1 | /*
|
---|
2 | * Copyright (C) 2006-2022 Oracle and/or its affiliates.
|
---|
3 | *
|
---|
4 | * This file is part of VirtualBox base platform packages, as
|
---|
5 | * available from https://www.virtualbox.org.
|
---|
6 | *
|
---|
7 | * This program is free software; you can redistribute it and/or
|
---|
8 | * modify it under the terms of the GNU General Public License
|
---|
9 | * as published by the Free Software Foundation, in version 3 of the
|
---|
10 | * License.
|
---|
11 | *
|
---|
12 | * This program is distributed in the hope that it will be useful, but
|
---|
13 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
15 | * General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
19 | *
|
---|
20 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
21 | * --------------------------------------------------------------------
|
---|
22 | *
|
---|
23 | * This code is based on:
|
---|
24 | *
|
---|
25 | * ROM BIOS for use with Bochs/Plex86/QEMU emulation environment
|
---|
26 | *
|
---|
27 | * Copyright (C) 2002 MandrakeSoft S.A.
|
---|
28 | *
|
---|
29 | * MandrakeSoft S.A.
|
---|
30 | * 43, rue d'Aboukir
|
---|
31 | * 75002 Paris - France
|
---|
32 | * http://www.linux-mandrake.com/
|
---|
33 | * http://www.mandrakesoft.com/
|
---|
34 | *
|
---|
35 | * This library is free software; you can redistribute it and/or
|
---|
36 | * modify it under the terms of the GNU Lesser General Public
|
---|
37 | * License as published by the Free Software Foundation; either
|
---|
38 | * version 2 of the License, or (at your option) any later version.
|
---|
39 | *
|
---|
40 | * This library is distributed in the hope that it will be useful,
|
---|
41 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
42 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
43 | * Lesser General Public License for more details.
|
---|
44 | *
|
---|
45 | * You should have received a copy of the GNU Lesser General Public
|
---|
46 | * License along with this library; if not, write to the Free Software
|
---|
47 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
48 | *
|
---|
49 | */
|
---|
50 |
|
---|
51 | /*
|
---|
52 | * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
|
---|
53 | * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
|
---|
54 | * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
|
---|
55 | * a choice of LGPL license versions is made available with the language indicating
|
---|
56 | * that LGPLv2 or any later version may be used, or where a choice of which version
|
---|
57 | * of the LGPL is applied is otherwise unspecified.
|
---|
58 | */
|
---|
59 |
|
---|
60 |
|
---|
61 | #include <stdint.h>
|
---|
62 | #include "biosint.h"
|
---|
63 | #include "inlines.h"
|
---|
64 |
|
---|
65 | #if DEBUG_INT1A
|
---|
66 | # define BX_DEBUG_INT1A(...) BX_DEBUG(__VA_ARGS__)
|
---|
67 | #else
|
---|
68 | # define BX_DEBUG_INT1A(...)
|
---|
69 | #endif
|
---|
70 |
|
---|
71 | // for access to RAM area which is used by interrupt vectors
|
---|
72 | // and BIOS Data Area
|
---|
73 |
|
---|
74 | typedef struct {
|
---|
75 | uint8_t filler1[0x400];
|
---|
76 | uint8_t filler2[0x6c];
|
---|
77 | uint16_t ticks_low;
|
---|
78 | uint16_t ticks_high;
|
---|
79 | uint8_t midnight_flag;
|
---|
80 | } bios_data_t;
|
---|
81 |
|
---|
82 | #define BiosData ((bios_data_t __far *) 0)
|
---|
83 |
|
---|
84 | void init_rtc(void)
|
---|
85 | {
|
---|
86 | outb_cmos(0x0a, 0x26);
|
---|
87 | outb_cmos(0x0b, 0x02);
|
---|
88 | inb_cmos(0x0c);
|
---|
89 | inb_cmos(0x0d);
|
---|
90 | }
|
---|
91 |
|
---|
92 | bx_bool rtc_updating(void)
|
---|
93 | {
|
---|
94 | // This function checks to see if the update-in-progress bit
|
---|
95 | // is set in CMOS Status Register A. If not, it returns 0.
|
---|
96 | // If it is set, it tries to wait until there is a transition
|
---|
97 | // to 0, and will return 0 if such a transition occurs. A 1
|
---|
98 | // is returned only after timing out. The maximum period
|
---|
99 | // that this bit should be set is constrained to 244useconds.
|
---|
100 | // The count I use below guarantees coverage or more than
|
---|
101 | // this time, with any reasonable IPS setting.
|
---|
102 |
|
---|
103 | uint16_t iter;
|
---|
104 |
|
---|
105 | iter = 25000;
|
---|
106 | while (--iter != 0) {
|
---|
107 | if ( (inb_cmos(0x0a) & 0x80) == 0 )
|
---|
108 | return 0;
|
---|
109 | }
|
---|
110 | return 1; // update-in-progress never transitioned to 0
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 | extern void eoi_both_pics(void); /* in assembly code */
|
---|
115 | #pragma aux eoi_both_pics "*";
|
---|
116 |
|
---|
117 | void call_int_4a(void);
|
---|
118 | #pragma aux call_int_4a = "int 4Ah";
|
---|
119 |
|
---|
120 | void BIOSCALL int70_function(pusha_regs_t regs, uint16_t ds, uint16_t es, iret_addr_t iret_addr)
|
---|
121 | {
|
---|
122 | // INT 70h: IRQ 8 - CMOS RTC interrupt from periodic or alarm modes
|
---|
123 | uint8_t registerB = 0, registerC = 0;
|
---|
124 |
|
---|
125 | // Check which modes are enabled and have occurred.
|
---|
126 | registerB = inb_cmos( 0xB );
|
---|
127 | registerC = inb_cmos( 0xC );
|
---|
128 |
|
---|
129 | if( ( registerB & 0x60 ) != 0 ) {
|
---|
130 | if( ( registerC & 0x20 ) != 0 ) {
|
---|
131 | // Handle Alarm Interrupt.
|
---|
132 | int_enable();
|
---|
133 | call_int_4a();
|
---|
134 | int_disable();
|
---|
135 | }
|
---|
136 | if( ( registerC & 0x40 ) != 0 ) {
|
---|
137 | // Handle Periodic Interrupt.
|
---|
138 |
|
---|
139 | if( read_byte( 0x40, 0xA0 ) != 0 ) {
|
---|
140 | // Wait Interval (Int 15, AH=83 or AH=86) active.
|
---|
141 | uint32_t time;
|
---|
142 |
|
---|
143 | time = read_dword( 0x40, 0x9C ); // Time left in microseconds.
|
---|
144 | if( time < 0x3D1 ) {
|
---|
145 | // Done waiting.
|
---|
146 | uint16_t segment, offset;
|
---|
147 |
|
---|
148 | segment = read_word( 0x40, 0x98 );
|
---|
149 | offset = read_word( 0x40, 0x9A );
|
---|
150 | write_byte( 0x40, 0xA0, 0 ); // Turn off status byte.
|
---|
151 | outb_cmos( 0xB, registerB & 0x37 ); // Clear the Periodic Interrupt.
|
---|
152 | write_byte( segment, offset, read_byte(segment, offset) | 0x80 ); // Write to specified flag byte.
|
---|
153 | } else {
|
---|
154 | // Continue waiting.
|
---|
155 | time -= 0x3D1;
|
---|
156 | write_dword( 0x40, 0x9C, time );
|
---|
157 | }
|
---|
158 | }
|
---|
159 | }
|
---|
160 | }
|
---|
161 | eoi_both_pics();
|
---|
162 | }
|
---|
163 |
|
---|
164 | /// @todo the coding style WRT register access is totally inconsistent
|
---|
165 | // in the following routines
|
---|
166 |
|
---|
167 | void BIOSCALL int1a_function(pusha_regs_t regs, uint16_t ds, uint16_t es, iret_addr_t iret_addr)
|
---|
168 | {
|
---|
169 | uint8_t val8;
|
---|
170 |
|
---|
171 | BX_DEBUG_INT1A("int1a: AX=%04x BX=%04x CX=%04x DX=%04x DS=%04x\n",
|
---|
172 | regs.u.r16.ax, regs.u.r16.bx, regs.u.r16.cx, regs.u.r16.dx, ds);
|
---|
173 | int_enable();
|
---|
174 |
|
---|
175 | switch (regs.u.r8.ah) {
|
---|
176 | case 0: // get current clock count
|
---|
177 | int_disable();
|
---|
178 | regs.u.r16.cx = BiosData->ticks_high;
|
---|
179 | regs.u.r16.dx = BiosData->ticks_low;
|
---|
180 | regs.u.r8.al = BiosData->midnight_flag;
|
---|
181 | BiosData->midnight_flag = 0; // reset flag
|
---|
182 | int_enable();
|
---|
183 | // AH already 0
|
---|
184 | ClearCF(iret_addr.flags); // OK
|
---|
185 | break;
|
---|
186 |
|
---|
187 | case 1: // Set Current Clock Count
|
---|
188 | int_disable();
|
---|
189 | BiosData->ticks_high = regs.u.r16.cx;
|
---|
190 | BiosData->ticks_low = regs.u.r16.dx;
|
---|
191 | BiosData->midnight_flag = 0; // reset flag
|
---|
192 | int_enable();
|
---|
193 | regs.u.r8.ah = 0;
|
---|
194 | ClearCF(iret_addr.flags); // OK
|
---|
195 | break;
|
---|
196 |
|
---|
197 | case 2: // Read CMOS Time
|
---|
198 | if (rtc_updating()) {
|
---|
199 | SetCF(iret_addr.flags);
|
---|
200 | break;
|
---|
201 | }
|
---|
202 |
|
---|
203 | regs.u.r8.dh = inb_cmos(0x00); // Seconds
|
---|
204 | regs.u.r8.cl = inb_cmos(0x02); // Minutes
|
---|
205 | regs.u.r8.ch = inb_cmos(0x04); // Hours
|
---|
206 | regs.u.r8.dl = inb_cmos(0x0b) & 0x01; // Stat Reg B
|
---|
207 | regs.u.r8.ah = 0;
|
---|
208 | regs.u.r8.al = regs.u.r8.ch;
|
---|
209 | ClearCF(iret_addr.flags); // OK
|
---|
210 | break;
|
---|
211 |
|
---|
212 | case 3: // Set CMOS Time
|
---|
213 | // Using a debugger, I notice the following masking/setting
|
---|
214 | // of bits in Status Register B, by setting Reg B to
|
---|
215 | // a few values and getting its value after INT 1A was called.
|
---|
216 | //
|
---|
217 | // try#1 try#2 try#3
|
---|
218 | // before 1111 1101 0111 1101 0000 0000
|
---|
219 | // after 0110 0010 0110 0010 0000 0010
|
---|
220 | //
|
---|
221 | // Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
|
---|
222 | // My assumption: RegB = ((RegB & 01100000b) | 00000010b)
|
---|
223 | if (rtc_updating()) {
|
---|
224 | init_rtc();
|
---|
225 | // fall through as if an update were not in progress
|
---|
226 | }
|
---|
227 | outb_cmos(0x00, regs.u.r8.dh); // Seconds
|
---|
228 | outb_cmos(0x02, regs.u.r8.cl); // Minutes
|
---|
229 | outb_cmos(0x04, regs.u.r8.ch); // Hours
|
---|
230 | // Set Daylight Savings time enabled bit to requested value
|
---|
231 | val8 = (inb_cmos(0x0b) & 0x60) | 0x02 | (regs.u.r8.dl & 0x01);
|
---|
232 | // (reg B already selected)
|
---|
233 | outb_cmos(0x0b, val8);
|
---|
234 | regs.u.r8.ah = 0;
|
---|
235 | regs.u.r8.al = val8; // val last written to Reg B
|
---|
236 | ClearCF(iret_addr.flags); // OK
|
---|
237 | break;
|
---|
238 |
|
---|
239 | case 4: // Read CMOS Date
|
---|
240 | regs.u.r8.ah = 0;
|
---|
241 | if (rtc_updating()) {
|
---|
242 | SetCF(iret_addr.flags);
|
---|
243 | break;
|
---|
244 | }
|
---|
245 | regs.u.r8.cl = inb_cmos(0x09); // Year
|
---|
246 | regs.u.r8.dh = inb_cmos(0x08); // Month
|
---|
247 | regs.u.r8.dl = inb_cmos(0x07); // Day of Month
|
---|
248 | regs.u.r8.ch = inb_cmos(0x32); // Century
|
---|
249 | regs.u.r8.al = regs.u.r8.ch;
|
---|
250 | ClearCF(iret_addr.flags); // OK
|
---|
251 | break;
|
---|
252 |
|
---|
253 | case 5: // Set CMOS Date
|
---|
254 | // Using a debugger, I notice the following masking/setting
|
---|
255 | // of bits in Status Register B, by setting Reg B to
|
---|
256 | // a few values and getting its value after INT 1A was called.
|
---|
257 | //
|
---|
258 | // try#1 try#2 try#3 try#4
|
---|
259 | // before 1111 1101 0111 1101 0000 0010 0000 0000
|
---|
260 | // after 0110 1101 0111 1101 0000 0010 0000 0000
|
---|
261 | //
|
---|
262 | // Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
|
---|
263 | // My assumption: RegB = (RegB & 01111111b)
|
---|
264 | if (rtc_updating()) {
|
---|
265 | init_rtc();
|
---|
266 | SetCF(iret_addr.flags);
|
---|
267 | break;
|
---|
268 | }
|
---|
269 | outb_cmos(0x09, regs.u.r8.cl); // Year
|
---|
270 | outb_cmos(0x08, regs.u.r8.dh); // Month
|
---|
271 | outb_cmos(0x07, regs.u.r8.dl); // Day of Month
|
---|
272 | outb_cmos(0x32, regs.u.r8.ch); // Century
|
---|
273 | val8 = inb_cmos(0x0b) & 0x7f; // clear halt-clock bit
|
---|
274 | outb_cmos(0x0b, val8);
|
---|
275 | regs.u.r8.ah = 0;
|
---|
276 | regs.u.r8.al = val8; // AL = val last written to Reg B
|
---|
277 | ClearCF(iret_addr.flags); // OK
|
---|
278 | break;
|
---|
279 |
|
---|
280 | case 6: // Set Alarm Time in CMOS
|
---|
281 | // Using a debugger, I notice the following masking/setting
|
---|
282 | // of bits in Status Register B, by setting Reg B to
|
---|
283 | // a few values and getting its value after INT 1A was called.
|
---|
284 | //
|
---|
285 | // try#1 try#2 try#3
|
---|
286 | // before 1101 1111 0101 1111 0000 0000
|
---|
287 | // after 0110 1111 0111 1111 0010 0000
|
---|
288 | //
|
---|
289 | // Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
|
---|
290 | // My assumption: RegB = ((RegB & 01111111b) | 00100000b)
|
---|
291 | val8 = inb_cmos(0x0b); // Get Status Reg B
|
---|
292 | regs.u.r16.ax = 0;
|
---|
293 | if (val8 & 0x20) {
|
---|
294 | // Alarm interrupt enabled already
|
---|
295 | SetCF(iret_addr.flags); // Error: alarm in use
|
---|
296 | break;
|
---|
297 | }
|
---|
298 | if (rtc_updating()) {
|
---|
299 | init_rtc();
|
---|
300 | // fall through as if an update were not in progress
|
---|
301 | }
|
---|
302 | outb_cmos(0x01, regs.u.r8.dh); // Seconds alarm
|
---|
303 | outb_cmos(0x03, regs.u.r8.cl); // Minutes alarm
|
---|
304 | outb_cmos(0x05, regs.u.r8.ch); // Hours alarm
|
---|
305 | outb(0xa1, inb(0xa1) & 0xfe); // enable IRQ 8
|
---|
306 | // enable Status Reg B alarm bit, clear halt clock bit
|
---|
307 | outb_cmos(0x0b, (val8 & 0x7f) | 0x20);
|
---|
308 | ClearCF(iret_addr.flags); // OK
|
---|
309 | break;
|
---|
310 |
|
---|
311 | case 7: // Turn off Alarm
|
---|
312 | // Using a debugger, I notice the following masking/setting
|
---|
313 | // of bits in Status Register B, by setting Reg B to
|
---|
314 | // a few values and getting its value after INT 1A was called.
|
---|
315 | //
|
---|
316 | // try#1 try#2 try#3 try#4
|
---|
317 | // before 1111 1101 0111 1101 0010 0000 0010 0010
|
---|
318 | // after 0100 0101 0101 0101 0000 0000 0000 0010
|
---|
319 | //
|
---|
320 | // Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
|
---|
321 | // My assumption: RegB = (RegB & 01010111b)
|
---|
322 | val8 = inb_cmos(0x0b); // Get Status Reg B
|
---|
323 | // clear clock-halt bit, disable alarm bit
|
---|
324 | outb_cmos(0x0b, val8 & 0x57); // disable alarm bit
|
---|
325 | regs.u.r8.ah = 0;
|
---|
326 | regs.u.r8.al = val8; // val last written to Reg B
|
---|
327 | ClearCF(iret_addr.flags); // OK
|
---|
328 | break;
|
---|
329 |
|
---|
330 | default:
|
---|
331 | BX_DEBUG_INT1A("int1a: AX=%04x unsupported\n", regs.u.r16.ax);
|
---|
332 | SetCF(iret_addr.flags); // Unsupported
|
---|
333 | }
|
---|
334 | }
|
---|