/* $Id: DevDMA.cpp 23987 2009-10-22 14:39:51Z vboxsync $ */ /** @file * DevDMA - DMA Controller Device. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. * -------------------------------------------------------------------- * * This code is based on: * * QEMU DMA emulation * * Copyright (c) 2003 Vassili Karpov (malc) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifdef VBOX /******************************************************************************* * Header Files * *******************************************************************************/ #include #include #define LOG_GROUP LOG_GROUP_DEFAULT ///@todo LOG_GROUP_DEV_DMA #include #include #include #include #include #include "../Builtins.h" #include "../vl_vbox.h" typedef PFNDMATRANSFERHANDLER DMA_transfer_handler; #else /* !VBOX */ #include "vl.h" #endif /* #define DEBUG_DMA */ #ifndef VBOX #ifndef __WIN32__ #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__) #ifdef DEBUG_DMA #define lwarn(...) fprintf (stderr, "dma: " __VA_ARGS__) #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__) #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__) #else #define lwarn(...) #define linfo(...) #define ldebug(...) #endif #else #define dolog() #define lwarn() #define linfo() #define ldebug() #endif #else /* VBOX */ # ifdef LOG_ENABLED # define DEBUG_DMA static void DMA_DPRINTF (const char *fmt, ...) { if (LogIsEnabled ()) { va_list args; va_start (args, fmt); RTLogLogger (NULL, NULL, "dma: %N", fmt, &args); /* %N - nested va_list * type formatting call. */ va_end (args); } } # else DECLINLINE(void) DMA_DPRINTF(const char *pszFmt, ...) {} # endif # define dolog DMA_DPRINTF # define lwarn DMA_DPRINTF # define linfo DMA_DPRINTF # define ldebug DMA_DPRINTF #endif /* VBOX */ #define LENOFA(a) ((int) (sizeof(a)/sizeof(a[0]))) struct dma_regs { unsigned int now[2]; uint16_t base[2]; uint8_t mode; uint8_t page; uint8_t pageh; uint8_t dack; uint8_t eop; DMA_transfer_handler transfer_handler; void *opaque; }; #define ADDR 0 #define COUNT 1 struct dma_cont { uint8_t status; uint8_t command; uint8_t mask; uint8_t flip_flop; unsigned int dshift; struct dma_regs regs[4]; }; typedef struct { PPDMDEVINS pDevIns; PCPDMDMACHLP pHlp; struct dma_cont dma_controllers[2]; } DMAState; enum { CMD_MEMORY_TO_MEMORY = 0x01, CMD_FIXED_ADDRESS = 0x02, CMD_BLOCK_CONTROLLER = 0x04, CMD_COMPRESSED_TIME = 0x08, CMD_CYCLIC_PRIORITY = 0x10, CMD_EXTENDED_WRITE = 0x20, CMD_LOW_DREQ = 0x40, CMD_LOW_DACK = 0x80, CMD_NOT_SUPPORTED = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE | CMD_LOW_DREQ | CMD_LOW_DACK }; static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0}; static void write_page (void *opaque, uint32_t nport, uint32_t data) { struct dma_cont *d = (struct dma_cont*)opaque; int ichan; ichan = channels[nport & 7]; if (-1 == ichan) { dolog ("invalid channel %#x %#x\n", nport, data); return; } d->regs[ichan].page = data; } static void write_pageh (void *opaque, uint32_t nport, uint32_t data) { struct dma_cont *d = (struct dma_cont*)opaque; int ichan; ichan = channels[nport & 7]; if (-1 == ichan) { dolog ("invalid channel %#x %#x\n", nport, data); return; } d->regs[ichan].pageh = data; } static uint32_t read_page (void *opaque, uint32_t nport) { struct dma_cont *d = (struct dma_cont*)opaque; int ichan; ichan = channels[nport & 7]; if (-1 == ichan) { dolog ("invalid channel read %#x\n", nport); return 0; } return d->regs[ichan].page; } static uint32_t read_pageh (void *opaque, uint32_t nport) { struct dma_cont *d = (struct dma_cont*)opaque; int ichan; ichan = channels[nport & 7]; if (-1 == ichan) { dolog ("invalid channel read %#x\n", nport); return 0; } return d->regs[ichan].pageh; } static inline void init_chan (struct dma_cont *d, int ichan) { struct dma_regs *r; r = d->regs + ichan; r->now[ADDR] = r->base[ADDR] << d->dshift; r->now[COUNT] = 0; } static inline int getff (struct dma_cont *d) { int ff; ff = d->flip_flop; d->flip_flop = !ff; return ff; } static uint32_t read_chan (void *opaque, uint32_t nport) { struct dma_cont *d = (struct dma_cont*)opaque; int ichan, nreg, iport, ff, val, dir; struct dma_regs *r; iport = (nport >> d->dshift) & 0x0f; ichan = iport >> 1; nreg = iport & 1; r = d->regs + ichan; dir = ((r->mode >> 5) & 1) ? -1 : 1; ff = getff (d); if (nreg) val = (r->base[COUNT] << d->dshift) - r->now[COUNT]; else val = r->now[ADDR] + r->now[COUNT] * dir; ldebug ("read_chan %#x -> %d\n", iport, val); return (val >> (d->dshift + (ff << 3))) & 0xff; } static void write_chan (void *opaque, uint32_t nport, uint32_t data) { struct dma_cont *d = (struct dma_cont*)opaque; int iport, ichan, nreg; struct dma_regs *r; iport = (nport >> d->dshift) & 0x0f; ichan = iport >> 1; nreg = iport & 1; r = d->regs + ichan; if (getff (d)) { r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00); init_chan (d, ichan); } else { r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff); } } static void write_cont (void *opaque, uint32_t nport, uint32_t data) { struct dma_cont *d = (struct dma_cont*)opaque; int iport, ichan = 0; iport = (nport >> d->dshift) & 0x0f; switch (iport) { case 0x08: /* command */ if ((data != 0) && (data & CMD_NOT_SUPPORTED)) { dolog ("command %#x not supported\n", data); return; } d->command = data; break; case 0x09: ichan = data & 3; if (data & 4) { d->status |= 1 << (ichan + 4); } else { d->status &= ~(1 << (ichan + 4)); } d->status &= ~(1 << ichan); break; case 0x0a: /* single mask */ if (data & 4) d->mask |= 1 << (data & 3); else d->mask &= ~(1 << (data & 3)); break; case 0x0b: /* mode */ { ichan = data & 3; #ifdef DEBUG_DMA { int op, ai, dir, opmode; op = (data >> 2) & 3; ai = (data >> 4) & 1; dir = (data >> 5) & 1; opmode = (data >> 6) & 3; linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n", ichan, op, ai, dir, opmode); } #endif d->regs[ichan].mode = data; break; } case 0x0c: /* clear flip flop */ d->flip_flop = 0; break; case 0x0d: /* reset */ d->flip_flop = 0; d->mask = ~0; d->status = 0; d->command = 0; break; case 0x0e: /* clear mask for all channels */ d->mask = 0; break; case 0x0f: /* write mask for all channels */ d->mask = data; break; default: dolog ("unknown iport %#x\n", iport); break; } #ifdef DEBUG_DMA if (0xc != iport) { linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n", nport, ichan, data); } #endif } static uint32_t read_cont (void *opaque, uint32_t nport) { struct dma_cont *d = (struct dma_cont*)opaque; int iport, val; iport = (nport >> d->dshift) & 0x0f; switch (iport) { case 0x08: /* status */ val = d->status; d->status &= 0xf0; break; case 0x0f: /* mask */ val = d->mask; break; default: val = 0; break; } ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val); return val; } static uint8_t DMA_get_channel_mode (DMAState *s, int nchan) { return s->dma_controllers[nchan > 3].regs[nchan & 3].mode; } static void DMA_hold_DREQ (DMAState *s, int nchan) { int ncont, ichan; ncont = nchan > 3; ichan = nchan & 3; linfo ("held cont=%d chan=%d\n", ncont, ichan); s->dma_controllers[ncont].status |= 1 << (ichan + 4); } static void DMA_release_DREQ (DMAState *s, int nchan) { int ncont, ichan; ncont = nchan > 3; ichan = nchan & 3; linfo ("released cont=%d chan=%d\n", ncont, ichan); s->dma_controllers[ncont].status &= ~(1 << (ichan + 4)); } static void channel_run (DMAState *s, int ncont, int ichan) { int n; struct dma_regs *r = &s->dma_controllers[ncont].regs[ichan]; #ifdef DEBUG_DMA int dir, opmode; dir = (r->mode >> 5) & 1; opmode = (r->mode >> 6) & 3; if (dir) { dolog ("DMA in address decrement mode\n"); } if (opmode != 1) { dolog ("DMA not in single mode select %#x\n", opmode); } #endif r = s->dma_controllers[ncont].regs + ichan; n = r->transfer_handler (s->pDevIns, r->opaque, ichan + (ncont << 2), r->now[COUNT], (r->base[COUNT] + 1) << ncont); r->now[COUNT] = n; ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont); } static void DMA_run (DMAState *s) { struct dma_cont *d; int icont, ichan; d = s->dma_controllers; for (icont = 0; icont < 2; icont++, d++) { for (ichan = 0; ichan < 4; ichan++) { int mask; mask = 1 << ichan; if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) channel_run (s, icont, ichan); } } } static void DMA_register_channel (DMAState *s, unsigned nchan, DMA_transfer_handler transfer_handler, void *opaque) { struct dma_regs *r; int ichan, ncont; LogFlow (("DMA_register_channel: s=%p nchan=%d transfer_handler=%p opaque=%p\n", s, nchan, transfer_handler, opaque)); ncont = nchan > 3; ichan = nchan & 3; r = s->dma_controllers[ncont].regs + ichan; r->transfer_handler = transfer_handler; r->opaque = opaque; } static uint32_t DMA_read_memory (DMAState *s, unsigned nchan, void *buf, uint32_t pos, uint32_t len) { struct dma_regs *r = &s->dma_controllers[nchan > 3].regs[nchan & 3]; uint32_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR]; if (r->mode & 0x20) { unsigned i; uint8_t *p = (uint8_t*)buf; #ifdef VBOX PDMDevHlpPhysRead (s->pDevIns, addr - pos - len, buf, len); #else cpu_physical_memory_read (addr - pos - len, buf, len); #endif /* What about 16bit transfers? */ for (i = 0; i < len >> 1; i++) { uint8_t b = p[len - i - 1]; p[i] = b; } } else #ifdef VBOX PDMDevHlpPhysRead (s->pDevIns, addr + pos, buf, len); #else cpu_physical_memory_read (addr + pos, buf, len); #endif return len; } static uint32_t DMA_write_memory (DMAState *s, unsigned nchan, const void *buf, uint32_t pos, uint32_t len) { struct dma_regs *r = &s->dma_controllers[nchan > 3].regs[nchan & 3]; uint32_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR]; if (r->mode & 0x20) { unsigned i; uint8_t *p = (uint8_t *) buf; #ifdef VBOX PDMDevHlpPhysWrite (s->pDevIns, addr - pos - len, buf, len); #else cpu_physical_memory_write (addr - pos - len, buf, len); #endif /* What about 16bit transfers? */ for (i = 0; i < len; i++) { uint8_t b = p[len - i - 1]; p[i] = b; } } else #ifdef VBOX PDMDevHlpPhysWrite (s->pDevIns, addr + pos, buf, len); #else cpu_physical_memory_write (addr + pos, buf, len); #endif return len; } #ifndef VBOX /* request the emulator to transfer a new DMA memory block ASAP */ void DMA_schedule(int nchan) { cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT); } #endif static void dma_reset(void *opaque) { struct dma_cont *d = (struct dma_cont*)opaque; write_cont (d, (0x0d << d->dshift), 0); } #ifdef VBOX #define IO_READ_PROTO(n) \ static DECLCALLBACK(int) io_read_##n (PPDMDEVINS pDevIns, \ void *pvUser, \ RTIOPORT Port, \ uint32_t *pu32, \ unsigned cb) #define IO_WRITE_PROTO(n) \ static DECLCALLBACK(int) io_write_##n (PPDMDEVINS pDevIns, \ void *pvUser, \ RTIOPORT Port, \ uint32_t u32, \ unsigned cb) IO_WRITE_PROTO (chan) { if (cb == 1) { write_chan (pvUser, Port, u32); } #ifdef PARANOID else { Log (("Unknown write to %#x of size %d, value %#x\n", Port, cb, u32)); } #endif return VINF_SUCCESS; } IO_WRITE_PROTO (page) { if (cb == 1) { write_page (pvUser, Port, u32); } #ifdef PARANOID else { Log (("Unknown write to %#x of size %d, value %#x\n", Port, cb, u32)); } #endif return VINF_SUCCESS; } IO_WRITE_PROTO (pageh) { if (cb == 1) { write_pageh (pvUser, Port, u32); } #ifdef PARANOID else { Log (("Unknown write to %#x of size %d, value %#x\n", Port, cb, u32)); } #endif return VINF_SUCCESS; } IO_WRITE_PROTO (cont) { if (cb == 1) { write_cont (pvUser, Port, u32); } #ifdef PARANOID else { Log (("Unknown write to %#x of size %d, value %#x\n", Port, cb, u32)); } #endif return VINF_SUCCESS; } IO_READ_PROTO (chan) { if (cb == 1) { *pu32 = read_chan (pvUser, Port); return VINF_SUCCESS; } else { return VERR_IOM_IOPORT_UNUSED; } } IO_READ_PROTO (page) { if (cb == 1) { *pu32 = read_page (pvUser, Port); return VINF_SUCCESS; } else { return VERR_IOM_IOPORT_UNUSED; } } IO_READ_PROTO (pageh) { if (cb == 1) { *pu32 = read_pageh (pvUser, Port); return VINF_SUCCESS; } else { return VERR_IOM_IOPORT_UNUSED; } } IO_READ_PROTO (cont) { if (cb == 1) { *pu32 = read_cont (pvUser, Port); return VINF_SUCCESS; } else { return VERR_IOM_IOPORT_UNUSED; } } #endif /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */ static void dma_init2(DMAState *s, struct dma_cont *d, int base, int dshift, int page_base, int pageh_base) { const static int page_port_list[] = { 0x1, 0x2, 0x3, 0x7 }; int i; d->dshift = dshift; for (i = 0; i < 8; i++) { #ifdef VBOX PDMDevHlpIOPortRegister (s->pDevIns, base + (i << dshift), 1, d, io_write_chan, io_read_chan, NULL, NULL, "DMA"); #else register_ioport_write (base + (i << dshift), 1, 1, write_chan, d); register_ioport_read (base + (i << dshift), 1, 1, read_chan, d); #endif } for (i = 0; i < LENOFA (page_port_list); i++) { #ifdef VBOX PDMDevHlpIOPortRegister (s->pDevIns, page_base + page_port_list[i], 1, d, io_write_page, io_read_page, NULL, NULL, "DMA Page"); #else register_ioport_write (page_base + page_port_list[i], 1, 1, write_page, d); register_ioport_read (page_base + page_port_list[i], 1, 1, read_page, d); #endif if (pageh_base >= 0) { #ifdef VBOX PDMDevHlpIOPortRegister (s->pDevIns, pageh_base + page_port_list[i], 1, d, io_write_pageh, io_read_pageh, NULL, NULL, "DMA Page High"); #else register_ioport_write (pageh_base + page_port_list[i], 1, 1, write_pageh, d); register_ioport_read (pageh_base + page_port_list[i], 1, 1, read_pageh, d); #endif } } for (i = 0; i < 8; i++) { #ifdef VBOX PDMDevHlpIOPortRegister (s->pDevIns, base + ((i + 8) << dshift), 1, d, io_write_cont, io_read_cont, NULL, NULL, "DMA cont"); #else register_ioport_write (base + ((i + 8) << dshift), 1, 1, write_cont, d); register_ioport_read (base + ((i + 8) << dshift), 1, 1, read_cont, d); #endif } #ifndef VBOX qemu_register_reset(dma_reset, d); #endif dma_reset(d); } static void dma_save (QEMUFile *f, void *opaque) { struct dma_cont *d = (struct dma_cont*)opaque; int i; /* qemu_put_8s (f, &d->status); */ qemu_put_8s (f, &d->command); qemu_put_8s (f, &d->mask); qemu_put_8s (f, &d->flip_flop); qemu_put_be32s (f, &d->dshift); for (i = 0; i < 4; ++i) { struct dma_regs *r = &d->regs[i]; qemu_put_be32s (f, &r->now[0]); qemu_put_be32s (f, &r->now[1]); qemu_put_be16s (f, &r->base[0]); qemu_put_be16s (f, &r->base[1]); qemu_put_8s (f, &r->mode); qemu_put_8s (f, &r->page); qemu_put_8s (f, &r->pageh); qemu_put_8s (f, &r->dack); qemu_put_8s (f, &r->eop); } } static int dma_load (QEMUFile *f, void *opaque, int version_id) { struct dma_cont *d = (struct dma_cont*)opaque; int i; if (version_id != 1) #ifdef VBOX return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; #else return -EINVAL; #endif /* qemu_get_8s (f, &d->status); */ qemu_get_8s (f, &d->command); qemu_get_8s (f, &d->mask); qemu_get_8s (f, &d->flip_flop); qemu_get_be32s (f, &d->dshift); for (i = 0; i < 4; ++i) { struct dma_regs *r = &d->regs[i]; qemu_get_be32s (f, &r->now[0]); qemu_get_be32s (f, &r->now[1]); qemu_get_be16s (f, &r->base[0]); qemu_get_be16s (f, &r->base[1]); qemu_get_8s (f, &r->mode); qemu_get_8s (f, &r->page); qemu_get_8s (f, &r->pageh); qemu_get_8s (f, &r->dack); qemu_get_8s (f, &r->eop); } return 0; } #ifndef VBOX void DMA_init (int high_page_enable) { dma_init2(&dma_controllers[0], 0x00, 0, 0x80, high_page_enable ? 0x480 : -1); dma_init2(&dma_controllers[1], 0xc0, 1, 0x88, high_page_enable ? 0x488 : -1); register_savevm ("dma", 0, 1, dma_save, dma_load, &dma_controllers[0]); register_savevm ("dma", 1, 1, dma_save, dma_load, &dma_controllers[1]); } #endif #ifdef VBOX static bool run_wrapper (PPDMDEVINS pDevIns) { DMA_run (PDMINS_2_DATA (pDevIns, DMAState *)); return 0; } static void register_channel_wrapper (PPDMDEVINS pDevIns, unsigned nchan, PFNDMATRANSFERHANDLER f, void *opaque) { DMAState *s = PDMINS_2_DATA (pDevIns, DMAState *); DMA_register_channel (s, nchan, f, opaque); } static uint32_t rd_mem_wrapper (PPDMDEVINS pDevIns, unsigned nchan, void *buf, uint32_t pos, uint32_t len) { DMAState *s = PDMINS_2_DATA (pDevIns, DMAState *); return DMA_read_memory (s, nchan, buf, pos, len); } static uint32_t wr_mem_wrapper (PPDMDEVINS pDevIns, unsigned nchan, const void *buf, uint32_t pos, uint32_t len) { DMAState *s = PDMINS_2_DATA (pDevIns, DMAState *); return DMA_write_memory (s, nchan, buf, pos, len); } static void set_DREQ_wrapper (PPDMDEVINS pDevIns, unsigned nchan, unsigned level) { DMAState *s = PDMINS_2_DATA (pDevIns, DMAState *); if (level) { DMA_hold_DREQ (s, nchan); } else { DMA_release_DREQ (s, nchan); } } static uint8_t get_mode_wrapper (PPDMDEVINS pDevIns, unsigned nchan) { DMAState *s = PDMINS_2_DATA (pDevIns, DMAState *); return DMA_get_channel_mode (s, nchan); } static void dmaReset (PPDMDEVINS pDevIns) { DMAState *s = PDMINS_2_DATA (pDevIns, DMAState *); dma_reset (&s->dma_controllers[0]); dma_reset (&s->dma_controllers[1]); } static DECLCALLBACK(int) dmaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle) { DMAState *s = PDMINS_2_DATA (pDevIns, DMAState *); dma_save (pSSMHandle, &s->dma_controllers[0]); dma_save (pSSMHandle, &s->dma_controllers[1]); return VINF_SUCCESS; } static DECLCALLBACK(int) dmaLoadExec (PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t uVersion, uint32_t uPass) { DMAState *s = PDMINS_2_DATA (pDevIns, DMAState *); AssertMsgReturn (uVersion == 1, ("%d\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION); Assert (uPass == SSM_PASS_FINAL); NOREF(uPass); dma_load (pSSMHandle, &s->dma_controllers[0], uVersion); return dma_load (pSSMHandle, &s->dma_controllers[1], uVersion); } /** * Construct a device instance for a VM. * * @returns VBox status. * @param pDevIns The device instance data. * If the registration structure is needed, pDevIns->pDevReg points to it. * @param iInstance Instance number. Use this to figure out which registers and such to use. * The device number is also found in pDevIns->iInstance, but since it's * likely to be freqently used PDM passes it as parameter. * @param pCfgHandle Configuration node handle for the device. Use this to obtain the configuration * of the device instance. It's also found in pDevIns->pCfgHandle, but like * iInstance it's expected to be used a bit in this function. */ static DECLCALLBACK(int) dmaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle) { DMAState *s = PDMINS_2_DATA (pDevIns, DMAState *); bool high_page_enable = 0; PDMDMACREG reg; int rc; s->pDevIns = pDevIns; /* * Validate configuration. */ if (!CFGMR3AreValuesValid(pCfgHandle, "\0")) /* "HighPageEnable\0")) */ return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES; #if 0 rc = CFGMR3QueryBool (pCfgHandle, "HighPageEnable", &high_page_enable); if (RT_FAILURE (rc)) { return rc; } #endif dma_init2(s, &s->dma_controllers[0], 0x00, 0, 0x80, high_page_enable ? 0x480 : -1); dma_init2(s, &s->dma_controllers[1], 0xc0, 1, 0x88, high_page_enable ? 0x488 : -1); reg.u32Version = PDM_DMACREG_VERSION; reg.pfnRun = run_wrapper; reg.pfnRegister = register_channel_wrapper; reg.pfnReadMemory = rd_mem_wrapper; reg.pfnWriteMemory = wr_mem_wrapper; reg.pfnSetDREQ = set_DREQ_wrapper; reg.pfnGetChannelMode = get_mode_wrapper; Assert(pDevIns->pDevHlpR3->pfnDMARegister); rc = pDevIns->pDevHlpR3->pfnDMACRegister (pDevIns, ®, &s->pHlp); if (RT_FAILURE (rc)) { return rc; } rc = PDMDevHlpSSMRegister (pDevIns, 1 /*uVersion*/, sizeof (*s), dmaSaveExec, dmaLoadExec); if (RT_FAILURE(rc)) return rc; return VINF_SUCCESS; } /** * The device registration structure. */ const PDMDEVREG g_DeviceDMA = { /* u32Version */ PDM_DEVREG_VERSION, /* szDeviceName */ "8237A", /* szRCMod */ "", /* szR0Mod */ "", /* pszDescription */ "DMA Controller Device", /* fFlags */ PDM_DEVREG_FLAGS_DEFAULT_BITS, /* fClass */ PDM_DEVREG_CLASS_DMA, /* cMaxInstances */ 1, /* cbInstance */ sizeof(DMAState), /* pfnConstruct */ dmaConstruct, /* pfnDestruct */ NULL, /* pfnRelocate */ NULL, /* pfnIOCtl */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ dmaReset, /* pfnSuspend */ NULL, /* pfnResume */ NULL, /* pfnAttach */ NULL, /* pfnDetach */ NULL, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ NULL, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; #endif /* VBOX */