/* $Id: slirp.c 37746 2011-07-04 06:07:37Z vboxsync $ */ /** @file * NAT - slirp glue. */ /* * Copyright (C) 2006-2010 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /* * This code is based on: * * libslirp glue * * Copyright (c) 2004-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "slirp.h" #ifdef RT_OS_OS2 # include #endif #include #include #include #include #ifndef RT_OS_WINDOWS # include # include #else # include # define _WINSOCK2API_ # include #endif #include #ifndef RT_OS_WINDOWS # define DO_ENGAGE_EVENT1(so, fdset, label) \ do { \ if ( so->so_poll_index != -1 \ && so->s == polls[so->so_poll_index].fd) \ { \ polls[so->so_poll_index].events |= N_(fdset ## _poll); \ break; \ } \ AssertRelease(poll_index < (nfds)); \ AssertRelease(poll_index >= 0 && poll_index < (nfds)); \ polls[poll_index].fd = (so)->s; \ (so)->so_poll_index = poll_index; \ polls[poll_index].events = N_(fdset ## _poll); \ polls[poll_index].revents = 0; \ poll_index++; \ } while (0) # define DO_ENGAGE_EVENT2(so, fdset1, fdset2, label) \ do { \ if ( so->so_poll_index != -1 \ && so->s == polls[so->so_poll_index].fd) \ { \ polls[so->so_poll_index].events |= \ N_(fdset1 ## _poll) | N_(fdset2 ## _poll); \ break; \ } \ AssertRelease(poll_index < (nfds)); \ polls[poll_index].fd = (so)->s; \ (so)->so_poll_index = poll_index; \ polls[poll_index].events = \ N_(fdset1 ## _poll) | N_(fdset2 ## _poll); \ poll_index++; \ } while (0) # define DO_POLL_EVENTS(rc, error, so, events, label) do {} while (0) /* * DO_CHECK_FD_SET is used in dumping events on socket, including POLLNVAL. * gcc warns about attempts to log POLLNVAL so construction in a last to lines * used to catch POLLNVAL while logging and return false in case of error while * normal usage. */ # define DO_CHECK_FD_SET(so, events, fdset) \ ( ((so)->so_poll_index != -1) \ && ((so)->so_poll_index <= ndfs) \ && ((so)->s == polls[so->so_poll_index].fd) \ && (polls[(so)->so_poll_index].revents & N_(fdset ## _poll)) \ && ( N_(fdset ## _poll) == POLLNVAL \ || !(polls[(so)->so_poll_index].revents & POLLNVAL))) /* specific for Unix API */ # define DO_UNIX_CHECK_FD_SET(so, events, fdset) DO_CHECK_FD_SET((so), (events), fdset) /* specific for Windows Winsock API */ # define DO_WIN_CHECK_FD_SET(so, events, fdset) 0 # ifndef RT_OS_LINUX # define readfds_poll (POLLRDNORM) # define writefds_poll (POLLWRNORM) # else # define readfds_poll (POLLIN) # define writefds_poll (POLLOUT) # endif # define xfds_poll (POLLPRI) # define closefds_poll (POLLHUP) # define rderr_poll (POLLERR) # define rdhup_poll (POLLHUP) # define nval_poll (POLLNVAL) # define ICMP_ENGAGE_EVENT(so, fdset) \ do { \ if (pData->icmp_socket.s != -1) \ DO_ENGAGE_EVENT1((so), fdset, ICMP); \ } while (0) #else /* RT_OS_WINDOWS */ /* * On Windows, we will be notified by IcmpSendEcho2() when the response arrives. * So no call to WSAEventSelect necessary. */ # define ICMP_ENGAGE_EVENT(so, fdset) do {} while (0) /* * On Windows we use FD_ALL_EVENTS to ensure that we don't miss any event. */ # define DO_ENGAGE_EVENT1(so, fdset1, label) \ do { \ rc = WSAEventSelect((so)->s, VBOX_SOCKET_EVENT, FD_ALL_EVENTS); \ if (rc == SOCKET_ERROR) \ { \ /* This should not happen */ \ error = WSAGetLastError(); \ LogRel(("WSAEventSelect (" #label ") error %d (so=%x, socket=%s, event=%x)\n", \ error, (so), (so)->s, VBOX_SOCKET_EVENT)); \ } \ } while (0); \ CONTINUE(label) # define DO_ENGAGE_EVENT2(so, fdset1, fdset2, label) \ DO_ENGAGE_EVENT1((so), (fdset1), label) # define DO_POLL_EVENTS(rc, error, so, events, label) \ (rc) = WSAEnumNetworkEvents((so)->s, VBOX_SOCKET_EVENT, (events)); \ if ((rc) == SOCKET_ERROR) \ { \ (error) = WSAGetLastError(); \ LogRel(("WSAEnumNetworkEvents " #label " error %d\n", (error))); \ CONTINUE(label); \ } # define acceptds_win FD_ACCEPT # define acceptds_win_bit FD_ACCEPT_BIT # define readfds_win FD_READ # define readfds_win_bit FD_READ_BIT # define writefds_win FD_WRITE # define writefds_win_bit FD_WRITE_BIT # define xfds_win FD_OOB # define xfds_win_bit FD_OOB_BIT # define closefds_win FD_CLOSE # define closefds_win_bit FD_CLOSE_BIT # define closefds_win FD_CLOSE # define closefds_win_bit FD_CLOSE_BIT # define DO_CHECK_FD_SET(so, events, fdset) \ (((events).lNetworkEvents & fdset ## _win) && ((events).iErrorCode[fdset ## _win_bit] == 0)) # define DO_WIN_CHECK_FD_SET(so, events, fdset) DO_CHECK_FD_SET((so), (events), fdset) # define DO_UNIX_CHECK_FD_SET(so, events, fdset) 1 /*specific for Unix API */ #endif /* RT_OS_WINDOWS */ #define TCP_ENGAGE_EVENT1(so, fdset) \ DO_ENGAGE_EVENT1((so), fdset, tcp) #define TCP_ENGAGE_EVENT2(so, fdset1, fdset2) \ DO_ENGAGE_EVENT2((so), fdset1, fdset2, tcp) #define UDP_ENGAGE_EVENT(so, fdset) \ DO_ENGAGE_EVENT1((so), fdset, udp) #define POLL_TCP_EVENTS(rc, error, so, events) \ DO_POLL_EVENTS((rc), (error), (so), (events), tcp) #define POLL_UDP_EVENTS(rc, error, so, events) \ DO_POLL_EVENTS((rc), (error), (so), (events), udp) #define CHECK_FD_SET(so, events, set) \ (DO_CHECK_FD_SET((so), (events), set)) #define WIN_CHECK_FD_SET(so, events, set) \ (DO_WIN_CHECK_FD_SET((so), (events), set)) #define UNIX_CHECK_FD_SET(so, events, set) \ (DO_UNIX_CHECK_FD_SET(so, events, set)) /* * Loging macros */ #if VBOX_WITH_DEBUG_NAT_SOCKETS # if defined(RT_OS_WINDOWS) # define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \ do { \ LogRel((" " #proto " %R[natsock] %R[natwinnetevents]\n", (so), (winevent))); \ } while (0) # else /* !RT_OS_WINDOWS */ # define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \ do { \ LogRel((" " #proto " %R[natsock] %s %s %s er: %s, %s, %s\n", (so), \ CHECK_FD_SET(so, ign ,r_fdset) ? "READ":"", \ CHECK_FD_SET(so, ign, w_fdset) ? "WRITE":"", \ CHECK_FD_SET(so, ign, x_fdset) ? "OOB":"", \ CHECK_FD_SET(so, ign, rderr) ? "RDERR":"", \ CHECK_FD_SET(so, ign, rdhup) ? "RDHUP":"", \ CHECK_FD_SET(so, ign, nval) ? "RDNVAL":"")); \ } while (0) # endif /* !RT_OS_WINDOWS */ #else /* !VBOX_WITH_DEBUG_NAT_SOCKETS */ # define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) do {} while (0) #endif /* !VBOX_WITH_DEBUG_NAT_SOCKETS */ #define LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \ DO_LOG_NAT_SOCK((so), proto, (winevent), r_fdset, w_fdset, x_fdset) static void activate_port_forwarding(PNATState, const uint8_t *pEther); static const uint8_t special_ethaddr[6] = { 0x52, 0x54, 0x00, 0x12, 0x35, 0x00 }; static const uint8_t broadcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; const uint8_t zerro_ethaddr[6] = { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; #ifdef RT_OS_WINDOWS static int get_dns_addr_domain(PNATState pData, bool fVerbose, struct in_addr *pdns_addr, const char **ppszDomain) { ULONG flags = GAA_FLAG_INCLUDE_PREFIX; /*GAA_FLAG_INCLUDE_ALL_INTERFACES;*/ /* all interfaces registered in NDIS */ PIP_ADAPTER_ADDRESSES pAdapterAddr = NULL; PIP_ADAPTER_ADDRESSES pAddr = NULL; PIP_ADAPTER_DNS_SERVER_ADDRESS pDnsAddr = NULL; ULONG size; int wlen = 0; char *pszSuffix; struct dns_domain_entry *pDomain = NULL; ULONG ret = ERROR_SUCCESS; /* @todo add SKIPing flags to get only required information */ /* determine size of buffer */ size = 0; ret = pData->pfGetAdaptersAddresses(AF_INET, 0, NULL /* reserved */, pAdapterAddr, &size); if (ret != ERROR_BUFFER_OVERFLOW) { Log(("NAT: error %lu occurred on capacity detection operation\n", ret)); return -1; } if (size == 0) { Log(("NAT: Win socket API returns non capacity\n")); return -1; } pAdapterAddr = RTMemAllocZ(size); if (!pAdapterAddr) { Log(("NAT: No memory available\n")); return -1; } ret = pData->pfGetAdaptersAddresses(AF_INET, 0, NULL /* reserved */, pAdapterAddr, &size); if (ret != ERROR_SUCCESS) { Log(("NAT: error %lu occurred on fetching adapters info\n", ret)); RTMemFree(pAdapterAddr); return -1; } for (pAddr = pAdapterAddr; pAddr != NULL; pAddr = pAddr->Next) { int found; if (pAddr->OperStatus != IfOperStatusUp) continue; for (pDnsAddr = pAddr->FirstDnsServerAddress; pDnsAddr != NULL; pDnsAddr = pDnsAddr->Next) { struct sockaddr *SockAddr = pDnsAddr->Address.lpSockaddr; struct in_addr InAddr; struct dns_entry *pDns; if (SockAddr->sa_family != AF_INET) continue; InAddr = ((struct sockaddr_in *)SockAddr)->sin_addr; /* add dns server to list */ pDns = RTMemAllocZ(sizeof(struct dns_entry)); if (!pDns) { Log(("NAT: Can't allocate buffer for DNS entry\n")); RTMemFree(pAdapterAddr); return VERR_NO_MEMORY; } Log(("NAT: adding %RTnaipv4 to DNS server list\n", InAddr)); if ((InAddr.s_addr & RT_H2N_U32_C(IN_CLASSA_NET)) == RT_N2H_U32_C(INADDR_LOOPBACK & IN_CLASSA_NET)) pDns->de_addr.s_addr = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_ALIAS); else pDns->de_addr.s_addr = InAddr.s_addr; TAILQ_INSERT_HEAD(&pData->pDnsList, pDns, de_list); if (pAddr->DnsSuffix == NULL) continue; /* uniq */ RTUtf16ToUtf8(pAddr->DnsSuffix, &pszSuffix); if (!pszSuffix || strlen(pszSuffix) == 0) { RTStrFree(pszSuffix); continue; } found = 0; LIST_FOREACH(pDomain, &pData->pDomainList, dd_list) { if ( pDomain->dd_pszDomain != NULL && strcmp(pDomain->dd_pszDomain, pszSuffix) == 0) { found = 1; RTStrFree(pszSuffix); break; } } if (!found) { pDomain = RTMemAllocZ(sizeof(struct dns_domain_entry)); if (!pDomain) { Log(("NAT: not enough memory\n")); RTStrFree(pszSuffix); RTMemFree(pAdapterAddr); return VERR_NO_MEMORY; } pDomain->dd_pszDomain = pszSuffix; Log(("NAT: adding domain name %s to search list\n", pDomain->dd_pszDomain)); LIST_INSERT_HEAD(&pData->pDomainList, pDomain, dd_list); } } } RTMemFree(pAdapterAddr); return 0; } #else /* !RT_OS_WINDOWS */ static int RTFileGets(RTFILE File, void *pvBuf, size_t cbBufSize, size_t *pcbRead) { size_t cbRead; char bTest; int rc = VERR_NO_MEMORY; char *pu8Buf = (char *)pvBuf; *pcbRead = 0; while ( RT_SUCCESS(rc = RTFileRead(File, &bTest, 1, &cbRead)) && (pu8Buf - (char *)pvBuf) < cbBufSize) { if (cbRead == 0) return VERR_EOF; if (bTest == '\r' || bTest == '\n') { *pu8Buf = 0; return VINF_SUCCESS; } *pu8Buf = bTest; pu8Buf++; (*pcbRead)++; } return rc; } static int get_dns_addr_domain(PNATState pData, bool fVerbose, struct in_addr *pdns_addr, const char **ppszDomain) { char buff[512]; char buff2[256]; RTFILE f; int cNameserversFound = 0; bool fWarnTooManyDnsServers = false; struct in_addr tmp_addr; int rc; size_t bytes; # ifdef RT_OS_OS2 /* Try various locations. */ char *etc = getenv("ETC"); if (etc) { RTStrmPrintf(buff, sizeof(buff), "%s/RESOLV2", etc); rc = RTFileOpen(&f, buff, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE); } if (RT_FAILURE(rc)) { RTStrmPrintf(buff, sizeof(buff), "%s/RESOLV2", _PATH_ETC); rc = RTFileOpen(&f, buff, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE); } if (RT_FAILURE(rc)) { RTStrmPrintf(buff, sizeof(buff), "%s/resolv.conf", _PATH_ETC); rc = RTFileOpen(&f, buff, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE); } # else /* !RT_OS_OS2 */ # ifndef DEBUG_vvl rc = RTFileOpen(&f, "/etc/resolv.conf", RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE); # else char *home = getenv("HOME"); RTStrPrintf(buff, sizeof(buff), "%s/resolv.conf", home); rc = RTFileOpen(&f, buff, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE); if (RT_SUCCESS(rc)) { Log(("NAT: DNS we're using %s\n", buff)); } else { rc = RTFileOpen(&f, "/etc/resolv.conf", RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE); Log(("NAT: DNS we're using %s\n", buff)); } # endif # endif /* !RT_OS_OS2 */ if (RT_FAILURE(rc)) return -1; if (ppszDomain) *ppszDomain = NULL; Log(("NAT: DNS Servers:\n")); while ( RT_SUCCESS(rc = RTFileGets(f, buff, sizeof(buff), &bytes)) && rc != VERR_EOF) { struct dns_entry *pDns = NULL; if ( cNameserversFound == 4 && !fWarnTooManyDnsServers && sscanf(buff, "nameserver%*[ \t]%255s", buff2) == 1) { fWarnTooManyDnsServers = true; LogRel(("NAT: too many nameservers registered.\n")); } if ( sscanf(buff, "nameserver%*[ \t]%255s", buff2) == 1 && cNameserversFound < 4) /* Unix doesn't accept more than 4 name servers*/ { if (!inet_aton(buff2, &tmp_addr)) continue; /* localhost mask */ pDns = RTMemAllocZ(sizeof (struct dns_entry)); if (!pDns) { Log(("can't alloc memory for DNS entry\n")); return -1; } /* check */ pDns->de_addr.s_addr = tmp_addr.s_addr; if ((pDns->de_addr.s_addr & RT_H2N_U32_C(IN_CLASSA_NET)) == RT_N2H_U32_C(INADDR_LOOPBACK & IN_CLASSA_NET)) { pDns->de_addr.s_addr = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_ALIAS); } TAILQ_INSERT_HEAD(&pData->pDnsList, pDns, de_list); cNameserversFound++; } if ((!strncmp(buff, "domain", 6) || !strncmp(buff, "search", 6))) { char *tok; char *saveptr; struct dns_domain_entry *pDomain = NULL; int fFoundDomain = 0; tok = strtok_r(&buff[6], " \t\n", &saveptr); LIST_FOREACH(pDomain, &pData->pDomainList, dd_list) { if ( tok != NULL && strcmp(tok, pDomain->dd_pszDomain) == 0) { fFoundDomain = 1; break; } } if (tok != NULL && !fFoundDomain) { pDomain = RTMemAllocZ(sizeof(struct dns_domain_entry)); if (!pDomain) { Log(("NAT: not enought memory to add domain list\n")); return VERR_NO_MEMORY; } pDomain->dd_pszDomain = RTStrDup(tok); Log(("NAT: adding domain name %s to search list\n", pDomain->dd_pszDomain)); LIST_INSERT_HEAD(&pData->pDomainList, pDomain, dd_list); } } } RTFileClose(f); if (!cNameserversFound) return -1; return 0; } #endif /* !RT_OS_WINDOWS */ int slirp_init_dns_list(PNATState pData) { TAILQ_INIT(&pData->pDnsList); LIST_INIT(&pData->pDomainList); return get_dns_addr_domain(pData, true, NULL, NULL); } void slirp_release_dns_list(PNATState pData) { struct dns_entry *pDns = NULL; struct dns_domain_entry *pDomain = NULL; while (!TAILQ_EMPTY(&pData->pDnsList)) { pDns = TAILQ_FIRST(&pData->pDnsList); TAILQ_REMOVE(&pData->pDnsList, pDns, de_list); RTMemFree(pDns); } while (!LIST_EMPTY(&pData->pDomainList)) { pDomain = LIST_FIRST(&pData->pDomainList); LIST_REMOVE(pDomain, dd_list); if (pDomain->dd_pszDomain != NULL) RTStrFree(pDomain->dd_pszDomain); RTMemFree(pDomain); } } int get_dns_addr(PNATState pData, struct in_addr *pdns_addr) { return get_dns_addr_domain(pData, false, pdns_addr, NULL); } int slirp_init(PNATState *ppData, uint32_t u32NetAddr, uint32_t u32Netmask, bool fPassDomain, bool fUseHostResolver, int i32AliasMode, void *pvUser) { int fNATfailed = 0; int rc; PNATState pData = RTMemAllocZ(sizeof(NATState)); *ppData = pData; if (!pData) return VERR_NO_MEMORY; if (u32Netmask & 0x1f) /* CTL is x.x.x.15, bootp passes up to 16 IPs (15..31) */ return VERR_INVALID_PARAMETER; pData->fPassDomain = !fUseHostResolver ? fPassDomain : false; pData->fUseHostResolver = fUseHostResolver; pData->pvUser = pvUser; pData->netmask = u32Netmask; /* sockets & TCP defaults */ pData->socket_rcv = 64 * _1K; pData->socket_snd = 64 * _1K; tcp_sndspace = 64 * _1K; tcp_rcvspace = 64 * _1K; #ifdef RT_OS_WINDOWS { WSADATA Data; WSAStartup(MAKEWORD(2, 0), &Data); } pData->phEvents[VBOX_SOCKET_EVENT_INDEX] = CreateEvent(NULL, FALSE, FALSE, NULL); #endif #ifdef VBOX_WITH_SLIRP_MT QSOCKET_LOCK_CREATE(tcb); QSOCKET_LOCK_CREATE(udb); rc = RTReqCreateQueue(&pData->pReqQueue); AssertReleaseRC(rc); #endif link_up = 1; rc = bootp_dhcp_init(pData); if (rc != 0) { Log(("NAT: DHCP server initialization was failed\n")); return VINF_NAT_DNS; } debug_init(); if_init(pData); ip_init(pData); icmp_init(pData); /* Initialise mbufs *after* setting the MTU */ mbuf_init(pData); pData->special_addr.s_addr = u32NetAddr; pData->slirp_ethaddr = &special_ethaddr[0]; alias_addr.s_addr = pData->special_addr.s_addr | RT_H2N_U32_C(CTL_ALIAS); /* @todo: add ability to configure this staff */ /* set default addresses */ inet_aton("127.0.0.1", &loopback_addr); if (!pData->fUseHostResolver) { if (slirp_init_dns_list(pData) < 0) fNATfailed = 1; dnsproxy_init(pData); } if (i32AliasMode & ~(PKT_ALIAS_LOG|PKT_ALIAS_SAME_PORTS|PKT_ALIAS_PROXY_ONLY)) { Log(("NAT: alias mode %x is ignored\n", i32AliasMode)); i32AliasMode = 0; } pData->i32AliasMode = i32AliasMode; getouraddr(pData); { int flags = 0; struct in_addr proxy_addr; pData->proxy_alias = LibAliasInit(pData, NULL); if (pData->proxy_alias == NULL) { Log(("NAT: LibAlias default rule wasn't initialized\n")); AssertMsgFailed(("NAT: LibAlias default rule wasn't initialized\n")); } flags = LibAliasSetMode(pData->proxy_alias, 0, 0); #ifndef NO_FW_PUNCH flags |= PKT_ALIAS_PUNCH_FW; #endif flags |= pData->i32AliasMode; /* do transparent proxying */ flags = LibAliasSetMode(pData->proxy_alias, flags, ~0); proxy_addr.s_addr = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_ALIAS); LibAliasSetAddress(pData->proxy_alias, proxy_addr); ftp_alias_load(pData); nbt_alias_load(pData); if (pData->fUseHostResolver) dns_alias_load(pData); } return fNATfailed ? VINF_NAT_DNS : VINF_SUCCESS; } /** * Register statistics. */ void slirp_register_statistics(PNATState pData, PPDMDRVINS pDrvIns) { #ifdef VBOX_WITH_STATISTICS # define PROFILE_COUNTER(name, dsc) REGISTER_COUNTER(name, pData, STAMTYPE_PROFILE, STAMUNIT_TICKS_PER_CALL, dsc) # define COUNTING_COUNTER(name, dsc) REGISTER_COUNTER(name, pData, STAMTYPE_COUNTER, STAMUNIT_COUNT, dsc) # include "counters.h" # undef COUNTER /** @todo register statistics for the variables dumped by: * ipstats(pData); tcpstats(pData); udpstats(pData); icmpstats(pData); * mbufstats(pData); sockstats(pData); */ #endif /* VBOX_WITH_STATISTICS */ } /** * Deregister statistics. */ void slirp_deregister_statistics(PNATState pData, PPDMDRVINS pDrvIns) { if (pData == NULL) return; #ifdef VBOX_WITH_STATISTICS # define PROFILE_COUNTER(name, dsc) DEREGISTER_COUNTER(name, pData) # define COUNTING_COUNTER(name, dsc) DEREGISTER_COUNTER(name, pData) # include "counters.h" #endif /* VBOX_WITH_STATISTICS */ } /** * Marks the link as up, making it possible to establish new connections. */ void slirp_link_up(PNATState pData) { struct arp_cache_entry *ac; link_up = 1; if (LIST_EMPTY(&pData->arp_cache)) return; LIST_FOREACH(ac, &pData->arp_cache, list) { activate_port_forwarding(pData, ac->ether); } } /** * Marks the link as down and cleans up the current connections. */ void slirp_link_down(PNATState pData) { struct socket *so; struct port_forward_rule *rule; while ((so = tcb.so_next) != &tcb) { if (so->so_state & SS_NOFDREF || so->s == -1) sofree(pData, so); else tcp_drop(pData, sototcpcb(so), 0); } while ((so = udb.so_next) != &udb) udp_detach(pData, so); /* * Clear the active state of port-forwarding rules to force * re-setup on restoration of communications. */ LIST_FOREACH(rule, &pData->port_forward_rule_head, list) { rule->activated = 0; } pData->cRedirectionsActive = 0; link_up = 0; } /** * Terminates the slirp component. */ void slirp_term(PNATState pData) { if (pData == NULL) return; #ifdef RT_OS_WINDOWS pData->pfIcmpCloseHandle(pData->icmp_socket.sh); FreeLibrary(pData->hmIcmpLibrary); RTMemFree(pData->pvIcmpBuffer); #else closesocket(pData->icmp_socket.s); #endif slirp_link_down(pData); slirp_release_dns_list(pData); ftp_alias_unload(pData); nbt_alias_unload(pData); if (pData->fUseHostResolver) dns_alias_unload(pData); while (!LIST_EMPTY(&instancehead)) { struct libalias *la = LIST_FIRST(&instancehead); /* libalias do all clean up */ LibAliasUninit(la); } while (!LIST_EMPTY(&pData->arp_cache)) { struct arp_cache_entry *ac = LIST_FIRST(&pData->arp_cache); LIST_REMOVE(ac, list); RTMemFree(ac); } bootp_dhcp_fini(pData); m_fini(pData); #ifdef RT_OS_WINDOWS WSACleanup(); #endif #ifndef VBOX_WITH_SLIRP_BSD_SBUF #ifdef LOG_ENABLED Log(("\n" "NAT statistics\n" "--------------\n" "\n")); ipstats(pData); tcpstats(pData); udpstats(pData); icmpstats(pData); mbufstats(pData); sockstats(pData); Log(("\n" "\n" "\n")); #endif #endif RTMemFree(pData); } #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) /* * curtime kept to an accuracy of 1ms */ static void updtime(PNATState pData) { #ifdef RT_OS_WINDOWS struct _timeb tb; _ftime(&tb); curtime = (u_int)tb.time * (u_int)1000; curtime += (u_int)tb.millitm; #else gettimeofday(&tt, 0); curtime = (u_int)tt.tv_sec * (u_int)1000; curtime += (u_int)tt.tv_usec / (u_int)1000; if ((tt.tv_usec % 1000) >= 500) curtime++; #endif } #ifdef RT_OS_WINDOWS void slirp_select_fill(PNATState pData, int *pnfds) #else /* RT_OS_WINDOWS */ void slirp_select_fill(PNATState pData, int *pnfds, struct pollfd *polls) #endif /* !RT_OS_WINDOWS */ { struct socket *so, *so_next; int nfds; #if defined(RT_OS_WINDOWS) int rc; int error; #else int poll_index = 0; #endif int i; STAM_PROFILE_START(&pData->StatFill, a); nfds = *pnfds; /* * First, TCP sockets */ do_slowtimo = 0; if (!link_up) goto done; /* * *_slowtimo needs calling if there are IP fragments * in the fragment queue, or there are TCP connections active */ /* XXX: * triggering of fragment expiration should be the same but use new macroses */ do_slowtimo = (tcb.so_next != &tcb); if (!do_slowtimo) { for (i = 0; i < IPREASS_NHASH; i++) { if (!TAILQ_EMPTY(&ipq[i])) { do_slowtimo = 1; break; } } } /* always add the ICMP socket */ #ifndef RT_OS_WINDOWS pData->icmp_socket.so_poll_index = -1; #endif ICMP_ENGAGE_EVENT(&pData->icmp_socket, readfds); STAM_COUNTER_RESET(&pData->StatTCP); STAM_COUNTER_RESET(&pData->StatTCPHot); QSOCKET_FOREACH(so, so_next, tcp) /* { */ #if !defined(RT_OS_WINDOWS) so->so_poll_index = -1; #endif STAM_COUNTER_INC(&pData->StatTCP); /* * See if we need a tcp_fasttimo */ if ( time_fasttimo == 0 && so->so_tcpcb != NULL && so->so_tcpcb->t_flags & TF_DELACK) { time_fasttimo = curtime; /* Flag when we want a fasttimo */ } /* * NOFDREF can include still connecting to local-host, * newly socreated() sockets etc. Don't want to select these. */ if (so->so_state & SS_NOFDREF || so->s == -1) CONTINUE(tcp); /* * Set for reading sockets which are accepting */ if (so->so_state & SS_FACCEPTCONN) { STAM_COUNTER_INC(&pData->StatTCPHot); TCP_ENGAGE_EVENT1(so, readfds); CONTINUE(tcp); } /* * Set for writing sockets which are connecting */ if (so->so_state & SS_ISFCONNECTING) { Log2(("connecting %R[natsock] engaged\n",so)); STAM_COUNTER_INC(&pData->StatTCPHot); TCP_ENGAGE_EVENT1(so, writefds); } /* * Set for writing if we are connected, can send more, and * we have something to send */ if (CONN_CANFSEND(so) && SBUF_LEN(&so->so_rcv)) { STAM_COUNTER_INC(&pData->StatTCPHot); TCP_ENGAGE_EVENT1(so, writefds); } /* * Set for reading (and urgent data) if we are connected, can * receive more, and we have room for it XXX /2 ? */ /* @todo: vvl - check which predicat here will be more useful here in rerm of new sbufs. */ if (CONN_CANFRCV(so) && (SBUF_LEN(&so->so_snd) < (SBUF_SIZE(&so->so_snd)/2))) { STAM_COUNTER_INC(&pData->StatTCPHot); TCP_ENGAGE_EVENT2(so, readfds, xfds); } LOOP_LABEL(tcp, so, so_next); } /* * UDP sockets */ STAM_COUNTER_RESET(&pData->StatUDP); STAM_COUNTER_RESET(&pData->StatUDPHot); QSOCKET_FOREACH(so, so_next, udp) /* { */ STAM_COUNTER_INC(&pData->StatUDP); #if !defined(RT_OS_WINDOWS) so->so_poll_index = -1; #endif /* * See if it's timed out */ if (so->so_expire) { if (so->so_expire <= curtime) { Log2(("NAT: %R[natsock] expired\n", so)); if (so->so_timeout != NULL) { so->so_timeout(pData, so, so->so_timeout_arg); } #ifdef VBOX_WITH_SLIRP_MT /* we need so_next for continue our cycle*/ so_next = so->so_next; #endif UDP_DETACH(pData, so, so_next); CONTINUE_NO_UNLOCK(udp); } } /* * When UDP packets are received from over the link, they're * sendto()'d straight away, so no need for setting for writing * Limit the number of packets queued by this session to 4. * Note that even though we try and limit this to 4 packets, * the session could have more queued if the packets needed * to be fragmented. * * (XXX <= 4 ?) */ if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { STAM_COUNTER_INC(&pData->StatUDPHot); UDP_ENGAGE_EVENT(so, readfds); } LOOP_LABEL(udp, so, so_next); } done: #if defined(RT_OS_WINDOWS) *pnfds = VBOX_EVENT_COUNT; #else /* RT_OS_WINDOWS */ AssertRelease(poll_index <= *pnfds); *pnfds = poll_index; #endif /* !RT_OS_WINDOWS */ STAM_PROFILE_STOP(&pData->StatFill, a); } #if defined(RT_OS_WINDOWS) void slirp_select_poll(PNATState pData, int fTimeout, int fIcmp) #else /* RT_OS_WINDOWS */ void slirp_select_poll(PNATState pData, struct pollfd *polls, int ndfs) #endif /* !RT_OS_WINDOWS */ { struct socket *so, *so_next; int ret; #if defined(RT_OS_WINDOWS) WSANETWORKEVENTS NetworkEvents; int rc; int error; #else int poll_index = 0; #endif STAM_PROFILE_START(&pData->StatPoll, a); /* Update time */ updtime(pData); /* * See if anything has timed out */ if (link_up) { if (time_fasttimo && ((curtime - time_fasttimo) >= 2)) { STAM_PROFILE_START(&pData->StatFastTimer, b); tcp_fasttimo(pData); time_fasttimo = 0; STAM_PROFILE_STOP(&pData->StatFastTimer, b); } if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) { STAM_PROFILE_START(&pData->StatSlowTimer, c); ip_slowtimo(pData); tcp_slowtimo(pData); last_slowtimo = curtime; STAM_PROFILE_STOP(&pData->StatSlowTimer, c); } } #if defined(RT_OS_WINDOWS) if (fTimeout) return; /* only timer update */ #endif /* * Check sockets */ if (!link_up) goto done; #if defined(RT_OS_WINDOWS) /*XXX: before renaming please make see define * fIcmp in slirp_state.h */ if (fIcmp) sorecvfrom(pData, &pData->icmp_socket); #else if ( (pData->icmp_socket.s != -1) && CHECK_FD_SET(&pData->icmp_socket, ignored, readfds)) sorecvfrom(pData, &pData->icmp_socket); #endif /* * Check TCP sockets */ QSOCKET_FOREACH(so, so_next, tcp) /* { */ #ifdef VBOX_WITH_SLIRP_MT if ( so->so_state & SS_NOFDREF && so->so_deleted == 1) { struct socket *son, *sop = NULL; QSOCKET_LOCK(tcb); if (so->so_next != NULL) { if (so->so_next != &tcb) SOCKET_LOCK(so->so_next); son = so->so_next; } if ( so->so_prev != &tcb && so->so_prev != NULL) { SOCKET_LOCK(so->so_prev); sop = so->so_prev; } QSOCKET_UNLOCK(tcb); remque(pData, so); NSOCK_DEC(); SOCKET_UNLOCK(so); SOCKET_LOCK_DESTROY(so); RTMemFree(so); so_next = son; if (sop != NULL) SOCKET_UNLOCK(sop); CONTINUE_NO_UNLOCK(tcp); } #endif /* * FD_ISSET is meaningless on these sockets * (and they can crash the program) */ if (so->so_state & SS_NOFDREF || so->s == -1) CONTINUE(tcp); POLL_TCP_EVENTS(rc, error, so, &NetworkEvents); LOG_NAT_SOCK(so, TCP, &NetworkEvents, readfds, writefds, xfds); /* * Check for URG data * This will soread as well, so no need to * test for readfds below if this succeeds */ /* out-of-band data */ if ( CHECK_FD_SET(so, NetworkEvents, xfds) #ifdef RT_OS_DARWIN /* Darwin and probably BSD hosts generates POLLPRI|POLLHUP event on receiving TCP.flags.{ACK|URG|FIN} this * combination on other Unixs hosts doesn't enter to this branch */ && !CHECK_FD_SET(so, NetworkEvents, closefds) #endif ) { sorecvoob(pData, so); } /* * Check sockets for reading */ else if ( CHECK_FD_SET(so, NetworkEvents, readfds) || WIN_CHECK_FD_SET(so, NetworkEvents, acceptds)) { /* * Check for incoming connections */ if (so->so_state & SS_FACCEPTCONN) { TCP_CONNECT(pData, so); if (!CHECK_FD_SET(so, NetworkEvents, closefds)) CONTINUE(tcp); } ret = soread(pData, so); /* Output it if we read something */ if (RT_LIKELY(ret > 0)) TCP_OUTPUT(pData, sototcpcb(so)); } /* * Check for FD_CLOSE events. * in some cases once FD_CLOSE engaged on socket it could be flashed latter (for some reasons) */ if ( CHECK_FD_SET(so, NetworkEvents, closefds) || (so->so_close == 1)) { /* * drain the socket */ for (;;) { ret = soread(pData, so); if (ret > 0) TCP_OUTPUT(pData, sototcpcb(so)); else { Log2(("%R[natsock] errno %d (%s)\n", so, errno, strerror(errno))); break; } } /* mark the socket for termination _after_ it was drained */ so->so_close = 1; /* No idea about Windows but on Posix, POLLHUP means that we can't send more. * Actually in the specific error scenario, POLLERR is set as well. */ #ifndef RT_OS_WINDOWS if (CHECK_FD_SET(so, NetworkEvents, rderr)) sofcantsendmore(so); #endif CONTINUE(tcp); } /* * Check sockets for writing */ if (CHECK_FD_SET(so, NetworkEvents, writefds)) { /* * Check for non-blocking, still-connecting sockets */ if (so->so_state & SS_ISFCONNECTING) { Log2(("connecting %R[natsock] catched\n", so)); /* Connected */ so->so_state &= ~SS_ISFCONNECTING; /* * This should be probably guarded by PROBE_CONN too. Anyway, * we disable it on OS/2 because the below send call returns * EFAULT which causes the opened TCP socket to close right * after it has been opened and connected. */ #ifndef RT_OS_OS2 ret = send(so->s, (const char *)&ret, 0, 0); if (ret < 0) { /* XXXXX Must fix, zero bytes is a NOP */ if ( errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) CONTINUE(tcp); /* else failed */ so->so_state = SS_NOFDREF; } /* else so->so_state &= ~SS_ISFCONNECTING; */ #endif /* * Continue tcp_input */ TCP_INPUT(pData, (struct mbuf *)NULL, sizeof(struct ip), so); /* continue; */ } else SOWRITE(ret, pData, so); /* * XXX If we wrote something (a lot), there could be the need * for a window update. In the worst case, the remote will send * a window probe to get things going again. */ } /* * Probe a still-connecting, non-blocking socket * to check if it's still alive */ #ifdef PROBE_CONN if (so->so_state & SS_ISFCONNECTING) { ret = recv(so->s, (char *)&ret, 0, 0); if (ret < 0) { /* XXX */ if ( errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) { CONTINUE(tcp); /* Still connecting, continue */ } /* else failed */ so->so_state = SS_NOFDREF; /* tcp_input will take care of it */ } else { ret = send(so->s, &ret, 0, 0); if (ret < 0) { /* XXX */ if ( errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) { CONTINUE(tcp); } /* else failed */ so->so_state = SS_NOFDREF; } else so->so_state &= ~SS_ISFCONNECTING; } TCP_INPUT((struct mbuf *)NULL, sizeof(struct ip),so); } /* SS_ISFCONNECTING */ #endif LOOP_LABEL(tcp, so, so_next); } /* * Now UDP sockets. * Incoming packets are sent straight away, they're not buffered. * Incoming UDP data isn't buffered either. */ QSOCKET_FOREACH(so, so_next, udp) /* { */ #ifdef VBOX_WITH_SLIRP_MT if ( so->so_state & SS_NOFDREF && so->so_deleted == 1) { struct socket *son, *sop = NULL; QSOCKET_LOCK(udb); if (so->so_next != NULL) { if (so->so_next != &udb) SOCKET_LOCK(so->so_next); son = so->so_next; } if ( so->so_prev != &udb && so->so_prev != NULL) { SOCKET_LOCK(so->so_prev); sop = so->so_prev; } QSOCKET_UNLOCK(udb); remque(pData, so); NSOCK_DEC(); SOCKET_UNLOCK(so); SOCKET_LOCK_DESTROY(so); RTMemFree(so); so_next = son; if (sop != NULL) SOCKET_UNLOCK(sop); CONTINUE_NO_UNLOCK(udp); } #endif POLL_UDP_EVENTS(rc, error, so, &NetworkEvents); LOG_NAT_SOCK(so, UDP, &NetworkEvents, readfds, writefds, xfds); if (so->s != -1 && CHECK_FD_SET(so, NetworkEvents, readfds)) { SORECVFROM(pData, so); } LOOP_LABEL(udp, so, so_next); } done: STAM_PROFILE_STOP(&pData->StatPoll, a); } struct arphdr { unsigned short ar_hrd; /* format of hardware address */ unsigned short ar_pro; /* format of protocol address */ unsigned char ar_hln; /* length of hardware address */ unsigned char ar_pln; /* length of protocol address */ unsigned short ar_op; /* ARP opcode (command) */ /* * Ethernet looks like this : This bit is variable sized however... */ unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */ unsigned char ar_sip[4]; /* sender IP address */ unsigned char ar_tha[ETH_ALEN]; /* target hardware address */ unsigned char ar_tip[4]; /* target IP address */ }; AssertCompileSize(struct arphdr, 28); /** * @note This function will free m! */ static void arp_input(PNATState pData, struct mbuf *m) { struct ethhdr *eh; struct ethhdr *reh; struct arphdr *ah; struct arphdr *rah; int ar_op; uint32_t htip; uint32_t tip; struct mbuf *mr; eh = mtod(m, struct ethhdr *); ah = (struct arphdr *)&eh[1]; htip = RT_N2H_U32(*(uint32_t*)ah->ar_tip); tip = *(uint32_t*)ah->ar_tip; ar_op = RT_N2H_U16(ah->ar_op); switch (ar_op) { case ARPOP_REQUEST: mr = m_getcl(pData, M_NOWAIT, MT_HEADER, M_PKTHDR); if (!mr) break; reh = mtod(mr, struct ethhdr *); mr->m_data += ETH_HLEN; rah = mtod(mr, struct arphdr *); mr->m_len = sizeof(struct arphdr); memcpy(reh->h_source, eh->h_source, ETH_ALEN); /* XXX: if_encap will swap src and dst*/ if ( 0 #ifdef VBOX_WITH_NAT_SERVICE || (tip == pData->special_addr.s_addr) #endif || ( ((htip & pData->netmask) == RT_N2H_U32(pData->special_addr.s_addr)) && ( CTL_CHECK(htip, CTL_DNS) || CTL_CHECK(htip, CTL_ALIAS) || CTL_CHECK(htip, CTL_TFTP)) ) ) { rah->ar_hrd = RT_H2N_U16_C(1); rah->ar_pro = RT_H2N_U16_C(ETH_P_IP); rah->ar_hln = ETH_ALEN; rah->ar_pln = 4; rah->ar_op = RT_H2N_U16_C(ARPOP_REPLY); memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN); switch (htip & ~pData->netmask) { case CTL_DNS: case CTL_ALIAS: case CTL_TFTP: if (!slirpMbufTagService(pData, mr, (uint8_t)(htip & ~pData->netmask))) { static bool fTagErrorReported; if (!fTagErrorReported) { LogRel(("NAT: couldn't add the tag(PACKET_SERVICE:%d) to mbuf:%p\n", (uint8_t)(htip & ~pData->netmask), m)); fTagErrorReported = true; } } rah->ar_sha[5] = (uint8_t)(htip & ~pData->netmask); break; default:; } memcpy(rah->ar_sip, ah->ar_tip, 4); memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); memcpy(rah->ar_tip, ah->ar_sip, 4); if_encap(pData, ETH_P_ARP, mr, ETH_ENCAP_URG); } else m_freem(pData, mr); /* Gratuitous ARP */ if ( *(uint32_t *)ah->ar_sip == *(uint32_t *)ah->ar_tip && memcmp(ah->ar_tha, broadcast_ethaddr, ETH_ALEN) == 0 && memcmp(eh->h_dest, broadcast_ethaddr, ETH_ALEN) == 0) { /* We've received an announce about address assignment, * let's do an ARP cache update */ static bool fGratuitousArpReported; if (!fGratuitousArpReported) { LogRel(("NAT: Gratuitous ARP [IP:%RTnaipv4, ether:%RTmac]\n", ah->ar_sip, ah->ar_sha)); fGratuitousArpReported = true; } slirp_arp_cache_update_or_add(pData, *(uint32_t *)ah->ar_sip, &ah->ar_sha[0]); } break; case ARPOP_REPLY: slirp_arp_cache_update_or_add(pData, *(uint32_t *)ah->ar_sip, &ah->ar_sha[0]); break; default: break; } m_freem(pData, m); } /** * Feed a packet into the slirp engine. * * @param m Data buffer, m_len is not valid. * @param cbBuf The length of the data in m. */ void slirp_input(PNATState pData, struct mbuf *m, size_t cbBuf) { int proto; static bool fWarnedIpv6; struct ethhdr *eh; uint8_t au8Ether[ETH_ALEN]; m->m_len = cbBuf; if (cbBuf < ETH_HLEN) { Log(("NAT: packet having size %d has been ignored\n", m->m_len)); m_freem(pData, m); return; } eh = mtod(m, struct ethhdr *); proto = RT_N2H_U16(eh->h_proto); memcpy(au8Ether, eh->h_source, ETH_ALEN); switch(proto) { case ETH_P_ARP: arp_input(pData, m); break; case ETH_P_IP: /* Update time. Important if the network is very quiet, as otherwise * the first outgoing connection gets an incorrect timestamp. */ updtime(pData); m_adj(m, ETH_HLEN); M_ASSERTPKTHDR(m); m->m_pkthdr.header = mtod(m, void *); ip_input(pData, m); break; case ETH_P_IPV6: m_freem(pData, m); if (!fWarnedIpv6) { LogRel(("NAT: IPv6 not supported\n")); fWarnedIpv6 = true; } break; default: Log(("NAT: Unsupported protocol %x\n", proto)); m_freem(pData, m); break; } if (pData->cRedirectionsActive != pData->cRedirectionsStored) activate_port_forwarding(pData, au8Ether); } /** * Output the IP packet to the ethernet device. * * @note This function will free m! */ void if_encap(PNATState pData, uint16_t eth_proto, struct mbuf *m, int flags) { struct ethhdr *eh; uint8_t *buf = NULL; uint8_t *mbuf = NULL; size_t mlen = 0; STAM_PROFILE_START(&pData->StatIF_encap, a); M_ASSERTPKTHDR(m); m->m_data -= ETH_HLEN; m->m_len += ETH_HLEN; eh = mtod(m, struct ethhdr *); mlen = m->m_len; if (memcmp(eh->h_source, special_ethaddr, ETH_ALEN) != 0) { struct m_tag *t = m_tag_first(m); uint8_t u8ServiceId = CTL_ALIAS; memcpy(eh->h_dest, eh->h_source, ETH_ALEN); memcpy(eh->h_source, special_ethaddr, ETH_ALEN); Assert(memcmp(eh->h_dest, special_ethaddr, ETH_ALEN) != 0); if (memcmp(eh->h_dest, zerro_ethaddr, ETH_ALEN) == 0) { /* don't do anything */ m_freem(pData, m); goto done; } if ( t && (t = m_tag_find(m, PACKET_SERVICE, NULL))) { Assert(t); u8ServiceId = *(uint8_t *)&t[1]; } eh->h_source[5] = u8ServiceId; } /* * we're processing the chain, that isn't not expected. */ Assert((!m->m_next)); if (m->m_next) { Log(("NAT: if_encap's recived the chain, dropping...\n")); m_freem(pData, m); goto done; } mbuf = mtod(m, uint8_t *); eh->h_proto = RT_H2N_U16(eth_proto); if (flags & ETH_ENCAP_URG) slirp_urg_output(pData->pvUser, m, mbuf, mlen); else slirp_output(pData->pvUser, m, mbuf, mlen); done: STAM_PROFILE_STOP(&pData->StatIF_encap, a); } /** * Still we're using dhcp server leasing to map ether to IP * @todo see rt_lookup_in_cache */ static uint32_t find_guest_ip(PNATState pData, const uint8_t *eth_addr) { uint32_t ip = INADDR_ANY; int rc; if (eth_addr == NULL) return INADDR_ANY; if ( memcmp(eth_addr, zerro_ethaddr, ETH_ALEN) == 0 || memcmp(eth_addr, broadcast_ethaddr, ETH_ALEN) == 0) return INADDR_ANY; rc = slirp_arp_lookup_ip_by_ether(pData, eth_addr, &ip); if (RT_SUCCESS(rc)) return ip; bootp_cache_lookup_ip_by_ether(pData, eth_addr, &ip); /* ignore return code, ip will be set to INADDR_ANY on error */ return ip; } /** * We need check if we've activated port forwarding * for specific machine ... that of course relates to * service mode * @todo finish this for service case */ static void activate_port_forwarding(PNATState pData, const uint8_t *h_source) { struct port_forward_rule *rule, *tmp; /* check mac here */ LIST_FOREACH_SAFE(rule, &pData->port_forward_rule_head, list, tmp) { struct socket *so; struct alias_link *alias_link; struct libalias *lib; int flags; struct sockaddr sa; struct sockaddr_in *psin; socklen_t socketlen; struct in_addr alias; int rc; uint32_t guest_addr; /* need to understand if we already give address to guest */ if (rule->activated) continue; #ifdef VBOX_WITH_NAT_SERVICE if (memcmp(rule->mac_address, h_source, ETH_ALEN) != 0) continue; /*not right mac, @todo: it'd be better do the list port forwarding per mac */ guest_addr = find_guest_ip(pData, h_source); #else #if 0 if (memcmp(client_ethaddr, h_source, ETH_ALEN) != 0) continue; #endif guest_addr = find_guest_ip(pData, h_source); #endif if (guest_addr == INADDR_ANY) { /* the address wasn't granted */ return; } #if !defined(VBOX_WITH_NAT_SERVICE) if ( rule->guest_addr.s_addr != guest_addr && rule->guest_addr.s_addr != INADDR_ANY) continue; if (rule->guest_addr.s_addr == INADDR_ANY) rule->guest_addr.s_addr = guest_addr; #endif LogRel(("NAT: set redirect %s host port %d => guest port %d @ %RTnaipv4\n", rule->proto == IPPROTO_UDP ? "UDP" : "TCP", rule->host_port, rule->guest_port, guest_addr)); if (rule->proto == IPPROTO_UDP) so = udp_listen(pData, rule->bind_ip.s_addr, RT_H2N_U16(rule->host_port), guest_addr, RT_H2N_U16(rule->guest_port), 0); else so = solisten(pData, rule->bind_ip.s_addr, RT_H2N_U16(rule->host_port), guest_addr, RT_H2N_U16(rule->guest_port), 0); if (so == NULL) goto remove_port_forwarding; psin = (struct sockaddr_in *)&sa; psin->sin_family = AF_INET; psin->sin_port = 0; psin->sin_addr.s_addr = INADDR_ANY; socketlen = sizeof(struct sockaddr); rc = getsockname(so->s, &sa, &socketlen); if (rc < 0 || sa.sa_family != AF_INET) goto remove_port_forwarding; psin = (struct sockaddr_in *)&sa; lib = LibAliasInit(pData, NULL); flags = LibAliasSetMode(lib, 0, 0); flags |= pData->i32AliasMode; flags |= PKT_ALIAS_REVERSE; /* set reverse */ flags = LibAliasSetMode(lib, flags, ~0); alias.s_addr = RT_H2N_U32(RT_N2H_U32(guest_addr) | CTL_ALIAS); alias_link = LibAliasRedirectPort(lib, psin->sin_addr, RT_H2N_U16(rule->host_port), alias, RT_H2N_U16(rule->guest_port), pData->special_addr, -1, /* not very clear for now */ rule->proto); if (!alias_link) goto remove_port_forwarding; so->so_la = lib; rule->activated = 1; rule->so = so; pData->cRedirectionsActive++; continue; remove_port_forwarding: LogRel(("NAT: failed to redirect %s %d => %d\n", (rule->proto == IPPROTO_UDP?"UDP":"TCP"), rule->host_port, rule->guest_port)); LIST_REMOVE(rule, list); pData->cRedirectionsStored--; RTMemFree(rule); } } /** * Changes in 3.1 instead of opening new socket do the following: * gain more information: * 1. bind IP * 2. host port * 3. guest port * 4. proto * 5. guest MAC address * the guest's MAC address is rather important for service, but we easily * could get it from VM configuration in DrvNAT or Service, the idea is activating * corresponding port-forwarding */ int slirp_add_redirect(PNATState pData, int is_udp, struct in_addr host_addr, int host_port, struct in_addr guest_addr, int guest_port, const uint8_t *ethaddr) { struct port_forward_rule *rule = NULL; Assert(ethaddr); LIST_FOREACH(rule, &pData->port_forward_rule_head, list) { if ( rule->proto == (is_udp ? IPPROTO_UDP : IPPROTO_TCP) && rule->host_port == host_port && rule->bind_ip.s_addr == host_addr.s_addr && rule->guest_port == guest_port && rule->guest_addr.s_addr == guest_addr.s_addr ) return 0; /* rule has been already registered */ } rule = RTMemAllocZ(sizeof(struct port_forward_rule)); if (rule == NULL) return 1; rule->proto = (is_udp ? IPPROTO_UDP : IPPROTO_TCP); rule->host_port = host_port; rule->guest_port = guest_port; rule->guest_addr.s_addr = guest_addr.s_addr; rule->bind_ip.s_addr = host_addr.s_addr; memcpy(rule->mac_address, ethaddr, ETH_ALEN); /* @todo add mac address */ LIST_INSERT_HEAD(&pData->port_forward_rule_head, rule, list); pData->cRedirectionsStored++; /* activate port-forwarding if guest has already got assigned IP */ if (memcmp(ethaddr, zerro_ethaddr, ETH_ALEN)) activate_port_forwarding(pData, ethaddr); return 0; } int slirp_remove_redirect(PNATState pData, int is_udp, struct in_addr host_addr, int host_port, struct in_addr guest_addr, int guest_port) { struct port_forward_rule *rule = NULL; LIST_FOREACH(rule, &pData->port_forward_rule_head, list) { if ( rule->proto == (is_udp ? IPPROTO_UDP : IPPROTO_TCP) && rule->host_port == host_port && rule->guest_port == guest_port && rule->bind_ip.s_addr == host_addr.s_addr && rule->guest_addr.s_addr == guest_addr.s_addr && rule->activated) { LogRel(("NAT: remove redirect %s host port %d => guest port %d @ %RTnaipv4\n", rule->proto == IPPROTO_UDP ? "UDP" : "TCP", rule->host_port, rule->guest_port, guest_addr)); LibAliasUninit(rule->so->so_la); if (is_udp) udp_detach(pData, rule->so); else tcp_close(pData, sototcpcb(rule->so)); LIST_REMOVE(rule, list); RTMemFree(rule); pData->cRedirectionsStored--; break; } } return 0; } void slirp_set_ethaddr_and_activate_port_forwarding(PNATState pData, const uint8_t *ethaddr, uint32_t GuestIP) { #ifndef VBOX_WITH_NAT_SERVICE memcpy(client_ethaddr, ethaddr, ETH_ALEN); #endif if (GuestIP != INADDR_ANY) { slirp_arp_cache_update_or_add(pData, GuestIP, ethaddr); activate_port_forwarding(pData, ethaddr); } } #if defined(RT_OS_WINDOWS) HANDLE *slirp_get_events(PNATState pData) { return pData->phEvents; } void slirp_register_external_event(PNATState pData, HANDLE hEvent, int index) { pData->phEvents[index] = hEvent; } #endif unsigned int slirp_get_timeout_ms(PNATState pData) { if (link_up) { if (time_fasttimo) return 2; if (do_slowtimo) return 500; /* see PR_SLOWHZ */ } return 3600*1000; /* one hour */ } #ifndef RT_OS_WINDOWS int slirp_get_nsock(PNATState pData) { return pData->nsock; } #endif /* * this function called from NAT thread */ void slirp_post_sent(PNATState pData, void *pvArg) { struct socket *so = 0; struct tcpcb *tp = 0; struct mbuf *m = (struct mbuf *)pvArg; m_freem(pData, m); } #ifdef VBOX_WITH_SLIRP_MT void slirp_process_queue(PNATState pData) { RTReqProcess(pData->pReqQueue, RT_INDEFINITE_WAIT); } void *slirp_get_queue(PNATState pData) { return pData->pReqQueue; } #endif void slirp_set_dhcp_TFTP_prefix(PNATState pData, const char *tftpPrefix) { Log2(("tftp_prefix: %s\n", tftpPrefix)); tftp_prefix = tftpPrefix; } void slirp_set_dhcp_TFTP_bootfile(PNATState pData, const char *bootFile) { Log2(("bootFile: %s\n", bootFile)); bootp_filename = bootFile; } void slirp_set_dhcp_next_server(PNATState pData, const char *next_server) { Log2(("next_server: %s\n", next_server)); if (next_server == NULL) pData->tftp_server.s_addr = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_TFTP); else inet_aton(next_server, &pData->tftp_server); } int slirp_set_binding_address(PNATState pData, char *addr) { if (addr == NULL || (inet_aton(addr, &pData->bindIP) == 0)) { pData->bindIP.s_addr = INADDR_ANY; return 1; } return 0; } void slirp_set_dhcp_dns_proxy(PNATState pData, bool fDNSProxy) { if (!pData->fUseHostResolver) { Log2(("NAT: DNS proxy switched %s\n", (fDNSProxy ? "on" : "off"))); pData->fUseDnsProxy = fDNSProxy; } else LogRel(("NAT: Host Resolver conflicts with DNS proxy, the last one was forcely ignored\n")); } #define CHECK_ARG(name, val, lim_min, lim_max) \ do { \ if ((val) < (lim_min) || (val) > (lim_max)) \ { \ LogRel(("NAT: (" #name ":%d) has been ignored, " \ "because out of range (%d, %d)\n", (val), (lim_min), (lim_max))); \ return; \ } \ else \ LogRel(("NAT: (" #name ":%d)\n", (val))); \ } while (0) /* don't allow user set less 8kB and more than 1M values */ #define _8K_1M_CHECK_ARG(name, val) CHECK_ARG(name, (val), 8, 1024) void slirp_set_rcvbuf(PNATState pData, int kilobytes) { _8K_1M_CHECK_ARG("SOCKET_RCVBUF", kilobytes); pData->socket_rcv = kilobytes; } void slirp_set_sndbuf(PNATState pData, int kilobytes) { _8K_1M_CHECK_ARG("SOCKET_SNDBUF", kilobytes); pData->socket_snd = kilobytes * _1K; } void slirp_set_tcp_rcvspace(PNATState pData, int kilobytes) { _8K_1M_CHECK_ARG("TCP_RCVSPACE", kilobytes); tcp_rcvspace = kilobytes * _1K; } void slirp_set_tcp_sndspace(PNATState pData, int kilobytes) { _8K_1M_CHECK_ARG("TCP_SNDSPACE", kilobytes); tcp_sndspace = kilobytes * _1K; } /* * Looking for Ether by ip in ARP-cache * Note: it´s responsible of caller to allocate buffer for result * @returns iprt status code */ int slirp_arp_lookup_ether_by_ip(PNATState pData, uint32_t ip, uint8_t *ether) { struct arp_cache_entry *ac; if (ether == NULL) return VERR_INVALID_PARAMETER; if (LIST_EMPTY(&pData->arp_cache)) return VERR_NOT_FOUND; LIST_FOREACH(ac, &pData->arp_cache, list) { if ( ac->ip == ip && memcmp(ac->ether, broadcast_ethaddr, ETH_ALEN) != 0) { memcpy(ether, ac->ether, ETH_ALEN); return VINF_SUCCESS; } } return VERR_NOT_FOUND; } /* * Looking for IP by Ether in ARP-cache * Note: it´s responsible of caller to allocate buffer for result * @returns 0 - if found, 1 - otherwise */ int slirp_arp_lookup_ip_by_ether(PNATState pData, const uint8_t *ether, uint32_t *ip) { struct arp_cache_entry *ac; *ip = INADDR_ANY; if (LIST_EMPTY(&pData->arp_cache)) return VERR_NOT_FOUND; LIST_FOREACH(ac, &pData->arp_cache, list) { if (memcmp(ether, ac->ether, ETH_ALEN) == 0) { *ip = ac->ip; return VINF_SUCCESS; } } return VERR_NOT_FOUND; } void slirp_arp_who_has(PNATState pData, uint32_t dst) { struct mbuf *m; struct ethhdr *ehdr; struct arphdr *ahdr; m = m_getcl(pData, M_NOWAIT, MT_HEADER, M_PKTHDR); if (m == NULL) { Log(("NAT: Can't alloc mbuf for ARP request\n")); return; } ehdr = mtod(m, struct ethhdr *); memset(ehdr->h_source, 0xff, ETH_ALEN); ahdr = (struct arphdr *)&ehdr[1]; ahdr->ar_hrd = RT_H2N_U16_C(1); ahdr->ar_pro = RT_H2N_U16_C(ETH_P_IP); ahdr->ar_hln = ETH_ALEN; ahdr->ar_pln = 4; ahdr->ar_op = RT_H2N_U16_C(ARPOP_REQUEST); memcpy(ahdr->ar_sha, special_ethaddr, ETH_ALEN); /* we assume that this request come from gw, but not from DNS or TFTP */ ahdr->ar_sha[5] = CTL_ALIAS; *(uint32_t *)ahdr->ar_sip = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_ALIAS); memset(ahdr->ar_tha, 0xff, ETH_ALEN); /*broadcast*/ *(uint32_t *)ahdr->ar_tip = dst; /* warn!!! should falls in mbuf minimal size */ m->m_len = sizeof(struct arphdr) + ETH_HLEN; m->m_data += ETH_HLEN; m->m_len -= ETH_HLEN; if_encap(pData, ETH_P_ARP, m, ETH_ENCAP_URG); } /* updates the arp cache * @note: this is helper function, slirp_arp_cache_update_or_add should be used. * @returns 0 - if has found and updated * 1 - if hasn't found. */ static inline int slirp_arp_cache_update(PNATState pData, uint32_t dst, const uint8_t *mac) { struct arp_cache_entry *ac; Assert(( memcmp(mac, broadcast_ethaddr, ETH_ALEN) && memcmp(mac, zerro_ethaddr, ETH_ALEN))); LIST_FOREACH(ac, &pData->arp_cache, list) { if (!memcmp(ac->ether, mac, ETH_ALEN)) { ac->ip = dst; return 0; } } return 1; } /** * add entry to the arp cache * @note: this is helper function, slirp_arp_cache_update_or_add should be used. */ static inline void slirp_arp_cache_add(PNATState pData, uint32_t ip, const uint8_t *ether) { struct arp_cache_entry *ac = NULL; Assert(( memcmp(ether, broadcast_ethaddr, ETH_ALEN) && memcmp(ether, zerro_ethaddr, ETH_ALEN))); ac = RTMemAllocZ(sizeof(struct arp_cache_entry)); if (ac == NULL) { Log(("NAT: Can't allocate arp cache entry\n")); return; } ac->ip = ip; memcpy(ac->ether, ether, ETH_ALEN); LIST_INSERT_HEAD(&pData->arp_cache, ac, list); } /* updates or adds entry to the arp cache * @returns 0 - if has found and updated * 1 - if hasn't found. */ int slirp_arp_cache_update_or_add(PNATState pData, uint32_t dst, const uint8_t *mac) { if ( !memcmp(mac, broadcast_ethaddr, ETH_ALEN) || !memcmp(mac, zerro_ethaddr, ETH_ALEN)) { static bool fBroadcastEtherAddReported; if (!fBroadcastEtherAddReported) { LogRel(("NAT: Attempt to add pair [%RTmac:%RTnaipv4] in ARP cache was ignored\n", mac, dst)); fBroadcastEtherAddReported = true; } return 1; } if (slirp_arp_cache_update(pData, dst, mac)) slirp_arp_cache_add(pData, dst, mac); return 0; } void slirp_set_mtu(PNATState pData, int mtu) { if (mtu < 20 || mtu >= 16000) { LogRel(("NAT: mtu(%d) is out of range (20;16000] mtu forcely assigned to 1500\n", mtu)); mtu = 1500; } /* MTU is maximum transition unit on */ if_mtu = if_mru = mtu; } /** * Info handler. */ void slirp_info(PNATState pData, PCDBGFINFOHLP pHlp, const char *pszArgs) { struct socket *so, *so_next; struct arp_cache_entry *ac; struct port_forward_rule *rule; pHlp->pfnPrintf(pHlp, "NAT parameters: MTU=%d\n", if_mtu); pHlp->pfnPrintf(pHlp, "NAT TCP ports:\n"); QSOCKET_FOREACH(so, so_next, tcp) /* { */ pHlp->pfnPrintf(pHlp, " %R[natsock]\n", so); } pHlp->pfnPrintf(pHlp, "NAT UDP ports:\n"); QSOCKET_FOREACH(so, so_next, udp) /* { */ pHlp->pfnPrintf(pHlp, " %R[natsock]\n", so); } pHlp->pfnPrintf(pHlp, "NAT ARP cache:\n"); LIST_FOREACH(ac, &pData->arp_cache, list) { pHlp->pfnPrintf(pHlp, " %RTnaipv4 %RTmac\n", ac->ip, &ac->ether); } pHlp->pfnPrintf(pHlp, "NAT rules:\n"); LIST_FOREACH(rule, &pData->port_forward_rule_head, list) { pHlp->pfnPrintf(pHlp, " %s %d => %RTnaipv4:%d %c\n", rule->proto == IPPROTO_UDP ? "UDP" : "TCP", rule->host_port, rule->guest_addr.s_addr, rule->guest_port, rule->activated ? ' ' : '*'); } }