VirtualBox

source: vbox/trunk/src/VBox/Devices/PC/Etherboot-src/drivers/net/e1000.c@ 1300

Last change on this file since 1300 was 1, checked in by vboxsync, 55 years ago

import

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 122.2 KB
Line 
1/**************************************************************************
2Etherboot - BOOTP/TFTP Bootstrap Program
3Inter Pro 1000 for Etherboot
4Drivers are port from Intel's Linux driver e1000-4.3.15
5
6***************************************************************************/
7/*******************************************************************************
8
9
10 Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved.
11
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
15 any later version.
16
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 more details.
21
22 You should have received a copy of the GNU General Public License along with
23 this program; if not, write to the Free Software Foundation, Inc., 59
24 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
28
29 Contact Information:
30 Linux NICS <[email protected]>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33*******************************************************************************/
34/*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
43 *
44 * Support for 82541ei & 82547ei chips from Intel's Linux driver 5.1.13 added by
45 * Georg Baum <[email protected]>, sponsored by PetaMem GmbH and linkLINE Communications, Inc.
46 *
47 * 01/2004: Updated to Linux driver 5.2.22 by Georg Baum <[email protected]>
48 */
49
50/* to get some global routines like printf */
51#include "etherboot.h"
52/* to get the interface to the body of the program */
53#include "nic.h"
54/* to get the PCI support functions, if this is a PCI NIC */
55#include "pci.h"
56#include "timer.h"
57
58typedef unsigned char *dma_addr_t;
59
60typedef enum {
61 FALSE = 0,
62 TRUE = 1
63} boolean_t;
64
65#define DEBUG 0
66
67
68/* Some pieces of code are disabled with #if 0 ... #endif.
69 * They are not deleted to show where the etherboot driver differs
70 * from the linux driver below the function level.
71 * Some member variables of the hw struct have been eliminated
72 * and the corresponding inplace checks inserted instead.
73 * Pieces such as LED handling that we definitely don't need are deleted.
74 *
75 * Please keep the function ordering so that it is easy to produce diffs
76 * against the linux driver.
77 *
78 * The following defines should not be needed normally,
79 * but may be helpful for debugging purposes. */
80
81/* Define this if you want to program the transmission control register
82 * the way the Linux driver does it. */
83#undef LINUX_DRIVER_TCTL
84
85/* Define this to behave more like the Linux driver. */
86#undef LINUX_DRIVER
87
88#include "e1000_hw.h"
89
90#define RX_BUFS 8
91#define MAX_PACKET 2096
92
93/* NIC specific static variables go here */
94static struct e1000_hw hw;
95static char tx_pool[128 + 16];
96static char rx_pool[128 + 16];
97static char packets[MAX_PACKET * RX_BUFS];
98
99static struct e1000_tx_desc *tx_base;
100static struct e1000_rx_desc *rx_base;
101
102static int tx_tail;
103static int rx_tail, rx_last;
104
105/* Function forward declarations */
106static int e1000_setup_link(struct e1000_hw *hw);
107static int e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
108static int e1000_setup_copper_link(struct e1000_hw *hw);
109static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
110static void e1000_config_collision_dist(struct e1000_hw *hw);
111static int e1000_config_mac_to_phy(struct e1000_hw *hw);
112static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
113static int e1000_check_for_link(struct e1000_hw *hw);
114static int e1000_wait_autoneg(struct e1000_hw *hw);
115static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex);
116static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
117static int e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
118static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data);
119static int e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data);
120static void e1000_phy_hw_reset(struct e1000_hw *hw);
121static int e1000_phy_reset(struct e1000_hw *hw);
122static int e1000_detect_gig_phy(struct e1000_hw *hw);
123static int e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
124static void e1000_init_rx_addrs(struct e1000_hw *hw);
125static void e1000_clear_vfta(struct e1000_hw *hw);
126static void e1000_io_write(struct e1000_hw *hw __unused, uint32_t port, uint32_t value);
127static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
128
129/* Printing macros... */
130
131#define E1000_ERR(args...) printf("e1000: " args)
132
133#if DEBUG >= 3
134#define E1000_DBG(args...) printf("e1000: " args)
135#else
136#define E1000_DBG(args...)
137#endif
138
139#define MSGOUT(S, A, B) printk(S "\n", A, B)
140#if DEBUG >= 2
141#define DEBUGFUNC(F) DEBUGOUT(F "\n");
142#else
143#define DEBUGFUNC(F)
144#endif
145#if DEBUG >= 1
146#define DEBUGOUT(S) printf(S)
147#define DEBUGOUT1(S,A) printf(S,A)
148#define DEBUGOUT2(S,A,B) printf(S,A,B)
149#define DEBUGOUT3(S,A,B,C) printf(S,A,B,C)
150#define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S,A,B,C,D,E,F,G)
151#else
152#define DEBUGOUT(S)
153#define DEBUGOUT1(S,A)
154#define DEBUGOUT2(S,A,B)
155#define DEBUGOUT3(S,A,B,C)
156#define DEBUGOUT7(S,A,B,C,D,E,F,G)
157#endif
158
159#define E1000_WRITE_REG(a, reg, value) ( \
160 ((a)->mac_type >= e1000_82543) ? \
161 (writel((value), ((a)->hw_addr + E1000_##reg))) : \
162 (writel((value), ((a)->hw_addr + E1000_82542_##reg))))
163
164#define E1000_READ_REG(a, reg) ( \
165 ((a)->mac_type >= e1000_82543) ? \
166 readl((a)->hw_addr + E1000_##reg) : \
167 readl((a)->hw_addr + E1000_82542_##reg))
168
169#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
170 ((a)->mac_type >= e1000_82543) ? \
171 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))) : \
172 writel((value), ((a)->hw_addr + E1000_82542_##reg + ((offset) << 2))))
173
174#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
175 ((a)->mac_type >= e1000_82543) ? \
176 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)) : \
177 readl((a)->hw_addr + E1000_82542_##reg + ((offset) << 2)))
178
179#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
180
181
182/******************************************************************************
183 * Inline functions from e1000_main.c of the linux driver
184 ******************************************************************************/
185
186static inline void e1000_pci_set_mwi(struct e1000_hw *hw)
187{
188 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
189}
190
191static inline void e1000_pci_clear_mwi(struct e1000_hw *hw)
192{
193 pci_write_config_word(hw->pdev, PCI_COMMAND,
194 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
195}
196
197
198/******************************************************************************
199 * Functions from e1000_hw.c of the linux driver
200 ******************************************************************************/
201
202/******************************************************************************
203 * Set the phy type member in the hw struct.
204 *
205 * hw - Struct containing variables accessed by shared code
206 *****************************************************************************/
207static int32_t
208e1000_set_phy_type(struct e1000_hw *hw)
209{
210 DEBUGFUNC("e1000_set_phy_type");
211
212 switch(hw->phy_id) {
213 case M88E1000_E_PHY_ID:
214 case M88E1000_I_PHY_ID:
215 case M88E1011_I_PHY_ID:
216 hw->phy_type = e1000_phy_m88;
217 break;
218 case IGP01E1000_I_PHY_ID:
219 hw->phy_type = e1000_phy_igp;
220 break;
221 case GG82563_E_PHY_ID:
222 if (hw->mac_type == e1000_80003es2lan) {
223 hw->phy_type = e1000_phy_gg82563;
224 break;
225 }
226 default:
227 /* Should never have loaded on this device */
228 hw->phy_type = e1000_phy_undefined;
229 return -E1000_ERR_PHY_TYPE;
230 }
231
232 return E1000_SUCCESS;
233}
234
235/******************************************************************************
236 * IGP phy init script - initializes the GbE PHY
237 *
238 * hw - Struct containing variables accessed by shared code
239 *****************************************************************************/
240static void
241e1000_phy_init_script(struct e1000_hw *hw)
242{
243 DEBUGFUNC("e1000_phy_init_script");
244
245#if 0
246 /* See e1000_sw_init() of the Linux driver */
247 if(hw->phy_init_script) {
248#else
249 if((hw->mac_type == e1000_82541) ||
250 (hw->mac_type == e1000_82547) ||
251 (hw->mac_type == e1000_82541_rev_2) ||
252 (hw->mac_type == e1000_82547_rev_2)) {
253#endif
254 mdelay(20);
255
256 e1000_write_phy_reg(hw,0x0000,0x0140);
257
258 mdelay(5);
259
260 if(hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547) {
261 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
262
263 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
264
265 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
266
267 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
268
269 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
270
271 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
272
273 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
274
275 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
276
277 e1000_write_phy_reg(hw, 0x2010, 0x0008);
278 } else {
279 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
280 }
281
282 e1000_write_phy_reg(hw, 0x0000, 0x3300);
283
284
285 if(hw->mac_type == e1000_82547) {
286 uint16_t fused, fine, coarse;
287
288 /* Move to analog registers page */
289 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
290
291 if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
292 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
293
294 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
295 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
296
297 if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
298 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
299 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
300 } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
301 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
302
303 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
304 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
305 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
306
307 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
308 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
309 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
310 }
311 }
312 }
313}
314
315/******************************************************************************
316 * Set the mac type member in the hw struct.
317 *
318 * hw - Struct containing variables accessed by shared code
319 *****************************************************************************/
320static int
321e1000_set_mac_type(struct e1000_hw *hw)
322{
323 DEBUGFUNC("e1000_set_mac_type");
324
325 switch (hw->device_id) {
326 case E1000_DEV_ID_82542:
327 switch (hw->revision_id) {
328 case E1000_82542_2_0_REV_ID:
329 hw->mac_type = e1000_82542_rev2_0;
330 break;
331 case E1000_82542_2_1_REV_ID:
332 hw->mac_type = e1000_82542_rev2_1;
333 break;
334 default:
335 /* Invalid 82542 revision ID */
336 return -E1000_ERR_MAC_TYPE;
337 }
338 break;
339 case E1000_DEV_ID_82543GC_FIBER:
340 case E1000_DEV_ID_82543GC_COPPER:
341 hw->mac_type = e1000_82543;
342 break;
343 case E1000_DEV_ID_82544EI_COPPER:
344 case E1000_DEV_ID_82544EI_FIBER:
345 case E1000_DEV_ID_82544GC_COPPER:
346 case E1000_DEV_ID_82544GC_LOM:
347 hw->mac_type = e1000_82544;
348 break;
349 case E1000_DEV_ID_82540EM:
350 case E1000_DEV_ID_82540EM_LOM:
351 case E1000_DEV_ID_82540EP:
352 case E1000_DEV_ID_82540EP_LOM:
353 case E1000_DEV_ID_82540EP_LP:
354 hw->mac_type = e1000_82540;
355 break;
356 case E1000_DEV_ID_82545EM_COPPER:
357 case E1000_DEV_ID_82545EM_FIBER:
358 hw->mac_type = e1000_82545;
359 break;
360 case E1000_DEV_ID_82545GM_COPPER:
361 case E1000_DEV_ID_82545GM_FIBER:
362 case E1000_DEV_ID_82545GM_SERDES:
363 hw->mac_type = e1000_82545_rev_3;
364 break;
365 case E1000_DEV_ID_82546EB_COPPER:
366 case E1000_DEV_ID_82546EB_FIBER:
367 case E1000_DEV_ID_82546EB_QUAD_COPPER:
368 hw->mac_type = e1000_82546;
369 break;
370 case E1000_DEV_ID_82546GB_COPPER:
371 case E1000_DEV_ID_82546GB_FIBER:
372 case E1000_DEV_ID_82546GB_SERDES:
373 hw->mac_type = e1000_82546_rev_3;
374 break;
375 case E1000_DEV_ID_82541EI:
376 case E1000_DEV_ID_82541EI_MOBILE:
377 hw->mac_type = e1000_82541;
378 break;
379 case E1000_DEV_ID_82541ER:
380 case E1000_DEV_ID_82541GI:
381 case E1000_DEV_ID_82541GI_MOBILE:
382 hw->mac_type = e1000_82541_rev_2;
383 break;
384 case E1000_DEV_ID_82547EI:
385 hw->mac_type = e1000_82547;
386 break;
387 case E1000_DEV_ID_82547GI:
388 hw->mac_type = e1000_82547_rev_2;
389 break;
390 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
391 hw->mac_type = e1000_80003es2lan;
392 break;
393 default:
394 /* Should never have loaded on this device */
395 return -E1000_ERR_MAC_TYPE;
396 }
397
398 return E1000_SUCCESS;
399}
400
401/*****************************************************************************
402 * Set media type and TBI compatibility.
403 *
404 * hw - Struct containing variables accessed by shared code
405 * **************************************************************************/
406static void
407e1000_set_media_type(struct e1000_hw *hw)
408{
409 uint32_t status;
410
411 DEBUGFUNC("e1000_set_media_type");
412
413 if(hw->mac_type != e1000_82543) {
414 /* tbi_compatibility is only valid on 82543 */
415 hw->tbi_compatibility_en = FALSE;
416 }
417
418 switch (hw->device_id) {
419 case E1000_DEV_ID_82545GM_SERDES:
420 case E1000_DEV_ID_82546GB_SERDES:
421 hw->media_type = e1000_media_type_internal_serdes;
422 break;
423 default:
424 if(hw->mac_type >= e1000_82543) {
425 status = E1000_READ_REG(hw, STATUS);
426 if(status & E1000_STATUS_TBIMODE) {
427 hw->media_type = e1000_media_type_fiber;
428 /* tbi_compatibility not valid on fiber */
429 hw->tbi_compatibility_en = FALSE;
430 } else {
431 hw->media_type = e1000_media_type_copper;
432 }
433 } else {
434 /* This is an 82542 (fiber only) */
435 hw->media_type = e1000_media_type_fiber;
436 }
437 }
438}
439
440/******************************************************************************
441 * Reset the transmit and receive units; mask and clear all interrupts.
442 *
443 * hw - Struct containing variables accessed by shared code
444 *****************************************************************************/
445static void
446e1000_reset_hw(struct e1000_hw *hw)
447{
448 uint32_t ctrl;
449 uint32_t ctrl_ext;
450 uint32_t icr;
451 uint32_t manc;
452
453 DEBUGFUNC("e1000_reset_hw");
454
455 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
456 if(hw->mac_type == e1000_82542_rev2_0) {
457 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
458 e1000_pci_clear_mwi(hw);
459 }
460
461 /* Clear interrupt mask to stop board from generating interrupts */
462 DEBUGOUT("Masking off all interrupts\n");
463 E1000_WRITE_REG(hw, IMC, 0xffffffff);
464
465 /* Disable the Transmit and Receive units. Then delay to allow
466 * any pending transactions to complete before we hit the MAC with
467 * the global reset.
468 */
469 E1000_WRITE_REG(hw, RCTL, 0);
470 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
471 E1000_WRITE_FLUSH(hw);
472
473 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
474 hw->tbi_compatibility_on = FALSE;
475
476 /* Delay to allow any outstanding PCI transactions to complete before
477 * resetting the device
478 */
479 mdelay(10);
480
481 ctrl = E1000_READ_REG(hw, CTRL);
482
483 /* Must reset the PHY before resetting the MAC */
484 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
485 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
486 mdelay(5);
487 }
488
489 /* Issue a global reset to the MAC. This will reset the chip's
490 * transmit, receive, DMA, and link units. It will not effect
491 * the current PCI configuration. The global reset bit is self-
492 * clearing, and should clear within a microsecond.
493 */
494 DEBUGOUT("Issuing a global reset to MAC\n");
495
496 switch(hw->mac_type) {
497 case e1000_82544:
498 case e1000_82540:
499 case e1000_82545:
500 case e1000_82546:
501 case e1000_82541:
502 case e1000_82541_rev_2:
503 /* These controllers can't ack the 64-bit write when issuing the
504 * reset, so use IO-mapping as a workaround to issue the reset */
505 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
506 break;
507 case e1000_82545_rev_3:
508 case e1000_82546_rev_3:
509 /* Reset is performed on a shadow of the control register */
510 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
511 break;
512 default:
513 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
514 break;
515 }
516
517 /* After MAC reset, force reload of EEPROM to restore power-on settings to
518 * device. Later controllers reload the EEPROM automatically, so just wait
519 * for reload to complete.
520 */
521 switch(hw->mac_type) {
522 case e1000_82542_rev2_0:
523 case e1000_82542_rev2_1:
524 case e1000_82543:
525 case e1000_82544:
526 /* Wait for reset to complete */
527 udelay(10);
528 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
529 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
530 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
531 E1000_WRITE_FLUSH(hw);
532 /* Wait for EEPROM reload */
533 mdelay(2);
534 break;
535 case e1000_82541:
536 case e1000_82541_rev_2:
537 case e1000_82547:
538 case e1000_82547_rev_2:
539 /* Wait for EEPROM reload */
540 mdelay(20);
541 break;
542 default:
543 /* Wait for EEPROM reload (it happens automatically) */
544 mdelay(5);
545 break;
546 }
547
548 /* Disable HW ARPs on ASF enabled adapters */
549 if(hw->mac_type >= e1000_82540) {
550 manc = E1000_READ_REG(hw, MANC);
551 manc &= ~(E1000_MANC_ARP_EN);
552 E1000_WRITE_REG(hw, MANC, manc);
553 }
554
555 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
556 e1000_phy_init_script(hw);
557 }
558
559 /* Clear interrupt mask to stop board from generating interrupts */
560 DEBUGOUT("Masking off all interrupts\n");
561 E1000_WRITE_REG(hw, IMC, 0xffffffff);
562
563 /* Clear any pending interrupt events. */
564 icr = E1000_READ_REG(hw, ICR);
565
566 /* If MWI was previously enabled, reenable it. */
567 if(hw->mac_type == e1000_82542_rev2_0) {
568#ifdef LINUX_DRIVER
569 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
570#endif
571 e1000_pci_set_mwi(hw);
572 }
573}
574
575/******************************************************************************
576 * Performs basic configuration of the adapter.
577 *
578 * hw - Struct containing variables accessed by shared code
579 *
580 * Assumes that the controller has previously been reset and is in a
581 * post-reset uninitialized state. Initializes the receive address registers,
582 * multicast table, and VLAN filter table. Calls routines to setup link
583 * configuration and flow control settings. Clears all on-chip counters. Leaves
584 * the transmit and receive units disabled and uninitialized.
585 *****************************************************************************/
586static int
587e1000_init_hw(struct e1000_hw *hw)
588{
589 uint32_t ctrl, status;
590 uint32_t i;
591 int32_t ret_val;
592 uint16_t pcix_cmd_word;
593 uint16_t pcix_stat_hi_word;
594 uint16_t cmd_mmrbc;
595 uint16_t stat_mmrbc;
596 e1000_bus_type bus_type = e1000_bus_type_unknown;
597
598 DEBUGFUNC("e1000_init_hw");
599
600 /* Set the media type and TBI compatibility */
601 e1000_set_media_type(hw);
602
603 /* Disabling VLAN filtering. */
604 DEBUGOUT("Initializing the IEEE VLAN\n");
605 E1000_WRITE_REG(hw, VET, 0);
606
607 e1000_clear_vfta(hw);
608
609 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
610 if(hw->mac_type == e1000_82542_rev2_0) {
611 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
612 e1000_pci_clear_mwi(hw);
613 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
614 E1000_WRITE_FLUSH(hw);
615 mdelay(5);
616 }
617
618 /* Setup the receive address. This involves initializing all of the Receive
619 * Address Registers (RARs 0 - 15).
620 */
621 e1000_init_rx_addrs(hw);
622
623 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
624 if(hw->mac_type == e1000_82542_rev2_0) {
625 E1000_WRITE_REG(hw, RCTL, 0);
626 E1000_WRITE_FLUSH(hw);
627 mdelay(1);
628#ifdef LINUX_DRIVER
629 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
630#endif
631 e1000_pci_set_mwi(hw);
632 }
633
634 /* Zero out the Multicast HASH table */
635 DEBUGOUT("Zeroing the MTA\n");
636 for(i = 0; i < E1000_MC_TBL_SIZE; i++)
637 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
638
639#if 0
640 /* Set the PCI priority bit correctly in the CTRL register. This
641 * determines if the adapter gives priority to receives, or if it
642 * gives equal priority to transmits and receives.
643 */
644 if(hw->dma_fairness) {
645 ctrl = E1000_READ_REG(hw, CTRL);
646 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
647 }
648#endif
649
650 switch(hw->mac_type) {
651 case e1000_82545_rev_3:
652 case e1000_82546_rev_3:
653 break;
654 case e1000_80003es2lan:
655 {
656 int32_t timeout = 200;
657 while(timeout) {
658 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
659 break;
660 else mdelay(10);
661 timeout--;
662 }
663 if(!timeout) {
664 /* We don't want to continue accessing MAC registers. */
665 return -E1000_ERR_RESET;
666 }
667 break;
668 }
669 default:
670 if (hw->mac_type >= e1000_82543) {
671 /* See e1000_get_bus_info() of the Linux driver */
672 status = E1000_READ_REG(hw, STATUS);
673 bus_type = (status & E1000_STATUS_PCIX_MODE) ?
674 e1000_bus_type_pcix : e1000_bus_type_pci;
675 }
676
677 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
678 if(bus_type == e1000_bus_type_pcix) {
679 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
680 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
681 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
682 PCIX_COMMAND_MMRBC_SHIFT;
683 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
684 PCIX_STATUS_HI_MMRBC_SHIFT;
685 if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
686 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
687 if(cmd_mmrbc > stat_mmrbc) {
688 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
689 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
690 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, pcix_cmd_word);
691 }
692 }
693 break;
694 }
695
696 /* Call a subroutine to configure the link and setup flow control. */
697 ret_val = e1000_setup_link(hw);
698
699 /* Set the transmit descriptor write-back policy */
700 if(hw->mac_type > e1000_82544) {
701 ctrl = E1000_READ_REG(hw, TXDCTL);
702 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
703 E1000_WRITE_REG(hw, TXDCTL, ctrl);
704 }
705
706#if 0
707 /* Clear all of the statistics registers (clear on read). It is
708 * important that we do this after we have tried to establish link
709 * because the symbol error count will increment wildly if there
710 * is no link.
711 */
712 e1000_clear_hw_cntrs(hw);
713#endif
714
715 return ret_val;
716}
717
718/******************************************************************************
719 * Adjust SERDES output amplitude based on EEPROM setting.
720 *
721 * hw - Struct containing variables accessed by shared code.
722 *****************************************************************************/
723static int32_t
724e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
725{
726 uint16_t eeprom_data;
727 int32_t ret_val;
728
729 DEBUGFUNC("e1000_adjust_serdes_amplitude");
730
731 if(hw->media_type != e1000_media_type_internal_serdes)
732 return E1000_SUCCESS;
733
734 switch(hw->mac_type) {
735 case e1000_82545_rev_3:
736 case e1000_82546_rev_3:
737 break;
738 default:
739 return E1000_SUCCESS;
740 }
741
742 if ((ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
743 &eeprom_data))) {
744 return ret_val;
745 }
746
747 if(eeprom_data != EEPROM_RESERVED_WORD) {
748 /* Adjust SERDES output amplitude only. */
749 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
750 if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL,
751 eeprom_data)))
752 return ret_val;
753 }
754
755 return E1000_SUCCESS;
756}
757
758/******************************************************************************
759 * Configures flow control and link settings.
760 *
761 * hw - Struct containing variables accessed by shared code
762 *
763 * Determines which flow control settings to use. Calls the apropriate media-
764 * specific link configuration function. Configures the flow control settings.
765 * Assuming the adapter has a valid link partner, a valid link should be
766 * established. Assumes the hardware has previously been reset and the
767 * transmitter and receiver are not enabled.
768 *****************************************************************************/
769static int
770e1000_setup_link(struct e1000_hw *hw)
771{
772 uint32_t ctrl_ext;
773 int32_t ret_val;
774 uint16_t eeprom_data;
775
776 DEBUGFUNC("e1000_setup_link");
777
778 /* Read and store word 0x0F of the EEPROM. This word contains bits
779 * that determine the hardware's default PAUSE (flow control) mode,
780 * a bit that determines whether the HW defaults to enabling or
781 * disabling auto-negotiation, and the direction of the
782 * SW defined pins. If there is no SW over-ride of the flow
783 * control setting, then the variable hw->fc will
784 * be initialized based on a value in the EEPROM.
785 */
786 if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) {
787 DEBUGOUT("EEPROM Read Error\n");
788 return -E1000_ERR_EEPROM;
789 }
790
791 if(hw->fc == e1000_fc_default) {
792 if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
793 hw->fc = e1000_fc_none;
794 else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
795 EEPROM_WORD0F_ASM_DIR)
796 hw->fc = e1000_fc_tx_pause;
797 else
798 hw->fc = e1000_fc_full;
799 }
800
801 /* We want to save off the original Flow Control configuration just
802 * in case we get disconnected and then reconnected into a different
803 * hub or switch with different Flow Control capabilities.
804 */
805 if(hw->mac_type == e1000_82542_rev2_0)
806 hw->fc &= (~e1000_fc_tx_pause);
807
808#if 0
809 /* See e1000_sw_init() of the Linux driver */
810 if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
811#else
812 if((hw->mac_type < e1000_82543) && (hw->mac_type >= e1000_82543))
813#endif
814 hw->fc &= (~e1000_fc_rx_pause);
815
816#if 0
817 hw->original_fc = hw->fc;
818#endif
819
820 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
821
822 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
823 * polarity value for the SW controlled pins, and setup the
824 * Extended Device Control reg with that info.
825 * This is needed because one of the SW controlled pins is used for
826 * signal detection. So this should be done before e1000_setup_pcs_link()
827 * or e1000_phy_setup() is called.
828 */
829 if(hw->mac_type == e1000_82543) {
830 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
831 SWDPIO__EXT_SHIFT);
832 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
833 }
834
835 /* Call the necessary subroutine to configure the link. */
836 ret_val = (hw->media_type == e1000_media_type_copper) ?
837 e1000_setup_copper_link(hw) :
838 e1000_setup_fiber_serdes_link(hw);
839 if (ret_val < 0) {
840 return ret_val;
841 }
842
843 /* Initialize the flow control address, type, and PAUSE timer
844 * registers to their default values. This is done even if flow
845 * control is disabled, because it does not hurt anything to
846 * initialize these registers.
847 */
848 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
849
850 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
851 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
852 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
853#if 0
854 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
855#else
856 E1000_WRITE_REG(hw, FCTTV, FC_DEFAULT_TX_TIMER);
857#endif
858
859 /* Set the flow control receive threshold registers. Normally,
860 * these registers will be set to a default threshold that may be
861 * adjusted later by the driver's runtime code. However, if the
862 * ability to transmit pause frames in not enabled, then these
863 * registers will be set to 0.
864 */
865 if(!(hw->fc & e1000_fc_tx_pause)) {
866 E1000_WRITE_REG(hw, FCRTL, 0);
867 E1000_WRITE_REG(hw, FCRTH, 0);
868 } else {
869 /* We need to set up the Receive Threshold high and low water marks
870 * as well as (optionally) enabling the transmission of XON frames.
871 */
872#if 0
873 if(hw->fc_send_xon) {
874 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
875 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
876 } else {
877 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
878 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
879 }
880#else
881 E1000_WRITE_REG(hw, FCRTL, (FC_DEFAULT_LO_THRESH | E1000_FCRTL_XONE));
882 E1000_WRITE_REG(hw, FCRTH, FC_DEFAULT_HI_THRESH);
883#endif
884 }
885 return ret_val;
886}
887
888/******************************************************************************
889 * Sets up link for a fiber based or serdes based adapter
890 *
891 * hw - Struct containing variables accessed by shared code
892 *
893 * Manipulates Physical Coding Sublayer functions in order to configure
894 * link. Assumes the hardware has been previously reset and the transmitter
895 * and receiver are not enabled.
896 *****************************************************************************/
897static int
898e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
899{
900 uint32_t ctrl;
901 uint32_t status;
902 uint32_t txcw = 0;
903 uint32_t i;
904 uint32_t signal = 0;
905 int32_t ret_val;
906
907 DEBUGFUNC("e1000_setup_fiber_serdes_link");
908
909 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
910 * set when the optics detect a signal. On older adapters, it will be
911 * cleared when there is a signal. This applies to fiber media only.
912 * If we're on serdes media, adjust the output amplitude to value set in
913 * the EEPROM.
914 */
915 ctrl = E1000_READ_REG(hw, CTRL);
916 if(hw->media_type == e1000_media_type_fiber)
917 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
918
919 if((ret_val = e1000_adjust_serdes_amplitude(hw)))
920 return ret_val;
921
922 /* Take the link out of reset */
923 ctrl &= ~(E1000_CTRL_LRST);
924
925#if 0
926 /* Adjust VCO speed to improve BER performance */
927 if((ret_val = e1000_set_vco_speed(hw)))
928 return ret_val;
929#endif
930
931 e1000_config_collision_dist(hw);
932
933 /* Check for a software override of the flow control settings, and setup
934 * the device accordingly. If auto-negotiation is enabled, then software
935 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
936 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
937 * auto-negotiation is disabled, then software will have to manually
938 * configure the two flow control enable bits in the CTRL register.
939 *
940 * The possible values of the "fc" parameter are:
941 * 0: Flow control is completely disabled
942 * 1: Rx flow control is enabled (we can receive pause frames, but
943 * not send pause frames).
944 * 2: Tx flow control is enabled (we can send pause frames but we do
945 * not support receiving pause frames).
946 * 3: Both Rx and TX flow control (symmetric) are enabled.
947 */
948 switch (hw->fc) {
949 case e1000_fc_none:
950 /* Flow control is completely disabled by a software over-ride. */
951 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
952 break;
953 case e1000_fc_rx_pause:
954 /* RX Flow control is enabled and TX Flow control is disabled by a
955 * software over-ride. Since there really isn't a way to advertise
956 * that we are capable of RX Pause ONLY, we will advertise that we
957 * support both symmetric and asymmetric RX PAUSE. Later, we will
958 * disable the adapter's ability to send PAUSE frames.
959 */
960 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
961 break;
962 case e1000_fc_tx_pause:
963 /* TX Flow control is enabled, and RX Flow control is disabled, by a
964 * software over-ride.
965 */
966 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
967 break;
968 case e1000_fc_full:
969 /* Flow control (both RX and TX) is enabled by a software over-ride. */
970 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
971 break;
972 default:
973 DEBUGOUT("Flow control param set incorrectly\n");
974 return -E1000_ERR_CONFIG;
975 break;
976 }
977
978 /* Since auto-negotiation is enabled, take the link out of reset (the link
979 * will be in reset, because we previously reset the chip). This will
980 * restart auto-negotiation. If auto-neogtiation is successful then the
981 * link-up status bit will be set and the flow control enable bits (RFCE
982 * and TFCE) will be set according to their negotiated value.
983 */
984 DEBUGOUT("Auto-negotiation enabled\n");
985
986 E1000_WRITE_REG(hw, TXCW, txcw);
987 E1000_WRITE_REG(hw, CTRL, ctrl);
988 E1000_WRITE_FLUSH(hw);
989
990 hw->txcw = txcw;
991 mdelay(1);
992
993 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
994 * indication in the Device Status Register. Time-out if a link isn't
995 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
996 * less than 500 milliseconds even if the other end is doing it in SW).
997 * For internal serdes, we just assume a signal is present, then poll.
998 */
999 if(hw->media_type == e1000_media_type_internal_serdes ||
1000 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1001 DEBUGOUT("Looking for Link\n");
1002 for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1003 mdelay(10);
1004 status = E1000_READ_REG(hw, STATUS);
1005 if(status & E1000_STATUS_LU) break;
1006 }
1007 if(i == (LINK_UP_TIMEOUT / 10)) {
1008 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1009 hw->autoneg_failed = 1;
1010 /* AutoNeg failed to achieve a link, so we'll call
1011 * e1000_check_for_link. This routine will force the link up if
1012 * we detect a signal. This will allow us to communicate with
1013 * non-autonegotiating link partners.
1014 */
1015 if((ret_val = e1000_check_for_link(hw))) {
1016 DEBUGOUT("Error while checking for link\n");
1017 return ret_val;
1018 }
1019 hw->autoneg_failed = 0;
1020 } else {
1021 hw->autoneg_failed = 0;
1022 DEBUGOUT("Valid Link Found\n");
1023 }
1024 } else {
1025 DEBUGOUT("No Signal Detected\n");
1026 }
1027 return E1000_SUCCESS;
1028}
1029
1030int32_t
1031e1000_read_kmrn_reg(struct e1000_hw *hw,
1032 uint32_t reg_addr,
1033 uint16_t *data)
1034{
1035 uint32_t reg_val;
1036 DEBUGFUNC("e1000_read_kmrn_reg");
1037
1038 /* Write register address */
1039 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
1040 E1000_KUMCTRLSTA_OFFSET) |
1041 E1000_KUMCTRLSTA_REN;
1042 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
1043 udelay(2);
1044
1045 /* Read the data returned */
1046 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
1047 *data = (uint16_t)reg_val;
1048
1049 return E1000_SUCCESS;
1050}
1051
1052int32_t
1053e1000_write_kmrn_reg(struct e1000_hw *hw,
1054 uint32_t reg_addr,
1055 uint16_t data)
1056{
1057 uint32_t reg_val;
1058 DEBUGFUNC("e1000_write_kmrn_reg");
1059
1060 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
1061 E1000_KUMCTRLSTA_OFFSET) | data;
1062 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
1063 udelay(2);
1064
1065 return E1000_SUCCESS;
1066}
1067
1068/********************************************************************
1069* Copper link setup for e1000_phy_gg82563 series.
1070*
1071* hw - Struct containing variables accessed by shared code
1072*********************************************************************/
1073
1074static int32_t
1075e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1076{
1077 int32_t ret_val;
1078 uint16_t phy_data;
1079 uint32_t reg_data;
1080
1081 DEBUGFUNC("e1000_copper_link_ggp_setup\n");
1082
1083 /* Enable CRS on TX for half-duplex operation. */
1084 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1085 &phy_data);
1086 if(ret_val)
1087 return ret_val;
1088
1089 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1090 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1091 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1092
1093 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1094 phy_data);
1095 if(ret_val)
1096 return ret_val;
1097 /* Options:
1098 * MDI/MDI-X = 0 (default)
1099 * 0 - Auto for all speeds
1100 * 1 - MDI mode
1101 * 2 - MDI-X mode
1102 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1103 */
1104 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1105 if(ret_val)
1106 return ret_val;
1107
1108 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1109
1110 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1111
1112 /* Options:
1113 * disable_polarity_correction = 0 (default)
1114 * Automatic Correction for Reversed Cable Polarity
1115 * 0 - Disabled
1116 * 1 - Enabled
1117 */
1118 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1119 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1120
1121 if(ret_val)
1122 return ret_val;
1123
1124 /* SW Reset the PHY so all changes take effect */
1125 ret_val = e1000_phy_reset(hw);
1126 if (ret_val) {
1127 DEBUGOUT("Error Resetting the PHY\n");
1128 return ret_val;
1129 }
1130
1131 if (hw->mac_type == e1000_80003es2lan) {
1132 /* Bypass RX and TX FIFO's */
1133 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1134 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1135 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1136 if (ret_val)
1137 return ret_val;
1138
1139 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1140 if (ret_val)
1141 ret_val;
1142
1143 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1144 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1145
1146 if (ret_val)
1147 return ret_val;
1148
1149 reg_data = E1000_READ_REG(hw, CTRL_EXT);
1150 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1151 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
1152
1153 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1154 &phy_data);
1155 if (ret_val)
1156 return ret_val;
1157
1158 /* Enable Electrical Idle on the PHY */
1159 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1160 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1161 phy_data);
1162
1163 if (ret_val)
1164 return ret_val;
1165
1166 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1167 &phy_data);
1168 if (ret_val)
1169 return ret_val;
1170
1171 /* Disable Pass False Carrier on the PHY */
1172 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1173
1174 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1175 phy_data);
1176 if (ret_val)
1177 return ret_val;
1178 }
1179
1180 return E1000_SUCCESS;
1181}
1182
1183/******************************************************************************
1184* Detects which PHY is present and the speed and duplex
1185*
1186* hw - Struct containing variables accessed by shared code
1187******************************************************************************/
1188static int
1189e1000_setup_copper_link(struct e1000_hw *hw)
1190{
1191 uint32_t ctrl;
1192 int32_t ret_val;
1193 uint16_t i;
1194 uint16_t phy_data;
1195
1196 DEBUGFUNC("e1000_setup_copper_link");
1197
1198 ctrl = E1000_READ_REG(hw, CTRL);
1199
1200 if(hw->mac_type == e1000_80003es2lan) {
1201 uint16_t reg_data;
1202 /* Set the mac to wait the maximum time between each
1203 * iteration and increase the max iterations when
1204 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1205 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1206 if (ret_val)
1207 return ret_val;
1208 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1209 if (ret_val)
1210 return ret_val;
1211 reg_data |= 0x3F;
1212 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1213 if (ret_val)
1214 return ret_val;
1215 ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1216 &reg_data);
1217 if (ret_val)
1218 return ret_val;
1219 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1220 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1221 reg_data);
1222 if (ret_val)
1223 return ret_val;
1224 }
1225
1226 /* With 82543, we need to force speed and duplex on the MAC equal to what
1227 * the PHY speed and duplex configuration is. In addition, we need to
1228 * perform a hardware reset on the PHY to take it out of reset.
1229 */
1230 if(hw->mac_type > e1000_82543) {
1231 ctrl |= E1000_CTRL_SLU;
1232 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1233 E1000_WRITE_REG(hw, CTRL, ctrl);
1234 } else {
1235 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1236 E1000_WRITE_REG(hw, CTRL, ctrl);
1237 e1000_phy_hw_reset(hw);
1238 }
1239
1240 /* Make sure we have a valid PHY */
1241 if((ret_val = e1000_detect_gig_phy(hw))) {
1242 DEBUGOUT("Error, did not detect valid phy.\n");
1243 return ret_val;
1244 }
1245 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1246
1247 if (hw->phy_type == e1000_phy_gg82563) {
1248 ret_val = e1000_copper_link_ggp_setup(hw);
1249 if(ret_val)
1250 return ret_val;
1251 }
1252
1253 if(hw->mac_type <= e1000_82543 ||
1254 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1255#if 0
1256 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1257 hw->phy_reset_disable = FALSE;
1258
1259 if(!hw->phy_reset_disable) {
1260#else
1261 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2 ||
1262 hw->mac_type == e1000_80003es2lan) {
1263#endif
1264 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_gg82563) {
1265
1266 if((ret_val = e1000_phy_reset(hw))) {
1267 DEBUGOUT("Error Resetting the PHY\n");
1268 return ret_val;
1269 }
1270
1271 /* Wait 10ms for MAC to configure PHY from eeprom settings */
1272 mdelay(15);
1273
1274#if 0
1275 /* disable lplu d3 during driver init */
1276 if((ret_val = e1000_set_d3_lplu_state(hw, FALSE))) {
1277 DEBUGOUT("Error Disabling LPLU D3\n");
1278 return ret_val;
1279 }
1280
1281 /* Configure mdi-mdix settings */
1282 if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
1283 &phy_data)))
1284 return ret_val;
1285
1286 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1287 hw->dsp_config_state = e1000_dsp_config_disabled;
1288 /* Force MDI for IGP B-0 PHY */
1289 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
1290 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1291 hw->mdix = 1;
1292
1293 } else {
1294 hw->dsp_config_state = e1000_dsp_config_enabled;
1295 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1296
1297 switch (hw->mdix) {
1298 case 1:
1299 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1300 break;
1301 case 2:
1302 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1303 break;
1304 case 0:
1305 default:
1306 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1307 break;
1308 }
1309 }
1310 if((ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
1311 phy_data)))
1312 return ret_val;
1313
1314 /* set auto-master slave resolution settings */
1315 e1000_ms_type phy_ms_setting = hw->master_slave;
1316
1317 if(hw->ffe_config_state == e1000_ffe_config_active)
1318 hw->ffe_config_state = e1000_ffe_config_enabled;
1319
1320 if(hw->dsp_config_state == e1000_dsp_config_activated)
1321 hw->dsp_config_state = e1000_dsp_config_enabled;
1322#endif
1323
1324 /* when autonegotiation advertisment is only 1000Mbps then we
1325 * should disable SmartSpeed and enable Auto MasterSlave
1326 * resolution as hardware default. */
1327 if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1328 /* Disable SmartSpeed */
1329 if((ret_val = e1000_read_phy_reg(hw,
1330 IGP01E1000_PHY_PORT_CONFIG,
1331 &phy_data)))
1332 return ret_val;
1333 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1334 if((ret_val = e1000_write_phy_reg(hw,
1335 IGP01E1000_PHY_PORT_CONFIG,
1336 phy_data)))
1337 return ret_val;
1338 /* Set auto Master/Slave resolution process */
1339 if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
1340 &phy_data)))
1341 return ret_val;
1342 phy_data &= ~CR_1000T_MS_ENABLE;
1343 if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1344 phy_data)))
1345 return ret_val;
1346 }
1347
1348 if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
1349 &phy_data)))
1350 return ret_val;
1351
1352#if 0
1353 /* load defaults for future use */
1354 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1355 ((phy_data & CR_1000T_MS_VALUE) ?
1356 e1000_ms_force_master :
1357 e1000_ms_force_slave) :
1358 e1000_ms_auto;
1359
1360 switch (phy_ms_setting) {
1361 case e1000_ms_force_master:
1362 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1363 break;
1364 case e1000_ms_force_slave:
1365 phy_data |= CR_1000T_MS_ENABLE;
1366 phy_data &= ~(CR_1000T_MS_VALUE);
1367 break;
1368 case e1000_ms_auto:
1369 phy_data &= ~CR_1000T_MS_ENABLE;
1370 default:
1371 break;
1372 }
1373#endif
1374
1375 if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1376 phy_data)))
1377 return ret_val;
1378 } else {
1379 /* Enable CRS on TX. This must be set for half-duplex operation. */
1380 if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
1381 &phy_data)))
1382 return ret_val;
1383
1384 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1385
1386 /* Options:
1387 * MDI/MDI-X = 0 (default)
1388 * 0 - Auto for all speeds
1389 * 1 - MDI mode
1390 * 2 - MDI-X mode
1391 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1392 */
1393#if 0
1394 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1395
1396 switch (hw->mdix) {
1397 case 1:
1398 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1399 break;
1400 case 2:
1401 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1402 break;
1403 case 3:
1404 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1405 break;
1406 case 0:
1407 default:
1408#endif
1409 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1410#if 0
1411 break;
1412 }
1413#endif
1414
1415 /* Options:
1416 * disable_polarity_correction = 0 (default)
1417 * Automatic Correction for Reversed Cable Polarity
1418 * 0 - Disabled
1419 * 1 - Enabled
1420 */
1421 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1422 if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
1423 phy_data)))
1424 return ret_val;
1425
1426 /* Force TX_CLK in the Extended PHY Specific Control Register
1427 * to 25MHz clock.
1428 */
1429 if((ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1430 &phy_data)))
1431 return ret_val;
1432
1433 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1434
1435#ifdef LINUX_DRIVER
1436 if (hw->phy_revision < M88E1011_I_REV_4) {
1437#endif
1438 /* Configure Master and Slave downshift values */
1439 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1440 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1441 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1442 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1443 if((ret_val = e1000_write_phy_reg(hw,
1444 M88E1000_EXT_PHY_SPEC_CTRL,
1445 phy_data)))
1446 return ret_val;
1447 }
1448
1449 /* SW Reset the PHY so all changes take effect */
1450 if((ret_val = e1000_phy_reset(hw))) {
1451 DEBUGOUT("Error Resetting the PHY\n");
1452 return ret_val;
1453#ifdef LINUX_DRIVER
1454 }
1455#endif
1456 }
1457
1458 /* Options:
1459 * autoneg = 1 (default)
1460 * PHY will advertise value(s) parsed from
1461 * autoneg_advertised and fc
1462 * autoneg = 0
1463 * PHY will be set to 10H, 10F, 100H, or 100F
1464 * depending on value parsed from forced_speed_duplex.
1465 */
1466
1467 /* Is autoneg enabled? This is enabled by default or by software
1468 * override. If so, call e1000_phy_setup_autoneg routine to parse the
1469 * autoneg_advertised and fc options. If autoneg is NOT enabled, then
1470 * the user should have provided a speed/duplex override. If so, then
1471 * call e1000_phy_force_speed_duplex to parse and set this up.
1472 */
1473 /* Perform some bounds checking on the hw->autoneg_advertised
1474 * parameter. If this variable is zero, then set it to the default.
1475 */
1476 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1477
1478 /* If autoneg_advertised is zero, we assume it was not defaulted
1479 * by the calling code so we set to advertise full capability.
1480 */
1481 if(hw->autoneg_advertised == 0)
1482 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1483
1484 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1485 if((ret_val = e1000_phy_setup_autoneg(hw))) {
1486 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1487 return ret_val;
1488 }
1489 DEBUGOUT("Restarting Auto-Neg\n");
1490
1491 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1492 * the Auto Neg Restart bit in the PHY control register.
1493 */
1494 if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data)))
1495 return ret_val;
1496
1497 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1498 if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data)))
1499 return ret_val;
1500
1501#if 0
1502 /* Does the user want to wait for Auto-Neg to complete here, or
1503 * check at a later time (for example, callback routine).
1504 */
1505 if(hw->wait_autoneg_complete) {
1506 if((ret_val = e1000_wait_autoneg(hw))) {
1507 DEBUGOUT("Error while waiting for autoneg to complete\n");
1508 return ret_val;
1509 }
1510 }
1511#else
1512 /* If we do not wait for autonegotiation to complete I
1513 * do not see a valid link status.
1514 */
1515 if((ret_val = e1000_wait_autoneg(hw))) {
1516 DEBUGOUT("Error while waiting for autoneg to complete\n");
1517 return ret_val;
1518 }
1519#endif
1520 } /* !hw->phy_reset_disable */
1521
1522 /* Check link status. Wait up to 100 microseconds for link to become
1523 * valid.
1524 */
1525 for(i = 0; i < 10; i++) {
1526 if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
1527 return ret_val;
1528 if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
1529 return ret_val;
1530
1531 if(phy_data & MII_SR_LINK_STATUS) {
1532 /* We have link, so we need to finish the config process:
1533 * 1) Set up the MAC to the current PHY speed/duplex
1534 * if we are on 82543. If we
1535 * are on newer silicon, we only need to configure
1536 * collision distance in the Transmit Control Register.
1537 * 2) Set up flow control on the MAC to that established with
1538 * the link partner.
1539 */
1540 if(hw->mac_type >= e1000_82544) {
1541 e1000_config_collision_dist(hw);
1542 } else {
1543 if((ret_val = e1000_config_mac_to_phy(hw))) {
1544 DEBUGOUT("Error configuring MAC to PHY settings\n");
1545 return ret_val;
1546 }
1547 }
1548 if((ret_val = e1000_config_fc_after_link_up(hw))) {
1549 DEBUGOUT("Error Configuring Flow Control\n");
1550 return ret_val;
1551 }
1552#if 0
1553 if(hw->phy_type == e1000_phy_igp) {
1554 if((ret_val = e1000_config_dsp_after_link_change(hw, TRUE))) {
1555 DEBUGOUT("Error Configuring DSP after link up\n");
1556 return ret_val;
1557 }
1558 }
1559#endif
1560 DEBUGOUT("Valid link established!!!\n");
1561 return E1000_SUCCESS;
1562 }
1563 udelay(10);
1564 }
1565
1566 DEBUGOUT("Unable to establish link!!!\n");
1567 return -E1000_ERR_NOLINK;
1568}
1569
1570/******************************************************************************
1571* Configures PHY autoneg and flow control advertisement settings
1572*
1573* hw - Struct containing variables accessed by shared code
1574******************************************************************************/
1575static int
1576e1000_phy_setup_autoneg(struct e1000_hw *hw)
1577{
1578 int32_t ret_val;
1579 uint16_t mii_autoneg_adv_reg;
1580 uint16_t mii_1000t_ctrl_reg;
1581
1582 DEBUGFUNC("e1000_phy_setup_autoneg");
1583
1584 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1585 if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
1586 &mii_autoneg_adv_reg)))
1587 return ret_val;
1588
1589 /* Read the MII 1000Base-T Control Register (Address 9). */
1590 if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg)))
1591 return ret_val;
1592
1593 /* Need to parse both autoneg_advertised and fc and set up
1594 * the appropriate PHY registers. First we will parse for
1595 * autoneg_advertised software override. Since we can advertise
1596 * a plethora of combinations, we need to check each bit
1597 * individually.
1598 */
1599
1600 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1601 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1602 * the 1000Base-T Control Register (Address 9).
1603 */
1604 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1605 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1606
1607 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
1608
1609 /* Do we want to advertise 10 Mb Half Duplex? */
1610 if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
1611 DEBUGOUT("Advertise 10mb Half duplex\n");
1612 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1613 }
1614
1615 /* Do we want to advertise 10 Mb Full Duplex? */
1616 if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
1617 DEBUGOUT("Advertise 10mb Full duplex\n");
1618 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1619 }
1620
1621 /* Do we want to advertise 100 Mb Half Duplex? */
1622 if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
1623 DEBUGOUT("Advertise 100mb Half duplex\n");
1624 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1625 }
1626
1627 /* Do we want to advertise 100 Mb Full Duplex? */
1628 if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
1629 DEBUGOUT("Advertise 100mb Full duplex\n");
1630 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1631 }
1632
1633 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1634 if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1635 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
1636 }
1637
1638 /* Do we want to advertise 1000 Mb Full Duplex? */
1639 if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1640 DEBUGOUT("Advertise 1000mb Full duplex\n");
1641 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1642 }
1643
1644 /* Check for a software override of the flow control settings, and
1645 * setup the PHY advertisement registers accordingly. If
1646 * auto-negotiation is enabled, then software will have to set the
1647 * "PAUSE" bits to the correct value in the Auto-Negotiation
1648 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1649 *
1650 * The possible values of the "fc" parameter are:
1651 * 0: Flow control is completely disabled
1652 * 1: Rx flow control is enabled (we can receive pause frames
1653 * but not send pause frames).
1654 * 2: Tx flow control is enabled (we can send pause frames
1655 * but we do not support receiving pause frames).
1656 * 3: Both Rx and TX flow control (symmetric) are enabled.
1657 * other: No software override. The flow control configuration
1658 * in the EEPROM is used.
1659 */
1660 switch (hw->fc) {
1661 case e1000_fc_none: /* 0 */
1662 /* Flow control (RX & TX) is completely disabled by a
1663 * software over-ride.
1664 */
1665 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1666 break;
1667 case e1000_fc_rx_pause: /* 1 */
1668 /* RX Flow control is enabled, and TX Flow control is
1669 * disabled, by a software over-ride.
1670 */
1671 /* Since there really isn't a way to advertise that we are
1672 * capable of RX Pause ONLY, we will advertise that we
1673 * support both symmetric and asymmetric RX PAUSE. Later
1674 * (in e1000_config_fc_after_link_up) we will disable the
1675 *hw's ability to send PAUSE frames.
1676 */
1677 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1678 break;
1679 case e1000_fc_tx_pause: /* 2 */
1680 /* TX Flow control is enabled, and RX Flow control is
1681 * disabled, by a software over-ride.
1682 */
1683 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1684 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1685 break;
1686 case e1000_fc_full: /* 3 */
1687 /* Flow control (both RX and TX) is enabled by a software
1688 * over-ride.
1689 */
1690 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1691 break;
1692 default:
1693 DEBUGOUT("Flow control param set incorrectly\n");
1694 return -E1000_ERR_CONFIG;
1695 }
1696
1697 if((ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV,
1698 mii_autoneg_adv_reg)))
1699 return ret_val;
1700
1701 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1702
1703 if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg)))
1704 return ret_val;
1705
1706 return E1000_SUCCESS;
1707}
1708
1709/******************************************************************************
1710* Sets the collision distance in the Transmit Control register
1711*
1712* hw - Struct containing variables accessed by shared code
1713*
1714* Link should have been established previously. Reads the speed and duplex
1715* information from the Device Status register.
1716******************************************************************************/
1717static void
1718e1000_config_collision_dist(struct e1000_hw *hw)
1719{
1720 uint32_t tctl;
1721
1722 tctl = E1000_READ_REG(hw, TCTL);
1723
1724 tctl &= ~E1000_TCTL_COLD;
1725 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1726
1727 E1000_WRITE_REG(hw, TCTL, tctl);
1728 E1000_WRITE_FLUSH(hw);
1729}
1730
1731/******************************************************************************
1732* Sets MAC speed and duplex settings to reflect the those in the PHY
1733*
1734* hw - Struct containing variables accessed by shared code
1735* mii_reg - data to write to the MII control register
1736*
1737* The contents of the PHY register containing the needed information need to
1738* be passed in.
1739******************************************************************************/
1740static int
1741e1000_config_mac_to_phy(struct e1000_hw *hw)
1742{
1743 uint32_t ctrl;
1744 int32_t ret_val;
1745 uint16_t phy_data;
1746
1747 DEBUGFUNC("e1000_config_mac_to_phy");
1748
1749 /* Read the Device Control Register and set the bits to Force Speed
1750 * and Duplex.
1751 */
1752 ctrl = E1000_READ_REG(hw, CTRL);
1753 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1754 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1755
1756 /* Set up duplex in the Device Control and Transmit Control
1757 * registers depending on negotiated values.
1758 */
1759 if (hw->phy_type == e1000_phy_igp) {
1760 if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
1761 &phy_data)))
1762 return ret_val;
1763
1764 if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD;
1765 else ctrl &= ~E1000_CTRL_FD;
1766
1767 e1000_config_collision_dist(hw);
1768
1769 /* Set up speed in the Device Control register depending on
1770 * negotiated values.
1771 */
1772 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
1773 IGP01E1000_PSSR_SPEED_1000MBPS)
1774 ctrl |= E1000_CTRL_SPD_1000;
1775 else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
1776 IGP01E1000_PSSR_SPEED_100MBPS)
1777 ctrl |= E1000_CTRL_SPD_100;
1778 } else {
1779 if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1780 &phy_data)))
1781 return ret_val;
1782
1783 if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
1784 else ctrl &= ~E1000_CTRL_FD;
1785
1786 e1000_config_collision_dist(hw);
1787
1788 /* Set up speed in the Device Control register depending on
1789 * negotiated values.
1790 */
1791 if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1792 ctrl |= E1000_CTRL_SPD_1000;
1793 else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1794 ctrl |= E1000_CTRL_SPD_100;
1795 }
1796 /* Write the configured values back to the Device Control Reg. */
1797 E1000_WRITE_REG(hw, CTRL, ctrl);
1798 return E1000_SUCCESS;
1799}
1800
1801/******************************************************************************
1802 * Forces the MAC's flow control settings.
1803 *
1804 * hw - Struct containing variables accessed by shared code
1805 *
1806 * Sets the TFCE and RFCE bits in the device control register to reflect
1807 * the adapter settings. TFCE and RFCE need to be explicitly set by
1808 * software when a Copper PHY is used because autonegotiation is managed
1809 * by the PHY rather than the MAC. Software must also configure these
1810 * bits when link is forced on a fiber connection.
1811 *****************************************************************************/
1812static int
1813e1000_force_mac_fc(struct e1000_hw *hw)
1814{
1815 uint32_t ctrl;
1816
1817 DEBUGFUNC("e1000_force_mac_fc");
1818
1819 /* Get the current configuration of the Device Control Register */
1820 ctrl = E1000_READ_REG(hw, CTRL);
1821
1822 /* Because we didn't get link via the internal auto-negotiation
1823 * mechanism (we either forced link or we got link via PHY
1824 * auto-neg), we have to manually enable/disable transmit an
1825 * receive flow control.
1826 *
1827 * The "Case" statement below enables/disable flow control
1828 * according to the "hw->fc" parameter.
1829 *
1830 * The possible values of the "fc" parameter are:
1831 * 0: Flow control is completely disabled
1832 * 1: Rx flow control is enabled (we can receive pause
1833 * frames but not send pause frames).
1834 * 2: Tx flow control is enabled (we can send pause frames
1835 * frames but we do not receive pause frames).
1836 * 3: Both Rx and TX flow control (symmetric) is enabled.
1837 * other: No other values should be possible at this point.
1838 */
1839
1840 switch (hw->fc) {
1841 case e1000_fc_none:
1842 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1843 break;
1844 case e1000_fc_rx_pause:
1845 ctrl &= (~E1000_CTRL_TFCE);
1846 ctrl |= E1000_CTRL_RFCE;
1847 break;
1848 case e1000_fc_tx_pause:
1849 ctrl &= (~E1000_CTRL_RFCE);
1850 ctrl |= E1000_CTRL_TFCE;
1851 break;
1852 case e1000_fc_full:
1853 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1854 break;
1855 default:
1856 DEBUGOUT("Flow control param set incorrectly\n");
1857 return -E1000_ERR_CONFIG;
1858 }
1859
1860 /* Disable TX Flow Control for 82542 (rev 2.0) */
1861 if(hw->mac_type == e1000_82542_rev2_0)
1862 ctrl &= (~E1000_CTRL_TFCE);
1863
1864 E1000_WRITE_REG(hw, CTRL, ctrl);
1865 return E1000_SUCCESS;
1866}
1867
1868/******************************************************************************
1869 * Configures flow control settings after link is established
1870 *
1871 * hw - Struct containing variables accessed by shared code
1872 *
1873 * Should be called immediately after a valid link has been established.
1874 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1875 * and autonegotiation is enabled, the MAC flow control settings will be set
1876 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1877 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1878 *****************************************************************************/
1879static int
1880e1000_config_fc_after_link_up(struct e1000_hw *hw)
1881{
1882 int32_t ret_val;
1883 uint16_t mii_status_reg;
1884 uint16_t mii_nway_adv_reg;
1885 uint16_t mii_nway_lp_ability_reg;
1886 uint16_t speed;
1887 uint16_t duplex;
1888
1889 DEBUGFUNC("e1000_config_fc_after_link_up");
1890
1891 /* Check for the case where we have fiber media and auto-neg failed
1892 * so we had to force link. In this case, we need to force the
1893 * configuration of the MAC to match the "fc" parameter.
1894 */
1895 if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
1896 ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed))) {
1897 if((ret_val = e1000_force_mac_fc(hw))) {
1898 DEBUGOUT("Error forcing flow control settings\n");
1899 return ret_val;
1900 }
1901 }
1902
1903 /* Check for the case where we have copper media and auto-neg is
1904 * enabled. In this case, we need to check and see if Auto-Neg
1905 * has completed, and if so, how the PHY and link partner has
1906 * flow control configured.
1907 */
1908 if(hw->media_type == e1000_media_type_copper) {
1909 /* Read the MII Status Register and check to see if AutoNeg
1910 * has completed. We read this twice because this reg has
1911 * some "sticky" (latched) bits.
1912 */
1913 if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg)))
1914 return ret_val;
1915 if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg)))
1916 return ret_val;
1917
1918 if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
1919 /* The AutoNeg process has completed, so we now need to
1920 * read both the Auto Negotiation Advertisement Register
1921 * (Address 4) and the Auto_Negotiation Base Page Ability
1922 * Register (Address 5) to determine how flow control was
1923 * negotiated.
1924 */
1925 if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
1926 &mii_nway_adv_reg)))
1927 return ret_val;
1928 if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
1929 &mii_nway_lp_ability_reg)))
1930 return ret_val;
1931
1932 /* Two bits in the Auto Negotiation Advertisement Register
1933 * (Address 4) and two bits in the Auto Negotiation Base
1934 * Page Ability Register (Address 5) determine flow control
1935 * for both the PHY and the link partner. The following
1936 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1937 * 1999, describes these PAUSE resolution bits and how flow
1938 * control is determined based upon these settings.
1939 * NOTE: DC = Don't Care
1940 *
1941 * LOCAL DEVICE | LINK PARTNER
1942 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1943 *-------|---------|-------|---------|--------------------
1944 * 0 | 0 | DC | DC | e1000_fc_none
1945 * 0 | 1 | 0 | DC | e1000_fc_none
1946 * 0 | 1 | 1 | 0 | e1000_fc_none
1947 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1948 * 1 | 0 | 0 | DC | e1000_fc_none
1949 * 1 | DC | 1 | DC | e1000_fc_full
1950 * 1 | 1 | 0 | 0 | e1000_fc_none
1951 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1952 *
1953 */
1954 /* Are both PAUSE bits set to 1? If so, this implies
1955 * Symmetric Flow Control is enabled at both ends. The
1956 * ASM_DIR bits are irrelevant per the spec.
1957 *
1958 * For Symmetric Flow Control:
1959 *
1960 * LOCAL DEVICE | LINK PARTNER
1961 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1962 *-------|---------|-------|---------|--------------------
1963 * 1 | DC | 1 | DC | e1000_fc_full
1964 *
1965 */
1966 if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1967 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1968 /* Now we need to check if the user selected RX ONLY
1969 * of pause frames. In this case, we had to advertise
1970 * FULL flow control because we could not advertise RX
1971 * ONLY. Hence, we must now check to see if we need to
1972 * turn OFF the TRANSMISSION of PAUSE frames.
1973 */
1974#if 0
1975 if(hw->original_fc == e1000_fc_full) {
1976 hw->fc = e1000_fc_full;
1977#else
1978 if(hw->fc == e1000_fc_full) {
1979#endif
1980 DEBUGOUT("Flow Control = FULL.\r\n");
1981 } else {
1982 hw->fc = e1000_fc_rx_pause;
1983 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
1984 }
1985 }
1986 /* For receiving PAUSE frames ONLY.
1987 *
1988 * LOCAL DEVICE | LINK PARTNER
1989 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1990 *-------|---------|-------|---------|--------------------
1991 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1992 *
1993 */
1994 else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1995 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1996 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1997 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1998 hw->fc = e1000_fc_tx_pause;
1999 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
2000 }
2001 /* For transmitting PAUSE frames ONLY.
2002 *
2003 * LOCAL DEVICE | LINK PARTNER
2004 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2005 *-------|---------|-------|---------|--------------------
2006 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2007 *
2008 */
2009 else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2010 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2011 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2012 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2013 hw->fc = e1000_fc_rx_pause;
2014 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2015 }
2016 /* Per the IEEE spec, at this point flow control should be
2017 * disabled. However, we want to consider that we could
2018 * be connected to a legacy switch that doesn't advertise
2019 * desired flow control, but can be forced on the link
2020 * partner. So if we advertised no flow control, that is
2021 * what we will resolve to. If we advertised some kind of
2022 * receive capability (Rx Pause Only or Full Flow Control)
2023 * and the link partner advertised none, we will configure
2024 * ourselves to enable Rx Flow Control only. We can do
2025 * this safely for two reasons: If the link partner really
2026 * didn't want flow control enabled, and we enable Rx, no
2027 * harm done since we won't be receiving any PAUSE frames
2028 * anyway. If the intent on the link partner was to have
2029 * flow control enabled, then by us enabling RX only, we
2030 * can at least receive pause frames and process them.
2031 * This is a good idea because in most cases, since we are
2032 * predominantly a server NIC, more times than not we will
2033 * be asked to delay transmission of packets than asking
2034 * our link partner to pause transmission of frames.
2035 */
2036#if 0
2037 else if(hw->original_fc == e1000_fc_none ||
2038 hw->original_fc == e1000_fc_tx_pause) {
2039#else
2040 else if(hw->fc == e1000_fc_none)
2041 DEBUGOUT("Flow Control = NONE.\r\n");
2042 else if(hw->fc == e1000_fc_tx_pause) {
2043#endif
2044 hw->fc = e1000_fc_none;
2045 DEBUGOUT("Flow Control = NONE.\r\n");
2046 } else {
2047 hw->fc = e1000_fc_rx_pause;
2048 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2049 }
2050
2051 /* Now we need to do one last check... If we auto-
2052 * negotiated to HALF DUPLEX, flow control should not be
2053 * enabled per IEEE 802.3 spec.
2054 */
2055 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2056
2057 if(duplex == HALF_DUPLEX)
2058 hw->fc = e1000_fc_none;
2059
2060 /* Now we call a subroutine to actually force the MAC
2061 * controller to use the correct flow control settings.
2062 */
2063 if((ret_val = e1000_force_mac_fc(hw))) {
2064 DEBUGOUT("Error forcing flow control settings\n");
2065 return ret_val;
2066 }
2067 } else {
2068 DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
2069 }
2070 }
2071 return E1000_SUCCESS;
2072}
2073
2074/******************************************************************************
2075 * Checks to see if the link status of the hardware has changed.
2076 *
2077 * hw - Struct containing variables accessed by shared code
2078 *
2079 * Called by any function that needs to check the link status of the adapter.
2080 *****************************************************************************/
2081static int
2082e1000_check_for_link(struct e1000_hw *hw)
2083{
2084 uint32_t rxcw;
2085 uint32_t ctrl;
2086 uint32_t status;
2087 uint32_t rctl;
2088 uint32_t signal = 0;
2089 int32_t ret_val;
2090 uint16_t phy_data;
2091 uint16_t lp_capability;
2092
2093 DEBUGFUNC("e1000_check_for_link");
2094
2095 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2096 * set when the optics detect a signal. On older adapters, it will be
2097 * cleared when there is a signal. This applies to fiber media only.
2098 */
2099 if(hw->media_type == e1000_media_type_fiber)
2100 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2101
2102 ctrl = E1000_READ_REG(hw, CTRL);
2103 status = E1000_READ_REG(hw, STATUS);
2104 rxcw = E1000_READ_REG(hw, RXCW);
2105
2106 /* If we have a copper PHY then we only want to go out to the PHY
2107 * registers to see if Auto-Neg has completed and/or if our link
2108 * status has changed. The get_link_status flag will be set if we
2109 * receive a Link Status Change interrupt or we have Rx Sequence
2110 * Errors.
2111 */
2112#if 0
2113 if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2114#else
2115 if(hw->media_type == e1000_media_type_copper) {
2116#endif
2117 /* First we want to see if the MII Status Register reports
2118 * link. If so, then we want to get the current speed/duplex
2119 * of the PHY.
2120 * Read the register twice since the link bit is sticky.
2121 */
2122 if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
2123 return ret_val;
2124 if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
2125 return ret_val;
2126
2127 if(phy_data & MII_SR_LINK_STATUS) {
2128#if 0
2129 hw->get_link_status = FALSE;
2130#endif
2131 } else {
2132 /* No link detected */
2133 return -E1000_ERR_NOLINK;
2134 }
2135
2136 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2137 * have Si on board that is 82544 or newer, Auto
2138 * Speed Detection takes care of MAC speed/duplex
2139 * configuration. So we only need to configure Collision
2140 * Distance in the MAC. Otherwise, we need to force
2141 * speed/duplex on the MAC to the current PHY speed/duplex
2142 * settings.
2143 */
2144 if(hw->mac_type >= e1000_82544)
2145 e1000_config_collision_dist(hw);
2146 else {
2147 if((ret_val = e1000_config_mac_to_phy(hw))) {
2148 DEBUGOUT("Error configuring MAC to PHY settings\n");
2149 return ret_val;
2150 }
2151 }
2152
2153 /* Configure Flow Control now that Auto-Neg has completed. First, we
2154 * need to restore the desired flow control settings because we may
2155 * have had to re-autoneg with a different link partner.
2156 */
2157 if((ret_val = e1000_config_fc_after_link_up(hw))) {
2158 DEBUGOUT("Error configuring flow control\n");
2159 return ret_val;
2160 }
2161
2162 /* At this point we know that we are on copper and we have
2163 * auto-negotiated link. These are conditions for checking the link
2164 * parter capability register. We use the link partner capability to
2165 * determine if TBI Compatibility needs to be turned on or off. If
2166 * the link partner advertises any speed in addition to Gigabit, then
2167 * we assume that they are GMII-based, and TBI compatibility is not
2168 * needed. If no other speeds are advertised, we assume the link
2169 * partner is TBI-based, and we turn on TBI Compatibility.
2170 */
2171 if(hw->tbi_compatibility_en) {
2172 if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2173 &lp_capability)))
2174 return ret_val;
2175 if(lp_capability & (NWAY_LPAR_10T_HD_CAPS |
2176 NWAY_LPAR_10T_FD_CAPS |
2177 NWAY_LPAR_100TX_HD_CAPS |
2178 NWAY_LPAR_100TX_FD_CAPS |
2179 NWAY_LPAR_100T4_CAPS)) {
2180 /* If our link partner advertises anything in addition to
2181 * gigabit, we do not need to enable TBI compatibility.
2182 */
2183 if(hw->tbi_compatibility_on) {
2184 /* If we previously were in the mode, turn it off. */
2185 rctl = E1000_READ_REG(hw, RCTL);
2186 rctl &= ~E1000_RCTL_SBP;
2187 E1000_WRITE_REG(hw, RCTL, rctl);
2188 hw->tbi_compatibility_on = FALSE;
2189 }
2190 } else {
2191 /* If TBI compatibility is was previously off, turn it on. For
2192 * compatibility with a TBI link partner, we will store bad
2193 * packets. Some frames have an additional byte on the end and
2194 * will look like CRC errors to to the hardware.
2195 */
2196 if(!hw->tbi_compatibility_on) {
2197 hw->tbi_compatibility_on = TRUE;
2198 rctl = E1000_READ_REG(hw, RCTL);
2199 rctl |= E1000_RCTL_SBP;
2200 E1000_WRITE_REG(hw, RCTL, rctl);
2201 }
2202 }
2203 }
2204 }
2205 /* If we don't have link (auto-negotiation failed or link partner cannot
2206 * auto-negotiate), the cable is plugged in (we have signal), and our
2207 * link partner is not trying to auto-negotiate with us (we are receiving
2208 * idles or data), we need to force link up. We also need to give
2209 * auto-negotiation time to complete, in case the cable was just plugged
2210 * in. The autoneg_failed flag does this.
2211 */
2212 else if((((hw->media_type == e1000_media_type_fiber) &&
2213 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
2214 (hw->media_type == e1000_media_type_internal_serdes)) &&
2215 (!(status & E1000_STATUS_LU)) &&
2216 (!(rxcw & E1000_RXCW_C))) {
2217 if(hw->autoneg_failed == 0) {
2218 hw->autoneg_failed = 1;
2219 return 0;
2220 }
2221 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2222
2223 /* Disable auto-negotiation in the TXCW register */
2224 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2225
2226 /* Force link-up and also force full-duplex. */
2227 ctrl = E1000_READ_REG(hw, CTRL);
2228 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2229 E1000_WRITE_REG(hw, CTRL, ctrl);
2230
2231 /* Configure Flow Control after forcing link up. */
2232 if((ret_val = e1000_config_fc_after_link_up(hw))) {
2233 DEBUGOUT("Error configuring flow control\n");
2234 return ret_val;
2235 }
2236 }
2237 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2238 * auto-negotiation in the TXCW register and disable forced link in the
2239 * Device Control register in an attempt to auto-negotiate with our link
2240 * partner.
2241 */
2242 else if(((hw->media_type == e1000_media_type_fiber) ||
2243 (hw->media_type == e1000_media_type_internal_serdes)) &&
2244 (ctrl & E1000_CTRL_SLU) &&
2245 (rxcw & E1000_RXCW_C)) {
2246 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2247 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2248 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2249 }
2250#if 0
2251 /* If we force link for non-auto-negotiation switch, check link status
2252 * based on MAC synchronization for internal serdes media type.
2253 */
2254 else if((hw->media_type == e1000_media_type_internal_serdes) &&
2255 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2256 /* SYNCH bit and IV bit are sticky. */
2257 udelay(10);
2258 if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
2259 if(!(rxcw & E1000_RXCW_IV)) {
2260 hw->serdes_link_down = FALSE;
2261 DEBUGOUT("SERDES: Link is up.\n");
2262 }
2263 } else {
2264 hw->serdes_link_down = TRUE;
2265 DEBUGOUT("SERDES: Link is down.\n");
2266 }
2267 }
2268#endif
2269 return E1000_SUCCESS;
2270}
2271
2272/******************************************************************************
2273 * Detects the current speed and duplex settings of the hardware.
2274 *
2275 * hw - Struct containing variables accessed by shared code
2276 * speed - Speed of the connection
2277 * duplex - Duplex setting of the connection
2278 *****************************************************************************/
2279static void
2280e1000_get_speed_and_duplex(struct e1000_hw *hw,
2281 uint16_t *speed,
2282 uint16_t *duplex)
2283{
2284 uint32_t status;
2285
2286 DEBUGFUNC("e1000_get_speed_and_duplex");
2287
2288 if(hw->mac_type >= e1000_82543) {
2289 status = E1000_READ_REG(hw, STATUS);
2290 if(status & E1000_STATUS_SPEED_1000) {
2291 *speed = SPEED_1000;
2292 DEBUGOUT("1000 Mbs, ");
2293 } else if(status & E1000_STATUS_SPEED_100) {
2294 *speed = SPEED_100;
2295 DEBUGOUT("100 Mbs, ");
2296 } else {
2297 *speed = SPEED_10;
2298 DEBUGOUT("10 Mbs, ");
2299 }
2300
2301 if(status & E1000_STATUS_FD) {
2302 *duplex = FULL_DUPLEX;
2303 DEBUGOUT("Full Duplex\r\n");
2304 } else {
2305 *duplex = HALF_DUPLEX;
2306 DEBUGOUT(" Half Duplex\r\n");
2307 }
2308 } else {
2309 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2310 *speed = SPEED_1000;
2311 *duplex = FULL_DUPLEX;
2312 }
2313}
2314
2315/******************************************************************************
2316* Blocks until autoneg completes or times out (~4.5 seconds)
2317*
2318* hw - Struct containing variables accessed by shared code
2319******************************************************************************/
2320static int
2321e1000_wait_autoneg(struct e1000_hw *hw)
2322{
2323 int32_t ret_val;
2324 uint16_t i;
2325 uint16_t phy_data;
2326
2327 DEBUGFUNC("e1000_wait_autoneg");
2328 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2329
2330 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2331 for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2332 /* Read the MII Status Register and wait for Auto-Neg
2333 * Complete bit to be set.
2334 */
2335 if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
2336 return ret_val;
2337 if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
2338 return ret_val;
2339 if(phy_data & MII_SR_AUTONEG_COMPLETE) {
2340 DEBUGOUT("Auto-Neg complete.\n");
2341 return E1000_SUCCESS;
2342 }
2343 mdelay(100);
2344 }
2345 DEBUGOUT("Auto-Neg timedout.\n");
2346 return -E1000_ERR_TIMEOUT;
2347}
2348
2349/******************************************************************************
2350* Raises the Management Data Clock
2351*
2352* hw - Struct containing variables accessed by shared code
2353* ctrl - Device control register's current value
2354******************************************************************************/
2355static void
2356e1000_raise_mdi_clk(struct e1000_hw *hw,
2357 uint32_t *ctrl)
2358{
2359 /* Raise the clock input to the Management Data Clock (by setting the MDC
2360 * bit), and then delay 10 microseconds.
2361 */
2362 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2363 E1000_WRITE_FLUSH(hw);
2364 udelay(10);
2365}
2366
2367/******************************************************************************
2368* Lowers the Management Data Clock
2369*
2370* hw - Struct containing variables accessed by shared code
2371* ctrl - Device control register's current value
2372******************************************************************************/
2373static void
2374e1000_lower_mdi_clk(struct e1000_hw *hw,
2375 uint32_t *ctrl)
2376{
2377 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2378 * bit), and then delay 10 microseconds.
2379 */
2380 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2381 E1000_WRITE_FLUSH(hw);
2382 udelay(10);
2383}
2384
2385/******************************************************************************
2386* Shifts data bits out to the PHY
2387*
2388* hw - Struct containing variables accessed by shared code
2389* data - Data to send out to the PHY
2390* count - Number of bits to shift out
2391*
2392* Bits are shifted out in MSB to LSB order.
2393******************************************************************************/
2394static void
2395e1000_shift_out_mdi_bits(struct e1000_hw *hw,
2396 uint32_t data,
2397 uint16_t count)
2398{
2399 uint32_t ctrl;
2400 uint32_t mask;
2401
2402 /* We need to shift "count" number of bits out to the PHY. So, the value
2403 * in the "data" parameter will be shifted out to the PHY one bit at a
2404 * time. In order to do this, "data" must be broken down into bits.
2405 */
2406 mask = 0x01;
2407 mask <<= (count - 1);
2408
2409 ctrl = E1000_READ_REG(hw, CTRL);
2410
2411 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2412 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2413
2414 while(mask) {
2415 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2416 * then raising and lowering the Management Data Clock. A "0" is
2417 * shifted out to the PHY by setting the MDIO bit to "0" and then
2418 * raising and lowering the clock.
2419 */
2420 if(data & mask) ctrl |= E1000_CTRL_MDIO;
2421 else ctrl &= ~E1000_CTRL_MDIO;
2422
2423 E1000_WRITE_REG(hw, CTRL, ctrl);
2424 E1000_WRITE_FLUSH(hw);
2425
2426 udelay(10);
2427
2428 e1000_raise_mdi_clk(hw, &ctrl);
2429 e1000_lower_mdi_clk(hw, &ctrl);
2430
2431 mask = mask >> 1;
2432 }
2433}
2434
2435/******************************************************************************
2436* Shifts data bits in from the PHY
2437*
2438* hw - Struct containing variables accessed by shared code
2439*
2440* Bits are shifted in in MSB to LSB order.
2441******************************************************************************/
2442static uint16_t
2443e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2444{
2445 uint32_t ctrl;
2446 uint16_t data = 0;
2447 uint8_t i;
2448
2449 /* In order to read a register from the PHY, we need to shift in a total
2450 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2451 * to avoid contention on the MDIO pin when a read operation is performed.
2452 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2453 * by raising the input to the Management Data Clock (setting the MDC bit),
2454 * and then reading the value of the MDIO bit.
2455 */
2456 ctrl = E1000_READ_REG(hw, CTRL);
2457
2458 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2459 ctrl &= ~E1000_CTRL_MDIO_DIR;
2460 ctrl &= ~E1000_CTRL_MDIO;
2461
2462 E1000_WRITE_REG(hw, CTRL, ctrl);
2463 E1000_WRITE_FLUSH(hw);
2464
2465 /* Raise and Lower the clock before reading in the data. This accounts for
2466 * the turnaround bits. The first clock occurred when we clocked out the
2467 * last bit of the Register Address.
2468 */
2469 e1000_raise_mdi_clk(hw, &ctrl);
2470 e1000_lower_mdi_clk(hw, &ctrl);
2471
2472 for(data = 0, i = 0; i < 16; i++) {
2473 data = data << 1;
2474 e1000_raise_mdi_clk(hw, &ctrl);
2475 ctrl = E1000_READ_REG(hw, CTRL);
2476 /* Check to see if we shifted in a "1". */
2477 if(ctrl & E1000_CTRL_MDIO) data |= 1;
2478 e1000_lower_mdi_clk(hw, &ctrl);
2479 }
2480
2481 e1000_raise_mdi_clk(hw, &ctrl);
2482 e1000_lower_mdi_clk(hw, &ctrl);
2483
2484 return data;
2485}
2486
2487/*****************************************************************************
2488* Reads the value from a PHY register, if the value is on a specific non zero
2489* page, sets the page first.
2490*
2491* hw - Struct containing variables accessed by shared code
2492* reg_addr - address of the PHY register to read
2493******************************************************************************/
2494static int
2495e1000_read_phy_reg(struct e1000_hw *hw,
2496 uint32_t reg_addr,
2497 uint16_t *phy_data)
2498{
2499 uint32_t ret_val;
2500
2501 DEBUGFUNC("e1000_read_phy_reg");
2502
2503 if(hw->phy_type == e1000_phy_igp &&
2504 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2505 if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2506 (uint16_t)reg_addr)))
2507 return ret_val;
2508 }
2509
2510 ret_val = e1000_read_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
2511 phy_data);
2512
2513 return ret_val;
2514}
2515
2516static int
2517e1000_read_phy_reg_ex(struct e1000_hw *hw,
2518 uint32_t reg_addr,
2519 uint16_t *phy_data)
2520{
2521 uint32_t i;
2522 uint32_t mdic = 0;
2523 const uint32_t phy_addr = 1;
2524
2525 DEBUGFUNC("e1000_read_phy_reg_ex");
2526
2527 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2528 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2529 return -E1000_ERR_PARAM;
2530 }
2531
2532 if(hw->mac_type > e1000_82543) {
2533 /* Set up Op-code, Phy Address, and register address in the MDI
2534 * Control register. The MAC will take care of interfacing with the
2535 * PHY to retrieve the desired data.
2536 */
2537 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2538 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2539 (E1000_MDIC_OP_READ));
2540
2541 E1000_WRITE_REG(hw, MDIC, mdic);
2542
2543 /* Poll the ready bit to see if the MDI read completed */
2544 for(i = 0; i < 64; i++) {
2545 udelay(50);
2546 mdic = E1000_READ_REG(hw, MDIC);
2547 if(mdic & E1000_MDIC_READY) break;
2548 }
2549 if(!(mdic & E1000_MDIC_READY)) {
2550 DEBUGOUT("MDI Read did not complete\n");
2551 return -E1000_ERR_PHY;
2552 }
2553 if(mdic & E1000_MDIC_ERROR) {
2554 DEBUGOUT("MDI Error\n");
2555 return -E1000_ERR_PHY;
2556 }
2557 *phy_data = (uint16_t) mdic;
2558 } else {
2559 /* We must first send a preamble through the MDIO pin to signal the
2560 * beginning of an MII instruction. This is done by sending 32
2561 * consecutive "1" bits.
2562 */
2563 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2564
2565 /* Now combine the next few fields that are required for a read
2566 * operation. We use this method instead of calling the
2567 * e1000_shift_out_mdi_bits routine five different times. The format of
2568 * a MII read instruction consists of a shift out of 14 bits and is
2569 * defined as follows:
2570 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2571 * followed by a shift in of 18 bits. This first two bits shifted in
2572 * are TurnAround bits used to avoid contention on the MDIO pin when a
2573 * READ operation is performed. These two bits are thrown away
2574 * followed by a shift in of 16 bits which contains the desired data.
2575 */
2576 mdic = ((reg_addr) | (phy_addr << 5) |
2577 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2578
2579 e1000_shift_out_mdi_bits(hw, mdic, 14);
2580
2581 /* Now that we've shifted out the read command to the MII, we need to
2582 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2583 * register address.
2584 */
2585 *phy_data = e1000_shift_in_mdi_bits(hw);
2586 }
2587 return E1000_SUCCESS;
2588}
2589
2590/******************************************************************************
2591* Writes a value to a PHY register
2592*
2593* hw - Struct containing variables accessed by shared code
2594* reg_addr - address of the PHY register to write
2595* data - data to write to the PHY
2596******************************************************************************/
2597static int
2598e1000_write_phy_reg(struct e1000_hw *hw,
2599 uint32_t reg_addr,
2600 uint16_t phy_data)
2601{
2602 uint32_t ret_val;
2603
2604 DEBUGFUNC("e1000_write_phy_reg");
2605
2606 if(hw->phy_type == e1000_phy_igp &&
2607 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2608 if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2609 (uint16_t)reg_addr)))
2610 return ret_val;
2611 }
2612
2613 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
2614 phy_data);
2615
2616 return ret_val;
2617}
2618
2619static int
2620e1000_write_phy_reg_ex(struct e1000_hw *hw,
2621 uint32_t reg_addr,
2622 uint16_t phy_data)
2623{
2624 uint32_t i;
2625 uint32_t mdic = 0;
2626 const uint32_t phy_addr = 1;
2627
2628 DEBUGFUNC("e1000_write_phy_reg_ex");
2629
2630 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2631 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2632 return -E1000_ERR_PARAM;
2633 }
2634
2635 if(hw->mac_type > e1000_82543) {
2636 /* Set up Op-code, Phy Address, register address, and data intended
2637 * for the PHY register in the MDI Control register. The MAC will take
2638 * care of interfacing with the PHY to send the desired data.
2639 */
2640 mdic = (((uint32_t) phy_data) |
2641 (reg_addr << E1000_MDIC_REG_SHIFT) |
2642 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2643 (E1000_MDIC_OP_WRITE));
2644
2645 E1000_WRITE_REG(hw, MDIC, mdic);
2646
2647 /* Poll the ready bit to see if the MDI read completed */
2648 for(i = 0; i < 640; i++) {
2649 udelay(5);
2650 mdic = E1000_READ_REG(hw, MDIC);
2651 if(mdic & E1000_MDIC_READY) break;
2652 }
2653 if(!(mdic & E1000_MDIC_READY)) {
2654 DEBUGOUT("MDI Write did not complete\n");
2655 return -E1000_ERR_PHY;
2656 }
2657 } else {
2658 /* We'll need to use the SW defined pins to shift the write command
2659 * out to the PHY. We first send a preamble to the PHY to signal the
2660 * beginning of the MII instruction. This is done by sending 32
2661 * consecutive "1" bits.
2662 */
2663 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2664
2665 /* Now combine the remaining required fields that will indicate a
2666 * write operation. We use this method instead of calling the
2667 * e1000_shift_out_mdi_bits routine for each field in the command. The
2668 * format of a MII write instruction is as follows:
2669 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2670 */
2671 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2672 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2673 mdic <<= 16;
2674 mdic |= (uint32_t) phy_data;
2675
2676 e1000_shift_out_mdi_bits(hw, mdic, 32);
2677 }
2678
2679 return E1000_SUCCESS;
2680}
2681
2682/******************************************************************************
2683* Returns the PHY to the power-on reset state
2684*
2685* hw - Struct containing variables accessed by shared code
2686******************************************************************************/
2687static void
2688e1000_phy_hw_reset(struct e1000_hw *hw)
2689{
2690 uint32_t ctrl, ctrl_ext;
2691
2692 DEBUGFUNC("e1000_phy_hw_reset");
2693
2694 DEBUGOUT("Resetting Phy...\n");
2695
2696 if(hw->mac_type > e1000_82543) {
2697 /* Read the device control register and assert the E1000_CTRL_PHY_RST
2698 * bit. Then, take it out of reset.
2699 */
2700 ctrl = E1000_READ_REG(hw, CTRL);
2701 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2702 E1000_WRITE_FLUSH(hw);
2703 mdelay(10);
2704 E1000_WRITE_REG(hw, CTRL, ctrl);
2705 E1000_WRITE_FLUSH(hw);
2706 } else {
2707 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2708 * bit to put the PHY into reset. Then, take it out of reset.
2709 */
2710 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2711 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2712 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2713 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2714 E1000_WRITE_FLUSH(hw);
2715 mdelay(10);
2716 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2717 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2718 E1000_WRITE_FLUSH(hw);
2719 }
2720 udelay(150);
2721}
2722
2723/******************************************************************************
2724* Resets the PHY
2725*
2726* hw - Struct containing variables accessed by shared code
2727*
2728* Sets bit 15 of the MII Control regiser
2729******************************************************************************/
2730static int
2731e1000_phy_reset(struct e1000_hw *hw)
2732{
2733 int32_t ret_val;
2734 uint16_t phy_data;
2735
2736 DEBUGFUNC("e1000_phy_reset");
2737
2738 if(hw->mac_type != e1000_82541_rev_2) {
2739 if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data)))
2740 return ret_val;
2741
2742 phy_data |= MII_CR_RESET;
2743 if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data)))
2744 return ret_val;
2745
2746 udelay(1);
2747 } else e1000_phy_hw_reset(hw);
2748
2749 if(hw->phy_type == e1000_phy_igp)
2750 e1000_phy_init_script(hw);
2751
2752 return E1000_SUCCESS;
2753}
2754
2755/******************************************************************************
2756* Probes the expected PHY address for known PHY IDs
2757*
2758* hw - Struct containing variables accessed by shared code
2759******************************************************************************/
2760static int
2761e1000_detect_gig_phy(struct e1000_hw *hw)
2762{
2763 int32_t phy_init_status, ret_val;
2764 uint16_t phy_id_high, phy_id_low;
2765 boolean_t match = FALSE;
2766
2767 DEBUGFUNC("e1000_detect_gig_phy");
2768
2769 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
2770 * around that forces PHY page 0 to be set or the reads fail. The rest of
2771 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
2772 * So for ESB-2 we need to have this set so our reads won't fail. If the
2773 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
2774 * this out as well. */
2775 if (hw->mac_type == e1000_80003es2lan)
2776 hw->phy_type = e1000_phy_gg82563;
2777
2778 /* Read the PHY ID Registers to identify which PHY is onboard. */
2779 if((ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high)))
2780 return ret_val;
2781
2782 hw->phy_id = (uint32_t) (phy_id_high << 16);
2783 udelay(20);
2784 if((ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low)))
2785 return ret_val;
2786
2787 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2788#ifdef LINUX_DRIVER
2789 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
2790#endif
2791
2792 switch(hw->mac_type) {
2793 case e1000_82543:
2794 if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
2795 break;
2796 case e1000_82544:
2797 if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
2798 break;
2799 case e1000_82540:
2800 case e1000_82545:
2801 case e1000_82545_rev_3:
2802 case e1000_82546:
2803 case e1000_82546_rev_3:
2804 if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
2805 break;
2806 case e1000_82541:
2807 case e1000_82541_rev_2:
2808 case e1000_82547:
2809 case e1000_82547_rev_2:
2810 if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
2811 break;
2812 case e1000_80003es2lan:
2813 if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
2814 break;
2815 default:
2816 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
2817 return -E1000_ERR_CONFIG;
2818 }
2819 phy_init_status = e1000_set_phy_type(hw);
2820
2821 if ((match) && (phy_init_status == E1000_SUCCESS)) {
2822 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
2823 return E1000_SUCCESS;
2824 }
2825 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
2826 return -E1000_ERR_PHY;
2827}
2828
2829/******************************************************************************
2830 * Sets up eeprom variables in the hw struct. Must be called after mac_type
2831 * is configured.
2832 *
2833 * hw - Struct containing variables accessed by shared code
2834 *****************************************************************************/
2835static void
2836e1000_init_eeprom_params(struct e1000_hw *hw)
2837{
2838 struct e1000_eeprom_info *eeprom = &hw->eeprom;
2839 uint32_t eecd = E1000_READ_REG(hw, EECD);
2840 uint16_t eeprom_size;
2841
2842 DEBUGFUNC("e1000_init_eeprom_params");
2843
2844 switch (hw->mac_type) {
2845 case e1000_82542_rev2_0:
2846 case e1000_82542_rev2_1:
2847 case e1000_82543:
2848 case e1000_82544:
2849 eeprom->type = e1000_eeprom_microwire;
2850 eeprom->word_size = 64;
2851 eeprom->opcode_bits = 3;
2852 eeprom->address_bits = 6;
2853 eeprom->delay_usec = 50;
2854 break;
2855 case e1000_82540:
2856 case e1000_82545:
2857 case e1000_82545_rev_3:
2858 case e1000_82546:
2859 case e1000_82546_rev_3:
2860 eeprom->type = e1000_eeprom_microwire;
2861 eeprom->opcode_bits = 3;
2862 eeprom->delay_usec = 50;
2863 if(eecd & E1000_EECD_SIZE) {
2864 eeprom->word_size = 256;
2865 eeprom->address_bits = 8;
2866 } else {
2867 eeprom->word_size = 64;
2868 eeprom->address_bits = 6;
2869 }
2870 break;
2871 case e1000_82541:
2872 case e1000_82541_rev_2:
2873 case e1000_82547:
2874 case e1000_82547_rev_2:
2875 if (eecd & E1000_EECD_TYPE) {
2876 eeprom->type = e1000_eeprom_spi;
2877 if (eecd & E1000_EECD_ADDR_BITS) {
2878 eeprom->page_size = 32;
2879 eeprom->address_bits = 16;
2880 } else {
2881 eeprom->page_size = 8;
2882 eeprom->address_bits = 8;
2883 }
2884 } else {
2885 eeprom->type = e1000_eeprom_microwire;
2886 eeprom->opcode_bits = 3;
2887 eeprom->delay_usec = 50;
2888 if (eecd & E1000_EECD_ADDR_BITS) {
2889 eeprom->word_size = 256;
2890 eeprom->address_bits = 8;
2891 } else {
2892 eeprom->word_size = 64;
2893 eeprom->address_bits = 6;
2894 }
2895 }
2896 break;
2897 default:
2898 eeprom->type = e1000_eeprom_spi;
2899 if (eecd & E1000_EECD_ADDR_BITS) {
2900 eeprom->page_size = 32;
2901 eeprom->address_bits = 16;
2902 } else {
2903 eeprom->page_size = 8;
2904 eeprom->address_bits = 8;
2905 }
2906 break;
2907 }
2908
2909 if (eeprom->type == e1000_eeprom_spi) {
2910 eeprom->opcode_bits = 8;
2911 eeprom->delay_usec = 1;
2912 eeprom->word_size = 64;
2913 if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) {
2914 eeprom_size &= EEPROM_SIZE_MASK;
2915
2916 switch (eeprom_size) {
2917 case EEPROM_SIZE_16KB:
2918 eeprom->word_size = 8192;
2919 break;
2920 case EEPROM_SIZE_8KB:
2921 eeprom->word_size = 4096;
2922 break;
2923 case EEPROM_SIZE_4KB:
2924 eeprom->word_size = 2048;
2925 break;
2926 case EEPROM_SIZE_2KB:
2927 eeprom->word_size = 1024;
2928 break;
2929 case EEPROM_SIZE_1KB:
2930 eeprom->word_size = 512;
2931 break;
2932 case EEPROM_SIZE_512B:
2933 eeprom->word_size = 256;
2934 break;
2935 case EEPROM_SIZE_128B:
2936 default:
2937 break;
2938 }
2939 }
2940 }
2941}
2942
2943/******************************************************************************
2944 * Raises the EEPROM's clock input.
2945 *
2946 * hw - Struct containing variables accessed by shared code
2947 * eecd - EECD's current value
2948 *****************************************************************************/
2949static void
2950e1000_raise_ee_clk(struct e1000_hw *hw,
2951 uint32_t *eecd)
2952{
2953 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
2954 * wait <delay> microseconds.
2955 */
2956 *eecd = *eecd | E1000_EECD_SK;
2957 E1000_WRITE_REG(hw, EECD, *eecd);
2958 E1000_WRITE_FLUSH(hw);
2959 udelay(hw->eeprom.delay_usec);
2960}
2961
2962/******************************************************************************
2963 * Lowers the EEPROM's clock input.
2964 *
2965 * hw - Struct containing variables accessed by shared code
2966 * eecd - EECD's current value
2967 *****************************************************************************/
2968static void
2969e1000_lower_ee_clk(struct e1000_hw *hw,
2970 uint32_t *eecd)
2971{
2972 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
2973 * wait 50 microseconds.
2974 */
2975 *eecd = *eecd & ~E1000_EECD_SK;
2976 E1000_WRITE_REG(hw, EECD, *eecd);
2977 E1000_WRITE_FLUSH(hw);
2978 udelay(hw->eeprom.delay_usec);
2979}
2980
2981/******************************************************************************
2982 * Shift data bits out to the EEPROM.
2983 *
2984 * hw - Struct containing variables accessed by shared code
2985 * data - data to send to the EEPROM
2986 * count - number of bits to shift out
2987 *****************************************************************************/
2988static void
2989e1000_shift_out_ee_bits(struct e1000_hw *hw,
2990 uint16_t data,
2991 uint16_t count)
2992{
2993 struct e1000_eeprom_info *eeprom = &hw->eeprom;
2994 uint32_t eecd;
2995 uint32_t mask;
2996
2997 /* We need to shift "count" bits out to the EEPROM. So, value in the
2998 * "data" parameter will be shifted out to the EEPROM one bit at a time.
2999 * In order to do this, "data" must be broken down into bits.
3000 */
3001 mask = 0x01 << (count - 1);
3002 eecd = E1000_READ_REG(hw, EECD);
3003 if (eeprom->type == e1000_eeprom_microwire) {
3004 eecd &= ~E1000_EECD_DO;
3005 } else if (eeprom->type == e1000_eeprom_spi) {
3006 eecd |= E1000_EECD_DO;
3007 }
3008 do {
3009 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3010 * and then raising and then lowering the clock (the SK bit controls
3011 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
3012 * by setting "DI" to "0" and then raising and then lowering the clock.
3013 */
3014 eecd &= ~E1000_EECD_DI;
3015
3016 if(data & mask)
3017 eecd |= E1000_EECD_DI;
3018
3019 E1000_WRITE_REG(hw, EECD, eecd);
3020 E1000_WRITE_FLUSH(hw);
3021
3022 udelay(eeprom->delay_usec);
3023
3024 e1000_raise_ee_clk(hw, &eecd);
3025 e1000_lower_ee_clk(hw, &eecd);
3026
3027 mask = mask >> 1;
3028
3029 } while(mask);
3030
3031 /* We leave the "DI" bit set to "0" when we leave this routine. */
3032 eecd &= ~E1000_EECD_DI;
3033 E1000_WRITE_REG(hw, EECD, eecd);
3034}
3035
3036/******************************************************************************
3037 * Shift data bits in from the EEPROM
3038 *
3039 * hw - Struct containing variables accessed by shared code
3040 *****************************************************************************/
3041static uint16_t
3042e1000_shift_in_ee_bits(struct e1000_hw *hw,
3043 uint16_t count)
3044{
3045 uint32_t eecd;
3046 uint32_t i;
3047 uint16_t data;
3048
3049 /* In order to read a register from the EEPROM, we need to shift 'count'
3050 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3051 * input to the EEPROM (setting the SK bit), and then reading the value of
3052 * the "DO" bit. During this "shifting in" process the "DI" bit should
3053 * always be clear.
3054 */
3055
3056 eecd = E1000_READ_REG(hw, EECD);
3057
3058 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3059 data = 0;
3060
3061 for(i = 0; i < count; i++) {
3062 data = data << 1;
3063 e1000_raise_ee_clk(hw, &eecd);
3064
3065 eecd = E1000_READ_REG(hw, EECD);
3066
3067 eecd &= ~(E1000_EECD_DI);
3068 if(eecd & E1000_EECD_DO)
3069 data |= 1;
3070
3071 e1000_lower_ee_clk(hw, &eecd);
3072 }
3073
3074 return data;
3075}
3076
3077/******************************************************************************
3078 * Prepares EEPROM for access
3079 *
3080 * hw - Struct containing variables accessed by shared code
3081 *
3082 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3083 * function should be called before issuing a command to the EEPROM.
3084 *****************************************************************************/
3085static int32_t
3086e1000_acquire_eeprom(struct e1000_hw *hw)
3087{
3088 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3089 uint32_t eecd, i=0;
3090
3091 eecd = E1000_READ_REG(hw, EECD);
3092
3093 /* Request EEPROM Access */
3094 if(hw->mac_type > e1000_82544) {
3095 eecd |= E1000_EECD_REQ;
3096 E1000_WRITE_REG(hw, EECD, eecd);
3097 eecd = E1000_READ_REG(hw, EECD);
3098 while((!(eecd & E1000_EECD_GNT)) &&
3099 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3100 i++;
3101 udelay(5);
3102 eecd = E1000_READ_REG(hw, EECD);
3103 }
3104 if(!(eecd & E1000_EECD_GNT)) {
3105 eecd &= ~E1000_EECD_REQ;
3106 E1000_WRITE_REG(hw, EECD, eecd);
3107 DEBUGOUT("Could not acquire EEPROM grant\n");
3108 return -E1000_ERR_EEPROM;
3109 }
3110 }
3111
3112 /* Setup EEPROM for Read/Write */
3113
3114 if (eeprom->type == e1000_eeprom_microwire) {
3115 /* Clear SK and DI */
3116 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3117 E1000_WRITE_REG(hw, EECD, eecd);
3118
3119 /* Set CS */
3120 eecd |= E1000_EECD_CS;
3121 E1000_WRITE_REG(hw, EECD, eecd);
3122 } else if (eeprom->type == e1000_eeprom_spi) {
3123 /* Clear SK and CS */
3124 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3125 E1000_WRITE_REG(hw, EECD, eecd);
3126 udelay(1);
3127 }
3128
3129 return E1000_SUCCESS;
3130}
3131
3132/******************************************************************************
3133 * Returns EEPROM to a "standby" state
3134 *
3135 * hw - Struct containing variables accessed by shared code
3136 *****************************************************************************/
3137static void
3138e1000_standby_eeprom(struct e1000_hw *hw)
3139{
3140 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3141 uint32_t eecd;
3142
3143 eecd = E1000_READ_REG(hw, EECD);
3144
3145 if(eeprom->type == e1000_eeprom_microwire) {
3146
3147 /* Deselect EEPROM */
3148 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3149 E1000_WRITE_REG(hw, EECD, eecd);
3150 E1000_WRITE_FLUSH(hw);
3151 udelay(eeprom->delay_usec);
3152
3153 /* Clock high */
3154 eecd |= E1000_EECD_SK;
3155 E1000_WRITE_REG(hw, EECD, eecd);
3156 E1000_WRITE_FLUSH(hw);
3157 udelay(eeprom->delay_usec);
3158
3159 /* Select EEPROM */
3160 eecd |= E1000_EECD_CS;
3161 E1000_WRITE_REG(hw, EECD, eecd);
3162 E1000_WRITE_FLUSH(hw);
3163 udelay(eeprom->delay_usec);
3164
3165 /* Clock low */
3166 eecd &= ~E1000_EECD_SK;
3167 E1000_WRITE_REG(hw, EECD, eecd);
3168 E1000_WRITE_FLUSH(hw);
3169 udelay(eeprom->delay_usec);
3170 } else if(eeprom->type == e1000_eeprom_spi) {
3171 /* Toggle CS to flush commands */
3172 eecd |= E1000_EECD_CS;
3173 E1000_WRITE_REG(hw, EECD, eecd);
3174 E1000_WRITE_FLUSH(hw);
3175 udelay(eeprom->delay_usec);
3176 eecd &= ~E1000_EECD_CS;
3177 E1000_WRITE_REG(hw, EECD, eecd);
3178 E1000_WRITE_FLUSH(hw);
3179 udelay(eeprom->delay_usec);
3180 }
3181}
3182
3183/******************************************************************************
3184 * Terminates a command by inverting the EEPROM's chip select pin
3185 *
3186 * hw - Struct containing variables accessed by shared code
3187 *****************************************************************************/
3188static void
3189e1000_release_eeprom(struct e1000_hw *hw)
3190{
3191 uint32_t eecd;
3192
3193 eecd = E1000_READ_REG(hw, EECD);
3194
3195 if (hw->eeprom.type == e1000_eeprom_spi) {
3196 eecd |= E1000_EECD_CS; /* Pull CS high */
3197 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3198
3199 E1000_WRITE_REG(hw, EECD, eecd);
3200
3201 udelay(hw->eeprom.delay_usec);
3202 } else if(hw->eeprom.type == e1000_eeprom_microwire) {
3203 /* cleanup eeprom */
3204
3205 /* CS on Microwire is active-high */
3206 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3207
3208 E1000_WRITE_REG(hw, EECD, eecd);
3209
3210 /* Rising edge of clock */
3211 eecd |= E1000_EECD_SK;
3212 E1000_WRITE_REG(hw, EECD, eecd);
3213 E1000_WRITE_FLUSH(hw);
3214 udelay(hw->eeprom.delay_usec);
3215
3216 /* Falling edge of clock */
3217 eecd &= ~E1000_EECD_SK;
3218 E1000_WRITE_REG(hw, EECD, eecd);
3219 E1000_WRITE_FLUSH(hw);
3220 udelay(hw->eeprom.delay_usec);
3221 }
3222
3223 /* Stop requesting EEPROM access */
3224 if(hw->mac_type > e1000_82544) {
3225 eecd &= ~E1000_EECD_REQ;
3226 E1000_WRITE_REG(hw, EECD, eecd);
3227 }
3228}
3229
3230/******************************************************************************
3231 * Reads a 16 bit word from the EEPROM.
3232 *
3233 * hw - Struct containing variables accessed by shared code
3234 *****************************************************************************/
3235static int32_t
3236e1000_spi_eeprom_ready(struct e1000_hw *hw)
3237{
3238 uint16_t retry_count = 0;
3239 uint8_t spi_stat_reg;
3240
3241 /* Read "Status Register" repeatedly until the LSB is cleared. The
3242 * EEPROM will signal that the command has been completed by clearing
3243 * bit 0 of the internal status register. If it's not cleared within
3244 * 5 milliseconds, then error out.
3245 */
3246 retry_count = 0;
3247 do {
3248 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3249 hw->eeprom.opcode_bits);
3250 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
3251 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3252 break;
3253
3254 udelay(5);
3255 retry_count += 5;
3256
3257 } while(retry_count < EEPROM_MAX_RETRY_SPI);
3258
3259 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3260 * only 0-5mSec on 5V devices)
3261 */
3262 if(retry_count >= EEPROM_MAX_RETRY_SPI) {
3263 DEBUGOUT("SPI EEPROM Status error\n");
3264 return -E1000_ERR_EEPROM;
3265 }
3266
3267 return E1000_SUCCESS;
3268}
3269
3270/******************************************************************************
3271 * Reads a 16 bit word from the EEPROM.
3272 *
3273 * hw - Struct containing variables accessed by shared code
3274 * offset - offset of word in the EEPROM to read
3275 * data - word read from the EEPROM
3276 * words - number of words to read
3277 *****************************************************************************/
3278static int
3279e1000_read_eeprom(struct e1000_hw *hw,
3280 uint16_t offset,
3281 uint16_t words,
3282 uint16_t *data)
3283{
3284 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3285 uint32_t i = 0;
3286
3287 DEBUGFUNC("e1000_read_eeprom");
3288
3289 /* A check for invalid values: offset too large, too many words, and not
3290 * enough words.
3291 */
3292 if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) ||
3293 (words == 0)) {
3294 DEBUGOUT("\"words\" parameter out of bounds\n");
3295 return -E1000_ERR_EEPROM;
3296 }
3297
3298 /* Prepare the EEPROM for reading */
3299 if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3300 return -E1000_ERR_EEPROM;
3301
3302 if(eeprom->type == e1000_eeprom_spi) {
3303 uint16_t word_in;
3304 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
3305
3306 if(e1000_spi_eeprom_ready(hw)) {
3307 e1000_release_eeprom(hw);
3308 return -E1000_ERR_EEPROM;
3309 }
3310
3311 e1000_standby_eeprom(hw);
3312
3313 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
3314 if((eeprom->address_bits == 8) && (offset >= 128))
3315 read_opcode |= EEPROM_A8_OPCODE_SPI;
3316
3317 /* Send the READ command (opcode + addr) */
3318 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3319 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
3320
3321 /* Read the data. The address of the eeprom internally increments with
3322 * each byte (spi) being read, saving on the overhead of eeprom setup
3323 * and tear-down. The address counter will roll over if reading beyond
3324 * the size of the eeprom, thus allowing the entire memory to be read
3325 * starting from any offset. */
3326 for (i = 0; i < words; i++) {
3327 word_in = e1000_shift_in_ee_bits(hw, 16);
3328 data[i] = (word_in >> 8) | (word_in << 8);
3329 }
3330 } else if(eeprom->type == e1000_eeprom_microwire) {
3331 for (i = 0; i < words; i++) {
3332 /* Send the READ command (opcode + addr) */
3333 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
3334 eeprom->opcode_bits);
3335 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
3336 eeprom->address_bits);
3337
3338 /* Read the data. For microwire, each word requires the overhead
3339 * of eeprom setup and tear-down. */
3340 data[i] = e1000_shift_in_ee_bits(hw, 16);
3341 e1000_standby_eeprom(hw);
3342 }
3343 }
3344
3345 /* End this read operation */
3346 e1000_release_eeprom(hw);
3347
3348 return E1000_SUCCESS;
3349}
3350
3351/******************************************************************************
3352 * Verifies that the EEPROM has a valid checksum
3353 *
3354 * hw - Struct containing variables accessed by shared code
3355 *
3356 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3357 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3358 * valid.
3359 *****************************************************************************/
3360static int
3361e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3362{
3363 uint16_t checksum = 0;
3364 uint16_t i, eeprom_data;
3365
3366 DEBUGFUNC("e1000_validate_eeprom_checksum");
3367
3368 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3369 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3370 DEBUGOUT("EEPROM Read Error\n");
3371 return -E1000_ERR_EEPROM;
3372 }
3373 checksum += eeprom_data;
3374 }
3375
3376 if(checksum == (uint16_t) EEPROM_SUM)
3377 return E1000_SUCCESS;
3378 else {
3379 DEBUGOUT("EEPROM Checksum Invalid\n");
3380 return -E1000_ERR_EEPROM;
3381 }
3382}
3383
3384/******************************************************************************
3385 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
3386 * second function of dual function devices
3387 *
3388 * hw - Struct containing variables accessed by shared code
3389 *****************************************************************************/
3390static int
3391e1000_read_mac_addr(struct e1000_hw *hw)
3392{
3393 uint16_t offset;
3394 uint16_t eeprom_data;
3395 int i;
3396
3397 DEBUGFUNC("e1000_read_mac_addr");
3398
3399 for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
3400 offset = i >> 1;
3401 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
3402 DEBUGOUT("EEPROM Read Error\n");
3403 return -E1000_ERR_EEPROM;
3404 }
3405 hw->mac_addr[i] = eeprom_data & 0xff;
3406 hw->mac_addr[i+1] = (eeprom_data >> 8) & 0xff;
3407 }
3408 if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) &&
3409 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
3410 /* Invert the last bit if this is the second device */
3411 hw->mac_addr[5] ^= 1;
3412 return E1000_SUCCESS;
3413}
3414
3415/******************************************************************************
3416 * Initializes receive address filters.
3417 *
3418 * hw - Struct containing variables accessed by shared code
3419 *
3420 * Places the MAC address in receive address register 0 and clears the rest
3421 * of the receive addresss registers. Clears the multicast table. Assumes
3422 * the receiver is in reset when the routine is called.
3423 *****************************************************************************/
3424static void
3425e1000_init_rx_addrs(struct e1000_hw *hw)
3426{
3427 uint32_t i;
3428 uint32_t addr_low;
3429 uint32_t addr_high;
3430
3431 DEBUGFUNC("e1000_init_rx_addrs");
3432
3433 /* Setup the receive address. */
3434 DEBUGOUT("Programming MAC Address into RAR[0]\n");
3435 addr_low = (hw->mac_addr[0] |
3436 (hw->mac_addr[1] << 8) |
3437 (hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24));
3438
3439 addr_high = (hw->mac_addr[4] |
3440 (hw->mac_addr[5] << 8) | E1000_RAH_AV);
3441
3442 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
3443 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
3444
3445 /* Zero out the other 15 receive addresses. */
3446 DEBUGOUT("Clearing RAR[1-15]\n");
3447 for(i = 1; i < E1000_RAR_ENTRIES; i++) {
3448 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
3449 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
3450 }
3451}
3452
3453/******************************************************************************
3454 * Clears the VLAN filer table
3455 *
3456 * hw - Struct containing variables accessed by shared code
3457 *****************************************************************************/
3458static void
3459e1000_clear_vfta(struct e1000_hw *hw)
3460{
3461 uint32_t offset;
3462
3463 for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
3464 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
3465}
3466
3467/******************************************************************************
3468* Writes a value to one of the devices registers using port I/O (as opposed to
3469* memory mapped I/O). Only 82544 and newer devices support port I/O. *
3470* hw - Struct containing variables accessed by shared code
3471* offset - offset to write to * value - value to write
3472*****************************************************************************/
3473static void
3474e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value)
3475{
3476 uint32_t io_addr = hw->io_base;
3477 uint32_t io_data = hw->io_base + 4;
3478 e1000_io_write(hw, io_addr, offset);
3479 e1000_io_write(hw, io_data, value);
3480}
3481
3482
3483/******************************************************************************
3484 * Functions from e1000_main.c of the linux driver
3485 ******************************************************************************/
3486
3487/**
3488 * e1000_reset - Reset the adapter
3489 */
3490
3491static int
3492e1000_reset(struct e1000_hw *hw)
3493{
3494 uint32_t pba;
3495 /* Repartition Pba for greater than 9k mtu
3496 * To take effect CTRL.RST is required.
3497 */
3498
3499 if(hw->mac_type < e1000_82547) {
3500 pba = E1000_PBA_48K;
3501 } else if (hw->mac_type == e1000_80003es2lan) {
3502 pba = E1000_PBA_38K;
3503 } else {
3504 pba = E1000_PBA_30K;
3505 }
3506 E1000_WRITE_REG(hw, PBA, pba);
3507
3508 /* flow control settings */
3509#if 0
3510 hw->fc_high_water = FC_DEFAULT_HI_THRESH;
3511 hw->fc_low_water = FC_DEFAULT_LO_THRESH;
3512 hw->fc_pause_time = FC_DEFAULT_TX_TIMER;
3513 hw->fc_send_xon = 1;
3514 hw->fc = hw->original_fc;
3515#endif
3516
3517 e1000_reset_hw(hw);
3518 if(hw->mac_type >= e1000_82544)
3519 E1000_WRITE_REG(hw, WUC, 0);
3520 return e1000_init_hw(hw);
3521}
3522
3523/**
3524 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3525 * @adapter: board private structure to initialize
3526 *
3527 * e1000_sw_init initializes the Adapter private data structure.
3528 * Fields are initialized based on PCI device information and
3529 * OS network device settings (MTU size).
3530 **/
3531
3532static int
3533e1000_sw_init(struct pci_device *pdev, struct e1000_hw *hw)
3534{
3535 int result;
3536
3537 /* PCI config space info */
3538 pci_read_config_word(pdev, PCI_VENDOR_ID, &hw->vendor_id);
3539 pci_read_config_word(pdev, PCI_DEVICE_ID, &hw->device_id);
3540 pci_read_config_byte(pdev, PCI_REVISION, &hw->revision_id);
3541#if 0
3542 pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID,
3543 &hw->subsystem_vendor_id);
3544 pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
3545#endif
3546
3547 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
3548
3549 /* identify the MAC */
3550
3551 result = e1000_set_mac_type(hw);
3552 if (result) {
3553 E1000_ERR("Unknown MAC Type\n");
3554 return result;
3555 }
3556
3557 /* initialize eeprom parameters */
3558
3559 e1000_init_eeprom_params(hw);
3560
3561#if 0
3562 if((hw->mac_type == e1000_82541) ||
3563 (hw->mac_type == e1000_82547) ||
3564 (hw->mac_type == e1000_82541_rev_2) ||
3565 (hw->mac_type == e1000_82547_rev_2))
3566 hw->phy_init_script = 1;
3567#endif
3568
3569 e1000_set_media_type(hw);
3570
3571#if 0
3572 if(hw->mac_type < e1000_82543)
3573 hw->report_tx_early = 0;
3574 else
3575 hw->report_tx_early = 1;
3576
3577 hw->wait_autoneg_complete = FALSE;
3578#endif
3579 hw->tbi_compatibility_en = TRUE;
3580#if 0
3581 hw->adaptive_ifs = TRUE;
3582
3583 /* Copper options */
3584
3585 if(hw->media_type == e1000_media_type_copper) {
3586 hw->mdix = AUTO_ALL_MODES;
3587 hw->disable_polarity_correction = FALSE;
3588 hw->master_slave = E1000_MASTER_SLAVE;
3589 }
3590#endif
3591 return E1000_SUCCESS;
3592}
3593
3594#if 0
3595static uint32_t
3596e1000_io_read(struct e1000_hw *hw __unused, uint32_t port)
3597{
3598 return inl(port);
3599}
3600#endif
3601
3602static void
3603e1000_io_write(struct e1000_hw *hw __unused, uint32_t port, uint32_t value)
3604{
3605 outl(value, port);
3606}
3607
3608
3609/******************************************************************************
3610 * Functions not present in the linux driver
3611 ******************************************************************************/
3612
3613static void fill_rx (void)
3614{
3615 struct e1000_rx_desc *rd;
3616 rd = rx_base + rx_tail;
3617 memset (rd, 0, 16);
3618 rd->buffer_addr = virt_to_bus(&packets[MAX_PACKET*(rx_tail%RX_BUFS)]);
3619 rx_tail = (rx_tail + 1) % 8;
3620 E1000_WRITE_REG (&hw, RDT, rx_tail);
3621}
3622
3623static void init_descriptor (void)
3624{
3625 unsigned long ptr;
3626 unsigned long tctl;
3627 int i;
3628
3629 ptr = virt_to_phys(tx_pool);
3630 if (ptr & 0xf)
3631 ptr = (ptr + 0x10) & (~0xf);
3632
3633 tx_base = phys_to_virt(ptr);
3634
3635 E1000_WRITE_REG (&hw, TDBAL, virt_to_bus(tx_base));
3636 E1000_WRITE_REG (&hw, TDBAH, 0);
3637 E1000_WRITE_REG (&hw, TDLEN, 128);
3638
3639 /* Setup the HW Tx Head and Tail descriptor pointers */
3640
3641 E1000_WRITE_REG (&hw, TDH, 0);
3642 E1000_WRITE_REG (&hw, TDT, 0);
3643 tx_tail = 0;
3644
3645 /* Program the Transmit Control Register */
3646
3647#ifdef LINUX_DRIVER_TCTL
3648 tctl = E1000_READ_REG(&hw, TCTL);
3649
3650 tctl &= ~E1000_TCTL_CT;
3651 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
3652 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3653#else
3654 tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
3655 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) |
3656 (E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
3657#endif
3658
3659 E1000_WRITE_REG (&hw, TCTL, tctl);
3660
3661 e1000_config_collision_dist(&hw);
3662
3663
3664 rx_tail = 0;
3665 /* disable receive */
3666 E1000_WRITE_REG (&hw, RCTL, 0);
3667 ptr = virt_to_phys(rx_pool);
3668 if (ptr & 0xf)
3669 ptr = (ptr + 0x10) & (~0xf);
3670 rx_base = phys_to_virt(ptr);
3671
3672 /* Setup the Base and Length of the Rx Descriptor Ring */
3673
3674 E1000_WRITE_REG (&hw, RDBAL, virt_to_bus(rx_base));
3675 E1000_WRITE_REG (&hw, RDBAH, 0);
3676
3677 E1000_WRITE_REG (&hw, RDLEN, 128);
3678
3679 /* Setup the HW Rx Head and Tail Descriptor Pointers */
3680 E1000_WRITE_REG (&hw, RDH, 0);
3681 E1000_WRITE_REG (&hw, RDT, 0);
3682
3683 E1000_WRITE_REG (&hw, RCTL,
3684 E1000_RCTL_EN |
3685 E1000_RCTL_BAM |
3686 E1000_RCTL_SZ_2048 |
3687 E1000_RCTL_MPE);
3688 for (i = 0; i < RX_BUFS; i++)
3689 fill_rx();
3690}
3691
3692
3693
3694/**************************************************************************
3695POLL - Wait for a frame
3696***************************************************************************/
3697static int
3698e1000_poll (struct nic *nic, int retrieve)
3699{
3700 /* return true if there's an ethernet packet ready to read */
3701 /* nic->packet should contain data on return */
3702 /* nic->packetlen should contain length of data */
3703 struct e1000_rx_desc *rd;
3704 char *packet = &packets[MAX_PACKET*(rx_last%RX_BUFS)];
3705 uint32_t icr;
3706
3707 rd = rx_base + rx_last;
3708 if (!rd->status & E1000_RXD_STAT_DD)
3709 return 0;
3710
3711 if ( ! retrieve ) return 1;
3712
3713 // printf("recv: packet %! -> %! len=%d \n", packet+6, packet,rd->Length);
3714 memcpy (nic->packet, packet, rd->length);
3715 nic->packetlen = rd->length;
3716 rx_last = (rx_last + 1) %8;
3717 fill_rx ();
3718
3719 /* Acknowledge interrupt. */
3720 icr = E1000_READ_REG(&hw, ICR);
3721
3722 return 1;
3723}
3724
3725/**************************************************************************
3726TRANSMIT - Transmit a frame
3727***************************************************************************/
3728static void
3729e1000_transmit (struct nic *nic, const char *d, /* Destination */
3730 unsigned int type, /* Type */
3731 unsigned int size, /* size */
3732 const char *p) /* Packet */
3733{
3734 /* send the packet to destination */
3735 struct eth_hdr {
3736 unsigned char dst_addr[ETH_ALEN];
3737 unsigned char src_addr[ETH_ALEN];
3738 unsigned short type;
3739 } hdr;
3740 struct e1000_tx_desc *txhd; /* header */
3741 struct e1000_tx_desc *txp; /* payload */
3742 DEBUGFUNC("send");
3743
3744 memcpy (&hdr.dst_addr, d, ETH_ALEN);
3745 memcpy (&hdr.src_addr, nic->node_addr, ETH_ALEN);
3746
3747 hdr.type = htons (type);
3748 txhd = tx_base + tx_tail;
3749 tx_tail = (tx_tail + 1) % 8;
3750 txp = tx_base + tx_tail;
3751 tx_tail = (tx_tail + 1) % 8;
3752
3753 txhd->buffer_addr = virt_to_bus (&hdr);
3754 txhd->lower.data = sizeof (hdr);
3755 txhd->upper.data = 0;
3756
3757 txp->buffer_addr = virt_to_bus(p);
3758 txp->lower.data = E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS | size;
3759 txp->upper.data = 0;
3760
3761 E1000_WRITE_REG (&hw, TDT, tx_tail);
3762 while (!(txp->upper.data & E1000_TXD_STAT_DD)) {
3763 udelay(10); /* give the nic a chance to write to the register */
3764 poll_interruptions();
3765 }
3766 DEBUGFUNC("send end");
3767}
3768
3769
3770/**************************************************************************
3771DISABLE - Turn off ethernet interface
3772***************************************************************************/
3773static void e1000_disable (struct dev *dev __unused)
3774{
3775 /* Clear the transmit ring */
3776 E1000_WRITE_REG (&hw, TDH, 0);
3777 E1000_WRITE_REG (&hw, TDT, 0);
3778
3779 /* Clear the receive ring */
3780 E1000_WRITE_REG (&hw, RDH, 0);
3781 E1000_WRITE_REG (&hw, RDT, 0);
3782
3783 /* put the card in its initial state */
3784 switch(hw.mac_type) {
3785 case e1000_82544:
3786 case e1000_82540:
3787 case e1000_82545:
3788 case e1000_82546:
3789 case e1000_82541:
3790 case e1000_82541_rev_2:
3791 /* These controllers can't ack the 64-bit write when issuing the
3792 * reset, so use IO-mapping as a workaround to issue the reset */
3793 E1000_WRITE_REG_IO(&hw, CTRL, E1000_CTRL_RST);
3794 break;
3795 case e1000_82545_rev_3:
3796 case e1000_82546_rev_3:
3797 /* Reset is performed on a shadow of the control register */
3798 E1000_WRITE_REG(&hw, CTRL_DUP, E1000_CTRL_RST);
3799 break;
3800 default:
3801 E1000_WRITE_REG(&hw, CTRL, E1000_CTRL_RST);
3802 break;
3803 }
3804
3805 /* Turn off the ethernet interface */
3806 E1000_WRITE_REG (&hw, RCTL, 0);
3807 E1000_WRITE_REG (&hw, TCTL, 0);
3808 mdelay (10);
3809
3810 /* Unmap my window to the device */
3811 iounmap(hw.hw_addr);
3812}
3813
3814/**************************************************************************
3815IRQ - Enable, Disable, or Force interrupts
3816***************************************************************************/
3817static void e1000_irq(struct nic *nic __unused, irq_action_t action)
3818{
3819 switch ( action ) {
3820 case DISABLE :
3821 E1000_WRITE_REG(&hw, IMC, ~0);
3822 E1000_WRITE_FLUSH(&hw);
3823 break;
3824 case ENABLE :
3825 E1000_WRITE_REG(&hw, IMS,
3826 E1000_IMS_RXT0 | E1000_IMS_RXSEQ);
3827 E1000_WRITE_FLUSH(&hw);
3828 break;
3829 case FORCE :
3830 E1000_WRITE_REG(&hw, ICS, E1000_ICS_RXT0);
3831 break;
3832 }
3833}
3834
3835#define IORESOURCE_IO 0x00000100 /* Resource type */
3836#define BAR_0 0
3837#define BAR_1 1
3838#define BAR_5 5
3839
3840/**************************************************************************
3841PROBE - Look for an adapter, this routine's visible to the outside
3842You should omit the last argument struct pci_device * for a non-PCI NIC
3843***************************************************************************/
3844static int e1000_probe(struct dev *dev, struct pci_device *p)
3845{
3846 struct nic *nic = (struct nic *)dev;
3847 unsigned long mmio_start, mmio_len;
3848 int ret_val, i;
3849
3850 if (p == 0)
3851 return 0;
3852 /* Initialize hw with default values */
3853 memset(&hw, 0, sizeof(hw));
3854 hw.pdev = p;
3855
3856#if 1
3857 /* Are these variables needed? */
3858 hw.fc = e1000_fc_none;
3859#if 0
3860 hw.original_fc = e1000_fc_none;
3861#endif
3862 hw.autoneg_failed = 0;
3863#if 0
3864 hw.get_link_status = TRUE;
3865#endif
3866#endif
3867
3868 mmio_start = pci_bar_start(p, PCI_BASE_ADDRESS_0);
3869 mmio_len = pci_bar_size(p, PCI_BASE_ADDRESS_0);
3870 hw.hw_addr = ioremap(mmio_start, mmio_len);
3871
3872 for(i = BAR_1; i <= BAR_5; i++) {
3873 if(pci_bar_size(p, i) == 0)
3874 continue;
3875 if(pci_find_capability(p, i) & IORESOURCE_IO) {
3876 hw.io_base = pci_bar_start(p, i);
3877 break;
3878 }
3879 }
3880
3881 adjust_pci_device(p);
3882
3883 nic->ioaddr = p->ioaddr & ~3;
3884 nic->irqno = p->irq;
3885
3886 /* From Matt Hortman <[email protected]> */
3887 /* MAC and Phy settings */
3888
3889 /* setup the private structure */
3890 if (e1000_sw_init(p, &hw) < 0) {
3891 iounmap(hw.hw_addr);
3892 return 0;
3893 }
3894
3895 /* make sure the EEPROM is good */
3896
3897 if (e1000_validate_eeprom_checksum(&hw) < 0) {
3898 printf ("The EEPROM Checksum Is Not Valid\n");
3899 iounmap(hw.hw_addr);
3900 return 0;
3901 }
3902
3903 /* copy the MAC address out of the EEPROM */
3904
3905 e1000_read_mac_addr(&hw);
3906 memcpy (nic->node_addr, hw.mac_addr, ETH_ALEN);
3907
3908 printf("Ethernet addr: %!\n", nic->node_addr);
3909
3910 /* reset the hardware with the new settings */
3911
3912 ret_val = e1000_reset(&hw);
3913 if (ret_val < 0) {
3914 if ((ret_val == -E1000_ERR_NOLINK) ||
3915 (ret_val == -E1000_ERR_TIMEOUT)) {
3916 E1000_ERR("Valid Link not detected\n");
3917 } else {
3918 E1000_ERR("Hardware Initialization Failed\n");
3919 }
3920 iounmap(hw.hw_addr);
3921 return 0;
3922 }
3923 init_descriptor();
3924
3925 /* point to NIC specific routines */
3926 dev->disable = e1000_disable;
3927 nic->poll = e1000_poll;
3928 nic->transmit = e1000_transmit;
3929 nic->irq = e1000_irq;
3930
3931 return 1;
3932}
3933
3934static struct pci_id e1000_nics[] = {
3935PCI_ROM(0x8086, 0x1000, "e1000-82542", "Intel EtherExpressPro1000"),
3936PCI_ROM(0x8086, 0x1001, "e1000-82543gc-fiber", "Intel EtherExpressPro1000 82543GC Fiber"),
3937PCI_ROM(0x8086, 0x1004, "e1000-82543gc-copper", "Intel EtherExpressPro1000 82543GC Copper"),
3938PCI_ROM(0x8086, 0x1008, "e1000-82544ei-copper", "Intel EtherExpressPro1000 82544EI Copper"),
3939PCI_ROM(0x8086, 0x1009, "e1000-82544ei-fiber", "Intel EtherExpressPro1000 82544EI Fiber"),
3940PCI_ROM(0x8086, 0x100C, "e1000-82544gc-copper", "Intel EtherExpressPro1000 82544GC Copper"),
3941PCI_ROM(0x8086, 0x100D, "e1000-82544gc-lom", "Intel EtherExpressPro1000 82544GC LOM"),
3942PCI_ROM(0x8086, 0x100E, "e1000-82540em", "Intel EtherExpressPro1000 82540EM"),
3943PCI_ROM(0x8086, 0x100F, "e1000-82545em-copper", "Intel EtherExpressPro1000 82545EM Copper"),
3944PCI_ROM(0x8086, 0x1010, "e1000-82546eb-copper", "Intel EtherExpressPro1000 82546EB Copper"),
3945PCI_ROM(0x8086, 0x1011, "e1000-82545em-fiber", "Intel EtherExpressPro1000 82545EM Fiber"),
3946PCI_ROM(0x8086, 0x1012, "e1000-82546eb-fiber", "Intel EtherExpressPro1000 82546EB Copper"),
3947PCI_ROM(0x8086, 0x1013, "e1000-82541ei", "Intel EtherExpressPro1000 82541EI"),
3948PCI_ROM(0x8086, 0x1015, "e1000-82540em-lom", "Intel EtherExpressPro1000 82540EM LOM"),
3949PCI_ROM(0x8086, 0x1016, "e1000-82540ep-lom", "Intel EtherExpressPro1000 82540EP LOM"),
3950PCI_ROM(0x8086, 0x1017, "e1000-82540ep", "Intel EtherExpressPro1000 82540EP"),
3951PCI_ROM(0x8086, 0x1018, "e1000-82541ep", "Intel EtherExpressPro1000 82541EP"),
3952PCI_ROM(0x8086, 0x1019, "e1000-82547ei", "Intel EtherExpressPro1000 82547EI"),
3953PCI_ROM(0x8086, 0x101d, "e1000-82546eb-quad-copper", "Intel EtherExpressPro1000 82546EB Quad Copper"),
3954PCI_ROM(0x8086, 0x101e, "e1000-82540ep-lp", "Intel EtherExpressPro1000 82540EP LP"),
3955PCI_ROM(0x8086, 0x1026, "e1000-82545gm-copper", "Intel EtherExpressPro1000 82545GM Copper"),
3956PCI_ROM(0x8086, 0x1027, "e1000-82545gm-fiber", "Intel EtherExpressPro1000 82545GM Fiber"),
3957PCI_ROM(0x8086, 0x1028, "e1000-82545gm-serdes", "Intel EtherExpressPro1000 82545GM SERDES"),
3958PCI_ROM(0x8086, 0x1075, "e1000-82547gi", "Intel EtherExpressPro1000 82547GI"),
3959PCI_ROM(0x8086, 0x1076, "e1000-82541gi", "Intel EtherExpressPro1000 82541GI"),
3960PCI_ROM(0x8086, 0x1077, "e1000-82541gi-mobile", "Intel EtherExpressPro1000 82541GI Mobile"),
3961PCI_ROM(0x8086, 0x1078, "e1000-82541er", "Intel EtherExpressPro1000 82541ER"),
3962PCI_ROM(0x8086, 0x1079, "e1000-82546gb-copper", "Intel EtherExpressPro1000 82546GB Copper"),
3963PCI_ROM(0x8086, 0x107a, "e1000-82546gb-fiber", "Intel EtherExpressPro1000 82546GB Fiber"),
3964PCI_ROM(0x8086, 0x107b, "e1000-82546gb-serdes", "Intel EtherExpressPro1000 82546GB SERDES"),
3965PCI_ROM(0x8086, 0x107c, "e1000-82541pi", "Intel EtherExpressPro1000 82541PI"),
3966PCI_ROM(0x8086, 0x1096, "e1000_80003es2lan", "Intel EtherExpressPro1000 GB COPPER"),
3967};
3968
3969static struct pci_driver e1000_driver __pci_driver = {
3970 .type = NIC_DRIVER,
3971 .name = "E1000",
3972 .probe = e1000_probe,
3973 .ids = e1000_nics,
3974 .id_count = sizeof(e1000_nics)/sizeof(e1000_nics[0]),
3975 .class = 0,
3976};
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette