VirtualBox

source: vbox/trunk/src/VBox/Devices/PC/DevDMA.cpp@ 55365

Last change on this file since 55365 was 48947, checked in by vboxsync, 11 years ago

Devices: Whitespace and svn:keyword cleanups by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 33.4 KB
Line 
1/* $Id: DevDMA.cpp 48947 2013-10-07 21:41:00Z vboxsync $ */
2/** @file
3 * DevDMA - DMA Controller Device.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 * --------------------------------------------------------------------
17 *
18 * This code is loosely based on:
19 *
20 * QEMU DMA emulation
21 *
22 * Copyright (c) 2003 Vassili Karpov (malc)
23 *
24 * Permission is hereby granted, free of charge, to any person obtaining a copy
25 * of this software and associated documentation files (the "Software"), to deal
26 * in the Software without restriction, including without limitation the rights
27 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
28 * copies of the Software, and to permit persons to whom the Software is
29 * furnished to do so, subject to the following conditions:
30 *
31 * The above copyright notice and this permission notice shall be included in
32 * all copies or substantial portions of the Software.
33 *
34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
35 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
36 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
37 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
38 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
39 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
40 * THE SOFTWARE.
41 */
42
43/*******************************************************************************
44* Header Files *
45*******************************************************************************/
46#define LOG_GROUP LOG_GROUP_DEV_DMA
47#include <VBox/vmm/pdmdev.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/assert.h>
52#include <iprt/string.h>
53
54#include <stdio.h>
55#include <stdlib.h>
56
57#include "VBoxDD.h"
58
59
60/** @page pg_dev_dma DMA Overview and notes
61 *
62 * Modern PCs typically emulate AT-compatible DMA. The IBM PC/AT used dual
63 * cascaded 8237A DMA controllers, augmented with a 74LS612 memory mapper.
64 * The 8237As are 8-bit parts, only capable of addressing up to 64KB; the
65 * 74LS612 extends addressing to 24 bits. That leads to well known and
66 * inconvenient DMA limitations:
67 * - DMA can only access physical memory under the 16MB line
68 * - DMA transfers must occur within a 64KB/128KB 'page'
69 *
70 * The 16-bit DMA controller added in the PC/AT shifts all 8237A addresses
71 * left by one, including the control registers addresses. The DMA register
72 * offsets (except for the page registers) are therefore "double spaced".
73 *
74 * Due to the address shifting, the DMA controller decodes more addresses
75 * than are usually documented, with aliasing. See the ICH8 datasheet.
76 *
77 * In the IBM PC and PC/XT, DMA channel 0 was used for memory refresh, thus
78 * preventing the use of memory-to-memory DMA transfers (which use channels
79 * 0 and 1). In the PC/AT, memory-to-memory DMA was theoretically possible.
80 * However, it would transfer a single byte at a time, while the CPU can
81 * transfer two (on a 286) or four (on a 386+) bytes at a time. On many
82 * compatibles, memory-to-memory DMA is not even implemented at all, and
83 * therefore has no practical use.
84 *
85 * Auto-init mode is handled implicitly; a device's transfer handler may
86 * return an end count lower than the start count.
87 *
88 * Naming convention: 'channel' refers to a system-wide DMA channel (0-7)
89 * while 'chidx' refers to a DMA channel index within a controller (0-3).
90 *
91 * References:
92 * - IBM Personal Computer AT Technical Reference, 1984
93 * - Intel 8237A-5 Datasheet, 1993
94 * - Frank van Gilluwe, The Undocumented PC, 1994
95 * - OPTi 82C206 Data Book, 1996 (or Chips & Tech 82C206)
96 * - Intel ICH8 Datasheet, 2007
97 */
98
99
100/* Saved state versions. */
101#define DMA_SAVESTATE_OLD 1 /* The original saved state. */
102#define DMA_SAVESTATE_CURRENT 2 /* The new and improved saved state. */
103
104/* State information for a single DMA channel. */
105typedef struct {
106 void *pvUser; /* User specific context. */
107 PFNDMATRANSFERHANDLER pfnXferHandler; /* Transfer handler for channel. */
108 uint16_t u16BaseAddr; /* Base address for transfers. */
109 uint16_t u16BaseCount; /* Base count for transfers. */
110 uint16_t u16CurAddr; /* Current address. */
111 uint16_t u16CurCount; /* Current count. */
112 uint8_t u8Mode; /* Channel mode. */
113} DMAChannel;
114
115/* State information for a DMA controller (DMA8 or DMA16). */
116typedef struct {
117 DMAChannel ChState[4]; /* Per-channel state. */
118 uint8_t au8Page[8]; /* Page registers (A16-A23). */
119 uint8_t au8PageHi[8]; /* High page registers (A24-A31). */
120 uint8_t u8Command; /* Command register. */
121 uint8_t u8Status; /* Status register. */
122 uint8_t u8Mask; /* Mask register. */
123 uint8_t u8Temp; /* Temporary (mem/mem) register. */
124 uint8_t u8ModeCtr; /* Mode register counter for reads. */
125 bool fHiByte; /* Byte pointer (T/F -> high/low). */
126 uint32_t is16bit; /* True for 16-bit DMA. */
127} DMAControl;
128
129/* Complete DMA state information. */
130typedef struct {
131 PPDMDEVINS pDevIns; /* Device instance. */
132 PCPDMDMACHLP pHlp; /* PDM DMA helpers. */
133 DMAControl DMAC[2]; /* Two DMA controllers. */
134} DMAState;
135
136/* DMA command register bits. */
137enum {
138 CMD_MEMTOMEM = 0x01, /* Enable mem-to-mem trasfers. */
139 CMD_ADRHOLD = 0x02, /* Address hold for mem-to-mem. */
140 CMD_DISABLE = 0x04, /* Disable controller. */
141 CMD_COMPRTIME = 0x08, /* Compressed timing. */
142 CMD_ROTPRIO = 0x10, /* Rotating priority. */
143 CMD_EXTWR = 0x20, /* Extended write. */
144 CMD_DREQHI = 0x40, /* DREQ is active high if set. */
145 CMD_DACKHI = 0x80, /* DACK is active high if set. */
146 CMD_UNSUPPORTED = CMD_MEMTOMEM | CMD_ADRHOLD | CMD_COMPRTIME
147 | CMD_EXTWR | CMD_DREQHI | CMD_DACKHI
148};
149
150/* DMA control register offsets for read accesses. */
151enum {
152 CTL_R_STAT, /* Read status registers. */
153 CTL_R_DMAREQ, /* Read DRQ register. */
154 CTL_R_CMD, /* Read command register. */
155 CTL_R_MODE, /* Read mode register. */
156 CTL_R_SETBPTR, /* Set byte pointer flip-flop. */
157 CTL_R_TEMP, /* Read temporary register. */
158 CTL_R_CLRMODE, /* Clear mode register counter. */
159 CTL_R_MASK /* Read all DRQ mask bits. */
160};
161
162/* DMA control register offsets for read accesses. */
163enum {
164 CTL_W_CMD, /* Write command register. */
165 CTL_W_DMAREQ, /* Write DRQ register. */
166 CTL_W_MASKONE, /* Write single DRQ mask bit. */
167 CTL_W_MODE, /* Write mode register. */
168 CTL_W_CLRBPTR, /* Clear byte pointer flip-flop. */
169 CTL_W_MASTRCLR, /* Master clear. */
170 CTL_W_CLRMASK, /* Clear all DRQ mask bits. */
171 CTL_W_MASK /* Write all DRQ mask bits. */
172};
173
174/* DMA transfer modes. */
175enum {
176 DMODE_DEMAND, /* Demand transfer mode. */
177 DMODE_SINGLE, /* Single transfer mode. */
178 DMODE_BLOCK, /* Block transfer mode. */
179 DMODE_CASCADE /* Cascade mode. */
180};
181
182/* DMA transfer types. */
183enum {
184 DTYPE_VERIFY, /* Verify transfer type. */
185 DTYPE_WRITE, /* Write transfer type. */
186 DTYPE_READ, /* Read transfer type. */
187 DTYPE_ILLEGAL /* Undefined. */
188};
189
190/* Convert DMA channel number (0-7) to controller number (0-1). */
191#define DMACH2C(c) (c < 4 ? 0 : 1)
192
193static int dmaChannelMap[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
194/* Map a DMA page register offset (0-7) to channel index (0-3). */
195#define DMAPG2CX(c) (dmaChannelMap[c])
196
197static int dmaMapChannel[4] = {7, 3, 1, 2};
198/* Map a channel index (0-3) to DMA page register offset (0-7). */
199#define DMACX2PG(c) (dmaMapChannel[c])
200/* Map a channel number (0-7) to DMA page register offset (0-7). */
201#define DMACH2PG(c) (dmaMapChannel[c & 3])
202
203/* Test the decrement bit of mode register. */
204#define IS_MODE_DEC(c) ((c) & 0x20)
205/* Test the auto-init bit of mode register. */
206#define IS_MODE_AI(c) ((c) & 0x10)
207/* Extract the transfer type bits of mode register. */
208#define GET_MODE_XTYP(c)(((c) & 0x0c) >> 2)
209
210/* Perform a master clear (reset) on a DMA controller. */
211static void dmaClear(DMAControl *dc)
212{
213 dc->u8Command = 0;
214 dc->u8Status = 0;
215 dc->u8Temp = 0;
216 dc->u8ModeCtr = 0;
217 dc->fHiByte = false;
218 dc->u8Mask = ~0;
219}
220
221/* Read the byte pointer and flip it. */
222static inline bool dmaReadBytePtr(DMAControl *dc)
223{
224 bool bHighByte;
225
226 bHighByte = !!dc->fHiByte;
227 dc->fHiByte ^= 1;
228 return bHighByte;
229}
230
231/* DMA address registers writes and reads. */
232
233static DECLCALLBACK(int) dmaWriteAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb)
234{
235 if (cb == 1)
236 {
237 DMAControl *dc = (DMAControl *)pvUser;
238 DMAChannel *ch;
239 int chidx, reg, is_count;
240
241 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
242 reg = (port >> dc->is16bit) & 0x0f;
243 chidx = reg >> 1;
244 is_count = reg & 1;
245 ch = &dc->ChState[chidx];
246 if (dmaReadBytePtr(dc))
247 {
248 /* Write the high byte. */
249 if (is_count)
250 ch->u16BaseCount = RT_MAKE_U16(ch->u16BaseCount, u32);
251 else
252 ch->u16BaseAddr = RT_MAKE_U16(ch->u16BaseAddr, u32);
253
254 ch->u16CurCount = 0;
255 ch->u16CurAddr = ch->u16BaseAddr;
256 }
257 else
258 {
259 /* Write the low byte. */
260 if (is_count)
261 ch->u16BaseCount = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseCount));
262 else
263 ch->u16BaseAddr = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseAddr));
264 }
265 Log2(("dmaWriteAddr: port %#06x, chidx %d, data %#02x\n",
266 port, chidx, u32));
267 }
268 else
269 {
270 /* Likely a guest bug. */
271 Log(("Bad size write to count register %#x (size %d, data %#x)\n",
272 port, cb, u32));
273 }
274 return VINF_SUCCESS;
275}
276
277static DECLCALLBACK(int) dmaReadAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
278{
279 if (cb == 1)
280 {
281 DMAControl *dc = (DMAControl *)pvUser;
282 DMAChannel *ch;
283 int chidx, reg, val, dir;
284 int bptr;
285
286 reg = (port >> dc->is16bit) & 0x0f;
287 chidx = reg >> 1;
288 ch = &dc->ChState[chidx];
289
290 dir = IS_MODE_DEC(ch->u8Mode) ? -1 : 1;
291 if (reg & 1)
292 val = ch->u16BaseCount - ch->u16CurCount;
293 else
294 val = ch->u16CurAddr + ch->u16CurCount * dir;
295
296 bptr = dmaReadBytePtr(dc);
297 *pu32 = RT_LOBYTE(val >> (bptr * 8));
298
299 Log(("Count read: port %#06x, reg %#04x, data %#x\n", port, reg, val));
300 return VINF_SUCCESS;
301 }
302 else
303 return VERR_IOM_IOPORT_UNUSED;
304}
305
306/* DMA control registers writes and reads. */
307
308static DECLCALLBACK(int) dmaWriteCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
309 uint32_t u32, unsigned cb)
310{
311 if (cb == 1)
312 {
313 DMAControl *dc = (DMAControl *)pvUser;
314 int chidx = 0;
315 int reg;
316
317 reg = ((port >> dc->is16bit) & 0x0f) - 8;
318 Assert((reg >= CTL_W_CMD && reg <= CTL_W_MASK));
319 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
320
321 switch (reg) {
322 case CTL_W_CMD:
323 /* Unsupported commands are entirely ignored. */
324 if (u32 & CMD_UNSUPPORTED)
325 {
326 Log(("DMA command %#x is not supported, ignoring!\n", u32));
327 break;
328 }
329 dc->u8Command = u32;
330 break;
331 case CTL_W_DMAREQ:
332 chidx = u32 & 3;
333 if (u32 & 4)
334 dc->u8Status |= 1 << (chidx + 4);
335 else
336 dc->u8Status &= ~(1 << (chidx + 4));
337 dc->u8Status &= ~(1 << chidx); /* Clear TC for channel. */
338 break;
339 case CTL_W_MASKONE:
340 chidx = u32 & 3;
341 if (u32 & 4)
342 dc->u8Mask |= 1 << chidx;
343 else
344 dc->u8Mask &= ~(1 << chidx);
345 break;
346 case CTL_W_MODE:
347 {
348 int op, opmode;
349
350 chidx = u32 & 3;
351 op = (u32 >> 2) & 3;
352 opmode = (u32 >> 6) & 3;
353 Log2(("chidx %d, op %d, %sauto-init, %screment, opmode %d\n",
354 chidx, op, IS_MODE_AI(u32) ? "" : "no ",
355 IS_MODE_DEC(u32) ? "de" : "in", opmode));
356
357 dc->ChState[chidx].u8Mode = u32;
358 break;
359 }
360 case CTL_W_CLRBPTR:
361 dc->fHiByte = false;
362 break;
363 case CTL_W_MASTRCLR:
364 dmaClear(dc);
365 break;
366 case CTL_W_CLRMASK:
367 dc->u8Mask = 0;
368 break;
369 case CTL_W_MASK:
370 dc->u8Mask = u32;
371 break;
372 default:
373 Assert(0);
374 break;
375 }
376 Log(("dmaWriteCtl: port %#06x, chidx %d, data %#02x\n",
377 port, chidx, u32));
378 }
379 else
380 {
381 /* Likely a guest bug. */
382 Log(("Bad size write to controller register %#x (size %d, data %#x)\n",
383 port, cb, u32));
384 }
385 return VINF_SUCCESS;
386}
387
388static DECLCALLBACK(int) dmaReadCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
389{
390 if (cb == 1)
391 {
392 DMAControl *dc = (DMAControl *)pvUser;
393 uint8_t val = 0;
394 int reg;
395
396 reg = ((port >> dc->is16bit) & 0x0f) - 8;
397 Assert((reg >= CTL_R_STAT && reg <= CTL_R_MASK));
398
399 switch (reg)
400 {
401 case CTL_R_STAT:
402 val = dc->u8Status;
403 dc->u8Status &= 0xf0; /* A read clears all TCs. */
404 break;
405 case CTL_R_DMAREQ:
406 val = (dc->u8Status >> 4) | 0xf0;
407 break;
408 case CTL_R_CMD:
409 val = dc->u8Command;
410 break;
411 case CTL_R_MODE:
412 val = dc->ChState[dc->u8ModeCtr].u8Mode | 3;
413 dc->u8ModeCtr = (dc->u8ModeCtr + 1) & 3;
414 case CTL_R_SETBPTR:
415 dc->fHiByte = true;
416 break;
417 case CTL_R_TEMP:
418 val = dc->u8Temp;
419 break;
420 case CTL_R_CLRMODE:
421 dc->u8ModeCtr = 0;
422 break;
423 case CTL_R_MASK:
424 val = dc->u8Mask;
425 break;
426 default:
427 Assert(0);
428 break;
429 }
430
431 Log(("Ctrl read: port %#06x, reg %#04x, data %#x\n", port, reg, val));
432 *pu32 = val;
433
434 return VINF_SUCCESS;
435 }
436 return VERR_IOM_IOPORT_UNUSED;
437}
438
439/** DMA page registers. There are 16 R/W page registers for compatibility with
440 * the IBM PC/AT; only some of those registers are used for DMA. The page register
441 * accessible via port 80h may be read to insert small delays or used as a scratch
442 * register by a BIOS.
443 */
444static DECLCALLBACK(int) dmaReadPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
445{
446 DMAControl *dc = (DMAControl *)pvUser;
447 int reg;
448
449 if (cb == 1)
450 {
451 reg = port & 7;
452 *pu32 = dc->au8Page[reg];
453 Log2(("Read %#x (byte) from page register %#x (channel %d)\n",
454 *pu32, port, DMAPG2CX(reg)));
455 return VINF_SUCCESS;
456 }
457
458 if (cb == 2)
459 {
460 reg = port & 7;
461 *pu32 = dc->au8Page[reg] | (dc->au8Page[(reg + 1) & 7] << 8);
462 Log2(("Read %#x (word) from page register %#x (channel %d)\n",
463 *pu32, port, DMAPG2CX(reg)));
464 return VINF_SUCCESS;
465 }
466
467 return VERR_IOM_IOPORT_UNUSED;
468}
469
470static DECLCALLBACK(int) dmaWritePage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb)
471{
472 DMAControl *dc = (DMAControl *)pvUser;
473 int reg;
474
475 if (cb == 1)
476 {
477 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
478 reg = port & 7;
479 dc->au8Page[reg] = u32;
480 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
481 Log2(("Wrote %#x to page register %#x (channel %d)\n",
482 u32, port, DMAPG2CX(reg)));
483 }
484 else if (cb == 2)
485 {
486 Assert(!(u32 & ~0xffff)); /* Check for garbage in high bits. */
487 reg = port & 7;
488 dc->au8Page[reg] = u32;
489 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
490 reg = (port + 1) & 7;
491 dc->au8Page[reg] = u32 >> 8;
492 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
493 }
494 else
495 {
496 /* Likely a guest bug. */
497 Log(("Bad size write to page register %#x (size %d, data %#x)\n",
498 port, cb, u32));
499 }
500 return VINF_SUCCESS;
501}
502
503/**
504 * EISA style high page registers, for extending the DMA addresses to cover
505 * the entire 32-bit address space.
506 */
507static DECLCALLBACK(int) dmaReadHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
508{
509 if (cb == 1)
510 {
511 DMAControl *dc = (DMAControl *)pvUser;
512 int reg;
513
514 reg = port & 7;
515 *pu32 = dc->au8PageHi[reg];
516 Log2(("Read %#x to from high page register %#x (channel %d)\n",
517 *pu32, port, DMAPG2CX(reg)));
518 return VINF_SUCCESS;
519 }
520 return VERR_IOM_IOPORT_UNUSED;
521}
522
523static DECLCALLBACK(int) dmaWriteHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb)
524{
525 if (cb == 1)
526 {
527 DMAControl *dc = (DMAControl *)pvUser;
528 int reg;
529
530 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
531 reg = port & 7;
532 dc->au8PageHi[reg] = u32;
533 Log2(("Wrote %#x to high page register %#x (channel %d)\n",
534 u32, port, DMAPG2CX(reg)));
535 }
536 else
537 {
538 /* Likely a guest bug. */
539 Log(("Bad size write to high page register %#x (size %d, data %#x)\n",
540 port, cb, u32));
541 }
542 return VINF_SUCCESS;
543}
544
545/** Perform any pending transfers on a single DMA channel. */
546static void dmaRunChannel(DMAState *pThis, int ctlidx, int chidx)
547{
548 DMAControl *dc = &pThis->DMAC[ctlidx];
549 DMAChannel *ch = &dc->ChState[chidx];
550 uint32_t start_cnt, end_cnt;
551 int opmode;
552
553 opmode = (ch->u8Mode >> 6) & 3;
554
555 Log3(("DMA address %screment, mode %d\n",
556 IS_MODE_DEC(ch->u8Mode) ? "de" : "in",
557 ch->u8Mode >> 6));
558
559 /* Addresses and counts are shifted for 16-bit channels. */
560 start_cnt = ch->u16CurCount << dc->is16bit;
561 /* NB: The device is responsible for examining the DMA mode and not
562 * transferring more than it should if auto-init is not in use.
563 */
564 end_cnt = ch->pfnXferHandler(pThis->pDevIns, ch->pvUser, (ctlidx * 4) + chidx,
565 start_cnt, (ch->u16BaseCount + 1) << dc->is16bit);
566 ch->u16CurCount = end_cnt >> dc->is16bit;
567 /* Set the TC (Terminal Count) bit if transfer was completed. */
568 if (ch->u16CurCount == ch->u16BaseCount + 1)
569 switch (opmode)
570 {
571 case DMODE_DEMAND:
572 case DMODE_SINGLE:
573 case DMODE_BLOCK:
574 dc->u8Status |= RT_BIT(chidx);
575 Log3(("TC set for DMA channel %d\n", (ctlidx * 4) + chidx));
576 break;
577 default:
578 break;
579 }
580 Log3(("DMA position %d, size %d\n", end_cnt, (ch->u16BaseCount + 1) << dc->is16bit));
581}
582
583/**
584 * @interface_method_impl{PDMDMAREG,pfnRun}
585 */
586static DECLCALLBACK(bool) dmaRun(PPDMDEVINS pDevIns)
587{
588 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
589 DMAControl *dc;
590 int ctlidx, chidx, mask;
591 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
592
593 /* Run all controllers and channels. */
594 for (ctlidx = 0; ctlidx < 2; ++ctlidx)
595 {
596 dc = &pThis->DMAC[ctlidx];
597
598 /* If controller is disabled, don't even bother. */
599 if (dc->u8Command & CMD_DISABLE)
600 continue;
601
602 for (chidx = 0; chidx < 4; ++chidx)
603 {
604 mask = 1 << chidx;
605 if (!(dc->u8Mask & mask) && (dc->u8Status & (mask << 4)))
606 dmaRunChannel(pThis, ctlidx, chidx);
607 }
608 }
609
610 PDMCritSectLeave(pDevIns->pCritSectRoR3);
611 return 0;
612}
613
614/**
615 * @interface_method_impl{PDMDMAREG,pfnRegister}
616 */
617static DECLCALLBACK(void) dmaRegister(PPDMDEVINS pDevIns, unsigned uChannel,
618 PFNDMATRANSFERHANDLER pfnTransferHandler, void *pvUser)
619{
620 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
621 DMAChannel *ch = &pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3];
622
623 LogFlow(("dmaRegister: pThis=%p uChannel=%u pfnTransferHandler=%p pvUser=%p\n", pThis, uChannel, pfnTransferHandler, pvUser));
624
625 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
626 ch->pfnXferHandler = pfnTransferHandler;
627 ch->pvUser = pvUser;
628 PDMCritSectLeave(pDevIns->pCritSectRoR3);
629}
630
631/** Reverse the order of bytes in a memory buffer. */
632static void dmaReverseBuf8(void *buf, unsigned len)
633{
634 uint8_t *pBeg, *pEnd;
635 uint8_t temp;
636
637 pBeg = (uint8_t *)buf;
638 pEnd = pBeg + len - 1;
639 for (len = len / 2; len; --len)
640 {
641 temp = *pBeg;
642 *pBeg++ = *pEnd;
643 *pEnd-- = temp;
644 }
645}
646
647/** Reverse the order of words in a memory buffer. */
648static void dmaReverseBuf16(void *buf, unsigned len)
649{
650 uint16_t *pBeg, *pEnd;
651 uint16_t temp;
652
653 Assert(!(len & 1));
654 len /= 2; /* Convert to word count. */
655 pBeg = (uint16_t *)buf;
656 pEnd = pBeg + len - 1;
657 for (len = len / 2; len; --len)
658 {
659 temp = *pBeg;
660 *pBeg++ = *pEnd;
661 *pEnd-- = temp;
662 }
663}
664
665/**
666 * @interface_method_impl{PDMDMAREG,pfnReadMemory}
667 */
668static DECLCALLBACK(uint32_t) dmaReadMemory(PPDMDEVINS pDevIns, unsigned uChannel,
669 void *pvBuffer, uint32_t off, uint32_t cbBlock)
670{
671 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
672 DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)];
673 DMAChannel *ch = &dc->ChState[uChannel & 3];
674 uint32_t page, pagehi;
675 uint32_t addr;
676
677 LogFlow(("dmaReadMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock));
678
679 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
680
681 /* Build the address for this transfer. */
682 page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit;
683 pagehi = dc->au8PageHi[DMACH2PG(uChannel)];
684 addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit);
685
686 if (IS_MODE_DEC(ch->u8Mode))
687 {
688 PDMDevHlpPhysRead(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock);
689 if (dc->is16bit)
690 dmaReverseBuf16(pvBuffer, cbBlock);
691 else
692 dmaReverseBuf8(pvBuffer, cbBlock);
693 }
694 else
695 PDMDevHlpPhysRead(pThis->pDevIns, addr + off, pvBuffer, cbBlock);
696
697 PDMCritSectLeave(pDevIns->pCritSectRoR3);
698 return cbBlock;
699}
700
701/**
702 * @interface_method_impl{PDMDMAREG,pfnWriteMemory}
703 */
704static DECLCALLBACK(uint32_t) dmaWriteMemory(PPDMDEVINS pDevIns, unsigned uChannel,
705 const void *pvBuffer, uint32_t off, uint32_t cbBlock)
706{
707 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
708 DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)];
709 DMAChannel *ch = &dc->ChState[uChannel & 3];
710 uint32_t page, pagehi;
711 uint32_t addr;
712
713 LogFlow(("dmaWriteMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock));
714 if (GET_MODE_XTYP(ch->u8Mode) == DTYPE_VERIFY)
715 {
716 Log(("DMA verify transfer, ignoring write.\n"));
717 return cbBlock;
718 }
719
720 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
721
722 /* Build the address for this transfer. */
723 page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit;
724 pagehi = dc->au8PageHi[DMACH2PG(uChannel)];
725 addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit);
726
727 if (IS_MODE_DEC(ch->u8Mode))
728 {
729 //@todo: This would need a temporary buffer.
730 Assert(0);
731#if 0
732 if (dc->is16bit)
733 dmaReverseBuf16(pvBuffer, cbBlock);
734 else
735 dmaReverseBuf8(pvBuffer, cbBlock);
736#endif
737 PDMDevHlpPhysWrite(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock);
738 }
739 else
740 PDMDevHlpPhysWrite(pThis->pDevIns, addr + off, pvBuffer, cbBlock);
741
742 PDMCritSectLeave(pDevIns->pCritSectRoR3);
743 return cbBlock;
744}
745
746/**
747 * @interface_method_impl{PDMDMAREG,pfnSetDREQ}
748 */
749static DECLCALLBACK(void) dmaSetDREQ(PPDMDEVINS pDevIns, unsigned uChannel, unsigned uLevel)
750{
751 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
752 DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)];
753 int chidx;
754
755 LogFlow(("dmaSetDREQ: pThis=%p uChannel=%u uLevel=%u\n", pThis, uChannel, uLevel));
756
757 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
758 chidx = uChannel & 3;
759 if (uLevel)
760 dc->u8Status |= 1 << (chidx + 4);
761 else
762 dc->u8Status &= ~(1 << (chidx + 4));
763 PDMCritSectLeave(pDevIns->pCritSectRoR3);
764}
765
766/**
767 * @interface_method_impl{PDMDMAREG,pfnGetChannelMode}
768 */
769static DECLCALLBACK(uint8_t) dmaGetChannelMode(PPDMDEVINS pDevIns, unsigned uChannel)
770{
771 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
772
773 LogFlow(("dmaGetChannelMode: pThis=%p uChannel=%u\n", pThis, uChannel));
774
775 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
776 uint8_t u8Mode = pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3].u8Mode;
777 PDMCritSectLeave(pDevIns->pCritSectRoR3);
778 return u8Mode;
779}
780
781
782/**
783 * @interface_method_impl{PDMDEVREG,pfnReset}
784 */
785static void dmaReset(PPDMDEVINS pDevIns)
786{
787 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
788
789 LogFlow(("dmaReset: pThis=%p\n", pThis));
790
791 /* NB: The page and address registers are unaffected by a reset
792 * and in an undefined state after power-up.
793 */
794 dmaClear(&pThis->DMAC[0]);
795 dmaClear(&pThis->DMAC[1]);
796}
797
798/** Register DMA I/O port handlers. */
799static void dmaIORegister(PPDMDEVINS pDevIns, bool fHighPage)
800{
801 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
802 DMAControl *dc8 = &pThis->DMAC[0];
803 DMAControl *dc16 = &pThis->DMAC[1];
804
805 dc8->is16bit = false;
806 dc16->is16bit = true;
807
808 /* Base and current address for each channel. */
809 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x00, 8, dc8, dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA8 Address");
810 PDMDevHlpIOPortRegister(pThis->pDevIns, 0xC0, 16, dc16, dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA16 Address");
811
812 /* Control registers for both DMA controllers. */
813 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x08, 8, dc8, dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA8 Control");
814 PDMDevHlpIOPortRegister(pThis->pDevIns, 0xD0, 16, dc16, dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA16 Control");
815
816 /* Page registers for each channel (plus a few unused ones). */
817 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x80, 8, dc8, dmaWritePage, dmaReadPage, NULL, NULL, "DMA8 Page");
818 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x88, 8, dc16, dmaWritePage, dmaReadPage, NULL, NULL, "DMA16 Page");
819
820 /* Optional EISA style high page registers (address bits 24-31). */
821 if (fHighPage)
822 {
823 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x480, 8, dc8, dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA8 Page High");
824 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x488, 8, dc16, dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA16 Page High");
825 }
826}
827
828static void dmaSaveController(PSSMHANDLE pSSMHandle, DMAControl *dc)
829{
830 int chidx;
831
832 /* Save controller state... */
833 SSMR3PutU8(pSSMHandle, dc->u8Command);
834 SSMR3PutU8(pSSMHandle, dc->u8Mask);
835 SSMR3PutU8(pSSMHandle, dc->fHiByte);
836 SSMR3PutU32(pSSMHandle, dc->is16bit);
837 SSMR3PutU8(pSSMHandle, dc->u8Status);
838 SSMR3PutU8(pSSMHandle, dc->u8Temp);
839 SSMR3PutU8(pSSMHandle, dc->u8ModeCtr);
840 SSMR3PutMem(pSSMHandle, &dc->au8Page, sizeof(dc->au8Page));
841 SSMR3PutMem(pSSMHandle, &dc->au8PageHi, sizeof(dc->au8PageHi));
842
843 /* ...and all four of its channels. */
844 for (chidx = 0; chidx < 4; ++chidx)
845 {
846 DMAChannel *ch = &dc->ChState[chidx];
847
848 SSMR3PutU16(pSSMHandle, ch->u16CurAddr);
849 SSMR3PutU16(pSSMHandle, ch->u16CurCount);
850 SSMR3PutU16(pSSMHandle, ch->u16BaseAddr);
851 SSMR3PutU16(pSSMHandle, ch->u16BaseCount);
852 SSMR3PutU8(pSSMHandle, ch->u8Mode);
853 }
854}
855
856static int dmaLoadController(PSSMHANDLE pSSMHandle, DMAControl *dc, int version)
857{
858 uint8_t u8val;
859 uint32_t u32val;
860 int chidx;
861
862 SSMR3GetU8(pSSMHandle, &dc->u8Command);
863 SSMR3GetU8(pSSMHandle, &dc->u8Mask);
864 SSMR3GetU8(pSSMHandle, &u8val);
865 dc->fHiByte = !!u8val;
866 SSMR3GetU32(pSSMHandle, &dc->is16bit);
867 if (version > DMA_SAVESTATE_OLD)
868 {
869 SSMR3GetU8(pSSMHandle, &dc->u8Status);
870 SSMR3GetU8(pSSMHandle, &dc->u8Temp);
871 SSMR3GetU8(pSSMHandle, &dc->u8ModeCtr);
872 SSMR3GetMem(pSSMHandle, &dc->au8Page, sizeof(dc->au8Page));
873 SSMR3GetMem(pSSMHandle, &dc->au8PageHi, sizeof(dc->au8PageHi));
874 }
875
876 for (chidx = 0; chidx < 4; ++chidx)
877 {
878 DMAChannel *ch = &dc->ChState[chidx];
879
880 if (version == DMA_SAVESTATE_OLD)
881 {
882 /* Convert from 17-bit to 16-bit format. */
883 SSMR3GetU32(pSSMHandle, &u32val);
884 ch->u16CurAddr = u32val >> dc->is16bit;
885 SSMR3GetU32(pSSMHandle, &u32val);
886 ch->u16CurCount = u32val >> dc->is16bit;
887 }
888 else
889 {
890 SSMR3GetU16(pSSMHandle, &ch->u16CurAddr);
891 SSMR3GetU16(pSSMHandle, &ch->u16CurCount);
892 }
893 SSMR3GetU16(pSSMHandle, &ch->u16BaseAddr);
894 SSMR3GetU16(pSSMHandle, &ch->u16BaseCount);
895 SSMR3GetU8(pSSMHandle, &ch->u8Mode);
896 /* Convert from old save state. */
897 if (version == DMA_SAVESTATE_OLD)
898 {
899 /* Remap page register contents. */
900 SSMR3GetU8(pSSMHandle, &u8val);
901 dc->au8Page[DMACX2PG(chidx)] = u8val;
902 SSMR3GetU8(pSSMHandle, &u8val);
903 dc->au8PageHi[DMACX2PG(chidx)] = u8val;
904 /* Throw away dack, eop. */
905 SSMR3GetU8(pSSMHandle, &u8val);
906 SSMR3GetU8(pSSMHandle, &u8val);
907 }
908 }
909 return 0;
910}
911
912/** @callback_method_impl{FNSSMDEVSAVEEXEC} */
913static DECLCALLBACK(int) dmaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
914{
915 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
916
917 dmaSaveController(pSSMHandle, &pThis->DMAC[0]);
918 dmaSaveController(pSSMHandle, &pThis->DMAC[1]);
919 return VINF_SUCCESS;
920}
921
922/** @callback_method_impl{FNSSMDEVLOADEXEC} */
923static DECLCALLBACK(int) dmaLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t uVersion, uint32_t uPass)
924{
925 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
926
927 AssertMsgReturn(uVersion <= DMA_SAVESTATE_CURRENT, ("%d\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
928 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
929
930 dmaLoadController(pSSMHandle, &pThis->DMAC[0], uVersion);
931 return dmaLoadController(pSSMHandle, &pThis->DMAC[1], uVersion);
932}
933
934/**
935 * @interface_method_impl{PDMDEVREG,pfnConstruct}
936 */
937static DECLCALLBACK(int) dmaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
938{
939 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
940 bool bHighPage = false;
941 PDMDMACREG reg;
942 int rc;
943
944 pThis->pDevIns = pDevIns;
945
946 /*
947 * Validate configuration.
948 */
949 if (!CFGMR3AreValuesValid(pCfg, "\0")) /* "HighPageEnable\0")) */
950 return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES;
951
952#if 0
953 rc = CFGMR3QueryBool(pCfg, "HighPageEnable", &bHighPage);
954 if (RT_FAILURE (rc))
955 return rc;
956#endif
957
958 dmaIORegister(pDevIns, bHighPage);
959 dmaReset(pDevIns);
960
961 reg.u32Version = PDM_DMACREG_VERSION;
962 reg.pfnRun = dmaRun;
963 reg.pfnRegister = dmaRegister;
964 reg.pfnReadMemory = dmaReadMemory;
965 reg.pfnWriteMemory = dmaWriteMemory;
966 reg.pfnSetDREQ = dmaSetDREQ;
967 reg.pfnGetChannelMode = dmaGetChannelMode;
968
969 rc = PDMDevHlpDMACRegister(pDevIns, &reg, &pThis->pHlp);
970 if (RT_FAILURE (rc))
971 return rc;
972
973 rc = PDMDevHlpSSMRegister(pDevIns, DMA_SAVESTATE_CURRENT, sizeof(*pThis), dmaSaveExec, dmaLoadExec);
974 if (RT_FAILURE(rc))
975 return rc;
976
977 return VINF_SUCCESS;
978}
979
980/**
981 * The device registration structure.
982 */
983const PDMDEVREG g_DeviceDMA =
984{
985 /* u32Version */
986 PDM_DEVREG_VERSION,
987 /* szName */
988 "8237A",
989 /* szRCMod */
990 "",
991 /* szR0Mod */
992 "",
993 /* pszDescription */
994 "DMA Controller Device",
995 /* fFlags */
996 PDM_DEVREG_FLAGS_DEFAULT_BITS,
997 /* fClass */
998 PDM_DEVREG_CLASS_DMA,
999 /* cMaxInstances */
1000 1,
1001 /* cbInstance */
1002 sizeof(DMAState),
1003 /* pfnConstruct */
1004 dmaConstruct,
1005 /* pfnDestruct */
1006 NULL,
1007 /* pfnRelocate */
1008 NULL,
1009 /* pfnMemSetup */
1010 NULL,
1011 /* pfnPowerOn */
1012 NULL,
1013 /* pfnReset */
1014 dmaReset,
1015 /* pfnSuspend */
1016 NULL,
1017 /* pfnResume */
1018 NULL,
1019 /* pfnAttach */
1020 NULL,
1021 /* pfnDetach */
1022 NULL,
1023 /* pfnQueryInterface. */
1024 NULL,
1025 /* pfnInitComplete */
1026 NULL,
1027 /* pfnPowerOff */
1028 NULL,
1029 /* pfnSoftReset */
1030 NULL,
1031 /* u32VersionEnd */
1032 PDM_DEVREG_VERSION
1033};
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette