/** @file * * VBox basic PC devices: * Motorola MC146818 RTC/CMOS Device. */ /* * Copyright (C) 2006 InnoTek Systemberatung GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License as published by the Free Software Foundation, * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE * distribution. VirtualBox OSE is distributed in the hope that it will * be useful, but WITHOUT ANY WARRANTY of any kind. * * If you received this file as part of a commercial VirtualBox * distribution, then only the terms of your commercial VirtualBox * license agreement apply instead of the previous paragraph. * * -------------------------------------------------------------------- * * This code is based on: * * QEMU MC146818 RTC emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_RTC #include #include #include #include "vl_vbox.h" /** @todo Implement time/localtime/gmtime replacements in Runtime! */ #include struct RTCState; typedef struct RTCState RTCState; #define RTC_CRC_START 0x10 #define RTC_CRC_LAST 0x2d #define RTC_CRC_HIGH 0x2e #define RTC_CRC_LOW 0x2f #ifndef VBOX_DEVICE_STRUCT_TESTCASE /******************************************************************************* * Internal Functions * *******************************************************************************/ __BEGIN_DECLS PDMBOTHCBDECL(int) rtcIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb); PDMBOTHCBDECL(int) rtcIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb); PDMBOTHCBDECL(void) rtcTimerPeriodic(PPDMDEVINS pDevIns, PTMTIMER pTimer); PDMBOTHCBDECL(void) rtcTimerSecond(PPDMDEVINS pDevIns, PTMTIMER pTimer); PDMBOTHCBDECL(void) rtcTimerSecond2(PPDMDEVINS pDevIns, PTMTIMER pTimer); __END_DECLS #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */ /*#define DEBUG_CMOS*/ #define RTC_SECONDS 0 #define RTC_SECONDS_ALARM 1 #define RTC_MINUTES 2 #define RTC_MINUTES_ALARM 3 #define RTC_HOURS 4 #define RTC_HOURS_ALARM 5 #define RTC_ALARM_DONT_CARE 0xC0 #define RTC_DAY_OF_WEEK 6 #define RTC_DAY_OF_MONTH 7 #define RTC_MONTH 8 #define RTC_YEAR 9 #define RTC_REG_A 10 #define RTC_REG_B 11 #define RTC_REG_C 12 #define RTC_REG_D 13 #define REG_A_UIP 0x80 #define REG_B_SET 0x80 #define REG_B_PIE 0x40 #define REG_B_AIE 0x20 #define REG_B_UIE 0x10 struct RTCState { uint8_t cmos_data[128]; uint8_t cmos_index; uint8_t Alignment0[7]; struct tm current_tm; #if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32 && IN_GC uint32_t Alignment1[3]; #endif int32_t irq; /* periodic timer */ PTMTIMERGC pPeriodicTimerGC; PTMTIMERHC pPeriodicTimerHC; int64_t next_periodic_time; /* second update */ int64_t next_second_time; PTMTIMERHC pSecondTimerHC; PTMTIMERGC pSecondTimerGC; PTMTIMERGC pSecondTimer2GC; PTMTIMERHC pSecondTimer2HC; /** Pointer to the device instance - HC Ptr. */ PPDMDEVINSHC pDevInsHC; /** Pointer to the device instance - GC Ptr. */ PPDMDEVINSGC pDevInsGC; /** Use UCT or local time initially. */ bool fUCT; /** The RTC registration structure. */ PDMRTCREG RtcReg; /** The RTC device helpers. */ HCPTRTYPE(PCPDMRTCHLP) pRtcHlpHC; }; #ifndef VBOX_DEVICE_STRUCT_TESTCASE static void rtc_set_time(RTCState *s); static void rtc_copy_date(RTCState *s); static void rtc_timer_update(RTCState *s, int64_t current_time) { int period_code, period; uint64_t cur_clock, next_irq_clock, now, quarter_period_time; int64_t delta; uint32_t freq; period_code = s->cmos_data[RTC_REG_A] & 0x0f; if (period_code != 0 && (s->cmos_data[RTC_REG_B] & REG_B_PIE)) { if (period_code <= 2) period_code += 7; /* period in 32 kHz cycles */ period = 1 << (period_code - 1); /* compute 32 kHz clock */ freq = TMTimerGetFreq(s->CTXSUFF(pPeriodicTimer)); cur_clock = muldiv64(current_time, 32768, freq); next_irq_clock = (cur_clock & ~(uint64_t)(period - 1)) + period; s->next_periodic_time = muldiv64(next_irq_clock, freq, 32768) + 1; /* fiddly bits for dealing with running to keep up and losing interrupts. */ quarter_period_time = muldiv64(period, freq, 32768 * 4); now = TMTimerGet(s->CTXSUFF(pPeriodicTimer)); delta = s->next_periodic_time - now; if (delta >= (int64_t)quarter_period_time) { TMTimerSet(s->CTXSUFF(pPeriodicTimer), s->next_periodic_time); Log2(("period=%d current_time=%RU64 next=%RU64 delta=%-10RI64\n", period, current_time, s->next_periodic_time, delta)); } else { uint64_t next = now + quarter_period_time; /* 4x speed */ TMTimerSet(s->CTXSUFF(pPeriodicTimer), next); Log2(("period=%d current_time=%RU64 next=%RU64 delta=%-10RI64 now=%RU64 real_next=%RU64\n", period, current_time, s->next_periodic_time, delta, now, next)); } } else { TMTimerStop(s->CTXSUFF(pPeriodicTimer)); } } static void rtc_periodic_timer(void *opaque) { RTCState *s = (RTCState*)opaque; rtc_timer_update(s, s->next_periodic_time); s->cmos_data[RTC_REG_C] |= 0xc0; PDMDevHlpISASetIrq(s->CTXSUFF(pDevIns), s->irq, 1); } static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data) { RTCState *s = (RTCState*)opaque; if ((addr & 1) == 0) { s->cmos_index = data & 0x7f; } else { Log(("CMOS: Write idx %#04x: %#04x (old %#04x)\n", s->cmos_index, data, s->cmos_data[s->cmos_index])); switch(s->cmos_index) { case RTC_SECONDS_ALARM: case RTC_MINUTES_ALARM: case RTC_HOURS_ALARM: /* XXX: not supported */ s->cmos_data[s->cmos_index] = data; break; case RTC_SECONDS: case RTC_MINUTES: case RTC_HOURS: case RTC_DAY_OF_WEEK: case RTC_DAY_OF_MONTH: case RTC_MONTH: case RTC_YEAR: s->cmos_data[s->cmos_index] = data; /* if in set mode, do not update the time */ if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { rtc_set_time(s); } break; case RTC_REG_A: /* UIP bit is read only */ s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | (s->cmos_data[RTC_REG_A] & REG_A_UIP); rtc_timer_update(s, TMTimerGet(s->CTXSUFF(pPeriodicTimer))); break; case RTC_REG_B: if (data & REG_B_SET) { /* set mode: reset UIP mode */ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; data &= ~REG_B_UIE; } else { /* if disabling set mode, update the time */ if (s->cmos_data[RTC_REG_B] & REG_B_SET) { rtc_set_time(s); } } s->cmos_data[RTC_REG_B] = data; rtc_timer_update(s, TMTimerGet(s->CTXSUFF(pPeriodicTimer))); break; case RTC_REG_C: case RTC_REG_D: /* cannot write to them */ break; default: s->cmos_data[s->cmos_index] = data; break; } } } static inline int to_bcd(RTCState *s, int a) { if (s->cmos_data[RTC_REG_B] & 0x04) { return a; } else { return ((a / 10) << 4) | (a % 10); } } static inline int from_bcd(RTCState *s, int a) { if (s->cmos_data[RTC_REG_B] & 0x04) { return a; } else { return ((a >> 4) * 10) + (a & 0x0f); } } static void rtc_set_time(RTCState *s) { struct tm *tm = &s->current_tm; tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]); tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]); tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); if (!(s->cmos_data[RTC_REG_B] & 0x02) && (s->cmos_data[RTC_HOURS] & 0x80)) { tm->tm_hour += 12; } tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]); tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100; } static void rtc_copy_date(RTCState *s) { const struct tm *tm = &s->current_tm; s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec); s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min); if (s->cmos_data[RTC_REG_B] & 0x02) { /* 24 hour format */ s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour); } else { /* 12 hour format */ s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12); if (tm->tm_hour >= 12) s->cmos_data[RTC_HOURS] |= 0x80; } s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday); s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday); s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1); s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100); } /* month is between 0 and 11. */ static int get_days_in_month(int month, int year) { static const int days_tab[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; int d; if ((unsigned )month >= 12) return 31; d = days_tab[month]; if (month == 1) { if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) d++; } return d; } /* update 'tm' to the next second */ static void rtc_next_second(struct tm *tm) { int days_in_month; tm->tm_sec++; if ((unsigned)tm->tm_sec >= 60) { tm->tm_sec = 0; tm->tm_min++; if ((unsigned)tm->tm_min >= 60) { tm->tm_min = 0; tm->tm_hour++; if ((unsigned)tm->tm_hour >= 24) { tm->tm_hour = 0; /* next day */ tm->tm_wday++; if ((unsigned)tm->tm_wday >= 7) tm->tm_wday = 0; days_in_month = get_days_in_month(tm->tm_mon, tm->tm_year + 1900); tm->tm_mday++; if (tm->tm_mday < 1) { tm->tm_mday = 1; } else if (tm->tm_mday > days_in_month) { tm->tm_mday = 1; tm->tm_mon++; if (tm->tm_mon >= 12) { tm->tm_mon = 0; tm->tm_year++; } } } } } } static void rtc_update_second(void *opaque) { RTCState *s = (RTCState*)opaque; int64_t delay; /* if the oscillator is not in normal operation, we do not update */ if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) { s->next_second_time += TMTimerGetFreq(s->CTXSUFF(pSecondTimer)); TMTimerSet(s->CTXSUFF(pSecondTimer), s->next_second_time); } else { rtc_next_second(&s->current_tm); if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { /* update in progress bit */ s->cmos_data[RTC_REG_A] |= REG_A_UIP; } /* should be 244 us = 8 / 32768 seconds, but currently the timers do not have the necessary resolution. */ delay = (TMTimerGetFreq(s->CTXSUFF(pSecondTimer2)) * 1) / 100; if (delay < 1) delay = 1; TMTimerSet(s->CTXSUFF(pSecondTimer2), s->next_second_time + delay); } } static void rtc_update_second2(void *opaque) { RTCState *s = (RTCState*)opaque; if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { rtc_copy_date(s); } /* check alarm */ if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 || s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) && ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 || s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) && ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 || s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) { s->cmos_data[RTC_REG_C] |= 0xa0; PDMDevHlpISASetIrq(s->CTXSUFF(pDevIns), s->irq, 1); } } /* update ended interrupt */ if (s->cmos_data[RTC_REG_B] & REG_B_UIE) { s->cmos_data[RTC_REG_C] |= 0x90; PDMDevHlpISASetIrq(s->CTXSUFF(pDevIns), s->irq, 1); } /* clear update in progress bit */ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; s->next_second_time += TMTimerGetFreq(s->CTXSUFF(pSecondTimer)); TMTimerSet(s->CTXSUFF(pSecondTimer), s->next_second_time); } static uint32_t cmos_ioport_read(void *opaque, uint32_t addr) { RTCState *s = (RTCState*)opaque; int ret; if ((addr & 1) == 0) { return 0xff; } else { switch(s->cmos_index) { case RTC_SECONDS: case RTC_MINUTES: case RTC_HOURS: case RTC_DAY_OF_WEEK: case RTC_DAY_OF_MONTH: case RTC_MONTH: case RTC_YEAR: ret = s->cmos_data[s->cmos_index]; break; case RTC_REG_A: ret = s->cmos_data[s->cmos_index]; break; case RTC_REG_C: ret = s->cmos_data[s->cmos_index]; PDMDevHlpISASetIrq(s->CTXSUFF(pDevIns), s->irq, 0); s->cmos_data[RTC_REG_C] = 0x00; break; default: ret = s->cmos_data[s->cmos_index]; break; } Log(("CMOS: Read idx %#04x: %#04x\n", s->cmos_index, ret)); return ret; } } #ifdef IN_RING3 static void rtc_set_memory(RTCState *s, int addr, int val) { if (addr >= 0 && addr <= 127) s->cmos_data[addr] = val; } static void rtc_set_date(RTCState *s, const struct tm *tm) { s->current_tm = *tm; rtc_copy_date(s); } static void rtc_save(QEMUFile *f, void *opaque) { RTCState *s = (RTCState*)opaque; qemu_put_buffer(f, s->cmos_data, 128); qemu_put_8s(f, &s->cmos_index); qemu_put_be32s(f, &s->current_tm.tm_sec); qemu_put_be32s(f, &s->current_tm.tm_min); qemu_put_be32s(f, &s->current_tm.tm_hour); qemu_put_be32s(f, &s->current_tm.tm_wday); qemu_put_be32s(f, &s->current_tm.tm_mday); qemu_put_be32s(f, &s->current_tm.tm_mon); qemu_put_be32s(f, &s->current_tm.tm_year); qemu_put_timer(f, s->CTXSUFF(pPeriodicTimer)); qemu_put_be64s(f, &s->next_periodic_time); qemu_put_be64s(f, &s->next_second_time); qemu_put_timer(f, s->CTXSUFF(pSecondTimer)); qemu_put_timer(f, s->CTXSUFF(pSecondTimer2)); } static int rtc_load(QEMUFile *f, void *opaque, int version_id) { RTCState *s = (RTCState*)opaque; if (version_id != 1) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; qemu_get_buffer(f, s->cmos_data, 128); qemu_get_8s(f, &s->cmos_index); qemu_get_be32s(f, (uint32_t *)&s->current_tm.tm_sec); qemu_get_be32s(f, (uint32_t *)&s->current_tm.tm_min); qemu_get_be32s(f, (uint32_t *)&s->current_tm.tm_hour); qemu_get_be32s(f, (uint32_t *)&s->current_tm.tm_wday); qemu_get_be32s(f, (uint32_t *)&s->current_tm.tm_mday); qemu_get_be32s(f, (uint32_t *)&s->current_tm.tm_mon); qemu_get_be32s(f, (uint32_t *)&s->current_tm.tm_year); qemu_get_timer(f, s->CTXSUFF(pPeriodicTimer)); qemu_get_be64s(f, (uint64_t *)&s->next_periodic_time); qemu_get_be64s(f, (uint64_t *)&s->next_second_time); qemu_get_timer(f, s->CTXSUFF(pSecondTimer)); qemu_get_timer(f, s->CTXSUFF(pSecondTimer2)); return 0; } #endif /* IN_RING3 */ /* -=-=-=-=-=- wrappers -=-=-=-=-=- */ /** * Port I/O Handler for IN operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument - ignored. * @param uPort Port number used for the IN operation. * @param pu32 Where to store the result. * @param cb Number of bytes read. */ PDMBOTHCBDECL(int) rtcIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { NOREF(pvUser); if (cb == 1) { *pu32 = cmos_ioport_read(PDMINS2DATA(pDevIns, RTCState *), Port); return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } /** * Port I/O Handler for OUT operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument - ignored. * @param uPort Port number used for the IN operation. * @param u32 The value to output. * @param cb The value size in bytes. */ PDMBOTHCBDECL(int) rtcIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { NOREF(pvUser); if (cb == 1) cmos_ioport_write(PDMINS2DATA(pDevIns, RTCState *), Port, u32); return VINF_SUCCESS; } /** * Device timer callback function, periodic. * * @param pDevIns Device instance of the device which registered the timer. * @param pTimer The timer handle. */ PDMBOTHCBDECL(void) rtcTimerPeriodic(PPDMDEVINS pDevIns, PTMTIMER pTimer) { rtc_periodic_timer(PDMINS2DATA(pDevIns, RTCState *)); } /** * Device timer callback function, second. * * @param pDevIns Device instance of the device which registered the timer. * @param pTimer The timer handle. */ PDMBOTHCBDECL(void) rtcTimerSecond(PPDMDEVINS pDevIns, PTMTIMER pTimer) { rtc_update_second(PDMINS2DATA(pDevIns, RTCState *)); } /** * Device timer callback function, second2. * * @param pDevIns Device instance of the device which registered the timer. * @param pTimer The timer handle. */ PDMBOTHCBDECL(void) rtcTimerSecond2(PPDMDEVINS pDevIns, PTMTIMER pTimer) { rtc_update_second2(PDMINS2DATA(pDevIns, RTCState *)); } #ifdef IN_RING3 /** * Saves a state of the programmable interval timer device. * * @returns VBox status code. * @param pDevIns The device instance. * @param pSSMHandle The handle to save the state to. */ static DECLCALLBACK(int) rtcSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle) { RTCState *pData = PDMINS2DATA(pDevIns, RTCState *); rtc_save(pSSMHandle, pData); return VINF_SUCCESS; } /** * Loads a saved programmable interval timer device state. * * @returns VBox status code. * @param pDevIns The device instance. * @param pSSMHandle The handle to the saved state. * @param u32Version The data unit version number. */ static DECLCALLBACK(int) rtcLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t u32Version) { RTCState *pData = PDMINS2DATA(pDevIns, RTCState *); return rtc_load(pSSMHandle, pData, u32Version); } /* -=-=-=-=-=- PDM Interface provided by the RTC device -=-=-=-=-=- */ /** * Calculate and update the standard CMOS checksum. * * @param pData Pointer to the RTC state data. */ static void rtcCalcCRC(RTCState *pData) { uint16_t u16; unsigned i; for (i = RTC_CRC_START, u16 = 0; i <= RTC_CRC_LAST; i++) u16 += pData->cmos_data[i]; pData->cmos_data[RTC_CRC_LOW] = u16 & 0xff; pData->cmos_data[RTC_CRC_HIGH] = (u16 >> 8) & 0xff; } /** * Write to a CMOS register and update the checksum if necessary. * * @returns VBox status code. * @param pDevIns Device instance of the RTC. * @param iReg The CMOS register index. * @param u8Value The CMOS register value. */ static DECLCALLBACK(int) rtcCMOSWrite(PPDMDEVINS pDevIns, unsigned iReg, uint8_t u8Value) { RTCState *pData = PDMINS2DATA(pDevIns, RTCState *); if (iReg < ELEMENTS(pData->cmos_data)) { pData->cmos_data[iReg] = u8Value; /* does it require checksum update? */ if ( iReg >= RTC_CRC_START && iReg <= RTC_CRC_LAST) rtcCalcCRC(pData); return VINF_SUCCESS; } AssertMsgFailed(("iReg=%d\n", iReg)); return VERR_INVALID_PARAMETER; } /** * Read a CMOS register. * * @returns VBox status code. * @param pDevIns Device instance of the RTC. * @param iReg The CMOS register index. * @param pu8Value Where to store the CMOS register value. */ static DECLCALLBACK(int) rtcCMOSRead(PPDMDEVINS pDevIns, unsigned iReg, uint8_t *pu8Value) { RTCState *pData = PDMINS2DATA(pDevIns, RTCState *); if (iReg < ELEMENTS(pData->cmos_data)) { *pu8Value = pData->cmos_data[iReg]; return VINF_SUCCESS; } AssertMsgFailed(("iReg=%d\n", iReg)); return VERR_INVALID_PARAMETER; } /* -=-=-=-=-=- based on bits from pc.c -=-=-=-=-=- */ /** @copydoc FNPDMDEVINITCOMPLETE */ static DECLCALLBACK(int) rtcInitComplete(PPDMDEVINS pDevIns) { RTCState *pData = PDMINS2DATA(pDevIns, RTCState *); time_t Ti; struct tm Tm; struct tm *pTm; int iYear; /* * Set the CMOS date/time. */ #if 0 /* later */ RTTIMESPEC Now; RTTIME Time; RTTimeNow(&Now); if (pData->fUCT) RTTimeExplode(&Time, &Now); else RTTimeLocalExplode(&Time, &Now); pTm = RTTimeToPosixTm(&Tm, &Time); #else time(&Ti); #ifndef __WIN__ if (pData->fUCT) pTm = gmtime_r(&Ti, &Tm); else pTm = localtime_r(&Ti, &Tm); Assert(pTm); #else /* Win32 doesn't have thread safe stuff, let's just hope this works out fine :/ */ if (pData->fUCT) pTm = gmtime(&Ti); else pTm = localtime(&Ti); Assert(pTm); Tm = *pTm; pTm = &Tm; #endif #endif rtc_set_date(pData, pTm); iYear = to_bcd(pData, (Tm.tm_year / 100) + 19); /* tm_year is 1900 based (stupid) */ rtc_set_memory(pData, 0x32, iYear); /* 32h - Century Byte (BCD value for the century */ rtc_set_memory(pData, 0x37, iYear); /* 37h - (IBM PS/2) Date Century Byte */ /* * Recalculate the checksum just in case. */ rtcCalcCRC(pData); Log(("CMOS: \n%16.128Vhxd\n", pData->cmos_data)); return VINF_SUCCESS; } /* -=-=-=-=-=- real code -=-=-=-=-=- */ /** * @copydoc */ static DECLCALLBACK(void) rtcRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { RTCState *pThis = PDMINS2DATA(pDevIns, RTCState *); pThis->pDevInsGC = PDMDEVINS_2_GCPTR(pDevIns); pThis->pPeriodicTimerGC = TMTimerGCPtr(pThis->pPeriodicTimerHC); pThis->pSecondTimerGC = TMTimerGCPtr(pThis->pSecondTimerHC); pThis->pSecondTimer2GC = TMTimerGCPtr(pThis->pSecondTimer2HC); } /** * Construct a device instance for a VM. * * @returns VBox status. * @param pDevIns The device instance data. * If the registration structure is needed, pDevIns->pDevReg points to it. * @param iInstance Instance number. Use this to figure out which registers and such to use. * The device number is also found in pDevIns->iInstance, but since it's * likely to be freqently used PDM passes it as parameter. * @param pCfgHandle Configuration node handle for the device. Use this to obtain the configuration * of the device instance. It's also found in pDevIns->pCfgHandle, but like * iInstance it's expected to be used a bit in this function. */ static DECLCALLBACK(int) rtcConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle) { RTCState *pData = PDMINS2DATA(pDevIns, RTCState *); int rc; uint8_t u8Irq; uint16_t u16Base; bool fGCEnabled; bool fR0Enabled; Assert(iInstance == 0); /* * Validate configuration. */ if (!CFGMR3AreValuesValid(pCfgHandle, "Irq\0Base\0GCEnabled\0fR0Enabled\0")) return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES; /* * Init the data. */ rc = CFGMR3QueryU8(pCfgHandle, "Irq", &u8Irq); if (rc == VERR_CFGM_VALUE_NOT_FOUND) u8Irq = 8; else if (VBOX_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"Irq\" as a uint8_t failed")); rc = CFGMR3QueryU16(pCfgHandle, "Base", &u16Base); if (rc == VERR_CFGM_VALUE_NOT_FOUND) u16Base = 0x70; else if (VBOX_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"Base\" as a uint16_t failed")); rc = CFGMR3QueryBool(pCfgHandle, "GCEnabled", &fGCEnabled); if (rc == VERR_CFGM_VALUE_NOT_FOUND) fGCEnabled = false/*true*/; /** @todo later when we've got more than 15-30 switches to save. */ else if (VBOX_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: failed to read GCEnabled as boolean")); rc = CFGMR3QueryBool(pCfgHandle, "R0Enabled", &fR0Enabled); if (rc == VERR_CFGM_VALUE_NOT_FOUND) fR0Enabled = true; else if (VBOX_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: failed to read R0Enabled as boolean")); Log(("CMOS: fGCEnabled=%d fR0Enabled=%d\n", fGCEnabled, fR0Enabled)); pData->pDevInsHC = pDevIns; pData->irq = u8Irq; pData->cmos_data[RTC_REG_A] = 0x26; pData->cmos_data[RTC_REG_B] = 0x02; pData->cmos_data[RTC_REG_C] = 0x00; pData->cmos_data[RTC_REG_D] = 0x80; pData->RtcReg.u32Version = PDM_RTCREG_VERSION; pData->RtcReg.pfnRead = rtcCMOSRead; pData->RtcReg.pfnWrite = rtcCMOSWrite; /* * Create timers, arm them, register I/O Ports and save state. */ rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, rtcTimerPeriodic, "MC146818 RTC/CMOS - Periodic", &pData->pPeriodicTimerHC); if (VBOX_FAILURE(rc)) { AssertMsgFailed(("pfnTMTimerCreate -> %Vrc\n", rc)); return rc; } rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, rtcTimerSecond, "MC146818 RTC/CMOS - Second", &pData->pSecondTimerHC); if (VBOX_FAILURE(rc)) { AssertMsgFailed(("pfnTMTimerCreate -> %Vrc\n", rc)); return rc; } rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, rtcTimerSecond2, "MC146818 RTC/CMOS - Second2", &pData->pSecondTimer2HC); if (VBOX_FAILURE(rc)) { AssertMsgFailed(("pfnTMTimerCreate -> %Vrc\n", rc)); return rc; } pData->next_second_time = TMTimerGet(pData->CTXSUFF(pSecondTimer2)) + (TMTimerGetFreq(pData->CTXSUFF(pSecondTimer2)) * 99) / 100; TMTimerSet(pData->CTXSUFF(pSecondTimer2), pData->next_second_time); rc = PDMDevHlpIOPortRegister(pDevIns, u16Base, 2, NULL, rtcIOPortWrite, rtcIOPortRead, NULL, NULL, "MC146818 RTC/CMOS"); if (VBOX_FAILURE(rc)) return rc; if (fGCEnabled) { rc = PDMDevHlpIOPortRegisterGC(pDevIns, u16Base, 2, 0, "rtcIOPortWrite", "rtcIOPortRead", NULL, NULL, "MC146818 RTC/CMOS"); if (VBOX_FAILURE(rc)) return rc; } if (fR0Enabled) { rc = PDMDevHlpIOPortRegisterR0(pDevIns, u16Base, 2, 0, "rtcIOPortWrite", "rtcIOPortRead", NULL, NULL, "MC146818 RTC/CMOS"); if (VBOX_FAILURE(rc)) return rc; } rc = PDMDevHlpSSMRegister(pDevIns, pDevIns->pDevReg->szDeviceName, iInstance, 1 /* version */, sizeof(*pData), NULL, rtcSaveExec, NULL, NULL, rtcLoadExec, NULL); if (VBOX_FAILURE(rc)) return rc; /* * Register ourselves as the RTC with PDM. */ rc = pDevIns->pDevHlp->pfnRTCRegister(pDevIns, &pData->RtcReg, &pData->pRtcHlpHC); if (VBOX_FAILURE(rc)) return rc; return VINF_SUCCESS; } /** * The device registration structure. */ const PDMDEVREG g_DeviceMC146818 = { /* u32Version */ PDM_DEVREG_VERSION, /* szDeviceName */ "mc146818", /* szGCMod */ "VBoxDDGC.gc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "Motorola MC146818 RTC/CMOS Device.", /* fFlags */ PDM_DEVREG_FLAGS_HOST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GUEST_BITS_32_64 | PDM_DEVREG_FLAGS_PAE36 | PDM_DEVREG_FLAGS_GC | PDM_DEVREG_FLAGS_R0, /* fClass */ PDM_DEVREG_CLASS_RTC, /* cMaxInstances */ 1, /* cbInstance */ sizeof(RTCState), /* pfnConstruct */ rtcConstruct, /* pfnDestruct */ NULL, /* pfnRelocate */ rtcRelocate, /* pfnIOCtl */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ NULL, /* pfnSuspend */ NULL, /* pfnResume */ NULL, /* pfnAttach */ NULL, /* pfnDetach */ NULL, /* pfnQueryInterface */ NULL, /* pfnInitComplete */ rtcInitComplete }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */