VirtualBox

source: vbox/trunk/src/VBox/Devices/Serial/UartCore.cpp@ 77611

Last change on this file since 77611 was 77411, checked in by vboxsync, 6 years ago

Devices/UART: Properly handle loopback mode (feeding the sent data immediately back to the receive side)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 63.7 KB
Line 
1/* $Id: UartCore.cpp 77411 2019-02-21 15:57:31Z vboxsync $ */
2/** @file
3 * UartCore - UART (16550A up to 16950) emulation.
4 *
5 * The documentation for this device was taken from the PC16550D spec from TI.
6 */
7
8/*
9 * Copyright (C) 2018-2019 Oracle Corporation
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 */
19
20
21/*********************************************************************************************************************************
22* Header Files *
23*********************************************************************************************************************************/
24#define LOG_GROUP LOG_GROUP_DEV_SERIAL
25#include <VBox/vmm/tm.h>
26#include <iprt/log.h>
27#include <iprt/uuid.h>
28#include <iprt/assert.h>
29
30#include "VBoxDD.h"
31#include "UartCore.h"
32
33
34/*********************************************************************************************************************************
35* Defined Constants And Macros *
36*********************************************************************************************************************************/
37
38/** The RBR/DLL register index (from the base of the port range). */
39#define UART_REG_RBR_DLL_INDEX 0
40
41/** The THR/DLL register index (from the base of the port range). */
42#define UART_REG_THR_DLL_INDEX 0
43
44/** The IER/DLM register index (from the base of the port range). */
45#define UART_REG_IER_DLM_INDEX 1
46/** Enable received data available interrupt */
47# define UART_REG_IER_ERBFI RT_BIT(0)
48/** Enable transmitter holding register empty interrupt */
49# define UART_REG_IER_ETBEI RT_BIT(1)
50/** Enable receiver line status interrupt */
51# define UART_REG_IER_ELSI RT_BIT(2)
52/** Enable modem status interrupt. */
53# define UART_REG_IER_EDSSI RT_BIT(3)
54/** Sleep mode enable. */
55# define UART_REG_IER_SLEEP_MODE_EN RT_BIT(4)
56/** Low power mode enable. */
57# define UART_REG_IER_LP_MODE_EN RT_BIT(5)
58/** Mask of writeable bits. */
59# define UART_REG_IER_MASK_WR 0x0f
60/** Mask of writeable bits for 16750+. */
61# define UART_REG_IER_MASK_WR_16750 0x3f
62
63/** The IIR register index (from the base of the port range). */
64#define UART_REG_IIR_INDEX 2
65/** Interrupt Pending - high means no interrupt pending. */
66# define UART_REG_IIR_IP_NO_INT RT_BIT(0)
67/** Interrupt identification mask. */
68# define UART_REG_IIR_ID_MASK 0x0e
69/** Sets the interrupt identification to the given value. */
70# define UART_REG_IIR_ID_SET(a_Val) (((a_Val) << 1) & UART_REG_IIR_ID_MASK)
71/** Gets the interrupt identification from the given IIR register value. */
72# define UART_REG_IIR_ID_GET(a_Val) (((a_Val) & UART_REG_IIR_ID_MASK) >> 1)
73/** Receiver Line Status interrupt. */
74# define UART_REG_IIR_ID_RCL 0x3
75/** Received Data Available interrupt. */
76# define UART_REG_IIR_ID_RDA 0x2
77/** Character Timeou Indicator interrupt. */
78# define UART_REG_IIR_ID_CTI 0x6
79/** Transmitter Holding Register Empty interrupt. */
80# define UART_REG_IIR_ID_THRE 0x1
81/** Modem Status interrupt. */
82# define UART_REG_IIR_ID_MS 0x0
83/** 64 byte FIFOs enabled (15750+ only). */
84# define UART_REG_IIR_64BYTE_FIFOS_EN RT_BIT(5)
85/** FIFOs enabled. */
86# define UART_REG_IIR_FIFOS_EN 0xc0
87/** Bits relevant for checking whether the interrupt status has changed. */
88# define UART_REG_IIR_CHANGED_MASK 0x0f
89
90/** The FCR register index (from the base of the port range). */
91#define UART_REG_FCR_INDEX 2
92/** Enable the TX/RX FIFOs. */
93# define UART_REG_FCR_FIFO_EN RT_BIT(0)
94/** Reset the receive FIFO. */
95# define UART_REG_FCR_RCV_FIFO_RST RT_BIT(1)
96/** Reset the transmit FIFO. */
97# define UART_REG_FCR_XMIT_FIFO_RST RT_BIT(2)
98/** DMA Mode Select. */
99# define UART_REG_FCR_DMA_MODE_SEL RT_BIT(3)
100/** 64 Byte FIFO enable (15750+ only). */
101# define UART_REG_FCR_64BYTE_FIFO_EN RT_BIT(5)
102/** Receiver level interrupt trigger. */
103# define UART_REG_FCR_RCV_LVL_IRQ_MASK 0xc0
104/** Returns the receive level trigger value from the given FCR register. */
105# define UART_REG_FCR_RCV_LVL_IRQ_GET(a_Fcr) (((a_Fcr) & UART_REG_FCR_RCV_LVL_IRQ_MASK) >> 6)
106/** RCV Interrupt trigger level - 1 byte. */
107# define UART_REG_FCR_RCV_LVL_IRQ_1 0x0
108/** RCV Interrupt trigger level - 4 bytes. */
109# define UART_REG_FCR_RCV_LVL_IRQ_4 0x1
110/** RCV Interrupt trigger level - 8 bytes. */
111# define UART_REG_FCR_RCV_LVL_IRQ_8 0x2
112/** RCV Interrupt trigger level - 14 bytes. */
113# define UART_REG_FCR_RCV_LVL_IRQ_14 0x3
114/** Mask of writeable bits. */
115# define UART_REG_FCR_MASK_WR 0xcf
116/** Mask of sticky bits. */
117# define UART_REG_FCR_MASK_STICKY 0xe9
118
119/** The LCR register index (from the base of the port range). */
120#define UART_REG_LCR_INDEX 3
121/** Word Length Select Mask. */
122# define UART_REG_LCR_WLS_MASK 0x3
123/** Returns the WLS value form the given LCR register value. */
124# define UART_REG_LCR_WLS_GET(a_Lcr) ((a_Lcr) & UART_REG_LCR_WLS_MASK)
125/** Number of stop bits. */
126# define UART_REG_LCR_STB RT_BIT(2)
127/** Parity Enable. */
128# define UART_REG_LCR_PEN RT_BIT(3)
129/** Even Parity. */
130# define UART_REG_LCR_EPS RT_BIT(4)
131/** Stick parity. */
132# define UART_REG_LCR_PAR_STICK RT_BIT(5)
133/** Set Break. */
134# define UART_REG_LCR_BRK_SET RT_BIT(6)
135/** Divisor Latch Access Bit. */
136# define UART_REG_LCR_DLAB RT_BIT(7)
137
138/** The MCR register index (from the base of the port range). */
139#define UART_REG_MCR_INDEX 4
140/** Data Terminal Ready. */
141# define UART_REG_MCR_DTR RT_BIT(0)
142/** Request To Send. */
143# define UART_REG_MCR_RTS RT_BIT(1)
144/** Out1. */
145# define UART_REG_MCR_OUT1 RT_BIT(2)
146/** Out2. */
147# define UART_REG_MCR_OUT2 RT_BIT(3)
148/** Loopback connection. */
149# define UART_REG_MCR_LOOP RT_BIT(4)
150/** Flow Control Enable (15750+ only). */
151# define UART_REG_MCR_AFE RT_BIT(5)
152/** Mask of writeable bits (15450 and 15550A). */
153# define UART_REG_MCR_MASK_WR 0x1f
154/** Mask of writeable bits (15750+). */
155# define UART_REG_MCR_MASK_WR_15750 0x3f
156
157/** The LSR register index (from the base of the port range). */
158#define UART_REG_LSR_INDEX 5
159/** Data Ready. */
160# define UART_REG_LSR_DR RT_BIT(0)
161/** Overrun Error. */
162# define UART_REG_LSR_OE RT_BIT(1)
163/** Parity Error. */
164# define UART_REG_LSR_PE RT_BIT(2)
165/** Framing Error. */
166# define UART_REG_LSR_FE RT_BIT(3)
167/** Break Interrupt. */
168# define UART_REG_LSR_BI RT_BIT(4)
169/** Transmitter Holding Register. */
170# define UART_REG_LSR_THRE RT_BIT(5)
171/** Transmitter Empty. */
172# define UART_REG_LSR_TEMT RT_BIT(6)
173/** Error in receiver FIFO. */
174# define UART_REG_LSR_RCV_FIFO_ERR RT_BIT(7)
175/** The bits to check in this register when checking for the RCL interrupt. */
176# define UART_REG_LSR_BITS_IIR_RCL 0x1e
177
178/** The MSR register index (from the base of the port range). */
179#define UART_REG_MSR_INDEX 6
180/** Delta Clear to Send. */
181# define UART_REG_MSR_DCTS RT_BIT(0)
182/** Delta Data Set Ready. */
183# define UART_REG_MSR_DDSR RT_BIT(1)
184/** Trailing Edge Ring Indicator. */
185# define UART_REG_MSR_TERI RT_BIT(2)
186/** Delta Data Carrier Detect. */
187# define UART_REG_MSR_DDCD RT_BIT(3)
188/** Clear to Send. */
189# define UART_REG_MSR_CTS RT_BIT(4)
190/** Data Set Ready. */
191# define UART_REG_MSR_DSR RT_BIT(5)
192/** Ring Indicator. */
193# define UART_REG_MSR_RI RT_BIT(6)
194/** Data Carrier Detect. */
195# define UART_REG_MSR_DCD RT_BIT(7)
196/** The bits to check in this register when checking for the MS interrupt. */
197# define UART_REG_MSR_BITS_IIR_MS 0x0f
198
199/** The SCR register index (from the base of the port range). */
200#define UART_REG_SCR_INDEX 7
201
202/** Set the specified bits in the given register. */
203#define UART_REG_SET(a_Reg, a_Set) ((a_Reg) |= (a_Set))
204/** Clear the specified bits in the given register. */
205#define UART_REG_CLR(a_Reg, a_Clr) ((a_Reg) &= ~(a_Clr))
206
207
208/*********************************************************************************************************************************
209* Structures and Typedefs *
210*********************************************************************************************************************************/
211
212#ifndef VBOX_DEVICE_STRUCT_TESTCASE
213
214
215/*********************************************************************************************************************************
216* Global Variables *
217*********************************************************************************************************************************/
218
219#ifdef IN_RING3
220/**
221 * FIFO ITL levels.
222 */
223static struct
224{
225 /** ITL level for a 16byte FIFO. */
226 uint8_t cbItl16;
227 /** ITL level for a 64byte FIFO. */
228 uint8_t cbItl64;
229} s_aFifoItl[] =
230{
231 /* cbItl16 cbItl64 */
232 { 1, 1 },
233 { 4, 16 },
234 { 8, 32 },
235 { 14, 56 }
236};
237
238
239/**
240 * String versions of the parity enum.
241 */
242static const char *s_aszParity[] =
243{
244 "INVALID",
245 "NONE",
246 "EVEN",
247 "ODD",
248 "MARK",
249 "SPACE",
250 "INVALID"
251};
252
253
254/**
255 * String versions of the stop bits enum.
256 */
257static const char *s_aszStopBits[] =
258{
259 "INVALID",
260 "1",
261 "1.5",
262 "2",
263 "INVALID"
264};
265#endif
266
267
268/*********************************************************************************************************************************
269* Internal Functions *
270*********************************************************************************************************************************/
271
272
273/**
274 * Updates the IRQ state based on the current device state.
275 *
276 * @returns nothing.
277 * @param pThis The UART core instance.
278 */
279static void uartIrqUpdate(PUARTCORE pThis)
280{
281 LogFlowFunc(("pThis=%#p\n", pThis));
282
283 /*
284 * The interrupt uses a priority scheme, only the interrupt with the
285 * highest priority is indicated in the interrupt identification register.
286 *
287 * The priorities are as follows (high to low):
288 * * Receiver line status
289 * * Received data available
290 * * Character timeout indication (only in FIFO mode).
291 * * Transmitter holding register empty
292 * * Modem status change.
293 */
294 uint8_t uRegIirNew = UART_REG_IIR_IP_NO_INT;
295 if ( (pThis->uRegLsr & UART_REG_LSR_BITS_IIR_RCL)
296 && (pThis->uRegIer & UART_REG_IER_ELSI))
297 uRegIirNew = UART_REG_IIR_ID_SET(UART_REG_IIR_ID_RCL);
298 else if ( (pThis->uRegIer & UART_REG_IER_ERBFI)
299 && pThis->fIrqCtiPending)
300 uRegIirNew = UART_REG_IIR_ID_SET(UART_REG_IIR_ID_CTI);
301 else if ( (pThis->uRegLsr & UART_REG_LSR_DR)
302 && (pThis->uRegIer & UART_REG_IER_ERBFI)
303 && ( !(pThis->uRegFcr & UART_REG_FCR_FIFO_EN)
304 || pThis->FifoRecv.cbUsed >= pThis->FifoRecv.cbItl))
305 uRegIirNew = UART_REG_IIR_ID_SET(UART_REG_IIR_ID_RDA);
306 else if ( (pThis->uRegIer & UART_REG_IER_ETBEI)
307 && pThis->fThreEmptyPending)
308 uRegIirNew = UART_REG_IIR_ID_SET(UART_REG_IIR_ID_THRE);
309 else if ( (pThis->uRegMsr & UART_REG_MSR_BITS_IIR_MS)
310 && (pThis->uRegIer & UART_REG_IER_EDSSI))
311 uRegIirNew = UART_REG_IIR_ID_SET(UART_REG_IIR_ID_MS);
312
313 LogFlowFunc((" uRegIirNew=%#x uRegIir=%#x\n", uRegIirNew, pThis->uRegIir));
314
315 /* Change interrupt only if the interrupt status really changed from the previous value. */
316 if (uRegIirNew != (pThis->uRegIir & UART_REG_IIR_CHANGED_MASK))
317 {
318 LogFlow((" Interrupt source changed from %#x -> %#x (IRQ %d -> %d)\n",
319 pThis->uRegIir, uRegIirNew,
320 pThis->uRegIir == UART_REG_IIR_IP_NO_INT ? 0 : 1,
321 uRegIirNew == UART_REG_IIR_IP_NO_INT ? 0 : 1));
322 if (uRegIirNew == UART_REG_IIR_IP_NO_INT)
323 pThis->CTX_SUFF(pfnUartIrqReq)(pThis->CTX_SUFF(pDevIns), pThis, pThis->iLUN, 0);
324 else
325 pThis->CTX_SUFF(pfnUartIrqReq)(pThis->CTX_SUFF(pDevIns), pThis, pThis->iLUN, 1);
326 }
327 else
328 LogFlow((" No change in interrupt source\n"));
329
330 if (pThis->uRegFcr & UART_REG_FCR_FIFO_EN)
331 uRegIirNew |= UART_REG_IIR_FIFOS_EN;
332 if (pThis->uRegFcr & UART_REG_FCR_64BYTE_FIFO_EN)
333 uRegIirNew |= UART_REG_IIR_64BYTE_FIFOS_EN;
334
335 pThis->uRegIir = uRegIirNew;
336}
337
338
339/**
340 * Returns the amount of bytes stored in the given FIFO.
341 *
342 * @returns Amount of bytes stored in the FIFO.
343 * @param pFifo The FIFO.
344 */
345DECLINLINE(size_t) uartFifoUsedGet(PUARTFIFO pFifo)
346{
347 return pFifo->cbUsed;
348}
349
350
351/**
352 * Puts a new character into the given FIFO.
353 *
354 * @returns Flag whether the FIFO overflowed.
355 * @param pFifo The FIFO to put the data into.
356 * @param fOvrWr Flag whether to overwrite data if the FIFO is full.
357 * @param bData The data to add.
358 */
359DECLINLINE(bool) uartFifoPut(PUARTFIFO pFifo, bool fOvrWr, uint8_t bData)
360{
361 if (fOvrWr || pFifo->cbUsed < pFifo->cbMax)
362 {
363 pFifo->abBuf[pFifo->offWrite] = bData;
364 pFifo->offWrite = (pFifo->offWrite + 1) % pFifo->cbMax;
365 }
366
367 bool fOverFlow = false;
368 if (pFifo->cbUsed < pFifo->cbMax)
369 pFifo->cbUsed++;
370 else
371 {
372 fOverFlow = true;
373 if (fOvrWr) /* Advance the read position to account for the lost character. */
374 pFifo->offRead = (pFifo->offRead + 1) % pFifo->cbMax;
375 }
376
377 return fOverFlow;
378}
379
380
381/**
382 * Returns the next character in the FIFO.
383 *
384 * @return Next byte in the FIFO.
385 * @param pFifo The FIFO to get data from.
386 */
387DECLINLINE(uint8_t) uartFifoGet(PUARTFIFO pFifo)
388{
389 uint8_t bRet = 0;
390
391 if (pFifo->cbUsed)
392 {
393 bRet = pFifo->abBuf[pFifo->offRead];
394 pFifo->offRead = (pFifo->offRead + 1) % pFifo->cbMax;
395 pFifo->cbUsed--;
396 }
397
398 return bRet;
399}
400
401
402#ifdef IN_RING3
403/**
404 * Clears the given FIFO.
405 *
406 * @returns nothing.
407 * @param pFifo The FIFO to clear.
408 */
409DECLINLINE(void) uartFifoClear(PUARTFIFO pFifo)
410{
411 memset(&pFifo->abBuf[0], 0, sizeof(pFifo->abBuf));
412 pFifo->cbUsed = 0;
413 pFifo->offWrite = 0;
414 pFifo->offRead = 0;
415}
416
417
418/**
419 * Returns the amount of free bytes in the given FIFO.
420 *
421 * @returns The amount of bytes free in the given FIFO.
422 * @param pFifo The FIFO.
423 */
424DECLINLINE(size_t) uartFifoFreeGet(PUARTFIFO pFifo)
425{
426 return pFifo->cbMax - pFifo->cbUsed;
427}
428
429
430/**
431 * Tries to copy the requested amount of data from the given FIFO into the provided buffer.
432 *
433 * @returns Amount of bytes actually copied.
434 * @param pFifo The FIFO to copy data from.
435 * @param pvDst Where to copy the data to.
436 * @param cbCopy How much to copy.
437 */
438DECLINLINE(size_t) uartFifoCopyTo(PUARTFIFO pFifo, void *pvDst, size_t cbCopy)
439{
440 size_t cbCopied = 0;
441 uint8_t *pbDst = (uint8_t *)pvDst;
442
443 cbCopy = RT_MIN(cbCopy, pFifo->cbUsed);
444 while (cbCopy)
445 {
446 uint8_t cbThisCopy = (uint8_t)RT_MIN(cbCopy, (uint8_t)(pFifo->cbMax - pFifo->offRead));
447 memcpy(pbDst, &pFifo->abBuf[pFifo->offRead], cbThisCopy);
448
449 pFifo->offRead = (pFifo->offRead + cbThisCopy) % pFifo->cbMax;
450 pFifo->cbUsed -= cbThisCopy;
451 pbDst += cbThisCopy;
452 cbCopied += cbThisCopy;
453 cbCopy -= cbThisCopy;
454 }
455
456 return cbCopied;
457}
458
459
460#if 0 /* unused */
461/**
462 * Tries to copy the requested amount of data from the provided buffer into the given FIFO.
463 *
464 * @returns Amount of bytes actually copied.
465 * @param pFifo The FIFO to copy data to.
466 * @param pvSrc Where to copy the data from.
467 * @param cbCopy How much to copy.
468 */
469DECLINLINE(size_t) uartFifoCopyFrom(PUARTFIFO pFifo, void *pvSrc, size_t cbCopy)
470{
471 size_t cbCopied = 0;
472 uint8_t *pbSrc = (uint8_t *)pvSrc;
473
474 cbCopy = RT_MIN(cbCopy, uartFifoFreeGet(pFifo));
475 while (cbCopy)
476 {
477 uint8_t cbThisCopy = (uint8_t)RT_MIN(cbCopy, (uint8_t)(pFifo->cbMax - pFifo->offWrite));
478 memcpy(&pFifo->abBuf[pFifo->offWrite], pbSrc, cbThisCopy);
479
480 pFifo->offWrite = (pFifo->offWrite + cbThisCopy) % pFifo->cbMax;
481 pFifo->cbUsed += cbThisCopy;
482 pbSrc += cbThisCopy;
483 cbCopied += cbThisCopy;
484 cbCopy -= cbThisCopy;
485 }
486
487 return cbCopied;
488}
489#endif
490
491
492/**
493 * Updates the delta bits for the given MSR register value which has the status line
494 * bits set.
495 *
496 * @returns nothing.
497 * @param pThis The serial port instance.
498 * @param uMsrSts MSR value with the appropriate status bits set.
499 */
500static void uartR3MsrUpdate(PUARTCORE pThis, uint8_t uMsrSts)
501{
502 /* Compare current and new states and set remaining bits accordingly. */
503 if ((uMsrSts & UART_REG_MSR_CTS) != (pThis->uRegMsr & UART_REG_MSR_CTS))
504 uMsrSts |= UART_REG_MSR_DCTS;
505 if ((uMsrSts & UART_REG_MSR_DSR) != (pThis->uRegMsr & UART_REG_MSR_DSR))
506 uMsrSts |= UART_REG_MSR_DDSR;
507 if ((uMsrSts & UART_REG_MSR_RI) != 0 && (pThis->uRegMsr & UART_REG_MSR_RI) == 0)
508 uMsrSts |= UART_REG_MSR_TERI;
509 if ((uMsrSts & UART_REG_MSR_DCD) != (pThis->uRegMsr & UART_REG_MSR_DCD))
510 uMsrSts |= UART_REG_MSR_DDCD;
511
512 pThis->uRegMsr = uMsrSts;
513
514 uartIrqUpdate(pThis);
515}
516
517
518/**
519 * Updates the serial port parameters of the attached driver with the current configuration.
520 *
521 * @returns nothing.
522 * @param pThis The serial port instance.
523 */
524static void uartR3ParamsUpdate(PUARTCORE pThis)
525{
526 if ( pThis->uRegDivisor != 0
527 && pThis->pDrvSerial)
528 {
529 uint32_t uBps = 115200 / pThis->uRegDivisor; /* This is for PC compatible serial port with a 1.8432 MHz crystal. */
530 unsigned cDataBits = UART_REG_LCR_WLS_GET(pThis->uRegLcr) + 5;
531 uint32_t cFrameBits = cDataBits;
532 PDMSERIALSTOPBITS enmStopBits = PDMSERIALSTOPBITS_ONE;
533 PDMSERIALPARITY enmParity = PDMSERIALPARITY_NONE;
534
535 if (pThis->uRegLcr & UART_REG_LCR_STB)
536 {
537 enmStopBits = cDataBits == 5 ? PDMSERIALSTOPBITS_ONEPOINTFIVE : PDMSERIALSTOPBITS_TWO;
538 cFrameBits += 2;
539 }
540 else
541 cFrameBits++;
542
543 if (pThis->uRegLcr & UART_REG_LCR_PEN)
544 {
545 /* Select the correct parity mode based on the even and stick parity bits. */
546 switch (pThis->uRegLcr & (UART_REG_LCR_EPS | UART_REG_LCR_PAR_STICK))
547 {
548 case 0:
549 enmParity = PDMSERIALPARITY_ODD;
550 break;
551 case UART_REG_LCR_EPS:
552 enmParity = PDMSERIALPARITY_EVEN;
553 break;
554 case UART_REG_LCR_EPS | UART_REG_LCR_PAR_STICK:
555 enmParity = PDMSERIALPARITY_SPACE;
556 break;
557 case UART_REG_LCR_PAR_STICK:
558 enmParity = PDMSERIALPARITY_MARK;
559 break;
560 default:
561 /* We should never get here as all cases where caught earlier. */
562 AssertMsgFailed(("This shouldn't happen at all: %#x\n",
563 pThis->uRegLcr & (UART_REG_LCR_EPS | UART_REG_LCR_PAR_STICK)));
564 }
565
566 cFrameBits++;
567 }
568
569 uint64_t uTimerFreq = TMTimerGetFreq(pThis->CTX_SUFF(pTimerRcvFifoTimeout));
570 pThis->cSymbolXferTicks = (uTimerFreq / uBps) * cFrameBits;
571
572 LogFlowFunc(("Changing parameters to: %u,%s,%u,%s\n",
573 uBps, s_aszParity[enmParity], cDataBits, s_aszStopBits[enmStopBits]));
574
575 int rc = pThis->pDrvSerial->pfnChgParams(pThis->pDrvSerial, uBps, enmParity, cDataBits, enmStopBits);
576 if (RT_FAILURE(rc))
577 LogRelMax(10, ("Serial#%d: Failed to change parameters to %u,%s,%u,%s -> %Rrc\n",
578 pThis->pDevInsR3->iInstance, uBps, s_aszParity[enmParity], cDataBits, s_aszStopBits[enmStopBits], rc));
579
580 /* Changed parameters will flush all receive queues, so there won't be any data to read even if indicated. */
581 pThis->pDrvSerial->pfnQueuesFlush(pThis->pDrvSerial, true /*fQueueRecv*/, false /*fQueueXmit*/);
582 ASMAtomicWriteU32(&pThis->cbAvailRdr, 0);
583 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_DR);
584 }
585}
586
587
588/**
589 * Updates the internal device state with the given PDM status line states.
590 *
591 * @returns nothing.
592 * @param pThis The serial port instance.
593 * @param fStsLines The PDM status line states.
594 */
595static void uartR3StsLinesUpdate(PUARTCORE pThis, uint32_t fStsLines)
596{
597 uint8_t uRegMsrNew = 0; /* The new MSR value. */
598
599 if (fStsLines & PDMISERIALPORT_STS_LINE_DCD)
600 uRegMsrNew |= UART_REG_MSR_DCD;
601 if (fStsLines & PDMISERIALPORT_STS_LINE_RI)
602 uRegMsrNew |= UART_REG_MSR_RI;
603 if (fStsLines & PDMISERIALPORT_STS_LINE_DSR)
604 uRegMsrNew |= UART_REG_MSR_DSR;
605 if (fStsLines & PDMISERIALPORT_STS_LINE_CTS)
606 uRegMsrNew |= UART_REG_MSR_CTS;
607
608 uartR3MsrUpdate(pThis, uRegMsrNew);
609}
610
611
612/**
613 * Fills up the receive FIFO with as much data as possible.
614 *
615 * @returns nothing.
616 * @param pThis The serial port instance.
617 */
618static void uartR3RecvFifoFill(PUARTCORE pThis)
619{
620 LogFlowFunc(("pThis=%#p\n", pThis));
621
622 PUARTFIFO pFifo = &pThis->FifoRecv;
623 size_t cbFill = RT_MIN(uartFifoFreeGet(pFifo),
624 ASMAtomicReadU32(&pThis->cbAvailRdr));
625 size_t cbFilled = 0;
626
627 while (cbFilled < cbFill)
628 {
629 size_t cbThisRead = cbFill - cbFilled;
630
631 if (pFifo->offRead <= pFifo->offWrite)
632 cbThisRead = RT_MIN(cbThisRead, (uint8_t)(pFifo->cbMax - pFifo->offWrite));
633 else
634 cbThisRead = RT_MIN(cbThisRead, (uint8_t)(pFifo->offRead - pFifo->offWrite));
635
636 size_t cbRead = 0;
637 int rc = pThis->pDrvSerial->pfnReadRdr(pThis->pDrvSerial, &pFifo->abBuf[pFifo->offWrite], cbThisRead, &cbRead);
638 AssertRC(rc); Assert(cbRead <= UINT8_MAX); RT_NOREF(rc);
639
640 pFifo->offWrite = (pFifo->offWrite + (uint8_t)cbRead) % pFifo->cbMax;
641 pFifo->cbUsed += (uint8_t)cbRead;
642 cbFilled += cbRead;
643
644 if (cbRead < cbThisRead)
645 break;
646 }
647
648 if (cbFilled)
649 {
650 UART_REG_SET(pThis->uRegLsr, UART_REG_LSR_DR);
651 if (pFifo->cbUsed < pFifo->cbItl)
652 {
653 pThis->fIrqCtiPending = false;
654 TMTimerSetRelative(pThis->CTX_SUFF(pTimerRcvFifoTimeout), pThis->cSymbolXferTicks * 4, NULL);
655 }
656 uartIrqUpdate(pThis);
657 }
658
659 Assert(cbFilled <= (size_t)pThis->cbAvailRdr);
660 ASMAtomicSubU32(&pThis->cbAvailRdr, (uint32_t)cbFilled);
661}
662
663
664/**
665 * Fetches a single byte and writes it to RBR.
666 *
667 * @returns nothing.
668 * @param pThis The serial port instance.
669 */
670static void uartR3ByteFetch(PUARTCORE pThis)
671{
672 if (ASMAtomicReadU32(&pThis->cbAvailRdr))
673 {
674 AssertPtr(pThis->pDrvSerial);
675 size_t cbRead = 0;
676 int rc2 = pThis->pDrvSerial->pfnReadRdr(pThis->pDrvSerial, &pThis->uRegRbr, 1, &cbRead);
677 AssertMsg(RT_SUCCESS(rc2) && cbRead == 1, ("This shouldn't fail and always return one byte!\n")); RT_NOREF(rc2);
678 UART_REG_SET(pThis->uRegLsr, UART_REG_LSR_DR);
679 uartIrqUpdate(pThis);
680 }
681}
682
683
684/**
685 * Fetches a ready data based on the FIFO setting.
686 *
687 * @returns nothing.
688 * @param pThis The serial port instance.
689 */
690static void uartR3DataFetch(PUARTCORE pThis)
691{
692 if (pThis->uRegFcr & UART_REG_FCR_FIFO_EN)
693 uartR3RecvFifoFill(pThis);
694 else
695 uartR3ByteFetch(pThis);
696}
697
698
699/**
700 * Reset the transmit/receive related bits to the standard values
701 * (after a detach/attach/reset event).
702 *
703 * @returns nothing.
704 * @param pThis The serial port instance.
705 */
706static void uartR3XferReset(PUARTCORE pThis)
707{
708 TMTimerStop(pThis->CTX_SUFF(pTimerRcvFifoTimeout));
709 TMTimerStop(pThis->CTX_SUFF(pTimerTxUnconnected));
710 pThis->uRegLsr = UART_REG_LSR_THRE | UART_REG_LSR_TEMT;
711 pThis->fThreEmptyPending = false;
712
713 uartFifoClear(&pThis->FifoXmit);
714 uartFifoClear(&pThis->FifoRecv);
715 uartR3ParamsUpdate(pThis);
716 uartIrqUpdate(pThis);
717
718 if (pThis->pDrvSerial)
719 {
720 /* Set the modem lines to reflect the current state. */
721 int rc = pThis->pDrvSerial->pfnChgModemLines(pThis->pDrvSerial, false /*fRts*/, false /*fDtr*/);
722 if (RT_FAILURE(rc))
723 LogRel(("Serial#%d: Failed to set modem lines with %Rrc during reset\n",
724 pThis->pDevInsR3->iInstance, rc));
725
726 uint32_t fStsLines = 0;
727 rc = pThis->pDrvSerial->pfnQueryStsLines(pThis->pDrvSerial, &fStsLines);
728 if (RT_SUCCESS(rc))
729 uartR3StsLinesUpdate(pThis, fStsLines);
730 else
731 LogRel(("Serial#%d: Failed to query status line status with %Rrc during reset\n",
732 pThis->pDevInsR3->iInstance, rc));
733 }
734
735}
736
737
738/**
739 * Tries to copy the specified amount of data from the active TX queue (register or FIFO).
740 *
741 * @returns nothing.
742 * @param pThis The serial port instance.
743 * @param pvBuf Where to store the data.
744 * @param cbRead How much to read from the TX queue.
745 * @param pcbRead Where to store the amount of data read.
746 */
747static void uartR3TxQueueCopyFrom(PUARTCORE pThis, void *pvBuf, size_t cbRead, size_t *pcbRead)
748{
749 if (pThis->uRegFcr & UART_REG_FCR_FIFO_EN)
750 {
751 *pcbRead = uartFifoCopyTo(&pThis->FifoXmit, pvBuf, cbRead);
752 if (!pThis->FifoXmit.cbUsed)
753 {
754 UART_REG_SET(pThis->uRegLsr, UART_REG_LSR_THRE);
755 pThis->fThreEmptyPending = true;
756 }
757 if (*pcbRead)
758 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_TEMT);
759 uartIrqUpdate(pThis);
760 }
761 else if (!(pThis->uRegLsr & UART_REG_LSR_THRE))
762 {
763 *(uint8_t *)pvBuf = pThis->uRegThr;
764 *pcbRead = 1;
765 UART_REG_SET(pThis->uRegLsr, UART_REG_LSR_THRE);
766 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_TEMT);
767 pThis->fThreEmptyPending = true;
768 uartIrqUpdate(pThis);
769 }
770 else
771 {
772 /*
773 * This can happen if there was data in the FIFO when the connection was closed,
774 * indicate this condition to the lower driver by returning 0 bytes.
775 */
776 *pcbRead = 0;
777 }
778}
779#endif
780
781
782/**
783 * Transmits the given byte.
784 *
785 * @returns VBox status code.
786 * @param pThis The serial port instance.
787 * @param bVal Byte to transmit.
788 */
789static int uartXmit(PUARTCORE pThis, uint8_t bVal)
790{
791 int rc = VINF_SUCCESS;
792
793 if (pThis->uRegFcr & UART_REG_FCR_FIFO_EN)
794 {
795#ifndef IN_RING3
796 if (!uartFifoUsedGet(&pThis->FifoXmit))
797 rc = VINF_IOM_R3_IOPORT_WRITE;
798 else
799 {
800 uartFifoPut(&pThis->FifoXmit, true /*fOvrWr*/, bVal);
801 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_THRE | UART_REG_LSR_TEMT);
802 }
803#else
804 uartFifoPut(&pThis->FifoXmit, true /*fOvrWr*/, bVal);
805 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_THRE | UART_REG_LSR_TEMT);
806 pThis->fThreEmptyPending = false;
807 uartIrqUpdate(pThis);
808 if (uartFifoUsedGet(&pThis->FifoXmit) == 1)
809 {
810 if ( pThis->pDrvSerial
811 && !(pThis->uRegMcr & UART_REG_MCR_LOOP))
812 {
813 int rc2 = pThis->pDrvSerial->pfnDataAvailWrNotify(pThis->pDrvSerial);
814 if (RT_FAILURE(rc2))
815 LogRelMax(10, ("Serial#%d: Failed to send data with %Rrc\n", pThis->pDevInsR3->iInstance, rc2));
816 }
817 else
818 TMTimerSetRelative(pThis->CTX_SUFF(pTimerTxUnconnected), pThis->cSymbolXferTicks, NULL);
819 }
820#endif
821 }
822 else
823 {
824 /* Notify the lower driver about available data only if the register was empty before. */
825 if (pThis->uRegLsr & UART_REG_LSR_THRE)
826 {
827#ifndef IN_RING3
828 rc = VINF_IOM_R3_IOPORT_WRITE;
829#else
830 pThis->uRegThr = bVal;
831 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_THRE | UART_REG_LSR_TEMT);
832 pThis->fThreEmptyPending = false;
833 uartIrqUpdate(pThis);
834 if ( pThis->pDrvSerial
835 && !(pThis->uRegMcr & UART_REG_MCR_LOOP))
836 {
837 int rc2 = pThis->pDrvSerial->pfnDataAvailWrNotify(pThis->pDrvSerial);
838 if (RT_FAILURE(rc2))
839 LogRelMax(10, ("Serial#%d: Failed to send data with %Rrc\n", pThis->pDevInsR3->iInstance, rc2));
840 }
841 else
842 TMTimerSetRelative(pThis->CTX_SUFF(pTimerTxUnconnected), pThis->cSymbolXferTicks, NULL);
843#endif
844 }
845 else
846 pThis->uRegThr = bVal;
847 }
848
849 return rc;
850}
851
852
853/**
854 * Write handler for the THR/DLL register (depending on the DLAB bit in LCR).
855 *
856 * @returns VBox status code.
857 * @param pThis The serial port instance.
858 * @param uVal The value to write.
859 */
860DECLINLINE(int) uartRegThrDllWrite(PUARTCORE pThis, uint8_t uVal)
861{
862 int rc = VINF_SUCCESS;
863
864 /* A set DLAB causes a write to the lower 8bits of the divisor latch. */
865 if (pThis->uRegLcr & UART_REG_LCR_DLAB)
866 {
867 if (uVal != (pThis->uRegDivisor & 0xff))
868 {
869#ifndef IN_RING3
870 rc = VINF_IOM_R3_IOPORT_WRITE;
871#else
872 pThis->uRegDivisor = (pThis->uRegDivisor & 0xff00) | uVal;
873 uartR3ParamsUpdate(pThis);
874#endif
875 }
876 }
877 else
878 rc = uartXmit(pThis, uVal);
879
880 return rc;
881}
882
883
884/**
885 * Write handler for the IER/DLM register (depending on the DLAB bit in LCR).
886 *
887 * @returns VBox status code.
888 * @param pThis The serial port instance.
889 * @param uVal The value to write.
890 */
891DECLINLINE(int) uartRegIerDlmWrite(PUARTCORE pThis, uint8_t uVal)
892{
893 int rc = VINF_SUCCESS;
894
895 /* A set DLAB causes a write to the higher 8bits of the divisor latch. */
896 if (pThis->uRegLcr & UART_REG_LCR_DLAB)
897 {
898 if (uVal != (pThis->uRegDivisor & 0xff00) >> 8)
899 {
900#ifndef IN_RING3
901 rc = VINF_IOM_R3_IOPORT_WRITE;
902#else
903 pThis->uRegDivisor = (pThis->uRegDivisor & 0xff) | (uVal << 8);
904 uartR3ParamsUpdate(pThis);
905#endif
906 }
907 }
908 else
909 {
910 if (pThis->enmType < UARTTYPE_16750)
911 pThis->uRegIer = uVal & UART_REG_IER_MASK_WR;
912 else
913 pThis->uRegIer = uVal & UART_REG_IER_MASK_WR_16750;
914
915 if (pThis->uRegLsr & UART_REG_LSR_THRE)
916 pThis->fThreEmptyPending = true;
917
918 uartIrqUpdate(pThis);
919 }
920
921 return rc;
922}
923
924
925/**
926 * Write handler for the FCR register.
927 *
928 * @returns VBox status code.
929 * @param pThis The serial port instance.
930 * @param uVal The value to write.
931 */
932DECLINLINE(int) uartRegFcrWrite(PUARTCORE pThis, uint8_t uVal)
933{
934#ifndef IN_RING3
935 RT_NOREF(pThis, uVal);
936 return VINF_IOM_R3_IOPORT_WRITE;
937#else
938 int rc = VINF_SUCCESS;
939 if ( pThis->enmType >= UARTTYPE_16550A
940 && uVal != pThis->uRegFcr)
941 {
942 /* A change in the FIFO enable bit clears both FIFOs automatically. */
943 if ((uVal ^ pThis->uRegFcr) & UART_REG_FCR_FIFO_EN)
944 {
945 uartFifoClear(&pThis->FifoXmit);
946 uartFifoClear(&pThis->FifoRecv);
947
948 /*
949 * If the FIFO is about to be enabled and the DR bit is ready we have an unacknowledged
950 * byte in the RBR register which will be lost so we have to adjust the available bytes.
951 */
952 if ( ASMAtomicReadU32(&pThis->cbAvailRdr) > 0
953 && (uVal & UART_REG_FCR_FIFO_EN))
954 ASMAtomicDecU32(&pThis->cbAvailRdr);
955
956 /* Clear the DR bit too. */
957 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_DR);
958 }
959
960 if (rc == VINF_SUCCESS)
961 {
962 if (uVal & UART_REG_FCR_RCV_FIFO_RST)
963 {
964 TMTimerStop(pThis->CTX_SUFF(pTimerRcvFifoTimeout));
965 pThis->fIrqCtiPending = false;
966 uartFifoClear(&pThis->FifoRecv);
967 }
968 if (uVal & UART_REG_FCR_XMIT_FIFO_RST)
969 uartFifoClear(&pThis->FifoXmit);
970
971 /*
972 * The 64byte FIFO enable bit is only changeable for 16750
973 * and if the DLAB bit in LCR is set.
974 */
975 if ( pThis->enmType < UARTTYPE_16750
976 || !(pThis->uRegLcr & UART_REG_LCR_DLAB))
977 uVal &= ~UART_REG_FCR_64BYTE_FIFO_EN;
978 else /* Use previous value. */
979 uVal |= pThis->uRegFcr & UART_REG_FCR_64BYTE_FIFO_EN;
980
981 if (uVal & UART_REG_FCR_64BYTE_FIFO_EN)
982 {
983 pThis->FifoRecv.cbMax = 64;
984 pThis->FifoXmit.cbMax = 64;
985 }
986 else
987 {
988 pThis->FifoRecv.cbMax = 16;
989 pThis->FifoXmit.cbMax = 16;
990 }
991
992 if (uVal & UART_REG_FCR_FIFO_EN)
993 {
994 uint8_t idxItl = UART_REG_FCR_RCV_LVL_IRQ_GET(uVal);
995 if (uVal & UART_REG_FCR_64BYTE_FIFO_EN)
996 pThis->FifoRecv.cbItl = s_aFifoItl[idxItl].cbItl64;
997 else
998 pThis->FifoRecv.cbItl = s_aFifoItl[idxItl].cbItl16;
999 }
1000
1001 /* The FIFO reset bits are self clearing. */
1002 pThis->uRegFcr = uVal & UART_REG_FCR_MASK_STICKY;
1003 uartIrqUpdate(pThis);
1004 }
1005
1006 /* Fill in the next data. */
1007 if (ASMAtomicReadU32(&pThis->cbAvailRdr))
1008 uartR3DataFetch(pThis);
1009 }
1010
1011 return rc;
1012#endif
1013}
1014
1015
1016/**
1017 * Write handler for the LCR register.
1018 *
1019 * @returns VBox status code.
1020 * @param pThis The serial port instance.
1021 * @param uVal The value to write.
1022 */
1023DECLINLINE(int) uartRegLcrWrite(PUARTCORE pThis, uint8_t uVal)
1024{
1025 int rc = VINF_SUCCESS;
1026
1027 /* Any change except the DLAB bit causes a switch to R3. */
1028 if ((pThis->uRegLcr & ~UART_REG_LCR_DLAB) != (uVal & ~UART_REG_LCR_DLAB))
1029 {
1030#ifndef IN_RING3
1031 rc = VINF_IOM_R3_IOPORT_WRITE;
1032#else
1033 /* Check whether the BREAK bit changed before updating the LCR value. */
1034 bool fBrkEn = RT_BOOL(uVal & UART_REG_LCR_BRK_SET);
1035 bool fBrkChg = fBrkEn != RT_BOOL(pThis->uRegLcr & UART_REG_LCR_BRK_SET);
1036 pThis->uRegLcr = uVal;
1037 uartR3ParamsUpdate(pThis);
1038
1039 if ( fBrkChg
1040 && pThis->pDrvSerial)
1041 pThis->pDrvSerial->pfnChgBrk(pThis->pDrvSerial, fBrkEn);
1042#endif
1043 }
1044 else
1045 pThis->uRegLcr = uVal;
1046
1047 return rc;
1048}
1049
1050
1051/**
1052 * Write handler for the MCR register.
1053 *
1054 * @returns VBox status code.
1055 * @param pThis The serial port instance.
1056 * @param uVal The value to write.
1057 */
1058DECLINLINE(int) uartRegMcrWrite(PUARTCORE pThis, uint8_t uVal)
1059{
1060 int rc = VINF_SUCCESS;
1061
1062 if (pThis->enmType < UARTTYPE_16750)
1063 uVal &= UART_REG_MCR_MASK_WR;
1064 else
1065 uVal &= UART_REG_MCR_MASK_WR_15750;
1066 if (pThis->uRegMcr != uVal)
1067 {
1068#ifndef IN_RING3
1069 rc = VINF_IOM_R3_IOPORT_WRITE;
1070#else
1071 /*
1072 * When loopback mode is activated the RTS, DTR, OUT1 and OUT2 lines are
1073 * disconnected and looped back to MSR.
1074 */
1075 if ( (uVal & UART_REG_MCR_LOOP)
1076 && !(pThis->uRegMcr & UART_REG_MCR_LOOP)
1077 && pThis->pDrvSerial)
1078 pThis->pDrvSerial->pfnChgModemLines(pThis->pDrvSerial, false /*fRts*/, false /*fDtr*/);
1079
1080 pThis->uRegMcr = uVal;
1081 if (uVal & UART_REG_MCR_LOOP)
1082 {
1083 uint8_t uRegMsrSts = 0;
1084
1085 if (uVal & UART_REG_MCR_RTS)
1086 uRegMsrSts |= UART_REG_MSR_CTS;
1087 if (uVal & UART_REG_MCR_DTR)
1088 uRegMsrSts |= UART_REG_MSR_DSR;
1089 if (uVal & UART_REG_MCR_OUT1)
1090 uRegMsrSts |= UART_REG_MSR_RI;
1091 if (uVal & UART_REG_MCR_OUT2)
1092 uRegMsrSts |= UART_REG_MSR_DCD;
1093 uartR3MsrUpdate(pThis, uRegMsrSts);
1094 }
1095 else if (pThis->pDrvSerial)
1096 pThis->pDrvSerial->pfnChgModemLines(pThis->pDrvSerial,
1097 RT_BOOL(uVal & UART_REG_MCR_RTS),
1098 RT_BOOL(uVal & UART_REG_MCR_DTR));
1099#endif
1100 }
1101
1102 return rc;
1103}
1104
1105
1106/**
1107 * Read handler for the RBR/DLL register (depending on the DLAB bit in LCR).
1108 *
1109 * @returns VBox status code.
1110 * @param pThis The serial port instance.
1111 * @param puVal Where to store the read value on success.
1112 */
1113DECLINLINE(int) uartRegRbrDllRead(PUARTCORE pThis, uint32_t *puVal)
1114{
1115 int rc = VINF_SUCCESS;
1116
1117 /* A set DLAB causes a read from the lower 8bits of the divisor latch. */
1118 if (pThis->uRegLcr & UART_REG_LCR_DLAB)
1119 *puVal = pThis->uRegDivisor & 0xff;
1120 else
1121 {
1122 if (pThis->uRegFcr & UART_REG_FCR_FIFO_EN)
1123 {
1124 /*
1125 * Only go back to R3 if there is new data available for the FIFO
1126 * and we would clear the interrupt to fill it up again.
1127 */
1128 if ( pThis->FifoRecv.cbUsed <= pThis->FifoRecv.cbItl
1129 && ASMAtomicReadU32(&pThis->cbAvailRdr) > 0)
1130 {
1131#ifndef IN_RING3
1132 rc = VINF_IOM_R3_IOPORT_READ;
1133#else
1134 uartR3RecvFifoFill(pThis);
1135#endif
1136 }
1137
1138 if (rc == VINF_SUCCESS)
1139 {
1140 *puVal = uartFifoGet(&pThis->FifoRecv);
1141 pThis->fIrqCtiPending = false;
1142 if (!pThis->FifoRecv.cbUsed)
1143 {
1144 TMTimerStop(pThis->CTX_SUFF(pTimerRcvFifoTimeout));
1145 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_DR);
1146 }
1147 else if (pThis->FifoRecv.cbUsed < pThis->FifoRecv.cbItl)
1148 TMTimerSetRelative(pThis->CTX_SUFF(pTimerRcvFifoTimeout), pThis->cSymbolXferTicks * 4, NULL);
1149 uartIrqUpdate(pThis);
1150 }
1151 }
1152 else
1153 {
1154 *puVal = pThis->uRegRbr;
1155
1156 if (pThis->uRegLsr & UART_REG_LSR_DR)
1157 {
1158 Assert(pThis->cbAvailRdr);
1159 uint32_t cbAvail = ASMAtomicDecU32(&pThis->cbAvailRdr);
1160 if (!cbAvail)
1161 {
1162 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_DR);
1163 uartIrqUpdate(pThis);
1164 }
1165 else
1166 {
1167#ifndef IN_RING3
1168 /* Restore state and go back to R3. */
1169 ASMAtomicIncU32(&pThis->cbAvailRdr);
1170 rc = VINF_IOM_R3_IOPORT_READ;
1171#else
1172 /* Fetch new data and keep the DR bit set. */
1173 uartR3DataFetch(pThis);
1174#endif
1175 }
1176 }
1177 }
1178 }
1179
1180 return rc;
1181}
1182
1183
1184/**
1185 * Read handler for the IER/DLM register (depending on the DLAB bit in LCR).
1186 *
1187 * @returns VBox status code.
1188 * @param pThis The serial port instance.
1189 * @param puVal Where to store the read value on success.
1190 */
1191DECLINLINE(int) uartRegIerDlmRead(PUARTCORE pThis, uint32_t *puVal)
1192{
1193 int rc = VINF_SUCCESS;
1194
1195 /* A set DLAB causes a read from the upper 8bits of the divisor latch. */
1196 if (pThis->uRegLcr & UART_REG_LCR_DLAB)
1197 *puVal = (pThis->uRegDivisor & 0xff00) >> 8;
1198 else
1199 *puVal = pThis->uRegIer;
1200
1201 return rc;
1202}
1203
1204
1205/**
1206 * Read handler for the IIR register.
1207 *
1208 * @returns VBox status code.
1209 * @param pThis The serial port instance.
1210 * @param puVal Where to store the read value on success.
1211 */
1212DECLINLINE(int) uartRegIirRead(PUARTCORE pThis, uint32_t *puVal)
1213{
1214 *puVal = pThis->uRegIir;
1215 /* Reset the THRE empty interrupt id when this gets returned to the guest (see table 3 UART Reset configuration). */
1216 if (UART_REG_IIR_ID_GET(pThis->uRegIir) == UART_REG_IIR_ID_THRE)
1217 {
1218 pThis->fThreEmptyPending = false;
1219 uartIrqUpdate(pThis);
1220 }
1221 return VINF_SUCCESS;
1222}
1223
1224
1225/**
1226 * Read handler for the LSR register.
1227 *
1228 * @returns VBox status code.
1229 * @param pThis The serial port instance.
1230 * @param puVal Where to store the read value on success.
1231 */
1232DECLINLINE(int) uartRegLsrRead(PUARTCORE pThis, uint32_t *puVal)
1233{
1234 int rc = VINF_SUCCESS;
1235
1236 /* Yield if configured and there is no data available. */
1237 if ( !(pThis->uRegLsr & UART_REG_LSR_DR)
1238 && (pThis->fFlags & UART_CORE_YIELD_ON_LSR_READ))
1239 {
1240#ifndef IN_RING3
1241 return VINF_IOM_R3_IOPORT_READ;
1242#else
1243 RTThreadYield();
1244#endif
1245 }
1246
1247 *puVal = pThis->uRegLsr;
1248 /*
1249 * Reading this register clears the Overrun (OE), Parity (PE) and Framing (FE) error
1250 * as well as the Break Interrupt (BI).
1251 */
1252 UART_REG_CLR(pThis->uRegLsr, UART_REG_LSR_BITS_IIR_RCL);
1253 uartIrqUpdate(pThis);
1254
1255 return rc;
1256}
1257
1258
1259/**
1260 * Read handler for the MSR register.
1261 *
1262 * @returns VBox status code.
1263 * @param pThis The serial port instance.
1264 * @param puVal Where to store the read value on success.
1265 */
1266DECLINLINE(int) uartRegMsrRead(PUARTCORE pThis, uint32_t *puVal)
1267{
1268 *puVal = pThis->uRegMsr;
1269
1270 /* Clear any of the delta bits. */
1271 UART_REG_CLR(pThis->uRegMsr, UART_REG_MSR_BITS_IIR_MS);
1272 uartIrqUpdate(pThis);
1273 return VINF_SUCCESS;
1274}
1275
1276
1277#ifdef LOG_ENABLED
1278/**
1279 * Converts the register index into a sensible memnonic.
1280 *
1281 * @returns Register memnonic.
1282 * @param pThis The serial port instance.
1283 * @param idxReg Register index.
1284 * @param fWrite Flag whether the register gets written.
1285 */
1286DECLINLINE(const char *) uartRegIdx2Str(PUARTCORE pThis, uint8_t idxReg, bool fWrite)
1287{
1288 const char *psz = "INV";
1289
1290 switch (idxReg)
1291 {
1292 /*case UART_REG_THR_DLL_INDEX:*/
1293 case UART_REG_RBR_DLL_INDEX:
1294 if (pThis->uRegLcr & UART_REG_LCR_DLAB)
1295 psz = "DLL";
1296 else if (fWrite)
1297 psz = "THR";
1298 else
1299 psz = "RBR";
1300 break;
1301 case UART_REG_IER_DLM_INDEX:
1302 if (pThis->uRegLcr & UART_REG_LCR_DLAB)
1303 psz = "DLM";
1304 else
1305 psz = "IER";
1306 break;
1307 /*case UART_REG_IIR_INDEX:*/
1308 case UART_REG_FCR_INDEX:
1309 if (fWrite)
1310 psz = "FCR";
1311 else
1312 psz = "IIR";
1313 break;
1314 case UART_REG_LCR_INDEX:
1315 psz = "LCR";
1316 break;
1317 case UART_REG_MCR_INDEX:
1318 psz = "MCR";
1319 break;
1320 case UART_REG_LSR_INDEX:
1321 psz = "LSR";
1322 break;
1323 case UART_REG_MSR_INDEX:
1324 psz = "MSR";
1325 break;
1326 case UART_REG_SCR_INDEX:
1327 psz = "SCR";
1328 break;
1329 }
1330
1331 return psz;
1332}
1333#endif
1334
1335
1336DECLHIDDEN(int) uartRegWrite(PUARTCORE pThis, uint32_t uReg, uint32_t u32, size_t cb)
1337{
1338 AssertMsgReturn(cb == 1, ("uReg=%#x cb=%d u32=%#x\n", uReg, cb, u32), VINF_SUCCESS);
1339
1340 int rc = PDMCritSectEnter(&pThis->CritSect, VINF_IOM_R3_IOPORT_WRITE);
1341 if (rc != VINF_SUCCESS)
1342 return rc;
1343
1344 uint8_t idxReg = uReg & 0x7;
1345 LogFlowFunc(("pThis=%#p uReg=%u{%s} u32=%#x cb=%u\n",
1346 pThis, uReg, uartRegIdx2Str(pThis, idxReg, true /*fWrite*/), u32, cb));
1347
1348 uint8_t uVal = (uint8_t)u32;
1349 switch (idxReg)
1350 {
1351 case UART_REG_THR_DLL_INDEX:
1352 rc = uartRegThrDllWrite(pThis, uVal);
1353 break;
1354 case UART_REG_IER_DLM_INDEX:
1355 rc = uartRegIerDlmWrite(pThis, uVal);
1356 break;
1357 case UART_REG_FCR_INDEX:
1358 rc = uartRegFcrWrite(pThis, uVal);
1359 break;
1360 case UART_REG_LCR_INDEX:
1361 rc = uartRegLcrWrite(pThis, uVal);
1362 break;
1363 case UART_REG_MCR_INDEX:
1364 rc = uartRegMcrWrite(pThis, uVal);
1365 break;
1366 case UART_REG_SCR_INDEX:
1367 pThis->uRegScr = u32;
1368 break;
1369 default:
1370 break;
1371 }
1372
1373 PDMCritSectLeave(&pThis->CritSect);
1374 LogFlowFunc(("-> %Rrc\n", rc));
1375 return rc;
1376}
1377
1378
1379DECLHIDDEN(int) uartRegRead(PUARTCORE pThis, uint32_t uReg, uint32_t *pu32, size_t cb)
1380{
1381 if (cb != 1)
1382 return VERR_IOM_IOPORT_UNUSED;
1383
1384 int rc = PDMCritSectEnter(&pThis->CritSect, VINF_IOM_R3_IOPORT_READ);
1385 if (rc != VINF_SUCCESS)
1386 return rc;
1387
1388 uint8_t idxReg = uReg & 0x7;
1389 switch (idxReg)
1390 {
1391 case UART_REG_RBR_DLL_INDEX:
1392 rc = uartRegRbrDllRead(pThis, pu32);
1393 break;
1394 case UART_REG_IER_DLM_INDEX:
1395 rc = uartRegIerDlmRead(pThis, pu32);
1396 break;
1397 case UART_REG_IIR_INDEX:
1398 rc = uartRegIirRead(pThis, pu32);
1399 break;
1400 case UART_REG_LCR_INDEX:
1401 *pu32 = pThis->uRegLcr;
1402 break;
1403 case UART_REG_MCR_INDEX:
1404 *pu32 = pThis->uRegMcr;
1405 break;
1406 case UART_REG_LSR_INDEX:
1407 rc = uartRegLsrRead(pThis, pu32);
1408 break;
1409 case UART_REG_MSR_INDEX:
1410 rc = uartRegMsrRead(pThis, pu32);
1411 break;
1412 case UART_REG_SCR_INDEX:
1413 *pu32 = pThis->uRegScr;
1414 break;
1415 default:
1416 rc = VERR_IOM_IOPORT_UNUSED;
1417 }
1418
1419 PDMCritSectLeave(&pThis->CritSect);
1420 LogFlowFunc(("pThis=%#p uReg=%u{%s} u32=%#x cb=%u -> %Rrc\n",
1421 pThis, uReg, uartRegIdx2Str(pThis, idxReg, false /*fWrite*/), *pu32, cb, rc));
1422 return rc;
1423}
1424
1425
1426#ifdef IN_RING3
1427
1428/* -=-=-=-=-=-=-=-=- Timer callbacks -=-=-=-=-=-=-=-=- */
1429
1430/**
1431 * @callback_method_impl{FNTMTIMERDEV, Fifo timer function.}
1432 */
1433static DECLCALLBACK(void) uartR3RcvFifoTimeoutTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
1434{
1435 LogFlowFunc(("pDevIns=%#p pTimer=%#p pvUser=%#p\n", pDevIns, pTimer, pvUser));
1436 RT_NOREF(pDevIns, pTimer);
1437 PUARTCORE pThis = (PUARTCORE)pvUser;
1438 PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED);
1439 if (pThis->FifoRecv.cbUsed < pThis->FifoRecv.cbItl)
1440 {
1441 pThis->fIrqCtiPending = true;
1442 uartIrqUpdate(pThis);
1443 }
1444 PDMCritSectLeave(&pThis->CritSect);
1445}
1446
1447/**
1448 * @callback_method_impl{FNTMTIMERDEV, TX timer function when there is no driver connected for draining the THR/FIFO.}
1449 */
1450static DECLCALLBACK(void) uartR3TxUnconnectedTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
1451{
1452 LogFlowFunc(("pDevIns=%#p pTimer=%#p pvUser=%#p\n", pDevIns, pTimer, pvUser));
1453 RT_NOREF(pDevIns, pTimer);
1454 PUARTCORE pThis = (PUARTCORE)pvUser;
1455 PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED);
1456 uint8_t bVal = 0;
1457 size_t cbRead = 0;
1458 uartR3TxQueueCopyFrom(pThis, &bVal, sizeof(bVal), &cbRead);
1459 if (pThis->uRegMcr & UART_REG_MCR_LOOP)
1460 {
1461 /* Loopback mode is active, feed in the data at the receiving end. */
1462 uint32_t cbAvailOld = ASMAtomicAddU32(&pThis->cbAvailRdr, 1);
1463 if (pThis->uRegFcr & UART_REG_FCR_FIFO_EN)
1464 {
1465 PUARTFIFO pFifo = &pThis->FifoRecv;
1466 if (uartFifoFreeGet(pFifo) > 0)
1467 {
1468 pFifo->abBuf[pFifo->offWrite] = bVal;
1469 pFifo->offWrite = (pFifo->offWrite + 1) % pFifo->cbMax;
1470 pFifo->cbUsed++;
1471
1472 UART_REG_SET(pThis->uRegLsr, UART_REG_LSR_DR);
1473 if (pFifo->cbUsed < pFifo->cbItl)
1474 {
1475 pThis->fIrqCtiPending = false;
1476 TMTimerSetRelative(pThis->CTX_SUFF(pTimerRcvFifoTimeout), pThis->cSymbolXferTicks * 4, NULL);
1477 }
1478 uartIrqUpdate(pThis);
1479 }
1480
1481 ASMAtomicSubU32(&pThis->cbAvailRdr, 1);
1482 }
1483 else if (!cbAvailOld)
1484 {
1485 pThis->uRegRbr = bVal;
1486 UART_REG_SET(pThis->uRegLsr, UART_REG_LSR_DR);
1487 uartIrqUpdate(pThis);
1488 }
1489 }
1490 if (cbRead == 1)
1491 TMTimerSetRelative(pThis->CTX_SUFF(pTimerTxUnconnected), pThis->cSymbolXferTicks, NULL);
1492 PDMCritSectLeave(&pThis->CritSect);
1493}
1494
1495
1496/* -=-=-=-=-=-=-=-=- PDMISERIALPORT on LUN#0 -=-=-=-=-=-=-=-=- */
1497
1498
1499/**
1500 * @interface_method_impl{PDMISERIALPORT,pfnDataAvailRdrNotify}
1501 */
1502static DECLCALLBACK(int) uartR3DataAvailRdrNotify(PPDMISERIALPORT pInterface, size_t cbAvail)
1503{
1504 LogFlowFunc(("pInterface=%#p cbAvail=%zu\n", pInterface, cbAvail));
1505 PUARTCORE pThis = RT_FROM_MEMBER(pInterface, UARTCORE, ISerialPort);
1506
1507 AssertMsg((uint32_t)cbAvail == cbAvail, ("Too much data available\n"));
1508
1509 PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED);
1510 uint32_t cbAvailOld = ASMAtomicAddU32(&pThis->cbAvailRdr, (uint32_t)cbAvail);
1511 LogFlow((" cbAvailRdr=%u -> cbAvailRdr=%u\n", cbAvailOld, cbAvail + cbAvailOld));
1512 if (pThis->uRegFcr & UART_REG_FCR_FIFO_EN)
1513 uartR3RecvFifoFill(pThis);
1514 else if (!cbAvailOld)
1515 {
1516 size_t cbRead = 0;
1517 int rc = pThis->pDrvSerial->pfnReadRdr(pThis->pDrvSerial, &pThis->uRegRbr, 1, &cbRead);
1518 AssertMsg(RT_SUCCESS(rc) && cbRead == 1, ("This shouldn't fail and always return one byte!\n")); RT_NOREF(rc);
1519 UART_REG_SET(pThis->uRegLsr, UART_REG_LSR_DR);
1520 uartIrqUpdate(pThis);
1521 }
1522 PDMCritSectLeave(&pThis->CritSect);
1523
1524 return VINF_SUCCESS;
1525}
1526
1527
1528/**
1529 * @interface_method_impl{PDMISERIALPORT,pfnDataSentNotify}
1530 */
1531static DECLCALLBACK(int) uartR3DataSentNotify(PPDMISERIALPORT pInterface)
1532{
1533 LogFlowFunc(("pInterface=%#p\n", pInterface));
1534 PUARTCORE pThis = RT_FROM_MEMBER(pInterface, UARTCORE, ISerialPort);
1535
1536 /* Set the transmitter empty bit because everything was sent. */
1537 PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED);
1538 UART_REG_SET(pThis->uRegLsr, UART_REG_LSR_TEMT);
1539 uartIrqUpdate(pThis);
1540 PDMCritSectLeave(&pThis->CritSect);
1541 return VINF_SUCCESS;
1542}
1543
1544
1545/**
1546 * @interface_method_impl{PDMISERIALPORT,pfnReadWr}
1547 */
1548static DECLCALLBACK(int) uartR3ReadWr(PPDMISERIALPORT pInterface, void *pvBuf, size_t cbRead, size_t *pcbRead)
1549{
1550 LogFlowFunc(("pInterface=%#p pvBuf=%#p cbRead=%zu pcbRead=%#p\n", pInterface, pvBuf, cbRead, pcbRead));
1551 PUARTCORE pThis = RT_FROM_MEMBER(pInterface, UARTCORE, ISerialPort);
1552
1553 AssertReturn(cbRead > 0, VERR_INVALID_PARAMETER);
1554
1555 PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED);
1556 uartR3TxQueueCopyFrom(pThis, pvBuf, cbRead, pcbRead);
1557 PDMCritSectLeave(&pThis->CritSect);
1558
1559 LogFlowFunc(("-> VINF_SUCCESS{*pcbRead=%zu}\n", *pcbRead));
1560 return VINF_SUCCESS;
1561}
1562
1563
1564/**
1565 * @interface_method_impl{PDMISERIALPORT,pfnNotifyStsLinesChanged}
1566 */
1567static DECLCALLBACK(int) uartR3NotifyStsLinesChanged(PPDMISERIALPORT pInterface, uint32_t fNewStatusLines)
1568{
1569 LogFlowFunc(("pInterface=%#p fNewStatusLines=%#x\n", pInterface, fNewStatusLines));
1570 PUARTCORE pThis = RT_FROM_MEMBER(pInterface, UARTCORE, ISerialPort);
1571
1572 PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED);
1573 uartR3StsLinesUpdate(pThis, fNewStatusLines);
1574 PDMCritSectLeave(&pThis->CritSect);
1575 return VINF_SUCCESS;
1576}
1577
1578
1579/**
1580 * @interface_method_impl{PDMISERIALPORT,pfnNotifyBrk}
1581 */
1582static DECLCALLBACK(int) uartR3NotifyBrk(PPDMISERIALPORT pInterface)
1583{
1584 LogFlowFunc(("pInterface=%#p\n", pInterface));
1585 PUARTCORE pThis = RT_FROM_MEMBER(pInterface, UARTCORE, ISerialPort);
1586
1587 PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED);
1588 UART_REG_SET(pThis->uRegLsr, UART_REG_LSR_BI);
1589 uartIrqUpdate(pThis);
1590 PDMCritSectLeave(&pThis->CritSect);
1591 return VINF_SUCCESS;
1592}
1593
1594
1595/* -=-=-=-=-=-=-=-=- PDMIBASE -=-=-=-=-=-=-=-=- */
1596
1597/**
1598 * @interface_method_impl{PDMIBASE,pfnQueryInterface}
1599 */
1600static DECLCALLBACK(void *) uartR3QueryInterface(PPDMIBASE pInterface, const char *pszIID)
1601{
1602 PUARTCORE pThis = RT_FROM_MEMBER(pInterface, UARTCORE, IBase);
1603 PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase);
1604 PDMIBASE_RETURN_INTERFACE(pszIID, PDMISERIALPORT, &pThis->ISerialPort);
1605 return NULL;
1606}
1607
1608
1609DECLHIDDEN(int) uartR3SaveExec(PUARTCORE pThis, PSSMHANDLE pSSM)
1610{
1611 SSMR3PutU16(pSSM, pThis->uRegDivisor);
1612 SSMR3PutU8(pSSM, pThis->uRegRbr);
1613 SSMR3PutU8(pSSM, pThis->uRegThr);
1614 SSMR3PutU8(pSSM, pThis->uRegIer);
1615 SSMR3PutU8(pSSM, pThis->uRegIir);
1616 SSMR3PutU8(pSSM, pThis->uRegFcr);
1617 SSMR3PutU8(pSSM, pThis->uRegLcr);
1618 SSMR3PutU8(pSSM, pThis->uRegMcr);
1619 SSMR3PutU8(pSSM, pThis->uRegLsr);
1620 SSMR3PutU8(pSSM, pThis->uRegMsr);
1621 SSMR3PutU8(pSSM, pThis->uRegScr);
1622 SSMR3PutBool(pSSM, pThis->fIrqCtiPending);
1623 SSMR3PutBool(pSSM, pThis->fThreEmptyPending);
1624 SSMR3PutU8(pSSM, pThis->FifoXmit.cbMax);
1625 SSMR3PutU8(pSSM, pThis->FifoXmit.cbItl);
1626 SSMR3PutU8(pSSM, pThis->FifoRecv.cbMax);
1627 SSMR3PutU8(pSSM, pThis->FifoRecv.cbItl);
1628
1629 int rc = TMR3TimerSave(pThis->pTimerRcvFifoTimeoutR3, pSSM);
1630 if (RT_SUCCESS(rc))
1631 rc = TMR3TimerSave(pThis->pTimerTxUnconnectedR3, pSSM);
1632
1633 return rc;
1634}
1635
1636
1637DECLHIDDEN(int) uartR3LoadExec(PUARTCORE pThis, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass,
1638 uint8_t *pbIrq, RTIOPORT *pPortBase)
1639{
1640 RT_NOREF(uPass);
1641 int rc;
1642
1643 if (uVersion > UART_SAVED_STATE_VERSION_LEGACY_CODE)
1644 {
1645 SSMR3GetU16(pSSM, &pThis->uRegDivisor);
1646 SSMR3GetU8(pSSM, &pThis->uRegRbr);
1647 SSMR3GetU8(pSSM, &pThis->uRegThr);
1648 SSMR3GetU8(pSSM, &pThis->uRegIer);
1649 SSMR3GetU8(pSSM, &pThis->uRegIir);
1650 SSMR3GetU8(pSSM, &pThis->uRegFcr);
1651 SSMR3GetU8(pSSM, &pThis->uRegLcr);
1652 SSMR3GetU8(pSSM, &pThis->uRegMcr);
1653 SSMR3GetU8(pSSM, &pThis->uRegLsr);
1654 SSMR3GetU8(pSSM, &pThis->uRegMsr);
1655 SSMR3GetU8(pSSM, &pThis->uRegScr);
1656 SSMR3GetBool(pSSM, &pThis->fIrqCtiPending);
1657 SSMR3GetBool(pSSM, &pThis->fThreEmptyPending);
1658 SSMR3GetU8(pSSM, &pThis->FifoXmit.cbMax);
1659 SSMR3GetU8(pSSM, &pThis->FifoXmit.cbItl);
1660 SSMR3GetU8(pSSM, &pThis->FifoRecv.cbMax);
1661 SSMR3GetU8(pSSM, &pThis->FifoRecv.cbItl);
1662
1663 rc = TMR3TimerLoad(pThis->pTimerRcvFifoTimeoutR3, pSSM);
1664 if (uVersion > UART_SAVED_STATE_VERSION_PRE_UNCONNECTED_TX_TIMER)
1665 rc = TMR3TimerLoad(pThis->pTimerTxUnconnectedR3, pSSM);
1666 }
1667 else
1668 {
1669 AssertPtr(pbIrq);
1670 AssertPtr(pPortBase);
1671 if (uVersion == UART_SAVED_STATE_VERSION_16450)
1672 {
1673 pThis->enmType = UARTTYPE_16450;
1674 LogRel(("Serial#%d: falling back to 16450 mode from load state\n", pThis->pDevInsR3->iInstance));
1675 }
1676
1677 SSMR3GetU16(pSSM, &pThis->uRegDivisor);
1678 SSMR3GetU8(pSSM, &pThis->uRegRbr);
1679 SSMR3GetU8(pSSM, &pThis->uRegIer);
1680 SSMR3GetU8(pSSM, &pThis->uRegLcr);
1681 SSMR3GetU8(pSSM, &pThis->uRegMcr);
1682 SSMR3GetU8(pSSM, &pThis->uRegLsr);
1683 SSMR3GetU8(pSSM, &pThis->uRegMsr);
1684 SSMR3GetU8(pSSM, &pThis->uRegScr);
1685 if (uVersion > UART_SAVED_STATE_VERSION_16450)
1686 SSMR3GetU8(pSSM, &pThis->uRegFcr);
1687
1688 int32_t iTmp = 0;
1689 SSMR3GetS32(pSSM, &iTmp);
1690 pThis->fThreEmptyPending = RT_BOOL(iTmp);
1691
1692 rc = SSMR3GetS32(pSSM, &iTmp);
1693 AssertRCReturn(rc, rc);
1694 *pbIrq = (uint8_t)iTmp;
1695
1696 SSMR3Skip(pSSM, sizeof(int32_t)); /* was: last_break_enable */
1697
1698 uint32_t uPortBaseTmp = 0;
1699 rc = SSMR3GetU32(pSSM, &uPortBaseTmp);
1700 AssertRCReturn(rc, rc);
1701 *pPortBase = (RTIOPORT)uPortBaseTmp;
1702
1703 rc = SSMR3Skip(pSSM, sizeof(bool)); /* was: msr_changed */
1704 if ( RT_SUCCESS(rc)
1705 && uVersion > UART_SAVED_STATE_VERSION_MISSING_BITS)
1706 {
1707 SSMR3GetU8(pSSM, &pThis->uRegThr);
1708 SSMR3Skip(pSSM, sizeof(uint8_t)); /* The old transmit shift register, not used anymore. */
1709 SSMR3GetU8(pSSM, &pThis->uRegIir);
1710
1711 int32_t iTimeoutPending = 0;
1712 SSMR3GetS32(pSSM, &iTimeoutPending);
1713 pThis->fIrqCtiPending = RT_BOOL(iTimeoutPending);
1714
1715 rc = TMR3TimerLoad(pThis->pTimerRcvFifoTimeoutR3, pSSM);
1716 AssertRCReturn(rc, rc);
1717
1718 bool fWasActiveIgn;
1719 rc = TMR3TimerSkip(pSSM, &fWasActiveIgn); /* was: transmit_timerR3 */
1720 AssertRCReturn(rc, rc);
1721
1722 SSMR3GetU8(pSSM, &pThis->FifoRecv.cbItl);
1723 rc = SSMR3GetU8(pSSM, &pThis->FifoRecv.cbItl);
1724 }
1725 }
1726
1727 return rc;
1728}
1729
1730
1731DECLHIDDEN(int) uartR3LoadDone(PUARTCORE pThis, PSSMHANDLE pSSM)
1732{
1733 RT_NOREF(pSSM);
1734
1735 uartR3ParamsUpdate(pThis);
1736 uartIrqUpdate(pThis);
1737
1738 if (pThis->pDrvSerial)
1739 {
1740 /* Set the modem lines to reflect the current state. */
1741 int rc = pThis->pDrvSerial->pfnChgModemLines(pThis->pDrvSerial,
1742 RT_BOOL(pThis->uRegMcr & UART_REG_MCR_RTS),
1743 RT_BOOL(pThis->uRegMcr & UART_REG_MCR_DTR));
1744 if (RT_FAILURE(rc))
1745 LogRel(("Serial#%d: Failed to set modem lines with %Rrc during saved state load\n",
1746 pThis->pDevInsR3->iInstance, rc));
1747
1748 uint32_t fStsLines = 0;
1749 rc = pThis->pDrvSerial->pfnQueryStsLines(pThis->pDrvSerial, &fStsLines);
1750 if (RT_SUCCESS(rc))
1751 uartR3StsLinesUpdate(pThis, fStsLines);
1752 else
1753 LogRel(("Serial#%d: Failed to query status line status with %Rrc during reset\n",
1754 pThis->pDevInsR3->iInstance, rc));
1755 }
1756
1757 return VINF_SUCCESS;
1758}
1759
1760
1761DECLHIDDEN(void) uartR3Relocate(PUARTCORE pThis, RTGCINTPTR offDelta)
1762{
1763 RT_NOREF(offDelta);
1764 pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pThis->pDevInsR3);
1765 pThis->pTimerRcvFifoTimeoutRC = TMTimerRCPtr(pThis->pTimerRcvFifoTimeoutR3);
1766 pThis->pTimerTxUnconnectedRC = TMTimerRCPtr(pThis->pTimerTxUnconnectedR3);
1767}
1768
1769
1770DECLHIDDEN(void) uartR3Reset(PUARTCORE pThis)
1771{
1772 pThis->uRegDivisor = 0x0c; /* Default to 9600 Baud. */
1773 pThis->uRegRbr = 0;
1774 pThis->uRegThr = 0;
1775 pThis->uRegIer = 0;
1776 pThis->uRegIir = UART_REG_IIR_IP_NO_INT;
1777 pThis->uRegFcr = 0;
1778 pThis->uRegLcr = 0; /* 5 data bits, no parity, 1 stop bit. */
1779 pThis->uRegMcr = 0;
1780 pThis->uRegLsr = UART_REG_LSR_THRE | UART_REG_LSR_TEMT;
1781 pThis->uRegMsr = 0; /* Updated below. */
1782 pThis->uRegScr = 0;
1783 pThis->fIrqCtiPending = false;
1784 pThis->fThreEmptyPending = true;
1785
1786 /* Standard FIFO size for 15550A. */
1787 pThis->FifoXmit.cbMax = 16;
1788 pThis->FifoRecv.cbMax = 16;
1789 pThis->FifoRecv.cbItl = 1;
1790
1791 uartR3XferReset(pThis);
1792}
1793
1794
1795DECLHIDDEN(int) uartR3Attach(PUARTCORE pThis, unsigned iLUN)
1796{
1797 int rc = PDMDevHlpDriverAttach(pThis->pDevInsR3, iLUN, &pThis->IBase, &pThis->pDrvBase, "Serial Char");
1798 if (RT_SUCCESS(rc))
1799 {
1800 pThis->pDrvSerial = PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMISERIALCONNECTOR);
1801 if (!pThis->pDrvSerial)
1802 {
1803 AssertLogRelMsgFailed(("Configuration error: instance %d has no serial interface!\n", pThis->pDevInsR3->iInstance));
1804 return VERR_PDM_MISSING_INTERFACE;
1805 }
1806 uartR3XferReset(pThis);
1807 }
1808 else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
1809 {
1810 pThis->pDrvBase = NULL;
1811 pThis->pDrvSerial = NULL;
1812 rc = VINF_SUCCESS;
1813 uartR3XferReset(pThis);
1814 LogRel(("Serial#%d: no unit\n", pThis->pDevInsR3->iInstance));
1815 }
1816 else /* Don't call VMSetError here as we assume that the driver already set an appropriate error */
1817 LogRel(("Serial#%d: Failed to attach to serial driver. rc=%Rrc\n", pThis->pDevInsR3->iInstance, rc));
1818
1819 return rc;
1820}
1821
1822
1823DECLHIDDEN(void) uartR3Detach(PUARTCORE pThis)
1824{
1825 /* Zero out important members. */
1826 pThis->pDrvBase = NULL;
1827 pThis->pDrvSerial = NULL;
1828 uartR3XferReset(pThis);
1829}
1830
1831
1832DECLHIDDEN(void) uartR3Destruct(PUARTCORE pThis)
1833{
1834 PDMR3CritSectDelete(&pThis->CritSect);
1835}
1836
1837
1838DECLHIDDEN(int) uartR3Init(PUARTCORE pThis, PPDMDEVINS pDevInsR3, UARTTYPE enmType, unsigned iLUN, uint32_t fFlags,
1839 R3PTRTYPE(PFNUARTCOREIRQREQ) pfnUartIrqReqR3, R0PTRTYPE(PFNUARTCOREIRQREQ) pfnUartIrqReqR0,
1840 RCPTRTYPE(PFNUARTCOREIRQREQ) pfnUartIrqReqRC)
1841{
1842 int rc = VINF_SUCCESS;
1843
1844 /*
1845 * Initialize the instance data.
1846 * (Do this early or the destructor might choke on something!)
1847 */
1848 pThis->pDevInsR3 = pDevInsR3;
1849 pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevInsR3);
1850 pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevInsR3);
1851 pThis->iLUN = iLUN;
1852 pThis->enmType = enmType;
1853 pThis->fFlags = fFlags;
1854 pThis->pfnUartIrqReqR3 = pfnUartIrqReqR3;
1855 pThis->pfnUartIrqReqR0 = pfnUartIrqReqR0;
1856 pThis->pfnUartIrqReqRC = pfnUartIrqReqRC;
1857
1858 /* IBase */
1859 pThis->IBase.pfnQueryInterface = uartR3QueryInterface;
1860
1861 /* ISerialPort */
1862 pThis->ISerialPort.pfnDataAvailRdrNotify = uartR3DataAvailRdrNotify;
1863 pThis->ISerialPort.pfnDataSentNotify = uartR3DataSentNotify;
1864 pThis->ISerialPort.pfnReadWr = uartR3ReadWr;
1865 pThis->ISerialPort.pfnNotifyStsLinesChanged = uartR3NotifyStsLinesChanged;
1866 pThis->ISerialPort.pfnNotifyBrk = uartR3NotifyBrk;
1867
1868 rc = PDMDevHlpCritSectInit(pDevInsR3, &pThis->CritSect, RT_SRC_POS, "Uart{%s#%d}#%d",
1869 pDevInsR3->pReg->szName, pDevInsR3->iInstance, iLUN);
1870 AssertRCReturn(rc, rc);
1871
1872 /*
1873 * Attach the char driver and get the interfaces.
1874 */
1875 rc = PDMDevHlpDriverAttach(pDevInsR3, iLUN, &pThis->IBase, &pThis->pDrvBase, "UART");
1876 if (RT_SUCCESS(rc))
1877 {
1878 pThis->pDrvSerial = PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMISERIALCONNECTOR);
1879 if (!pThis->pDrvSerial)
1880 {
1881 AssertLogRelMsgFailed(("Configuration error: instance %d has no serial interface!\n", iLUN));
1882 return VERR_PDM_MISSING_INTERFACE;
1883 }
1884 }
1885 else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
1886 {
1887 pThis->pDrvBase = NULL;
1888 pThis->pDrvSerial = NULL;
1889 LogRel(("Serial#%d: no unit\n", iLUN));
1890 }
1891 else
1892 {
1893 AssertLogRelMsgFailed(("Serial#%d: Failed to attach to char driver. rc=%Rrc\n", iLUN, rc));
1894 /* Don't call VMSetError here as we assume that the driver already set an appropriate error */
1895 return rc;
1896 }
1897
1898 /*
1899 * Create the receive FIFO character timeout indicator timer.
1900 */
1901 rc = PDMDevHlpTMTimerCreate(pDevInsR3, TMCLOCK_VIRTUAL, uartR3RcvFifoTimeoutTimer, pThis,
1902 TMTIMER_FLAGS_NO_CRIT_SECT, "UART Rcv FIFO Timer",
1903 &pThis->pTimerRcvFifoTimeoutR3);
1904 AssertRCReturn(rc, rc);
1905
1906 rc = TMR3TimerSetCritSect(pThis->pTimerRcvFifoTimeoutR3, &pThis->CritSect);
1907 AssertRCReturn(rc, rc);
1908
1909 pThis->pTimerRcvFifoTimeoutR0 = TMTimerR0Ptr(pThis->pTimerRcvFifoTimeoutR3);
1910 pThis->pTimerRcvFifoTimeoutRC = TMTimerRCPtr(pThis->pTimerRcvFifoTimeoutR3);
1911
1912 /*
1913 * Create the transmit timer when no device is connected.
1914 */
1915 rc = PDMDevHlpTMTimerCreate(pDevInsR3, TMCLOCK_VIRTUAL, uartR3TxUnconnectedTimer, pThis,
1916 TMTIMER_FLAGS_NO_CRIT_SECT, "UART TX uncon. Timer",
1917 &pThis->pTimerTxUnconnectedR3);
1918 AssertRCReturn(rc, rc);
1919
1920 rc = TMR3TimerSetCritSect(pThis->pTimerTxUnconnectedR3, &pThis->CritSect);
1921 AssertRCReturn(rc, rc);
1922
1923 pThis->pTimerTxUnconnectedR0 = TMTimerR0Ptr(pThis->pTimerTxUnconnectedR3);
1924 pThis->pTimerTxUnconnectedRC = TMTimerRCPtr(pThis->pTimerTxUnconnectedR3);
1925
1926 uartR3Reset(pThis);
1927 return VINF_SUCCESS;
1928}
1929
1930#endif /* IN_RING3 */
1931
1932#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette