1 | /**************************************************************************
|
---|
2 | Etherboot - BOOTP/TFTP Bootstrap Program
|
---|
3 | Inter Pro 1000 for Etherboot
|
---|
4 | Drivers are port from Intel's Linux driver e1000-4.3.15
|
---|
5 |
|
---|
6 | ***************************************************************************/
|
---|
7 | /*******************************************************************************
|
---|
8 |
|
---|
9 |
|
---|
10 | Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved.
|
---|
11 |
|
---|
12 | This program is free software; you can redistribute it and/or modify it
|
---|
13 | under the terms of the GNU General Public License as published by the Free
|
---|
14 | Software Foundation; either version 2 of the License, or (at your option)
|
---|
15 | any later version.
|
---|
16 |
|
---|
17 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
19 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
---|
20 | more details.
|
---|
21 |
|
---|
22 | You should have received a copy of the GNU General Public License along with
|
---|
23 | this program; if not, write to the Free Software Foundation, Inc., 59
|
---|
24 | Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
25 |
|
---|
26 | The full GNU General Public License is included in this distribution in the
|
---|
27 | file called LICENSE.
|
---|
28 |
|
---|
29 | Contact Information:
|
---|
30 | Linux NICS <[email protected]>
|
---|
31 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
---|
32 |
|
---|
33 | *******************************************************************************/
|
---|
34 | /*
|
---|
35 | * Copyright (C) Archway Digital Solutions.
|
---|
36 | *
|
---|
37 | * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
|
---|
38 | * 2/9/2002
|
---|
39 | *
|
---|
40 | * Copyright (C) Linux Networx.
|
---|
41 | * Massive upgrade to work with the new intel gigabit NICs.
|
---|
42 | * <ebiederman at lnxi dot com>
|
---|
43 | *
|
---|
44 | * Support for 82541ei & 82547ei chips from Intel's Linux driver 5.1.13 added by
|
---|
45 | * Georg Baum <[email protected]>, sponsored by PetaMem GmbH and linkLINE Communications, Inc.
|
---|
46 | *
|
---|
47 | * 01/2004: Updated to Linux driver 5.2.22 by Georg Baum <[email protected]>
|
---|
48 | */
|
---|
49 |
|
---|
50 | /* to get some global routines like printf */
|
---|
51 | #include "etherboot.h"
|
---|
52 | /* to get the interface to the body of the program */
|
---|
53 | #include "nic.h"
|
---|
54 | /* to get the PCI support functions, if this is a PCI NIC */
|
---|
55 | #include "pci.h"
|
---|
56 | #include "timer.h"
|
---|
57 |
|
---|
58 | typedef unsigned char *dma_addr_t;
|
---|
59 |
|
---|
60 | typedef enum {
|
---|
61 | FALSE = 0,
|
---|
62 | TRUE = 1
|
---|
63 | } boolean_t;
|
---|
64 |
|
---|
65 | #define DEBUG 0
|
---|
66 |
|
---|
67 |
|
---|
68 | /* Some pieces of code are disabled with #if 0 ... #endif.
|
---|
69 | * They are not deleted to show where the etherboot driver differs
|
---|
70 | * from the linux driver below the function level.
|
---|
71 | * Some member variables of the hw struct have been eliminated
|
---|
72 | * and the corresponding inplace checks inserted instead.
|
---|
73 | * Pieces such as LED handling that we definitely don't need are deleted.
|
---|
74 | *
|
---|
75 | * Please keep the function ordering so that it is easy to produce diffs
|
---|
76 | * against the linux driver.
|
---|
77 | *
|
---|
78 | * The following defines should not be needed normally,
|
---|
79 | * but may be helpful for debugging purposes. */
|
---|
80 |
|
---|
81 | /* Define this if you want to program the transmission control register
|
---|
82 | * the way the Linux driver does it. */
|
---|
83 | #undef LINUX_DRIVER_TCTL
|
---|
84 |
|
---|
85 | /* Define this to behave more like the Linux driver. */
|
---|
86 | #undef LINUX_DRIVER
|
---|
87 |
|
---|
88 | #include "e1000_hw.h"
|
---|
89 |
|
---|
90 | #define RX_BUFS 8
|
---|
91 | #define MAX_PACKET 2096
|
---|
92 |
|
---|
93 | /* NIC specific static variables go here */
|
---|
94 | static struct e1000_hw hw;
|
---|
95 | static char tx_pool[128 + 16];
|
---|
96 | static char rx_pool[128 + 16];
|
---|
97 | static char packets[MAX_PACKET * RX_BUFS];
|
---|
98 |
|
---|
99 | static struct e1000_tx_desc *tx_base;
|
---|
100 | static struct e1000_rx_desc *rx_base;
|
---|
101 |
|
---|
102 | static int tx_tail;
|
---|
103 | static int rx_tail, rx_last;
|
---|
104 |
|
---|
105 | /* Function forward declarations */
|
---|
106 | static int e1000_setup_link(struct e1000_hw *hw);
|
---|
107 | static int e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
|
---|
108 | static int e1000_setup_copper_link(struct e1000_hw *hw);
|
---|
109 | static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
|
---|
110 | static void e1000_config_collision_dist(struct e1000_hw *hw);
|
---|
111 | static int e1000_config_mac_to_phy(struct e1000_hw *hw);
|
---|
112 | static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
|
---|
113 | static int e1000_check_for_link(struct e1000_hw *hw);
|
---|
114 | static int e1000_wait_autoneg(struct e1000_hw *hw);
|
---|
115 | static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex);
|
---|
116 | static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
|
---|
117 | static int e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
|
---|
118 | static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data);
|
---|
119 | static int e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data);
|
---|
120 | static void e1000_phy_hw_reset(struct e1000_hw *hw);
|
---|
121 | static int e1000_phy_reset(struct e1000_hw *hw);
|
---|
122 | static int e1000_detect_gig_phy(struct e1000_hw *hw);
|
---|
123 | static int e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
|
---|
124 | static void e1000_init_rx_addrs(struct e1000_hw *hw);
|
---|
125 | static void e1000_clear_vfta(struct e1000_hw *hw);
|
---|
126 | static void e1000_io_write(struct e1000_hw *hw __unused, uint32_t port, uint32_t value);
|
---|
127 | static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
|
---|
128 |
|
---|
129 | /* Printing macros... */
|
---|
130 |
|
---|
131 | #define E1000_ERR(args...) printf("e1000: " args)
|
---|
132 |
|
---|
133 | #if DEBUG >= 3
|
---|
134 | #define E1000_DBG(args...) printf("e1000: " args)
|
---|
135 | #else
|
---|
136 | #define E1000_DBG(args...)
|
---|
137 | #endif
|
---|
138 |
|
---|
139 | #define MSGOUT(S, A, B) printk(S "\n", A, B)
|
---|
140 | #if DEBUG >= 2
|
---|
141 | #define DEBUGFUNC(F) DEBUGOUT(F "\n");
|
---|
142 | #else
|
---|
143 | #define DEBUGFUNC(F)
|
---|
144 | #endif
|
---|
145 | #if DEBUG >= 1
|
---|
146 | #define DEBUGOUT(S) printf(S)
|
---|
147 | #define DEBUGOUT1(S,A) printf(S,A)
|
---|
148 | #define DEBUGOUT2(S,A,B) printf(S,A,B)
|
---|
149 | #define DEBUGOUT3(S,A,B,C) printf(S,A,B,C)
|
---|
150 | #define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S,A,B,C,D,E,F,G)
|
---|
151 | #else
|
---|
152 | #define DEBUGOUT(S)
|
---|
153 | #define DEBUGOUT1(S,A)
|
---|
154 | #define DEBUGOUT2(S,A,B)
|
---|
155 | #define DEBUGOUT3(S,A,B,C)
|
---|
156 | #define DEBUGOUT7(S,A,B,C,D,E,F,G)
|
---|
157 | #endif
|
---|
158 |
|
---|
159 | #define E1000_WRITE_REG(a, reg, value) ( \
|
---|
160 | ((a)->mac_type >= e1000_82543) ? \
|
---|
161 | (writel((value), ((a)->hw_addr + E1000_##reg))) : \
|
---|
162 | (writel((value), ((a)->hw_addr + E1000_82542_##reg))))
|
---|
163 |
|
---|
164 | #define E1000_READ_REG(a, reg) ( \
|
---|
165 | ((a)->mac_type >= e1000_82543) ? \
|
---|
166 | readl((a)->hw_addr + E1000_##reg) : \
|
---|
167 | readl((a)->hw_addr + E1000_82542_##reg))
|
---|
168 |
|
---|
169 | #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
|
---|
170 | ((a)->mac_type >= e1000_82543) ? \
|
---|
171 | writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))) : \
|
---|
172 | writel((value), ((a)->hw_addr + E1000_82542_##reg + ((offset) << 2))))
|
---|
173 |
|
---|
174 | #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
|
---|
175 | ((a)->mac_type >= e1000_82543) ? \
|
---|
176 | readl((a)->hw_addr + E1000_##reg + ((offset) << 2)) : \
|
---|
177 | readl((a)->hw_addr + E1000_82542_##reg + ((offset) << 2)))
|
---|
178 |
|
---|
179 | #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
|
---|
180 |
|
---|
181 |
|
---|
182 | /******************************************************************************
|
---|
183 | * Inline functions from e1000_main.c of the linux driver
|
---|
184 | ******************************************************************************/
|
---|
185 |
|
---|
186 | static inline void e1000_pci_set_mwi(struct e1000_hw *hw)
|
---|
187 | {
|
---|
188 | pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
|
---|
189 | }
|
---|
190 |
|
---|
191 | static inline void e1000_pci_clear_mwi(struct e1000_hw *hw)
|
---|
192 | {
|
---|
193 | pci_write_config_word(hw->pdev, PCI_COMMAND,
|
---|
194 | hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
|
---|
195 | }
|
---|
196 |
|
---|
197 |
|
---|
198 | /******************************************************************************
|
---|
199 | * Functions from e1000_hw.c of the linux driver
|
---|
200 | ******************************************************************************/
|
---|
201 |
|
---|
202 | /******************************************************************************
|
---|
203 | * Set the phy type member in the hw struct.
|
---|
204 | *
|
---|
205 | * hw - Struct containing variables accessed by shared code
|
---|
206 | *****************************************************************************/
|
---|
207 | static int32_t
|
---|
208 | e1000_set_phy_type(struct e1000_hw *hw)
|
---|
209 | {
|
---|
210 | DEBUGFUNC("e1000_set_phy_type");
|
---|
211 |
|
---|
212 | switch(hw->phy_id) {
|
---|
213 | case M88E1000_E_PHY_ID:
|
---|
214 | case M88E1000_I_PHY_ID:
|
---|
215 | case M88E1011_I_PHY_ID:
|
---|
216 | hw->phy_type = e1000_phy_m88;
|
---|
217 | break;
|
---|
218 | case IGP01E1000_I_PHY_ID:
|
---|
219 | hw->phy_type = e1000_phy_igp;
|
---|
220 | break;
|
---|
221 | case GG82563_E_PHY_ID:
|
---|
222 | if (hw->mac_type == e1000_80003es2lan) {
|
---|
223 | hw->phy_type = e1000_phy_gg82563;
|
---|
224 | break;
|
---|
225 | }
|
---|
226 | default:
|
---|
227 | /* Should never have loaded on this device */
|
---|
228 | hw->phy_type = e1000_phy_undefined;
|
---|
229 | return -E1000_ERR_PHY_TYPE;
|
---|
230 | }
|
---|
231 |
|
---|
232 | return E1000_SUCCESS;
|
---|
233 | }
|
---|
234 |
|
---|
235 | /******************************************************************************
|
---|
236 | * IGP phy init script - initializes the GbE PHY
|
---|
237 | *
|
---|
238 | * hw - Struct containing variables accessed by shared code
|
---|
239 | *****************************************************************************/
|
---|
240 | static void
|
---|
241 | e1000_phy_init_script(struct e1000_hw *hw)
|
---|
242 | {
|
---|
243 | DEBUGFUNC("e1000_phy_init_script");
|
---|
244 |
|
---|
245 | #if 0
|
---|
246 | /* See e1000_sw_init() of the Linux driver */
|
---|
247 | if(hw->phy_init_script) {
|
---|
248 | #else
|
---|
249 | if((hw->mac_type == e1000_82541) ||
|
---|
250 | (hw->mac_type == e1000_82547) ||
|
---|
251 | (hw->mac_type == e1000_82541_rev_2) ||
|
---|
252 | (hw->mac_type == e1000_82547_rev_2)) {
|
---|
253 | #endif
|
---|
254 | mdelay(20);
|
---|
255 |
|
---|
256 | e1000_write_phy_reg(hw,0x0000,0x0140);
|
---|
257 |
|
---|
258 | mdelay(5);
|
---|
259 |
|
---|
260 | if(hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547) {
|
---|
261 | e1000_write_phy_reg(hw, 0x1F95, 0x0001);
|
---|
262 |
|
---|
263 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
|
---|
264 |
|
---|
265 | e1000_write_phy_reg(hw, 0x1F79, 0x0018);
|
---|
266 |
|
---|
267 | e1000_write_phy_reg(hw, 0x1F30, 0x1600);
|
---|
268 |
|
---|
269 | e1000_write_phy_reg(hw, 0x1F31, 0x0014);
|
---|
270 |
|
---|
271 | e1000_write_phy_reg(hw, 0x1F32, 0x161C);
|
---|
272 |
|
---|
273 | e1000_write_phy_reg(hw, 0x1F94, 0x0003);
|
---|
274 |
|
---|
275 | e1000_write_phy_reg(hw, 0x1F96, 0x003F);
|
---|
276 |
|
---|
277 | e1000_write_phy_reg(hw, 0x2010, 0x0008);
|
---|
278 | } else {
|
---|
279 | e1000_write_phy_reg(hw, 0x1F73, 0x0099);
|
---|
280 | }
|
---|
281 |
|
---|
282 | e1000_write_phy_reg(hw, 0x0000, 0x3300);
|
---|
283 |
|
---|
284 |
|
---|
285 | if(hw->mac_type == e1000_82547) {
|
---|
286 | uint16_t fused, fine, coarse;
|
---|
287 |
|
---|
288 | /* Move to analog registers page */
|
---|
289 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
|
---|
290 |
|
---|
291 | if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
|
---|
292 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
|
---|
293 |
|
---|
294 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
|
---|
295 | coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
|
---|
296 |
|
---|
297 | if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
|
---|
298 | coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
|
---|
299 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
|
---|
300 | } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
|
---|
301 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
|
---|
302 |
|
---|
303 | fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
|
---|
304 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
|
---|
305 | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
|
---|
306 |
|
---|
307 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
|
---|
308 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
|
---|
309 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
|
---|
310 | }
|
---|
311 | }
|
---|
312 | }
|
---|
313 | }
|
---|
314 |
|
---|
315 | /******************************************************************************
|
---|
316 | * Set the mac type member in the hw struct.
|
---|
317 | *
|
---|
318 | * hw - Struct containing variables accessed by shared code
|
---|
319 | *****************************************************************************/
|
---|
320 | static int
|
---|
321 | e1000_set_mac_type(struct e1000_hw *hw)
|
---|
322 | {
|
---|
323 | DEBUGFUNC("e1000_set_mac_type");
|
---|
324 |
|
---|
325 | switch (hw->device_id) {
|
---|
326 | case E1000_DEV_ID_82542:
|
---|
327 | switch (hw->revision_id) {
|
---|
328 | case E1000_82542_2_0_REV_ID:
|
---|
329 | hw->mac_type = e1000_82542_rev2_0;
|
---|
330 | break;
|
---|
331 | case E1000_82542_2_1_REV_ID:
|
---|
332 | hw->mac_type = e1000_82542_rev2_1;
|
---|
333 | break;
|
---|
334 | default:
|
---|
335 | /* Invalid 82542 revision ID */
|
---|
336 | return -E1000_ERR_MAC_TYPE;
|
---|
337 | }
|
---|
338 | break;
|
---|
339 | case E1000_DEV_ID_82543GC_FIBER:
|
---|
340 | case E1000_DEV_ID_82543GC_COPPER:
|
---|
341 | hw->mac_type = e1000_82543;
|
---|
342 | break;
|
---|
343 | case E1000_DEV_ID_82544EI_COPPER:
|
---|
344 | case E1000_DEV_ID_82544EI_FIBER:
|
---|
345 | case E1000_DEV_ID_82544GC_COPPER:
|
---|
346 | case E1000_DEV_ID_82544GC_LOM:
|
---|
347 | hw->mac_type = e1000_82544;
|
---|
348 | break;
|
---|
349 | case E1000_DEV_ID_82540EM:
|
---|
350 | case E1000_DEV_ID_82540EM_LOM:
|
---|
351 | case E1000_DEV_ID_82540EP:
|
---|
352 | case E1000_DEV_ID_82540EP_LOM:
|
---|
353 | case E1000_DEV_ID_82540EP_LP:
|
---|
354 | hw->mac_type = e1000_82540;
|
---|
355 | break;
|
---|
356 | case E1000_DEV_ID_82545EM_COPPER:
|
---|
357 | case E1000_DEV_ID_82545EM_FIBER:
|
---|
358 | hw->mac_type = e1000_82545;
|
---|
359 | break;
|
---|
360 | case E1000_DEV_ID_82545GM_COPPER:
|
---|
361 | case E1000_DEV_ID_82545GM_FIBER:
|
---|
362 | case E1000_DEV_ID_82545GM_SERDES:
|
---|
363 | hw->mac_type = e1000_82545_rev_3;
|
---|
364 | break;
|
---|
365 | case E1000_DEV_ID_82546EB_COPPER:
|
---|
366 | case E1000_DEV_ID_82546EB_FIBER:
|
---|
367 | case E1000_DEV_ID_82546EB_QUAD_COPPER:
|
---|
368 | hw->mac_type = e1000_82546;
|
---|
369 | break;
|
---|
370 | case E1000_DEV_ID_82546GB_COPPER:
|
---|
371 | case E1000_DEV_ID_82546GB_FIBER:
|
---|
372 | case E1000_DEV_ID_82546GB_SERDES:
|
---|
373 | hw->mac_type = e1000_82546_rev_3;
|
---|
374 | break;
|
---|
375 | case E1000_DEV_ID_82541EI:
|
---|
376 | case E1000_DEV_ID_82541EI_MOBILE:
|
---|
377 | hw->mac_type = e1000_82541;
|
---|
378 | break;
|
---|
379 | case E1000_DEV_ID_82541ER:
|
---|
380 | case E1000_DEV_ID_82541GI:
|
---|
381 | case E1000_DEV_ID_82541GI_MOBILE:
|
---|
382 | hw->mac_type = e1000_82541_rev_2;
|
---|
383 | break;
|
---|
384 | case E1000_DEV_ID_82547EI:
|
---|
385 | hw->mac_type = e1000_82547;
|
---|
386 | break;
|
---|
387 | case E1000_DEV_ID_82547GI:
|
---|
388 | hw->mac_type = e1000_82547_rev_2;
|
---|
389 | break;
|
---|
390 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
|
---|
391 | hw->mac_type = e1000_80003es2lan;
|
---|
392 | break;
|
---|
393 | default:
|
---|
394 | /* Should never have loaded on this device */
|
---|
395 | return -E1000_ERR_MAC_TYPE;
|
---|
396 | }
|
---|
397 |
|
---|
398 | return E1000_SUCCESS;
|
---|
399 | }
|
---|
400 |
|
---|
401 | /*****************************************************************************
|
---|
402 | * Set media type and TBI compatibility.
|
---|
403 | *
|
---|
404 | * hw - Struct containing variables accessed by shared code
|
---|
405 | * **************************************************************************/
|
---|
406 | static void
|
---|
407 | e1000_set_media_type(struct e1000_hw *hw)
|
---|
408 | {
|
---|
409 | uint32_t status;
|
---|
410 |
|
---|
411 | DEBUGFUNC("e1000_set_media_type");
|
---|
412 |
|
---|
413 | if(hw->mac_type != e1000_82543) {
|
---|
414 | /* tbi_compatibility is only valid on 82543 */
|
---|
415 | hw->tbi_compatibility_en = FALSE;
|
---|
416 | }
|
---|
417 |
|
---|
418 | switch (hw->device_id) {
|
---|
419 | case E1000_DEV_ID_82545GM_SERDES:
|
---|
420 | case E1000_DEV_ID_82546GB_SERDES:
|
---|
421 | hw->media_type = e1000_media_type_internal_serdes;
|
---|
422 | break;
|
---|
423 | default:
|
---|
424 | if(hw->mac_type >= e1000_82543) {
|
---|
425 | status = E1000_READ_REG(hw, STATUS);
|
---|
426 | if(status & E1000_STATUS_TBIMODE) {
|
---|
427 | hw->media_type = e1000_media_type_fiber;
|
---|
428 | /* tbi_compatibility not valid on fiber */
|
---|
429 | hw->tbi_compatibility_en = FALSE;
|
---|
430 | } else {
|
---|
431 | hw->media_type = e1000_media_type_copper;
|
---|
432 | }
|
---|
433 | } else {
|
---|
434 | /* This is an 82542 (fiber only) */
|
---|
435 | hw->media_type = e1000_media_type_fiber;
|
---|
436 | }
|
---|
437 | }
|
---|
438 | }
|
---|
439 |
|
---|
440 | /******************************************************************************
|
---|
441 | * Reset the transmit and receive units; mask and clear all interrupts.
|
---|
442 | *
|
---|
443 | * hw - Struct containing variables accessed by shared code
|
---|
444 | *****************************************************************************/
|
---|
445 | static void
|
---|
446 | e1000_reset_hw(struct e1000_hw *hw)
|
---|
447 | {
|
---|
448 | uint32_t ctrl;
|
---|
449 | uint32_t ctrl_ext;
|
---|
450 | uint32_t icr;
|
---|
451 | uint32_t manc;
|
---|
452 |
|
---|
453 | DEBUGFUNC("e1000_reset_hw");
|
---|
454 |
|
---|
455 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
|
---|
456 | if(hw->mac_type == e1000_82542_rev2_0) {
|
---|
457 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
---|
458 | e1000_pci_clear_mwi(hw);
|
---|
459 | }
|
---|
460 |
|
---|
461 | /* Clear interrupt mask to stop board from generating interrupts */
|
---|
462 | DEBUGOUT("Masking off all interrupts\n");
|
---|
463 | E1000_WRITE_REG(hw, IMC, 0xffffffff);
|
---|
464 |
|
---|
465 | /* Disable the Transmit and Receive units. Then delay to allow
|
---|
466 | * any pending transactions to complete before we hit the MAC with
|
---|
467 | * the global reset.
|
---|
468 | */
|
---|
469 | E1000_WRITE_REG(hw, RCTL, 0);
|
---|
470 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
|
---|
471 | E1000_WRITE_FLUSH(hw);
|
---|
472 |
|
---|
473 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
|
---|
474 | hw->tbi_compatibility_on = FALSE;
|
---|
475 |
|
---|
476 | /* Delay to allow any outstanding PCI transactions to complete before
|
---|
477 | * resetting the device
|
---|
478 | */
|
---|
479 | mdelay(10);
|
---|
480 |
|
---|
481 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
482 |
|
---|
483 | /* Must reset the PHY before resetting the MAC */
|
---|
484 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
---|
485 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
|
---|
486 | mdelay(5);
|
---|
487 | }
|
---|
488 |
|
---|
489 | /* Issue a global reset to the MAC. This will reset the chip's
|
---|
490 | * transmit, receive, DMA, and link units. It will not effect
|
---|
491 | * the current PCI configuration. The global reset bit is self-
|
---|
492 | * clearing, and should clear within a microsecond.
|
---|
493 | */
|
---|
494 | DEBUGOUT("Issuing a global reset to MAC\n");
|
---|
495 |
|
---|
496 | switch(hw->mac_type) {
|
---|
497 | case e1000_82544:
|
---|
498 | case e1000_82540:
|
---|
499 | case e1000_82545:
|
---|
500 | case e1000_82546:
|
---|
501 | case e1000_82541:
|
---|
502 | case e1000_82541_rev_2:
|
---|
503 | /* These controllers can't ack the 64-bit write when issuing the
|
---|
504 | * reset, so use IO-mapping as a workaround to issue the reset */
|
---|
505 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
|
---|
506 | break;
|
---|
507 | case e1000_82545_rev_3:
|
---|
508 | case e1000_82546_rev_3:
|
---|
509 | /* Reset is performed on a shadow of the control register */
|
---|
510 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
|
---|
511 | break;
|
---|
512 | default:
|
---|
513 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
|
---|
514 | break;
|
---|
515 | }
|
---|
516 |
|
---|
517 | /* After MAC reset, force reload of EEPROM to restore power-on settings to
|
---|
518 | * device. Later controllers reload the EEPROM automatically, so just wait
|
---|
519 | * for reload to complete.
|
---|
520 | */
|
---|
521 | switch(hw->mac_type) {
|
---|
522 | case e1000_82542_rev2_0:
|
---|
523 | case e1000_82542_rev2_1:
|
---|
524 | case e1000_82543:
|
---|
525 | case e1000_82544:
|
---|
526 | /* Wait for reset to complete */
|
---|
527 | udelay(10);
|
---|
528 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
---|
529 | ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
---|
530 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
---|
531 | E1000_WRITE_FLUSH(hw);
|
---|
532 | /* Wait for EEPROM reload */
|
---|
533 | mdelay(2);
|
---|
534 | break;
|
---|
535 | case e1000_82541:
|
---|
536 | case e1000_82541_rev_2:
|
---|
537 | case e1000_82547:
|
---|
538 | case e1000_82547_rev_2:
|
---|
539 | /* Wait for EEPROM reload */
|
---|
540 | mdelay(20);
|
---|
541 | break;
|
---|
542 | default:
|
---|
543 | /* Wait for EEPROM reload (it happens automatically) */
|
---|
544 | mdelay(5);
|
---|
545 | break;
|
---|
546 | }
|
---|
547 |
|
---|
548 | /* Disable HW ARPs on ASF enabled adapters */
|
---|
549 | if(hw->mac_type >= e1000_82540) {
|
---|
550 | manc = E1000_READ_REG(hw, MANC);
|
---|
551 | manc &= ~(E1000_MANC_ARP_EN);
|
---|
552 | E1000_WRITE_REG(hw, MANC, manc);
|
---|
553 | }
|
---|
554 |
|
---|
555 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
---|
556 | e1000_phy_init_script(hw);
|
---|
557 | }
|
---|
558 |
|
---|
559 | /* Clear interrupt mask to stop board from generating interrupts */
|
---|
560 | DEBUGOUT("Masking off all interrupts\n");
|
---|
561 | E1000_WRITE_REG(hw, IMC, 0xffffffff);
|
---|
562 |
|
---|
563 | /* Clear any pending interrupt events. */
|
---|
564 | icr = E1000_READ_REG(hw, ICR);
|
---|
565 |
|
---|
566 | /* If MWI was previously enabled, reenable it. */
|
---|
567 | if(hw->mac_type == e1000_82542_rev2_0) {
|
---|
568 | #ifdef LINUX_DRIVER
|
---|
569 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
---|
570 | #endif
|
---|
571 | e1000_pci_set_mwi(hw);
|
---|
572 | }
|
---|
573 | }
|
---|
574 |
|
---|
575 | /******************************************************************************
|
---|
576 | * Performs basic configuration of the adapter.
|
---|
577 | *
|
---|
578 | * hw - Struct containing variables accessed by shared code
|
---|
579 | *
|
---|
580 | * Assumes that the controller has previously been reset and is in a
|
---|
581 | * post-reset uninitialized state. Initializes the receive address registers,
|
---|
582 | * multicast table, and VLAN filter table. Calls routines to setup link
|
---|
583 | * configuration and flow control settings. Clears all on-chip counters. Leaves
|
---|
584 | * the transmit and receive units disabled and uninitialized.
|
---|
585 | *****************************************************************************/
|
---|
586 | static int
|
---|
587 | e1000_init_hw(struct e1000_hw *hw)
|
---|
588 | {
|
---|
589 | uint32_t ctrl, status;
|
---|
590 | uint32_t i;
|
---|
591 | int32_t ret_val;
|
---|
592 | uint16_t pcix_cmd_word;
|
---|
593 | uint16_t pcix_stat_hi_word;
|
---|
594 | uint16_t cmd_mmrbc;
|
---|
595 | uint16_t stat_mmrbc;
|
---|
596 | e1000_bus_type bus_type = e1000_bus_type_unknown;
|
---|
597 |
|
---|
598 | DEBUGFUNC("e1000_init_hw");
|
---|
599 |
|
---|
600 | /* Set the media type and TBI compatibility */
|
---|
601 | e1000_set_media_type(hw);
|
---|
602 |
|
---|
603 | /* Disabling VLAN filtering. */
|
---|
604 | DEBUGOUT("Initializing the IEEE VLAN\n");
|
---|
605 | E1000_WRITE_REG(hw, VET, 0);
|
---|
606 |
|
---|
607 | e1000_clear_vfta(hw);
|
---|
608 |
|
---|
609 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
|
---|
610 | if(hw->mac_type == e1000_82542_rev2_0) {
|
---|
611 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
---|
612 | e1000_pci_clear_mwi(hw);
|
---|
613 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
|
---|
614 | E1000_WRITE_FLUSH(hw);
|
---|
615 | mdelay(5);
|
---|
616 | }
|
---|
617 |
|
---|
618 | /* Setup the receive address. This involves initializing all of the Receive
|
---|
619 | * Address Registers (RARs 0 - 15).
|
---|
620 | */
|
---|
621 | e1000_init_rx_addrs(hw);
|
---|
622 |
|
---|
623 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
|
---|
624 | if(hw->mac_type == e1000_82542_rev2_0) {
|
---|
625 | E1000_WRITE_REG(hw, RCTL, 0);
|
---|
626 | E1000_WRITE_FLUSH(hw);
|
---|
627 | mdelay(1);
|
---|
628 | #ifdef LINUX_DRIVER
|
---|
629 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
---|
630 | #endif
|
---|
631 | e1000_pci_set_mwi(hw);
|
---|
632 | }
|
---|
633 |
|
---|
634 | /* Zero out the Multicast HASH table */
|
---|
635 | DEBUGOUT("Zeroing the MTA\n");
|
---|
636 | for(i = 0; i < E1000_MC_TBL_SIZE; i++)
|
---|
637 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
|
---|
638 |
|
---|
639 | #if 0
|
---|
640 | /* Set the PCI priority bit correctly in the CTRL register. This
|
---|
641 | * determines if the adapter gives priority to receives, or if it
|
---|
642 | * gives equal priority to transmits and receives.
|
---|
643 | */
|
---|
644 | if(hw->dma_fairness) {
|
---|
645 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
646 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
|
---|
647 | }
|
---|
648 | #endif
|
---|
649 |
|
---|
650 | switch(hw->mac_type) {
|
---|
651 | case e1000_82545_rev_3:
|
---|
652 | case e1000_82546_rev_3:
|
---|
653 | break;
|
---|
654 | case e1000_80003es2lan:
|
---|
655 | {
|
---|
656 | int32_t timeout = 200;
|
---|
657 | while(timeout) {
|
---|
658 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
|
---|
659 | break;
|
---|
660 | else mdelay(10);
|
---|
661 | timeout--;
|
---|
662 | }
|
---|
663 | if(!timeout) {
|
---|
664 | /* We don't want to continue accessing MAC registers. */
|
---|
665 | return -E1000_ERR_RESET;
|
---|
666 | }
|
---|
667 | break;
|
---|
668 | }
|
---|
669 | default:
|
---|
670 | if (hw->mac_type >= e1000_82543) {
|
---|
671 | /* See e1000_get_bus_info() of the Linux driver */
|
---|
672 | status = E1000_READ_REG(hw, STATUS);
|
---|
673 | bus_type = (status & E1000_STATUS_PCIX_MODE) ?
|
---|
674 | e1000_bus_type_pcix : e1000_bus_type_pci;
|
---|
675 | }
|
---|
676 |
|
---|
677 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
|
---|
678 | if(bus_type == e1000_bus_type_pcix) {
|
---|
679 | pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
|
---|
680 | pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
|
---|
681 | cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
|
---|
682 | PCIX_COMMAND_MMRBC_SHIFT;
|
---|
683 | stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
|
---|
684 | PCIX_STATUS_HI_MMRBC_SHIFT;
|
---|
685 | if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
|
---|
686 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
|
---|
687 | if(cmd_mmrbc > stat_mmrbc) {
|
---|
688 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
|
---|
689 | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
|
---|
690 | pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, pcix_cmd_word);
|
---|
691 | }
|
---|
692 | }
|
---|
693 | break;
|
---|
694 | }
|
---|
695 |
|
---|
696 | /* Call a subroutine to configure the link and setup flow control. */
|
---|
697 | ret_val = e1000_setup_link(hw);
|
---|
698 |
|
---|
699 | /* Set the transmit descriptor write-back policy */
|
---|
700 | if(hw->mac_type > e1000_82544) {
|
---|
701 | ctrl = E1000_READ_REG(hw, TXDCTL);
|
---|
702 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
|
---|
703 | E1000_WRITE_REG(hw, TXDCTL, ctrl);
|
---|
704 | }
|
---|
705 |
|
---|
706 | #if 0
|
---|
707 | /* Clear all of the statistics registers (clear on read). It is
|
---|
708 | * important that we do this after we have tried to establish link
|
---|
709 | * because the symbol error count will increment wildly if there
|
---|
710 | * is no link.
|
---|
711 | */
|
---|
712 | e1000_clear_hw_cntrs(hw);
|
---|
713 | #endif
|
---|
714 |
|
---|
715 | return ret_val;
|
---|
716 | }
|
---|
717 |
|
---|
718 | /******************************************************************************
|
---|
719 | * Adjust SERDES output amplitude based on EEPROM setting.
|
---|
720 | *
|
---|
721 | * hw - Struct containing variables accessed by shared code.
|
---|
722 | *****************************************************************************/
|
---|
723 | static int32_t
|
---|
724 | e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
|
---|
725 | {
|
---|
726 | uint16_t eeprom_data;
|
---|
727 | int32_t ret_val;
|
---|
728 |
|
---|
729 | DEBUGFUNC("e1000_adjust_serdes_amplitude");
|
---|
730 |
|
---|
731 | if(hw->media_type != e1000_media_type_internal_serdes)
|
---|
732 | return E1000_SUCCESS;
|
---|
733 |
|
---|
734 | switch(hw->mac_type) {
|
---|
735 | case e1000_82545_rev_3:
|
---|
736 | case e1000_82546_rev_3:
|
---|
737 | break;
|
---|
738 | default:
|
---|
739 | return E1000_SUCCESS;
|
---|
740 | }
|
---|
741 |
|
---|
742 | if ((ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
|
---|
743 | &eeprom_data))) {
|
---|
744 | return ret_val;
|
---|
745 | }
|
---|
746 |
|
---|
747 | if(eeprom_data != EEPROM_RESERVED_WORD) {
|
---|
748 | /* Adjust SERDES output amplitude only. */
|
---|
749 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
|
---|
750 | if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL,
|
---|
751 | eeprom_data)))
|
---|
752 | return ret_val;
|
---|
753 | }
|
---|
754 |
|
---|
755 | return E1000_SUCCESS;
|
---|
756 | }
|
---|
757 |
|
---|
758 | /******************************************************************************
|
---|
759 | * Configures flow control and link settings.
|
---|
760 | *
|
---|
761 | * hw - Struct containing variables accessed by shared code
|
---|
762 | *
|
---|
763 | * Determines which flow control settings to use. Calls the apropriate media-
|
---|
764 | * specific link configuration function. Configures the flow control settings.
|
---|
765 | * Assuming the adapter has a valid link partner, a valid link should be
|
---|
766 | * established. Assumes the hardware has previously been reset and the
|
---|
767 | * transmitter and receiver are not enabled.
|
---|
768 | *****************************************************************************/
|
---|
769 | static int
|
---|
770 | e1000_setup_link(struct e1000_hw *hw)
|
---|
771 | {
|
---|
772 | uint32_t ctrl_ext;
|
---|
773 | int32_t ret_val;
|
---|
774 | uint16_t eeprom_data;
|
---|
775 |
|
---|
776 | DEBUGFUNC("e1000_setup_link");
|
---|
777 |
|
---|
778 | /* Read and store word 0x0F of the EEPROM. This word contains bits
|
---|
779 | * that determine the hardware's default PAUSE (flow control) mode,
|
---|
780 | * a bit that determines whether the HW defaults to enabling or
|
---|
781 | * disabling auto-negotiation, and the direction of the
|
---|
782 | * SW defined pins. If there is no SW over-ride of the flow
|
---|
783 | * control setting, then the variable hw->fc will
|
---|
784 | * be initialized based on a value in the EEPROM.
|
---|
785 | */
|
---|
786 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) {
|
---|
787 | DEBUGOUT("EEPROM Read Error\n");
|
---|
788 | return -E1000_ERR_EEPROM;
|
---|
789 | }
|
---|
790 |
|
---|
791 | if(hw->fc == e1000_fc_default) {
|
---|
792 | if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
|
---|
793 | hw->fc = e1000_fc_none;
|
---|
794 | else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
|
---|
795 | EEPROM_WORD0F_ASM_DIR)
|
---|
796 | hw->fc = e1000_fc_tx_pause;
|
---|
797 | else
|
---|
798 | hw->fc = e1000_fc_full;
|
---|
799 | }
|
---|
800 |
|
---|
801 | /* We want to save off the original Flow Control configuration just
|
---|
802 | * in case we get disconnected and then reconnected into a different
|
---|
803 | * hub or switch with different Flow Control capabilities.
|
---|
804 | */
|
---|
805 | if(hw->mac_type == e1000_82542_rev2_0)
|
---|
806 | hw->fc &= (~e1000_fc_tx_pause);
|
---|
807 |
|
---|
808 | #if 0
|
---|
809 | /* See e1000_sw_init() of the Linux driver */
|
---|
810 | if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
|
---|
811 | #else
|
---|
812 | if((hw->mac_type < e1000_82543) && (hw->mac_type >= e1000_82543))
|
---|
813 | #endif
|
---|
814 | hw->fc &= (~e1000_fc_rx_pause);
|
---|
815 |
|
---|
816 | #if 0
|
---|
817 | hw->original_fc = hw->fc;
|
---|
818 | #endif
|
---|
819 |
|
---|
820 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
|
---|
821 |
|
---|
822 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial
|
---|
823 | * polarity value for the SW controlled pins, and setup the
|
---|
824 | * Extended Device Control reg with that info.
|
---|
825 | * This is needed because one of the SW controlled pins is used for
|
---|
826 | * signal detection. So this should be done before e1000_setup_pcs_link()
|
---|
827 | * or e1000_phy_setup() is called.
|
---|
828 | */
|
---|
829 | if(hw->mac_type == e1000_82543) {
|
---|
830 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
|
---|
831 | SWDPIO__EXT_SHIFT);
|
---|
832 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
---|
833 | }
|
---|
834 |
|
---|
835 | /* Call the necessary subroutine to configure the link. */
|
---|
836 | ret_val = (hw->media_type == e1000_media_type_copper) ?
|
---|
837 | e1000_setup_copper_link(hw) :
|
---|
838 | e1000_setup_fiber_serdes_link(hw);
|
---|
839 | if (ret_val < 0) {
|
---|
840 | return ret_val;
|
---|
841 | }
|
---|
842 |
|
---|
843 | /* Initialize the flow control address, type, and PAUSE timer
|
---|
844 | * registers to their default values. This is done even if flow
|
---|
845 | * control is disabled, because it does not hurt anything to
|
---|
846 | * initialize these registers.
|
---|
847 | */
|
---|
848 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
|
---|
849 |
|
---|
850 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
|
---|
851 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
|
---|
852 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
|
---|
853 | #if 0
|
---|
854 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
|
---|
855 | #else
|
---|
856 | E1000_WRITE_REG(hw, FCTTV, FC_DEFAULT_TX_TIMER);
|
---|
857 | #endif
|
---|
858 |
|
---|
859 | /* Set the flow control receive threshold registers. Normally,
|
---|
860 | * these registers will be set to a default threshold that may be
|
---|
861 | * adjusted later by the driver's runtime code. However, if the
|
---|
862 | * ability to transmit pause frames in not enabled, then these
|
---|
863 | * registers will be set to 0.
|
---|
864 | */
|
---|
865 | if(!(hw->fc & e1000_fc_tx_pause)) {
|
---|
866 | E1000_WRITE_REG(hw, FCRTL, 0);
|
---|
867 | E1000_WRITE_REG(hw, FCRTH, 0);
|
---|
868 | } else {
|
---|
869 | /* We need to set up the Receive Threshold high and low water marks
|
---|
870 | * as well as (optionally) enabling the transmission of XON frames.
|
---|
871 | */
|
---|
872 | #if 0
|
---|
873 | if(hw->fc_send_xon) {
|
---|
874 | E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
|
---|
875 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
|
---|
876 | } else {
|
---|
877 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
|
---|
878 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
|
---|
879 | }
|
---|
880 | #else
|
---|
881 | E1000_WRITE_REG(hw, FCRTL, (FC_DEFAULT_LO_THRESH | E1000_FCRTL_XONE));
|
---|
882 | E1000_WRITE_REG(hw, FCRTH, FC_DEFAULT_HI_THRESH);
|
---|
883 | #endif
|
---|
884 | }
|
---|
885 | return ret_val;
|
---|
886 | }
|
---|
887 |
|
---|
888 | /******************************************************************************
|
---|
889 | * Sets up link for a fiber based or serdes based adapter
|
---|
890 | *
|
---|
891 | * hw - Struct containing variables accessed by shared code
|
---|
892 | *
|
---|
893 | * Manipulates Physical Coding Sublayer functions in order to configure
|
---|
894 | * link. Assumes the hardware has been previously reset and the transmitter
|
---|
895 | * and receiver are not enabled.
|
---|
896 | *****************************************************************************/
|
---|
897 | static int
|
---|
898 | e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
|
---|
899 | {
|
---|
900 | uint32_t ctrl;
|
---|
901 | uint32_t status;
|
---|
902 | uint32_t txcw = 0;
|
---|
903 | uint32_t i;
|
---|
904 | uint32_t signal = 0;
|
---|
905 | int32_t ret_val;
|
---|
906 |
|
---|
907 | DEBUGFUNC("e1000_setup_fiber_serdes_link");
|
---|
908 |
|
---|
909 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
|
---|
910 | * set when the optics detect a signal. On older adapters, it will be
|
---|
911 | * cleared when there is a signal. This applies to fiber media only.
|
---|
912 | * If we're on serdes media, adjust the output amplitude to value set in
|
---|
913 | * the EEPROM.
|
---|
914 | */
|
---|
915 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
916 | if(hw->media_type == e1000_media_type_fiber)
|
---|
917 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
|
---|
918 |
|
---|
919 | if((ret_val = e1000_adjust_serdes_amplitude(hw)))
|
---|
920 | return ret_val;
|
---|
921 |
|
---|
922 | /* Take the link out of reset */
|
---|
923 | ctrl &= ~(E1000_CTRL_LRST);
|
---|
924 |
|
---|
925 | #if 0
|
---|
926 | /* Adjust VCO speed to improve BER performance */
|
---|
927 | if((ret_val = e1000_set_vco_speed(hw)))
|
---|
928 | return ret_val;
|
---|
929 | #endif
|
---|
930 |
|
---|
931 | e1000_config_collision_dist(hw);
|
---|
932 |
|
---|
933 | /* Check for a software override of the flow control settings, and setup
|
---|
934 | * the device accordingly. If auto-negotiation is enabled, then software
|
---|
935 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit
|
---|
936 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if
|
---|
937 | * auto-negotiation is disabled, then software will have to manually
|
---|
938 | * configure the two flow control enable bits in the CTRL register.
|
---|
939 | *
|
---|
940 | * The possible values of the "fc" parameter are:
|
---|
941 | * 0: Flow control is completely disabled
|
---|
942 | * 1: Rx flow control is enabled (we can receive pause frames, but
|
---|
943 | * not send pause frames).
|
---|
944 | * 2: Tx flow control is enabled (we can send pause frames but we do
|
---|
945 | * not support receiving pause frames).
|
---|
946 | * 3: Both Rx and TX flow control (symmetric) are enabled.
|
---|
947 | */
|
---|
948 | switch (hw->fc) {
|
---|
949 | case e1000_fc_none:
|
---|
950 | /* Flow control is completely disabled by a software over-ride. */
|
---|
951 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
|
---|
952 | break;
|
---|
953 | case e1000_fc_rx_pause:
|
---|
954 | /* RX Flow control is enabled and TX Flow control is disabled by a
|
---|
955 | * software over-ride. Since there really isn't a way to advertise
|
---|
956 | * that we are capable of RX Pause ONLY, we will advertise that we
|
---|
957 | * support both symmetric and asymmetric RX PAUSE. Later, we will
|
---|
958 | * disable the adapter's ability to send PAUSE frames.
|
---|
959 | */
|
---|
960 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
---|
961 | break;
|
---|
962 | case e1000_fc_tx_pause:
|
---|
963 | /* TX Flow control is enabled, and RX Flow control is disabled, by a
|
---|
964 | * software over-ride.
|
---|
965 | */
|
---|
966 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
|
---|
967 | break;
|
---|
968 | case e1000_fc_full:
|
---|
969 | /* Flow control (both RX and TX) is enabled by a software over-ride. */
|
---|
970 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
---|
971 | break;
|
---|
972 | default:
|
---|
973 | DEBUGOUT("Flow control param set incorrectly\n");
|
---|
974 | return -E1000_ERR_CONFIG;
|
---|
975 | break;
|
---|
976 | }
|
---|
977 |
|
---|
978 | /* Since auto-negotiation is enabled, take the link out of reset (the link
|
---|
979 | * will be in reset, because we previously reset the chip). This will
|
---|
980 | * restart auto-negotiation. If auto-neogtiation is successful then the
|
---|
981 | * link-up status bit will be set and the flow control enable bits (RFCE
|
---|
982 | * and TFCE) will be set according to their negotiated value.
|
---|
983 | */
|
---|
984 | DEBUGOUT("Auto-negotiation enabled\n");
|
---|
985 |
|
---|
986 | E1000_WRITE_REG(hw, TXCW, txcw);
|
---|
987 | E1000_WRITE_REG(hw, CTRL, ctrl);
|
---|
988 | E1000_WRITE_FLUSH(hw);
|
---|
989 |
|
---|
990 | hw->txcw = txcw;
|
---|
991 | mdelay(1);
|
---|
992 |
|
---|
993 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
|
---|
994 | * indication in the Device Status Register. Time-out if a link isn't
|
---|
995 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in
|
---|
996 | * less than 500 milliseconds even if the other end is doing it in SW).
|
---|
997 | * For internal serdes, we just assume a signal is present, then poll.
|
---|
998 | */
|
---|
999 | if(hw->media_type == e1000_media_type_internal_serdes ||
|
---|
1000 | (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
|
---|
1001 | DEBUGOUT("Looking for Link\n");
|
---|
1002 | for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
|
---|
1003 | mdelay(10);
|
---|
1004 | status = E1000_READ_REG(hw, STATUS);
|
---|
1005 | if(status & E1000_STATUS_LU) break;
|
---|
1006 | }
|
---|
1007 | if(i == (LINK_UP_TIMEOUT / 10)) {
|
---|
1008 | DEBUGOUT("Never got a valid link from auto-neg!!!\n");
|
---|
1009 | hw->autoneg_failed = 1;
|
---|
1010 | /* AutoNeg failed to achieve a link, so we'll call
|
---|
1011 | * e1000_check_for_link. This routine will force the link up if
|
---|
1012 | * we detect a signal. This will allow us to communicate with
|
---|
1013 | * non-autonegotiating link partners.
|
---|
1014 | */
|
---|
1015 | if((ret_val = e1000_check_for_link(hw))) {
|
---|
1016 | DEBUGOUT("Error while checking for link\n");
|
---|
1017 | return ret_val;
|
---|
1018 | }
|
---|
1019 | hw->autoneg_failed = 0;
|
---|
1020 | } else {
|
---|
1021 | hw->autoneg_failed = 0;
|
---|
1022 | DEBUGOUT("Valid Link Found\n");
|
---|
1023 | }
|
---|
1024 | } else {
|
---|
1025 | DEBUGOUT("No Signal Detected\n");
|
---|
1026 | }
|
---|
1027 | return E1000_SUCCESS;
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | int32_t
|
---|
1031 | e1000_read_kmrn_reg(struct e1000_hw *hw,
|
---|
1032 | uint32_t reg_addr,
|
---|
1033 | uint16_t *data)
|
---|
1034 | {
|
---|
1035 | uint32_t reg_val;
|
---|
1036 | DEBUGFUNC("e1000_read_kmrn_reg");
|
---|
1037 |
|
---|
1038 | /* Write register address */
|
---|
1039 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
|
---|
1040 | E1000_KUMCTRLSTA_OFFSET) |
|
---|
1041 | E1000_KUMCTRLSTA_REN;
|
---|
1042 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
|
---|
1043 | udelay(2);
|
---|
1044 |
|
---|
1045 | /* Read the data returned */
|
---|
1046 | reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
|
---|
1047 | *data = (uint16_t)reg_val;
|
---|
1048 |
|
---|
1049 | return E1000_SUCCESS;
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 | int32_t
|
---|
1053 | e1000_write_kmrn_reg(struct e1000_hw *hw,
|
---|
1054 | uint32_t reg_addr,
|
---|
1055 | uint16_t data)
|
---|
1056 | {
|
---|
1057 | uint32_t reg_val;
|
---|
1058 | DEBUGFUNC("e1000_write_kmrn_reg");
|
---|
1059 |
|
---|
1060 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
|
---|
1061 | E1000_KUMCTRLSTA_OFFSET) | data;
|
---|
1062 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
|
---|
1063 | udelay(2);
|
---|
1064 |
|
---|
1065 | return E1000_SUCCESS;
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | /********************************************************************
|
---|
1069 | * Copper link setup for e1000_phy_gg82563 series.
|
---|
1070 | *
|
---|
1071 | * hw - Struct containing variables accessed by shared code
|
---|
1072 | *********************************************************************/
|
---|
1073 |
|
---|
1074 | static int32_t
|
---|
1075 | e1000_copper_link_ggp_setup(struct e1000_hw *hw)
|
---|
1076 | {
|
---|
1077 | int32_t ret_val;
|
---|
1078 | uint16_t phy_data;
|
---|
1079 | uint32_t reg_data;
|
---|
1080 |
|
---|
1081 | DEBUGFUNC("e1000_copper_link_ggp_setup\n");
|
---|
1082 |
|
---|
1083 | /* Enable CRS on TX for half-duplex operation. */
|
---|
1084 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
|
---|
1085 | &phy_data);
|
---|
1086 | if(ret_val)
|
---|
1087 | return ret_val;
|
---|
1088 |
|
---|
1089 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
|
---|
1090 | /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
|
---|
1091 | phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
|
---|
1092 |
|
---|
1093 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
|
---|
1094 | phy_data);
|
---|
1095 | if(ret_val)
|
---|
1096 | return ret_val;
|
---|
1097 | /* Options:
|
---|
1098 | * MDI/MDI-X = 0 (default)
|
---|
1099 | * 0 - Auto for all speeds
|
---|
1100 | * 1 - MDI mode
|
---|
1101 | * 2 - MDI-X mode
|
---|
1102 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
---|
1103 | */
|
---|
1104 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
|
---|
1105 | if(ret_val)
|
---|
1106 | return ret_val;
|
---|
1107 |
|
---|
1108 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
|
---|
1109 |
|
---|
1110 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
|
---|
1111 |
|
---|
1112 | /* Options:
|
---|
1113 | * disable_polarity_correction = 0 (default)
|
---|
1114 | * Automatic Correction for Reversed Cable Polarity
|
---|
1115 | * 0 - Disabled
|
---|
1116 | * 1 - Enabled
|
---|
1117 | */
|
---|
1118 | phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
|
---|
1119 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
|
---|
1120 |
|
---|
1121 | if(ret_val)
|
---|
1122 | return ret_val;
|
---|
1123 |
|
---|
1124 | /* SW Reset the PHY so all changes take effect */
|
---|
1125 | ret_val = e1000_phy_reset(hw);
|
---|
1126 | if (ret_val) {
|
---|
1127 | DEBUGOUT("Error Resetting the PHY\n");
|
---|
1128 | return ret_val;
|
---|
1129 | }
|
---|
1130 |
|
---|
1131 | if (hw->mac_type == e1000_80003es2lan) {
|
---|
1132 | /* Bypass RX and TX FIFO's */
|
---|
1133 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
|
---|
1134 | E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
|
---|
1135 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
|
---|
1136 | if (ret_val)
|
---|
1137 | return ret_val;
|
---|
1138 |
|
---|
1139 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
|
---|
1140 | if (ret_val)
|
---|
1141 | ret_val;
|
---|
1142 |
|
---|
1143 | phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
|
---|
1144 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
|
---|
1145 |
|
---|
1146 | if (ret_val)
|
---|
1147 | return ret_val;
|
---|
1148 |
|
---|
1149 | reg_data = E1000_READ_REG(hw, CTRL_EXT);
|
---|
1150 | reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
|
---|
1151 | E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
|
---|
1152 |
|
---|
1153 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
|
---|
1154 | &phy_data);
|
---|
1155 | if (ret_val)
|
---|
1156 | return ret_val;
|
---|
1157 |
|
---|
1158 | /* Enable Electrical Idle on the PHY */
|
---|
1159 | phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
|
---|
1160 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
|
---|
1161 | phy_data);
|
---|
1162 |
|
---|
1163 | if (ret_val)
|
---|
1164 | return ret_val;
|
---|
1165 |
|
---|
1166 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
|
---|
1167 | &phy_data);
|
---|
1168 | if (ret_val)
|
---|
1169 | return ret_val;
|
---|
1170 |
|
---|
1171 | /* Disable Pass False Carrier on the PHY */
|
---|
1172 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
---|
1173 |
|
---|
1174 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
|
---|
1175 | phy_data);
|
---|
1176 | if (ret_val)
|
---|
1177 | return ret_val;
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | return E1000_SUCCESS;
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 | /******************************************************************************
|
---|
1184 | * Detects which PHY is present and the speed and duplex
|
---|
1185 | *
|
---|
1186 | * hw - Struct containing variables accessed by shared code
|
---|
1187 | ******************************************************************************/
|
---|
1188 | static int
|
---|
1189 | e1000_setup_copper_link(struct e1000_hw *hw)
|
---|
1190 | {
|
---|
1191 | uint32_t ctrl;
|
---|
1192 | int32_t ret_val;
|
---|
1193 | uint16_t i;
|
---|
1194 | uint16_t phy_data;
|
---|
1195 |
|
---|
1196 | DEBUGFUNC("e1000_setup_copper_link");
|
---|
1197 |
|
---|
1198 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
1199 |
|
---|
1200 | if(hw->mac_type == e1000_80003es2lan) {
|
---|
1201 | uint16_t reg_data;
|
---|
1202 | /* Set the mac to wait the maximum time between each
|
---|
1203 | * iteration and increase the max iterations when
|
---|
1204 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */
|
---|
1205 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
|
---|
1206 | if (ret_val)
|
---|
1207 | return ret_val;
|
---|
1208 | ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
|
---|
1209 | if (ret_val)
|
---|
1210 | return ret_val;
|
---|
1211 | reg_data |= 0x3F;
|
---|
1212 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
|
---|
1213 | if (ret_val)
|
---|
1214 | return ret_val;
|
---|
1215 | ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
|
---|
1216 | ®_data);
|
---|
1217 | if (ret_val)
|
---|
1218 | return ret_val;
|
---|
1219 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
|
---|
1220 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
|
---|
1221 | reg_data);
|
---|
1222 | if (ret_val)
|
---|
1223 | return ret_val;
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 | /* With 82543, we need to force speed and duplex on the MAC equal to what
|
---|
1227 | * the PHY speed and duplex configuration is. In addition, we need to
|
---|
1228 | * perform a hardware reset on the PHY to take it out of reset.
|
---|
1229 | */
|
---|
1230 | if(hw->mac_type > e1000_82543) {
|
---|
1231 | ctrl |= E1000_CTRL_SLU;
|
---|
1232 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
---|
1233 | E1000_WRITE_REG(hw, CTRL, ctrl);
|
---|
1234 | } else {
|
---|
1235 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
|
---|
1236 | E1000_WRITE_REG(hw, CTRL, ctrl);
|
---|
1237 | e1000_phy_hw_reset(hw);
|
---|
1238 | }
|
---|
1239 |
|
---|
1240 | /* Make sure we have a valid PHY */
|
---|
1241 | if((ret_val = e1000_detect_gig_phy(hw))) {
|
---|
1242 | DEBUGOUT("Error, did not detect valid phy.\n");
|
---|
1243 | return ret_val;
|
---|
1244 | }
|
---|
1245 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
|
---|
1246 |
|
---|
1247 | if (hw->phy_type == e1000_phy_gg82563) {
|
---|
1248 | ret_val = e1000_copper_link_ggp_setup(hw);
|
---|
1249 | if(ret_val)
|
---|
1250 | return ret_val;
|
---|
1251 | }
|
---|
1252 |
|
---|
1253 | if(hw->mac_type <= e1000_82543 ||
|
---|
1254 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
|
---|
1255 | #if 0
|
---|
1256 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
|
---|
1257 | hw->phy_reset_disable = FALSE;
|
---|
1258 |
|
---|
1259 | if(!hw->phy_reset_disable) {
|
---|
1260 | #else
|
---|
1261 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2 ||
|
---|
1262 | hw->mac_type == e1000_80003es2lan) {
|
---|
1263 | #endif
|
---|
1264 | if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_gg82563) {
|
---|
1265 |
|
---|
1266 | if((ret_val = e1000_phy_reset(hw))) {
|
---|
1267 | DEBUGOUT("Error Resetting the PHY\n");
|
---|
1268 | return ret_val;
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 | /* Wait 10ms for MAC to configure PHY from eeprom settings */
|
---|
1272 | mdelay(15);
|
---|
1273 |
|
---|
1274 | #if 0
|
---|
1275 | /* disable lplu d3 during driver init */
|
---|
1276 | if((ret_val = e1000_set_d3_lplu_state(hw, FALSE))) {
|
---|
1277 | DEBUGOUT("Error Disabling LPLU D3\n");
|
---|
1278 | return ret_val;
|
---|
1279 | }
|
---|
1280 |
|
---|
1281 | /* Configure mdi-mdix settings */
|
---|
1282 | if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
|
---|
1283 | &phy_data)))
|
---|
1284 | return ret_val;
|
---|
1285 |
|
---|
1286 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
---|
1287 | hw->dsp_config_state = e1000_dsp_config_disabled;
|
---|
1288 | /* Force MDI for IGP B-0 PHY */
|
---|
1289 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
|
---|
1290 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
|
---|
1291 | hw->mdix = 1;
|
---|
1292 |
|
---|
1293 | } else {
|
---|
1294 | hw->dsp_config_state = e1000_dsp_config_enabled;
|
---|
1295 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
---|
1296 |
|
---|
1297 | switch (hw->mdix) {
|
---|
1298 | case 1:
|
---|
1299 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
---|
1300 | break;
|
---|
1301 | case 2:
|
---|
1302 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
---|
1303 | break;
|
---|
1304 | case 0:
|
---|
1305 | default:
|
---|
1306 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
|
---|
1307 | break;
|
---|
1308 | }
|
---|
1309 | }
|
---|
1310 | if((ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
|
---|
1311 | phy_data)))
|
---|
1312 | return ret_val;
|
---|
1313 |
|
---|
1314 | /* set auto-master slave resolution settings */
|
---|
1315 | e1000_ms_type phy_ms_setting = hw->master_slave;
|
---|
1316 |
|
---|
1317 | if(hw->ffe_config_state == e1000_ffe_config_active)
|
---|
1318 | hw->ffe_config_state = e1000_ffe_config_enabled;
|
---|
1319 |
|
---|
1320 | if(hw->dsp_config_state == e1000_dsp_config_activated)
|
---|
1321 | hw->dsp_config_state = e1000_dsp_config_enabled;
|
---|
1322 | #endif
|
---|
1323 |
|
---|
1324 | /* when autonegotiation advertisment is only 1000Mbps then we
|
---|
1325 | * should disable SmartSpeed and enable Auto MasterSlave
|
---|
1326 | * resolution as hardware default. */
|
---|
1327 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
|
---|
1328 | /* Disable SmartSpeed */
|
---|
1329 | if((ret_val = e1000_read_phy_reg(hw,
|
---|
1330 | IGP01E1000_PHY_PORT_CONFIG,
|
---|
1331 | &phy_data)))
|
---|
1332 | return ret_val;
|
---|
1333 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
---|
1334 | if((ret_val = e1000_write_phy_reg(hw,
|
---|
1335 | IGP01E1000_PHY_PORT_CONFIG,
|
---|
1336 | phy_data)))
|
---|
1337 | return ret_val;
|
---|
1338 | /* Set auto Master/Slave resolution process */
|
---|
1339 | if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
|
---|
1340 | &phy_data)))
|
---|
1341 | return ret_val;
|
---|
1342 | phy_data &= ~CR_1000T_MS_ENABLE;
|
---|
1343 | if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
|
---|
1344 | phy_data)))
|
---|
1345 | return ret_val;
|
---|
1346 | }
|
---|
1347 |
|
---|
1348 | if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
|
---|
1349 | &phy_data)))
|
---|
1350 | return ret_val;
|
---|
1351 |
|
---|
1352 | #if 0
|
---|
1353 | /* load defaults for future use */
|
---|
1354 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
|
---|
1355 | ((phy_data & CR_1000T_MS_VALUE) ?
|
---|
1356 | e1000_ms_force_master :
|
---|
1357 | e1000_ms_force_slave) :
|
---|
1358 | e1000_ms_auto;
|
---|
1359 |
|
---|
1360 | switch (phy_ms_setting) {
|
---|
1361 | case e1000_ms_force_master:
|
---|
1362 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
|
---|
1363 | break;
|
---|
1364 | case e1000_ms_force_slave:
|
---|
1365 | phy_data |= CR_1000T_MS_ENABLE;
|
---|
1366 | phy_data &= ~(CR_1000T_MS_VALUE);
|
---|
1367 | break;
|
---|
1368 | case e1000_ms_auto:
|
---|
1369 | phy_data &= ~CR_1000T_MS_ENABLE;
|
---|
1370 | default:
|
---|
1371 | break;
|
---|
1372 | }
|
---|
1373 | #endif
|
---|
1374 |
|
---|
1375 | if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
|
---|
1376 | phy_data)))
|
---|
1377 | return ret_val;
|
---|
1378 | } else {
|
---|
1379 | /* Enable CRS on TX. This must be set for half-duplex operation. */
|
---|
1380 | if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
|
---|
1381 | &phy_data)))
|
---|
1382 | return ret_val;
|
---|
1383 |
|
---|
1384 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
---|
1385 |
|
---|
1386 | /* Options:
|
---|
1387 | * MDI/MDI-X = 0 (default)
|
---|
1388 | * 0 - Auto for all speeds
|
---|
1389 | * 1 - MDI mode
|
---|
1390 | * 2 - MDI-X mode
|
---|
1391 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
---|
1392 | */
|
---|
1393 | #if 0
|
---|
1394 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
---|
1395 |
|
---|
1396 | switch (hw->mdix) {
|
---|
1397 | case 1:
|
---|
1398 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
|
---|
1399 | break;
|
---|
1400 | case 2:
|
---|
1401 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
|
---|
1402 | break;
|
---|
1403 | case 3:
|
---|
1404 | phy_data |= M88E1000_PSCR_AUTO_X_1000T;
|
---|
1405 | break;
|
---|
1406 | case 0:
|
---|
1407 | default:
|
---|
1408 | #endif
|
---|
1409 | phy_data |= M88E1000_PSCR_AUTO_X_MODE;
|
---|
1410 | #if 0
|
---|
1411 | break;
|
---|
1412 | }
|
---|
1413 | #endif
|
---|
1414 |
|
---|
1415 | /* Options:
|
---|
1416 | * disable_polarity_correction = 0 (default)
|
---|
1417 | * Automatic Correction for Reversed Cable Polarity
|
---|
1418 | * 0 - Disabled
|
---|
1419 | * 1 - Enabled
|
---|
1420 | */
|
---|
1421 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
|
---|
1422 | if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
|
---|
1423 | phy_data)))
|
---|
1424 | return ret_val;
|
---|
1425 |
|
---|
1426 | /* Force TX_CLK in the Extended PHY Specific Control Register
|
---|
1427 | * to 25MHz clock.
|
---|
1428 | */
|
---|
1429 | if((ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
|
---|
1430 | &phy_data)))
|
---|
1431 | return ret_val;
|
---|
1432 |
|
---|
1433 | phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
---|
1434 |
|
---|
1435 | #ifdef LINUX_DRIVER
|
---|
1436 | if (hw->phy_revision < M88E1011_I_REV_4) {
|
---|
1437 | #endif
|
---|
1438 | /* Configure Master and Slave downshift values */
|
---|
1439 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
|
---|
1440 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
|
---|
1441 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
|
---|
1442 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
|
---|
1443 | if((ret_val = e1000_write_phy_reg(hw,
|
---|
1444 | M88E1000_EXT_PHY_SPEC_CTRL,
|
---|
1445 | phy_data)))
|
---|
1446 | return ret_val;
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | /* SW Reset the PHY so all changes take effect */
|
---|
1450 | if((ret_val = e1000_phy_reset(hw))) {
|
---|
1451 | DEBUGOUT("Error Resetting the PHY\n");
|
---|
1452 | return ret_val;
|
---|
1453 | #ifdef LINUX_DRIVER
|
---|
1454 | }
|
---|
1455 | #endif
|
---|
1456 | }
|
---|
1457 |
|
---|
1458 | /* Options:
|
---|
1459 | * autoneg = 1 (default)
|
---|
1460 | * PHY will advertise value(s) parsed from
|
---|
1461 | * autoneg_advertised and fc
|
---|
1462 | * autoneg = 0
|
---|
1463 | * PHY will be set to 10H, 10F, 100H, or 100F
|
---|
1464 | * depending on value parsed from forced_speed_duplex.
|
---|
1465 | */
|
---|
1466 |
|
---|
1467 | /* Is autoneg enabled? This is enabled by default or by software
|
---|
1468 | * override. If so, call e1000_phy_setup_autoneg routine to parse the
|
---|
1469 | * autoneg_advertised and fc options. If autoneg is NOT enabled, then
|
---|
1470 | * the user should have provided a speed/duplex override. If so, then
|
---|
1471 | * call e1000_phy_force_speed_duplex to parse and set this up.
|
---|
1472 | */
|
---|
1473 | /* Perform some bounds checking on the hw->autoneg_advertised
|
---|
1474 | * parameter. If this variable is zero, then set it to the default.
|
---|
1475 | */
|
---|
1476 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
---|
1477 |
|
---|
1478 | /* If autoneg_advertised is zero, we assume it was not defaulted
|
---|
1479 | * by the calling code so we set to advertise full capability.
|
---|
1480 | */
|
---|
1481 | if(hw->autoneg_advertised == 0)
|
---|
1482 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
---|
1483 |
|
---|
1484 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
|
---|
1485 | if((ret_val = e1000_phy_setup_autoneg(hw))) {
|
---|
1486 | DEBUGOUT("Error Setting up Auto-Negotiation\n");
|
---|
1487 | return ret_val;
|
---|
1488 | }
|
---|
1489 | DEBUGOUT("Restarting Auto-Neg\n");
|
---|
1490 |
|
---|
1491 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and
|
---|
1492 | * the Auto Neg Restart bit in the PHY control register.
|
---|
1493 | */
|
---|
1494 | if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data)))
|
---|
1495 | return ret_val;
|
---|
1496 |
|
---|
1497 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
|
---|
1498 | if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data)))
|
---|
1499 | return ret_val;
|
---|
1500 |
|
---|
1501 | #if 0
|
---|
1502 | /* Does the user want to wait for Auto-Neg to complete here, or
|
---|
1503 | * check at a later time (for example, callback routine).
|
---|
1504 | */
|
---|
1505 | if(hw->wait_autoneg_complete) {
|
---|
1506 | if((ret_val = e1000_wait_autoneg(hw))) {
|
---|
1507 | DEBUGOUT("Error while waiting for autoneg to complete\n");
|
---|
1508 | return ret_val;
|
---|
1509 | }
|
---|
1510 | }
|
---|
1511 | #else
|
---|
1512 | /* If we do not wait for autonegotiation to complete I
|
---|
1513 | * do not see a valid link status.
|
---|
1514 | */
|
---|
1515 | if((ret_val = e1000_wait_autoneg(hw))) {
|
---|
1516 | DEBUGOUT("Error while waiting for autoneg to complete\n");
|
---|
1517 | return ret_val;
|
---|
1518 | }
|
---|
1519 | #endif
|
---|
1520 | } /* !hw->phy_reset_disable */
|
---|
1521 |
|
---|
1522 | /* Check link status. Wait up to 100 microseconds for link to become
|
---|
1523 | * valid.
|
---|
1524 | */
|
---|
1525 | for(i = 0; i < 10; i++) {
|
---|
1526 | if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
---|
1527 | return ret_val;
|
---|
1528 | if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
---|
1529 | return ret_val;
|
---|
1530 |
|
---|
1531 | if(phy_data & MII_SR_LINK_STATUS) {
|
---|
1532 | /* We have link, so we need to finish the config process:
|
---|
1533 | * 1) Set up the MAC to the current PHY speed/duplex
|
---|
1534 | * if we are on 82543. If we
|
---|
1535 | * are on newer silicon, we only need to configure
|
---|
1536 | * collision distance in the Transmit Control Register.
|
---|
1537 | * 2) Set up flow control on the MAC to that established with
|
---|
1538 | * the link partner.
|
---|
1539 | */
|
---|
1540 | if(hw->mac_type >= e1000_82544) {
|
---|
1541 | e1000_config_collision_dist(hw);
|
---|
1542 | } else {
|
---|
1543 | if((ret_val = e1000_config_mac_to_phy(hw))) {
|
---|
1544 | DEBUGOUT("Error configuring MAC to PHY settings\n");
|
---|
1545 | return ret_val;
|
---|
1546 | }
|
---|
1547 | }
|
---|
1548 | if((ret_val = e1000_config_fc_after_link_up(hw))) {
|
---|
1549 | DEBUGOUT("Error Configuring Flow Control\n");
|
---|
1550 | return ret_val;
|
---|
1551 | }
|
---|
1552 | #if 0
|
---|
1553 | if(hw->phy_type == e1000_phy_igp) {
|
---|
1554 | if((ret_val = e1000_config_dsp_after_link_change(hw, TRUE))) {
|
---|
1555 | DEBUGOUT("Error Configuring DSP after link up\n");
|
---|
1556 | return ret_val;
|
---|
1557 | }
|
---|
1558 | }
|
---|
1559 | #endif
|
---|
1560 | DEBUGOUT("Valid link established!!!\n");
|
---|
1561 | return E1000_SUCCESS;
|
---|
1562 | }
|
---|
1563 | udelay(10);
|
---|
1564 | }
|
---|
1565 |
|
---|
1566 | DEBUGOUT("Unable to establish link!!!\n");
|
---|
1567 | return -E1000_ERR_NOLINK;
|
---|
1568 | }
|
---|
1569 |
|
---|
1570 | /******************************************************************************
|
---|
1571 | * Configures PHY autoneg and flow control advertisement settings
|
---|
1572 | *
|
---|
1573 | * hw - Struct containing variables accessed by shared code
|
---|
1574 | ******************************************************************************/
|
---|
1575 | static int
|
---|
1576 | e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
---|
1577 | {
|
---|
1578 | int32_t ret_val;
|
---|
1579 | uint16_t mii_autoneg_adv_reg;
|
---|
1580 | uint16_t mii_1000t_ctrl_reg;
|
---|
1581 |
|
---|
1582 | DEBUGFUNC("e1000_phy_setup_autoneg");
|
---|
1583 |
|
---|
1584 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */
|
---|
1585 | if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
|
---|
1586 | &mii_autoneg_adv_reg)))
|
---|
1587 | return ret_val;
|
---|
1588 |
|
---|
1589 | /* Read the MII 1000Base-T Control Register (Address 9). */
|
---|
1590 | if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg)))
|
---|
1591 | return ret_val;
|
---|
1592 |
|
---|
1593 | /* Need to parse both autoneg_advertised and fc and set up
|
---|
1594 | * the appropriate PHY registers. First we will parse for
|
---|
1595 | * autoneg_advertised software override. Since we can advertise
|
---|
1596 | * a plethora of combinations, we need to check each bit
|
---|
1597 | * individually.
|
---|
1598 | */
|
---|
1599 |
|
---|
1600 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg
|
---|
1601 | * Advertisement Register (Address 4) and the 1000 mb speed bits in
|
---|
1602 | * the 1000Base-T Control Register (Address 9).
|
---|
1603 | */
|
---|
1604 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
|
---|
1605 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
|
---|
1606 |
|
---|
1607 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
|
---|
1608 |
|
---|
1609 | /* Do we want to advertise 10 Mb Half Duplex? */
|
---|
1610 | if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
|
---|
1611 | DEBUGOUT("Advertise 10mb Half duplex\n");
|
---|
1612 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
|
---|
1613 | }
|
---|
1614 |
|
---|
1615 | /* Do we want to advertise 10 Mb Full Duplex? */
|
---|
1616 | if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
|
---|
1617 | DEBUGOUT("Advertise 10mb Full duplex\n");
|
---|
1618 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
|
---|
1619 | }
|
---|
1620 |
|
---|
1621 | /* Do we want to advertise 100 Mb Half Duplex? */
|
---|
1622 | if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
|
---|
1623 | DEBUGOUT("Advertise 100mb Half duplex\n");
|
---|
1624 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
|
---|
1625 | }
|
---|
1626 |
|
---|
1627 | /* Do we want to advertise 100 Mb Full Duplex? */
|
---|
1628 | if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
|
---|
1629 | DEBUGOUT("Advertise 100mb Full duplex\n");
|
---|
1630 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
|
---|
1631 | }
|
---|
1632 |
|
---|
1633 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
|
---|
1634 | if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
|
---|
1635 | DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
|
---|
1636 | }
|
---|
1637 |
|
---|
1638 | /* Do we want to advertise 1000 Mb Full Duplex? */
|
---|
1639 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
|
---|
1640 | DEBUGOUT("Advertise 1000mb Full duplex\n");
|
---|
1641 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
|
---|
1642 | }
|
---|
1643 |
|
---|
1644 | /* Check for a software override of the flow control settings, and
|
---|
1645 | * setup the PHY advertisement registers accordingly. If
|
---|
1646 | * auto-negotiation is enabled, then software will have to set the
|
---|
1647 | * "PAUSE" bits to the correct value in the Auto-Negotiation
|
---|
1648 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
|
---|
1649 | *
|
---|
1650 | * The possible values of the "fc" parameter are:
|
---|
1651 | * 0: Flow control is completely disabled
|
---|
1652 | * 1: Rx flow control is enabled (we can receive pause frames
|
---|
1653 | * but not send pause frames).
|
---|
1654 | * 2: Tx flow control is enabled (we can send pause frames
|
---|
1655 | * but we do not support receiving pause frames).
|
---|
1656 | * 3: Both Rx and TX flow control (symmetric) are enabled.
|
---|
1657 | * other: No software override. The flow control configuration
|
---|
1658 | * in the EEPROM is used.
|
---|
1659 | */
|
---|
1660 | switch (hw->fc) {
|
---|
1661 | case e1000_fc_none: /* 0 */
|
---|
1662 | /* Flow control (RX & TX) is completely disabled by a
|
---|
1663 | * software over-ride.
|
---|
1664 | */
|
---|
1665 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
---|
1666 | break;
|
---|
1667 | case e1000_fc_rx_pause: /* 1 */
|
---|
1668 | /* RX Flow control is enabled, and TX Flow control is
|
---|
1669 | * disabled, by a software over-ride.
|
---|
1670 | */
|
---|
1671 | /* Since there really isn't a way to advertise that we are
|
---|
1672 | * capable of RX Pause ONLY, we will advertise that we
|
---|
1673 | * support both symmetric and asymmetric RX PAUSE. Later
|
---|
1674 | * (in e1000_config_fc_after_link_up) we will disable the
|
---|
1675 | *hw's ability to send PAUSE frames.
|
---|
1676 | */
|
---|
1677 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
---|
1678 | break;
|
---|
1679 | case e1000_fc_tx_pause: /* 2 */
|
---|
1680 | /* TX Flow control is enabled, and RX Flow control is
|
---|
1681 | * disabled, by a software over-ride.
|
---|
1682 | */
|
---|
1683 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
|
---|
1684 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
|
---|
1685 | break;
|
---|
1686 | case e1000_fc_full: /* 3 */
|
---|
1687 | /* Flow control (both RX and TX) is enabled by a software
|
---|
1688 | * over-ride.
|
---|
1689 | */
|
---|
1690 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
---|
1691 | break;
|
---|
1692 | default:
|
---|
1693 | DEBUGOUT("Flow control param set incorrectly\n");
|
---|
1694 | return -E1000_ERR_CONFIG;
|
---|
1695 | }
|
---|
1696 |
|
---|
1697 | if((ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV,
|
---|
1698 | mii_autoneg_adv_reg)))
|
---|
1699 | return ret_val;
|
---|
1700 |
|
---|
1701 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
|
---|
1702 |
|
---|
1703 | if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg)))
|
---|
1704 | return ret_val;
|
---|
1705 |
|
---|
1706 | return E1000_SUCCESS;
|
---|
1707 | }
|
---|
1708 |
|
---|
1709 | /******************************************************************************
|
---|
1710 | * Sets the collision distance in the Transmit Control register
|
---|
1711 | *
|
---|
1712 | * hw - Struct containing variables accessed by shared code
|
---|
1713 | *
|
---|
1714 | * Link should have been established previously. Reads the speed and duplex
|
---|
1715 | * information from the Device Status register.
|
---|
1716 | ******************************************************************************/
|
---|
1717 | static void
|
---|
1718 | e1000_config_collision_dist(struct e1000_hw *hw)
|
---|
1719 | {
|
---|
1720 | uint32_t tctl;
|
---|
1721 |
|
---|
1722 | tctl = E1000_READ_REG(hw, TCTL);
|
---|
1723 |
|
---|
1724 | tctl &= ~E1000_TCTL_COLD;
|
---|
1725 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
|
---|
1726 |
|
---|
1727 | E1000_WRITE_REG(hw, TCTL, tctl);
|
---|
1728 | E1000_WRITE_FLUSH(hw);
|
---|
1729 | }
|
---|
1730 |
|
---|
1731 | /******************************************************************************
|
---|
1732 | * Sets MAC speed and duplex settings to reflect the those in the PHY
|
---|
1733 | *
|
---|
1734 | * hw - Struct containing variables accessed by shared code
|
---|
1735 | * mii_reg - data to write to the MII control register
|
---|
1736 | *
|
---|
1737 | * The contents of the PHY register containing the needed information need to
|
---|
1738 | * be passed in.
|
---|
1739 | ******************************************************************************/
|
---|
1740 | static int
|
---|
1741 | e1000_config_mac_to_phy(struct e1000_hw *hw)
|
---|
1742 | {
|
---|
1743 | uint32_t ctrl;
|
---|
1744 | int32_t ret_val;
|
---|
1745 | uint16_t phy_data;
|
---|
1746 |
|
---|
1747 | DEBUGFUNC("e1000_config_mac_to_phy");
|
---|
1748 |
|
---|
1749 | /* Read the Device Control Register and set the bits to Force Speed
|
---|
1750 | * and Duplex.
|
---|
1751 | */
|
---|
1752 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
1753 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
---|
1754 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
|
---|
1755 |
|
---|
1756 | /* Set up duplex in the Device Control and Transmit Control
|
---|
1757 | * registers depending on negotiated values.
|
---|
1758 | */
|
---|
1759 | if (hw->phy_type == e1000_phy_igp) {
|
---|
1760 | if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
|
---|
1761 | &phy_data)))
|
---|
1762 | return ret_val;
|
---|
1763 |
|
---|
1764 | if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD;
|
---|
1765 | else ctrl &= ~E1000_CTRL_FD;
|
---|
1766 |
|
---|
1767 | e1000_config_collision_dist(hw);
|
---|
1768 |
|
---|
1769 | /* Set up speed in the Device Control register depending on
|
---|
1770 | * negotiated values.
|
---|
1771 | */
|
---|
1772 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
|
---|
1773 | IGP01E1000_PSSR_SPEED_1000MBPS)
|
---|
1774 | ctrl |= E1000_CTRL_SPD_1000;
|
---|
1775 | else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
|
---|
1776 | IGP01E1000_PSSR_SPEED_100MBPS)
|
---|
1777 | ctrl |= E1000_CTRL_SPD_100;
|
---|
1778 | } else {
|
---|
1779 | if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
|
---|
1780 | &phy_data)))
|
---|
1781 | return ret_val;
|
---|
1782 |
|
---|
1783 | if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
|
---|
1784 | else ctrl &= ~E1000_CTRL_FD;
|
---|
1785 |
|
---|
1786 | e1000_config_collision_dist(hw);
|
---|
1787 |
|
---|
1788 | /* Set up speed in the Device Control register depending on
|
---|
1789 | * negotiated values.
|
---|
1790 | */
|
---|
1791 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
|
---|
1792 | ctrl |= E1000_CTRL_SPD_1000;
|
---|
1793 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
|
---|
1794 | ctrl |= E1000_CTRL_SPD_100;
|
---|
1795 | }
|
---|
1796 | /* Write the configured values back to the Device Control Reg. */
|
---|
1797 | E1000_WRITE_REG(hw, CTRL, ctrl);
|
---|
1798 | return E1000_SUCCESS;
|
---|
1799 | }
|
---|
1800 |
|
---|
1801 | /******************************************************************************
|
---|
1802 | * Forces the MAC's flow control settings.
|
---|
1803 | *
|
---|
1804 | * hw - Struct containing variables accessed by shared code
|
---|
1805 | *
|
---|
1806 | * Sets the TFCE and RFCE bits in the device control register to reflect
|
---|
1807 | * the adapter settings. TFCE and RFCE need to be explicitly set by
|
---|
1808 | * software when a Copper PHY is used because autonegotiation is managed
|
---|
1809 | * by the PHY rather than the MAC. Software must also configure these
|
---|
1810 | * bits when link is forced on a fiber connection.
|
---|
1811 | *****************************************************************************/
|
---|
1812 | static int
|
---|
1813 | e1000_force_mac_fc(struct e1000_hw *hw)
|
---|
1814 | {
|
---|
1815 | uint32_t ctrl;
|
---|
1816 |
|
---|
1817 | DEBUGFUNC("e1000_force_mac_fc");
|
---|
1818 |
|
---|
1819 | /* Get the current configuration of the Device Control Register */
|
---|
1820 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
1821 |
|
---|
1822 | /* Because we didn't get link via the internal auto-negotiation
|
---|
1823 | * mechanism (we either forced link or we got link via PHY
|
---|
1824 | * auto-neg), we have to manually enable/disable transmit an
|
---|
1825 | * receive flow control.
|
---|
1826 | *
|
---|
1827 | * The "Case" statement below enables/disable flow control
|
---|
1828 | * according to the "hw->fc" parameter.
|
---|
1829 | *
|
---|
1830 | * The possible values of the "fc" parameter are:
|
---|
1831 | * 0: Flow control is completely disabled
|
---|
1832 | * 1: Rx flow control is enabled (we can receive pause
|
---|
1833 | * frames but not send pause frames).
|
---|
1834 | * 2: Tx flow control is enabled (we can send pause frames
|
---|
1835 | * frames but we do not receive pause frames).
|
---|
1836 | * 3: Both Rx and TX flow control (symmetric) is enabled.
|
---|
1837 | * other: No other values should be possible at this point.
|
---|
1838 | */
|
---|
1839 |
|
---|
1840 | switch (hw->fc) {
|
---|
1841 | case e1000_fc_none:
|
---|
1842 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
|
---|
1843 | break;
|
---|
1844 | case e1000_fc_rx_pause:
|
---|
1845 | ctrl &= (~E1000_CTRL_TFCE);
|
---|
1846 | ctrl |= E1000_CTRL_RFCE;
|
---|
1847 | break;
|
---|
1848 | case e1000_fc_tx_pause:
|
---|
1849 | ctrl &= (~E1000_CTRL_RFCE);
|
---|
1850 | ctrl |= E1000_CTRL_TFCE;
|
---|
1851 | break;
|
---|
1852 | case e1000_fc_full:
|
---|
1853 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
|
---|
1854 | break;
|
---|
1855 | default:
|
---|
1856 | DEBUGOUT("Flow control param set incorrectly\n");
|
---|
1857 | return -E1000_ERR_CONFIG;
|
---|
1858 | }
|
---|
1859 |
|
---|
1860 | /* Disable TX Flow Control for 82542 (rev 2.0) */
|
---|
1861 | if(hw->mac_type == e1000_82542_rev2_0)
|
---|
1862 | ctrl &= (~E1000_CTRL_TFCE);
|
---|
1863 |
|
---|
1864 | E1000_WRITE_REG(hw, CTRL, ctrl);
|
---|
1865 | return E1000_SUCCESS;
|
---|
1866 | }
|
---|
1867 |
|
---|
1868 | /******************************************************************************
|
---|
1869 | * Configures flow control settings after link is established
|
---|
1870 | *
|
---|
1871 | * hw - Struct containing variables accessed by shared code
|
---|
1872 | *
|
---|
1873 | * Should be called immediately after a valid link has been established.
|
---|
1874 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode
|
---|
1875 | * and autonegotiation is enabled, the MAC flow control settings will be set
|
---|
1876 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
|
---|
1877 | * and RFCE bits will be automaticaly set to the negotiated flow control mode.
|
---|
1878 | *****************************************************************************/
|
---|
1879 | static int
|
---|
1880 | e1000_config_fc_after_link_up(struct e1000_hw *hw)
|
---|
1881 | {
|
---|
1882 | int32_t ret_val;
|
---|
1883 | uint16_t mii_status_reg;
|
---|
1884 | uint16_t mii_nway_adv_reg;
|
---|
1885 | uint16_t mii_nway_lp_ability_reg;
|
---|
1886 | uint16_t speed;
|
---|
1887 | uint16_t duplex;
|
---|
1888 |
|
---|
1889 | DEBUGFUNC("e1000_config_fc_after_link_up");
|
---|
1890 |
|
---|
1891 | /* Check for the case where we have fiber media and auto-neg failed
|
---|
1892 | * so we had to force link. In this case, we need to force the
|
---|
1893 | * configuration of the MAC to match the "fc" parameter.
|
---|
1894 | */
|
---|
1895 | if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
|
---|
1896 | ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed))) {
|
---|
1897 | if((ret_val = e1000_force_mac_fc(hw))) {
|
---|
1898 | DEBUGOUT("Error forcing flow control settings\n");
|
---|
1899 | return ret_val;
|
---|
1900 | }
|
---|
1901 | }
|
---|
1902 |
|
---|
1903 | /* Check for the case where we have copper media and auto-neg is
|
---|
1904 | * enabled. In this case, we need to check and see if Auto-Neg
|
---|
1905 | * has completed, and if so, how the PHY and link partner has
|
---|
1906 | * flow control configured.
|
---|
1907 | */
|
---|
1908 | if(hw->media_type == e1000_media_type_copper) {
|
---|
1909 | /* Read the MII Status Register and check to see if AutoNeg
|
---|
1910 | * has completed. We read this twice because this reg has
|
---|
1911 | * some "sticky" (latched) bits.
|
---|
1912 | */
|
---|
1913 | if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg)))
|
---|
1914 | return ret_val;
|
---|
1915 | if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg)))
|
---|
1916 | return ret_val;
|
---|
1917 |
|
---|
1918 | if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
|
---|
1919 | /* The AutoNeg process has completed, so we now need to
|
---|
1920 | * read both the Auto Negotiation Advertisement Register
|
---|
1921 | * (Address 4) and the Auto_Negotiation Base Page Ability
|
---|
1922 | * Register (Address 5) to determine how flow control was
|
---|
1923 | * negotiated.
|
---|
1924 | */
|
---|
1925 | if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
|
---|
1926 | &mii_nway_adv_reg)))
|
---|
1927 | return ret_val;
|
---|
1928 | if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
|
---|
1929 | &mii_nway_lp_ability_reg)))
|
---|
1930 | return ret_val;
|
---|
1931 |
|
---|
1932 | /* Two bits in the Auto Negotiation Advertisement Register
|
---|
1933 | * (Address 4) and two bits in the Auto Negotiation Base
|
---|
1934 | * Page Ability Register (Address 5) determine flow control
|
---|
1935 | * for both the PHY and the link partner. The following
|
---|
1936 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
|
---|
1937 | * 1999, describes these PAUSE resolution bits and how flow
|
---|
1938 | * control is determined based upon these settings.
|
---|
1939 | * NOTE: DC = Don't Care
|
---|
1940 | *
|
---|
1941 | * LOCAL DEVICE | LINK PARTNER
|
---|
1942 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
|
---|
1943 | *-------|---------|-------|---------|--------------------
|
---|
1944 | * 0 | 0 | DC | DC | e1000_fc_none
|
---|
1945 | * 0 | 1 | 0 | DC | e1000_fc_none
|
---|
1946 | * 0 | 1 | 1 | 0 | e1000_fc_none
|
---|
1947 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
---|
1948 | * 1 | 0 | 0 | DC | e1000_fc_none
|
---|
1949 | * 1 | DC | 1 | DC | e1000_fc_full
|
---|
1950 | * 1 | 1 | 0 | 0 | e1000_fc_none
|
---|
1951 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
---|
1952 | *
|
---|
1953 | */
|
---|
1954 | /* Are both PAUSE bits set to 1? If so, this implies
|
---|
1955 | * Symmetric Flow Control is enabled at both ends. The
|
---|
1956 | * ASM_DIR bits are irrelevant per the spec.
|
---|
1957 | *
|
---|
1958 | * For Symmetric Flow Control:
|
---|
1959 | *
|
---|
1960 | * LOCAL DEVICE | LINK PARTNER
|
---|
1961 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
---|
1962 | *-------|---------|-------|---------|--------------------
|
---|
1963 | * 1 | DC | 1 | DC | e1000_fc_full
|
---|
1964 | *
|
---|
1965 | */
|
---|
1966 | if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
---|
1967 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
|
---|
1968 | /* Now we need to check if the user selected RX ONLY
|
---|
1969 | * of pause frames. In this case, we had to advertise
|
---|
1970 | * FULL flow control because we could not advertise RX
|
---|
1971 | * ONLY. Hence, we must now check to see if we need to
|
---|
1972 | * turn OFF the TRANSMISSION of PAUSE frames.
|
---|
1973 | */
|
---|
1974 | #if 0
|
---|
1975 | if(hw->original_fc == e1000_fc_full) {
|
---|
1976 | hw->fc = e1000_fc_full;
|
---|
1977 | #else
|
---|
1978 | if(hw->fc == e1000_fc_full) {
|
---|
1979 | #endif
|
---|
1980 | DEBUGOUT("Flow Control = FULL.\r\n");
|
---|
1981 | } else {
|
---|
1982 | hw->fc = e1000_fc_rx_pause;
|
---|
1983 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
|
---|
1984 | }
|
---|
1985 | }
|
---|
1986 | /* For receiving PAUSE frames ONLY.
|
---|
1987 | *
|
---|
1988 | * LOCAL DEVICE | LINK PARTNER
|
---|
1989 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
---|
1990 | *-------|---------|-------|---------|--------------------
|
---|
1991 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
---|
1992 | *
|
---|
1993 | */
|
---|
1994 | else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
---|
1995 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
---|
1996 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
---|
1997 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
---|
1998 | hw->fc = e1000_fc_tx_pause;
|
---|
1999 | DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
|
---|
2000 | }
|
---|
2001 | /* For transmitting PAUSE frames ONLY.
|
---|
2002 | *
|
---|
2003 | * LOCAL DEVICE | LINK PARTNER
|
---|
2004 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
---|
2005 | *-------|---------|-------|---------|--------------------
|
---|
2006 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
---|
2007 | *
|
---|
2008 | */
|
---|
2009 | else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
---|
2010 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
---|
2011 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
---|
2012 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
---|
2013 | hw->fc = e1000_fc_rx_pause;
|
---|
2014 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
|
---|
2015 | }
|
---|
2016 | /* Per the IEEE spec, at this point flow control should be
|
---|
2017 | * disabled. However, we want to consider that we could
|
---|
2018 | * be connected to a legacy switch that doesn't advertise
|
---|
2019 | * desired flow control, but can be forced on the link
|
---|
2020 | * partner. So if we advertised no flow control, that is
|
---|
2021 | * what we will resolve to. If we advertised some kind of
|
---|
2022 | * receive capability (Rx Pause Only or Full Flow Control)
|
---|
2023 | * and the link partner advertised none, we will configure
|
---|
2024 | * ourselves to enable Rx Flow Control only. We can do
|
---|
2025 | * this safely for two reasons: If the link partner really
|
---|
2026 | * didn't want flow control enabled, and we enable Rx, no
|
---|
2027 | * harm done since we won't be receiving any PAUSE frames
|
---|
2028 | * anyway. If the intent on the link partner was to have
|
---|
2029 | * flow control enabled, then by us enabling RX only, we
|
---|
2030 | * can at least receive pause frames and process them.
|
---|
2031 | * This is a good idea because in most cases, since we are
|
---|
2032 | * predominantly a server NIC, more times than not we will
|
---|
2033 | * be asked to delay transmission of packets than asking
|
---|
2034 | * our link partner to pause transmission of frames.
|
---|
2035 | */
|
---|
2036 | #if 0
|
---|
2037 | else if(hw->original_fc == e1000_fc_none ||
|
---|
2038 | hw->original_fc == e1000_fc_tx_pause) {
|
---|
2039 | #else
|
---|
2040 | else if(hw->fc == e1000_fc_none)
|
---|
2041 | DEBUGOUT("Flow Control = NONE.\r\n");
|
---|
2042 | else if(hw->fc == e1000_fc_tx_pause) {
|
---|
2043 | #endif
|
---|
2044 | hw->fc = e1000_fc_none;
|
---|
2045 | DEBUGOUT("Flow Control = NONE.\r\n");
|
---|
2046 | } else {
|
---|
2047 | hw->fc = e1000_fc_rx_pause;
|
---|
2048 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
|
---|
2049 | }
|
---|
2050 |
|
---|
2051 | /* Now we need to do one last check... If we auto-
|
---|
2052 | * negotiated to HALF DUPLEX, flow control should not be
|
---|
2053 | * enabled per IEEE 802.3 spec.
|
---|
2054 | */
|
---|
2055 | e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
---|
2056 |
|
---|
2057 | if(duplex == HALF_DUPLEX)
|
---|
2058 | hw->fc = e1000_fc_none;
|
---|
2059 |
|
---|
2060 | /* Now we call a subroutine to actually force the MAC
|
---|
2061 | * controller to use the correct flow control settings.
|
---|
2062 | */
|
---|
2063 | if((ret_val = e1000_force_mac_fc(hw))) {
|
---|
2064 | DEBUGOUT("Error forcing flow control settings\n");
|
---|
2065 | return ret_val;
|
---|
2066 | }
|
---|
2067 | } else {
|
---|
2068 | DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
|
---|
2069 | }
|
---|
2070 | }
|
---|
2071 | return E1000_SUCCESS;
|
---|
2072 | }
|
---|
2073 |
|
---|
2074 | /******************************************************************************
|
---|
2075 | * Checks to see if the link status of the hardware has changed.
|
---|
2076 | *
|
---|
2077 | * hw - Struct containing variables accessed by shared code
|
---|
2078 | *
|
---|
2079 | * Called by any function that needs to check the link status of the adapter.
|
---|
2080 | *****************************************************************************/
|
---|
2081 | static int
|
---|
2082 | e1000_check_for_link(struct e1000_hw *hw)
|
---|
2083 | {
|
---|
2084 | uint32_t rxcw;
|
---|
2085 | uint32_t ctrl;
|
---|
2086 | uint32_t status;
|
---|
2087 | uint32_t rctl;
|
---|
2088 | uint32_t signal = 0;
|
---|
2089 | int32_t ret_val;
|
---|
2090 | uint16_t phy_data;
|
---|
2091 | uint16_t lp_capability;
|
---|
2092 |
|
---|
2093 | DEBUGFUNC("e1000_check_for_link");
|
---|
2094 |
|
---|
2095 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
|
---|
2096 | * set when the optics detect a signal. On older adapters, it will be
|
---|
2097 | * cleared when there is a signal. This applies to fiber media only.
|
---|
2098 | */
|
---|
2099 | if(hw->media_type == e1000_media_type_fiber)
|
---|
2100 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
|
---|
2101 |
|
---|
2102 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
2103 | status = E1000_READ_REG(hw, STATUS);
|
---|
2104 | rxcw = E1000_READ_REG(hw, RXCW);
|
---|
2105 |
|
---|
2106 | /* If we have a copper PHY then we only want to go out to the PHY
|
---|
2107 | * registers to see if Auto-Neg has completed and/or if our link
|
---|
2108 | * status has changed. The get_link_status flag will be set if we
|
---|
2109 | * receive a Link Status Change interrupt or we have Rx Sequence
|
---|
2110 | * Errors.
|
---|
2111 | */
|
---|
2112 | #if 0
|
---|
2113 | if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
|
---|
2114 | #else
|
---|
2115 | if(hw->media_type == e1000_media_type_copper) {
|
---|
2116 | #endif
|
---|
2117 | /* First we want to see if the MII Status Register reports
|
---|
2118 | * link. If so, then we want to get the current speed/duplex
|
---|
2119 | * of the PHY.
|
---|
2120 | * Read the register twice since the link bit is sticky.
|
---|
2121 | */
|
---|
2122 | if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
---|
2123 | return ret_val;
|
---|
2124 | if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
---|
2125 | return ret_val;
|
---|
2126 |
|
---|
2127 | if(phy_data & MII_SR_LINK_STATUS) {
|
---|
2128 | #if 0
|
---|
2129 | hw->get_link_status = FALSE;
|
---|
2130 | #endif
|
---|
2131 | } else {
|
---|
2132 | /* No link detected */
|
---|
2133 | return -E1000_ERR_NOLINK;
|
---|
2134 | }
|
---|
2135 |
|
---|
2136 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
|
---|
2137 | * have Si on board that is 82544 or newer, Auto
|
---|
2138 | * Speed Detection takes care of MAC speed/duplex
|
---|
2139 | * configuration. So we only need to configure Collision
|
---|
2140 | * Distance in the MAC. Otherwise, we need to force
|
---|
2141 | * speed/duplex on the MAC to the current PHY speed/duplex
|
---|
2142 | * settings.
|
---|
2143 | */
|
---|
2144 | if(hw->mac_type >= e1000_82544)
|
---|
2145 | e1000_config_collision_dist(hw);
|
---|
2146 | else {
|
---|
2147 | if((ret_val = e1000_config_mac_to_phy(hw))) {
|
---|
2148 | DEBUGOUT("Error configuring MAC to PHY settings\n");
|
---|
2149 | return ret_val;
|
---|
2150 | }
|
---|
2151 | }
|
---|
2152 |
|
---|
2153 | /* Configure Flow Control now that Auto-Neg has completed. First, we
|
---|
2154 | * need to restore the desired flow control settings because we may
|
---|
2155 | * have had to re-autoneg with a different link partner.
|
---|
2156 | */
|
---|
2157 | if((ret_val = e1000_config_fc_after_link_up(hw))) {
|
---|
2158 | DEBUGOUT("Error configuring flow control\n");
|
---|
2159 | return ret_val;
|
---|
2160 | }
|
---|
2161 |
|
---|
2162 | /* At this point we know that we are on copper and we have
|
---|
2163 | * auto-negotiated link. These are conditions for checking the link
|
---|
2164 | * parter capability register. We use the link partner capability to
|
---|
2165 | * determine if TBI Compatibility needs to be turned on or off. If
|
---|
2166 | * the link partner advertises any speed in addition to Gigabit, then
|
---|
2167 | * we assume that they are GMII-based, and TBI compatibility is not
|
---|
2168 | * needed. If no other speeds are advertised, we assume the link
|
---|
2169 | * partner is TBI-based, and we turn on TBI Compatibility.
|
---|
2170 | */
|
---|
2171 | if(hw->tbi_compatibility_en) {
|
---|
2172 | if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
|
---|
2173 | &lp_capability)))
|
---|
2174 | return ret_val;
|
---|
2175 | if(lp_capability & (NWAY_LPAR_10T_HD_CAPS |
|
---|
2176 | NWAY_LPAR_10T_FD_CAPS |
|
---|
2177 | NWAY_LPAR_100TX_HD_CAPS |
|
---|
2178 | NWAY_LPAR_100TX_FD_CAPS |
|
---|
2179 | NWAY_LPAR_100T4_CAPS)) {
|
---|
2180 | /* If our link partner advertises anything in addition to
|
---|
2181 | * gigabit, we do not need to enable TBI compatibility.
|
---|
2182 | */
|
---|
2183 | if(hw->tbi_compatibility_on) {
|
---|
2184 | /* If we previously were in the mode, turn it off. */
|
---|
2185 | rctl = E1000_READ_REG(hw, RCTL);
|
---|
2186 | rctl &= ~E1000_RCTL_SBP;
|
---|
2187 | E1000_WRITE_REG(hw, RCTL, rctl);
|
---|
2188 | hw->tbi_compatibility_on = FALSE;
|
---|
2189 | }
|
---|
2190 | } else {
|
---|
2191 | /* If TBI compatibility is was previously off, turn it on. For
|
---|
2192 | * compatibility with a TBI link partner, we will store bad
|
---|
2193 | * packets. Some frames have an additional byte on the end and
|
---|
2194 | * will look like CRC errors to to the hardware.
|
---|
2195 | */
|
---|
2196 | if(!hw->tbi_compatibility_on) {
|
---|
2197 | hw->tbi_compatibility_on = TRUE;
|
---|
2198 | rctl = E1000_READ_REG(hw, RCTL);
|
---|
2199 | rctl |= E1000_RCTL_SBP;
|
---|
2200 | E1000_WRITE_REG(hw, RCTL, rctl);
|
---|
2201 | }
|
---|
2202 | }
|
---|
2203 | }
|
---|
2204 | }
|
---|
2205 | /* If we don't have link (auto-negotiation failed or link partner cannot
|
---|
2206 | * auto-negotiate), the cable is plugged in (we have signal), and our
|
---|
2207 | * link partner is not trying to auto-negotiate with us (we are receiving
|
---|
2208 | * idles or data), we need to force link up. We also need to give
|
---|
2209 | * auto-negotiation time to complete, in case the cable was just plugged
|
---|
2210 | * in. The autoneg_failed flag does this.
|
---|
2211 | */
|
---|
2212 | else if((((hw->media_type == e1000_media_type_fiber) &&
|
---|
2213 | ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
|
---|
2214 | (hw->media_type == e1000_media_type_internal_serdes)) &&
|
---|
2215 | (!(status & E1000_STATUS_LU)) &&
|
---|
2216 | (!(rxcw & E1000_RXCW_C))) {
|
---|
2217 | if(hw->autoneg_failed == 0) {
|
---|
2218 | hw->autoneg_failed = 1;
|
---|
2219 | return 0;
|
---|
2220 | }
|
---|
2221 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
|
---|
2222 |
|
---|
2223 | /* Disable auto-negotiation in the TXCW register */
|
---|
2224 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
|
---|
2225 |
|
---|
2226 | /* Force link-up and also force full-duplex. */
|
---|
2227 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
2228 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
|
---|
2229 | E1000_WRITE_REG(hw, CTRL, ctrl);
|
---|
2230 |
|
---|
2231 | /* Configure Flow Control after forcing link up. */
|
---|
2232 | if((ret_val = e1000_config_fc_after_link_up(hw))) {
|
---|
2233 | DEBUGOUT("Error configuring flow control\n");
|
---|
2234 | return ret_val;
|
---|
2235 | }
|
---|
2236 | }
|
---|
2237 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
|
---|
2238 | * auto-negotiation in the TXCW register and disable forced link in the
|
---|
2239 | * Device Control register in an attempt to auto-negotiate with our link
|
---|
2240 | * partner.
|
---|
2241 | */
|
---|
2242 | else if(((hw->media_type == e1000_media_type_fiber) ||
|
---|
2243 | (hw->media_type == e1000_media_type_internal_serdes)) &&
|
---|
2244 | (ctrl & E1000_CTRL_SLU) &&
|
---|
2245 | (rxcw & E1000_RXCW_C)) {
|
---|
2246 | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
|
---|
2247 | E1000_WRITE_REG(hw, TXCW, hw->txcw);
|
---|
2248 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
|
---|
2249 | }
|
---|
2250 | #if 0
|
---|
2251 | /* If we force link for non-auto-negotiation switch, check link status
|
---|
2252 | * based on MAC synchronization for internal serdes media type.
|
---|
2253 | */
|
---|
2254 | else if((hw->media_type == e1000_media_type_internal_serdes) &&
|
---|
2255 | !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
|
---|
2256 | /* SYNCH bit and IV bit are sticky. */
|
---|
2257 | udelay(10);
|
---|
2258 | if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
|
---|
2259 | if(!(rxcw & E1000_RXCW_IV)) {
|
---|
2260 | hw->serdes_link_down = FALSE;
|
---|
2261 | DEBUGOUT("SERDES: Link is up.\n");
|
---|
2262 | }
|
---|
2263 | } else {
|
---|
2264 | hw->serdes_link_down = TRUE;
|
---|
2265 | DEBUGOUT("SERDES: Link is down.\n");
|
---|
2266 | }
|
---|
2267 | }
|
---|
2268 | #endif
|
---|
2269 | return E1000_SUCCESS;
|
---|
2270 | }
|
---|
2271 |
|
---|
2272 | /******************************************************************************
|
---|
2273 | * Detects the current speed and duplex settings of the hardware.
|
---|
2274 | *
|
---|
2275 | * hw - Struct containing variables accessed by shared code
|
---|
2276 | * speed - Speed of the connection
|
---|
2277 | * duplex - Duplex setting of the connection
|
---|
2278 | *****************************************************************************/
|
---|
2279 | static void
|
---|
2280 | e1000_get_speed_and_duplex(struct e1000_hw *hw,
|
---|
2281 | uint16_t *speed,
|
---|
2282 | uint16_t *duplex)
|
---|
2283 | {
|
---|
2284 | uint32_t status;
|
---|
2285 |
|
---|
2286 | DEBUGFUNC("e1000_get_speed_and_duplex");
|
---|
2287 |
|
---|
2288 | if(hw->mac_type >= e1000_82543) {
|
---|
2289 | status = E1000_READ_REG(hw, STATUS);
|
---|
2290 | if(status & E1000_STATUS_SPEED_1000) {
|
---|
2291 | *speed = SPEED_1000;
|
---|
2292 | DEBUGOUT("1000 Mbs, ");
|
---|
2293 | } else if(status & E1000_STATUS_SPEED_100) {
|
---|
2294 | *speed = SPEED_100;
|
---|
2295 | DEBUGOUT("100 Mbs, ");
|
---|
2296 | } else {
|
---|
2297 | *speed = SPEED_10;
|
---|
2298 | DEBUGOUT("10 Mbs, ");
|
---|
2299 | }
|
---|
2300 |
|
---|
2301 | if(status & E1000_STATUS_FD) {
|
---|
2302 | *duplex = FULL_DUPLEX;
|
---|
2303 | DEBUGOUT("Full Duplex\r\n");
|
---|
2304 | } else {
|
---|
2305 | *duplex = HALF_DUPLEX;
|
---|
2306 | DEBUGOUT(" Half Duplex\r\n");
|
---|
2307 | }
|
---|
2308 | } else {
|
---|
2309 | DEBUGOUT("1000 Mbs, Full Duplex\r\n");
|
---|
2310 | *speed = SPEED_1000;
|
---|
2311 | *duplex = FULL_DUPLEX;
|
---|
2312 | }
|
---|
2313 | }
|
---|
2314 |
|
---|
2315 | /******************************************************************************
|
---|
2316 | * Blocks until autoneg completes or times out (~4.5 seconds)
|
---|
2317 | *
|
---|
2318 | * hw - Struct containing variables accessed by shared code
|
---|
2319 | ******************************************************************************/
|
---|
2320 | static int
|
---|
2321 | e1000_wait_autoneg(struct e1000_hw *hw)
|
---|
2322 | {
|
---|
2323 | int32_t ret_val;
|
---|
2324 | uint16_t i;
|
---|
2325 | uint16_t phy_data;
|
---|
2326 |
|
---|
2327 | DEBUGFUNC("e1000_wait_autoneg");
|
---|
2328 | DEBUGOUT("Waiting for Auto-Neg to complete.\n");
|
---|
2329 |
|
---|
2330 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */
|
---|
2331 | for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
|
---|
2332 | /* Read the MII Status Register and wait for Auto-Neg
|
---|
2333 | * Complete bit to be set.
|
---|
2334 | */
|
---|
2335 | if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
---|
2336 | return ret_val;
|
---|
2337 | if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
---|
2338 | return ret_val;
|
---|
2339 | if(phy_data & MII_SR_AUTONEG_COMPLETE) {
|
---|
2340 | DEBUGOUT("Auto-Neg complete.\n");
|
---|
2341 | return E1000_SUCCESS;
|
---|
2342 | }
|
---|
2343 | mdelay(100);
|
---|
2344 | }
|
---|
2345 | DEBUGOUT("Auto-Neg timedout.\n");
|
---|
2346 | return -E1000_ERR_TIMEOUT;
|
---|
2347 | }
|
---|
2348 |
|
---|
2349 | /******************************************************************************
|
---|
2350 | * Raises the Management Data Clock
|
---|
2351 | *
|
---|
2352 | * hw - Struct containing variables accessed by shared code
|
---|
2353 | * ctrl - Device control register's current value
|
---|
2354 | ******************************************************************************/
|
---|
2355 | static void
|
---|
2356 | e1000_raise_mdi_clk(struct e1000_hw *hw,
|
---|
2357 | uint32_t *ctrl)
|
---|
2358 | {
|
---|
2359 | /* Raise the clock input to the Management Data Clock (by setting the MDC
|
---|
2360 | * bit), and then delay 10 microseconds.
|
---|
2361 | */
|
---|
2362 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
|
---|
2363 | E1000_WRITE_FLUSH(hw);
|
---|
2364 | udelay(10);
|
---|
2365 | }
|
---|
2366 |
|
---|
2367 | /******************************************************************************
|
---|
2368 | * Lowers the Management Data Clock
|
---|
2369 | *
|
---|
2370 | * hw - Struct containing variables accessed by shared code
|
---|
2371 | * ctrl - Device control register's current value
|
---|
2372 | ******************************************************************************/
|
---|
2373 | static void
|
---|
2374 | e1000_lower_mdi_clk(struct e1000_hw *hw,
|
---|
2375 | uint32_t *ctrl)
|
---|
2376 | {
|
---|
2377 | /* Lower the clock input to the Management Data Clock (by clearing the MDC
|
---|
2378 | * bit), and then delay 10 microseconds.
|
---|
2379 | */
|
---|
2380 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
|
---|
2381 | E1000_WRITE_FLUSH(hw);
|
---|
2382 | udelay(10);
|
---|
2383 | }
|
---|
2384 |
|
---|
2385 | /******************************************************************************
|
---|
2386 | * Shifts data bits out to the PHY
|
---|
2387 | *
|
---|
2388 | * hw - Struct containing variables accessed by shared code
|
---|
2389 | * data - Data to send out to the PHY
|
---|
2390 | * count - Number of bits to shift out
|
---|
2391 | *
|
---|
2392 | * Bits are shifted out in MSB to LSB order.
|
---|
2393 | ******************************************************************************/
|
---|
2394 | static void
|
---|
2395 | e1000_shift_out_mdi_bits(struct e1000_hw *hw,
|
---|
2396 | uint32_t data,
|
---|
2397 | uint16_t count)
|
---|
2398 | {
|
---|
2399 | uint32_t ctrl;
|
---|
2400 | uint32_t mask;
|
---|
2401 |
|
---|
2402 | /* We need to shift "count" number of bits out to the PHY. So, the value
|
---|
2403 | * in the "data" parameter will be shifted out to the PHY one bit at a
|
---|
2404 | * time. In order to do this, "data" must be broken down into bits.
|
---|
2405 | */
|
---|
2406 | mask = 0x01;
|
---|
2407 | mask <<= (count - 1);
|
---|
2408 |
|
---|
2409 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
2410 |
|
---|
2411 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
|
---|
2412 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
|
---|
2413 |
|
---|
2414 | while(mask) {
|
---|
2415 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
|
---|
2416 | * then raising and lowering the Management Data Clock. A "0" is
|
---|
2417 | * shifted out to the PHY by setting the MDIO bit to "0" and then
|
---|
2418 | * raising and lowering the clock.
|
---|
2419 | */
|
---|
2420 | if(data & mask) ctrl |= E1000_CTRL_MDIO;
|
---|
2421 | else ctrl &= ~E1000_CTRL_MDIO;
|
---|
2422 |
|
---|
2423 | E1000_WRITE_REG(hw, CTRL, ctrl);
|
---|
2424 | E1000_WRITE_FLUSH(hw);
|
---|
2425 |
|
---|
2426 | udelay(10);
|
---|
2427 |
|
---|
2428 | e1000_raise_mdi_clk(hw, &ctrl);
|
---|
2429 | e1000_lower_mdi_clk(hw, &ctrl);
|
---|
2430 |
|
---|
2431 | mask = mask >> 1;
|
---|
2432 | }
|
---|
2433 | }
|
---|
2434 |
|
---|
2435 | /******************************************************************************
|
---|
2436 | * Shifts data bits in from the PHY
|
---|
2437 | *
|
---|
2438 | * hw - Struct containing variables accessed by shared code
|
---|
2439 | *
|
---|
2440 | * Bits are shifted in in MSB to LSB order.
|
---|
2441 | ******************************************************************************/
|
---|
2442 | static uint16_t
|
---|
2443 | e1000_shift_in_mdi_bits(struct e1000_hw *hw)
|
---|
2444 | {
|
---|
2445 | uint32_t ctrl;
|
---|
2446 | uint16_t data = 0;
|
---|
2447 | uint8_t i;
|
---|
2448 |
|
---|
2449 | /* In order to read a register from the PHY, we need to shift in a total
|
---|
2450 | * of 18 bits from the PHY. The first two bit (turnaround) times are used
|
---|
2451 | * to avoid contention on the MDIO pin when a read operation is performed.
|
---|
2452 | * These two bits are ignored by us and thrown away. Bits are "shifted in"
|
---|
2453 | * by raising the input to the Management Data Clock (setting the MDC bit),
|
---|
2454 | * and then reading the value of the MDIO bit.
|
---|
2455 | */
|
---|
2456 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
2457 |
|
---|
2458 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
|
---|
2459 | ctrl &= ~E1000_CTRL_MDIO_DIR;
|
---|
2460 | ctrl &= ~E1000_CTRL_MDIO;
|
---|
2461 |
|
---|
2462 | E1000_WRITE_REG(hw, CTRL, ctrl);
|
---|
2463 | E1000_WRITE_FLUSH(hw);
|
---|
2464 |
|
---|
2465 | /* Raise and Lower the clock before reading in the data. This accounts for
|
---|
2466 | * the turnaround bits. The first clock occurred when we clocked out the
|
---|
2467 | * last bit of the Register Address.
|
---|
2468 | */
|
---|
2469 | e1000_raise_mdi_clk(hw, &ctrl);
|
---|
2470 | e1000_lower_mdi_clk(hw, &ctrl);
|
---|
2471 |
|
---|
2472 | for(data = 0, i = 0; i < 16; i++) {
|
---|
2473 | data = data << 1;
|
---|
2474 | e1000_raise_mdi_clk(hw, &ctrl);
|
---|
2475 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
2476 | /* Check to see if we shifted in a "1". */
|
---|
2477 | if(ctrl & E1000_CTRL_MDIO) data |= 1;
|
---|
2478 | e1000_lower_mdi_clk(hw, &ctrl);
|
---|
2479 | }
|
---|
2480 |
|
---|
2481 | e1000_raise_mdi_clk(hw, &ctrl);
|
---|
2482 | e1000_lower_mdi_clk(hw, &ctrl);
|
---|
2483 |
|
---|
2484 | return data;
|
---|
2485 | }
|
---|
2486 |
|
---|
2487 | /*****************************************************************************
|
---|
2488 | * Reads the value from a PHY register, if the value is on a specific non zero
|
---|
2489 | * page, sets the page first.
|
---|
2490 | *
|
---|
2491 | * hw - Struct containing variables accessed by shared code
|
---|
2492 | * reg_addr - address of the PHY register to read
|
---|
2493 | ******************************************************************************/
|
---|
2494 | static int
|
---|
2495 | e1000_read_phy_reg(struct e1000_hw *hw,
|
---|
2496 | uint32_t reg_addr,
|
---|
2497 | uint16_t *phy_data)
|
---|
2498 | {
|
---|
2499 | uint32_t ret_val;
|
---|
2500 |
|
---|
2501 | DEBUGFUNC("e1000_read_phy_reg");
|
---|
2502 |
|
---|
2503 | if(hw->phy_type == e1000_phy_igp &&
|
---|
2504 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
---|
2505 | if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
---|
2506 | (uint16_t)reg_addr)))
|
---|
2507 | return ret_val;
|
---|
2508 | }
|
---|
2509 |
|
---|
2510 | ret_val = e1000_read_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
|
---|
2511 | phy_data);
|
---|
2512 |
|
---|
2513 | return ret_val;
|
---|
2514 | }
|
---|
2515 |
|
---|
2516 | static int
|
---|
2517 | e1000_read_phy_reg_ex(struct e1000_hw *hw,
|
---|
2518 | uint32_t reg_addr,
|
---|
2519 | uint16_t *phy_data)
|
---|
2520 | {
|
---|
2521 | uint32_t i;
|
---|
2522 | uint32_t mdic = 0;
|
---|
2523 | const uint32_t phy_addr = 1;
|
---|
2524 |
|
---|
2525 | DEBUGFUNC("e1000_read_phy_reg_ex");
|
---|
2526 |
|
---|
2527 | if(reg_addr > MAX_PHY_REG_ADDRESS) {
|
---|
2528 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
|
---|
2529 | return -E1000_ERR_PARAM;
|
---|
2530 | }
|
---|
2531 |
|
---|
2532 | if(hw->mac_type > e1000_82543) {
|
---|
2533 | /* Set up Op-code, Phy Address, and register address in the MDI
|
---|
2534 | * Control register. The MAC will take care of interfacing with the
|
---|
2535 | * PHY to retrieve the desired data.
|
---|
2536 | */
|
---|
2537 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
|
---|
2538 | (phy_addr << E1000_MDIC_PHY_SHIFT) |
|
---|
2539 | (E1000_MDIC_OP_READ));
|
---|
2540 |
|
---|
2541 | E1000_WRITE_REG(hw, MDIC, mdic);
|
---|
2542 |
|
---|
2543 | /* Poll the ready bit to see if the MDI read completed */
|
---|
2544 | for(i = 0; i < 64; i++) {
|
---|
2545 | udelay(50);
|
---|
2546 | mdic = E1000_READ_REG(hw, MDIC);
|
---|
2547 | if(mdic & E1000_MDIC_READY) break;
|
---|
2548 | }
|
---|
2549 | if(!(mdic & E1000_MDIC_READY)) {
|
---|
2550 | DEBUGOUT("MDI Read did not complete\n");
|
---|
2551 | return -E1000_ERR_PHY;
|
---|
2552 | }
|
---|
2553 | if(mdic & E1000_MDIC_ERROR) {
|
---|
2554 | DEBUGOUT("MDI Error\n");
|
---|
2555 | return -E1000_ERR_PHY;
|
---|
2556 | }
|
---|
2557 | *phy_data = (uint16_t) mdic;
|
---|
2558 | } else {
|
---|
2559 | /* We must first send a preamble through the MDIO pin to signal the
|
---|
2560 | * beginning of an MII instruction. This is done by sending 32
|
---|
2561 | * consecutive "1" bits.
|
---|
2562 | */
|
---|
2563 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
---|
2564 |
|
---|
2565 | /* Now combine the next few fields that are required for a read
|
---|
2566 | * operation. We use this method instead of calling the
|
---|
2567 | * e1000_shift_out_mdi_bits routine five different times. The format of
|
---|
2568 | * a MII read instruction consists of a shift out of 14 bits and is
|
---|
2569 | * defined as follows:
|
---|
2570 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
|
---|
2571 | * followed by a shift in of 18 bits. This first two bits shifted in
|
---|
2572 | * are TurnAround bits used to avoid contention on the MDIO pin when a
|
---|
2573 | * READ operation is performed. These two bits are thrown away
|
---|
2574 | * followed by a shift in of 16 bits which contains the desired data.
|
---|
2575 | */
|
---|
2576 | mdic = ((reg_addr) | (phy_addr << 5) |
|
---|
2577 | (PHY_OP_READ << 10) | (PHY_SOF << 12));
|
---|
2578 |
|
---|
2579 | e1000_shift_out_mdi_bits(hw, mdic, 14);
|
---|
2580 |
|
---|
2581 | /* Now that we've shifted out the read command to the MII, we need to
|
---|
2582 | * "shift in" the 16-bit value (18 total bits) of the requested PHY
|
---|
2583 | * register address.
|
---|
2584 | */
|
---|
2585 | *phy_data = e1000_shift_in_mdi_bits(hw);
|
---|
2586 | }
|
---|
2587 | return E1000_SUCCESS;
|
---|
2588 | }
|
---|
2589 |
|
---|
2590 | /******************************************************************************
|
---|
2591 | * Writes a value to a PHY register
|
---|
2592 | *
|
---|
2593 | * hw - Struct containing variables accessed by shared code
|
---|
2594 | * reg_addr - address of the PHY register to write
|
---|
2595 | * data - data to write to the PHY
|
---|
2596 | ******************************************************************************/
|
---|
2597 | static int
|
---|
2598 | e1000_write_phy_reg(struct e1000_hw *hw,
|
---|
2599 | uint32_t reg_addr,
|
---|
2600 | uint16_t phy_data)
|
---|
2601 | {
|
---|
2602 | uint32_t ret_val;
|
---|
2603 |
|
---|
2604 | DEBUGFUNC("e1000_write_phy_reg");
|
---|
2605 |
|
---|
2606 | if(hw->phy_type == e1000_phy_igp &&
|
---|
2607 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
---|
2608 | if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
---|
2609 | (uint16_t)reg_addr)))
|
---|
2610 | return ret_val;
|
---|
2611 | }
|
---|
2612 |
|
---|
2613 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
|
---|
2614 | phy_data);
|
---|
2615 |
|
---|
2616 | return ret_val;
|
---|
2617 | }
|
---|
2618 |
|
---|
2619 | static int
|
---|
2620 | e1000_write_phy_reg_ex(struct e1000_hw *hw,
|
---|
2621 | uint32_t reg_addr,
|
---|
2622 | uint16_t phy_data)
|
---|
2623 | {
|
---|
2624 | uint32_t i;
|
---|
2625 | uint32_t mdic = 0;
|
---|
2626 | const uint32_t phy_addr = 1;
|
---|
2627 |
|
---|
2628 | DEBUGFUNC("e1000_write_phy_reg_ex");
|
---|
2629 |
|
---|
2630 | if(reg_addr > MAX_PHY_REG_ADDRESS) {
|
---|
2631 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
|
---|
2632 | return -E1000_ERR_PARAM;
|
---|
2633 | }
|
---|
2634 |
|
---|
2635 | if(hw->mac_type > e1000_82543) {
|
---|
2636 | /* Set up Op-code, Phy Address, register address, and data intended
|
---|
2637 | * for the PHY register in the MDI Control register. The MAC will take
|
---|
2638 | * care of interfacing with the PHY to send the desired data.
|
---|
2639 | */
|
---|
2640 | mdic = (((uint32_t) phy_data) |
|
---|
2641 | (reg_addr << E1000_MDIC_REG_SHIFT) |
|
---|
2642 | (phy_addr << E1000_MDIC_PHY_SHIFT) |
|
---|
2643 | (E1000_MDIC_OP_WRITE));
|
---|
2644 |
|
---|
2645 | E1000_WRITE_REG(hw, MDIC, mdic);
|
---|
2646 |
|
---|
2647 | /* Poll the ready bit to see if the MDI read completed */
|
---|
2648 | for(i = 0; i < 640; i++) {
|
---|
2649 | udelay(5);
|
---|
2650 | mdic = E1000_READ_REG(hw, MDIC);
|
---|
2651 | if(mdic & E1000_MDIC_READY) break;
|
---|
2652 | }
|
---|
2653 | if(!(mdic & E1000_MDIC_READY)) {
|
---|
2654 | DEBUGOUT("MDI Write did not complete\n");
|
---|
2655 | return -E1000_ERR_PHY;
|
---|
2656 | }
|
---|
2657 | } else {
|
---|
2658 | /* We'll need to use the SW defined pins to shift the write command
|
---|
2659 | * out to the PHY. We first send a preamble to the PHY to signal the
|
---|
2660 | * beginning of the MII instruction. This is done by sending 32
|
---|
2661 | * consecutive "1" bits.
|
---|
2662 | */
|
---|
2663 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
---|
2664 |
|
---|
2665 | /* Now combine the remaining required fields that will indicate a
|
---|
2666 | * write operation. We use this method instead of calling the
|
---|
2667 | * e1000_shift_out_mdi_bits routine for each field in the command. The
|
---|
2668 | * format of a MII write instruction is as follows:
|
---|
2669 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
|
---|
2670 | */
|
---|
2671 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
|
---|
2672 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
|
---|
2673 | mdic <<= 16;
|
---|
2674 | mdic |= (uint32_t) phy_data;
|
---|
2675 |
|
---|
2676 | e1000_shift_out_mdi_bits(hw, mdic, 32);
|
---|
2677 | }
|
---|
2678 |
|
---|
2679 | return E1000_SUCCESS;
|
---|
2680 | }
|
---|
2681 |
|
---|
2682 | /******************************************************************************
|
---|
2683 | * Returns the PHY to the power-on reset state
|
---|
2684 | *
|
---|
2685 | * hw - Struct containing variables accessed by shared code
|
---|
2686 | ******************************************************************************/
|
---|
2687 | static void
|
---|
2688 | e1000_phy_hw_reset(struct e1000_hw *hw)
|
---|
2689 | {
|
---|
2690 | uint32_t ctrl, ctrl_ext;
|
---|
2691 |
|
---|
2692 | DEBUGFUNC("e1000_phy_hw_reset");
|
---|
2693 |
|
---|
2694 | DEBUGOUT("Resetting Phy...\n");
|
---|
2695 |
|
---|
2696 | if(hw->mac_type > e1000_82543) {
|
---|
2697 | /* Read the device control register and assert the E1000_CTRL_PHY_RST
|
---|
2698 | * bit. Then, take it out of reset.
|
---|
2699 | */
|
---|
2700 | ctrl = E1000_READ_REG(hw, CTRL);
|
---|
2701 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
|
---|
2702 | E1000_WRITE_FLUSH(hw);
|
---|
2703 | mdelay(10);
|
---|
2704 | E1000_WRITE_REG(hw, CTRL, ctrl);
|
---|
2705 | E1000_WRITE_FLUSH(hw);
|
---|
2706 | } else {
|
---|
2707 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
|
---|
2708 | * bit to put the PHY into reset. Then, take it out of reset.
|
---|
2709 | */
|
---|
2710 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
---|
2711 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
|
---|
2712 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
|
---|
2713 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
---|
2714 | E1000_WRITE_FLUSH(hw);
|
---|
2715 | mdelay(10);
|
---|
2716 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
|
---|
2717 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
---|
2718 | E1000_WRITE_FLUSH(hw);
|
---|
2719 | }
|
---|
2720 | udelay(150);
|
---|
2721 | }
|
---|
2722 |
|
---|
2723 | /******************************************************************************
|
---|
2724 | * Resets the PHY
|
---|
2725 | *
|
---|
2726 | * hw - Struct containing variables accessed by shared code
|
---|
2727 | *
|
---|
2728 | * Sets bit 15 of the MII Control regiser
|
---|
2729 | ******************************************************************************/
|
---|
2730 | static int
|
---|
2731 | e1000_phy_reset(struct e1000_hw *hw)
|
---|
2732 | {
|
---|
2733 | int32_t ret_val;
|
---|
2734 | uint16_t phy_data;
|
---|
2735 |
|
---|
2736 | DEBUGFUNC("e1000_phy_reset");
|
---|
2737 |
|
---|
2738 | if(hw->mac_type != e1000_82541_rev_2) {
|
---|
2739 | if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data)))
|
---|
2740 | return ret_val;
|
---|
2741 |
|
---|
2742 | phy_data |= MII_CR_RESET;
|
---|
2743 | if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data)))
|
---|
2744 | return ret_val;
|
---|
2745 |
|
---|
2746 | udelay(1);
|
---|
2747 | } else e1000_phy_hw_reset(hw);
|
---|
2748 |
|
---|
2749 | if(hw->phy_type == e1000_phy_igp)
|
---|
2750 | e1000_phy_init_script(hw);
|
---|
2751 |
|
---|
2752 | return E1000_SUCCESS;
|
---|
2753 | }
|
---|
2754 |
|
---|
2755 | /******************************************************************************
|
---|
2756 | * Probes the expected PHY address for known PHY IDs
|
---|
2757 | *
|
---|
2758 | * hw - Struct containing variables accessed by shared code
|
---|
2759 | ******************************************************************************/
|
---|
2760 | static int
|
---|
2761 | e1000_detect_gig_phy(struct e1000_hw *hw)
|
---|
2762 | {
|
---|
2763 | int32_t phy_init_status, ret_val;
|
---|
2764 | uint16_t phy_id_high, phy_id_low;
|
---|
2765 | boolean_t match = FALSE;
|
---|
2766 |
|
---|
2767 | DEBUGFUNC("e1000_detect_gig_phy");
|
---|
2768 |
|
---|
2769 | /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
|
---|
2770 | * around that forces PHY page 0 to be set or the reads fail. The rest of
|
---|
2771 | * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
|
---|
2772 | * So for ESB-2 we need to have this set so our reads won't fail. If the
|
---|
2773 | * attached PHY is not a e1000_phy_gg82563, the routines below will figure
|
---|
2774 | * this out as well. */
|
---|
2775 | if (hw->mac_type == e1000_80003es2lan)
|
---|
2776 | hw->phy_type = e1000_phy_gg82563;
|
---|
2777 |
|
---|
2778 | /* Read the PHY ID Registers to identify which PHY is onboard. */
|
---|
2779 | if((ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high)))
|
---|
2780 | return ret_val;
|
---|
2781 |
|
---|
2782 | hw->phy_id = (uint32_t) (phy_id_high << 16);
|
---|
2783 | udelay(20);
|
---|
2784 | if((ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low)))
|
---|
2785 | return ret_val;
|
---|
2786 |
|
---|
2787 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
|
---|
2788 | #ifdef LINUX_DRIVER
|
---|
2789 | hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
|
---|
2790 | #endif
|
---|
2791 |
|
---|
2792 | switch(hw->mac_type) {
|
---|
2793 | case e1000_82543:
|
---|
2794 | if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
|
---|
2795 | break;
|
---|
2796 | case e1000_82544:
|
---|
2797 | if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
|
---|
2798 | break;
|
---|
2799 | case e1000_82540:
|
---|
2800 | case e1000_82545:
|
---|
2801 | case e1000_82545_rev_3:
|
---|
2802 | case e1000_82546:
|
---|
2803 | case e1000_82546_rev_3:
|
---|
2804 | if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
|
---|
2805 | break;
|
---|
2806 | case e1000_82541:
|
---|
2807 | case e1000_82541_rev_2:
|
---|
2808 | case e1000_82547:
|
---|
2809 | case e1000_82547_rev_2:
|
---|
2810 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
|
---|
2811 | break;
|
---|
2812 | case e1000_80003es2lan:
|
---|
2813 | if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
|
---|
2814 | break;
|
---|
2815 | default:
|
---|
2816 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
|
---|
2817 | return -E1000_ERR_CONFIG;
|
---|
2818 | }
|
---|
2819 | phy_init_status = e1000_set_phy_type(hw);
|
---|
2820 |
|
---|
2821 | if ((match) && (phy_init_status == E1000_SUCCESS)) {
|
---|
2822 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
|
---|
2823 | return E1000_SUCCESS;
|
---|
2824 | }
|
---|
2825 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
|
---|
2826 | return -E1000_ERR_PHY;
|
---|
2827 | }
|
---|
2828 |
|
---|
2829 | /******************************************************************************
|
---|
2830 | * Sets up eeprom variables in the hw struct. Must be called after mac_type
|
---|
2831 | * is configured.
|
---|
2832 | *
|
---|
2833 | * hw - Struct containing variables accessed by shared code
|
---|
2834 | *****************************************************************************/
|
---|
2835 | static void
|
---|
2836 | e1000_init_eeprom_params(struct e1000_hw *hw)
|
---|
2837 | {
|
---|
2838 | struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
---|
2839 | uint32_t eecd = E1000_READ_REG(hw, EECD);
|
---|
2840 | uint16_t eeprom_size;
|
---|
2841 |
|
---|
2842 | DEBUGFUNC("e1000_init_eeprom_params");
|
---|
2843 |
|
---|
2844 | switch (hw->mac_type) {
|
---|
2845 | case e1000_82542_rev2_0:
|
---|
2846 | case e1000_82542_rev2_1:
|
---|
2847 | case e1000_82543:
|
---|
2848 | case e1000_82544:
|
---|
2849 | eeprom->type = e1000_eeprom_microwire;
|
---|
2850 | eeprom->word_size = 64;
|
---|
2851 | eeprom->opcode_bits = 3;
|
---|
2852 | eeprom->address_bits = 6;
|
---|
2853 | eeprom->delay_usec = 50;
|
---|
2854 | break;
|
---|
2855 | case e1000_82540:
|
---|
2856 | case e1000_82545:
|
---|
2857 | case e1000_82545_rev_3:
|
---|
2858 | case e1000_82546:
|
---|
2859 | case e1000_82546_rev_3:
|
---|
2860 | eeprom->type = e1000_eeprom_microwire;
|
---|
2861 | eeprom->opcode_bits = 3;
|
---|
2862 | eeprom->delay_usec = 50;
|
---|
2863 | if(eecd & E1000_EECD_SIZE) {
|
---|
2864 | eeprom->word_size = 256;
|
---|
2865 | eeprom->address_bits = 8;
|
---|
2866 | } else {
|
---|
2867 | eeprom->word_size = 64;
|
---|
2868 | eeprom->address_bits = 6;
|
---|
2869 | }
|
---|
2870 | break;
|
---|
2871 | case e1000_82541:
|
---|
2872 | case e1000_82541_rev_2:
|
---|
2873 | case e1000_82547:
|
---|
2874 | case e1000_82547_rev_2:
|
---|
2875 | if (eecd & E1000_EECD_TYPE) {
|
---|
2876 | eeprom->type = e1000_eeprom_spi;
|
---|
2877 | if (eecd & E1000_EECD_ADDR_BITS) {
|
---|
2878 | eeprom->page_size = 32;
|
---|
2879 | eeprom->address_bits = 16;
|
---|
2880 | } else {
|
---|
2881 | eeprom->page_size = 8;
|
---|
2882 | eeprom->address_bits = 8;
|
---|
2883 | }
|
---|
2884 | } else {
|
---|
2885 | eeprom->type = e1000_eeprom_microwire;
|
---|
2886 | eeprom->opcode_bits = 3;
|
---|
2887 | eeprom->delay_usec = 50;
|
---|
2888 | if (eecd & E1000_EECD_ADDR_BITS) {
|
---|
2889 | eeprom->word_size = 256;
|
---|
2890 | eeprom->address_bits = 8;
|
---|
2891 | } else {
|
---|
2892 | eeprom->word_size = 64;
|
---|
2893 | eeprom->address_bits = 6;
|
---|
2894 | }
|
---|
2895 | }
|
---|
2896 | break;
|
---|
2897 | default:
|
---|
2898 | eeprom->type = e1000_eeprom_spi;
|
---|
2899 | if (eecd & E1000_EECD_ADDR_BITS) {
|
---|
2900 | eeprom->page_size = 32;
|
---|
2901 | eeprom->address_bits = 16;
|
---|
2902 | } else {
|
---|
2903 | eeprom->page_size = 8;
|
---|
2904 | eeprom->address_bits = 8;
|
---|
2905 | }
|
---|
2906 | break;
|
---|
2907 | }
|
---|
2908 |
|
---|
2909 | if (eeprom->type == e1000_eeprom_spi) {
|
---|
2910 | eeprom->opcode_bits = 8;
|
---|
2911 | eeprom->delay_usec = 1;
|
---|
2912 | eeprom->word_size = 64;
|
---|
2913 | if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) {
|
---|
2914 | eeprom_size &= EEPROM_SIZE_MASK;
|
---|
2915 |
|
---|
2916 | switch (eeprom_size) {
|
---|
2917 | case EEPROM_SIZE_16KB:
|
---|
2918 | eeprom->word_size = 8192;
|
---|
2919 | break;
|
---|
2920 | case EEPROM_SIZE_8KB:
|
---|
2921 | eeprom->word_size = 4096;
|
---|
2922 | break;
|
---|
2923 | case EEPROM_SIZE_4KB:
|
---|
2924 | eeprom->word_size = 2048;
|
---|
2925 | break;
|
---|
2926 | case EEPROM_SIZE_2KB:
|
---|
2927 | eeprom->word_size = 1024;
|
---|
2928 | break;
|
---|
2929 | case EEPROM_SIZE_1KB:
|
---|
2930 | eeprom->word_size = 512;
|
---|
2931 | break;
|
---|
2932 | case EEPROM_SIZE_512B:
|
---|
2933 | eeprom->word_size = 256;
|
---|
2934 | break;
|
---|
2935 | case EEPROM_SIZE_128B:
|
---|
2936 | default:
|
---|
2937 | break;
|
---|
2938 | }
|
---|
2939 | }
|
---|
2940 | }
|
---|
2941 | }
|
---|
2942 |
|
---|
2943 | /******************************************************************************
|
---|
2944 | * Raises the EEPROM's clock input.
|
---|
2945 | *
|
---|
2946 | * hw - Struct containing variables accessed by shared code
|
---|
2947 | * eecd - EECD's current value
|
---|
2948 | *****************************************************************************/
|
---|
2949 | static void
|
---|
2950 | e1000_raise_ee_clk(struct e1000_hw *hw,
|
---|
2951 | uint32_t *eecd)
|
---|
2952 | {
|
---|
2953 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then
|
---|
2954 | * wait <delay> microseconds.
|
---|
2955 | */
|
---|
2956 | *eecd = *eecd | E1000_EECD_SK;
|
---|
2957 | E1000_WRITE_REG(hw, EECD, *eecd);
|
---|
2958 | E1000_WRITE_FLUSH(hw);
|
---|
2959 | udelay(hw->eeprom.delay_usec);
|
---|
2960 | }
|
---|
2961 |
|
---|
2962 | /******************************************************************************
|
---|
2963 | * Lowers the EEPROM's clock input.
|
---|
2964 | *
|
---|
2965 | * hw - Struct containing variables accessed by shared code
|
---|
2966 | * eecd - EECD's current value
|
---|
2967 | *****************************************************************************/
|
---|
2968 | static void
|
---|
2969 | e1000_lower_ee_clk(struct e1000_hw *hw,
|
---|
2970 | uint32_t *eecd)
|
---|
2971 | {
|
---|
2972 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
|
---|
2973 | * wait 50 microseconds.
|
---|
2974 | */
|
---|
2975 | *eecd = *eecd & ~E1000_EECD_SK;
|
---|
2976 | E1000_WRITE_REG(hw, EECD, *eecd);
|
---|
2977 | E1000_WRITE_FLUSH(hw);
|
---|
2978 | udelay(hw->eeprom.delay_usec);
|
---|
2979 | }
|
---|
2980 |
|
---|
2981 | /******************************************************************************
|
---|
2982 | * Shift data bits out to the EEPROM.
|
---|
2983 | *
|
---|
2984 | * hw - Struct containing variables accessed by shared code
|
---|
2985 | * data - data to send to the EEPROM
|
---|
2986 | * count - number of bits to shift out
|
---|
2987 | *****************************************************************************/
|
---|
2988 | static void
|
---|
2989 | e1000_shift_out_ee_bits(struct e1000_hw *hw,
|
---|
2990 | uint16_t data,
|
---|
2991 | uint16_t count)
|
---|
2992 | {
|
---|
2993 | struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
---|
2994 | uint32_t eecd;
|
---|
2995 | uint32_t mask;
|
---|
2996 |
|
---|
2997 | /* We need to shift "count" bits out to the EEPROM. So, value in the
|
---|
2998 | * "data" parameter will be shifted out to the EEPROM one bit at a time.
|
---|
2999 | * In order to do this, "data" must be broken down into bits.
|
---|
3000 | */
|
---|
3001 | mask = 0x01 << (count - 1);
|
---|
3002 | eecd = E1000_READ_REG(hw, EECD);
|
---|
3003 | if (eeprom->type == e1000_eeprom_microwire) {
|
---|
3004 | eecd &= ~E1000_EECD_DO;
|
---|
3005 | } else if (eeprom->type == e1000_eeprom_spi) {
|
---|
3006 | eecd |= E1000_EECD_DO;
|
---|
3007 | }
|
---|
3008 | do {
|
---|
3009 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
|
---|
3010 | * and then raising and then lowering the clock (the SK bit controls
|
---|
3011 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
|
---|
3012 | * by setting "DI" to "0" and then raising and then lowering the clock.
|
---|
3013 | */
|
---|
3014 | eecd &= ~E1000_EECD_DI;
|
---|
3015 |
|
---|
3016 | if(data & mask)
|
---|
3017 | eecd |= E1000_EECD_DI;
|
---|
3018 |
|
---|
3019 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3020 | E1000_WRITE_FLUSH(hw);
|
---|
3021 |
|
---|
3022 | udelay(eeprom->delay_usec);
|
---|
3023 |
|
---|
3024 | e1000_raise_ee_clk(hw, &eecd);
|
---|
3025 | e1000_lower_ee_clk(hw, &eecd);
|
---|
3026 |
|
---|
3027 | mask = mask >> 1;
|
---|
3028 |
|
---|
3029 | } while(mask);
|
---|
3030 |
|
---|
3031 | /* We leave the "DI" bit set to "0" when we leave this routine. */
|
---|
3032 | eecd &= ~E1000_EECD_DI;
|
---|
3033 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3034 | }
|
---|
3035 |
|
---|
3036 | /******************************************************************************
|
---|
3037 | * Shift data bits in from the EEPROM
|
---|
3038 | *
|
---|
3039 | * hw - Struct containing variables accessed by shared code
|
---|
3040 | *****************************************************************************/
|
---|
3041 | static uint16_t
|
---|
3042 | e1000_shift_in_ee_bits(struct e1000_hw *hw,
|
---|
3043 | uint16_t count)
|
---|
3044 | {
|
---|
3045 | uint32_t eecd;
|
---|
3046 | uint32_t i;
|
---|
3047 | uint16_t data;
|
---|
3048 |
|
---|
3049 | /* In order to read a register from the EEPROM, we need to shift 'count'
|
---|
3050 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock
|
---|
3051 | * input to the EEPROM (setting the SK bit), and then reading the value of
|
---|
3052 | * the "DO" bit. During this "shifting in" process the "DI" bit should
|
---|
3053 | * always be clear.
|
---|
3054 | */
|
---|
3055 |
|
---|
3056 | eecd = E1000_READ_REG(hw, EECD);
|
---|
3057 |
|
---|
3058 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
|
---|
3059 | data = 0;
|
---|
3060 |
|
---|
3061 | for(i = 0; i < count; i++) {
|
---|
3062 | data = data << 1;
|
---|
3063 | e1000_raise_ee_clk(hw, &eecd);
|
---|
3064 |
|
---|
3065 | eecd = E1000_READ_REG(hw, EECD);
|
---|
3066 |
|
---|
3067 | eecd &= ~(E1000_EECD_DI);
|
---|
3068 | if(eecd & E1000_EECD_DO)
|
---|
3069 | data |= 1;
|
---|
3070 |
|
---|
3071 | e1000_lower_ee_clk(hw, &eecd);
|
---|
3072 | }
|
---|
3073 |
|
---|
3074 | return data;
|
---|
3075 | }
|
---|
3076 |
|
---|
3077 | /******************************************************************************
|
---|
3078 | * Prepares EEPROM for access
|
---|
3079 | *
|
---|
3080 | * hw - Struct containing variables accessed by shared code
|
---|
3081 | *
|
---|
3082 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
|
---|
3083 | * function should be called before issuing a command to the EEPROM.
|
---|
3084 | *****************************************************************************/
|
---|
3085 | static int32_t
|
---|
3086 | e1000_acquire_eeprom(struct e1000_hw *hw)
|
---|
3087 | {
|
---|
3088 | struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
---|
3089 | uint32_t eecd, i=0;
|
---|
3090 |
|
---|
3091 | eecd = E1000_READ_REG(hw, EECD);
|
---|
3092 |
|
---|
3093 | /* Request EEPROM Access */
|
---|
3094 | if(hw->mac_type > e1000_82544) {
|
---|
3095 | eecd |= E1000_EECD_REQ;
|
---|
3096 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3097 | eecd = E1000_READ_REG(hw, EECD);
|
---|
3098 | while((!(eecd & E1000_EECD_GNT)) &&
|
---|
3099 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
|
---|
3100 | i++;
|
---|
3101 | udelay(5);
|
---|
3102 | eecd = E1000_READ_REG(hw, EECD);
|
---|
3103 | }
|
---|
3104 | if(!(eecd & E1000_EECD_GNT)) {
|
---|
3105 | eecd &= ~E1000_EECD_REQ;
|
---|
3106 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3107 | DEBUGOUT("Could not acquire EEPROM grant\n");
|
---|
3108 | return -E1000_ERR_EEPROM;
|
---|
3109 | }
|
---|
3110 | }
|
---|
3111 |
|
---|
3112 | /* Setup EEPROM for Read/Write */
|
---|
3113 |
|
---|
3114 | if (eeprom->type == e1000_eeprom_microwire) {
|
---|
3115 | /* Clear SK and DI */
|
---|
3116 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
|
---|
3117 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3118 |
|
---|
3119 | /* Set CS */
|
---|
3120 | eecd |= E1000_EECD_CS;
|
---|
3121 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3122 | } else if (eeprom->type == e1000_eeprom_spi) {
|
---|
3123 | /* Clear SK and CS */
|
---|
3124 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
---|
3125 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3126 | udelay(1);
|
---|
3127 | }
|
---|
3128 |
|
---|
3129 | return E1000_SUCCESS;
|
---|
3130 | }
|
---|
3131 |
|
---|
3132 | /******************************************************************************
|
---|
3133 | * Returns EEPROM to a "standby" state
|
---|
3134 | *
|
---|
3135 | * hw - Struct containing variables accessed by shared code
|
---|
3136 | *****************************************************************************/
|
---|
3137 | static void
|
---|
3138 | e1000_standby_eeprom(struct e1000_hw *hw)
|
---|
3139 | {
|
---|
3140 | struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
---|
3141 | uint32_t eecd;
|
---|
3142 |
|
---|
3143 | eecd = E1000_READ_REG(hw, EECD);
|
---|
3144 |
|
---|
3145 | if(eeprom->type == e1000_eeprom_microwire) {
|
---|
3146 |
|
---|
3147 | /* Deselect EEPROM */
|
---|
3148 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
---|
3149 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3150 | E1000_WRITE_FLUSH(hw);
|
---|
3151 | udelay(eeprom->delay_usec);
|
---|
3152 |
|
---|
3153 | /* Clock high */
|
---|
3154 | eecd |= E1000_EECD_SK;
|
---|
3155 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3156 | E1000_WRITE_FLUSH(hw);
|
---|
3157 | udelay(eeprom->delay_usec);
|
---|
3158 |
|
---|
3159 | /* Select EEPROM */
|
---|
3160 | eecd |= E1000_EECD_CS;
|
---|
3161 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3162 | E1000_WRITE_FLUSH(hw);
|
---|
3163 | udelay(eeprom->delay_usec);
|
---|
3164 |
|
---|
3165 | /* Clock low */
|
---|
3166 | eecd &= ~E1000_EECD_SK;
|
---|
3167 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3168 | E1000_WRITE_FLUSH(hw);
|
---|
3169 | udelay(eeprom->delay_usec);
|
---|
3170 | } else if(eeprom->type == e1000_eeprom_spi) {
|
---|
3171 | /* Toggle CS to flush commands */
|
---|
3172 | eecd |= E1000_EECD_CS;
|
---|
3173 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3174 | E1000_WRITE_FLUSH(hw);
|
---|
3175 | udelay(eeprom->delay_usec);
|
---|
3176 | eecd &= ~E1000_EECD_CS;
|
---|
3177 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3178 | E1000_WRITE_FLUSH(hw);
|
---|
3179 | udelay(eeprom->delay_usec);
|
---|
3180 | }
|
---|
3181 | }
|
---|
3182 |
|
---|
3183 | /******************************************************************************
|
---|
3184 | * Terminates a command by inverting the EEPROM's chip select pin
|
---|
3185 | *
|
---|
3186 | * hw - Struct containing variables accessed by shared code
|
---|
3187 | *****************************************************************************/
|
---|
3188 | static void
|
---|
3189 | e1000_release_eeprom(struct e1000_hw *hw)
|
---|
3190 | {
|
---|
3191 | uint32_t eecd;
|
---|
3192 |
|
---|
3193 | eecd = E1000_READ_REG(hw, EECD);
|
---|
3194 |
|
---|
3195 | if (hw->eeprom.type == e1000_eeprom_spi) {
|
---|
3196 | eecd |= E1000_EECD_CS; /* Pull CS high */
|
---|
3197 | eecd &= ~E1000_EECD_SK; /* Lower SCK */
|
---|
3198 |
|
---|
3199 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3200 |
|
---|
3201 | udelay(hw->eeprom.delay_usec);
|
---|
3202 | } else if(hw->eeprom.type == e1000_eeprom_microwire) {
|
---|
3203 | /* cleanup eeprom */
|
---|
3204 |
|
---|
3205 | /* CS on Microwire is active-high */
|
---|
3206 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
|
---|
3207 |
|
---|
3208 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3209 |
|
---|
3210 | /* Rising edge of clock */
|
---|
3211 | eecd |= E1000_EECD_SK;
|
---|
3212 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3213 | E1000_WRITE_FLUSH(hw);
|
---|
3214 | udelay(hw->eeprom.delay_usec);
|
---|
3215 |
|
---|
3216 | /* Falling edge of clock */
|
---|
3217 | eecd &= ~E1000_EECD_SK;
|
---|
3218 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3219 | E1000_WRITE_FLUSH(hw);
|
---|
3220 | udelay(hw->eeprom.delay_usec);
|
---|
3221 | }
|
---|
3222 |
|
---|
3223 | /* Stop requesting EEPROM access */
|
---|
3224 | if(hw->mac_type > e1000_82544) {
|
---|
3225 | eecd &= ~E1000_EECD_REQ;
|
---|
3226 | E1000_WRITE_REG(hw, EECD, eecd);
|
---|
3227 | }
|
---|
3228 | }
|
---|
3229 |
|
---|
3230 | /******************************************************************************
|
---|
3231 | * Reads a 16 bit word from the EEPROM.
|
---|
3232 | *
|
---|
3233 | * hw - Struct containing variables accessed by shared code
|
---|
3234 | *****************************************************************************/
|
---|
3235 | static int32_t
|
---|
3236 | e1000_spi_eeprom_ready(struct e1000_hw *hw)
|
---|
3237 | {
|
---|
3238 | uint16_t retry_count = 0;
|
---|
3239 | uint8_t spi_stat_reg;
|
---|
3240 |
|
---|
3241 | /* Read "Status Register" repeatedly until the LSB is cleared. The
|
---|
3242 | * EEPROM will signal that the command has been completed by clearing
|
---|
3243 | * bit 0 of the internal status register. If it's not cleared within
|
---|
3244 | * 5 milliseconds, then error out.
|
---|
3245 | */
|
---|
3246 | retry_count = 0;
|
---|
3247 | do {
|
---|
3248 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
|
---|
3249 | hw->eeprom.opcode_bits);
|
---|
3250 | spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
|
---|
3251 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
|
---|
3252 | break;
|
---|
3253 |
|
---|
3254 | udelay(5);
|
---|
3255 | retry_count += 5;
|
---|
3256 |
|
---|
3257 | } while(retry_count < EEPROM_MAX_RETRY_SPI);
|
---|
3258 |
|
---|
3259 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
|
---|
3260 | * only 0-5mSec on 5V devices)
|
---|
3261 | */
|
---|
3262 | if(retry_count >= EEPROM_MAX_RETRY_SPI) {
|
---|
3263 | DEBUGOUT("SPI EEPROM Status error\n");
|
---|
3264 | return -E1000_ERR_EEPROM;
|
---|
3265 | }
|
---|
3266 |
|
---|
3267 | return E1000_SUCCESS;
|
---|
3268 | }
|
---|
3269 |
|
---|
3270 | /******************************************************************************
|
---|
3271 | * Reads a 16 bit word from the EEPROM.
|
---|
3272 | *
|
---|
3273 | * hw - Struct containing variables accessed by shared code
|
---|
3274 | * offset - offset of word in the EEPROM to read
|
---|
3275 | * data - word read from the EEPROM
|
---|
3276 | * words - number of words to read
|
---|
3277 | *****************************************************************************/
|
---|
3278 | static int
|
---|
3279 | e1000_read_eeprom(struct e1000_hw *hw,
|
---|
3280 | uint16_t offset,
|
---|
3281 | uint16_t words,
|
---|
3282 | uint16_t *data)
|
---|
3283 | {
|
---|
3284 | struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
---|
3285 | uint32_t i = 0;
|
---|
3286 |
|
---|
3287 | DEBUGFUNC("e1000_read_eeprom");
|
---|
3288 |
|
---|
3289 | /* A check for invalid values: offset too large, too many words, and not
|
---|
3290 | * enough words.
|
---|
3291 | */
|
---|
3292 | if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) ||
|
---|
3293 | (words == 0)) {
|
---|
3294 | DEBUGOUT("\"words\" parameter out of bounds\n");
|
---|
3295 | return -E1000_ERR_EEPROM;
|
---|
3296 | }
|
---|
3297 |
|
---|
3298 | /* Prepare the EEPROM for reading */
|
---|
3299 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
|
---|
3300 | return -E1000_ERR_EEPROM;
|
---|
3301 |
|
---|
3302 | if(eeprom->type == e1000_eeprom_spi) {
|
---|
3303 | uint16_t word_in;
|
---|
3304 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
|
---|
3305 |
|
---|
3306 | if(e1000_spi_eeprom_ready(hw)) {
|
---|
3307 | e1000_release_eeprom(hw);
|
---|
3308 | return -E1000_ERR_EEPROM;
|
---|
3309 | }
|
---|
3310 |
|
---|
3311 | e1000_standby_eeprom(hw);
|
---|
3312 |
|
---|
3313 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */
|
---|
3314 | if((eeprom->address_bits == 8) && (offset >= 128))
|
---|
3315 | read_opcode |= EEPROM_A8_OPCODE_SPI;
|
---|
3316 |
|
---|
3317 | /* Send the READ command (opcode + addr) */
|
---|
3318 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
|
---|
3319 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
|
---|
3320 |
|
---|
3321 | /* Read the data. The address of the eeprom internally increments with
|
---|
3322 | * each byte (spi) being read, saving on the overhead of eeprom setup
|
---|
3323 | * and tear-down. The address counter will roll over if reading beyond
|
---|
3324 | * the size of the eeprom, thus allowing the entire memory to be read
|
---|
3325 | * starting from any offset. */
|
---|
3326 | for (i = 0; i < words; i++) {
|
---|
3327 | word_in = e1000_shift_in_ee_bits(hw, 16);
|
---|
3328 | data[i] = (word_in >> 8) | (word_in << 8);
|
---|
3329 | }
|
---|
3330 | } else if(eeprom->type == e1000_eeprom_microwire) {
|
---|
3331 | for (i = 0; i < words; i++) {
|
---|
3332 | /* Send the READ command (opcode + addr) */
|
---|
3333 | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
|
---|
3334 | eeprom->opcode_bits);
|
---|
3335 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
|
---|
3336 | eeprom->address_bits);
|
---|
3337 |
|
---|
3338 | /* Read the data. For microwire, each word requires the overhead
|
---|
3339 | * of eeprom setup and tear-down. */
|
---|
3340 | data[i] = e1000_shift_in_ee_bits(hw, 16);
|
---|
3341 | e1000_standby_eeprom(hw);
|
---|
3342 | }
|
---|
3343 | }
|
---|
3344 |
|
---|
3345 | /* End this read operation */
|
---|
3346 | e1000_release_eeprom(hw);
|
---|
3347 |
|
---|
3348 | return E1000_SUCCESS;
|
---|
3349 | }
|
---|
3350 |
|
---|
3351 | /******************************************************************************
|
---|
3352 | * Verifies that the EEPROM has a valid checksum
|
---|
3353 | *
|
---|
3354 | * hw - Struct containing variables accessed by shared code
|
---|
3355 | *
|
---|
3356 | * Reads the first 64 16 bit words of the EEPROM and sums the values read.
|
---|
3357 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
|
---|
3358 | * valid.
|
---|
3359 | *****************************************************************************/
|
---|
3360 | static int
|
---|
3361 | e1000_validate_eeprom_checksum(struct e1000_hw *hw)
|
---|
3362 | {
|
---|
3363 | uint16_t checksum = 0;
|
---|
3364 | uint16_t i, eeprom_data;
|
---|
3365 |
|
---|
3366 | DEBUGFUNC("e1000_validate_eeprom_checksum");
|
---|
3367 |
|
---|
3368 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
|
---|
3369 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
|
---|
3370 | DEBUGOUT("EEPROM Read Error\n");
|
---|
3371 | return -E1000_ERR_EEPROM;
|
---|
3372 | }
|
---|
3373 | checksum += eeprom_data;
|
---|
3374 | }
|
---|
3375 |
|
---|
3376 | if(checksum == (uint16_t) EEPROM_SUM)
|
---|
3377 | return E1000_SUCCESS;
|
---|
3378 | else {
|
---|
3379 | DEBUGOUT("EEPROM Checksum Invalid\n");
|
---|
3380 | return -E1000_ERR_EEPROM;
|
---|
3381 | }
|
---|
3382 | }
|
---|
3383 |
|
---|
3384 | /******************************************************************************
|
---|
3385 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
|
---|
3386 | * second function of dual function devices
|
---|
3387 | *
|
---|
3388 | * hw - Struct containing variables accessed by shared code
|
---|
3389 | *****************************************************************************/
|
---|
3390 | static int
|
---|
3391 | e1000_read_mac_addr(struct e1000_hw *hw)
|
---|
3392 | {
|
---|
3393 | uint16_t offset;
|
---|
3394 | uint16_t eeprom_data;
|
---|
3395 | int i;
|
---|
3396 |
|
---|
3397 | DEBUGFUNC("e1000_read_mac_addr");
|
---|
3398 |
|
---|
3399 | for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
|
---|
3400 | offset = i >> 1;
|
---|
3401 | if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
|
---|
3402 | DEBUGOUT("EEPROM Read Error\n");
|
---|
3403 | return -E1000_ERR_EEPROM;
|
---|
3404 | }
|
---|
3405 | hw->mac_addr[i] = eeprom_data & 0xff;
|
---|
3406 | hw->mac_addr[i+1] = (eeprom_data >> 8) & 0xff;
|
---|
3407 | }
|
---|
3408 | if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) &&
|
---|
3409 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
|
---|
3410 | /* Invert the last bit if this is the second device */
|
---|
3411 | hw->mac_addr[5] ^= 1;
|
---|
3412 | return E1000_SUCCESS;
|
---|
3413 | }
|
---|
3414 |
|
---|
3415 | /******************************************************************************
|
---|
3416 | * Initializes receive address filters.
|
---|
3417 | *
|
---|
3418 | * hw - Struct containing variables accessed by shared code
|
---|
3419 | *
|
---|
3420 | * Places the MAC address in receive address register 0 and clears the rest
|
---|
3421 | * of the receive addresss registers. Clears the multicast table. Assumes
|
---|
3422 | * the receiver is in reset when the routine is called.
|
---|
3423 | *****************************************************************************/
|
---|
3424 | static void
|
---|
3425 | e1000_init_rx_addrs(struct e1000_hw *hw)
|
---|
3426 | {
|
---|
3427 | uint32_t i;
|
---|
3428 | uint32_t addr_low;
|
---|
3429 | uint32_t addr_high;
|
---|
3430 |
|
---|
3431 | DEBUGFUNC("e1000_init_rx_addrs");
|
---|
3432 |
|
---|
3433 | /* Setup the receive address. */
|
---|
3434 | DEBUGOUT("Programming MAC Address into RAR[0]\n");
|
---|
3435 | addr_low = (hw->mac_addr[0] |
|
---|
3436 | (hw->mac_addr[1] << 8) |
|
---|
3437 | (hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24));
|
---|
3438 |
|
---|
3439 | addr_high = (hw->mac_addr[4] |
|
---|
3440 | (hw->mac_addr[5] << 8) | E1000_RAH_AV);
|
---|
3441 |
|
---|
3442 | E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
|
---|
3443 | E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
|
---|
3444 |
|
---|
3445 | /* Zero out the other 15 receive addresses. */
|
---|
3446 | DEBUGOUT("Clearing RAR[1-15]\n");
|
---|
3447 | for(i = 1; i < E1000_RAR_ENTRIES; i++) {
|
---|
3448 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
|
---|
3449 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
|
---|
3450 | }
|
---|
3451 | }
|
---|
3452 |
|
---|
3453 | /******************************************************************************
|
---|
3454 | * Clears the VLAN filer table
|
---|
3455 | *
|
---|
3456 | * hw - Struct containing variables accessed by shared code
|
---|
3457 | *****************************************************************************/
|
---|
3458 | static void
|
---|
3459 | e1000_clear_vfta(struct e1000_hw *hw)
|
---|
3460 | {
|
---|
3461 | uint32_t offset;
|
---|
3462 |
|
---|
3463 | for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
|
---|
3464 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
|
---|
3465 | }
|
---|
3466 |
|
---|
3467 | /******************************************************************************
|
---|
3468 | * Writes a value to one of the devices registers using port I/O (as opposed to
|
---|
3469 | * memory mapped I/O). Only 82544 and newer devices support port I/O. *
|
---|
3470 | * hw - Struct containing variables accessed by shared code
|
---|
3471 | * offset - offset to write to * value - value to write
|
---|
3472 | *****************************************************************************/
|
---|
3473 | static void
|
---|
3474 | e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value)
|
---|
3475 | {
|
---|
3476 | uint32_t io_addr = hw->io_base;
|
---|
3477 | uint32_t io_data = hw->io_base + 4;
|
---|
3478 | e1000_io_write(hw, io_addr, offset);
|
---|
3479 | e1000_io_write(hw, io_data, value);
|
---|
3480 | }
|
---|
3481 |
|
---|
3482 |
|
---|
3483 | /******************************************************************************
|
---|
3484 | * Functions from e1000_main.c of the linux driver
|
---|
3485 | ******************************************************************************/
|
---|
3486 |
|
---|
3487 | /**
|
---|
3488 | * e1000_reset - Reset the adapter
|
---|
3489 | */
|
---|
3490 |
|
---|
3491 | static int
|
---|
3492 | e1000_reset(struct e1000_hw *hw)
|
---|
3493 | {
|
---|
3494 | uint32_t pba;
|
---|
3495 | /* Repartition Pba for greater than 9k mtu
|
---|
3496 | * To take effect CTRL.RST is required.
|
---|
3497 | */
|
---|
3498 |
|
---|
3499 | if(hw->mac_type < e1000_82547) {
|
---|
3500 | pba = E1000_PBA_48K;
|
---|
3501 | } else if (hw->mac_type == e1000_80003es2lan) {
|
---|
3502 | pba = E1000_PBA_38K;
|
---|
3503 | } else {
|
---|
3504 | pba = E1000_PBA_30K;
|
---|
3505 | }
|
---|
3506 | E1000_WRITE_REG(hw, PBA, pba);
|
---|
3507 |
|
---|
3508 | /* flow control settings */
|
---|
3509 | #if 0
|
---|
3510 | hw->fc_high_water = FC_DEFAULT_HI_THRESH;
|
---|
3511 | hw->fc_low_water = FC_DEFAULT_LO_THRESH;
|
---|
3512 | hw->fc_pause_time = FC_DEFAULT_TX_TIMER;
|
---|
3513 | hw->fc_send_xon = 1;
|
---|
3514 | hw->fc = hw->original_fc;
|
---|
3515 | #endif
|
---|
3516 |
|
---|
3517 | e1000_reset_hw(hw);
|
---|
3518 | if(hw->mac_type >= e1000_82544)
|
---|
3519 | E1000_WRITE_REG(hw, WUC, 0);
|
---|
3520 | return e1000_init_hw(hw);
|
---|
3521 | }
|
---|
3522 |
|
---|
3523 | /**
|
---|
3524 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
|
---|
3525 | * @adapter: board private structure to initialize
|
---|
3526 | *
|
---|
3527 | * e1000_sw_init initializes the Adapter private data structure.
|
---|
3528 | * Fields are initialized based on PCI device information and
|
---|
3529 | * OS network device settings (MTU size).
|
---|
3530 | **/
|
---|
3531 |
|
---|
3532 | static int
|
---|
3533 | e1000_sw_init(struct pci_device *pdev, struct e1000_hw *hw)
|
---|
3534 | {
|
---|
3535 | int result;
|
---|
3536 |
|
---|
3537 | /* PCI config space info */
|
---|
3538 | pci_read_config_word(pdev, PCI_VENDOR_ID, &hw->vendor_id);
|
---|
3539 | pci_read_config_word(pdev, PCI_DEVICE_ID, &hw->device_id);
|
---|
3540 | pci_read_config_byte(pdev, PCI_REVISION, &hw->revision_id);
|
---|
3541 | #if 0
|
---|
3542 | pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID,
|
---|
3543 | &hw->subsystem_vendor_id);
|
---|
3544 | pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
|
---|
3545 | #endif
|
---|
3546 |
|
---|
3547 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
|
---|
3548 |
|
---|
3549 | /* identify the MAC */
|
---|
3550 |
|
---|
3551 | result = e1000_set_mac_type(hw);
|
---|
3552 | if (result) {
|
---|
3553 | E1000_ERR("Unknown MAC Type\n");
|
---|
3554 | return result;
|
---|
3555 | }
|
---|
3556 |
|
---|
3557 | /* initialize eeprom parameters */
|
---|
3558 |
|
---|
3559 | e1000_init_eeprom_params(hw);
|
---|
3560 |
|
---|
3561 | #if 0
|
---|
3562 | if((hw->mac_type == e1000_82541) ||
|
---|
3563 | (hw->mac_type == e1000_82547) ||
|
---|
3564 | (hw->mac_type == e1000_82541_rev_2) ||
|
---|
3565 | (hw->mac_type == e1000_82547_rev_2))
|
---|
3566 | hw->phy_init_script = 1;
|
---|
3567 | #endif
|
---|
3568 |
|
---|
3569 | e1000_set_media_type(hw);
|
---|
3570 |
|
---|
3571 | #if 0
|
---|
3572 | if(hw->mac_type < e1000_82543)
|
---|
3573 | hw->report_tx_early = 0;
|
---|
3574 | else
|
---|
3575 | hw->report_tx_early = 1;
|
---|
3576 |
|
---|
3577 | hw->wait_autoneg_complete = FALSE;
|
---|
3578 | #endif
|
---|
3579 | hw->tbi_compatibility_en = TRUE;
|
---|
3580 | #if 0
|
---|
3581 | hw->adaptive_ifs = TRUE;
|
---|
3582 |
|
---|
3583 | /* Copper options */
|
---|
3584 |
|
---|
3585 | if(hw->media_type == e1000_media_type_copper) {
|
---|
3586 | hw->mdix = AUTO_ALL_MODES;
|
---|
3587 | hw->disable_polarity_correction = FALSE;
|
---|
3588 | hw->master_slave = E1000_MASTER_SLAVE;
|
---|
3589 | }
|
---|
3590 | #endif
|
---|
3591 | return E1000_SUCCESS;
|
---|
3592 | }
|
---|
3593 |
|
---|
3594 | #if 0
|
---|
3595 | static uint32_t
|
---|
3596 | e1000_io_read(struct e1000_hw *hw __unused, uint32_t port)
|
---|
3597 | {
|
---|
3598 | return inl(port);
|
---|
3599 | }
|
---|
3600 | #endif
|
---|
3601 |
|
---|
3602 | static void
|
---|
3603 | e1000_io_write(struct e1000_hw *hw __unused, uint32_t port, uint32_t value)
|
---|
3604 | {
|
---|
3605 | outl(value, port);
|
---|
3606 | }
|
---|
3607 |
|
---|
3608 |
|
---|
3609 | /******************************************************************************
|
---|
3610 | * Functions not present in the linux driver
|
---|
3611 | ******************************************************************************/
|
---|
3612 |
|
---|
3613 | static void fill_rx (void)
|
---|
3614 | {
|
---|
3615 | struct e1000_rx_desc *rd;
|
---|
3616 | rd = rx_base + rx_tail;
|
---|
3617 | memset (rd, 0, 16);
|
---|
3618 | rd->buffer_addr = virt_to_bus(&packets[MAX_PACKET*(rx_tail%RX_BUFS)]);
|
---|
3619 | rx_tail = (rx_tail + 1) % 8;
|
---|
3620 | E1000_WRITE_REG (&hw, RDT, rx_tail);
|
---|
3621 | }
|
---|
3622 |
|
---|
3623 | static void init_descriptor (void)
|
---|
3624 | {
|
---|
3625 | unsigned long ptr;
|
---|
3626 | unsigned long tctl;
|
---|
3627 | int i;
|
---|
3628 |
|
---|
3629 | ptr = virt_to_phys(tx_pool);
|
---|
3630 | if (ptr & 0xf)
|
---|
3631 | ptr = (ptr + 0x10) & (~0xf);
|
---|
3632 |
|
---|
3633 | tx_base = phys_to_virt(ptr);
|
---|
3634 |
|
---|
3635 | E1000_WRITE_REG (&hw, TDBAL, virt_to_bus(tx_base));
|
---|
3636 | E1000_WRITE_REG (&hw, TDBAH, 0);
|
---|
3637 | E1000_WRITE_REG (&hw, TDLEN, 128);
|
---|
3638 |
|
---|
3639 | /* Setup the HW Tx Head and Tail descriptor pointers */
|
---|
3640 |
|
---|
3641 | E1000_WRITE_REG (&hw, TDH, 0);
|
---|
3642 | E1000_WRITE_REG (&hw, TDT, 0);
|
---|
3643 | tx_tail = 0;
|
---|
3644 |
|
---|
3645 | /* Program the Transmit Control Register */
|
---|
3646 |
|
---|
3647 | #ifdef LINUX_DRIVER_TCTL
|
---|
3648 | tctl = E1000_READ_REG(&hw, TCTL);
|
---|
3649 |
|
---|
3650 | tctl &= ~E1000_TCTL_CT;
|
---|
3651 | tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
|
---|
3652 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
---|
3653 | #else
|
---|
3654 | tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
|
---|
3655 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) |
|
---|
3656 | (E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
|
---|
3657 | #endif
|
---|
3658 |
|
---|
3659 | E1000_WRITE_REG (&hw, TCTL, tctl);
|
---|
3660 |
|
---|
3661 | e1000_config_collision_dist(&hw);
|
---|
3662 |
|
---|
3663 |
|
---|
3664 | rx_tail = 0;
|
---|
3665 | /* disable receive */
|
---|
3666 | E1000_WRITE_REG (&hw, RCTL, 0);
|
---|
3667 | ptr = virt_to_phys(rx_pool);
|
---|
3668 | if (ptr & 0xf)
|
---|
3669 | ptr = (ptr + 0x10) & (~0xf);
|
---|
3670 | rx_base = phys_to_virt(ptr);
|
---|
3671 |
|
---|
3672 | /* Setup the Base and Length of the Rx Descriptor Ring */
|
---|
3673 |
|
---|
3674 | E1000_WRITE_REG (&hw, RDBAL, virt_to_bus(rx_base));
|
---|
3675 | E1000_WRITE_REG (&hw, RDBAH, 0);
|
---|
3676 |
|
---|
3677 | E1000_WRITE_REG (&hw, RDLEN, 128);
|
---|
3678 |
|
---|
3679 | /* Setup the HW Rx Head and Tail Descriptor Pointers */
|
---|
3680 | E1000_WRITE_REG (&hw, RDH, 0);
|
---|
3681 | E1000_WRITE_REG (&hw, RDT, 0);
|
---|
3682 |
|
---|
3683 | E1000_WRITE_REG (&hw, RCTL,
|
---|
3684 | E1000_RCTL_EN |
|
---|
3685 | E1000_RCTL_BAM |
|
---|
3686 | E1000_RCTL_SZ_2048 |
|
---|
3687 | E1000_RCTL_MPE);
|
---|
3688 | for (i = 0; i < RX_BUFS; i++)
|
---|
3689 | fill_rx();
|
---|
3690 | }
|
---|
3691 |
|
---|
3692 |
|
---|
3693 |
|
---|
3694 | /**************************************************************************
|
---|
3695 | POLL - Wait for a frame
|
---|
3696 | ***************************************************************************/
|
---|
3697 | static int
|
---|
3698 | e1000_poll (struct nic *nic, int retrieve)
|
---|
3699 | {
|
---|
3700 | /* return true if there's an ethernet packet ready to read */
|
---|
3701 | /* nic->packet should contain data on return */
|
---|
3702 | /* nic->packetlen should contain length of data */
|
---|
3703 | struct e1000_rx_desc *rd;
|
---|
3704 | char *packet = &packets[MAX_PACKET*(rx_last%RX_BUFS)];
|
---|
3705 | uint32_t icr;
|
---|
3706 |
|
---|
3707 | rd = rx_base + rx_last;
|
---|
3708 | if (!rd->status & E1000_RXD_STAT_DD)
|
---|
3709 | return 0;
|
---|
3710 |
|
---|
3711 | if ( ! retrieve ) return 1;
|
---|
3712 |
|
---|
3713 | // printf("recv: packet %! -> %! len=%d \n", packet+6, packet,rd->Length);
|
---|
3714 | memcpy (nic->packet, packet, rd->length);
|
---|
3715 | nic->packetlen = rd->length;
|
---|
3716 | rx_last = (rx_last + 1) %8;
|
---|
3717 | fill_rx ();
|
---|
3718 |
|
---|
3719 | /* Acknowledge interrupt. */
|
---|
3720 | icr = E1000_READ_REG(&hw, ICR);
|
---|
3721 |
|
---|
3722 | return 1;
|
---|
3723 | }
|
---|
3724 |
|
---|
3725 | /**************************************************************************
|
---|
3726 | TRANSMIT - Transmit a frame
|
---|
3727 | ***************************************************************************/
|
---|
3728 | static void
|
---|
3729 | e1000_transmit (struct nic *nic, const char *d, /* Destination */
|
---|
3730 | unsigned int type, /* Type */
|
---|
3731 | unsigned int size, /* size */
|
---|
3732 | const char *p) /* Packet */
|
---|
3733 | {
|
---|
3734 | /* send the packet to destination */
|
---|
3735 | struct eth_hdr {
|
---|
3736 | unsigned char dst_addr[ETH_ALEN];
|
---|
3737 | unsigned char src_addr[ETH_ALEN];
|
---|
3738 | unsigned short type;
|
---|
3739 | } hdr;
|
---|
3740 | struct e1000_tx_desc *txhd; /* header */
|
---|
3741 | struct e1000_tx_desc *txp; /* payload */
|
---|
3742 | DEBUGFUNC("send");
|
---|
3743 |
|
---|
3744 | memcpy (&hdr.dst_addr, d, ETH_ALEN);
|
---|
3745 | memcpy (&hdr.src_addr, nic->node_addr, ETH_ALEN);
|
---|
3746 |
|
---|
3747 | hdr.type = htons (type);
|
---|
3748 | txhd = tx_base + tx_tail;
|
---|
3749 | tx_tail = (tx_tail + 1) % 8;
|
---|
3750 | txp = tx_base + tx_tail;
|
---|
3751 | tx_tail = (tx_tail + 1) % 8;
|
---|
3752 |
|
---|
3753 | txhd->buffer_addr = virt_to_bus (&hdr);
|
---|
3754 | txhd->lower.data = sizeof (hdr);
|
---|
3755 | txhd->upper.data = 0;
|
---|
3756 |
|
---|
3757 | txp->buffer_addr = virt_to_bus(p);
|
---|
3758 | txp->lower.data = E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS | size;
|
---|
3759 | txp->upper.data = 0;
|
---|
3760 |
|
---|
3761 | E1000_WRITE_REG (&hw, TDT, tx_tail);
|
---|
3762 | while (!(txp->upper.data & E1000_TXD_STAT_DD)) {
|
---|
3763 | udelay(10); /* give the nic a chance to write to the register */
|
---|
3764 | poll_interruptions();
|
---|
3765 | }
|
---|
3766 | DEBUGFUNC("send end");
|
---|
3767 | }
|
---|
3768 |
|
---|
3769 |
|
---|
3770 | /**************************************************************************
|
---|
3771 | DISABLE - Turn off ethernet interface
|
---|
3772 | ***************************************************************************/
|
---|
3773 | static void e1000_disable (struct dev *dev __unused)
|
---|
3774 | {
|
---|
3775 | /* Clear the transmit ring */
|
---|
3776 | E1000_WRITE_REG (&hw, TDH, 0);
|
---|
3777 | E1000_WRITE_REG (&hw, TDT, 0);
|
---|
3778 |
|
---|
3779 | /* Clear the receive ring */
|
---|
3780 | E1000_WRITE_REG (&hw, RDH, 0);
|
---|
3781 | E1000_WRITE_REG (&hw, RDT, 0);
|
---|
3782 |
|
---|
3783 | /* put the card in its initial state */
|
---|
3784 | switch(hw.mac_type) {
|
---|
3785 | case e1000_82544:
|
---|
3786 | case e1000_82540:
|
---|
3787 | case e1000_82545:
|
---|
3788 | case e1000_82546:
|
---|
3789 | case e1000_82541:
|
---|
3790 | case e1000_82541_rev_2:
|
---|
3791 | /* These controllers can't ack the 64-bit write when issuing the
|
---|
3792 | * reset, so use IO-mapping as a workaround to issue the reset */
|
---|
3793 | E1000_WRITE_REG_IO(&hw, CTRL, E1000_CTRL_RST);
|
---|
3794 | break;
|
---|
3795 | case e1000_82545_rev_3:
|
---|
3796 | case e1000_82546_rev_3:
|
---|
3797 | /* Reset is performed on a shadow of the control register */
|
---|
3798 | E1000_WRITE_REG(&hw, CTRL_DUP, E1000_CTRL_RST);
|
---|
3799 | break;
|
---|
3800 | default:
|
---|
3801 | E1000_WRITE_REG(&hw, CTRL, E1000_CTRL_RST);
|
---|
3802 | break;
|
---|
3803 | }
|
---|
3804 |
|
---|
3805 | /* Turn off the ethernet interface */
|
---|
3806 | E1000_WRITE_REG (&hw, RCTL, 0);
|
---|
3807 | E1000_WRITE_REG (&hw, TCTL, 0);
|
---|
3808 | mdelay (10);
|
---|
3809 |
|
---|
3810 | /* Unmap my window to the device */
|
---|
3811 | iounmap(hw.hw_addr);
|
---|
3812 | }
|
---|
3813 |
|
---|
3814 | /**************************************************************************
|
---|
3815 | IRQ - Enable, Disable, or Force interrupts
|
---|
3816 | ***************************************************************************/
|
---|
3817 | static void e1000_irq(struct nic *nic __unused, irq_action_t action)
|
---|
3818 | {
|
---|
3819 | switch ( action ) {
|
---|
3820 | case DISABLE :
|
---|
3821 | E1000_WRITE_REG(&hw, IMC, ~0);
|
---|
3822 | E1000_WRITE_FLUSH(&hw);
|
---|
3823 | break;
|
---|
3824 | case ENABLE :
|
---|
3825 | E1000_WRITE_REG(&hw, IMS,
|
---|
3826 | E1000_IMS_RXT0 | E1000_IMS_RXSEQ);
|
---|
3827 | E1000_WRITE_FLUSH(&hw);
|
---|
3828 | break;
|
---|
3829 | case FORCE :
|
---|
3830 | E1000_WRITE_REG(&hw, ICS, E1000_ICS_RXT0);
|
---|
3831 | break;
|
---|
3832 | }
|
---|
3833 | }
|
---|
3834 |
|
---|
3835 | #define IORESOURCE_IO 0x00000100 /* Resource type */
|
---|
3836 | #define BAR_0 0
|
---|
3837 | #define BAR_1 1
|
---|
3838 | #define BAR_5 5
|
---|
3839 |
|
---|
3840 | /**************************************************************************
|
---|
3841 | PROBE - Look for an adapter, this routine's visible to the outside
|
---|
3842 | You should omit the last argument struct pci_device * for a non-PCI NIC
|
---|
3843 | ***************************************************************************/
|
---|
3844 | static int e1000_probe(struct dev *dev, struct pci_device *p)
|
---|
3845 | {
|
---|
3846 | struct nic *nic = (struct nic *)dev;
|
---|
3847 | unsigned long mmio_start, mmio_len;
|
---|
3848 | int ret_val, i;
|
---|
3849 |
|
---|
3850 | if (p == 0)
|
---|
3851 | return 0;
|
---|
3852 | /* Initialize hw with default values */
|
---|
3853 | memset(&hw, 0, sizeof(hw));
|
---|
3854 | hw.pdev = p;
|
---|
3855 |
|
---|
3856 | #if 1
|
---|
3857 | /* Are these variables needed? */
|
---|
3858 | hw.fc = e1000_fc_none;
|
---|
3859 | #if 0
|
---|
3860 | hw.original_fc = e1000_fc_none;
|
---|
3861 | #endif
|
---|
3862 | hw.autoneg_failed = 0;
|
---|
3863 | #if 0
|
---|
3864 | hw.get_link_status = TRUE;
|
---|
3865 | #endif
|
---|
3866 | #endif
|
---|
3867 |
|
---|
3868 | mmio_start = pci_bar_start(p, PCI_BASE_ADDRESS_0);
|
---|
3869 | mmio_len = pci_bar_size(p, PCI_BASE_ADDRESS_0);
|
---|
3870 | hw.hw_addr = ioremap(mmio_start, mmio_len);
|
---|
3871 |
|
---|
3872 | for(i = BAR_1; i <= BAR_5; i++) {
|
---|
3873 | if(pci_bar_size(p, i) == 0)
|
---|
3874 | continue;
|
---|
3875 | if(pci_find_capability(p, i) & IORESOURCE_IO) {
|
---|
3876 | hw.io_base = pci_bar_start(p, i);
|
---|
3877 | break;
|
---|
3878 | }
|
---|
3879 | }
|
---|
3880 |
|
---|
3881 | adjust_pci_device(p);
|
---|
3882 |
|
---|
3883 | nic->ioaddr = p->ioaddr & ~3;
|
---|
3884 | nic->irqno = p->irq;
|
---|
3885 |
|
---|
3886 | /* From Matt Hortman <[email protected]> */
|
---|
3887 | /* MAC and Phy settings */
|
---|
3888 |
|
---|
3889 | /* setup the private structure */
|
---|
3890 | if (e1000_sw_init(p, &hw) < 0) {
|
---|
3891 | iounmap(hw.hw_addr);
|
---|
3892 | return 0;
|
---|
3893 | }
|
---|
3894 |
|
---|
3895 | /* make sure the EEPROM is good */
|
---|
3896 |
|
---|
3897 | if (e1000_validate_eeprom_checksum(&hw) < 0) {
|
---|
3898 | printf ("The EEPROM Checksum Is Not Valid\n");
|
---|
3899 | iounmap(hw.hw_addr);
|
---|
3900 | return 0;
|
---|
3901 | }
|
---|
3902 |
|
---|
3903 | /* copy the MAC address out of the EEPROM */
|
---|
3904 |
|
---|
3905 | e1000_read_mac_addr(&hw);
|
---|
3906 | memcpy (nic->node_addr, hw.mac_addr, ETH_ALEN);
|
---|
3907 |
|
---|
3908 | printf("Ethernet addr: %!\n", nic->node_addr);
|
---|
3909 |
|
---|
3910 | /* reset the hardware with the new settings */
|
---|
3911 |
|
---|
3912 | ret_val = e1000_reset(&hw);
|
---|
3913 | if (ret_val < 0) {
|
---|
3914 | if ((ret_val == -E1000_ERR_NOLINK) ||
|
---|
3915 | (ret_val == -E1000_ERR_TIMEOUT)) {
|
---|
3916 | E1000_ERR("Valid Link not detected\n");
|
---|
3917 | } else {
|
---|
3918 | E1000_ERR("Hardware Initialization Failed\n");
|
---|
3919 | }
|
---|
3920 | iounmap(hw.hw_addr);
|
---|
3921 | return 0;
|
---|
3922 | }
|
---|
3923 | init_descriptor();
|
---|
3924 |
|
---|
3925 | /* point to NIC specific routines */
|
---|
3926 | dev->disable = e1000_disable;
|
---|
3927 | nic->poll = e1000_poll;
|
---|
3928 | nic->transmit = e1000_transmit;
|
---|
3929 | nic->irq = e1000_irq;
|
---|
3930 |
|
---|
3931 | return 1;
|
---|
3932 | }
|
---|
3933 |
|
---|
3934 | static struct pci_id e1000_nics[] = {
|
---|
3935 | PCI_ROM(0x8086, 0x1000, "e1000-82542", "Intel EtherExpressPro1000"),
|
---|
3936 | PCI_ROM(0x8086, 0x1001, "e1000-82543gc-fiber", "Intel EtherExpressPro1000 82543GC Fiber"),
|
---|
3937 | PCI_ROM(0x8086, 0x1004, "e1000-82543gc-copper", "Intel EtherExpressPro1000 82543GC Copper"),
|
---|
3938 | PCI_ROM(0x8086, 0x1008, "e1000-82544ei-copper", "Intel EtherExpressPro1000 82544EI Copper"),
|
---|
3939 | PCI_ROM(0x8086, 0x1009, "e1000-82544ei-fiber", "Intel EtherExpressPro1000 82544EI Fiber"),
|
---|
3940 | PCI_ROM(0x8086, 0x100C, "e1000-82544gc-copper", "Intel EtherExpressPro1000 82544GC Copper"),
|
---|
3941 | PCI_ROM(0x8086, 0x100D, "e1000-82544gc-lom", "Intel EtherExpressPro1000 82544GC LOM"),
|
---|
3942 | PCI_ROM(0x8086, 0x100E, "e1000-82540em", "Intel EtherExpressPro1000 82540EM"),
|
---|
3943 | PCI_ROM(0x8086, 0x100F, "e1000-82545em-copper", "Intel EtherExpressPro1000 82545EM Copper"),
|
---|
3944 | PCI_ROM(0x8086, 0x1010, "e1000-82546eb-copper", "Intel EtherExpressPro1000 82546EB Copper"),
|
---|
3945 | PCI_ROM(0x8086, 0x1011, "e1000-82545em-fiber", "Intel EtherExpressPro1000 82545EM Fiber"),
|
---|
3946 | PCI_ROM(0x8086, 0x1012, "e1000-82546eb-fiber", "Intel EtherExpressPro1000 82546EB Copper"),
|
---|
3947 | PCI_ROM(0x8086, 0x1013, "e1000-82541ei", "Intel EtherExpressPro1000 82541EI"),
|
---|
3948 | PCI_ROM(0x8086, 0x1015, "e1000-82540em-lom", "Intel EtherExpressPro1000 82540EM LOM"),
|
---|
3949 | PCI_ROM(0x8086, 0x1016, "e1000-82540ep-lom", "Intel EtherExpressPro1000 82540EP LOM"),
|
---|
3950 | PCI_ROM(0x8086, 0x1017, "e1000-82540ep", "Intel EtherExpressPro1000 82540EP"),
|
---|
3951 | PCI_ROM(0x8086, 0x1018, "e1000-82541ep", "Intel EtherExpressPro1000 82541EP"),
|
---|
3952 | PCI_ROM(0x8086, 0x1019, "e1000-82547ei", "Intel EtherExpressPro1000 82547EI"),
|
---|
3953 | PCI_ROM(0x8086, 0x101d, "e1000-82546eb-quad-copper", "Intel EtherExpressPro1000 82546EB Quad Copper"),
|
---|
3954 | PCI_ROM(0x8086, 0x101e, "e1000-82540ep-lp", "Intel EtherExpressPro1000 82540EP LP"),
|
---|
3955 | PCI_ROM(0x8086, 0x1026, "e1000-82545gm-copper", "Intel EtherExpressPro1000 82545GM Copper"),
|
---|
3956 | PCI_ROM(0x8086, 0x1027, "e1000-82545gm-fiber", "Intel EtherExpressPro1000 82545GM Fiber"),
|
---|
3957 | PCI_ROM(0x8086, 0x1028, "e1000-82545gm-serdes", "Intel EtherExpressPro1000 82545GM SERDES"),
|
---|
3958 | PCI_ROM(0x8086, 0x1075, "e1000-82547gi", "Intel EtherExpressPro1000 82547GI"),
|
---|
3959 | PCI_ROM(0x8086, 0x1076, "e1000-82541gi", "Intel EtherExpressPro1000 82541GI"),
|
---|
3960 | PCI_ROM(0x8086, 0x1077, "e1000-82541gi-mobile", "Intel EtherExpressPro1000 82541GI Mobile"),
|
---|
3961 | PCI_ROM(0x8086, 0x1078, "e1000-82541er", "Intel EtherExpressPro1000 82541ER"),
|
---|
3962 | PCI_ROM(0x8086, 0x1079, "e1000-82546gb-copper", "Intel EtherExpressPro1000 82546GB Copper"),
|
---|
3963 | PCI_ROM(0x8086, 0x107a, "e1000-82546gb-fiber", "Intel EtherExpressPro1000 82546GB Fiber"),
|
---|
3964 | PCI_ROM(0x8086, 0x107b, "e1000-82546gb-serdes", "Intel EtherExpressPro1000 82546GB SERDES"),
|
---|
3965 | PCI_ROM(0x8086, 0x107c, "e1000-82541pi", "Intel EtherExpressPro1000 82541PI"),
|
---|
3966 | PCI_ROM(0x8086, 0x1096, "e1000_80003es2lan", "Intel EtherExpressPro1000 GB COPPER"),
|
---|
3967 | };
|
---|
3968 |
|
---|
3969 | static struct pci_driver e1000_driver __pci_driver = {
|
---|
3970 | .type = NIC_DRIVER,
|
---|
3971 | .name = "E1000",
|
---|
3972 | .probe = e1000_probe,
|
---|
3973 | .ids = e1000_nics,
|
---|
3974 | .id_count = sizeof(e1000_nics)/sizeof(e1000_nics[0]),
|
---|
3975 | .class = 0,
|
---|
3976 | };
|
---|