/* $Id: DevPit-i8254.cpp 69046 2017-10-11 16:11:23Z vboxsync $ */ /** @file * DevPIT-i8254 - Intel 8254 Programmable Interval Timer (PIT) And Dummy Speaker Device. */ /* * Copyright (C) 2006-2016 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * -------------------------------------------------------------------- * * This code is based on: * * QEMU 8253/8254 interval timer emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_PIT #include #include #include #include #include #ifdef IN_RING3 # ifdef RT_OS_LINUX # include # include # include # include # include # include # include # endif # include # include # include #endif /* IN_RING3 */ #include "VBoxDD.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The PIT frequency. */ #define PIT_FREQ 1193182 #define RW_STATE_LSB 1 #define RW_STATE_MSB 2 #define RW_STATE_WORD0 3 #define RW_STATE_WORD1 4 /** The current saved state version. */ #define PIT_SAVED_STATE_VERSION 4 /** The saved state version used by VirtualBox 3.1 and earlier. * This did not include disable by HPET flag. */ #define PIT_SAVED_STATE_VERSION_VBOX_31 3 /** The saved state version used by VirtualBox 3.0 and earlier. * This did not include the config part. */ #define PIT_SAVED_STATE_VERSION_VBOX_30 2 /** @def FAKE_REFRESH_CLOCK * Define this to flip the 15usec refresh bit on every read. * If not defined, it will be flipped correctly. */ /* #define FAKE_REFRESH_CLOCK */ #ifdef DOXYGEN_RUNNING # define FAKE_REFRESH_CLOCK #endif /** The effective counter mode - if bit 1 is set, bit 2 is ignored. */ #define EFFECTIVE_MODE(x) ((x) & ~(((x) & 2) << 1)) /** * Acquires the PIT lock or returns. */ #define DEVPIT_LOCK_RETURN(a_pThis, a_rcBusy) \ do { \ int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, (a_rcBusy)); \ if (rcLock != VINF_SUCCESS) \ return rcLock; \ } while (0) /** * Releases the PIT lock. */ #define DEVPIT_UNLOCK(a_pThis) \ do { PDMCritSectLeave(&(a_pThis)->CritSect); } while (0) /** * Acquires the TM lock and PIT lock, returns on failure. */ #define DEVPIT_LOCK_BOTH_RETURN(a_pThis, a_rcBusy) \ do { \ int rcLock = TMTimerLock((a_pThis)->channels[0].CTX_SUFF(pTimer), (a_rcBusy)); \ if (rcLock != VINF_SUCCESS) \ return rcLock; \ rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, (a_rcBusy)); \ if (rcLock != VINF_SUCCESS) \ { \ TMTimerUnlock((a_pThis)->channels[0].CTX_SUFF(pTimer)); \ return rcLock; \ } \ } while (0) #ifdef IN_RING3 /** * Acquires the TM lock and PIT lock, ignores failures. */ # define DEVPIT_R3_LOCK_BOTH(a_pThis) \ do { \ TMTimerLock((a_pThis)->channels[0].CTX_SUFF(pTimer), VERR_IGNORED); \ PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \ } while (0) #endif /* IN_RING3 */ /** * Releases the PIT lock and TM lock. */ #define DEVPIT_UNLOCK_BOTH(a_pThis) \ do { \ PDMCritSectLeave(&(a_pThis)->CritSect); \ TMTimerUnlock((a_pThis)->channels[0].CTX_SUFF(pTimer)); \ } while (0) /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * The state of one PIT channel. */ typedef struct PITCHANNEL { /** Pointer to the instance data - R3 Ptr. */ R3PTRTYPE(struct PITSTATE *) pPitR3; /** The timer - R3 Ptr. * @note Only channel 0 has a timer. */ PTMTIMERR3 pTimerR3; /** Pointer to the instance data - R0 Ptr. */ R0PTRTYPE(struct PITSTATE *) pPitR0; /** The timer - R0 Ptr. * @note Only channel 0 has a timer. */ PTMTIMERR0 pTimerR0; /** Pointer to the instance data - RC Ptr. */ RCPTRTYPE(struct PITSTATE *) pPitRC; /** The timer - RC Ptr. * @note Only channel 0 has a timer. */ PTMTIMERRC pTimerRC; /** The virtual time stamp at the last reload. (only used in mode 2 for now) */ uint64_t u64ReloadTS; /** The actual time of the next tick. * As apposed to the next_transition_time which contains the correct time of the next tick. */ uint64_t u64NextTS; /** (count_load_time is only set by TMTimerGet() which returns uint64_t) */ uint64_t count_load_time; /* irq handling */ int64_t next_transition_time; int32_t irq; /** Number of release log entries. Used to prevent flooding. */ uint32_t cRelLogEntries; uint32_t count; /* can be 65536 */ uint16_t latched_count; uint8_t count_latched; uint8_t status_latched; uint8_t status; uint8_t read_state; uint8_t write_state; uint8_t write_latch; uint8_t rw_mode; uint8_t mode; uint8_t bcd; /* not supported */ uint8_t gate; /* timer start */ } PITCHANNEL; /** Pointer to the state of one PIT channel. */ typedef PITCHANNEL *PPITCHANNEL; /** Speaker emulation state. */ typedef enum PITSPEAKEREMU { PIT_SPEAKER_EMU_NONE = 0, PIT_SPEAKER_EMU_CONSOLE, PIT_SPEAKER_EMU_EVDEV, PIT_SPEAKER_EMU_TTY } PITSPEAKEREMU; /** * The whole PIT state. */ typedef struct PITSTATE { /** Channel state. Must come first? */ PITCHANNEL channels[3]; /** Speaker data. */ int32_t speaker_data_on; #ifdef FAKE_REFRESH_CLOCK /** Refresh dummy. */ int32_t dummy_refresh_clock; #else uint32_t Alignment1; #endif /** Config: I/O port base. */ RTIOPORT IOPortBaseCfg; /** Config: Speaker enabled. */ bool fSpeakerCfg; /** Disconnect PIT from the interrupt controllers if requested by HPET. */ bool fDisabledByHpet; /** Config: What to do with speaker activity. */ PITSPEAKEREMU enmSpeakerEmu; #ifdef RT_OS_LINUX /** File handle for host speaker functionality. */ int hHostSpeaker; int afAlignment2; #endif /** PIT port interface. */ PDMIHPETLEGACYNOTIFY IHpetLegacyNotify; /** Pointer to the device instance. */ PPDMDEVINSR3 pDevIns; /** Number of IRQs that's been raised. */ STAMCOUNTER StatPITIrq; /** Profiling the timer callback handler. */ STAMPROFILEADV StatPITHandler; /** Critical section protecting the state. */ PDMCRITSECT CritSect; } PITSTATE; /** Pointer to the PIT device state. */ typedef PITSTATE *PPITSTATE; #ifndef VBOX_DEVICE_STRUCT_TESTCASE /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ #ifdef IN_RING3 static void pit_irq_timer_update(PPITCHANNEL pChan, uint64_t current_time, uint64_t now, bool in_timer); #endif #ifdef IN_RING3 # ifdef RT_OS_LINUX static int pitTryDeviceOpen(const char *pszPath, int flags) { int fd = open(pszPath, flags); if (fd == -1) LogRel(("PIT: speaker: cannot open \"%s\", errno=%d\n", pszPath, errno)); else LogRel(("PIT: speaker: opened \"%s\"\n", pszPath)); return fd; } static int pitTryDeviceOpenSanitizeIoctl(const char *pszPath, int flags) { int fd = open(pszPath, flags); if (fd == -1) LogRel(("PIT: speaker: cannot open \"%s\", errno=%d\n", pszPath, errno)); else { int errno_eviocgsnd0 = 0; int errno_kiocsound = 0; if (ioctl(fd, EVIOCGSND(0)) == -1) { errno_eviocgsnd0 = errno; if (ioctl(fd, KIOCSOUND, 1) == -1) errno_kiocsound = errno; else ioctl(fd, KIOCSOUND, 0); } if (errno_eviocgsnd0 && errno_kiocsound) { LogRel(("PIT: speaker: cannot use \"%s\", ioctl failed errno=%d/errno=%d\n", pszPath, errno_eviocgsnd0, errno_kiocsound)); close(fd); fd = -1; } else LogRel(("PIT: speaker: opened \"%s\"\n", pszPath)); } return fd; } # endif /* RT_OS_LINUX */ #endif /* IN_RING3 */ static int pit_get_count(PPITCHANNEL pChan) { uint64_t d; PTMTIMER pTimer = pChan->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); Assert(TMTimerIsLockOwner(pTimer)); if (EFFECTIVE_MODE(pChan->mode) == 2) { if (pChan->u64NextTS == UINT64_MAX) { d = ASMMultU64ByU32DivByU32(TMTimerGet(pTimer) - pChan->count_load_time, PIT_FREQ, TMTimerGetFreq(pTimer)); return pChan->count - (d % pChan->count); /** @todo check this value. */ } uint64_t Interval = pChan->u64NextTS - pChan->u64ReloadTS; if (!Interval) return pChan->count - 1; /** @todo This is WRONG! But I'm too tired to fix it properly and just want to shut up a DIV/0 trap now. */ d = TMTimerGet(pTimer); d = ASMMultU64ByU32DivByU32(d - pChan->u64ReloadTS, pChan->count, Interval); if (d >= pChan->count) return 1; return pChan->count - d; } d = ASMMultU64ByU32DivByU32(TMTimerGet(pTimer) - pChan->count_load_time, PIT_FREQ, TMTimerGetFreq(pTimer)); int counter; switch (EFFECTIVE_MODE(pChan->mode)) { case 0: case 1: case 4: case 5: counter = (pChan->count - d) & 0xffff; break; case 3: /* XXX: may be incorrect for odd counts */ counter = pChan->count - ((2 * d) % pChan->count); break; default: counter = pChan->count - (d % pChan->count); break; } /** @todo check that we don't return 0, in most modes (all?) the counter shouldn't be zero. */ return counter; } /* get pit output bit */ static int pit_get_out1(PPITCHANNEL pChan, int64_t current_time) { PTMTIMER pTimer = pChan->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); uint64_t d; int out; d = ASMMultU64ByU32DivByU32(current_time - pChan->count_load_time, PIT_FREQ, TMTimerGetFreq(pTimer)); switch (EFFECTIVE_MODE(pChan->mode)) { default: case 0: out = (d >= pChan->count); break; case 1: out = (d < pChan->count); break; case 2: Log2(("pit_get_out1: d=%llx c=%x %x \n", d, pChan->count, (unsigned)(d % pChan->count))); if ((d % pChan->count) == 0 && d != 0) out = 1; else out = 0; break; case 3: out = (d % pChan->count) < ((pChan->count + 1) >> 1); break; case 4: case 5: out = (d != pChan->count); break; } return out; } static int pit_get_out(PPITSTATE pThis, int channel, int64_t current_time) { PPITCHANNEL pChan = &pThis->channels[channel]; return pit_get_out1(pChan, current_time); } static int pit_get_gate(PPITSTATE pThis, int channel) { PPITCHANNEL pChan = &pThis->channels[channel]; return pChan->gate; } /* if already latched, do not latch again */ static void pit_latch_count(PPITCHANNEL pChan) { if (!pChan->count_latched) { pChan->latched_count = pit_get_count(pChan); pChan->count_latched = pChan->rw_mode; LogFlow(("pit_latch_count: latched_count=%#06x / %10RU64 ns (c=%#06x m=%d)\n", pChan->latched_count, ASMMultU64ByU32DivByU32(pChan->count - pChan->latched_count, 1000000000, PIT_FREQ), pChan->count, pChan->mode)); } } #ifdef IN_RING3 /* val must be 0 or 1 */ static void pit_set_gate(PPITSTATE pThis, int channel, int val) { PPITCHANNEL pChan = &pThis->channels[channel]; PTMTIMER pTimer = pChan->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); Assert((val & 1) == val); Assert(TMTimerIsLockOwner(pTimer)); switch (EFFECTIVE_MODE(pChan->mode)) { default: case 0: case 4: /* XXX: just disable/enable counting */ break; case 1: case 5: if (pChan->gate < val) { /* restart counting on rising edge */ Log(("pit_set_gate: restarting mode %d\n", pChan->mode)); pChan->count_load_time = TMTimerGet(pTimer); pit_irq_timer_update(pChan, pChan->count_load_time, pChan->count_load_time, false); } break; case 2: case 3: if (pChan->gate < val) { /* restart counting on rising edge */ Log(("pit_set_gate: restarting mode %d\n", pChan->mode)); pChan->count_load_time = pChan->u64ReloadTS = TMTimerGet(pTimer); pit_irq_timer_update(pChan, pChan->count_load_time, pChan->count_load_time, false); } /* XXX: disable/enable counting */ break; } pChan->gate = val; } static void pit_load_count(PPITCHANNEL pChan, int val) { PTMTIMER pTimer = pChan->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); Assert(TMTimerIsLockOwner(pTimer)); if (val == 0) val = 0x10000; pChan->count_load_time = pChan->u64ReloadTS = TMTimerGet(pTimer); pChan->count = val; pit_irq_timer_update(pChan, pChan->count_load_time, pChan->count_load_time, false); /* log the new rate (ch 0 only). */ if (pChan->pTimerR3 /* ch 0 */) { if (pChan->cRelLogEntries++ < 32) LogRel(("PIT: mode=%d count=%#x (%u) - %d.%02d Hz (ch=0)\n", pChan->mode, pChan->count, pChan->count, PIT_FREQ / pChan->count, (PIT_FREQ * 100 / pChan->count) % 100)); else Log(("PIT: mode=%d count=%#x (%u) - %d.%02d Hz (ch=0)\n", pChan->mode, pChan->count, pChan->count, PIT_FREQ / pChan->count, (PIT_FREQ * 100 / pChan->count) % 100)); TMTimerSetFrequencyHint(pChan->CTX_SUFF(pTimer), PIT_FREQ / pChan->count); } else Log(("PIT: mode=%d count=%#x (%u) - %d.%02d Hz (ch=%d)\n", pChan->mode, pChan->count, pChan->count, PIT_FREQ / pChan->count, (PIT_FREQ * 100 / pChan->count) % 100, pChan - &pChan->CTX_SUFF(pPit)->channels[0])); } /* return -1 if no transition will occur. */ static int64_t pit_get_next_transition_time(PPITCHANNEL pChan, uint64_t current_time) { PTMTIMER pTimer = pChan->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); uint64_t d, next_time, base; uint32_t period2; d = ASMMultU64ByU32DivByU32(current_time - pChan->count_load_time, PIT_FREQ, TMTimerGetFreq(pTimer)); switch(EFFECTIVE_MODE(pChan->mode)) { default: case 0: case 1: if (d < pChan->count) next_time = pChan->count; else return -1; break; /* * Mode 2: The period is 'count' PIT ticks. * When the counter reaches 1 we set the output low (for channel 0 that * means lowering IRQ0). On the next tick, where we should be decrementing * from 1 to 0, the count is loaded and the output goes high (channel 0 * means raising IRQ0 again and triggering timer interrupt). * * In VirtualBox we compress the pulse and flip-flop the IRQ line at the * end of the period, which signals an interrupt at the exact same time. */ case 2: base = (d / pChan->count) * pChan->count; #ifndef VBOX /* see above */ if ((d - base) == 0 && d != 0) next_time = base + pChan->count - 1; else #endif next_time = base + pChan->count; break; case 3: base = (d / pChan->count) * pChan->count; period2 = ((pChan->count + 1) >> 1); if ((d - base) < period2) next_time = base + period2; else next_time = base + pChan->count; break; /* Modes 4 and 5 generate a short pulse at the end of the time delay. This * is similar to mode 2, except modes 4/5 aren't periodic. We use the same * optimization - only use one timer callback and pulse the IRQ. * Note: Tickless Linux kernels use PIT mode 4 with 'nolapic'. */ case 4: case 5: #ifdef VBOX if (d <= pChan->count) next_time = pChan->count; #else if (d < pChan->count) next_time = pChan->count; else if (d == pChan->count) next_time = pChan->count + 1; #endif else return -1; break; } /* convert to timer units */ LogFlow(("PIT: next_time=%'14RU64 %'20RU64 mode=%#x count=%#06x\n", next_time, ASMMultU64ByU32DivByU32(next_time, TMTimerGetFreq(pTimer), PIT_FREQ), pChan->mode, pChan->count)); next_time = pChan->count_load_time + ASMMultU64ByU32DivByU32(next_time, TMTimerGetFreq(pTimer), PIT_FREQ); /* fix potential rounding problems */ if (next_time <= current_time) next_time = current_time; /* Add one to next_time; if we don't, integer truncation will cause * the algorithm to think that at the end of each period, it'pChan still * within the first one instead of at the beginning of the next one. */ return next_time + 1; } static void pit_irq_timer_update(PPITCHANNEL pChan, uint64_t current_time, uint64_t now, bool in_timer) { int64_t expire_time; int irq_level; Assert(TMTimerIsLockOwner(pChan->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer))); if (!pChan->CTX_SUFF(pTimer)) return; expire_time = pit_get_next_transition_time(pChan, current_time); irq_level = pit_get_out1(pChan, current_time) ? PDM_IRQ_LEVEL_HIGH : PDM_IRQ_LEVEL_LOW; /* If PIT is disabled by HPET - simply disconnect ticks from interrupt controllers, * but do not modify other aspects of device operation. */ if (!pChan->pPitR3->fDisabledByHpet) { PPDMDEVINS pDevIns = pChan->CTX_SUFF(pPit)->pDevIns; switch (EFFECTIVE_MODE(pChan->mode)) { case 2: case 4: case 5: /* We just flip-flop the IRQ line to save an extra timer call, * which isn't generally required. However, the pulse is only * generated when running on the timer callback (and thus on * the trailing edge of the output signal pulse). */ if (in_timer) { PDMDevHlpISASetIrq(pDevIns, pChan->irq, PDM_IRQ_LEVEL_FLIP_FLOP); break; } RT_FALL_THRU(); default: PDMDevHlpISASetIrq(pDevIns, pChan->irq, irq_level); break; } } if (irq_level) { pChan->u64ReloadTS = now; STAM_COUNTER_INC(&pChan->CTX_SUFF(pPit)->StatPITIrq); } if (expire_time != -1) { Log3(("pit_irq_timer_update: next=%'RU64 now=%'RU64\n", expire_time, now)); pChan->u64NextTS = expire_time; TMTimerSet(pChan->CTX_SUFF(pTimer), pChan->u64NextTS); } else { LogFlow(("PIT: m=%d count=%#4x irq_level=%#x stopped\n", pChan->mode, pChan->count, irq_level)); TMTimerStop(pChan->CTX_SUFF(pTimer)); pChan->u64NextTS = UINT64_MAX; } pChan->next_transition_time = expire_time; } #endif /* IN_RING3 */ /** * @callback_method_impl{FNIOMIOPORTIN} */ PDMBOTHCBDECL(int) pitIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT uPort, uint32_t *pu32, unsigned cb) { Log2(("pitIOPortRead: uPort=%#x cb=%x\n", uPort, cb)); NOREF(pvUser); uPort &= 3; if (cb != 1 || uPort == 3) { Log(("pitIOPortRead: uPort=%#x cb=%x *pu32=unused!\n", uPort, cb)); return VERR_IOM_IOPORT_UNUSED; } PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); PPITCHANNEL pChan = &pThis->channels[uPort]; int ret; DEVPIT_LOCK_RETURN(pThis, VINF_IOM_R3_IOPORT_READ); if (pChan->status_latched) { pChan->status_latched = 0; ret = pChan->status; DEVPIT_UNLOCK(pThis); } else if (pChan->count_latched) { switch (pChan->count_latched) { default: case RW_STATE_LSB: ret = pChan->latched_count & 0xff; pChan->count_latched = 0; break; case RW_STATE_MSB: ret = pChan->latched_count >> 8; pChan->count_latched = 0; break; case RW_STATE_WORD0: ret = pChan->latched_count & 0xff; pChan->count_latched = RW_STATE_MSB; break; } DEVPIT_UNLOCK(pThis); } else { DEVPIT_UNLOCK(pThis); DEVPIT_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_IOPORT_READ); int count; switch (pChan->read_state) { default: case RW_STATE_LSB: count = pit_get_count(pChan); ret = count & 0xff; break; case RW_STATE_MSB: count = pit_get_count(pChan); ret = (count >> 8) & 0xff; break; case RW_STATE_WORD0: count = pit_get_count(pChan); ret = count & 0xff; pChan->read_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: count = pit_get_count(pChan); ret = (count >> 8) & 0xff; pChan->read_state = RW_STATE_WORD0; break; } DEVPIT_UNLOCK_BOTH(pThis); } *pu32 = ret; Log2(("pitIOPortRead: uPort=%#x cb=%x *pu32=%#04x\n", uPort, cb, *pu32)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTOUT} */ PDMBOTHCBDECL(int) pitIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT uPort, uint32_t u32, unsigned cb) { Log2(("pitIOPortWrite: uPort=%#x cb=%x u32=%#04x\n", uPort, cb, u32)); NOREF(pvUser); if (cb != 1) return VINF_SUCCESS; PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); uPort &= 3; if (uPort == 3) { /* * Port 43h - Mode/Command Register. * 7 6 5 4 3 2 1 0 * * * . . . . . . Select channel: 0 0 = Channel 0 * 0 1 = Channel 1 * 1 0 = Channel 2 * 1 1 = Read-back command (8254 only) * (Illegal on 8253) * (Illegal on PS/2 {JAM}) * . . * * . . . . Command/Access mode: 0 0 = Latch count value command * 0 1 = Access mode: lobyte only * 1 0 = Access mode: hibyte only * 1 1 = Access mode: lobyte/hibyte * . . . . * * * . Operating mode: 0 0 0 = Mode 0, 0 0 1 = Mode 1, * 0 1 0 = Mode 2, 0 1 1 = Mode 3, * 1 0 0 = Mode 4, 1 0 1 = Mode 5, * 1 1 0 = Mode 2, 1 1 1 = Mode 3 * . . . . . . . * BCD/Binary mode: 0 = 16-bit binary, 1 = four-digit BCD */ unsigned channel = u32 >> 6; if (channel == 3) { /* read-back command */ DEVPIT_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_IOPORT_WRITE); for (channel = 0; channel < RT_ELEMENTS(pThis->channels); channel++) { PPITCHANNEL pChan = &pThis->channels[channel]; if (u32 & (2 << channel)) { if (!(u32 & 0x20)) pit_latch_count(pChan); if (!(u32 & 0x10) && !pChan->status_latched) { /* status latch */ /* XXX: add BCD and null count */ PTMTIMER pTimer = pChan->CTX_SUFF(pPit)->channels[0].CTX_SUFF(pTimer); pChan->status = (pit_get_out1(pChan, TMTimerGet(pTimer)) << 7) | (pChan->rw_mode << 4) | (pChan->mode << 1) | pChan->bcd; pChan->status_latched = 1; } } } DEVPIT_UNLOCK_BOTH(pThis); } else { PPITCHANNEL pChan = &pThis->channels[channel]; unsigned access = (u32 >> 4) & 3; if (access == 0) { DEVPIT_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_IOPORT_WRITE); pit_latch_count(pChan); DEVPIT_UNLOCK_BOTH(pThis); } else { DEVPIT_LOCK_RETURN(pThis, VINF_IOM_R3_IOPORT_WRITE); pChan->rw_mode = access; pChan->read_state = access; pChan->write_state = access; pChan->mode = (u32 >> 1) & 7; pChan->bcd = u32 & 1; /* XXX: update irq timer ? */ DEVPIT_UNLOCK(pThis); } } } else { #ifndef IN_RING3 /** @todo There is no reason not to do this in all contexts these * days... */ return VINF_IOM_R3_IOPORT_WRITE; #else /* IN_RING3 */ /* * Port 40-42h - Channel Data Ports. */ PPITCHANNEL pChan = &pThis->channels[uPort]; DEVPIT_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_IOPORT_WRITE); switch (pChan->write_state) { default: case RW_STATE_LSB: pit_load_count(pChan, u32); break; case RW_STATE_MSB: pit_load_count(pChan, u32 << 8); break; case RW_STATE_WORD0: pChan->write_latch = u32; pChan->write_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: pit_load_count(pChan, pChan->write_latch | (u32 << 8)); pChan->write_state = RW_STATE_WORD0; break; } DEVPIT_UNLOCK_BOTH(pThis); #endif /* !IN_RING3 */ } return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTIN, Speaker} */ PDMBOTHCBDECL(int) pitIOPortSpeakerRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT uPort, uint32_t *pu32, unsigned cb) { RT_NOREF2(pvUser, uPort); if (cb == 1) { PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); DEVPIT_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_IOPORT_READ); const uint64_t u64Now = TMTimerGet(pThis->channels[0].CTX_SUFF(pTimer)); Assert(TMTimerGetFreq(pThis->channels[0].CTX_SUFF(pTimer)) == 1000000000); /* lazy bird. */ /* bit 6,7 Parity error stuff. */ /* bit 5 - mirrors timer 2 output condition. */ const int fOut = pit_get_out(pThis, 2, u64Now); /* bit 4 - toggled with each (DRAM?) refresh request, every 15.085 u-op Chan. ASSUMES ns timer freq, see assertion above. */ #ifndef FAKE_REFRESH_CLOCK const int fRefresh = (u64Now / 15085) & 1; #else pThis->dummy_refresh_clock ^= 1; const int fRefresh = pThis->dummy_refresh_clock; #endif /* bit 2,3 NMI / parity status stuff. */ /* bit 1 - speaker data status */ const int fSpeakerStatus = pThis->speaker_data_on; /* bit 0 - timer 2 clock gate to speaker status. */ const int fTimer2GateStatus = pit_get_gate(pThis, 2); DEVPIT_UNLOCK_BOTH(pThis); *pu32 = fTimer2GateStatus | (fSpeakerStatus << 1) | (fRefresh << 4) | (fOut << 5); Log(("pitIOPortSpeakerRead: uPort=%#x cb=%x *pu32=%#x\n", uPort, cb, *pu32)); return VINF_SUCCESS; } Log(("pitIOPortSpeakerRead: uPort=%#x cb=%x *pu32=unused!\n", uPort, cb)); return VERR_IOM_IOPORT_UNUSED; } #ifdef IN_RING3 /** * @callback_method_impl{FNIOMIOPORTOUT, Speaker} */ PDMBOTHCBDECL(int) pitIOPortSpeakerWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT uPort, uint32_t u32, unsigned cb) { RT_NOREF2(pvUser, uPort); if (cb == 1) { PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); DEVPIT_LOCK_BOTH_RETURN(pThis, VERR_IGNORED); pThis->speaker_data_on = (u32 >> 1) & 1; pit_set_gate(pThis, 2, u32 & 1); /** @todo r=klaus move this to a (system-specific) driver, which can * abstract the details, and if necessary create a thread to minimize * impact on VM execution. */ #ifdef RT_OS_LINUX if (pThis->enmSpeakerEmu != PIT_SPEAKER_EMU_NONE) { PPITCHANNEL pChan = &pThis->channels[2]; if (pThis->speaker_data_on) { Log2Func(("starting beep freq=%d\n", PIT_FREQ / pChan->count)); switch (pThis->enmSpeakerEmu) { case PIT_SPEAKER_EMU_CONSOLE: { int res; res = ioctl(pThis->hHostSpeaker, KIOCSOUND, pChan->count); if (res == -1) { LogRel(("PIT: speaker: ioctl failed errno=%d, disabling emulation\n", errno)); pThis->enmSpeakerEmu = PIT_SPEAKER_EMU_NONE; } break; } case PIT_SPEAKER_EMU_EVDEV: { struct input_event e; e.type = EV_SND; e.code = SND_TONE; e.value = PIT_FREQ / pChan->count; int res = write(pThis->hHostSpeaker, &e, sizeof(struct input_event)); NOREF(res); break; } case PIT_SPEAKER_EMU_TTY: { int res = write(pThis->hHostSpeaker, "\a", 1); NOREF(res); break; } case PIT_SPEAKER_EMU_NONE: break; default: Log2Func(("unknown speaker emulation %d, disabling emulation\n", pThis->enmSpeakerEmu)); pThis->enmSpeakerEmu = PIT_SPEAKER_EMU_NONE; } } else { Log2Func(("stopping beep\n")); switch (pThis->enmSpeakerEmu) { case PIT_SPEAKER_EMU_CONSOLE: /* No error checking here. The Linux device driver * implementation considers it an error (errno=22, * EINVAL) to stop sound if it hasn't been started. * Of course we could detect this by checking only * for enabled->disabled transitions and ignoring * disabled->disabled ones, but it's not worth the * effort. */ ioctl(pThis->hHostSpeaker, KIOCSOUND, 0); break; case PIT_SPEAKER_EMU_EVDEV: { struct input_event e; e.type = EV_SND; e.code = SND_TONE; e.value = 0; int res = write(pThis->hHostSpeaker, &e, sizeof(struct input_event)); NOREF(res); break; } case PIT_SPEAKER_EMU_TTY: break; case PIT_SPEAKER_EMU_NONE: break; default: Log2Func(("unknown speaker emulation %d, disabling emulation\n", pThis->enmSpeakerEmu)); pThis->enmSpeakerEmu = PIT_SPEAKER_EMU_NONE; } } } #endif DEVPIT_UNLOCK_BOTH(pThis); } Log(("pitIOPortSpeakerWrite: uPort=%#x cb=%x u32=%#x\n", uPort, cb, u32)); return VINF_SUCCESS; } /* -=-=-=-=-=- Saved state -=-=-=-=-=- */ /** * @callback_method_impl{FNSSMDEVLIVEEXEC} */ static DECLCALLBACK(int) pitLiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass) { RT_NOREF1(uPass); PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); SSMR3PutIOPort(pSSM, pThis->IOPortBaseCfg); SSMR3PutU8( pSSM, pThis->channels[0].irq); SSMR3PutBool( pSSM, pThis->fSpeakerCfg); return VINF_SSM_DONT_CALL_AGAIN; } /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) pitSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED); /* The config. */ pitLiveExec(pDevIns, pSSM, SSM_PASS_FINAL); /* The state. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->channels); i++) { PPITCHANNEL pChan = &pThis->channels[i]; SSMR3PutU32(pSSM, pChan->count); SSMR3PutU16(pSSM, pChan->latched_count); SSMR3PutU8(pSSM, pChan->count_latched); SSMR3PutU8(pSSM, pChan->status_latched); SSMR3PutU8(pSSM, pChan->status); SSMR3PutU8(pSSM, pChan->read_state); SSMR3PutU8(pSSM, pChan->write_state); SSMR3PutU8(pSSM, pChan->write_latch); SSMR3PutU8(pSSM, pChan->rw_mode); SSMR3PutU8(pSSM, pChan->mode); SSMR3PutU8(pSSM, pChan->bcd); SSMR3PutU8(pSSM, pChan->gate); SSMR3PutU64(pSSM, pChan->count_load_time); SSMR3PutU64(pSSM, pChan->u64NextTS); SSMR3PutU64(pSSM, pChan->u64ReloadTS); SSMR3PutS64(pSSM, pChan->next_transition_time); if (pChan->CTX_SUFF(pTimer)) TMR3TimerSave(pChan->CTX_SUFF(pTimer), pSSM); } SSMR3PutS32(pSSM, pThis->speaker_data_on); #ifdef FAKE_REFRESH_CLOCK SSMR3PutS32(pSSM, pThis->dummy_refresh_clock); #else SSMR3PutS32(pSSM, 0); #endif SSMR3PutBool(pSSM, pThis->fDisabledByHpet); PDMCritSectLeave(&pThis->CritSect); return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) pitLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); int rc; if ( uVersion != PIT_SAVED_STATE_VERSION && uVersion != PIT_SAVED_STATE_VERSION_VBOX_30 && uVersion != PIT_SAVED_STATE_VERSION_VBOX_31) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; /* The config. */ if (uVersion > PIT_SAVED_STATE_VERSION_VBOX_30) { RTIOPORT IOPortBaseCfg; rc = SSMR3GetIOPort(pSSM, &IOPortBaseCfg); AssertRCReturn(rc, rc); if (IOPortBaseCfg != pThis->IOPortBaseCfg) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - IOPortBaseCfg: saved=%RTiop config=%RTiop"), IOPortBaseCfg, pThis->IOPortBaseCfg); uint8_t u8Irq; rc = SSMR3GetU8(pSSM, &u8Irq); AssertRCReturn(rc, rc); if (u8Irq != pThis->channels[0].irq) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - u8Irq: saved=%#x config=%#x"), u8Irq, pThis->channels[0].irq); bool fSpeakerCfg; rc = SSMR3GetBool(pSSM, &fSpeakerCfg); AssertRCReturn(rc, rc); if (fSpeakerCfg != pThis->fSpeakerCfg) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - fSpeakerCfg: saved=%RTbool config=%RTbool"), fSpeakerCfg, pThis->fSpeakerCfg); } if (uPass != SSM_PASS_FINAL) return VINF_SUCCESS; /* The state. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->channels); i++) { PPITCHANNEL pChan = &pThis->channels[i]; SSMR3GetU32(pSSM, &pChan->count); SSMR3GetU16(pSSM, &pChan->latched_count); SSMR3GetU8(pSSM, &pChan->count_latched); SSMR3GetU8(pSSM, &pChan->status_latched); SSMR3GetU8(pSSM, &pChan->status); SSMR3GetU8(pSSM, &pChan->read_state); SSMR3GetU8(pSSM, &pChan->write_state); SSMR3GetU8(pSSM, &pChan->write_latch); SSMR3GetU8(pSSM, &pChan->rw_mode); SSMR3GetU8(pSSM, &pChan->mode); SSMR3GetU8(pSSM, &pChan->bcd); SSMR3GetU8(pSSM, &pChan->gate); SSMR3GetU64(pSSM, &pChan->count_load_time); SSMR3GetU64(pSSM, &pChan->u64NextTS); SSMR3GetU64(pSSM, &pChan->u64ReloadTS); SSMR3GetS64(pSSM, &pChan->next_transition_time); if (pChan->CTX_SUFF(pTimer)) { TMR3TimerLoad(pChan->CTX_SUFF(pTimer), pSSM); LogRel(("PIT: mode=%d count=%#x (%u) - %d.%02d Hz (ch=%d) (restore)\n", pChan->mode, pChan->count, pChan->count, PIT_FREQ / pChan->count, (PIT_FREQ * 100 / pChan->count) % 100, i)); PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED); TMTimerSetFrequencyHint(pChan->CTX_SUFF(pTimer), PIT_FREQ / pChan->count); PDMCritSectLeave(&pThis->CritSect); } pThis->channels[i].cRelLogEntries = 0; } SSMR3GetS32(pSSM, &pThis->speaker_data_on); #ifdef FAKE_REFRESH_CLOCK SSMR3GetS32(pSSM, &pThis->dummy_refresh_clock); #else int32_t u32Dummy; SSMR3GetS32(pSSM, &u32Dummy); #endif if (uVersion > PIT_SAVED_STATE_VERSION_VBOX_31) SSMR3GetBool(pSSM, &pThis->fDisabledByHpet); return VINF_SUCCESS; } /* -=-=-=-=-=- Timer -=-=-=-=-=- */ /** * @callback_method_impl{FNTMTIMERDEV} * @param pvUser Pointer to the PIT channel state. */ static DECLCALLBACK(void) pitTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser) { RT_NOREF1(pDevIns); PPITCHANNEL pChan = (PPITCHANNEL)pvUser; STAM_PROFILE_ADV_START(&pChan->CTX_SUFF(pPit)->StatPITHandler, a); Log(("pitTimer\n")); Assert(PDMCritSectIsOwner(&PDMINS_2_DATA(pDevIns, PPITSTATE)->CritSect)); Assert(TMTimerIsLockOwner(pTimer)); pit_irq_timer_update(pChan, pChan->next_transition_time, TMTimerGet(pTimer), true); STAM_PROFILE_ADV_STOP(&pChan->CTX_SUFF(pPit)->StatPITHandler, a); } /* -=-=-=-=-=- Debug Info -=-=-=-=-=- */ /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) pitInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { RT_NOREF1(pszArgs); PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); unsigned i; for (i = 0; i < RT_ELEMENTS(pThis->channels); i++) { const PITCHANNEL *pChan = &pThis->channels[i]; pHlp->pfnPrintf(pHlp, "PIT (i8254) channel %d status: irq=%#x\n" " count=%08x" " latched_count=%04x count_latched=%02x\n" " status=%02x status_latched=%02x read_state=%02x\n" " write_state=%02x write_latch=%02x rw_mode=%02x\n" " mode=%02x bcd=%02x gate=%02x\n" " count_load_time=%016RX64 next_transition_time=%016RX64\n" " u64ReloadTS=%016RX64 u64NextTS=%016RX64\n" , i, pChan->irq, pChan->count, pChan->latched_count, pChan->count_latched, pChan->status, pChan->status_latched, pChan->read_state, pChan->write_state, pChan->write_latch, pChan->rw_mode, pChan->mode, pChan->bcd, pChan->gate, pChan->count_load_time, pChan->next_transition_time, pChan->u64ReloadTS, pChan->u64NextTS); } #ifdef FAKE_REFRESH_CLOCK pHlp->pfnPrintf(pHlp, "speaker_data_on=%#x dummy_refresh_clock=%#x\n", pThis->speaker_data_on, pThis->dummy_refresh_clock); #else pHlp->pfnPrintf(pHlp, "speaker_data_on=%#x\n", pThis->speaker_data_on); #endif if (pThis->fDisabledByHpet) pHlp->pfnPrintf(pHlp, "Disabled by HPET\n"); } /* -=-=-=-=-=- IHpetLegacyNotify -=-=-=-=-=- */ /** * @interface_method_impl{PDMIHPETLEGACYNOTIFY,pfnModeChanged} */ static DECLCALLBACK(void) pitNotifyHpetLegacyNotify_ModeChanged(PPDMIHPETLEGACYNOTIFY pInterface, bool fActivated) { PPITSTATE pThis = RT_FROM_MEMBER(pInterface, PITSTATE, IHpetLegacyNotify); PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED); pThis->fDisabledByHpet = fActivated; PDMCritSectLeave(&pThis->CritSect); } /* -=-=-=-=-=- PDMDEVINS::IBase -=-=-=-=-=- */ /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) pitQueryInterface(PPDMIBASE pInterface, const char *pszIID) { PPDMDEVINS pDevIns = RT_FROM_MEMBER(pInterface, PDMDEVINS, IBase); PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pDevIns->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIHPETLEGACYNOTIFY, &pThis->IHpetLegacyNotify); return NULL; } /* -=-=-=-=-=- PDMDEVREG -=-=-=-=-=- */ /** * @interface_method_impl{PDMDEVREG,pfnRelocate} */ static DECLCALLBACK(void) pitRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { RT_NOREF1(offDelta); PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); LogFlow(("pitRelocate: \n")); for (unsigned i = 0; i < RT_ELEMENTS(pThis->channels); i++) { PPITCHANNEL pChan = &pThis->channels[i]; if (pChan->pTimerR3) pChan->pTimerRC = TMTimerRCPtr(pChan->pTimerR3); pThis->channels[i].pPitRC = PDMINS_2_DATA_RCPTR(pDevIns); } } /** * @interface_method_impl{PDMDEVREG,pfnReset} */ static DECLCALLBACK(void) pitReset(PPDMDEVINS pDevIns) { PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); LogFlow(("pitReset: \n")); DEVPIT_R3_LOCK_BOTH(pThis); pThis->fDisabledByHpet = false; for (unsigned i = 0; i < RT_ELEMENTS(pThis->channels); i++) { PPITCHANNEL pChan = &pThis->channels[i]; #if 1 /* Set everything back to virgin state. (might not be strictly correct) */ pChan->latched_count = 0; pChan->count_latched = 0; pChan->status_latched = 0; pChan->status = 0; pChan->read_state = 0; pChan->write_state = 0; pChan->write_latch = 0; pChan->rw_mode = 0; pChan->bcd = 0; #endif pChan->u64NextTS = UINT64_MAX; pChan->cRelLogEntries = 0; pChan->mode = 3; pChan->gate = (i != 2); pit_load_count(pChan, 0); } DEVPIT_UNLOCK_BOTH(pThis); } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) pitConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { PPITSTATE pThis = PDMINS_2_DATA(pDevIns, PPITSTATE); int rc; uint8_t u8Irq; uint16_t u16Base; bool fSpeaker; bool fGCEnabled; bool fR0Enabled; unsigned i; Assert(iInstance == 0); /* * Validate configuration. */ if (!CFGMR3AreValuesValid(pCfg, "Irq\0" "Base\0" "SpeakerEnabled\0" "PassthroughSpeaker\0" "PassthroughSpeakerDevice\0" "R0Enabled\0" "GCEnabled\0")) return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES; /* * Init the data. */ rc = CFGMR3QueryU8Def(pCfg, "Irq", &u8Irq, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"Irq\" as a uint8_t failed")); rc = CFGMR3QueryU16Def(pCfg, "Base", &u16Base, 0x40); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"Base\" as a uint16_t failed")); rc = CFGMR3QueryBoolDef(pCfg, "SpeakerEnabled", &fSpeaker, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"SpeakerEnabled\" as a bool failed")); uint8_t uPassthroughSpeaker; char *pszPassthroughSpeakerDevice = NULL; rc = CFGMR3QueryU8Def(pCfg, "PassthroughSpeaker", &uPassthroughSpeaker, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: failed to read PassthroughSpeaker as uint8_t")); if (uPassthroughSpeaker) { rc = CFGMR3QueryStringAllocDef(pCfg, "PassthroughSpeakerDevice", &pszPassthroughSpeakerDevice, NULL); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: failed to read PassthroughSpeakerDevice as string")); } rc = CFGMR3QueryBoolDef(pCfg, "GCEnabled", &fGCEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"GCEnabled\" as a bool failed")); rc = CFGMR3QueryBoolDef(pCfg, "R0Enabled", &fR0Enabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: failed to read R0Enabled as boolean")); pThis->pDevIns = pDevIns; pThis->IOPortBaseCfg = u16Base; pThis->fSpeakerCfg = fSpeaker; pThis->enmSpeakerEmu = PIT_SPEAKER_EMU_NONE; if (uPassthroughSpeaker) { /** @todo r=klaus move this to a (system-specific) driver */ #ifdef RT_OS_LINUX int fd = -1; if ((uPassthroughSpeaker == 1 || uPassthroughSpeaker == 100) && fd == -1) fd = pitTryDeviceOpenSanitizeIoctl("/dev/input/by-path/platform-pcspkr-event-spkr", O_WRONLY); if ((uPassthroughSpeaker == 2 || uPassthroughSpeaker == 100) && fd == -1) fd = pitTryDeviceOpenSanitizeIoctl("/dev/tty", O_WRONLY); if ((uPassthroughSpeaker == 3 || uPassthroughSpeaker == 100) && fd == -1) { fd = pitTryDeviceOpenSanitizeIoctl("/dev/tty0", O_WRONLY); if (fd == -1) fd = pitTryDeviceOpenSanitizeIoctl("/dev/vc/0", O_WRONLY); } if ((uPassthroughSpeaker == 9 || uPassthroughSpeaker == 100) && pszPassthroughSpeakerDevice && fd == -1) fd = pitTryDeviceOpenSanitizeIoctl(pszPassthroughSpeakerDevice, O_WRONLY); if (pThis->enmSpeakerEmu == PIT_SPEAKER_EMU_NONE && fd != -1) { pThis->hHostSpeaker = fd; if (ioctl(fd, EVIOCGSND(0)) != -1) { pThis->enmSpeakerEmu = PIT_SPEAKER_EMU_EVDEV; LogRel(("PIT: speaker: emulation mode evdev\n")); } else { pThis->enmSpeakerEmu = PIT_SPEAKER_EMU_CONSOLE; LogRel(("PIT: speaker: emulation mode console\n")); } } if ((uPassthroughSpeaker == 70 || uPassthroughSpeaker == 100) && fd == -1) fd = pitTryDeviceOpen("/dev/tty", O_WRONLY); if ((uPassthroughSpeaker == 79 || uPassthroughSpeaker == 100) && pszPassthroughSpeakerDevice && fd == -1) fd = pitTryDeviceOpen(pszPassthroughSpeakerDevice, O_WRONLY); if (pThis->enmSpeakerEmu == PIT_SPEAKER_EMU_NONE && fd != -1) { pThis->hHostSpeaker = fd; pThis->enmSpeakerEmu = PIT_SPEAKER_EMU_TTY; LogRel(("PIT: speaker: emulation mode tty\n")); } if (pThis->enmSpeakerEmu == PIT_SPEAKER_EMU_NONE) { Assert(fd == -1); LogRel(("PIT: speaker: no emulation possible\n")); } #else LogRel(("PIT: speaker: emulation deactivated\n")); #endif if (pszPassthroughSpeakerDevice) { MMR3HeapFree(pszPassthroughSpeakerDevice); pszPassthroughSpeakerDevice = NULL; } } pThis->channels[0].irq = u8Irq; for (i = 0; i < RT_ELEMENTS(pThis->channels); i++) { pThis->channels[i].pPitR3 = pThis; pThis->channels[i].pPitR0 = PDMINS_2_DATA_R0PTR(pDevIns); pThis->channels[i].pPitRC = PDMINS_2_DATA_RCPTR(pDevIns); } /* * Interfaces */ /* IBase */ pDevIns->IBase.pfnQueryInterface = pitQueryInterface; /* IHpetLegacyNotify */ pThis->IHpetLegacyNotify.pfnModeChanged = pitNotifyHpetLegacyNotify_ModeChanged; /* * We do our own locking. This must be done before creating timers. */ rc = PDMDevHlpCritSectInit(pDevIns, &pThis->CritSect, RT_SRC_POS, "pit#%u", iInstance); AssertRCReturn(rc, rc); rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); AssertRCReturn(rc, rc); /* * Create the timer, make it take our critsect. */ rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, pitTimer, &pThis->channels[0], TMTIMER_FLAGS_NO_CRIT_SECT, "i8254 Programmable Interval Timer", &pThis->channels[0].pTimerR3); if (RT_FAILURE(rc)) return rc; pThis->channels[0].pTimerRC = TMTimerRCPtr(pThis->channels[0].pTimerR3); pThis->channels[0].pTimerR0 = TMTimerR0Ptr(pThis->channels[0].pTimerR3); rc = TMR3TimerSetCritSect(pThis->channels[0].pTimerR3, &pThis->CritSect); AssertRCReturn(rc, rc); /* * Register I/O ports. */ rc = PDMDevHlpIOPortRegister(pDevIns, u16Base, 4, NULL, pitIOPortWrite, pitIOPortRead, NULL, NULL, "i8254 Programmable Interval Timer"); if (RT_FAILURE(rc)) return rc; if (fGCEnabled) { rc = PDMDevHlpIOPortRegisterRC(pDevIns, u16Base, 4, 0, "pitIOPortWrite", "pitIOPortRead", NULL, NULL, "i8254 Programmable Interval Timer"); if (RT_FAILURE(rc)) return rc; } if (fR0Enabled) { rc = PDMDevHlpIOPortRegisterR0(pDevIns, u16Base, 4, 0, "pitIOPortWrite", "pitIOPortRead", NULL, NULL, "i8254 Programmable Interval Timer"); if (RT_FAILURE(rc)) return rc; } if (fSpeaker) { rc = PDMDevHlpIOPortRegister(pDevIns, 0x61, 1, NULL, pitIOPortSpeakerWrite, pitIOPortSpeakerRead, NULL, NULL, "PC Speaker"); if (RT_FAILURE(rc)) return rc; if (fGCEnabled) { rc = PDMDevHlpIOPortRegisterRC(pDevIns, 0x61, 1, 0, NULL, "pitIOPortSpeakerRead", NULL, NULL, "PC Speaker"); if (RT_FAILURE(rc)) return rc; } } /* * Saved state. */ rc = PDMDevHlpSSMRegister3(pDevIns, PIT_SAVED_STATE_VERSION, sizeof(*pThis), pitLiveExec, pitSaveExec, pitLoadExec); if (RT_FAILURE(rc)) return rc; /* * Initialize the device state. */ pitReset(pDevIns); /* * Register statistics and debug info. */ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPITIrq, STAMTYPE_COUNTER, "/TM/PIT/Irq", STAMUNIT_OCCURENCES, "The number of times a timer interrupt was triggered."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPITHandler, STAMTYPE_PROFILE, "/TM/PIT/Handler", STAMUNIT_TICKS_PER_CALL, "Profiling timer callback handler."); PDMDevHlpDBGFInfoRegister(pDevIns, "pit", "Display PIT (i8254) status. (no arguments)", pitInfo); return VINF_SUCCESS; } /** * The device registration structure. */ const PDMDEVREG g_DeviceI8254 = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "i8254", /* szRCMod */ "VBoxDDRC.rc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "Intel 8254 Programmable Interval Timer (PIT) And Dummy Speaker Device", /* fFlags */ PDM_DEVREG_FLAGS_HOST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GUEST_BITS_32_64 | PDM_DEVREG_FLAGS_PAE36 | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0, /* fClass */ PDM_DEVREG_CLASS_PIT, /* cMaxInstances */ 1, /* cbInstance */ sizeof(PITSTATE), /* pfnConstruct */ pitConstruct, /* pfnDestruct */ NULL, /* pfnRelocate */ pitRelocate, /* pfnMemSetup */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ pitReset, /* pfnSuspend */ NULL, /* pfnResume */ NULL, /* pfnAttach */ NULL, /* pfnDetach */ NULL, /* pfnQueryInterface */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ NULL, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */