VirtualBox

source: vbox/trunk/src/VBox/Devices/Network/slirp/slirp.c@ 55268

Last change on this file since 55268 was 54827, checked in by vboxsync, 10 years ago

NAT: G/c ancient abandoned VBOX_WITH_SLIRP_BSD_SBUF experiment.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 67.2 KB
Line 
1/* $Id: slirp.c 54827 2015-03-18 04:59:50Z vboxsync $ */
2/** @file
3 * NAT - slirp glue.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*
19 * This code is based on:
20 *
21 * libslirp glue
22 *
23 * Copyright (c) 2004-2008 Fabrice Bellard
24 *
25 * Permission is hereby granted, free of charge, to any person obtaining a copy
26 * of this software and associated documentation files (the "Software"), to deal
27 * in the Software without restriction, including without limitation the rights
28 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
29 * copies of the Software, and to permit persons to whom the Software is
30 * furnished to do so, subject to the following conditions:
31 *
32 * The above copyright notice and this permission notice shall be included in
33 * all copies or substantial portions of the Software.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
36 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
37 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
38 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
39 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
40 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
41 * THE SOFTWARE.
42 */
43
44#include "slirp.h"
45#ifdef RT_OS_OS2
46# include <paths.h>
47#endif
48
49#include <VBox/err.h>
50#include <VBox/vmm/dbgf.h>
51#include <VBox/vmm/pdmdrv.h>
52#include <iprt/assert.h>
53#include <iprt/file.h>
54#ifndef RT_OS_WINDOWS
55# include <sys/ioctl.h>
56# include <poll.h>
57# include <netinet/in.h>
58#else
59# include <Winnls.h>
60# define _WINSOCK2API_
61# include <IPHlpApi.h>
62#endif
63#include <alias.h>
64
65#ifndef RT_OS_WINDOWS
66/**
67 * XXX: It shouldn't be non-Windows specific.
68 * resolv_conf_parser.h client's structure isn't OS specific, it's just need to be generalized a
69 * a bit to replace slirp_state.h DNS server (domain) lists with rcp_state like structure.
70 */
71# include "resolv_conf_parser.h"
72#endif
73
74#ifndef RT_OS_WINDOWS
75# define DO_ENGAGE_EVENT1(so, fdset, label) \
76 do { \
77 if ( so->so_poll_index != -1 \
78 && so->s == polls[so->so_poll_index].fd) \
79 { \
80 polls[so->so_poll_index].events |= N_(fdset ## _poll); \
81 break; \
82 } \
83 AssertRelease(poll_index < (nfds)); \
84 AssertRelease(poll_index >= 0 && poll_index < (nfds)); \
85 polls[poll_index].fd = (so)->s; \
86 (so)->so_poll_index = poll_index; \
87 polls[poll_index].events = N_(fdset ## _poll); \
88 polls[poll_index].revents = 0; \
89 poll_index++; \
90 } while (0)
91
92# define DO_ENGAGE_EVENT2(so, fdset1, fdset2, label) \
93 do { \
94 if ( so->so_poll_index != -1 \
95 && so->s == polls[so->so_poll_index].fd) \
96 { \
97 polls[so->so_poll_index].events |= \
98 N_(fdset1 ## _poll) | N_(fdset2 ## _poll); \
99 break; \
100 } \
101 AssertRelease(poll_index < (nfds)); \
102 polls[poll_index].fd = (so)->s; \
103 (so)->so_poll_index = poll_index; \
104 polls[poll_index].events = \
105 N_(fdset1 ## _poll) | N_(fdset2 ## _poll); \
106 poll_index++; \
107 } while (0)
108
109# define DO_POLL_EVENTS(rc, error, so, events, label) do {} while (0)
110
111/*
112 * DO_CHECK_FD_SET is used in dumping events on socket, including POLLNVAL.
113 * gcc warns about attempts to log POLLNVAL so construction in a last to lines
114 * used to catch POLLNVAL while logging and return false in case of error while
115 * normal usage.
116 */
117# define DO_CHECK_FD_SET(so, events, fdset) \
118 ( ((so)->so_poll_index != -1) \
119 && ((so)->so_poll_index <= ndfs) \
120 && ((so)->s == polls[so->so_poll_index].fd) \
121 && (polls[(so)->so_poll_index].revents & N_(fdset ## _poll)) \
122 && ( N_(fdset ## _poll) == POLLNVAL \
123 || !(polls[(so)->so_poll_index].revents & POLLNVAL)))
124
125 /* specific for Windows Winsock API */
126# define DO_WIN_CHECK_FD_SET(so, events, fdset) 0
127
128# ifndef RT_OS_LINUX
129# define readfds_poll (POLLRDNORM)
130# define writefds_poll (POLLWRNORM)
131# else
132# define readfds_poll (POLLIN)
133# define writefds_poll (POLLOUT)
134# endif
135# define xfds_poll (POLLPRI)
136# define closefds_poll (POLLHUP)
137# define rderr_poll (POLLERR)
138# if 0 /* unused yet */
139# define rdhup_poll (POLLHUP)
140# define nval_poll (POLLNVAL)
141# endif
142
143# define ICMP_ENGAGE_EVENT(so, fdset) \
144 do { \
145 if (pData->icmp_socket.s != -1) \
146 DO_ENGAGE_EVENT1((so), fdset, ICMP); \
147 } while (0)
148
149#else /* RT_OS_WINDOWS */
150
151/*
152 * On Windows, we will be notified by IcmpSendEcho2() when the response arrives.
153 * So no call to WSAEventSelect necessary.
154 */
155# define ICMP_ENGAGE_EVENT(so, fdset) do {} while (0)
156
157/*
158 * On Windows we use FD_ALL_EVENTS to ensure that we don't miss any event.
159 */
160# define DO_ENGAGE_EVENT1(so, fdset1, label) \
161 do { \
162 rc = WSAEventSelect((so)->s, VBOX_SOCKET_EVENT, FD_ALL_EVENTS); \
163 if (rc == SOCKET_ERROR) \
164 { \
165 /* This should not happen */ \
166 error = WSAGetLastError(); \
167 LogRel(("WSAEventSelect (" #label ") error %d (so=%x, socket=%s, event=%x)\n", \
168 error, (so), (so)->s, VBOX_SOCKET_EVENT)); \
169 } \
170 } while (0); \
171 CONTINUE(label)
172
173# define DO_ENGAGE_EVENT2(so, fdset1, fdset2, label) \
174 DO_ENGAGE_EVENT1((so), (fdset1), label)
175
176# define DO_POLL_EVENTS(rc, error, so, events, label) \
177 (rc) = WSAEnumNetworkEvents((so)->s, VBOX_SOCKET_EVENT, (events)); \
178 if ((rc) == SOCKET_ERROR) \
179 { \
180 (error) = WSAGetLastError(); \
181 LogRel(("WSAEnumNetworkEvents %R[natsock] " #label " error %d\n", (so), (error))); \
182 LogFunc(("WSAEnumNetworkEvents %R[natsock] " #label " error %d\n", (so), (error))); \
183 CONTINUE(label); \
184 }
185
186# define acceptds_win FD_ACCEPT
187# define acceptds_win_bit FD_ACCEPT_BIT
188# define readfds_win FD_READ
189# define readfds_win_bit FD_READ_BIT
190# define writefds_win FD_WRITE
191# define writefds_win_bit FD_WRITE_BIT
192# define xfds_win FD_OOB
193# define xfds_win_bit FD_OOB_BIT
194# define closefds_win FD_CLOSE
195# define closefds_win_bit FD_CLOSE_BIT
196# define connectfds_win FD_CONNECT
197# define connectfds_win_bit FD_CONNECT_BIT
198
199# define closefds_win FD_CLOSE
200# define closefds_win_bit FD_CLOSE_BIT
201
202# define DO_CHECK_FD_SET(so, events, fdset) \
203 ((events).lNetworkEvents & fdset ## _win)
204
205# define DO_WIN_CHECK_FD_SET(so, events, fdset) DO_CHECK_FD_SET((so), (events), fdset)
206# define DO_UNIX_CHECK_FD_SET(so, events, fdset) 1 /*specific for Unix API */
207
208#endif /* RT_OS_WINDOWS */
209
210#define TCP_ENGAGE_EVENT1(so, fdset) \
211 DO_ENGAGE_EVENT1((so), fdset, tcp)
212
213#define TCP_ENGAGE_EVENT2(so, fdset1, fdset2) \
214 DO_ENGAGE_EVENT2((so), fdset1, fdset2, tcp)
215
216#ifdef RT_OS_WINDOWS
217# define WIN_TCP_ENGAGE_EVENT2(so, fdset, fdset2) TCP_ENGAGE_EVENT2(so, fdset1, fdset2)
218#endif
219
220#define UDP_ENGAGE_EVENT(so, fdset) \
221 DO_ENGAGE_EVENT1((so), fdset, udp)
222
223#define POLL_TCP_EVENTS(rc, error, so, events) \
224 DO_POLL_EVENTS((rc), (error), (so), (events), tcp)
225
226#define POLL_UDP_EVENTS(rc, error, so, events) \
227 DO_POLL_EVENTS((rc), (error), (so), (events), udp)
228
229#define CHECK_FD_SET(so, events, set) \
230 (DO_CHECK_FD_SET((so), (events), set))
231
232#define WIN_CHECK_FD_SET(so, events, set) \
233 (DO_WIN_CHECK_FD_SET((so), (events), set))
234
235/*
236 * Loging macros
237 */
238#if VBOX_WITH_DEBUG_NAT_SOCKETS
239# if defined(RT_OS_WINDOWS)
240# define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \
241 do { \
242 LogRel((" " #proto " %R[natsock] %R[natwinnetevents]\n", (so), (winevent))); \
243 } while (0)
244# else /* !RT_OS_WINDOWS */
245# define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \
246 do { \
247 LogRel((" " #proto " %R[natsock] %s %s %s er: %s, %s, %s\n", (so), \
248 CHECK_FD_SET(so, ign ,r_fdset) ? "READ":"", \
249 CHECK_FD_SET(so, ign, w_fdset) ? "WRITE":"", \
250 CHECK_FD_SET(so, ign, x_fdset) ? "OOB":"", \
251 CHECK_FD_SET(so, ign, rderr) ? "RDERR":"", \
252 CHECK_FD_SET(so, ign, rdhup) ? "RDHUP":"", \
253 CHECK_FD_SET(so, ign, nval) ? "RDNVAL":"")); \
254 } while (0)
255# endif /* !RT_OS_WINDOWS */
256#else /* !VBOX_WITH_DEBUG_NAT_SOCKETS */
257# define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) do {} while (0)
258#endif /* !VBOX_WITH_DEBUG_NAT_SOCKETS */
259
260#define LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \
261 DO_LOG_NAT_SOCK((so), proto, (winevent), r_fdset, w_fdset, x_fdset)
262
263static void activate_port_forwarding(PNATState, const uint8_t *pEther);
264
265static const uint8_t special_ethaddr[6] =
266{
267 0x52, 0x54, 0x00, 0x12, 0x35, 0x00
268};
269
270static const uint8_t broadcast_ethaddr[6] =
271{
272 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
273};
274
275const uint8_t zerro_ethaddr[6] =
276{
277 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
278};
279
280/**
281 * This helper routine do the checks in descriptions to
282 * ''fUnderPolling'' and ''fShouldBeRemoved'' flags
283 * @returns 1 if socket removed and 0 if no changes was made.
284 */
285static int slirpVerifyAndFreeSocket(PNATState pData, struct socket *pSocket)
286{
287 AssertPtrReturn(pData, 0);
288 AssertPtrReturn(pSocket, 0);
289 AssertReturn(pSocket->fUnderPolling, 0);
290 if (pSocket->fShouldBeRemoved)
291 {
292 pSocket->fUnderPolling = 0;
293 sofree(pData, pSocket);
294 /* pSocket is PHANTOM, now */
295 return 1;
296 }
297 return 0;
298}
299
300int slirp_init(PNATState *ppData, uint32_t u32NetAddr, uint32_t u32Netmask,
301 bool fPassDomain, bool fUseHostResolver, int i32AliasMode,
302 int iIcmpCacheLimit, void *pvUser)
303{
304 int rc;
305 PNATState pData;
306 if (u32Netmask & 0x1f)
307 /* CTL is x.x.x.15, bootp passes up to 16 IPs (15..31) */
308 return VERR_INVALID_PARAMETER;
309 pData = RTMemAllocZ(RT_ALIGN_Z(sizeof(NATState), sizeof(uint64_t)));
310 *ppData = pData;
311 if (!pData)
312 return VERR_NO_MEMORY;
313 pData->fPassDomain = !fUseHostResolver ? fPassDomain : false;
314 pData->fUseHostResolver = fUseHostResolver;
315 pData->fUseHostResolverPermanent = fUseHostResolver;
316 pData->pvUser = pvUser;
317 pData->netmask = u32Netmask;
318
319 rc = RTCritSectRwInit(&pData->CsRwHandlerChain);
320 if (RT_FAILURE(rc))
321 return rc;
322
323 /* sockets & TCP defaults */
324 pData->socket_rcv = 64 * _1K;
325 pData->socket_snd = 64 * _1K;
326 tcp_sndspace = 64 * _1K;
327 tcp_rcvspace = 64 * _1K;
328
329 /*
330 * Use the same default here as in DevNAT.cpp (SoMaxConnection CFGM value)
331 * to avoid release log noise.
332 */
333 pData->soMaxConn = 10;
334
335#ifdef RT_OS_WINDOWS
336 {
337 WSADATA Data;
338 RTLDRMOD hLdrMod;
339
340 WSAStartup(MAKEWORD(2, 0), &Data);
341
342 rc = RTLdrLoadSystem("Iphlpapi.dll", /* :fNoUnload */ true, &hLdrMod);
343 if (RT_SUCCESS(rc))
344 {
345 rc = RTLdrGetSymbol(hLdrMod, "GetAdaptersAddresses", (void **)&pData->pfGetAdaptersAddresses);
346 if (RT_FAILURE(rc))
347 LogRel(("NAT: Can't find GetAdapterAddresses in Iphlpapi.dll\n"));
348
349 RTLdrClose(hLdrMod);
350 }
351 }
352 pData->phEvents[VBOX_SOCKET_EVENT_INDEX] = CreateEvent(NULL, FALSE, FALSE, NULL);
353#endif
354
355 rc = bootp_dhcp_init(pData);
356 if (RT_FAILURE(rc))
357 {
358 Log(("NAT: DHCP server initialization failed\n"));
359 RTMemFree(pData);
360 *ppData = NULL;
361 return rc;
362 }
363 debug_init(pData);
364 if_init(pData);
365 ip_init(pData);
366 icmp_init(pData, iIcmpCacheLimit);
367
368 /* Initialise mbufs *after* setting the MTU */
369 mbuf_init(pData);
370
371 pData->special_addr.s_addr = u32NetAddr;
372 pData->slirp_ethaddr = &special_ethaddr[0];
373 alias_addr.s_addr = pData->special_addr.s_addr | RT_H2N_U32_C(CTL_ALIAS);
374 /* @todo: add ability to configure this staff */
375
376 /* set default addresses */
377 inet_aton("127.0.0.1", &loopback_addr);
378
379 rc = slirpTftpInit(pData);
380 AssertRCReturn(rc, VINF_NAT_DNS);
381
382 if (i32AliasMode & ~(PKT_ALIAS_LOG|PKT_ALIAS_SAME_PORTS|PKT_ALIAS_PROXY_ONLY))
383 {
384 Log(("NAT: alias mode %x is ignored\n", i32AliasMode));
385 i32AliasMode = 0;
386 }
387 pData->i32AliasMode = i32AliasMode;
388 getouraddr(pData);
389 {
390 int flags = 0;
391 struct in_addr proxy_addr;
392 pData->proxy_alias = LibAliasInit(pData, NULL);
393 if (pData->proxy_alias == NULL)
394 {
395 Log(("NAT: LibAlias default rule wasn't initialized\n"));
396 AssertMsgFailed(("NAT: LibAlias default rule wasn't initialized\n"));
397 }
398 flags = LibAliasSetMode(pData->proxy_alias, 0, 0);
399#ifndef NO_FW_PUNCH
400 flags |= PKT_ALIAS_PUNCH_FW;
401#endif
402 flags |= pData->i32AliasMode; /* do transparent proxying */
403 flags = LibAliasSetMode(pData->proxy_alias, flags, ~0);
404 proxy_addr.s_addr = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_ALIAS);
405 LibAliasSetAddress(pData->proxy_alias, proxy_addr);
406 ftp_alias_load(pData);
407 nbt_alias_load(pData);
408 if (pData->fUseHostResolver)
409 dns_alias_load(pData);
410 }
411#ifdef VBOX_WITH_NAT_SEND2HOME
412 /* @todo: we should know all interfaces available on host. */
413 pData->pInSockAddrHomeAddress = RTMemAllocZ(sizeof(struct sockaddr));
414 pData->cInHomeAddressSize = 1;
415 inet_aton("192.168.1.25", &pData->pInSockAddrHomeAddress[0].sin_addr);
416 pData->pInSockAddrHomeAddress[0].sin_family = AF_INET;
417# ifdef RT_OS_DARWIN
418 pData->pInSockAddrHomeAddress[0].sin_len = sizeof(struct sockaddr_in);
419# endif
420#endif
421
422 slirp_link_up(pData);
423 return VINF_SUCCESS;
424}
425
426/**
427 * Register statistics.
428 */
429void slirp_register_statistics(PNATState pData, PPDMDRVINS pDrvIns)
430{
431#ifdef VBOX_WITH_STATISTICS
432# define PROFILE_COUNTER(name, dsc) REGISTER_COUNTER(name, pData, STAMTYPE_PROFILE, STAMUNIT_TICKS_PER_CALL, dsc)
433# define COUNTING_COUNTER(name, dsc) REGISTER_COUNTER(name, pData, STAMTYPE_COUNTER, STAMUNIT_COUNT, dsc)
434# include "counters.h"
435# undef COUNTER
436/** @todo register statistics for the variables dumped by:
437 * ipstats(pData); tcpstats(pData); udpstats(pData); icmpstats(pData);
438 * mbufstats(pData); sockstats(pData); */
439#else /* VBOX_WITH_STATISTICS */
440 NOREF(pData);
441 NOREF(pDrvIns);
442#endif /* !VBOX_WITH_STATISTICS */
443}
444
445/**
446 * Deregister statistics.
447 */
448void slirp_deregister_statistics(PNATState pData, PPDMDRVINS pDrvIns)
449{
450 if (pData == NULL)
451 return;
452#ifdef VBOX_WITH_STATISTICS
453# define PROFILE_COUNTER(name, dsc) DEREGISTER_COUNTER(name, pData)
454# define COUNTING_COUNTER(name, dsc) DEREGISTER_COUNTER(name, pData)
455# include "counters.h"
456#else /* VBOX_WITH_STATISTICS */
457 NOREF(pData);
458 NOREF(pDrvIns);
459#endif /* !VBOX_WITH_STATISTICS */
460}
461
462/**
463 * Marks the link as up, making it possible to establish new connections.
464 */
465void slirp_link_up(PNATState pData)
466{
467 struct arp_cache_entry *ac;
468
469 if (link_up == 1)
470 return;
471
472 link_up = 1;
473
474 if (!pData->fUseHostResolverPermanent)
475 slirpInitializeDnsSettings(pData);
476
477 if (LIST_EMPTY(&pData->arp_cache))
478 return;
479
480 LIST_FOREACH(ac, &pData->arp_cache, list)
481 {
482 activate_port_forwarding(pData, ac->ether);
483 }
484}
485
486/**
487 * Marks the link as down and cleans up the current connections.
488 */
489void slirp_link_down(PNATState pData)
490{
491 struct socket *so;
492 struct port_forward_rule *rule;
493
494 if (link_up == 0)
495 return;
496
497 slirpReleaseDnsSettings(pData);
498
499 while ((so = tcb.so_next) != &tcb)
500 {
501 /* Don't miss TCB releasing */
502 if ( !sototcpcb(so)
503 && ( so->so_state & SS_NOFDREF
504 || so->s == -1))
505 sofree(pData, so);
506 else
507 tcp_close(pData, sototcpcb(so));
508 }
509
510 while ((so = udb.so_next) != &udb)
511 udp_detach(pData, so);
512
513 /*
514 * Clear the active state of port-forwarding rules to force
515 * re-setup on restoration of communications.
516 */
517 LIST_FOREACH(rule, &pData->port_forward_rule_head, list)
518 {
519 rule->activated = 0;
520 }
521 pData->cRedirectionsActive = 0;
522
523 link_up = 0;
524}
525
526/**
527 * Terminates the slirp component.
528 */
529void slirp_term(PNATState pData)
530{
531 if (pData == NULL)
532 return;
533 icmp_finit(pData);
534
535 slirp_link_down(pData);
536 ftp_alias_unload(pData);
537 nbt_alias_unload(pData);
538 if (pData->fUseHostResolver)
539 {
540 dns_alias_unload(pData);
541#ifdef VBOX_WITH_DNSMAPPING_IN_HOSTRESOLVER
542 while (!LIST_EMPTY(&pData->DNSMapHead))
543 {
544 PDNSMAPPINGENTRY pDnsEntry = LIST_FIRST(&pData->DNSMapHead);
545 LIST_REMOVE(pDnsEntry, MapList);
546 RTStrFree(pDnsEntry->pszCName);
547 RTMemFree(pDnsEntry);
548 }
549#endif
550 }
551 while (!LIST_EMPTY(&instancehead))
552 {
553 struct libalias *la = LIST_FIRST(&instancehead);
554 /* libalias do all clean up */
555 LibAliasUninit(la);
556 }
557 while (!LIST_EMPTY(&pData->arp_cache))
558 {
559 struct arp_cache_entry *ac = LIST_FIRST(&pData->arp_cache);
560 LIST_REMOVE(ac, list);
561 RTMemFree(ac);
562 }
563 slirpTftpTerm(pData);
564 bootp_dhcp_fini(pData);
565 m_fini(pData);
566#ifdef RT_OS_WINDOWS
567 WSACleanup();
568#endif
569#ifdef LOG_ENABLED
570 Log(("\n"
571 "NAT statistics\n"
572 "--------------\n"
573 "\n"));
574 ipstats(pData);
575 tcpstats(pData);
576 udpstats(pData);
577 icmpstats(pData);
578 mbufstats(pData);
579 sockstats(pData);
580 Log(("\n"
581 "\n"
582 "\n"));
583#endif
584 RTCritSectRwDelete(&pData->CsRwHandlerChain);
585 RTMemFree(pData);
586}
587
588
589#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
590#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
591
592/*
593 * curtime kept to an accuracy of 1ms
594 */
595static void updtime(PNATState pData)
596{
597#ifdef RT_OS_WINDOWS
598 struct _timeb tb;
599
600 _ftime(&tb);
601 curtime = (u_int)tb.time * (u_int)1000;
602 curtime += (u_int)tb.millitm;
603#else
604 gettimeofday(&tt, 0);
605
606 curtime = (u_int)tt.tv_sec * (u_int)1000;
607 curtime += (u_int)tt.tv_usec / (u_int)1000;
608
609 if ((tt.tv_usec % 1000) >= 500)
610 curtime++;
611#endif
612}
613
614#ifdef RT_OS_WINDOWS
615void slirp_select_fill(PNATState pData, int *pnfds)
616#else /* RT_OS_WINDOWS */
617void slirp_select_fill(PNATState pData, int *pnfds, struct pollfd *polls)
618#endif /* !RT_OS_WINDOWS */
619{
620 struct socket *so, *so_next;
621 int nfds;
622#if defined(RT_OS_WINDOWS)
623 int rc;
624 int error;
625#else
626 int poll_index = 0;
627#endif
628 int i;
629
630 STAM_PROFILE_START(&pData->StatFill, a);
631
632 nfds = *pnfds;
633
634 /*
635 * First, TCP sockets
636 */
637 do_slowtimo = 0;
638 if (!link_up)
639 goto done;
640
641 /*
642 * *_slowtimo needs calling if there are IP fragments
643 * in the fragment queue, or there are TCP connections active
644 */
645 /* XXX:
646 * triggering of fragment expiration should be the same but use new macroses
647 */
648 do_slowtimo = (tcb.so_next != &tcb);
649 if (!do_slowtimo)
650 {
651 for (i = 0; i < IPREASS_NHASH; i++)
652 {
653 if (!TAILQ_EMPTY(&ipq[i]))
654 {
655 do_slowtimo = 1;
656 break;
657 }
658 }
659 }
660 /* always add the ICMP socket */
661#ifndef RT_OS_WINDOWS
662 pData->icmp_socket.so_poll_index = -1;
663#endif
664 ICMP_ENGAGE_EVENT(&pData->icmp_socket, readfds);
665
666 STAM_COUNTER_RESET(&pData->StatTCP);
667 STAM_COUNTER_RESET(&pData->StatTCPHot);
668
669 QSOCKET_FOREACH(so, so_next, tcp)
670 /* { */
671 Assert(so->so_type == IPPROTO_TCP);
672#if !defined(RT_OS_WINDOWS)
673 so->so_poll_index = -1;
674#endif
675 STAM_COUNTER_INC(&pData->StatTCP);
676#ifdef VBOX_WITH_NAT_UDP_SOCKET_CLONE
677 /* TCP socket can't be cloned */
678 Assert((!so->so_cloneOf));
679#endif
680 /*
681 * See if we need a tcp_fasttimo
682 */
683 if ( time_fasttimo == 0
684 && so->so_tcpcb != NULL
685 && so->so_tcpcb->t_flags & TF_DELACK)
686 {
687 time_fasttimo = curtime; /* Flag when we want a fasttimo */
688 }
689
690 /*
691 * NOFDREF can include still connecting to local-host,
692 * newly socreated() sockets etc. Don't want to select these.
693 */
694 if (so->so_state & SS_NOFDREF || so->s == -1)
695 CONTINUE(tcp);
696
697 /*
698 * Set for reading sockets which are accepting
699 */
700 if (so->so_state & SS_FACCEPTCONN)
701 {
702 STAM_COUNTER_INC(&pData->StatTCPHot);
703 TCP_ENGAGE_EVENT1(so, readfds);
704 CONTINUE(tcp);
705 }
706
707 /*
708 * Set for writing sockets which are connecting
709 */
710 if (so->so_state & SS_ISFCONNECTING)
711 {
712 Log2(("connecting %R[natsock] engaged\n",so));
713 STAM_COUNTER_INC(&pData->StatTCPHot);
714#ifdef RT_OS_WINDOWS
715 WIN_TCP_ENGAGE_EVENT2(so, writefds, connectfds);
716#else
717 TCP_ENGAGE_EVENT1(so, writefds);
718#endif
719 }
720
721 /*
722 * Set for writing if we are connected, can send more, and
723 * we have something to send
724 */
725 if (CONN_CANFSEND(so) && SBUF_LEN(&so->so_rcv))
726 {
727 STAM_COUNTER_INC(&pData->StatTCPHot);
728 TCP_ENGAGE_EVENT1(so, writefds);
729 }
730
731 /*
732 * Set for reading (and urgent data) if we are connected, can
733 * receive more, and we have room for it XXX /2 ?
734 */
735 /* @todo: vvl - check which predicat here will be more useful here in rerm of new sbufs. */
736 if ( CONN_CANFRCV(so)
737 && (SBUF_LEN(&so->so_snd) < (SBUF_SIZE(&so->so_snd)/2))
738#ifdef RT_OS_WINDOWS
739 && !(so->so_state & SS_ISFCONNECTING)
740#endif
741 )
742 {
743 STAM_COUNTER_INC(&pData->StatTCPHot);
744 TCP_ENGAGE_EVENT2(so, readfds, xfds);
745 }
746 LOOP_LABEL(tcp, so, so_next);
747 }
748
749 /*
750 * UDP sockets
751 */
752 STAM_COUNTER_RESET(&pData->StatUDP);
753 STAM_COUNTER_RESET(&pData->StatUDPHot);
754
755 QSOCKET_FOREACH(so, so_next, udp)
756 /* { */
757
758 Assert(so->so_type == IPPROTO_UDP);
759 STAM_COUNTER_INC(&pData->StatUDP);
760#if !defined(RT_OS_WINDOWS)
761 so->so_poll_index = -1;
762#endif
763
764 /*
765 * See if it's timed out
766 */
767 if (so->so_expire)
768 {
769 if (so->so_expire <= curtime)
770 {
771 Log2(("NAT: %R[natsock] expired\n", so));
772 if (so->so_timeout != NULL)
773 {
774 /* so_timeout - might change the so_expire value or
775 * drop so_timeout* from so.
776 */
777 so->so_timeout(pData, so, so->so_timeout_arg);
778 /* on 4.2 so->
779 */
780 if ( so_next->so_prev != so /* so_timeout freed the socket */
781 || so->so_timeout) /* so_timeout just freed so_timeout */
782 CONTINUE_NO_UNLOCK(udp);
783 }
784 UDP_DETACH(pData, so, so_next);
785 CONTINUE_NO_UNLOCK(udp);
786 }
787 }
788#ifdef VBOX_WITH_NAT_UDP_SOCKET_CLONE
789 if (so->so_cloneOf)
790 CONTINUE_NO_UNLOCK(udp);
791#endif
792
793 /*
794 * When UDP packets are received from over the link, they're
795 * sendto()'d straight away, so no need for setting for writing
796 * Limit the number of packets queued by this session to 4.
797 * Note that even though we try and limit this to 4 packets,
798 * the session could have more queued if the packets needed
799 * to be fragmented.
800 *
801 * (XXX <= 4 ?)
802 */
803 if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4)
804 {
805 STAM_COUNTER_INC(&pData->StatUDPHot);
806 UDP_ENGAGE_EVENT(so, readfds);
807 }
808 LOOP_LABEL(udp, so, so_next);
809 }
810done:
811
812#if defined(RT_OS_WINDOWS)
813 *pnfds = VBOX_EVENT_COUNT;
814#else /* RT_OS_WINDOWS */
815 AssertRelease(poll_index <= *pnfds);
816 *pnfds = poll_index;
817#endif /* !RT_OS_WINDOWS */
818
819 STAM_PROFILE_STOP(&pData->StatFill, a);
820}
821
822
823/**
824 * This function do Connection or sending tcp sequence to.
825 * @returns if true operation completed
826 * @note: functions call tcp_input that potentially could lead to tcp_drop
827 */
828static bool slirpConnectOrWrite(PNATState pData, struct socket *so, bool fConnectOnly)
829{
830 int ret;
831 LogFlowFunc(("ENTER: so:%R[natsock], fConnectOnly:%RTbool\n", so, fConnectOnly));
832 /*
833 * Check for non-blocking, still-connecting sockets
834 */
835 if (so->so_state & SS_ISFCONNECTING)
836 {
837 Log2(("connecting %R[natsock] catched\n", so));
838 /* Connected */
839 so->so_state &= ~SS_ISFCONNECTING;
840
841 /*
842 * This should be probably guarded by PROBE_CONN too. Anyway,
843 * we disable it on OS/2 because the below send call returns
844 * EFAULT which causes the opened TCP socket to close right
845 * after it has been opened and connected.
846 */
847#ifndef RT_OS_OS2
848 ret = send(so->s, (const char *)&ret, 0, 0);
849 if (ret < 0)
850 {
851 /* XXXXX Must fix, zero bytes is a NOP */
852 if ( soIgnorableErrorCode(errno)
853 || errno == ENOTCONN)
854 {
855 LogFlowFunc(("LEAVE: false\n"));
856 return false;
857 }
858
859 /* else failed */
860 so->so_state = SS_NOFDREF;
861 }
862 /* else so->so_state &= ~SS_ISFCONNECTING; */
863#endif
864
865 /*
866 * Continue tcp_input
867 */
868 TCP_INPUT(pData, (struct mbuf *)NULL, sizeof(struct ip), so);
869 /* continue; */
870 }
871 else if (!fConnectOnly)
872 {
873 SOWRITE(ret, pData, so);
874 if (RT_LIKELY(ret > 0))
875 {
876 /*
877 * Make sure we will send window update to peer. This is
878 * a moral equivalent of calling tcp_output() for PRU_RCVD
879 * in tcp_usrreq() of the real stack.
880 */
881 struct tcpcb *tp = sototcpcb(so);
882 if (RT_LIKELY(tp != NULL))
883 tp->t_flags |= TF_DELACK;
884 }
885 }
886
887 LogFlowFunc(("LEAVE: true\n"));
888 return true;
889}
890
891#if defined(RT_OS_WINDOWS)
892void slirp_select_poll(PNATState pData, int fTimeout)
893#else /* RT_OS_WINDOWS */
894void slirp_select_poll(PNATState pData, struct pollfd *polls, int ndfs)
895#endif /* !RT_OS_WINDOWS */
896{
897 struct socket *so, *so_next;
898 int ret;
899#if defined(RT_OS_WINDOWS)
900 WSANETWORKEVENTS NetworkEvents;
901 int rc;
902 int error;
903#endif
904
905 STAM_PROFILE_START(&pData->StatPoll, a);
906
907 /* Update time */
908 updtime(pData);
909
910 /*
911 * See if anything has timed out
912 */
913 if (link_up)
914 {
915 if (time_fasttimo && ((curtime - time_fasttimo) >= 2))
916 {
917 STAM_PROFILE_START(&pData->StatFastTimer, b);
918 tcp_fasttimo(pData);
919 time_fasttimo = 0;
920 STAM_PROFILE_STOP(&pData->StatFastTimer, b);
921 }
922 if (do_slowtimo && ((curtime - last_slowtimo) >= 499))
923 {
924 STAM_PROFILE_START(&pData->StatSlowTimer, c);
925 ip_slowtimo(pData);
926 tcp_slowtimo(pData);
927 last_slowtimo = curtime;
928 STAM_PROFILE_STOP(&pData->StatSlowTimer, c);
929 }
930 }
931#if defined(RT_OS_WINDOWS)
932 if (fTimeout)
933 return; /* only timer update */
934#endif
935
936 /*
937 * Check sockets
938 */
939 if (!link_up)
940 goto done;
941#if defined(RT_OS_WINDOWS)
942 icmpwin_process(pData);
943#else
944 if ( (pData->icmp_socket.s != -1)
945 && CHECK_FD_SET(&pData->icmp_socket, ignored, readfds))
946 sorecvfrom(pData, &pData->icmp_socket);
947#endif
948 /*
949 * Check TCP sockets
950 */
951 QSOCKET_FOREACH(so, so_next, tcp)
952 /* { */
953 /* TCP socket can't be cloned */
954#ifdef VBOX_WITH_NAT_UDP_SOCKET_CLONE
955 Assert((!so->so_cloneOf));
956#endif
957 Assert(!so->fUnderPolling);
958 so->fUnderPolling = 1;
959 if (slirpVerifyAndFreeSocket(pData, so))
960 CONTINUE(tcp);
961 /*
962 * FD_ISSET is meaningless on these sockets
963 * (and they can crash the program)
964 */
965 if (so->so_state & SS_NOFDREF || so->s == -1)
966 {
967 so->fUnderPolling = 0;
968 CONTINUE(tcp);
969 }
970
971 POLL_TCP_EVENTS(rc, error, so, &NetworkEvents);
972
973 LOG_NAT_SOCK(so, TCP, &NetworkEvents, readfds, writefds, xfds);
974
975 if (so->so_state & SS_ISFCONNECTING)
976 {
977 int sockerr = 0;
978#if !defined(RT_OS_WINDOWS)
979 {
980 int revents = 0;
981
982 /*
983 * Failed connect(2) is reported by poll(2) on
984 * different OSes with different combinations of
985 * POLLERR, POLLHUP, and POLLOUT.
986 */
987 if ( CHECK_FD_SET(so, NetworkEvents, closefds) /* POLLHUP */
988 || CHECK_FD_SET(so, NetworkEvents, rderr)) /* POLLERR */
989 {
990 revents = POLLHUP; /* squash to single "failed" flag */
991 }
992#if defined(RT_OS_SOLARIS) || defined(RT_OS_NETBSD)
993 /* Solaris and NetBSD report plain POLLOUT even on error */
994 else if (CHECK_FD_SET(so, NetworkEvents, writefds)) /* POLLOUT */
995 {
996 revents = POLLOUT;
997 }
998#endif
999
1000 if (revents != 0)
1001 {
1002 socklen_t optlen = (socklen_t)sizeof(sockerr);
1003 ret = getsockopt(so->s, SOL_SOCKET, SO_ERROR, &sockerr, &optlen);
1004
1005 if ( RT_UNLIKELY(ret < 0)
1006 || ( (revents & POLLHUP)
1007 && RT_UNLIKELY(sockerr == 0)))
1008 sockerr = ETIMEDOUT;
1009 }
1010 }
1011#else /* RT_OS_WINDOWS */
1012 {
1013 if (NetworkEvents.lNetworkEvents & FD_CONNECT)
1014 sockerr = NetworkEvents.iErrorCode[FD_CONNECT_BIT];
1015 }
1016#endif
1017 if (sockerr != 0)
1018 {
1019 tcp_fconnect_failed(pData, so, sockerr);
1020 ret = slirpVerifyAndFreeSocket(pData, so);
1021 Assert(ret == 1); /* freed */
1022 CONTINUE(tcp);
1023 }
1024
1025 /*
1026 * XXX: For now just fall through to the old code to
1027 * handle successful connect(2).
1028 */
1029 }
1030
1031 /*
1032 * Check for URG data
1033 * This will soread as well, so no need to
1034 * test for readfds below if this succeeds
1035 */
1036
1037 /* out-of-band data */
1038 if ( CHECK_FD_SET(so, NetworkEvents, xfds)
1039#ifdef RT_OS_DARWIN
1040 /* Darwin and probably BSD hosts generates POLLPRI|POLLHUP event on receiving TCP.flags.{ACK|URG|FIN} this
1041 * combination on other Unixs hosts doesn't enter to this branch
1042 */
1043 && !CHECK_FD_SET(so, NetworkEvents, closefds)
1044#endif
1045#ifdef RT_OS_WINDOWS
1046 /**
1047 * In some cases FD_CLOSE comes with FD_OOB, that confuse tcp processing.
1048 */
1049 && !WIN_CHECK_FD_SET(so, NetworkEvents, closefds)
1050#endif
1051 )
1052 {
1053 sorecvoob(pData, so);
1054 if (slirpVerifyAndFreeSocket(pData, so))
1055 CONTINUE(tcp);
1056 }
1057
1058 /*
1059 * Check sockets for reading
1060 */
1061 else if ( CHECK_FD_SET(so, NetworkEvents, readfds)
1062 || WIN_CHECK_FD_SET(so, NetworkEvents, acceptds))
1063 {
1064
1065#ifdef RT_OS_WINDOWS
1066 if (WIN_CHECK_FD_SET(so, NetworkEvents, connectfds))
1067 {
1068 /* Finish connection first */
1069 /* should we ignore return value? */
1070 bool fRet = slirpConnectOrWrite(pData, so, true);
1071 LogFunc(("fRet:%RTbool\n", fRet));
1072 if (slirpVerifyAndFreeSocket(pData, so))
1073 CONTINUE(tcp);
1074 }
1075#endif
1076 /*
1077 * Check for incoming connections
1078 */
1079 if (so->so_state & SS_FACCEPTCONN)
1080 {
1081 TCP_CONNECT(pData, so);
1082 if (slirpVerifyAndFreeSocket(pData, so))
1083 CONTINUE(tcp);
1084 if (!CHECK_FD_SET(so, NetworkEvents, closefds))
1085 {
1086 so->fUnderPolling = 0;
1087 CONTINUE(tcp);
1088 }
1089 }
1090
1091 ret = soread(pData, so);
1092 if (slirpVerifyAndFreeSocket(pData, so))
1093 CONTINUE(tcp);
1094 /* Output it if we read something */
1095 if (RT_LIKELY(ret > 0))
1096 TCP_OUTPUT(pData, sototcpcb(so));
1097
1098 if (slirpVerifyAndFreeSocket(pData, so))
1099 CONTINUE(tcp);
1100 }
1101
1102 /*
1103 * Check for FD_CLOSE events.
1104 * in some cases once FD_CLOSE engaged on socket it could be flashed latter (for some reasons)
1105 */
1106 if ( CHECK_FD_SET(so, NetworkEvents, closefds)
1107 || (so->so_close == 1))
1108 {
1109 /*
1110 * drain the socket
1111 */
1112 for (; so_next->so_prev == so
1113 && !slirpVerifyAndFreeSocket(pData, so);)
1114 {
1115 ret = soread(pData, so);
1116 if (slirpVerifyAndFreeSocket(pData, so))
1117 break;
1118
1119 if (ret > 0)
1120 TCP_OUTPUT(pData, sototcpcb(so));
1121 else if (so_next->so_prev == so)
1122 {
1123 Log2(("%R[natsock] errno %d (%s)\n", so, errno, strerror(errno)));
1124 break;
1125 }
1126 }
1127
1128 /* if socket freed ''so'' is PHANTOM and next socket isn't points on it */
1129 if (so_next->so_prev == so)
1130 {
1131 /* mark the socket for termination _after_ it was drained */
1132 so->so_close = 1;
1133 /* No idea about Windows but on Posix, POLLHUP means that we can't send more.
1134 * Actually in the specific error scenario, POLLERR is set as well. */
1135#ifndef RT_OS_WINDOWS
1136 if (CHECK_FD_SET(so, NetworkEvents, rderr))
1137 sofcantsendmore(so);
1138#endif
1139 }
1140 if (so_next->so_prev == so)
1141 so->fUnderPolling = 0;
1142 CONTINUE(tcp);
1143 }
1144
1145 /*
1146 * Check sockets for writing
1147 */
1148 if ( CHECK_FD_SET(so, NetworkEvents, writefds)
1149#ifdef RT_OS_WINDOWS
1150 || WIN_CHECK_FD_SET(so, NetworkEvents, connectfds)
1151#endif
1152 )
1153 {
1154 int fConnectOrWriteSuccess = slirpConnectOrWrite(pData, so, false);
1155 /* slirpConnectOrWrite could return true even if tcp_input called tcp_drop,
1156 * so we should be ready to such situations.
1157 */
1158 if (slirpVerifyAndFreeSocket(pData, so))
1159 CONTINUE(tcp);
1160 else if (!fConnectOrWriteSuccess)
1161 {
1162 so->fUnderPolling = 0;
1163 CONTINUE(tcp);
1164 }
1165 /* slirpConnectionOrWrite succeeded and socket wasn't dropped */
1166 }
1167
1168 /*
1169 * Probe a still-connecting, non-blocking socket
1170 * to check if it's still alive
1171 */
1172#ifdef PROBE_CONN
1173 if (so->so_state & SS_ISFCONNECTING)
1174 {
1175 ret = recv(so->s, (char *)&ret, 0, 0);
1176
1177 if (ret < 0)
1178 {
1179 /* XXX */
1180 if ( soIgnorableErrorCode(errno)
1181 || errno == ENOTCONN)
1182 {
1183 CONTINUE(tcp); /* Still connecting, continue */
1184 }
1185
1186 /* else failed */
1187 so->so_state = SS_NOFDREF;
1188
1189 /* tcp_input will take care of it */
1190 }
1191 else
1192 {
1193 ret = send(so->s, &ret, 0, 0);
1194 if (ret < 0)
1195 {
1196 /* XXX */
1197 if ( soIgnorableErrorCode(errno)
1198 || errno == ENOTCONN)
1199 {
1200 CONTINUE(tcp);
1201 }
1202 /* else failed */
1203 so->so_state = SS_NOFDREF;
1204 }
1205 else
1206 so->so_state &= ~SS_ISFCONNECTING;
1207
1208 }
1209 TCP_INPUT((struct mbuf *)NULL, sizeof(struct ip),so);
1210 } /* SS_ISFCONNECTING */
1211#endif
1212 if (!slirpVerifyAndFreeSocket(pData, so))
1213 so->fUnderPolling = 0;
1214 LOOP_LABEL(tcp, so, so_next);
1215 }
1216
1217 /*
1218 * Now UDP sockets.
1219 * Incoming packets are sent straight away, they're not buffered.
1220 * Incoming UDP data isn't buffered either.
1221 */
1222 QSOCKET_FOREACH(so, so_next, udp)
1223 /* { */
1224#ifdef VBOX_WITH_NAT_UDP_SOCKET_CLONE
1225 if (so->so_cloneOf)
1226 CONTINUE_NO_UNLOCK(udp);
1227#endif
1228#if 0
1229 so->fUnderPolling = 1;
1230 if(slirpVerifyAndFreeSocket(pData, so));
1231 CONTINUE(udp);
1232 so->fUnderPolling = 0;
1233#endif
1234
1235 POLL_UDP_EVENTS(rc, error, so, &NetworkEvents);
1236
1237 LOG_NAT_SOCK(so, UDP, &NetworkEvents, readfds, writefds, xfds);
1238
1239 if (so->s != -1 && CHECK_FD_SET(so, NetworkEvents, readfds))
1240 {
1241 SORECVFROM(pData, so);
1242 }
1243 LOOP_LABEL(udp, so, so_next);
1244 }
1245
1246done:
1247
1248 STAM_PROFILE_STOP(&pData->StatPoll, a);
1249}
1250
1251
1252struct arphdr
1253{
1254 unsigned short ar_hrd; /* format of hardware address */
1255 unsigned short ar_pro; /* format of protocol address */
1256 unsigned char ar_hln; /* length of hardware address */
1257 unsigned char ar_pln; /* length of protocol address */
1258 unsigned short ar_op; /* ARP opcode (command) */
1259
1260 /*
1261 * Ethernet looks like this : This bit is variable sized however...
1262 */
1263 unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
1264 unsigned char ar_sip[4]; /* sender IP address */
1265 unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
1266 unsigned char ar_tip[4]; /* target IP address */
1267};
1268AssertCompileSize(struct arphdr, 28);
1269
1270static void arp_output(PNATState pData, const uint8_t *pcu8EtherSource, const struct arphdr *pcARPHeaderSource, uint32_t ip4TargetAddress)
1271{
1272 struct ethhdr *pEtherHeaderResponse;
1273 struct arphdr *pARPHeaderResponse;
1274 uint32_t ip4TargetAddressInHostFormat;
1275 struct mbuf *pMbufResponse;
1276
1277 Assert((pcu8EtherSource));
1278 if (!pcu8EtherSource)
1279 return;
1280 ip4TargetAddressInHostFormat = RT_N2H_U32(ip4TargetAddress);
1281
1282 pMbufResponse = m_getcl(pData, M_NOWAIT, MT_HEADER, M_PKTHDR);
1283 if (!pMbufResponse)
1284 return;
1285 pEtherHeaderResponse = mtod(pMbufResponse, struct ethhdr *);
1286 /* @note: if_encap will swap src and dst*/
1287 memcpy(pEtherHeaderResponse->h_source, pcu8EtherSource, ETH_ALEN);
1288 pMbufResponse->m_data += ETH_HLEN;
1289 pARPHeaderResponse = mtod(pMbufResponse, struct arphdr *);
1290 pMbufResponse->m_len = sizeof(struct arphdr);
1291
1292 pARPHeaderResponse->ar_hrd = RT_H2N_U16_C(1);
1293 pARPHeaderResponse->ar_pro = RT_H2N_U16_C(ETH_P_IP);
1294 pARPHeaderResponse->ar_hln = ETH_ALEN;
1295 pARPHeaderResponse->ar_pln = 4;
1296 pARPHeaderResponse->ar_op = RT_H2N_U16_C(ARPOP_REPLY);
1297 memcpy(pARPHeaderResponse->ar_sha, special_ethaddr, ETH_ALEN);
1298
1299 if (!slirpMbufTagService(pData, pMbufResponse, (uint8_t)(ip4TargetAddressInHostFormat & ~pData->netmask)))
1300 {
1301 static bool fTagErrorReported;
1302 if (!fTagErrorReported)
1303 {
1304 LogRel(("NAT: couldn't add the tag(PACKET_SERVICE:%d)\n",
1305 (uint8_t)(ip4TargetAddressInHostFormat & ~pData->netmask)));
1306 fTagErrorReported = true;
1307 }
1308 }
1309 pARPHeaderResponse->ar_sha[5] = (uint8_t)(ip4TargetAddressInHostFormat & ~pData->netmask);
1310
1311 memcpy(pARPHeaderResponse->ar_sip, pcARPHeaderSource->ar_tip, 4);
1312 memcpy(pARPHeaderResponse->ar_tha, pcARPHeaderSource->ar_sha, ETH_ALEN);
1313 memcpy(pARPHeaderResponse->ar_tip, pcARPHeaderSource->ar_sip, 4);
1314 if_encap(pData, ETH_P_ARP, pMbufResponse, ETH_ENCAP_URG);
1315}
1316/**
1317 * @note This function will free m!
1318 */
1319static void arp_input(PNATState pData, struct mbuf *m)
1320{
1321 struct ethhdr *pEtherHeader;
1322 struct arphdr *pARPHeader;
1323 uint32_t ip4TargetAddress;
1324
1325 int ar_op;
1326 pEtherHeader = mtod(m, struct ethhdr *);
1327 pARPHeader = (struct arphdr *)&pEtherHeader[1];
1328
1329 ar_op = RT_N2H_U16(pARPHeader->ar_op);
1330 ip4TargetAddress = *(uint32_t*)pARPHeader->ar_tip;
1331
1332 switch (ar_op)
1333 {
1334 case ARPOP_REQUEST:
1335 if ( CTL_CHECK(ip4TargetAddress, CTL_DNS)
1336 || CTL_CHECK(ip4TargetAddress, CTL_ALIAS)
1337 || CTL_CHECK(ip4TargetAddress, CTL_TFTP))
1338 arp_output(pData, pEtherHeader->h_source, pARPHeader, ip4TargetAddress);
1339
1340 /* Gratuitous ARP */
1341 if ( *(uint32_t *)pARPHeader->ar_sip == *(uint32_t *)pARPHeader->ar_tip
1342 && memcmp(pARPHeader->ar_tha, broadcast_ethaddr, ETH_ALEN) == 0
1343 && memcmp(pEtherHeader->h_dest, broadcast_ethaddr, ETH_ALEN) == 0)
1344 {
1345 /* We've received an announce about address assignment,
1346 * let's do an ARP cache update
1347 */
1348 static bool fGratuitousArpReported;
1349 if (!fGratuitousArpReported)
1350 {
1351 LogRel(("NAT: Gratuitous ARP [IP:%RTnaipv4, ether:%RTmac]\n",
1352 pARPHeader->ar_sip, pARPHeader->ar_sha));
1353 fGratuitousArpReported = true;
1354 }
1355 slirp_arp_cache_update_or_add(pData, *(uint32_t *)pARPHeader->ar_sip, &pARPHeader->ar_sha[0]);
1356 }
1357 break;
1358
1359 case ARPOP_REPLY:
1360 slirp_arp_cache_update_or_add(pData, *(uint32_t *)pARPHeader->ar_sip, &pARPHeader->ar_sha[0]);
1361 break;
1362
1363 default:
1364 break;
1365 }
1366
1367 m_freem(pData, m);
1368}
1369
1370/**
1371 * Feed a packet into the slirp engine.
1372 *
1373 * @param m Data buffer, m_len is not valid.
1374 * @param cbBuf The length of the data in m.
1375 */
1376void slirp_input(PNATState pData, struct mbuf *m, size_t cbBuf)
1377{
1378 int proto;
1379 static bool fWarnedIpv6;
1380 struct ethhdr *eh;
1381 uint8_t au8Ether[ETH_ALEN];
1382
1383 m->m_len = cbBuf;
1384 if (cbBuf < ETH_HLEN)
1385 {
1386 Log(("NAT: packet having size %d has been ignored\n", m->m_len));
1387 m_freem(pData, m);
1388 return;
1389 }
1390 eh = mtod(m, struct ethhdr *);
1391 proto = RT_N2H_U16(eh->h_proto);
1392
1393 memcpy(au8Ether, eh->h_source, ETH_ALEN);
1394
1395 switch(proto)
1396 {
1397 case ETH_P_ARP:
1398 arp_input(pData, m);
1399 break;
1400
1401 case ETH_P_IP:
1402 /* Update time. Important if the network is very quiet, as otherwise
1403 * the first outgoing connection gets an incorrect timestamp. */
1404 updtime(pData);
1405 m_adj(m, ETH_HLEN);
1406 M_ASSERTPKTHDR(m);
1407 m->m_pkthdr.header = mtod(m, void *);
1408 ip_input(pData, m);
1409 break;
1410
1411 case ETH_P_IPV6:
1412 m_freem(pData, m);
1413 if (!fWarnedIpv6)
1414 {
1415 LogRel(("NAT: IPv6 not supported\n"));
1416 fWarnedIpv6 = true;
1417 }
1418 break;
1419
1420 default:
1421 Log(("NAT: Unsupported protocol %x\n", proto));
1422 m_freem(pData, m);
1423 break;
1424 }
1425
1426 if (pData->cRedirectionsActive != pData->cRedirectionsStored)
1427 activate_port_forwarding(pData, au8Ether);
1428}
1429
1430/**
1431 * Output the IP packet to the ethernet device.
1432 *
1433 * @note This function will free m!
1434 */
1435void if_encap(PNATState pData, uint16_t eth_proto, struct mbuf *m, int flags)
1436{
1437 struct ethhdr *eh;
1438 uint8_t *mbuf = NULL;
1439 size_t mlen = 0;
1440 STAM_PROFILE_START(&pData->StatIF_encap, a);
1441 LogFlowFunc(("ENTER: pData:%p, eth_proto:%RX16, m:%p, flags:%d\n",
1442 pData, eth_proto, m, flags));
1443
1444 M_ASSERTPKTHDR(m);
1445
1446 Assert(M_LEADINGSPACE(m) >= ETH_HLEN);
1447 m->m_data -= ETH_HLEN;
1448 m->m_len += ETH_HLEN;
1449 eh = mtod(m, struct ethhdr *);
1450 mlen = m->m_len;
1451
1452 if (memcmp(eh->h_source, special_ethaddr, ETH_ALEN) != 0)
1453 {
1454 struct m_tag *t = m_tag_first(m);
1455 uint8_t u8ServiceId = CTL_ALIAS;
1456 memcpy(eh->h_dest, eh->h_source, ETH_ALEN);
1457 memcpy(eh->h_source, special_ethaddr, ETH_ALEN);
1458 Assert(memcmp(eh->h_dest, special_ethaddr, ETH_ALEN) != 0);
1459 if (memcmp(eh->h_dest, zerro_ethaddr, ETH_ALEN) == 0)
1460 {
1461 /* don't do anything */
1462 m_freem(pData, m);
1463 goto done;
1464 }
1465 if ( t
1466 && (t = m_tag_find(m, PACKET_SERVICE, NULL)))
1467 {
1468 Assert(t);
1469 u8ServiceId = *(uint8_t *)&t[1];
1470 }
1471 eh->h_source[5] = u8ServiceId;
1472 }
1473 /*
1474 * we're processing the chain, that isn't not expected.
1475 */
1476 Assert((!m->m_next));
1477 if (m->m_next)
1478 {
1479 Log(("NAT: if_encap's recived the chain, dropping...\n"));
1480 m_freem(pData, m);
1481 goto done;
1482 }
1483 mbuf = mtod(m, uint8_t *);
1484 eh->h_proto = RT_H2N_U16(eth_proto);
1485 LogFunc(("eh(dst:%RTmac, src:%RTmac)\n", eh->h_dest, eh->h_source));
1486 if (flags & ETH_ENCAP_URG)
1487 slirp_urg_output(pData->pvUser, m, mbuf, mlen);
1488 else
1489 slirp_output(pData->pvUser, m, mbuf, mlen);
1490done:
1491 STAM_PROFILE_STOP(&pData->StatIF_encap, a);
1492 LogFlowFuncLeave();
1493}
1494
1495/**
1496 * Still we're using dhcp server leasing to map ether to IP
1497 * @todo see rt_lookup_in_cache
1498 */
1499static uint32_t find_guest_ip(PNATState pData, const uint8_t *eth_addr)
1500{
1501 uint32_t ip = INADDR_ANY;
1502 int rc;
1503
1504 if (eth_addr == NULL)
1505 return INADDR_ANY;
1506
1507 if ( memcmp(eth_addr, zerro_ethaddr, ETH_ALEN) == 0
1508 || memcmp(eth_addr, broadcast_ethaddr, ETH_ALEN) == 0)
1509 return INADDR_ANY;
1510
1511 rc = slirp_arp_lookup_ip_by_ether(pData, eth_addr, &ip);
1512 if (RT_SUCCESS(rc))
1513 return ip;
1514
1515 bootp_cache_lookup_ip_by_ether(pData, eth_addr, &ip);
1516 /* ignore return code, ip will be set to INADDR_ANY on error */
1517 return ip;
1518}
1519
1520/**
1521 * We need check if we've activated port forwarding
1522 * for specific machine ... that of course relates to
1523 * service mode
1524 * @todo finish this for service case
1525 */
1526static void activate_port_forwarding(PNATState pData, const uint8_t *h_source)
1527{
1528 struct port_forward_rule *rule, *tmp;
1529 const uint8_t *pu8EthSource = h_source;
1530
1531 /* check mac here */
1532 LIST_FOREACH_SAFE(rule, &pData->port_forward_rule_head, list, tmp)
1533 {
1534 struct socket *so;
1535 struct sockaddr sa;
1536 struct sockaddr_in *psin;
1537 socklen_t socketlen;
1538 int rc;
1539 uint32_t guest_addr; /* need to understand if we already give address to guest */
1540
1541 if (rule->activated)
1542 continue;
1543
1544 guest_addr = find_guest_ip(pData, pu8EthSource);
1545 if (guest_addr == INADDR_ANY)
1546 {
1547 /* the address wasn't granted */
1548 return;
1549 }
1550
1551 if ( rule->guest_addr.s_addr != guest_addr
1552 && rule->guest_addr.s_addr != INADDR_ANY)
1553 continue;
1554 if (rule->guest_addr.s_addr == INADDR_ANY)
1555 rule->guest_addr.s_addr = guest_addr;
1556
1557 LogRel(("NAT: set redirect %s host %RTnaipv4:%d => guest %RTnaipv4:%d\n",
1558 rule->proto == IPPROTO_UDP ? "UDP" : "TCP",
1559 rule->bind_ip.s_addr, rule->host_port,
1560 guest_addr, rule->guest_port));
1561
1562 if (rule->proto == IPPROTO_UDP)
1563 so = udp_listen(pData, rule->bind_ip.s_addr, RT_H2N_U16(rule->host_port), guest_addr,
1564 RT_H2N_U16(rule->guest_port), 0);
1565 else
1566 so = solisten(pData, rule->bind_ip.s_addr, RT_H2N_U16(rule->host_port), guest_addr,
1567 RT_H2N_U16(rule->guest_port), 0);
1568
1569 if (so == NULL)
1570 goto remove_port_forwarding;
1571
1572 psin = (struct sockaddr_in *)&sa;
1573 psin->sin_family = AF_INET;
1574 psin->sin_port = 0;
1575 psin->sin_addr.s_addr = INADDR_ANY;
1576 socketlen = sizeof(struct sockaddr);
1577
1578 rc = getsockname(so->s, &sa, &socketlen);
1579 if (rc < 0 || sa.sa_family != AF_INET)
1580 goto remove_port_forwarding;
1581
1582 rule->activated = 1;
1583 rule->so = so;
1584 pData->cRedirectionsActive++;
1585 continue;
1586
1587 remove_port_forwarding:
1588 LogRel(("NAT: failed to redirect %s %RTnaipv4:%d => %RTnaipv4:%d\n",
1589 (rule->proto == IPPROTO_UDP ? "UDP" : "TCP"),
1590 rule->bind_ip.s_addr, rule->host_port,
1591 guest_addr, rule->guest_port));
1592 LIST_REMOVE(rule, list);
1593 pData->cRedirectionsStored--;
1594 RTMemFree(rule);
1595 }
1596}
1597
1598/**
1599 * Changes in 3.1 instead of opening new socket do the following:
1600 * gain more information:
1601 * 1. bind IP
1602 * 2. host port
1603 * 3. guest port
1604 * 4. proto
1605 * 5. guest MAC address
1606 * the guest's MAC address is rather important for service, but we easily
1607 * could get it from VM configuration in DrvNAT or Service, the idea is activating
1608 * corresponding port-forwarding
1609 */
1610int slirp_add_redirect(PNATState pData, int is_udp, struct in_addr host_addr, int host_port,
1611 struct in_addr guest_addr, int guest_port, const uint8_t *ethaddr)
1612{
1613 struct port_forward_rule *rule = NULL;
1614 LIST_FOREACH(rule, &pData->port_forward_rule_head, list)
1615 {
1616 if ( rule->proto == (is_udp ? IPPROTO_UDP : IPPROTO_TCP)
1617 && rule->host_port == host_port
1618 && rule->bind_ip.s_addr == host_addr.s_addr
1619 && rule->guest_port == guest_port
1620 && rule->guest_addr.s_addr == guest_addr.s_addr
1621 )
1622 return 0; /* rule has been already registered */
1623 }
1624
1625 rule = RTMemAllocZ(sizeof(struct port_forward_rule));
1626 if (rule == NULL)
1627 return 1;
1628
1629 rule->proto = (is_udp ? IPPROTO_UDP : IPPROTO_TCP);
1630 rule->host_port = host_port;
1631 rule->guest_port = guest_port;
1632 rule->guest_addr.s_addr = guest_addr.s_addr;
1633 rule->bind_ip.s_addr = host_addr.s_addr;
1634 if (ethaddr != NULL)
1635 memcpy(rule->mac_address, ethaddr, ETH_ALEN);
1636 /* @todo add mac address */
1637 LIST_INSERT_HEAD(&pData->port_forward_rule_head, rule, list);
1638 pData->cRedirectionsStored++;
1639 /* activate port-forwarding if guest has already got assigned IP */
1640 if ( ethaddr
1641 && memcmp(ethaddr, zerro_ethaddr, ETH_ALEN))
1642 activate_port_forwarding(pData, ethaddr);
1643 return 0;
1644}
1645
1646int slirp_remove_redirect(PNATState pData, int is_udp, struct in_addr host_addr, int host_port,
1647 struct in_addr guest_addr, int guest_port)
1648{
1649 struct port_forward_rule *rule = NULL;
1650 LIST_FOREACH(rule, &pData->port_forward_rule_head, list)
1651 {
1652 if ( rule->proto == (is_udp ? IPPROTO_UDP : IPPROTO_TCP)
1653 && rule->host_port == host_port
1654 && rule->guest_port == guest_port
1655 && rule->bind_ip.s_addr == host_addr.s_addr
1656 && rule->guest_addr.s_addr == guest_addr.s_addr
1657 && rule->activated)
1658 {
1659 LogRel(("NAT: remove redirect %s host %RTnaipv4:%d => guest %RTnaipv4:%d\n",
1660 rule->proto == IPPROTO_UDP ? "UDP" : "TCP",
1661 rule->bind_ip.s_addr, rule->host_port,
1662 guest_addr.s_addr, rule->guest_port));
1663
1664 if (is_udp)
1665 udp_detach(pData, rule->so);
1666 else
1667 tcp_close(pData, sototcpcb(rule->so));
1668 LIST_REMOVE(rule, list);
1669 RTMemFree(rule);
1670 pData->cRedirectionsStored--;
1671 break;
1672 }
1673
1674 }
1675 return 0;
1676}
1677
1678void slirp_set_ethaddr_and_activate_port_forwarding(PNATState pData, const uint8_t *ethaddr, uint32_t GuestIP)
1679{
1680 memcpy(client_ethaddr, ethaddr, ETH_ALEN);
1681 if (GuestIP != INADDR_ANY)
1682 {
1683 slirp_arp_cache_update_or_add(pData, GuestIP, ethaddr);
1684 activate_port_forwarding(pData, ethaddr);
1685 }
1686}
1687
1688#if defined(RT_OS_WINDOWS)
1689HANDLE *slirp_get_events(PNATState pData)
1690{
1691 return pData->phEvents;
1692}
1693void slirp_register_external_event(PNATState pData, HANDLE hEvent, int index)
1694{
1695 pData->phEvents[index] = hEvent;
1696}
1697#endif
1698
1699unsigned int slirp_get_timeout_ms(PNATState pData)
1700{
1701 if (link_up)
1702 {
1703 if (time_fasttimo)
1704 return 2;
1705 if (do_slowtimo)
1706 return 500; /* see PR_SLOWHZ */
1707 }
1708 return 3600*1000; /* one hour */
1709}
1710
1711#ifndef RT_OS_WINDOWS
1712int slirp_get_nsock(PNATState pData)
1713{
1714 return pData->nsock;
1715}
1716#endif
1717
1718/*
1719 * this function called from NAT thread
1720 */
1721void slirp_post_sent(PNATState pData, void *pvArg)
1722{
1723 struct mbuf *m = (struct mbuf *)pvArg;
1724 m_freem(pData, m);
1725}
1726
1727void slirp_set_dhcp_TFTP_prefix(PNATState pData, const char *tftpPrefix)
1728{
1729 Log2(("tftp_prefix: %s\n", tftpPrefix));
1730 tftp_prefix = tftpPrefix;
1731}
1732
1733void slirp_set_dhcp_TFTP_bootfile(PNATState pData, const char *bootFile)
1734{
1735 Log2(("bootFile: %s\n", bootFile));
1736 bootp_filename = bootFile;
1737}
1738
1739void slirp_set_dhcp_next_server(PNATState pData, const char *next_server)
1740{
1741 Log2(("next_server: %s\n", next_server));
1742 if (next_server == NULL)
1743 pData->tftp_server.s_addr = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_TFTP);
1744 else
1745 inet_aton(next_server, &pData->tftp_server);
1746}
1747
1748int slirp_set_binding_address(PNATState pData, char *addr)
1749{
1750 if (addr == NULL || (inet_aton(addr, &pData->bindIP) == 0))
1751 {
1752 pData->bindIP.s_addr = INADDR_ANY;
1753 return 1;
1754 }
1755 return 0;
1756}
1757
1758void slirp_set_dhcp_dns_proxy(PNATState pData, bool fDNSProxy)
1759{
1760 if (!pData->fUseHostResolver)
1761 {
1762 Log2(("NAT: DNS proxy switched %s\n", (fDNSProxy ? "on" : "off")));
1763 pData->fUseDnsProxy = fDNSProxy;
1764 }
1765 else if (fDNSProxy)
1766 LogRel(("NAT: Host Resolver conflicts with DNS proxy, the last one was forcely ignored\n"));
1767}
1768
1769#define CHECK_ARG(name, val, lim_min, lim_max) \
1770 do { \
1771 if ((val) < (lim_min) || (val) > (lim_max)) \
1772 { \
1773 LogRel(("NAT: (" #name ":%d) has been ignored, " \
1774 "because out of range (%d, %d)\n", (val), (lim_min), (lim_max))); \
1775 return; \
1776 } \
1777 else \
1778 LogRel(("NAT: (" #name ":%d)\n", (val))); \
1779 } while (0)
1780
1781void slirp_set_somaxconn(PNATState pData, int iSoMaxConn)
1782{
1783 LogFlowFunc(("iSoMaxConn:d\n", iSoMaxConn));
1784 /* Conditions */
1785 if (iSoMaxConn > SOMAXCONN)
1786 {
1787 LogRel(("NAT: value of somaxconn(%d) bigger than SOMAXCONN(%d)\n", iSoMaxConn, SOMAXCONN));
1788 iSoMaxConn = SOMAXCONN;
1789 }
1790
1791 if (iSoMaxConn < 1)
1792 {
1793 LogRel(("NAT: proposed value(%d) of somaxconn is invalid, default value is used (%d)\n", iSoMaxConn, pData->soMaxConn));
1794 LogFlowFuncLeave();
1795 return;
1796 }
1797
1798 /* Asignment */
1799 if (pData->soMaxConn != iSoMaxConn)
1800 {
1801 LogRel(("NAT: value of somaxconn has been changed from %d to %d\n",
1802 pData->soMaxConn, iSoMaxConn));
1803 pData->soMaxConn = iSoMaxConn;
1804 }
1805 LogFlowFuncLeave();
1806}
1807/* don't allow user set less 8kB and more than 1M values */
1808#define _8K_1M_CHECK_ARG(name, val) CHECK_ARG(name, (val), 8, 1024)
1809void slirp_set_rcvbuf(PNATState pData, int kilobytes)
1810{
1811 _8K_1M_CHECK_ARG("SOCKET_RCVBUF", kilobytes);
1812 pData->socket_rcv = kilobytes;
1813}
1814void slirp_set_sndbuf(PNATState pData, int kilobytes)
1815{
1816 _8K_1M_CHECK_ARG("SOCKET_SNDBUF", kilobytes);
1817 pData->socket_snd = kilobytes * _1K;
1818}
1819void slirp_set_tcp_rcvspace(PNATState pData, int kilobytes)
1820{
1821 _8K_1M_CHECK_ARG("TCP_RCVSPACE", kilobytes);
1822 tcp_rcvspace = kilobytes * _1K;
1823}
1824void slirp_set_tcp_sndspace(PNATState pData, int kilobytes)
1825{
1826 _8K_1M_CHECK_ARG("TCP_SNDSPACE", kilobytes);
1827 tcp_sndspace = kilobytes * _1K;
1828}
1829
1830/*
1831 * Looking for Ether by ip in ARP-cache
1832 * Note: it´s responsible of caller to allocate buffer for result
1833 * @returns iprt status code
1834 */
1835int slirp_arp_lookup_ether_by_ip(PNATState pData, uint32_t ip, uint8_t *ether)
1836{
1837 struct arp_cache_entry *ac;
1838
1839 if (ether == NULL)
1840 return VERR_INVALID_PARAMETER;
1841
1842 if (LIST_EMPTY(&pData->arp_cache))
1843 return VERR_NOT_FOUND;
1844
1845 LIST_FOREACH(ac, &pData->arp_cache, list)
1846 {
1847 if ( ac->ip == ip
1848 && memcmp(ac->ether, broadcast_ethaddr, ETH_ALEN) != 0)
1849 {
1850 memcpy(ether, ac->ether, ETH_ALEN);
1851 return VINF_SUCCESS;
1852 }
1853 }
1854 return VERR_NOT_FOUND;
1855}
1856
1857/*
1858 * Looking for IP by Ether in ARP-cache
1859 * Note: it´s responsible of caller to allocate buffer for result
1860 * @returns 0 - if found, 1 - otherwise
1861 */
1862int slirp_arp_lookup_ip_by_ether(PNATState pData, const uint8_t *ether, uint32_t *ip)
1863{
1864 struct arp_cache_entry *ac;
1865 *ip = INADDR_ANY;
1866
1867 if (LIST_EMPTY(&pData->arp_cache))
1868 return VERR_NOT_FOUND;
1869
1870 LIST_FOREACH(ac, &pData->arp_cache, list)
1871 {
1872 if (memcmp(ether, ac->ether, ETH_ALEN) == 0)
1873 {
1874 *ip = ac->ip;
1875 return VINF_SUCCESS;
1876 }
1877 }
1878 return VERR_NOT_FOUND;
1879}
1880
1881void slirp_arp_who_has(PNATState pData, uint32_t dst)
1882{
1883 struct mbuf *m;
1884 struct ethhdr *ehdr;
1885 struct arphdr *ahdr;
1886 static bool fWarned = false;
1887 LogFlowFunc(("ENTER: %RTnaipv4\n", dst));
1888
1889 /* ARP request WHO HAS 0.0.0.0 is one of the signals
1890 * that something has been broken at Slirp. Investigating
1891 * pcap dumps it's easy to miss warning ARP requests being
1892 * focused on investigation of other protocols flow.
1893 */
1894#ifdef DEBUG_vvl
1895 Assert((dst != INADDR_ANY));
1896 NOREF(fWarned);
1897#else
1898 if ( dst == INADDR_ANY
1899 && !fWarned)
1900 {
1901 LogRel(("NAT:ARP: \"WHO HAS INADDR_ANY\" request has been detected\n"));
1902 fWarned = true;
1903 }
1904#endif /* !DEBUG_vvl */
1905
1906 m = m_getcl(pData, M_NOWAIT, MT_HEADER, M_PKTHDR);
1907 if (m == NULL)
1908 {
1909 Log(("NAT: Can't alloc mbuf for ARP request\n"));
1910 LogFlowFuncLeave();
1911 return;
1912 }
1913 ehdr = mtod(m, struct ethhdr *);
1914 memset(ehdr->h_source, 0xff, ETH_ALEN);
1915 ahdr = (struct arphdr *)&ehdr[1];
1916 ahdr->ar_hrd = RT_H2N_U16_C(1);
1917 ahdr->ar_pro = RT_H2N_U16_C(ETH_P_IP);
1918 ahdr->ar_hln = ETH_ALEN;
1919 ahdr->ar_pln = 4;
1920 ahdr->ar_op = RT_H2N_U16_C(ARPOP_REQUEST);
1921 memcpy(ahdr->ar_sha, special_ethaddr, ETH_ALEN);
1922 /* we assume that this request come from gw, but not from DNS or TFTP */
1923 ahdr->ar_sha[5] = CTL_ALIAS;
1924 *(uint32_t *)ahdr->ar_sip = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_ALIAS);
1925 memset(ahdr->ar_tha, 0xff, ETH_ALEN); /*broadcast*/
1926 *(uint32_t *)ahdr->ar_tip = dst;
1927 /* warn!!! should falls in mbuf minimal size */
1928 m->m_len = sizeof(struct arphdr) + ETH_HLEN;
1929 m->m_data += ETH_HLEN;
1930 m->m_len -= ETH_HLEN;
1931 if_encap(pData, ETH_P_ARP, m, ETH_ENCAP_URG);
1932 LogFlowFuncLeave();
1933}
1934#ifdef VBOX_WITH_DNSMAPPING_IN_HOSTRESOLVER
1935void slirp_add_host_resolver_mapping(PNATState pData, const char *pszHostName, const char *pszHostNamePattern, uint32_t u32HostIP)
1936{
1937 LogFlowFunc(("ENTER: pszHostName:%s, pszHostNamePattern:%s u32HostIP:%RTnaipv4\n",
1938 pszHostName ? pszHostName : "(null)",
1939 pszHostNamePattern ? pszHostNamePattern : "(null)",
1940 u32HostIP));
1941 if ( ( pszHostName
1942 || pszHostNamePattern)
1943 && u32HostIP != INADDR_ANY
1944 && u32HostIP != INADDR_BROADCAST)
1945 {
1946 PDNSMAPPINGENTRY pDnsMapping = RTMemAllocZ(sizeof(DNSMAPPINGENTRY));
1947 if (!pDnsMapping)
1948 {
1949 LogFunc(("Can't allocate DNSMAPPINGENTRY\n"));
1950 LogFlowFuncLeave();
1951 return;
1952 }
1953 pDnsMapping->u32IpAddress = u32HostIP;
1954 if (pszHostName)
1955 pDnsMapping->pszCName = RTStrDup(pszHostName);
1956 else if (pszHostNamePattern)
1957 pDnsMapping->pszPattern = RTStrDup(pszHostNamePattern);
1958 if ( !pDnsMapping->pszCName
1959 && !pDnsMapping->pszPattern)
1960 {
1961 LogFunc(("Can't allocate enough room for %s\n", pszHostName ? pszHostName : pszHostNamePattern));
1962 RTMemFree(pDnsMapping);
1963 LogFlowFuncLeave();
1964 return;
1965 }
1966 LIST_INSERT_HEAD(&pData->DNSMapHead, pDnsMapping, MapList);
1967 LogRel(("NAT: user-defined mapping %s: %RTnaipv4 is registered\n",
1968 pDnsMapping->pszCName ? pDnsMapping->pszCName : pDnsMapping->pszPattern,
1969 pDnsMapping->u32IpAddress));
1970 }
1971 LogFlowFuncLeave();
1972}
1973#endif
1974
1975/* updates the arp cache
1976 * @note: this is helper function, slirp_arp_cache_update_or_add should be used.
1977 * @returns 0 - if has found and updated
1978 * 1 - if hasn't found.
1979 */
1980static inline int slirp_arp_cache_update(PNATState pData, uint32_t dst, const uint8_t *mac)
1981{
1982 struct arp_cache_entry *ac;
1983 Assert(( memcmp(mac, broadcast_ethaddr, ETH_ALEN)
1984 && memcmp(mac, zerro_ethaddr, ETH_ALEN)));
1985 LIST_FOREACH(ac, &pData->arp_cache, list)
1986 {
1987 if (ac->ip == dst)
1988 {
1989 memcpy(ac->ether, mac, ETH_ALEN);
1990 return 0;
1991 }
1992 }
1993 return 1;
1994}
1995
1996/**
1997 * add entry to the arp cache
1998 * @note: this is helper function, slirp_arp_cache_update_or_add should be used.
1999 */
2000static inline void slirp_arp_cache_add(PNATState pData, uint32_t ip, const uint8_t *ether)
2001{
2002 struct arp_cache_entry *ac = NULL;
2003 Assert(( memcmp(ether, broadcast_ethaddr, ETH_ALEN)
2004 && memcmp(ether, zerro_ethaddr, ETH_ALEN)));
2005 ac = RTMemAllocZ(sizeof(struct arp_cache_entry));
2006 if (ac == NULL)
2007 {
2008 Log(("NAT: Can't allocate arp cache entry\n"));
2009 return;
2010 }
2011 ac->ip = ip;
2012 memcpy(ac->ether, ether, ETH_ALEN);
2013 LIST_INSERT_HEAD(&pData->arp_cache, ac, list);
2014}
2015
2016/* updates or adds entry to the arp cache
2017 * @returns 0 - if has found and updated
2018 * 1 - if hasn't found.
2019 */
2020int slirp_arp_cache_update_or_add(PNATState pData, uint32_t dst, const uint8_t *mac)
2021{
2022 if ( !memcmp(mac, broadcast_ethaddr, ETH_ALEN)
2023 || !memcmp(mac, zerro_ethaddr, ETH_ALEN))
2024 {
2025 static bool fBroadcastEtherAddReported;
2026 if (!fBroadcastEtherAddReported)
2027 {
2028 LogRel(("NAT: Attempt to add pair [%RTmac:%RTnaipv4] in ARP cache was ignored\n",
2029 mac, dst));
2030 fBroadcastEtherAddReported = true;
2031 }
2032 return 1;
2033 }
2034 if (slirp_arp_cache_update(pData, dst, mac))
2035 slirp_arp_cache_add(pData, dst, mac);
2036
2037 return 0;
2038}
2039
2040
2041void slirp_set_mtu(PNATState pData, int mtu)
2042{
2043 if (mtu < 20 || mtu >= 16000)
2044 {
2045 LogRel(("NAT: mtu(%d) is out of range (20;16000] mtu forcely assigned to 1500\n", mtu));
2046 mtu = 1500;
2047 }
2048 /* MTU is maximum transition unit on */
2049 if_mtu =
2050 if_mru = mtu;
2051}
2052
2053/**
2054 * Info handler.
2055 */
2056void slirp_info(PNATState pData, const void *pvArg, const char *pszArgs)
2057{
2058 struct socket *so, *so_next;
2059 struct arp_cache_entry *ac;
2060 struct port_forward_rule *rule;
2061 PCDBGFINFOHLP pHlp = (PCDBGFINFOHLP)pvArg;
2062 NOREF(pszArgs);
2063
2064 pHlp->pfnPrintf(pHlp, "NAT parameters: MTU=%d\n", if_mtu);
2065 pHlp->pfnPrintf(pHlp, "NAT TCP ports:\n");
2066 QSOCKET_FOREACH(so, so_next, tcp)
2067 /* { */
2068 pHlp->pfnPrintf(pHlp, " %R[natsock]\n", so);
2069 }
2070
2071 pHlp->pfnPrintf(pHlp, "NAT UDP ports:\n");
2072 QSOCKET_FOREACH(so, so_next, udp)
2073 /* { */
2074 pHlp->pfnPrintf(pHlp, " %R[natsock]\n", so);
2075 }
2076
2077 pHlp->pfnPrintf(pHlp, "NAT ARP cache:\n");
2078 LIST_FOREACH(ac, &pData->arp_cache, list)
2079 {
2080 pHlp->pfnPrintf(pHlp, " %RTnaipv4 %RTmac\n", ac->ip, &ac->ether);
2081 }
2082
2083 pHlp->pfnPrintf(pHlp, "NAT rules:\n");
2084 LIST_FOREACH(rule, &pData->port_forward_rule_head, list)
2085 {
2086 pHlp->pfnPrintf(pHlp, " %s %d => %RTnaipv4:%d %c\n",
2087 rule->proto == IPPROTO_UDP ? "UDP" : "TCP",
2088 rule->host_port, rule->guest_addr.s_addr, rule->guest_port,
2089 rule->activated ? ' ' : '*');
2090 }
2091}
2092
2093/**
2094 * @note: NATState::fUseHostResolver could be changed in bootp.c::dhcp_decode
2095 * @note: this function is executed on GUI/VirtualBox or main/VBoxHeadless thread.
2096 * @note: this function can potentially race with bootp.c::dhcp_decode (except Darwin)
2097 */
2098int slirp_host_network_configuration_change_strategy_selector(const PNATState pData)
2099{
2100 if (pData->fUseHostResolverPermanent)
2101 return VBOX_NAT_DNS_HOSTRESOLVER;
2102
2103 if (pData->fUseDnsProxy) {
2104#if HAVE_NOTIFICATION_FOR_DNS_UPDATE /* XXX */ && !defined(RT_OS_WINDOWS)
2105 /* We dont conflict with bootp.c::dhcp_decode */
2106 struct rcp_state rcp_state;
2107 int rc;
2108
2109 rcp_state.rcps_flags |= RCPSF_IGNORE_IPV6;
2110 rc = rcp_parse(&rcp_state, RESOLV_CONF_FILE);
2111 LogRelFunc(("NAT: rcp_parse:%Rrc old domain:%s new domain:%s\n",
2112 rc, LIST_EMPTY(&pData->pDomainList)
2113 ? "(null)"
2114 : LIST_FIRST(&pData->pDomainList)->dd_pszDomain,
2115 rcp_state.rcps_domain));
2116 if ( RT_FAILURE(rc)
2117 || LIST_EMPTY(&pData->pDomainList))
2118 return VBOX_NAT_DNS_DNSPROXY;
2119
2120 if ( rcp_state.rcps_domain
2121 && strcmp(rcp_state.rcps_domain, LIST_FIRST(&pData->pDomainList)->dd_pszDomain) == 0)
2122 return VBOX_NAT_DNS_DNSPROXY;
2123 else
2124 return VBOX_NAT_DNS_EXTERNAL;
2125#else
2126 /* copy domain name */
2127 /* domain only compare with coy version */
2128 return VBOX_NAT_DNS_DNSPROXY;
2129#endif
2130 }
2131 return VBOX_NAT_DNS_EXTERNAL;
2132}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette