptors: %d\n", pThis->uStatDescLeg);
7565 pHlp->pfnPrintf(pHlp, "Received frames : %d\n", pThis->uStatRxFrm);
7566 pHlp->pfnPrintf(pHlp, "Transmitted frames: %d\n", pThis->uStatTxFrm);
7567 pHlp->pfnPrintf(pHlp, "TX frames up to 1514: %d\n", pThis->uStatTx1514);
7568 pHlp->pfnPrintf(pHlp, "TX frames up to 2962: %d\n", pThis->uStatTx2962);
7569 pHlp->pfnPrintf(pHlp, "TX frames up to 4410: %d\n", pThis->uStatTx4410);
7570 pHlp->pfnPrintf(pHlp, "TX frames up to 5858: %d\n", pThis->uStatTx5858);
7571 pHlp->pfnPrintf(pHlp, "TX frames up to 7306: %d\n", pThis->uStatTx7306);
7572 pHlp->pfnPrintf(pHlp, "TX frames up to 8754: %d\n", pThis->uStatTx8754);
7573 pHlp->pfnPrintf(pHlp, "TX frames up to 16384: %d\n", pThis->uStatTx16384);
7574 pHlp->pfnPrintf(pHlp, "TX frames up to 32768: %d\n", pThis->uStatTx32768);
7575 pHlp->pfnPrintf(pHlp, "Larger TX frames : %d\n", pThis->uStatTxLarge);
7576#endif /* E1K_INT_STATS */
7577
7578 e1kCsLeave(pThis);
7579}
7580
7581
7582
7583/* -=-=-=-=- PDMDEVREG -=-=-=-=- */
7584
7585/**
7586 * Detach notification.
7587 *
7588 * One port on the network card has been disconnected from the network.
7589 *
7590 * @param pDevIns The device instance.
7591 * @param iLUN The logical unit which is being detached.
7592 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
7593 */
7594static DECLCALLBACK(void) e1kR3Detach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
7595{
7596 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7597 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
7598 Log(("%s e1kR3Detach:\n", pThis->szPrf));
7599 RT_NOREF(fFlags);
7600
7601 AssertLogRelReturnVoid(iLUN == 0);
7602
7603 PDMDevHlpCritSectEnter(pDevIns, &pThis->cs, VERR_SEM_BUSY);
7604
7605 /** @todo r=pritesh still need to check if i missed
7606 * to clean something in this function
7607 */
7608
7609 /*
7610 * Zero some important members.
7611 */
7612 pThisCC->pDrvBase = NULL;
7613 pThisCC->pDrvR3 = NULL;
7614#if 0 /** @todo @bugref{9218} ring-0 driver stuff */
7615 pThisR0->pDrvR0 = NIL_RTR0PTR;
7616 pThisRC->pDrvRC = NIL_RTRCPTR;
7617#endif
7618
7619 PDMDevHlpCritSectLeave(pDevIns, &pThis->cs);
7620}
7621
7622/**
7623 * Attach the Network attachment.
7624 *
7625 * One port on the network card has been connected to a network.
7626 *
7627 * @returns VBox status code.
7628 * @param pDevIns The device instance.
7629 * @param iLUN The logical unit which is being attached.
7630 * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
7631 *
7632 * @remarks This code path is not used during construction.
7633 */
7634static DECLCALLBACK(int) e1kR3Attach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
7635{
7636 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7637 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
7638 LogFlow(("%s e1kR3Attach:\n", pThis->szPrf));
7639 RT_NOREF(fFlags);
7640
7641 AssertLogRelReturn(iLUN == 0, VERR_PDM_NO_SUCH_LUN);
7642
7643 PDMDevHlpCritSectEnter(pDevIns, &pThis->cs, VERR_SEM_BUSY);
7644
7645 /*
7646 * Attach the driver.
7647 */
7648 int rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThisCC->IBase, &pThisCC->pDrvBase, "Network Port");
7649 if (RT_SUCCESS(rc))
7650 {
7651 pThisCC->pDrvR3 = PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMINETWORKUP);
7652 AssertMsgStmt(pThisCC->pDrvR3, ("Failed to obtain the PDMINETWORKUP interface!\n"),
7653 rc = VERR_PDM_MISSING_INTERFACE_BELOW);
7654 if (RT_SUCCESS(rc))
7655 {
7656#if 0 /** @todo @bugref{9218} ring-0 driver stuff */
7657 pThisR0->pDrvR0 = PDMIBASER0_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMIBASER0), PDMINETWORKUP);
7658 pThisRC->pDrvRC = PDMIBASERC_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMIBASERC), PDMINETWORKUP);
7659#endif
7660 }
7661 }
7662 else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER
7663 || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME)
7664 {
7665 /* This should never happen because this function is not called
7666 * if there is no driver to attach! */
7667 Log(("%s No attached driver!\n", pThis->szPrf));
7668 }
7669
7670 /*
7671 * Temporary set the link down if it was up so that the guest will know
7672 * that we have change the configuration of the network card
7673 */
7674 if ((STATUS & STATUS_LU) && RT_SUCCESS(rc))
7675 e1kR3LinkDownTemp(pDevIns, pThis, pThisCC);
7676
7677 PDMDevHlpCritSectLeave(pDevIns, &pThis->cs);
7678 return rc;
7679}
7680
7681/**
7682 * @copydoc FNPDMDEVPOWEROFF
7683 */
7684static DECLCALLBACK(void) e1kR3PowerOff(PPDMDEVINS pDevIns)
7685{
7686 /* Poke thread waiting for buffer space. */
7687 e1kWakeupReceive(pDevIns, PDMDEVINS_2_DATA(pDevIns, PE1KSTATE));
7688}
7689
7690/**
7691 * @copydoc FNPDMDEVRESET
7692 */
7693static DECLCALLBACK(void) e1kR3Reset(PPDMDEVINS pDevIns)
7694{
7695 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7696 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
7697#ifdef E1K_TX_DELAY
7698 e1kCancelTimer(pDevIns, pThis, pThis->hTXDTimer);
7699#endif /* E1K_TX_DELAY */
7700 e1kCancelTimer(pDevIns, pThis, pThis->hIntTimer);
7701 e1kCancelTimer(pDevIns, pThis, pThis->hLUTimer);
7702 e1kXmitFreeBuf(pThis, pThisCC);
7703 pThis->u16TxPktLen = 0;
7704 pThis->fIPcsum = false;
7705 pThis->fTCPcsum = false;
7706 pThis->fIntMaskUsed = false;
7707 pThis->fDelayInts = false;
7708 pThis->fLocked = false;
7709 pThis->u64AckedAt = 0;
7710 e1kR3HardReset(pDevIns, pThis, pThisCC);
7711}
7712
7713/**
7714 * @copydoc FNPDMDEVSUSPEND
7715 */
7716static DECLCALLBACK(void) e1kR3Suspend(PPDMDEVINS pDevIns)
7717{
7718 /* Poke thread waiting for buffer space. */
7719 e1kWakeupReceive(pDevIns, PDMDEVINS_2_DATA(pDevIns, PE1KSTATE));
7720}
7721
7722/**
7723 * Device relocation callback.
7724 *
7725 * When this callback is called the device instance data, and if the
7726 * device have a GC component, is being relocated, or/and the selectors
7727 * have been changed. The device must use the chance to perform the
7728 * necessary pointer relocations and data updates.
7729 *
7730 * Before the GC code is executed the first time, this function will be
7731 * called with a 0 delta so GC pointer calculations can be one in one place.
7732 *
7733 * @param pDevIns Pointer to the device instance.
7734 * @param offDelta The relocation delta relative to the old location.
7735 *
7736 * @remark A relocation CANNOT fail.
7737 */
7738static DECLCALLBACK(void) e1kR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
7739{
7740 PE1KSTATERC pThisRC = PDMINS_2_DATA_RC(pDevIns, PE1KSTATERC);
7741 if (pThisRC)
7742 pThisRC->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
7743 RT_NOREF(offDelta);
7744}
7745
7746/**
7747 * Destruct a device instance.
7748 *
7749 * We need to free non-VM resources only.
7750 *
7751 * @returns VBox status code.
7752 * @param pDevIns The device instance data.
7753 * @thread EMT
7754 */
7755static DECLCALLBACK(int) e1kR3Destruct(PPDMDEVINS pDevIns)
7756{
7757 PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns);
7758 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7759
7760 e1kDumpState(pThis);
7761 E1kLog(("%s Destroying instance\n", pThis->szPrf));
7762 if (PDMDevHlpCritSectIsInitialized(pDevIns, &pThis->cs))
7763 {
7764 if (pThis->hEventMoreRxDescAvail != NIL_SUPSEMEVENT)
7765 {
7766 PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEventMoreRxDescAvail);
7767 RTThreadYield();
7768 PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEventMoreRxDescAvail);
7769 pThis->hEventMoreRxDescAvail = NIL_SUPSEMEVENT;
7770 }
7771#ifdef E1K_WITH_TX_CS
7772 PDMDevHlpCritSectDelete(pDevIns, &pThis->csTx);
7773#endif /* E1K_WITH_TX_CS */
7774 PDMDevHlpCritSectDelete(pDevIns, &pThis->csRx);
7775 PDMDevHlpCritSectDelete(pDevIns, &pThis->cs);
7776 }
7777 return VINF_SUCCESS;
7778}
7779
7780
7781/**
7782 * Set PCI configuration space registers.
7783 *
7784 * @param pci Reference to PCI device structure.
7785 * @thread EMT
7786 */
7787static void e1kR3ConfigurePciDev(PPDMPCIDEV pPciDev, E1KCHIP eChip)
7788{
7789 Assert(eChip < RT_ELEMENTS(g_aChips));
7790 /* Configure PCI Device, assume 32-bit mode ******************************/
7791 PDMPciDevSetVendorId(pPciDev, g_aChips[eChip].uPCIVendorId);
7792 PDMPciDevSetDeviceId(pPciDev, g_aChips[eChip].uPCIDeviceId);
7793 PDMPciDevSetWord( pPciDev, VBOX_PCI_SUBSYSTEM_VENDOR_ID, g_aChips[eChip].uPCISubsystemVendorId);
7794 PDMPciDevSetWord( pPciDev, VBOX_PCI_SUBSYSTEM_ID, g_aChips[eChip].uPCISubsystemId);
7795
7796 PDMPciDevSetWord( pPciDev, VBOX_PCI_COMMAND, 0x0000);
7797 /* DEVSEL Timing (medium device), 66 MHz Capable, New capabilities */
7798 PDMPciDevSetWord( pPciDev, VBOX_PCI_STATUS,
7799 VBOX_PCI_STATUS_DEVSEL_MEDIUM | VBOX_PCI_STATUS_CAP_LIST | VBOX_PCI_STATUS_66MHZ);
7800 /* Stepping A2 */
7801 PDMPciDevSetByte( pPciDev, VBOX_PCI_REVISION_ID, 0x02);
7802 /* Ethernet adapter */
7803 PDMPciDevSetByte( pPciDev, VBOX_PCI_CLASS_PROG, 0x00);
7804 PDMPciDevSetWord( pPciDev, VBOX_PCI_CLASS_DEVICE, 0x0200);
7805 /* normal single function Ethernet controller */
7806 PDMPciDevSetByte( pPciDev, VBOX_PCI_HEADER_TYPE, 0x00);
7807 /* Memory Register Base Address */
7808 PDMPciDevSetDWord(pPciDev, VBOX_PCI_BASE_ADDRESS_0, 0x00000000);
7809 /* Memory Flash Base Address */
7810 PDMPciDevSetDWord(pPciDev, VBOX_PCI_BASE_ADDRESS_1, 0x00000000);
7811 /* IO Register Base Address */
7812 PDMPciDevSetDWord(pPciDev, VBOX_PCI_BASE_ADDRESS_2, 0x00000001);
7813 /* Expansion ROM Base Address */
7814 PDMPciDevSetDWord(pPciDev, VBOX_PCI_ROM_ADDRESS, 0x00000000);
7815 /* Capabilities Pointer */
7816 PDMPciDevSetByte( pPciDev, VBOX_PCI_CAPABILITY_LIST, 0xDC);
7817 /* Interrupt Pin: INTA# */
7818 PDMPciDevSetByte( pPciDev, VBOX_PCI_INTERRUPT_PIN, 0x01);
7819 /* Max_Lat/Min_Gnt: very high priority and time slice */
7820 PDMPciDevSetByte( pPciDev, VBOX_PCI_MIN_GNT, 0xFF);
7821 PDMPciDevSetByte( pPciDev, VBOX_PCI_MAX_LAT, 0x00);
7822
7823 /* PCI Power Management Registers ****************************************/
7824 /* Capability ID: PCI Power Management Registers */
7825 PDMPciDevSetByte( pPciDev, 0xDC, VBOX_PCI_CAP_ID_PM);
7826 /* Next Item Pointer: PCI-X */
7827 PDMPciDevSetByte( pPciDev, 0xDC + 1, 0xE4);
7828 /* Power Management Capabilities: PM disabled, DSI */
7829 PDMPciDevSetWord( pPciDev, 0xDC + 2,
7830 0x0002 | VBOX_PCI_PM_CAP_DSI);
7831 /* Power Management Control / Status Register: PM disabled */
7832 PDMPciDevSetWord( pPciDev, 0xDC + 4, 0x0000);
7833 /* PMCSR_BSE Bridge Support Extensions: Not supported */
7834 PDMPciDevSetByte( pPciDev, 0xDC + 6, 0x00);
7835 /* Data Register: PM disabled, always 0 */
7836 PDMPciDevSetByte( pPciDev, 0xDC + 7, 0x00);
7837
7838 /* PCI-X Configuration Registers *****************************************/
7839 /* Capability ID: PCI-X Configuration Registers */
7840 PDMPciDevSetByte( pPciDev, 0xE4, VBOX_PCI_CAP_ID_PCIX);
7841#ifdef E1K_WITH_MSI
7842 PDMPciDevSetByte( pPciDev, 0xE4 + 1, 0x80);
7843#else
7844 /* Next Item Pointer: None (Message Signalled Interrupts are disabled) */
7845 PDMPciDevSetByte( pPciDev, 0xE4 + 1, 0x00);
7846#endif
7847 /* PCI-X Command: Enable Relaxed Ordering */
7848 PDMPciDevSetWord( pPciDev, 0xE4 + 2, VBOX_PCI_X_CMD_ERO);
7849 /* PCI-X Status: 32-bit, 66MHz*/
7850 /** @todo is this value really correct? fff8 doesn't look like actual PCI address */
7851 PDMPciDevSetDWord(pPciDev, 0xE4 + 4, 0x0040FFF8);
7852}
7853
7854/**
7855 * @interface_method_impl{PDMDEVREG,pfnConstruct}
7856 */
7857static DECLCALLBACK(int) e1kR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
7858{
7859 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
7860 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
7861 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
7862 int rc;
7863
7864 /*
7865 * Initialize the instance data (state).
7866 * Note! Caller has initialized it to ZERO already.
7867 */
7868 RTStrPrintf(pThis->szPrf, sizeof(pThis->szPrf), "E1000#%d", iInstance);
7869 E1kLog(("%s Constructing new instance sizeof(E1KRXDESC)=%d\n", pThis->szPrf, sizeof(E1KRXDESC)));
7870 pThis->hEventMoreRxDescAvail = NIL_SUPSEMEVENT;
7871 pThis->u16TxPktLen = 0;
7872 pThis->fIPcsum = false;
7873 pThis->fTCPcsum = false;
7874 pThis->fIntMaskUsed = false;
7875 pThis->fDelayInts = false;
7876 pThis->fLocked = false;
7877 pThis->u64AckedAt = 0;
7878 pThis->led.u32Magic = PDMLED_MAGIC;
7879 pThis->u32PktNo = 1;
7880
7881 pThisCC->pDevInsR3 = pDevIns;
7882 pThisCC->pShared = pThis;
7883
7884 /* Interfaces */
7885 pThisCC->IBase.pfnQueryInterface = e1kR3QueryInterface;
7886
7887 pThisCC->INetworkDown.pfnWaitReceiveAvail = e1kR3NetworkDown_WaitReceiveAvail;
7888 pThisCC->INetworkDown.pfnReceive = e1kR3NetworkDown_Receive;
7889 pThisCC->INetworkDown.pfnXmitPending = e1kR3NetworkDown_XmitPending;
7890
7891 pThisCC->ILeds.pfnQueryStatusLed = e1kR3QueryStatusLed;
7892
7893 pThisCC->INetworkConfig.pfnGetMac = e1kR3GetMac;
7894 pThisCC->INetworkConfig.pfnGetLinkState = e1kR3GetLinkState;
7895 pThisCC->INetworkConfig.pfnSetLinkState = e1kR3SetLinkState;
7896
7897 /*
7898 * Internal validations.
7899 */
7900 for (uint32_t iReg = 1; iReg < E1K_NUM_OF_BINARY_SEARCHABLE; iReg++)
7901 AssertLogRelMsgReturn( g_aE1kRegMap[iReg].offset > g_aE1kRegMap[iReg - 1].offset
7902 && g_aE1kRegMap[iReg].offset + g_aE1kRegMap[iReg].size
7903 >= g_aE1kRegMap[iReg - 1].offset + g_aE1kRegMap[iReg - 1].size,
7904 ("%s@%#xLB%#x vs %s@%#xLB%#x\n",
7905 g_aE1kRegMap[iReg].abbrev, g_aE1kRegMap[iReg].offset, g_aE1kRegMap[iReg].size,
7906 g_aE1kRegMap[iReg - 1].abbrev, g_aE1kRegMap[iReg - 1].offset, g_aE1kRegMap[iReg - 1].size),
7907 VERR_INTERNAL_ERROR_4);
7908
7909 /*
7910 * Validate configuration.
7911 */
7912 PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns,
7913 "MAC|"
7914 "CableConnected|"
7915 "AdapterType|"
7916 "LineSpeed|"
7917 "ItrEnabled|"
7918 "ItrRxEnabled|"
7919 "EthernetCRC|"
7920 "GSOEnabled|"
7921 "LinkUpDelay|"
7922 "StatNo",
7923 "");
7924
7925 /** @todo LineSpeed unused! */
7926
7927 /*
7928 * Get config params
7929 */
7930 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
7931 rc = pHlp->pfnCFGMQueryBytes(pCfg, "MAC", pThis->macConfigured.au8, sizeof(pThis->macConfigured.au8));
7932 if (RT_FAILURE(rc))
7933 return PDMDEV_SET_ERROR(pDevIns, rc,
7934 N_("Configuration error: Failed to get MAC address"));
7935 rc = pHlp->pfnCFGMQueryBool(pCfg, "CableConnected", &pThis->fCableConnected);
7936 if (RT_FAILURE(rc))
7937 return PDMDEV_SET_ERROR(pDevIns, rc,
7938 N_("Configuration error: Failed to get the value of 'CableConnected'"));
7939 rc = pHlp->pfnCFGMQueryU32(pCfg, "AdapterType", (uint32_t*)&pThis->eChip);
7940 if (RT_FAILURE(rc))
7941 return PDMDEV_SET_ERROR(pDevIns, rc,
7942 N_("Configuration error: Failed to get the value of 'AdapterType'"));
7943 Assert(pThis->eChip <= E1K_CHIP_82545EM);
7944
7945 rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "EthernetCRC", &pThis->fEthernetCRC, true);
7946 if (RT_FAILURE(rc))
7947 return PDMDEV_SET_ERROR(pDevIns, rc,
7948 N_("Configuration error: Failed to get the value of 'EthernetCRC'"));
7949
7950 rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "GSOEnabled", &pThis->fGSOEnabled, true);
7951 if (RT_FAILURE(rc))
7952 return PDMDEV_SET_ERROR(pDevIns, rc,
7953 N_("Configuration error: Failed to get the value of 'GSOEnabled'"));
7954
7955 rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "ItrEnabled", &pThis->fItrEnabled, false);
7956 if (RT_FAILURE(rc))
7957 return PDMDEV_SET_ERROR(pDevIns, rc,
7958 N_("Configuration error: Failed to get the value of 'ItrEnabled'"));
7959
7960 rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "ItrRxEnabled", &pThis->fItrRxEnabled, true);
7961 if (RT_FAILURE(rc))
7962 return PDMDEV_SET_ERROR(pDevIns, rc,
7963 N_("Configuration error: Failed to get the value of 'ItrRxEnabled'"));
7964
7965 rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "TidEnabled", &pThis->fTidEnabled, false);
7966 if (RT_FAILURE(rc))
7967 return PDMDEV_SET_ERROR(pDevIns, rc,
7968 N_("Configuration error: Failed to get the value of 'TidEnabled'"));
7969
7970 rc = pHlp->pfnCFGMQueryU32Def(pCfg, "LinkUpDelay", (uint32_t*)&pThis->cMsLinkUpDelay, 3000); /* ms */
7971 if (RT_FAILURE(rc))
7972 return PDMDEV_SET_ERROR(pDevIns, rc,
7973 N_("Configuration error: Failed to get the value of 'LinkUpDelay'"));
7974 Assert(pThis->cMsLinkUpDelay <= 300000); /* less than 5 minutes */
7975 if (pThis->cMsLinkUpDelay > 5000)
7976 LogRel(("%s: WARNING! Link up delay is set to %u seconds!\n", pThis->szPrf, pThis->cMsLinkUpDelay / 1000));
7977 else if (pThis->cMsLinkUpDelay == 0)
7978 LogRel(("%s: WARNING! Link up delay is disabled!\n", pThis->szPrf));
7979
7980 uint32_t uStatNo = (uint32_t)iInstance;
7981 rc = pHlp->pfnCFGMQueryU32Def(pCfg, "StatNo", &uStatNo, (uint32_t)iInstance);
7982 if (RT_FAILURE(rc))
7983 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the \"StatNo\" value"));
7984
7985 LogRel(("%s: Chip=%s LinkUpDelay=%ums EthernetCRC=%s GSO=%s Itr=%s ItrRx=%s TID=%s R0=%s RC=%s\n", pThis->szPrf,
7986 g_aChips[pThis->eChip].pcszName, pThis->cMsLinkUpDelay,
7987 pThis->fEthernetCRC ? "on" : "off",
7988 pThis->fGSOEnabled ? "enabled" : "disabled",
7989 pThis->fItrEnabled ? "enabled" : "disabled",
7990 pThis->fItrRxEnabled ? "enabled" : "disabled",
7991 pThis->fTidEnabled ? "enabled" : "disabled",
7992 pDevIns->fR0Enabled ? "enabled" : "disabled",
7993 pDevIns->fRCEnabled ? "enabled" : "disabled"));
7994
7995 /*
7996 * Initialize sub-components and register everything with the VMM.
7997 */
7998
7999 /* Initialize the EEPROM. */
8000 pThisCC->eeprom.init(pThis->macConfigured);
8001
8002 /* Initialize internal PHY. */
8003 Phy::init(&pThis->phy, iInstance, pThis->eChip == E1K_CHIP_82543GC ? PHY_EPID_M881000 : PHY_EPID_M881011);
8004
8005 /* Initialize critical sections. We do our own locking. */
8006 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
8007 AssertRCReturn(rc, rc);
8008
8009 rc = PDMDevHlpCritSectInit(pDevIns, &pThis->cs, RT_SRC_POS, "E1000#%d", iInstance);
8010 AssertRCReturn(rc, rc);
8011 rc = PDMDevHlpCritSectInit(pDevIns, &pThis->csRx, RT_SRC_POS, "E1000#%dRX", iInstance);
8012 AssertRCReturn(rc, rc);
8013#ifdef E1K_WITH_TX_CS
8014 rc = PDMDevHlpCritSectInit(pDevIns, &pThis->csTx, RT_SRC_POS, "E1000#%dTX", iInstance);
8015 AssertRCReturn(rc, rc);
8016#endif
8017
8018 /* Saved state registration. */
8019 rc = PDMDevHlpSSMRegisterEx(pDevIns, E1K_SAVEDSTATE_VERSION, sizeof(E1KSTATE), NULL,
8020 NULL, e1kLiveExec, NULL,
8021 e1kSavePrep, e1kSaveExec, NULL,
8022 e1kLoadPrep, e1kLoadExec, e1kLoadDone);
8023 AssertRCReturn(rc, rc);
8024
8025 /* Set PCI config registers and register ourselves with the PCI bus. */
8026 PDMPCIDEV_ASSERT_VALID(pDevIns, pDevIns->apPciDevs[0]);
8027 e1kR3ConfigurePciDev(pDevIns->apPciDevs[0], pThis->eChip);
8028 rc = PDMDevHlpPCIRegister(pDevIns, pDevIns->apPciDevs[0]);
8029 AssertRCReturn(rc, rc);
8030
8031#ifdef E1K_WITH_MSI
8032 PDMMSIREG MsiReg;
8033 RT_ZERO(MsiReg);
8034 MsiReg.cMsiVectors = 1;
8035 MsiReg.iMsiCapOffset = 0x80;
8036 MsiReg.iMsiNextOffset = 0x0;
8037 MsiReg.fMsi64bit = false;
8038 rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg);
8039 AssertRCReturn(rc, rc);
8040#endif
8041
8042 /*
8043 * Map our registers to memory space (region 0, see e1kR3ConfigurePciDev)
8044 * From the spec (regarding flags):
8045 * For registers that should be accessed as 32-bit double words,
8046 * partial writes (less than a 32-bit double word) is ignored.
8047 * Partial reads return all 32 bits of data regardless of the
8048 * byte enables.
8049 */
8050 rc = PDMDevHlpMmioCreateEx(pDevIns, E1K_MM_SIZE, IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_ONLY_DWORD,
8051 pDevIns->apPciDevs[0], 0 /*iPciRegion*/,
8052 e1kMMIOWrite, e1kMMIORead, NULL /*pfnFill*/, NULL /*pvUser*/, "E1000", &pThis->hMmioRegion);
8053 AssertRCReturn(rc, rc);
8054 rc = PDMDevHlpPCIIORegionRegisterMmio(pDevIns, 0, E1K_MM_SIZE, PCI_ADDRESS_SPACE_MEM, pThis->hMmioRegion, NULL);
8055 AssertRCReturn(rc, rc);
8056
8057 /* Map our registers to IO space (region 2, see e1kR3ConfigurePciDev) */
8058 static IOMIOPORTDESC const s_aExtDescs[] =
8059 {
8060 { "IOADDR", "IOADDR", NULL, NULL }, { "unused", "unused", NULL, NULL }, { "unused", "unused", NULL, NULL }, { "unused", "unused", NULL, NULL },
8061 { "IODATA", "IODATA", NULL, NULL }, { "unused", "unused", NULL, NULL }, { "unused", "unused", NULL, NULL }, { "unused", "unused", NULL, NULL },
8062 { NULL, NULL, NULL, NULL }
8063 };
8064 rc = PDMDevHlpIoPortCreate(pDevIns, E1K_IOPORT_SIZE, pDevIns->apPciDevs[0], 2 /*iPciRegion*/,
8065 e1kIOPortOut, e1kIOPortIn, NULL /*pvUser*/, "E1000", s_aExtDescs, &pThis->hIoPorts);
8066 AssertRCReturn(rc, rc);
8067 rc = PDMDevHlpPCIIORegionRegisterIo(pDevIns, 2, E1K_IOPORT_SIZE, pThis->hIoPorts);
8068 AssertRCReturn(rc, rc);
8069
8070 /* Create transmit queue */
8071 rc = PDMDevHlpTaskCreate(pDevIns, PDMTASK_F_RZ, "E1000-Xmit", e1kR3TxTaskCallback, NULL, &pThis->hTxTask);
8072 AssertRCReturn(rc, rc);
8073
8074#ifdef E1K_TX_DELAY
8075 /* Create Transmit Delay Timer */
8076 rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3TxDelayTimer, pThis,
8077 TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0,
8078 "E1000 Transmit Delay Timer", &pThis->hTXDTimer);
8079 AssertRCReturn(rc, rc);
8080 rc = PDMDevHlpTimerSetCritSect(pDevIns, pThis->hTXDTimer, &pThis->csTx);
8081 AssertRCReturn(rc, rc);
8082#endif /* E1K_TX_DELAY */
8083
8084//#ifdef E1K_USE_TX_TIMERS
8085 if (pThis->fTidEnabled)
8086 {
8087 /* Create Transmit Interrupt Delay Timer */
8088 rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3TxIntDelayTimer, pThis,
8089 TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0,
8090 "E1000 Transmit Interrupt Delay Timer", &pThis->hTIDTimer);
8091 AssertRCReturn(rc, rc);
8092
8093# ifndef E1K_NO_TAD
8094 /* Create Transmit Absolute Delay Timer */
8095 rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3TxAbsDelayTimer, pThis,
8096 TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0,
8097 "E1000 Transmit Absolute Delay Timer", &pThis->hTADTimer);
8098 AssertRCReturn(rc, rc);
8099# endif /* E1K_NO_TAD */
8100 }
8101//#endif /* E1K_USE_TX_TIMERS */
8102
8103#ifdef E1K_USE_RX_TIMERS
8104 /* Create Receive Interrupt Delay Timer */
8105 rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3RxIntDelayTimer, pThis,
8106 TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0,
8107 "E1000 Receive Interrupt Delay Timer", &pThis->hRIDTimer);
8108 AssertRCReturn(rc, rc);
8109
8110 /* Create Receive Absolute Delay Timer */
8111 rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3RxAbsDelayTimer, pThis,
8112 TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0,
8113 "E1000 Receive Absolute Delay Timer", &pThis->hRADTimer);
8114 AssertRCReturn(rc, rc);
8115#endif /* E1K_USE_RX_TIMERS */
8116
8117 /* Create Late Interrupt Timer */
8118 rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3LateIntTimer, pThis,
8119 TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0,
8120 "E1000 Late Interrupt Timer", &pThis->hIntTimer);
8121 AssertRCReturn(rc, rc);
8122
8123 /* Create Link Up Timer */
8124 rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3LinkUpTimer, pThis,
8125 TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0,
8126 "E1000 Link Up Timer", &pThis->hLUTimer);
8127 AssertRCReturn(rc, rc);
8128
8129 /* Register the info item */
8130 char szTmp[20];
8131 RTStrPrintf(szTmp, sizeof(szTmp), "e1k%d", iInstance);
8132 PDMDevHlpDBGFInfoRegister(pDevIns, szTmp, "E1000 info.", e1kInfo);
8133
8134 /* Status driver */
8135 PPDMIBASE pBase;
8136 rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThisCC->IBase, &pBase, "Status Port");
8137 if (RT_FAILURE(rc))
8138 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the status LUN"));
8139 pThisCC->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS);
8140
8141 /* Network driver */
8142 rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThisCC->IBase, &pThisCC->pDrvBase, "Network Port");
8143 if (RT_SUCCESS(rc))
8144 {
8145 pThisCC->pDrvR3 = PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMINETWORKUP);
8146 AssertMsgReturn(pThisCC->pDrvR3, ("Failed to obtain the PDMINETWORKUP interface!\n"), VERR_PDM_MISSING_INTERFACE_BELOW);
8147
8148#if 0 /** @todo @bugref{9218} ring-0 driver stuff */
8149 pThisR0->pDrvR0 = PDMIBASER0_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMIBASER0), PDMINETWORKUP);
8150 pThisRC->pDrvRC = PDMIBASERC_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMIBASERC), PDMINETWORKUP);
8151#endif
8152 }
8153 else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER
8154 || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME)
8155 {
8156 /* No error! */
8157 E1kLog(("%s This adapter is not attached to any network!\n", pThis->szPrf));
8158 }
8159 else
8160 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the network LUN"));
8161
8162 rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEventMoreRxDescAvail);
8163 AssertRCReturn(rc, rc);
8164
8165 rc = e1kInitDebugHelpers();
8166 AssertRCReturn(rc, rc);
8167
8168 e1kR3HardReset(pDevIns, pThis, pThisCC);
8169
8170 /*
8171 * Register statistics.
8172 * The /Public/ bits are official and used by session info in the GUI.
8173 */
8174 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceiveBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES,
8175 "Amount of data received", "/Public/NetAdapter/%u/BytesReceived", uStatNo);
8176 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES,
8177 "Amount of data transmitted", "/Public/NetAdapter/%u/BytesTransmitted", uStatNo);
8178 PDMDevHlpSTAMRegisterF(pDevIns, &pDevIns->iInstance, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE,
8179 "Device instance number", "/Public/NetAdapter/%u/%s", uStatNo, pDevIns->pReg->szName);
8180
8181 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceiveBytes, STAMTYPE_COUNTER, "ReceiveBytes", STAMUNIT_BYTES, "Amount of data received");
8182 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitBytes, STAMTYPE_COUNTER, "TransmitBytes", STAMUNIT_BYTES, "Amount of data transmitted");
8183
8184#if defined(VBOX_WITH_STATISTICS)
8185 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMMIOReadRZ, STAMTYPE_PROFILE, "MMIO/ReadRZ", STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in RZ");
8186 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMMIOReadR3, STAMTYPE_PROFILE, "MMIO/ReadR3", STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in R3");
8187 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMMIOWriteRZ, STAMTYPE_PROFILE, "MMIO/WriteRZ", STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in RZ");
8188 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMMIOWriteR3, STAMTYPE_PROFILE, "MMIO/WriteR3", STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in R3");
8189 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatEEPROMRead, STAMTYPE_PROFILE, "EEPROM/Read", STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM reads");
8190 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatEEPROMWrite, STAMTYPE_PROFILE, "EEPROM/Write", STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM writes");
8191 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIOReadRZ, STAMTYPE_PROFILE, "IO/ReadRZ", STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in RZ");
8192 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIOReadR3, STAMTYPE_PROFILE, "IO/ReadR3", STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in R3");
8193 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIOWriteRZ, STAMTYPE_PROFILE, "IO/WriteRZ", STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in RZ");
8194 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIOWriteR3, STAMTYPE_PROFILE, "IO/WriteR3", STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in R3");
8195 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatLateIntTimer, STAMTYPE_PROFILE, "LateInt/Timer", STAMUNIT_TICKS_PER_CALL, "Profiling late int timer");
8196 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatLateInts, STAMTYPE_COUNTER, "LateInt/Occured", STAMUNIT_OCCURENCES, "Number of late interrupts");
8197 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIntsRaised, STAMTYPE_COUNTER, "Interrupts/Raised", STAMUNIT_OCCURENCES, "Number of raised interrupts");
8198 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIntsPrevented, STAMTYPE_COUNTER, "Interrupts/Prevented", STAMUNIT_OCCURENCES, "Number of prevented interrupts");
8199 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceive, STAMTYPE_PROFILE, "Receive/Total", STAMUNIT_TICKS_PER_CALL, "Profiling receive");
8200 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceiveCRC, STAMTYPE_PROFILE, "Receive/CRC", STAMUNIT_TICKS_PER_CALL, "Profiling receive checksumming");
8201 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceiveFilter, STAMTYPE_PROFILE, "Receive/Filter", STAMUNIT_TICKS_PER_CALL, "Profiling receive filtering");
8202 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceiveStore, STAMTYPE_PROFILE, "Receive/Store", STAMUNIT_TICKS_PER_CALL, "Profiling receive storing");
8203 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRxOverflow, STAMTYPE_PROFILE, "RxOverflow", STAMUNIT_TICKS_PER_OCCURENCE, "Profiling RX overflows");
8204 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRxOverflowWakeupRZ, STAMTYPE_COUNTER, "RxOverflowWakeupRZ", STAMUNIT_OCCURENCES, "Nr of RX overflow wakeups in RZ");
8205 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRxOverflowWakeupR3, STAMTYPE_COUNTER, "RxOverflowWakeupR3", STAMUNIT_OCCURENCES, "Nr of RX overflow wakeups in R3");
8206 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitRZ, STAMTYPE_PROFILE, "Transmit/TotalRZ", STAMUNIT_TICKS_PER_CALL, "Profiling transmits in RZ");
8207 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitR3, STAMTYPE_PROFILE, "Transmit/TotalR3", STAMUNIT_TICKS_PER_CALL, "Profiling transmits in R3");
8208 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitSendRZ, STAMTYPE_PROFILE, "Transmit/SendRZ", STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in RZ");
8209 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitSendR3, STAMTYPE_PROFILE, "Transmit/SendR3", STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in R3");
8210
8211 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescCtxNormal, STAMTYPE_COUNTER, "TxDesc/ContexNormal", STAMUNIT_OCCURENCES, "Number of normal context descriptors");
8212 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescCtxTSE, STAMTYPE_COUNTER, "TxDesc/ContextTSE", STAMUNIT_OCCURENCES, "Number of TSE context descriptors");
8213 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescData, STAMTYPE_COUNTER, "TxDesc/Data", STAMUNIT_OCCURENCES, "Number of TX data descriptors");
8214 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescLegacy, STAMTYPE_COUNTER, "TxDesc/Legacy", STAMUNIT_OCCURENCES, "Number of TX legacy descriptors");
8215 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescTSEData, STAMTYPE_COUNTER, "TxDesc/TSEData", STAMUNIT_OCCURENCES, "Number of TX TSE data descriptors");
8216 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxPathFallback, STAMTYPE_COUNTER, "TxPath/Fallback", STAMUNIT_OCCURENCES, "Fallback TSE descriptor path");
8217 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxPathGSO, STAMTYPE_COUNTER, "TxPath/GSO", STAMUNIT_OCCURENCES, "GSO TSE descriptor path");
8218 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxPathRegular, STAMTYPE_COUNTER, "TxPath/Normal", STAMUNIT_OCCURENCES, "Regular descriptor path");
8219 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPHYAccesses, STAMTYPE_COUNTER, "PHYAccesses", STAMUNIT_OCCURENCES, "Number of PHY accesses");
8220 for (unsigned iReg = 0; iReg < E1K_NUM_OF_REGS; iReg++)
8221 {
8222 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aStatRegReads[iReg], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES,
8223 g_aE1kRegMap[iReg].name, "Regs/%s-Reads", g_aE1kRegMap[iReg].abbrev);
8224 PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aStatRegWrites[iReg], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES,
8225 g_aE1kRegMap[iReg].name, "Regs/%s-Writes", g_aE1kRegMap[iReg].abbrev);
8226 }
8227#endif /* VBOX_WITH_STATISTICS */
8228
8229#ifdef E1K_INT_STATS
8230 PDMDevHlpSTAMRegister(pDevIns, &pThis->u64ArmedAt, STAMTYPE_U64, "u64ArmedAt", STAMUNIT_NS, NULL);
8231 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatMaxTxDelay, STAMTYPE_U64, "uStatMaxTxDelay", STAMUNIT_NS, NULL);
8232 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatInt, STAMTYPE_U32, "uStatInt", STAMUNIT_NS, NULL);
8233 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntTry, STAMTYPE_U32, "uStatIntTry", STAMUNIT_NS, NULL);
8234 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntLower, STAMTYPE_U32, "uStatIntLower", STAMUNIT_NS, NULL);
8235 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatNoIntICR, STAMTYPE_U32, "uStatNoIntICR", STAMUNIT_NS, NULL);
8236 PDMDevHlpSTAMRegister(pDevIns, &pThis->iStatIntLost, STAMTYPE_U32, "iStatIntLost", STAMUNIT_NS, NULL);
8237 PDMDevHlpSTAMRegister(pDevIns, &pThis->iStatIntLostOne, STAMTYPE_U32, "iStatIntLostOne", STAMUNIT_NS, NULL);
8238 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntIMS, STAMTYPE_U32, "uStatIntIMS", STAMUNIT_NS, NULL);
8239 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntSkip, STAMTYPE_U32, "uStatIntSkip", STAMUNIT_NS, NULL);
8240 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntLate, STAMTYPE_U32, "uStatIntLate", STAMUNIT_NS, NULL);
8241 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntMasked, STAMTYPE_U32, "uStatIntMasked", STAMUNIT_NS, NULL);
8242 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntEarly, STAMTYPE_U32, "uStatIntEarly", STAMUNIT_NS, NULL);
8243 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntRx, STAMTYPE_U32, "uStatIntRx", STAMUNIT_NS, NULL);
8244 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntTx, STAMTYPE_U32, "uStatIntTx", STAMUNIT_NS, NULL);
8245 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntICS, STAMTYPE_U32, "uStatIntICS", STAMUNIT_NS, NULL);
8246 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntRDTR, STAMTYPE_U32, "uStatIntRDTR", STAMUNIT_NS, NULL);
8247 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntRXDMT0, STAMTYPE_U32, "uStatIntRXDMT0", STAMUNIT_NS, NULL);
8248 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntTXQE, STAMTYPE_U32, "uStatIntTXQE", STAMUNIT_NS, NULL);
8249 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxNoRS, STAMTYPE_U32, "uStatTxNoRS", STAMUNIT_NS, NULL);
8250 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxIDE, STAMTYPE_U32, "uStatTxIDE", STAMUNIT_NS, NULL);
8251 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxDelayed, STAMTYPE_U32, "uStatTxDelayed", STAMUNIT_NS, NULL);
8252 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxDelayExp, STAMTYPE_U32, "uStatTxDelayExp", STAMUNIT_NS, NULL);
8253 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTAD, STAMTYPE_U32, "uStatTAD", STAMUNIT_NS, NULL);
8254 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTID, STAMTYPE_U32, "uStatTID", STAMUNIT_NS, NULL);
8255 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatRAD, STAMTYPE_U32, "uStatRAD", STAMUNIT_NS, NULL);
8256 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatRID, STAMTYPE_U32, "uStatRID", STAMUNIT_NS, NULL);
8257 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatRxFrm, STAMTYPE_U32, "uStatRxFrm", STAMUNIT_NS, NULL);
8258 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxFrm, STAMTYPE_U32, "uStatTxFrm", STAMUNIT_NS, NULL);
8259 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatDescCtx, STAMTYPE_U32, "uStatDescCtx", STAMUNIT_NS, NULL);
8260 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatDescDat, STAMTYPE_U32, "uStatDescDat", STAMUNIT_NS, NULL);
8261 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatDescLeg, STAMTYPE_U32, "uStatDescLeg", STAMUNIT_NS, NULL);
8262 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx1514, STAMTYPE_U32, "uStatTx1514", STAMUNIT_NS, NULL);
8263 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx2962, STAMTYPE_U32, "uStatTx2962", STAMUNIT_NS, NULL);
8264 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx4410, STAMTYPE_U32, "uStatTx4410", STAMUNIT_NS, NULL);
8265 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx5858, STAMTYPE_U32, "uStatTx5858", STAMUNIT_NS, NULL);
8266 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx7306, STAMTYPE_U32, "uStatTx7306", STAMUNIT_NS, NULL);
8267 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx8754, STAMTYPE_U32, "uStatTx8754", STAMUNIT_NS, NULL);
8268 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx16384, STAMTYPE_U32, "uStatTx16384", STAMUNIT_NS, NULL);
8269 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx32768, STAMTYPE_U32, "uStatTx32768", STAMUNIT_NS, NULL);
8270 PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxLarge, STAMTYPE_U32, "uStatTxLarge", STAMUNIT_NS, NULL);
8271#endif /* E1K_INT_STATS */
8272
8273 return VINF_SUCCESS;
8274}
8275
8276#else /* !IN_RING3 */
8277
8278/**
8279 * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
8280 */
8281static DECLCALLBACK(int) e1kRZConstruct(PPDMDEVINS pDevIns)
8282{
8283 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
8284 PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE);
8285 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC);
8286
8287 /* Initialize context specific state data: */
8288 pThisCC->CTX_SUFF(pDevIns) = pDevIns;
8289 /** @todo @bugref{9218} ring-0 driver stuff */
8290 pThisCC->CTX_SUFF(pDrv) = NULL;
8291 pThisCC->CTX_SUFF(pTxSg) = NULL;
8292
8293 /* Configure critical sections the same way: */
8294 int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
8295 AssertRCReturn(rc, rc);
8296
8297 /* Set up MMIO and I/O port callbacks for this context: */
8298 rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmioRegion, e1kMMIOWrite, e1kMMIORead, NULL /*pvUser*/);
8299 AssertRCReturn(rc, rc);
8300
8301 rc = PDMDevHlpIoPortSetUpContext(pDevIns, pThis->hIoPorts, e1kIOPortOut, e1kIOPortIn, NULL /*pvUser*/);
8302 AssertRCReturn(rc, rc);
8303
8304 return VINF_SUCCESS;
8305}
8306
8307#endif /* !IN_RING3 */
8308
8309/**
8310 * The device registration structure.
8311 */
8312const PDMDEVREG g_DeviceE1000 =
8313{
8314 /* .u32version = */ PDM_DEVREG_VERSION,
8315 /* .uReserved0 = */ 0,
8316 /* .szName = */ "e1000",
8317 /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE,
8318 /* .fClass = */ PDM_DEVREG_CLASS_NETWORK,
8319 /* .cMaxInstances = */ ~0U,
8320 /* .uSharedVersion = */ 42,
8321 /* .cbInstanceShared = */ sizeof(E1KSTATE),
8322 /* .cbInstanceCC = */ sizeof(E1KSTATECC),
8323 /* .cbInstanceRC = */ sizeof(E1KSTATERC),
8324 /* .cMaxPciDevices = */ 1,
8325 /* .cMaxMsixVectors = */ 0,
8326 /* .pszDescription = */ "Intel PRO/1000 MT Desktop Ethernet.",
8327#if defined(IN_RING3)
8328 /* .pszRCMod = */ "VBoxDDRC.rc",
8329 /* .pszR0Mod = */ "VBoxDDR0.r0",
8330 /* .pfnConstruct = */ e1kR3Construct,
8331 /* .pfnDestruct = */ e1kR3Destruct,
8332 /* .pfnRelocate = */ e1kR3Relocate,
8333 /* .pfnMemSetup = */ NULL,
8334 /* .pfnPowerOn = */ NULL,
8335 /* .pfnReset = */ e1kR3Reset,
8336 /* .pfnSuspend = */ e1kR3Suspend,
8337 /* .pfnResume = */ NULL,
8338 /* .pfnAttach = */ e1kR3Attach,
8339 /* .pfnDeatch = */ e1kR3Detach,
8340 /* .pfnQueryInterface = */ NULL,
8341 /* .pfnInitComplete = */ NULL,
8342 /* .pfnPowerOff = */ e1kR3PowerOff,
8343 /* .pfnSoftReset = */ NULL,
8344 /* .pfnReserved0 = */ NULL,
8345 /* .pfnReserved1 = */ NULL,
8346 /* .pfnReserved2 = */ NULL,
8347 /* .pfnReserved3 = */ NULL,
8348 /* .pfnReserved4 = */ NULL,
8349 /* .pfnReserved5 = */ NULL,
8350 /* .pfnReserved6 = */ NULL,
8351 /* .pfnReserved7 = */ NULL,
8352#elif defined(IN_RING0)
8353 /* .pfnEarlyConstruct = */ NULL,
8354 /* .pfnConstruct = */ e1kRZConstruct,
8355 /* .pfnDestruct = */ NULL,
8356 /* .pfnFinalDestruct = */ NULL,
8357 /* .pfnRequest = */ NULL,
8358 /* .pfnReserved0 = */ NULL,
8359 /* .pfnReserved1 = */ NULL,
8360 /* .pfnReserved2 = */ NULL,
8361 /* .pfnReserved3 = */ NULL,
8362 /* .pfnReserved4 = */ NULL,
8363 /* .pfnReserved5 = */ NULL,
8364 /* .pfnReserved6 = */ NULL,
8365 /* .pfnReserved7 = */ NULL,
8366#elif defined(IN_RC)
8367 /* .pfnConstruct = */ e1kRZConstruct,
8368 /* .pfnReserved0 = */ NULL,
8369 /* .pfnReserved1 = */ NULL,
8370 /* .pfnReserved2 = */ NULL,
8371 /* .pfnReserved3 = */ NULL,
8372 /* .pfnReserved4 = */ NULL,
8373 /* .pfnReserved5 = */ NULL,
8374 /* .pfnReserved6 = */ NULL,
8375 /* .pfnReserved7 = */ NULL,
8376#else
8377# error "Not in IN_RING3, IN_RING0 or IN_RC!"
8378#endif
8379 /* .u32VersionEnd = */ PDM_DEVREG_VERSION
8380};
8381
8382#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette