/* $Id: DevPit-i8254.cpp 12653 2008-09-22 16:03:25Z vboxsync $ */ /** @file * DevPIT-i8254 - Intel 8254 Programmable Interval Timer (PIT) And Dummy Speaker Device. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. * -------------------------------------------------------------------- * * This code is based on: * * QEMU 8253/8254 interval timer emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_PIT #include #include #include #include #include #include "../Builtins.h" /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** The PIT frequency. */ #define PIT_FREQ 1193182 #define RW_STATE_LSB 1 #define RW_STATE_MSB 2 #define RW_STATE_WORD0 3 #define RW_STATE_WORD1 4 /** The version of the saved state. */ #define PIT_SAVED_STATE_VERSION 2 /** @def FAKE_REFRESH_CLOCK * Define this to flip the 15usec refresh bit on every read. * If not defined, it will be flipped correctly. */ //#define FAKE_REFRESH_CLOCK #ifdef DOXYGEN_RUNNING # define FAKE_REFRESH_CLOCK #endif /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ typedef struct PITChannelState { /** Pointer to the instance data - R3 Ptr. */ R3PTRTYPE(struct PITState *) pPitR3; /** The timer - R3 Ptr. */ PTMTIMERR3 pTimerR3; /** Pointer to the instance data - R0 Ptr. */ R0PTRTYPE(struct PITState *) pPitR0; /** The timer - R0 Ptr. */ PTMTIMERR0 pTimerR0; /** Pointer to the instance data - RC Ptr. */ RCPTRTYPE(struct PITState *) pPitRC; /** The timer - RC Ptr. */ PTMTIMERRC pTimerRC; /** The virtual time stamp at the last reload. (only used in mode 2 for now) */ uint64_t u64ReloadTS; /** The actual time of the next tick. * As apposed to the next_transition_time which contains the correct time of the next tick. */ uint64_t u64NextTS; /** (count_load_time is only set by TMTimerGet() which returns uint64_t) */ uint64_t count_load_time; /* irq handling */ int64_t next_transition_time; int32_t irq; /** Number of release log entries. Used to prevent floading. */ uint32_t cRelLogEntries; uint32_t count; /* can be 65536 */ uint16_t latched_count; uint8_t count_latched; uint8_t status_latched; uint8_t status; uint8_t read_state; uint8_t write_state; uint8_t write_latch; uint8_t rw_mode; uint8_t mode; uint8_t bcd; /* not supported */ uint8_t gate; /* timer start */ } PITChannelState; typedef struct PITState { PITChannelState channels[3]; /** Speaker data. */ int32_t speaker_data_on; #ifdef FAKE_REFRESH_CLOCK /** Speaker dummy. */ int32_t dummy_refresh_clock; #else uint32_t Alignment1; #endif /** Pointer to the device instance. */ PPDMDEVINSR3 pDevIns; #if HC_ARCH_BITS == 32 uint32_t Alignment0; #endif /** Number of IRQs that's been raised. */ STAMCOUNTER StatPITIrq; /** Profiling the timer callback handler. */ STAMPROFILEADV StatPITHandler; } PITState; #ifndef VBOX_DEVICE_STRUCT_TESTCASE /******************************************************************************* * Internal Functions * *******************************************************************************/ __BEGIN_DECLS PDMBOTHCBDECL(int) pitIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb); PDMBOTHCBDECL(int) pitIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb); PDMBOTHCBDECL(int) pitIOPortSpeakerRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb); #ifdef IN_RING3 PDMBOTHCBDECL(int) pitIOPortSpeakerWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb); static void pit_irq_timer_update(PITChannelState *s, uint64_t current_time); #endif __END_DECLS static int pit_get_count(PITChannelState *s) { uint64_t d; int counter; PTMTIMER pTimer = s->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); if (s->mode == 2) { if (s->u64NextTS == UINT64_MAX) return 1; /** @todo check this value. */ d = TMTimerGet(pTimer); d = ASMMultU64ByU32DivByU32(d - s->u64ReloadTS, s->count, s->u64NextTS - s->u64ReloadTS); if (d >= s->count) return 1; return s->count - d; } d = ASMMultU64ByU32DivByU32(TMTimerGet(pTimer) - s->count_load_time, PIT_FREQ, TMTimerGetFreq(pTimer)); switch(s->mode) { case 0: case 1: case 4: case 5: counter = (s->count - d) & 0xffff; break; case 3: /* XXX: may be incorrect for odd counts */ counter = s->count - ((2 * d) % s->count); break; default: counter = s->count - (d % s->count); break; } /** @todo check that we don't return 0, in most modes (all?) the counter shouldn't be zero. */ return counter; } /* get pit output bit */ static int pit_get_out1(PITChannelState *s, int64_t current_time) { uint64_t d; PTMTIMER pTimer = s->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); int out; d = ASMMultU64ByU32DivByU32(current_time - s->count_load_time, PIT_FREQ, TMTimerGetFreq(pTimer)); switch(s->mode) { default: case 0: out = (d >= s->count); break; case 1: out = (d < s->count); break; case 2: Log2(("pit_get_out1: d=%llx c=%x %x \n", d, s->count, (unsigned)(d % s->count))); if ((d % s->count) == 0 && d != 0) out = 1; else out = 0; break; case 3: out = (d % s->count) < ((s->count + 1) >> 1); break; case 4: case 5: out = (d == s->count); break; } return out; } static int pit_get_out(PITState *pit, int channel, int64_t current_time) { PITChannelState *s = &pit->channels[channel]; return pit_get_out1(s, current_time); } static int pit_get_gate(PITState *pit, int channel) { PITChannelState *s = &pit->channels[channel]; return s->gate; } /* if already latched, do not latch again */ static void pit_latch_count(PITChannelState *s) { if (!s->count_latched) { s->latched_count = pit_get_count(s); s->count_latched = s->rw_mode; LogFlow(("pit_latch_count: latched_count=%#06x / %10RU64 ns (c=%#06x m=%d)\n", s->latched_count, ASMMultU64ByU32DivByU32(s->count - s->latched_count, 1000000000, PIT_FREQ), s->count, s->mode)); } } #ifdef IN_RING3 /* val must be 0 or 1 */ static void pit_set_gate(PITState *pit, int channel, int val) { PITChannelState *s = &pit->channels[channel]; PTMTIMER pTimer = s->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); Assert((val & 1) == val); switch(s->mode) { default: case 0: case 4: /* XXX: just disable/enable counting */ break; case 1: case 5: if (s->gate < val) { /* restart counting on rising edge */ s->count_load_time = TMTimerGet(pTimer); pit_irq_timer_update(s, s->count_load_time); } break; case 2: case 3: if (s->gate < val) { /* restart counting on rising edge */ s->count_load_time = s->u64ReloadTS = TMTimerGet(pTimer); pit_irq_timer_update(s, s->count_load_time); } /* XXX: disable/enable counting */ break; } s->gate = val; } DECLINLINE(void) pit_load_count(PITChannelState *s, int val) { PTMTIMER pTimer = s->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); if (val == 0) val = 0x10000; s->count_load_time = s->u64ReloadTS = TMTimerGet(pTimer); s->count = val; pit_irq_timer_update(s, s->count_load_time); /* log the new rate (ch 0 only). */ if ( s->pTimerR3 /* ch 0 */ && s->cRelLogEntries++ < 32) LogRel(("PIT: mode=%d count=%#x (%u) - %d.%02d Hz (ch=0)\n", s->mode, s->count, s->count, PIT_FREQ / s->count, (PIT_FREQ * 100 / s->count) % 100)); } /* return -1 if no transition will occur. */ static int64_t pit_get_next_transition_time(PITChannelState *s, uint64_t current_time) { PTMTIMER pTimer = s->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); uint64_t d, next_time, base; uint32_t period2; d = ASMMultU64ByU32DivByU32(current_time - s->count_load_time, PIT_FREQ, TMTimerGetFreq(pTimer)); switch(s->mode) { default: case 0: case 1: if (d < s->count) next_time = s->count; else return -1; break; /* * Mode 2: The period is count + 1 PIT ticks. * When the counter reaches 1 we sent the output low (for channel 0 that * means raise an irq). On the next tick, where we should be decrementing * from 1 to 0, the count is loaded and the output goes high (channel 0 * means clearing the irq). * * In VBox we simplify the tick cycle between 1 and 0 and immediately clears * the irq. We also don't set it until we reach 0, which is a tick late - will * try fix that later some day. */ case 2: base = (d / s->count) * s->count; #ifndef VBOX /* see above */ if ((d - base) == 0 && d != 0) next_time = base + s->count; else #endif next_time = base + s->count + 1; break; case 3: base = (d / s->count) * s->count; period2 = ((s->count + 1) >> 1); if ((d - base) < period2) next_time = base + period2; else next_time = base + s->count; break; case 4: case 5: if (d < s->count) next_time = s->count; else if (d == s->count) next_time = s->count + 1; else return -1; break; } /* convert to timer units */ LogFlow(("PIT: next_time=%14RI64 %20RI64 mode=%#x count=%#06x\n", next_time, ASMMultU64ByU32DivByU32(next_time, TMTimerGetFreq(pTimer), PIT_FREQ), s->mode, s->count)); next_time = s->count_load_time + ASMMultU64ByU32DivByU32(next_time, TMTimerGetFreq(pTimer), PIT_FREQ); /* fix potential rounding problems */ /* XXX: better solution: use a clock at PIT_FREQ Hz */ if (next_time <= current_time) next_time = current_time + 1; return next_time; } static void pit_irq_timer_update(PITChannelState *s, uint64_t current_time) { uint64_t now; int64_t expire_time; int irq_level; PPDMDEVINS pDevIns; PTMTIMER pTimer = s->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); if (!s->CTX_SUFF(pTimer)) return; expire_time = pit_get_next_transition_time(s, current_time); irq_level = pit_get_out1(s, current_time); /* We just flip-flop the irq level to save that extra timer call, which isn't generally required (we haven't served it for months). */ pDevIns = s->CTX_SUFF(pPit)->pDevIns; PDMDevHlpISASetIrq(pDevIns, s->irq, irq_level); if (irq_level) PDMDevHlpISASetIrq(pDevIns, s->irq, 0); now = TMTimerGet(pTimer); Log3(("pit_irq_timer_update: %lldns late\n", now - s->u64NextTS)); if (irq_level) { s->u64ReloadTS = now; STAM_COUNTER_INC(&s->CTX_SUFF(pPit)->StatPITIrq); } if (expire_time != -1) { s->u64NextTS = expire_time; TMTimerSet(s->CTX_SUFF(pTimer), s->u64NextTS); } else { LogFlow(("PIT: m=%d count=%#4x irq_level=%#x stopped\n", s->mode, s->count, irq_level)); TMTimerStop(s->CTX_SUFF(pTimer)); s->u64NextTS = UINT64_MAX; } s->next_transition_time = expire_time; } #endif /* IN_RING3 */ /** * Port I/O Handler for IN operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument - ignored. * @param Port Port number used for the IN operation. * @param pu32 Where to store the result. * @param cb Number of bytes read. */ PDMBOTHCBDECL(int) pitIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { Log2(("pitIOPortRead: Port=%#x cb=%x\n", Port, cb)); NOREF(pvUser); Port &= 3; if (cb != 1 || Port == 3) { Log(("pitIOPortRead: Port=%#x cb=%x *pu32=unused!\n", Port, cb)); return VERR_IOM_IOPORT_UNUSED; } PITState *pit = PDMINS_2_DATA(pDevIns, PITState *); int ret; PITChannelState *s = &pit->channels[Port]; if (s->status_latched) { s->status_latched = 0; ret = s->status; } else if (s->count_latched) { switch (s->count_latched) { default: case RW_STATE_LSB: ret = s->latched_count & 0xff; s->count_latched = 0; break; case RW_STATE_MSB: ret = s->latched_count >> 8; s->count_latched = 0; break; case RW_STATE_WORD0: ret = s->latched_count & 0xff; s->count_latched = RW_STATE_MSB; break; } } else { int count; switch (s->read_state) { default: case RW_STATE_LSB: count = pit_get_count(s); ret = count & 0xff; break; case RW_STATE_MSB: count = pit_get_count(s); ret = (count >> 8) & 0xff; break; case RW_STATE_WORD0: count = pit_get_count(s); ret = count & 0xff; s->read_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: count = pit_get_count(s); ret = (count >> 8) & 0xff; s->read_state = RW_STATE_WORD0; break; } } *pu32 = ret; Log2(("pitIOPortRead: Port=%#x cb=%x *pu32=%#04x\n", Port, cb, *pu32)); return VINF_SUCCESS; } /** * Port I/O Handler for OUT operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument - ignored. * @param Port Port number used for the IN operation. * @param u32 The value to output. * @param cb The value size in bytes. */ PDMBOTHCBDECL(int) pitIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { Log2(("pitIOPortWrite: Port=%#x cb=%x u32=%#04x\n", Port, cb, u32)); NOREF(pvUser); if (cb != 1) return VINF_SUCCESS; PITState *pit = PDMINS_2_DATA(pDevIns, PITState *); Port &= 3; if (Port == 3) { /* * Port 43h - Mode/Command Register. * 7 6 5 4 3 2 1 0 * * * . . . . . . Select channel: 0 0 = Channel 0 * 0 1 = Channel 1 * 1 0 = Channel 2 * 1 1 = Read-back command (8254 only) * (Illegal on 8253) * (Illegal on PS/2 {JAM}) * . . * * . . . . Command/Access mode: 0 0 = Latch count value command * 0 1 = Access mode: lobyte only * 1 0 = Access mode: hibyte only * 1 1 = Access mode: lobyte/hibyte * . . . . * * * . Operating mode: 0 0 0 = Mode 0, 0 0 1 = Mode 1, * 0 1 0 = Mode 2, 0 1 1 = Mode 3, * 1 0 0 = Mode 4, 1 0 1 = Mode 5, * 1 1 0 = Mode 2, 1 1 1 = Mode 3 * . . . . . . . * BCD/Binary mode: 0 = 16-bit binary, 1 = four-digit BCD */ unsigned channel = u32 >> 6; if (channel == 3) { /* read-back command */ for (channel = 0; channel < RT_ELEMENTS(pit->channels); channel++) { PITChannelState *s = &pit->channels[channel]; if (u32 & (2 << channel)) { if (!(u32 & 0x20)) pit_latch_count(s); if (!(u32 & 0x10) && !s->status_latched) { /* status latch */ /* XXX: add BCD and null count */ PTMTIMER pTimer = s->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); s->status = (pit_get_out1(s, TMTimerGet(pTimer)) << 7) | (s->rw_mode << 4) | (s->mode << 1) | s->bcd; s->status_latched = 1; } } } } else { PITChannelState *s = &pit->channels[channel]; unsigned access = (u32 >> 4) & 3; if (access == 0) pit_latch_count(s); else { s->rw_mode = access; s->read_state = access; s->write_state = access; s->mode = (u32 >> 1) & 7; s->bcd = u32 & 1; /* XXX: update irq timer ? */ } } } else { #ifndef IN_RING3 return VINF_IOM_HC_IOPORT_WRITE; #else /* IN_RING3 */ /* * Port 40-42h - Channel Data Ports. */ PITChannelState *s = &pit->channels[Port]; switch(s->write_state) { default: case RW_STATE_LSB: pit_load_count(s, u32); break; case RW_STATE_MSB: pit_load_count(s, u32 << 8); break; case RW_STATE_WORD0: s->write_latch = u32; s->write_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: pit_load_count(s, s->write_latch | (u32 << 8)); s->write_state = RW_STATE_WORD0; break; } #endif /* !IN_RING3 */ } return VINF_SUCCESS; } /** * Port I/O Handler for speaker IN operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument - ignored. * @param Port Port number used for the IN operation. * @param pu32 Where to store the result. * @param cb Number of bytes read. */ PDMBOTHCBDECL(int) pitIOPortSpeakerRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { NOREF(pvUser); if (cb == 1) { PITState *pThis = PDMINS_2_DATA(pDevIns, PITState *); const uint64_t u64Now = TMTimerGet(pThis->channels[0].CTX_SUFF(pTimer)); Assert(TMTimerGetFreq(pThis->channels[0].CTX_SUFF(pTimer)) == 1000000000); /* lazy bird. */ /* bit 6,7 Parity error stuff. */ /* bit 5 - mirrors timer 2 output condition. */ const int fOut = pit_get_out(pThis, 2, u64Now); /* bit 4 - toggled every with each (DRAM?) refresh request, every 15.085 µs. */ #ifdef FAKE_REFRESH_CLOCK pThis->dummy_refresh_clock ^= 1; const int fRefresh = pThis->dummy_refresh_clock; #else const int fRefresh = (u64Now / 15085) & 1; #endif /* bit 2,3 NMI / parity status stuff. */ /* bit 1 - speaker data status */ const int fSpeakerStatus = pThis->speaker_data_on; /* bit 0 - timer 2 clock gate to speaker status. */ const int fTimer2GateStatus = pit_get_gate(pThis, 2); *pu32 = fTimer2GateStatus | (fSpeakerStatus << 1) | (fRefresh << 4) | (fOut << 5); Log(("pitIOPortSpeakerRead: Port=%#x cb=%x *pu32=%#x\n", Port, cb, *pu32)); return VINF_SUCCESS; } Log(("pitIOPortSpeakerRead: Port=%#x cb=%x *pu32=unused!\n", Port, cb)); return VERR_IOM_IOPORT_UNUSED; } #ifdef IN_RING3 /** * Port I/O Handler for speaker OUT operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument - ignored. * @param Port Port number used for the IN operation. * @param u32 The value to output. * @param cb The value size in bytes. */ PDMBOTHCBDECL(int) pitIOPortSpeakerWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { NOREF(pvUser); if (cb == 1) { PITState *pThis = PDMINS_2_DATA(pDevIns, PITState *); pThis->speaker_data_on = (u32 >> 1) & 1; pit_set_gate(pThis, 2, u32 & 1); } Log(("pitIOPortSpeakerWrite: Port=%#x cb=%x u32=%#x\n", Port, cb, u32)); return VINF_SUCCESS; } /** * Saves a state of the programmable interval timer device. * * @returns VBox status code. * @param pDevIns The device instance. * @param pSSMHandle The handle to save the state to. */ static DECLCALLBACK(int) pitSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle) { PITState *pThis = PDMINS_2_DATA(pDevIns, PITState *); unsigned i; for (i = 0; i < RT_ELEMENTS(pThis->channels); i++) { PITChannelState *s = &pThis->channels[i]; SSMR3PutU32(pSSMHandle, s->count); SSMR3PutU16(pSSMHandle, s->latched_count); SSMR3PutU8(pSSMHandle, s->count_latched); SSMR3PutU8(pSSMHandle, s->status_latched); SSMR3PutU8(pSSMHandle, s->status); SSMR3PutU8(pSSMHandle, s->read_state); SSMR3PutU8(pSSMHandle, s->write_state); SSMR3PutU8(pSSMHandle, s->write_latch); SSMR3PutU8(pSSMHandle, s->rw_mode); SSMR3PutU8(pSSMHandle, s->mode); SSMR3PutU8(pSSMHandle, s->bcd); SSMR3PutU8(pSSMHandle, s->gate); SSMR3PutU64(pSSMHandle, s->count_load_time); SSMR3PutU64(pSSMHandle, s->u64NextTS); SSMR3PutU64(pSSMHandle, s->u64ReloadTS); SSMR3PutS64(pSSMHandle, s->next_transition_time); if (s->CTX_SUFF(pTimer)) TMR3TimerSave(s->CTX_SUFF(pTimer), pSSMHandle); } SSMR3PutS32(pSSMHandle, pThis->speaker_data_on); #ifdef FAKE_REFRESH_CLOCK return SSMR3PutS32(pSSMHandle, pThis->dummy_refresh_clock); #else return SSMR3PutS32(pSSMHandle, 0); #endif } /** * Loads a saved programmable interval timer device state. * * @returns VBox status code. * @param pDevIns The device instance. * @param pSSMHandle The handle to the saved state. * @param u32Version The data unit version number. */ static DECLCALLBACK(int) pitLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t u32Version) { PITState *pThis = PDMINS_2_DATA(pDevIns, PITState *); unsigned i; if (u32Version != PIT_SAVED_STATE_VERSION) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; for (i = 0; i < RT_ELEMENTS(pThis->channels); i++) { PITChannelState *s = &pThis->channels[i]; SSMR3GetU32(pSSMHandle, &s->count); SSMR3GetU16(pSSMHandle, &s->latched_count); SSMR3GetU8(pSSMHandle, &s->count_latched); SSMR3GetU8(pSSMHandle, &s->status_latched); SSMR3GetU8(pSSMHandle, &s->status); SSMR3GetU8(pSSMHandle, &s->read_state); SSMR3GetU8(pSSMHandle, &s->write_state); SSMR3GetU8(pSSMHandle, &s->write_latch); SSMR3GetU8(pSSMHandle, &s->rw_mode); SSMR3GetU8(pSSMHandle, &s->mode); SSMR3GetU8(pSSMHandle, &s->bcd); SSMR3GetU8(pSSMHandle, &s->gate); SSMR3GetU64(pSSMHandle, &s->count_load_time); SSMR3GetU64(pSSMHandle, &s->u64NextTS); SSMR3GetU64(pSSMHandle, &s->u64ReloadTS); SSMR3GetS64(pSSMHandle, &s->next_transition_time); if (s->CTX_SUFF(pTimer)) { TMR3TimerLoad(s->CTX_SUFF(pTimer), pSSMHandle); LogRel(("PIT: mode=%d count=%#x (%u) - %d.%02d Hz (ch=%d) (restore)\n", s->mode, s->count, s->count, PIT_FREQ / s->count, (PIT_FREQ * 100 / s->count) % 100, i)); } pThis->channels[0].cRelLogEntries = 0; } SSMR3GetS32(pSSMHandle, &pThis->speaker_data_on); #ifdef FAKE_REFRESH_CLOCK return SSMR3GetS32(pSSMHandle, &pThis->dummy_refresh_clock); #else int32_t u32Dummy; return SSMR3GetS32(pSSMHandle, &u32Dummy); #endif } /** * Device timer callback function. * * @param pDevIns Device instance of the device which registered the timer. * @param pTimer The timer handle. */ static DECLCALLBACK(void) pitTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer) { PITState *pThis = PDMINS_2_DATA(pDevIns, PITState *); PITChannelState *s = &pThis->channels[0]; STAM_PROFILE_ADV_START(&s->CTX_SUFF(pPit)->StatPITHandler, a); pit_irq_timer_update(s, s->next_transition_time); STAM_PROFILE_ADV_STOP(&s->CTX_SUFF(pPit)->StatPITHandler, a); } /** * Relocation notification. * * @returns VBox status. * @param pDevIns The device instance data. * @param offDelta The delta relative to the old address. */ static DECLCALLBACK(void) pitRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { PITState *pThis = PDMINS_2_DATA(pDevIns, PITState *); unsigned i; LogFlow(("pitRelocate: \n")); for (i = 0; i < RT_ELEMENTS(pThis->channels); i++) { PITChannelState *pCh = &pThis->channels[i]; if (pCh->pTimerR3) pCh->pTimerRC = TMTimerRCPtr(pCh->pTimerR3); pThis->channels[i].pPitRC = PDMINS_2_DATA_RCPTR(pDevIns); } } /** @todo remove this! */ static DECLCALLBACK(void) pitInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs); /** * Reset notification. * * @returns VBox status. * @param pDevIns The device instance data. */ static DECLCALLBACK(void) pitReset(PPDMDEVINS pDevIns) { PITState *pThis = PDMINS_2_DATA(pDevIns, PITState *); unsigned i; LogFlow(("pitReset: \n")); for (i = 0; i < RT_ELEMENTS(pThis->channels); i++) { PITChannelState *s = &pThis->channels[i]; #if 1 /* Set everything back to virgin state. (might not be strictly correct) */ s->latched_count = 0; s->count_latched = 0; s->status_latched = 0; s->status = 0; s->read_state = 0; s->write_state = 0; s->write_latch = 0; s->rw_mode = 0; s->bcd = 0; #endif s->cRelLogEntries = 0; s->mode = 3; s->gate = (i != 2); pit_load_count(s, 0); } } /** * Info handler, device version. * * @param pDevIns Device instance which registered the info. * @param pHlp Callback functions for doing output. * @param pszArgs Argument string. Optional and specific to the handler. */ static DECLCALLBACK(void) pitInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PITState *pThis = PDMINS_2_DATA(pDevIns, PITState *); unsigned i; for (i = 0; i < RT_ELEMENTS(pThis->channels); i++) { const PITChannelState *pCh = &pThis->channels[i]; pHlp->pfnPrintf(pHlp, "PIT (i8254) channel %d status: irq=%#x\n" " count=%08x" " latched_count=%04x count_latched=%02x\n" " status=%02x status_latched=%02x read_state=%02x\n" " write_state=%02x write_latch=%02x rw_mode=%02x\n" " mode=%02x bcd=%02x gate=%02x\n" " count_load_time=%016RX64 next_transition_time=%016RX64\n" " u64ReloadTS=%016RX64 u64NextTS=%016RX64\n" , i, pCh->irq, pCh->count, pCh->latched_count, pCh->count_latched, pCh->status, pCh->status_latched, pCh->read_state, pCh->write_state, pCh->write_latch, pCh->rw_mode, pCh->mode, pCh->bcd, pCh->gate, pCh->count_load_time, pCh->next_transition_time, pCh->u64ReloadTS, pCh->u64NextTS); } #ifdef FAKE_REFRESH_CLOCK pHlp->pfnPrintf(pHlp, "speaker_data_on=%#x dummy_refresh_clock=%#x\n", pThis->speaker_data_on, pThis->dummy_refresh_clock); #else pHlp->pfnPrintf(pHlp, "speaker_data_on=%#x\n", pThis->speaker_data_on); #endif } /** * Construct a device instance for a VM. * * @returns VBox status. * @param pDevIns The device instance data. * If the registration structure is needed, pDevIns->pDevReg points to it. * @param iInstance Instance number. Use this to figure out which registers and such to use. * The device number is also found in pDevIns->iInstance, but since it's * likely to be freqently used PDM passes it as parameter. * @param pCfgHandle Configuration node handle for the device. Use this to obtain the configuration * of the device instance. It's also found in pDevIns->pCfgHandle, but like * iInstance it's expected to be used a bit in this function. */ static DECLCALLBACK(int) pitConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle) { PITState *pThis = PDMINS_2_DATA(pDevIns, PITState *); int rc; uint8_t u8Irq; uint16_t u16Base; bool fSpeaker; bool fGCEnabled; bool fR0Enabled; unsigned i; Assert(iInstance == 0); /* * Validate configuration. */ if (!CFGMR3AreValuesValid(pCfgHandle, "Irq\0" "Base\0" "Speaker\0" "GCEnabled\0" "R0Enabled\0")) return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES; /* * Init the data. */ rc = CFGMR3QueryU8Def(pCfgHandle, "Irq", &u8Irq, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"Irq\" as a uint8_t failed")); rc = CFGMR3QueryU16Def(pCfgHandle, "Base", &u16Base, 0x40); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"Base\" as a uint16_t failed")); rc = CFGMR3QueryBoolDef(pCfgHandle, "SpeakerEnabled", &fSpeaker, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"SpeakerEnabled\" as a bool failed")); rc = CFGMR3QueryBoolDef(pCfgHandle, "GCEnabled", &fGCEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"GCEnabled\" as a bool failed")); rc = CFGMR3QueryBoolDef(pCfgHandle, "R0Enabled", &fR0Enabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: failed to read R0Enabled as boolean")); pThis->pDevIns = pDevIns; pThis->channels[0].irq = u8Irq; for (i = 0; i < RT_ELEMENTS(pThis->channels); i++) { pThis->channels[i].pPitR3 = pThis; pThis->channels[i].pPitR0 = PDMINS_2_DATA_R0PTR(pDevIns); pThis->channels[i].pPitRC = PDMINS_2_DATA_RCPTR(pDevIns); } /* * Create timer, register I/O Ports and save state. */ rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, pitTimer, "i8254 Programmable Interval Timer", &pThis->channels[0].pTimerR3); if (RT_FAILURE(rc)) return rc; pThis->channels[0].pTimerRC = TMTimerRCPtr(pThis->channels[0].pTimerR3); pThis->channels[0].pTimerR0 = TMTimerR0Ptr(pThis->channels[0].pTimerR3); rc = PDMDevHlpIOPortRegister(pDevIns, u16Base, 4, NULL, pitIOPortWrite, pitIOPortRead, NULL, NULL, "i8254 Programmable Interval Timer"); if (RT_FAILURE(rc)) return rc; if (fGCEnabled) { rc = PDMDevHlpIOPortRegisterGC(pDevIns, u16Base, 4, 0, "pitIOPortWrite", "pitIOPortRead", NULL, NULL, "i8254 Programmable Interval Timer"); if (RT_FAILURE(rc)) return rc; } if (fR0Enabled) { rc = PDMDevHlpIOPortRegisterR0(pDevIns, u16Base, 4, 0, "pitIOPortWrite", "pitIOPortRead", NULL, NULL, "i8254 Programmable Interval Timer"); if (RT_FAILURE(rc)) return rc; } if (fSpeaker) { rc = PDMDevHlpIOPortRegister(pDevIns, 0x61, 1, NULL, pitIOPortSpeakerWrite, pitIOPortSpeakerRead, NULL, NULL, "PC Speaker"); if (RT_FAILURE(rc)) return rc; if (fGCEnabled) { rc = PDMDevHlpIOPortRegisterGC(pDevIns, 0x61, 1, 0, NULL, "pitIOPortSpeakerRead", NULL, NULL, "PC Speaker"); if (RT_FAILURE(rc)) return rc; } } rc = PDMDevHlpSSMRegister(pDevIns, pDevIns->pDevReg->szDeviceName, iInstance, PIT_SAVED_STATE_VERSION, sizeof(*pThis), NULL, pitSaveExec, NULL, NULL, pitLoadExec, NULL); if (RT_FAILURE(rc)) return rc; /* * Initialize the device state. */ pitReset(pDevIns); /* * Register statistics and debug info. */ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPITIrq, STAMTYPE_COUNTER, "/TM/PIT/Irq", STAMUNIT_OCCURENCES, "The number of times a timer interrupt was triggered."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPITHandler, STAMTYPE_PROFILE, "/TM/PIT/Handler", STAMUNIT_TICKS_PER_CALL, "Profiling timer callback handler."); PDMDevHlpDBGFInfoRegister(pDevIns, "pit", "Display PIT (i8254) status. (no arguments)", pitInfo); return VINF_SUCCESS; } /** * The device registration structure. */ const PDMDEVREG g_DeviceI8254 = { /* u32Version */ PDM_DEVREG_VERSION, /* szDeviceName */ "i8254", /* szGCMod */ "VBoxDDGC.gc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "Intel 8254 Programmable Interval Timer (PIT) And Dummy Speaker Device", /* fFlags */ PDM_DEVREG_FLAGS_HOST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GUEST_BITS_32_64 | PDM_DEVREG_FLAGS_PAE36 | PDM_DEVREG_FLAGS_GC | PDM_DEVREG_FLAGS_R0, /* fClass */ PDM_DEVREG_CLASS_PIT, /* cMaxInstances */ 1, /* cbInstance */ sizeof(PITState), /* pfnConstruct */ pitConstruct, /* pfnDestruct */ NULL, /* pfnRelocate */ pitRelocate, /* pfnIOCtl */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ pitReset, /* pfnSuspend */ NULL, /* pfnResume */ NULL, /* pfnAttach */ NULL, /* pfnDetach */ NULL, /* pfnQueryInterface. */ NULL }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */