#include "slirp.h" #ifdef RT_OS_OS2 # include #endif #include #include #ifdef VBOX_WITH_SYNC_SLIRP #include #endif static const uint8_t special_ethaddr[6] = { 0x52, 0x54, 0x00, 0x12, 0x35, 0x00 }; #ifdef _WIN32 static int get_dns_addr_domain(PNATState pData, bool fVerbose, struct in_addr *pdns_addr, const char **ppszDomain) { int rc = 0; FIXED_INFO *FixedInfo=NULL; ULONG BufLen; DWORD ret; IP_ADDR_STRING *pIPAddr; struct in_addr tmp_addr; FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO)); BufLen = sizeof(FIXED_INFO); /** @todo: this API returns all DNS servers, no matter whether the * corresponding network adapter is disabled or not. Maybe replace * this by GetAdapterAddresses(), which is XP/Vista only though. */ if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) { if (FixedInfo) { GlobalFree(FixedInfo); FixedInfo = NULL; } FixedInfo = GlobalAlloc(GPTR, BufLen); } if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) { Log(("GetNetworkParams failed. ret = %08x\n", (u_int)ret )); if (FixedInfo) { GlobalFree(FixedInfo); FixedInfo = NULL; } rc = -1; goto get_dns_prefix; } pIPAddr = &(FixedInfo->DnsServerList); inet_aton(pIPAddr->IpAddress.String, &tmp_addr); Log(("nat: DNS Servers:\n")); if (fVerbose || pdns_addr->s_addr != tmp_addr.s_addr) LogRel(("NAT: DNS address: %s\n", pIPAddr->IpAddress.String)); *pdns_addr = tmp_addr; pIPAddr = FixedInfo -> DnsServerList.Next; while ( pIPAddr ) { if (fVerbose) LogRel(("NAT: ignored DNS address: %s\n", pIPAddr ->IpAddress.String)); pIPAddr = pIPAddr ->Next; } if (FixedInfo) { GlobalFree(FixedInfo); FixedInfo = NULL; } get_dns_prefix: if (ppszDomain) { OSVERSIONINFO ver; char szDnsDomain[256]; DWORD dwSize = sizeof(szDnsDomain); *ppszDomain = NULL; GetVersionEx(&ver); if (ver.dwMajorVersion >= 5) { /* GetComputerNameEx exists in Windows versions starting with 2000. */ if (GetComputerNameEx(ComputerNameDnsDomain, szDnsDomain, &dwSize)) { if (szDnsDomain[0]) { /* Just non-empty strings are valid. */ *ppszDomain = RTStrDup(szDnsDomain); if (pData->fPassDomain) { if (fVerbose) LogRel(("NAT: passing domain name %s\n", szDnsDomain)); } else Log(("nat: ignoring domain %s\n", szDnsDomain)); } } else Log(("nat: GetComputerNameEx failed (%d)\n", GetLastError())); } } return rc; } #else static int get_dns_addr_domain(PNATState pData, bool fVerbose, struct in_addr *pdns_addr, const char **ppszDomain) { char buff[512]; char buff2[256]; FILE *f; int found = 0; struct in_addr tmp_addr; #ifdef RT_OS_OS2 /* Try various locations. */ char *etc = getenv("ETC"); f = NULL; if (etc) { snprintf(buff, sizeof(buff), "%s/RESOLV2", etc); f = fopen(buff, "rt"); } if (!f) { snprintf(buff, sizeof(buff), "%s/RESOLV2", _PATH_ETC); f = fopen(buff, "rt"); } if (!f) { snprintf(buff, sizeof(buff), "%s/resolv.conf", _PATH_ETC); f = fopen(buff, "rt"); } #else f = fopen("/etc/resolv.conf", "r"); #endif if (!f) return -1; if (ppszDomain) *ppszDomain = NULL; Log(("nat: DNS Servers:\n")); while (fgets(buff, 512, f) != NULL) { if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { if (!inet_aton(buff2, &tmp_addr)) continue; if (tmp_addr.s_addr == loopback_addr.s_addr) tmp_addr = our_addr; /* If it's the first one, set it to dns_addr */ if (!found) { if (fVerbose || pdns_addr->s_addr != tmp_addr.s_addr) LogRel(("NAT: DNS address: %s\n", buff2)); *pdns_addr = tmp_addr; } else { if (fVerbose) LogRel(("NAT: ignored DNS address: %s\n", buff2)); } found++; } if ( ppszDomain && (!strncmp(buff, "domain", 6) || !strncmp(buff, "search", 6))) { /* Domain name/search list present. Pick first entry */ if (*ppszDomain == NULL) { char *tok; char *saveptr; tok = strtok_r(&buff[6], " \t\n", &saveptr); if (tok) { *ppszDomain = RTStrDup(tok); if (pData->fPassDomain) { if (fVerbose) LogRel(("NAT: passing domain name %s\n", tok)); } else Log(("nat: ignoring domain %s\n", tok)); } } } } fclose(f); if (!found) return -1; return 0; } #endif int get_dns_addr(PNATState pData, struct in_addr *pdns_addr) { return get_dns_addr_domain(pData, false, pdns_addr, NULL); } int slirp_init(PNATState *ppData, const char *pszNetAddr, uint32_t u32Netmask, bool fPassDomain, const char *pszTFTPPrefix, const char *pszBootFile, void *pvUser) { int fNATfailed = 0; PNATState pData = malloc(sizeof(NATState)); *ppData = pData; if (!pData) return VERR_NO_MEMORY; if (u32Netmask & 0x1f) /* CTL is x.x.x.15, bootp passes up to 16 IPs (15..31) */ return VERR_INVALID_PARAMETER; memset(pData, '\0', sizeof(NATState)); pData->fPassDomain = fPassDomain; pData->pvUser = pvUser; #if ARCH_BITS == 64 pData->cpvHashUsed = 1; #endif tftp_prefix = pszTFTPPrefix; bootp_filename = pszBootFile; pData->netmask = u32Netmask; #ifdef _WIN32 { WSADATA Data; WSAStartup(MAKEWORD(2,0), &Data); } #endif VBOX_SLIRP_LOCK_CREATE(&pData->tcb_mutex); VBOX_SLIRP_LOCK_CREATE(&pData->tcp_last_so_mutex); VBOX_SLIRP_LOCK_CREATE(&pData->udb_mutex); VBOX_SLIRP_LOCK_CREATE(&pData->udp_last_so_mutex); VBOX_SLIRP_LOCK_CREATE(&pData->if_queued_mutex); VBOX_SLIRP_LOCK_CREATE(&pData->next_m_mutex); Assert(sizeof(struct ip) == 20); link_up = 1; if_init(pData); ip_init(pData); /* Initialise mbufs *after* setting the MTU */ m_init(pData); /* set default addresses */ inet_aton("127.0.0.1", &loopback_addr); inet_aton("127.0.0.1", &dns_addr); if (get_dns_addr_domain(pData, true, &dns_addr, &pData->pszDomain) < 0) fNATfailed = 1; inet_aton(pszNetAddr, &special_addr); alias_addr.s_addr = special_addr.s_addr | htonl(CTL_ALIAS); getouraddr(pData); return fNATfailed ? VINF_NAT_DNS : VINF_SUCCESS; } /** * Marks the link as up, making it possible to establish new connections. */ void slirp_link_up(PNATState pData) { link_up = 1; } /** * Marks the link as down and cleans up the current connections. */ void slirp_link_down(PNATState pData) { struct socket *so; while ((so = tcb.so_next) != &tcb) { if (so->so_state & SS_NOFDREF || so->s == -1) sofree(pData, so); else tcp_drop(pData, sototcpcb(so), 0); } while ((so = udb.so_next) != &udb) udp_detach(pData, so); link_up = 0; } /** * Terminates the slirp component. */ void slirp_term(PNATState pData) { if (pData->pszDomain) RTStrFree((char *)(void *)pData->pszDomain); #if ARCH_BITS == 64 LogRel(("NAT: cpvHashUsed=%RU32 cpvHashCollisions=%RU32 cpvHashInserts=%RU64 cpvHashDone=%RU64\n", pData->cpvHashUsed, pData->cpvHashCollisions, pData->cpvHashInserts, pData->cpvHashDone)); #endif slirp_link_down(pData); #ifdef WIN32 WSACleanup(); #endif #ifdef LOG_ENABLED Log(("\n" "NAT statistics\n" "--------------\n" "\n")); ipstats(pData); tcpstats(pData); udpstats(pData); icmpstats(pData); mbufstats(pData); sockstats(pData); Log(("\n" "\n" "\n")); #endif free(pData); } #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) #define UPD_NFDS(x) if (nfds < (x)) nfds = (x) /* * curtime kept to an accuracy of 1ms */ #ifdef _WIN32 static void updtime(PNATState pData) { struct _timeb tb; _ftime(&tb); curtime = (u_int)tb.time * (u_int)1000; curtime += (u_int)tb.millitm; } #else static void updtime(PNATState pData) { gettimeofday(&tt, 0); curtime = (u_int)tt.tv_sec * (u_int)1000; curtime += (u_int)tt.tv_usec / (u_int)1000; if ((tt.tv_usec % 1000) >= 500) curtime++; } #endif void slirp_select_fill(PNATState pData, int *pnfds, fd_set *readfds, fd_set *writefds, fd_set *xfds) { struct socket *so, *so_next; struct timeval timeout; int nfds; int tmp_time; nfds = *pnfds; /* * First, TCP sockets */ do_slowtimo = 0; if (link_up) { /* * *_slowtimo needs calling if there are IP fragments * in the fragment queue, or there are TCP connections active */ VBOX_SLIRP_LOCK(pData->tcb_mutex); do_slowtimo = ((tcb.so_next != &tcb) || ((struct ipasfrag *)&ipq != u32_to_ptr(pData, ipq.next, struct ipasfrag *))); so = tcb.so_next; #ifndef VBOX_WITH_SYNC_SLIRP for (so = tcb.so_next; so != &tcb; so = so_next) { #else while (1) { if (so == &tcb) { VBOX_SLIRP_UNLOCK(pData->tcb_mutex); break; } #endif so_next = so->so_next; #ifdef VBOX_WITH_SYNC_SLIRP VBOX_SLIRP_LOCK(so->so_mutex); while (so->so_destroy == 1) { VBOX_SLIRP_UNLOCK(so->so_mutex); VBOX_SLIRP_LOCK_DESTROY(so->so_mutex); free(so); so = so_next; so_next = so->so_next; VBOX_SLIRP_LOCK(so->so_mutex); } #endif VBOX_SLIRP_UNLOCK(pData->tcb_mutex); /* * See if we need a tcp_fasttimo */ if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK) time_fasttimo = curtime; /* Flag when we want a fasttimo */ /* * NOFDREF can include still connecting to local-host, * newly socreated() sockets etc. Don't want to select these. */ if (so->so_state & SS_NOFDREF || so->s == -1) goto before_loop_ends; /* * Set for reading sockets which are accepting */ if (so->so_state & SS_FACCEPTCONN) { FD_SET(so->s, readfds); UPD_NFDS(so->s); goto before_loop_ends; } /* * Set for writing sockets which are connecting */ if (so->so_state & SS_ISFCONNECTING) { FD_SET(so->s, writefds); UPD_NFDS(so->s); goto before_loop_ends; } /* * Set for writing if we are connected, can send more, and * we have something to send */ if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { FD_SET(so->s, writefds); UPD_NFDS(so->s); } /* * Set for reading (and urgent data) if we are connected, can * receive more, and we have room for it XXX /2 ? */ if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) { FD_SET(so->s, readfds); FD_SET(so->s, xfds); UPD_NFDS(so->s); } before_loop_ends: /*Release of global tcb mutex happens in the head of loop*/ VBOX_SLIRP_UNLOCK(so->so_mutex); VBOX_SLIRP_LOCK(pData->tcb_mutex); #ifdef VBOX_WITH_SYNC_SLIRP so = so_next; #endif } /* * UDP sockets */ VBOX_SLIRP_LOCK(pData->udb_mutex); so = udb.so_next; #ifndef VBOX_WITH_SYNC_SLIRP for (so = udb.so_next; so != &udb; so = so_next) { #else while(1) { if (so == &udb) { VBOX_SLIRP_UNLOCK(pData->udb_mutex); break; } #endif so_next = so->so_next; VBOX_SLIRP_LOCK(so->so_mutex); VBOX_SLIRP_UNLOCK(pData->udb_mutex); /* * See if it's timed out */ if (so->so_expire) { if (so->so_expire <= curtime) { udp_detach(pData, so); goto before_udp_loop_end; } else do_slowtimo = 1; /* Let socket expire */ } /* * When UDP packets are received from over the * link, they're sendto()'d straight away, so * no need for setting for writing * Limit the number of packets queued by this session * to 4. Note that even though we try and limit this * to 4 packets, the session could have more queued * if the packets needed to be fragmented * (XXX <= 4 ?) */ if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { FD_SET(so->s, readfds); UPD_NFDS(so->s); } before_udp_loop_end: VBOX_SLIRP_UNLOCK(so->so_mutex); VBOX_SLIRP_LOCK(pData->udb_mutex); #ifdef VBOX_WITH_SYNC_SLIRP so = so_next; #endif } } /* * Setup timeout to use minimum CPU usage, especially when idle */ /* * First, see the timeout needed by *timo */ timeout.tv_sec = 0; timeout.tv_usec = -1; /* * If a slowtimo is needed, set timeout to 500ms from the last * slow timeout. If a fast timeout is needed, set timeout within * 200ms of when it was requested. */ if (do_slowtimo) { /* XXX + 10000 because some select()'s aren't that accurate */ timeout.tv_usec = ((500 - (curtime - last_slowtimo)) * 1000) + 10000; if (timeout.tv_usec < 0) timeout.tv_usec = 0; else if (timeout.tv_usec > 510000) timeout.tv_usec = 510000; /* Can only fasttimo if we also slowtimo */ if (time_fasttimo) { tmp_time = (200 - (curtime - time_fasttimo)) * 1000; if (tmp_time < 0) tmp_time = 0; /* Choose the smallest of the 2 */ if (tmp_time < timeout.tv_usec) timeout.tv_usec = (u_int)tmp_time; } } *pnfds = nfds; } void slirp_select_poll(PNATState pData, fd_set *readfds, fd_set *writefds, fd_set *xfds) { struct socket *so, *so_next; int ret; /* Update time */ updtime(pData); /* * See if anything has timed out */ if (link_up) { if (time_fasttimo && ((curtime - time_fasttimo) >= 2)) { tcp_fasttimo(pData); time_fasttimo = 0; } if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) { ip_slowtimo(pData); tcp_slowtimo(pData); last_slowtimo = curtime; } } /* * Check sockets */ if (link_up) { /* * Check TCP sockets */ VBOX_SLIRP_LOCK(pData->tcb_mutex); so = tcb.so_next; #ifndef VBOX_WITH_SYNC_SLIRP for (so = tcb.so_next; so != &tcb; so = so_next) { #else while (1) { if (so == &tcb) { VBOX_SLIRP_UNLOCK(pData->tcb_mutex); break; } #endif so_next = so->so_next; #ifdef VBOX_WITH_SYNC_SLIRP if (so->so_destroy == 1) { VBOX_SLIRP_LOCK_DESTROY(so->so_mutex); free(so); so = tcb.so_next; so_next = so->so_next; } VBOX_SLIRP_LOCK(so->so_mutex); #endif VBOX_SLIRP_UNLOCK(pData->tcb_mutex); /* * FD_ISSET is meaningless on these sockets * (and they can crash the program) */ if (so->so_state & SS_NOFDREF || so->s == -1) goto before_loop_ends; /* * Check for URG data * This will soread as well, so no need to * test for readfds below if this succeeds */ if (FD_ISSET(so->s, xfds)) sorecvoob(pData, so); /* * Check sockets for reading */ else if (FD_ISSET(so->s, readfds)) { /* * Check for incoming connections */ if (so->so_state & SS_FACCEPTCONN) { tcp_connect(pData, so); goto before_loop_ends; } /* else */ ret = soread(pData, so); /* Output it if we read something */ if (ret > 0) tcp_output(pData, sototcpcb(so)); } /* * Check sockets for writing */ if (FD_ISSET(so->s, writefds)) { /* * Check for non-blocking, still-connecting sockets */ if (so->so_state & SS_ISFCONNECTING) { /* Connected */ so->so_state &= ~SS_ISFCONNECTING; /* * This should be probably guarded by PROBE_CONN too. Anyway, * we disable it on OS/2 because the below send call returns * EFAULT which causes the opened TCP socket to close right * after it has been opened and connected. */ #ifndef RT_OS_OS2 ret = send(so->s, (const char *)&ret, 0, 0); if (ret < 0) { /* XXXXX Must fix, zero bytes is a NOP */ if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) goto before_loop_ends; /* else failed */ so->so_state = SS_NOFDREF; } /* else so->so_state &= ~SS_ISFCONNECTING; */ #endif /* * Continue tcp_input */ tcp_input(pData, (struct mbuf *)NULL, sizeof(struct ip), so); /* continue; */ } else ret = sowrite(pData, so); /* * XXXXX If we wrote something (a lot), there * could be a need for a window update. * In the worst case, the remote will send * a window probe to get things going again */ } /* * Probe a still-connecting, non-blocking socket * to check if it's still alive */ #ifdef PROBE_CONN if (so->so_state & SS_ISFCONNECTING) { ret = recv(so->s, (char *)&ret, 0,0); if (ret < 0) { /* XXX */ if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) goto before_loop_ends;/* Still connecting, continue */ /* else failed */ so->so_state = SS_NOFDREF; /* tcp_input will take care of it */ } else { ret = send(so->s, &ret, 0,0); if (ret < 0) { /* XXX */ if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) goto before_loop_ends; /* else failed */ so->so_state = SS_NOFDREF; } else so->so_state &= ~SS_ISFCONNECTING; } tcp_input((struct mbuf *)NULL, sizeof(struct ip),so); } /* SS_ISFCONNECTING */ #endif before_loop_ends: VBOX_SLIRP_UNLOCK(so->so_mutex); VBOX_SLIRP_LOCK(pData->tcb_mutex); #ifdef VBOX_WITH_SYNC_SLIRP so = so_next; #endif } /* * Now UDP sockets. * Incoming packets are sent straight away, they're not buffered. * Incoming UDP data isn't buffered either. */ VBOX_SLIRP_LOCK(pData->udb_mutex); so = udb.so_next; #ifndef VBOX_WITH_SYNC_SLIRP for (so = udb.so_next; so != &udb; so = so_next) { #else while(1) { if (so == &udb) { VBOX_SLIRP_UNLOCK(pData->udb_mutex); break; } #endif so_next = so->so_next; VBOX_SLIRP_LOCK(so->so_mutex); VBOX_SLIRP_UNLOCK(pData->udb_mutex); if (so->s != -1 && FD_ISSET(so->s, readfds)) { sorecvfrom(pData, so); } VBOX_SLIRP_UNLOCK(so->so_mutex); VBOX_SLIRP_LOCK(pData->udb_mutex); #ifdef VBOX_WITH_SYNC_SLIRP so = so_next; #endif } } /* * See if we can start outputting */ #ifndef VBOX_WITH_SYNC_SLIRP if (if_queued && link_up) if_start(pData); #else #if 0 if (link_up) { VBOX_SLIRP_LOCK(pData->if_queued_mutex); if (if_queued > 0){ VBOX_SLIRP_UNLOCK(pData->if_queued_mutex); if_start(pData); } else { VBOX_SLIRP_UNLOCK(pData->if_queued_mutex); } } #endif #endif } #define ETH_ALEN 6 #define ETH_HLEN 14 #define ETH_P_IP 0x0800 /* Internet Protocol packet */ #define ETH_P_ARP 0x0806 /* Address Resolution packet */ #define ARPOP_REQUEST 1 /* ARP request */ #define ARPOP_REPLY 2 /* ARP reply */ struct ethhdr { unsigned char h_dest[ETH_ALEN]; /* destination eth addr */ unsigned char h_source[ETH_ALEN]; /* source ether addr */ unsigned short h_proto; /* packet type ID field */ }; struct arphdr { unsigned short ar_hrd; /* format of hardware address */ unsigned short ar_pro; /* format of protocol address */ unsigned char ar_hln; /* length of hardware address */ unsigned char ar_pln; /* length of protocol address */ unsigned short ar_op; /* ARP opcode (command) */ /* * Ethernet looks like this : This bit is variable sized however... */ unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */ unsigned char ar_sip[4]; /* sender IP address */ unsigned char ar_tha[ETH_ALEN]; /* target hardware address */ unsigned char ar_tip[4]; /* target IP address */ }; static void arp_input(PNATState pData, const uint8_t *pkt, int pkt_len) { struct ethhdr *eh = (struct ethhdr *)pkt; struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN); uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)]; struct ethhdr *reh = (struct ethhdr *)arp_reply; struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN); int ar_op; struct ex_list *ex_ptr; uint32_t htip = ntohl(*(uint32_t*)ah->ar_tip); ar_op = ntohs(ah->ar_op); switch(ar_op) { case ARPOP_REQUEST: if ((htip & pData->netmask) == ntohl(special_addr.s_addr)) { if ( (htip & ~pData->netmask) == CTL_DNS || (htip & ~pData->netmask) == CTL_ALIAS) goto arp_ok; for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { if ((htip & ~pData->netmask) == ex_ptr->ex_addr) goto arp_ok; } return; arp_ok: /* XXX: make an ARP request to have the client address */ memcpy(client_ethaddr, eh->h_source, ETH_ALEN); /* ARP request for alias/dns mac address */ memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN); memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1); reh->h_source[5] = ah->ar_tip[3]; reh->h_proto = htons(ETH_P_ARP); rah->ar_hrd = htons(1); rah->ar_pro = htons(ETH_P_IP); rah->ar_hln = ETH_ALEN; rah->ar_pln = 4; rah->ar_op = htons(ARPOP_REPLY); memcpy(rah->ar_sha, reh->h_source, ETH_ALEN); memcpy(rah->ar_sip, ah->ar_tip, 4); memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); memcpy(rah->ar_tip, ah->ar_sip, 4); slirp_output(pData->pvUser, arp_reply, sizeof(arp_reply)); } break; default: break; } } void slirp_input(PNATState pData, const uint8_t *pkt, int pkt_len) { struct mbuf *m; int proto; if (pkt_len < ETH_HLEN) return; proto = ntohs(*(uint16_t *)(pkt + 12)); switch(proto) { case ETH_P_ARP: arp_input(pData, pkt, pkt_len); break; case ETH_P_IP: /* Update time. Important if the network is very quiet, as otherwise * the first outgoing connection gets an incorrect timestamp. */ updtime(pData); m = m_get(pData); if (!m) return; VBOX_SLIRP_LOCK(m->m_mutex); /* Note: we add to align the IP header */ if (M_FREEROOM(m) < pkt_len + 2) { m_inc(m, pkt_len + 2); } m->m_len = pkt_len + 2; memcpy(m->m_data + 2, pkt, pkt_len); m->m_data += 2 + ETH_HLEN; m->m_len -= 2 + ETH_HLEN; ip_input(pData, m); VBOX_SLIRP_UNLOCK(m->m_mutex); break; default: break; } } /* output the IP packet to the ethernet device */ void if_encap(PNATState pData, const uint8_t *ip_data, int ip_data_len) { uint8_t buf[1600]; struct ethhdr *eh = (struct ethhdr *)buf; if (ip_data_len + ETH_HLEN > sizeof(buf)) return; memcpy(eh->h_dest, client_ethaddr, ETH_ALEN); memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1); /* XXX: not correct */ eh->h_source[5] = CTL_ALIAS; eh->h_proto = htons(ETH_P_IP); memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len); slirp_output(pData->pvUser, buf, ip_data_len + ETH_HLEN); } int slirp_redir(PNATState pData, int is_udp, int host_port, struct in_addr guest_addr, int guest_port) { if (is_udp) { if (!udp_listen(pData, htons(host_port), guest_addr.s_addr, htons(guest_port), 0)) return -1; } else { if (!solisten(pData, htons(host_port), guest_addr.s_addr, htons(guest_port), 0)) return -1; } return 0; } int slirp_add_exec(PNATState pData, int do_pty, const char *args, int addr_low_byte, int guest_port) { return add_exec(&exec_list, do_pty, (char *)args, addr_low_byte, htons(guest_port)); } void slirp_set_ethaddr(PNATState pData, const uint8_t *ethaddr) { memcpy(client_ethaddr, ethaddr, ETH_ALEN); }