/* $Id: DevLsiLogicSCSI.cpp 59252 2016-01-05 10:54:49Z vboxsync $ */ /** @file * DevLsiLogicSCSI - LsiLogic LSI53c1030 SCSI controller. */ /* * Copyright (C) 2006-2015 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_LSILOGICSCSI #include #include #include #include #include #include #include #include #include #include #include #ifdef IN_RING3 # include # include # include # include # include #endif #include "DevLsiLogicSCSI.h" #include "VBoxSCSI.h" #include "VBoxDD.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The current saved state version. */ #define LSILOGIC_SAVED_STATE_VERSION 5 /** The saved state version used by VirtualBox before the diagnostic * memory access was implemented. */ #define LSILOGIC_SAVED_STATE_VERSION_PRE_DIAG_MEM 4 /** The saved state version used by VirtualBox before the doorbell status flag * was changed from bool to a 32bit enum. */ #define LSILOGIC_SAVED_STATE_VERSION_BOOL_DOORBELL 3 /** The saved state version used by VirtualBox before SAS support was added. */ #define LSILOGIC_SAVED_STATE_VERSION_PRE_SAS 2 /** The saved state version used by VirtualBox 3.0 and earlier. It does not * include the device config part. */ #define LSILOGIC_SAVED_STATE_VERSION_VBOX_30 1 /** Maximum number of entries in the release log. */ #define MAX_REL_LOG_ERRORS 1024 #define LSILOGIC_RTGCPHYS_FROM_U32(Hi, Lo) ( (RTGCPHYS)RT_MAKE_U64(Lo, Hi) ) /** Upper number a buffer is freed if it was too big before. */ #define LSILOGIC_MAX_ALLOC_TOO_MUCH 20 /** Maximum size of the memory regions (prevents teh guest from DOSing the host by * allocating loadds of memory). */ #define LSILOGIC_MEMORY_REGIONS_MAX (_1M) /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * I/O buffer copy worker. * * @returns nothing. * @param pDevIns Device instance data. * @param GCPhysIoBuf Guest physical address of the I/O buffer. * @param pvBuf R3 buffer pointer. * @param cbCopy How much to copy. */ typedef DECLCALLBACK(void) FNLSILOGICIOBUFCOPY(PPDMDEVINS pDevIns, RTGCPHYS GCPhysIoBuf, void *pvBuf, size_t cbCopy); /** Pointer to a I/O buffer copy worker. */ typedef FNLSILOGICIOBUFCOPY *PFNLSILOGICIOBUFCOPY; /** * Reply data. */ typedef struct LSILOGICSCSIREPLY { /** Lower 32 bits of the reply address in memory. */ uint32_t u32HostMFALowAddress; /** Full address of the reply in guest memory. */ RTGCPHYS GCPhysReplyAddress; /** Size of the reply. */ uint32_t cbReply; /** Different views to the reply depending on the request type. */ MptReplyUnion Reply; } LSILOGICSCSIREPLY; /** Pointer to reply data. */ typedef LSILOGICSCSIREPLY *PLSILOGICSCSIREPLY; /** * Memory region of the IOC. */ typedef struct LSILOGICMEMREGN { /** List node. */ RTLISTNODE NodeList; /** 32bit address the region starts to describe. */ uint32_t u32AddrStart; /** 32bit address the region ends (inclusive). */ uint32_t u32AddrEnd; /** Data for this region - variable. */ uint32_t au32Data[1]; } LSILOGICMEMREGN; /** Pointer to a memory region. */ typedef LSILOGICMEMREGN *PLSILOGICMEMREGN; /** * State of a device attached to the buslogic host adapter. * * @implements PDMIBASE * @implements PDMISCSIPORT * @implements PDMILEDPORTS */ typedef struct LSILOGICDEVICE { /** Pointer to the owning lsilogic device instance. - R3 pointer */ R3PTRTYPE(struct LSILOGICSCSI *) pLsiLogicR3; /** LUN of the device. */ uint32_t iLUN; /** Number of outstanding tasks on the port. */ volatile uint32_t cOutstandingRequests; #if HC_ARCH_BITS == 64 uint32_t Alignment0; #endif /** Our base interface. */ PDMIBASE IBase; /** SCSI port interface. */ PDMISCSIPORT ISCSIPort; /** Led interface. */ PDMILEDPORTS ILed; /** Pointer to the attached driver's base interface. */ R3PTRTYPE(PPDMIBASE) pDrvBase; /** Pointer to the underlying SCSI connector interface. */ R3PTRTYPE(PPDMISCSICONNECTOR) pDrvSCSIConnector; /** The status LED state for this device. */ PDMLED Led; } LSILOGICDEVICE; /** Pointer to a device state. */ typedef LSILOGICDEVICE *PLSILOGICDEVICE; /** Pointer to a task state. */ typedef struct LSILOGICREQ *PLSILOGICREQ; /** * Device instance data for the emulated SCSI controller. */ typedef struct LSILOGICSCSI { /** PCI device structure. */ PCIDEVICE PciDev; /** Pointer to the device instance. - R3 ptr. */ PPDMDEVINSR3 pDevInsR3; /** Pointer to the device instance. - R0 ptr. */ PPDMDEVINSR0 pDevInsR0; /** Pointer to the device instance. - RC ptr. */ PPDMDEVINSRC pDevInsRC; /** Flag whether the GC part of the device is enabled. */ bool fGCEnabled; /** Flag whether the R0 part of the device is enabled. */ bool fR0Enabled; /** The state the controller is currently in. */ LSILOGICSTATE enmState; /** Who needs to init the driver to get into operational state. */ LSILOGICWHOINIT enmWhoInit; /** Flag whether we are in doorbell function. */ LSILOGICDOORBELLSTATE enmDoorbellState; /** Flag whether diagnostic access is enabled. */ bool fDiagnosticEnabled; /** Flag whether a notification was send to R3. */ bool fNotificationSent; /** Flag whether the guest enabled event notification from the IOC. */ bool fEventNotificationEnabled; /** Flag whether the diagnostic address and RW registers are enabled. */ bool fDiagRegsEnabled; /** Queue to send tasks to R3. - R3 ptr */ R3PTRTYPE(PPDMQUEUE) pNotificationQueueR3; /** Queue to send tasks to R3. - R0 ptr */ R0PTRTYPE(PPDMQUEUE) pNotificationQueueR0; /** Queue to send tasks to R3. - RC ptr */ RCPTRTYPE(PPDMQUEUE) pNotificationQueueRC; /** Number of device states allocated. */ uint32_t cDeviceStates; /** States for attached devices. */ R3PTRTYPE(PLSILOGICDEVICE) paDeviceStates; #if HC_ARCH_BITS == 32 RTR3PTR R3PtrPadding0; #endif /** Interrupt mask. */ volatile uint32_t uInterruptMask; /** Interrupt status register. */ volatile uint32_t uInterruptStatus; /** Buffer for messages which are passed through the doorbell using the * handshake method. */ uint32_t aMessage[sizeof(MptConfigurationRequest)]; /** @todo r=bird: Looks like 4 tims the required size? Please explain in comment if this correct... */ /** Actual position in the buffer. */ uint32_t iMessage; /** Size of the message which is given in the doorbell message in dwords. */ uint32_t cMessage; /** Reply buffer. * @note 60 bytes */ MptReplyUnion ReplyBuffer; /** Next entry to read. */ uint32_t uNextReplyEntryRead; /** Size of the reply in the buffer in 16bit words. */ uint32_t cReplySize; /** The fault code of the I/O controller if we are in the fault state. */ uint16_t u16IOCFaultCode; /** I/O port address the device is mapped to. */ RTIOPORT IOPortBase; /** MMIO address the device is mapped to. */ RTGCPHYS GCPhysMMIOBase; /** Upper 32 bits of the message frame address to locate requests in guest memory. */ uint32_t u32HostMFAHighAddr; /** Upper 32 bits of the sense buffer address. */ uint32_t u32SenseBufferHighAddr; /** Maximum number of devices the driver reported he can handle. */ uint8_t cMaxDevices; /** Maximum number of buses the driver reported he can handle. */ uint8_t cMaxBuses; /** Current size of reply message frames in the guest. */ uint16_t cbReplyFrame; /** Next key to write in the sequence to get access * to diagnostic memory. */ uint32_t iDiagnosticAccess; /** Number entries allocated for the reply queue. */ uint32_t cReplyQueueEntries; /** Number entries allocated for the outstanding request queue. */ uint32_t cRequestQueueEntries; /** Critical section protecting the reply post queue. */ PDMCRITSECT ReplyPostQueueCritSect; /** Critical section protecting the reply free queue. */ PDMCRITSECT ReplyFreeQueueCritSect; /** Pointer to the start of the reply free queue - R3. */ R3PTRTYPE(volatile uint32_t *) pReplyFreeQueueBaseR3; /** Pointer to the start of the reply post queue - R3. */ R3PTRTYPE(volatile uint32_t *) pReplyPostQueueBaseR3; /** Pointer to the start of the request queue - R3. */ R3PTRTYPE(volatile uint32_t *) pRequestQueueBaseR3; /** Pointer to the start of the reply queue - R0. */ R0PTRTYPE(volatile uint32_t *) pReplyFreeQueueBaseR0; /** Pointer to the start of the reply queue - R0. */ R0PTRTYPE(volatile uint32_t *) pReplyPostQueueBaseR0; /** Pointer to the start of the request queue - R0. */ R0PTRTYPE(volatile uint32_t *) pRequestQueueBaseR0; /** Pointer to the start of the reply queue - RC. */ RCPTRTYPE(volatile uint32_t *) pReplyFreeQueueBaseRC; /** Pointer to the start of the reply queue - RC. */ RCPTRTYPE(volatile uint32_t *) pReplyPostQueueBaseRC; /** Pointer to the start of the request queue - RC. */ RCPTRTYPE(volatile uint32_t *) pRequestQueueBaseRC; /** End these RC pointers on a 64-bit boundrary. */ RTRCPTR RCPtrPadding1; /** Next free entry in the reply queue the guest can write a address to. */ volatile uint32_t uReplyFreeQueueNextEntryFreeWrite; /** Next valid entry the controller can read a valid address for reply frames from. */ volatile uint32_t uReplyFreeQueueNextAddressRead; /** Next free entry in the reply queue the guest can write a address to. */ volatile uint32_t uReplyPostQueueNextEntryFreeWrite; /** Next valid entry the controller can read a valid address for reply frames from. */ volatile uint32_t uReplyPostQueueNextAddressRead; /** Next free entry the guest can write a address to a request frame to. */ volatile uint32_t uRequestQueueNextEntryFreeWrite; /** Next valid entry the controller can read a valid address for request frames from. */ volatile uint32_t uRequestQueueNextAddressRead; /** Emulated controller type */ LSILOGICCTRLTYPE enmCtrlType; /** Handle counter */ uint16_t u16NextHandle; /** Number of ports this controller has. */ uint8_t cPorts; /** BIOS emulation. */ VBOXSCSI VBoxSCSI; /** Cache for allocated tasks. */ R3PTRTYPE(RTMEMCACHE) hTaskCache; /** Status LUN: The base interface. */ PDMIBASE IBase; /** Status LUN: Leds interface. */ PDMILEDPORTS ILeds; /** Status LUN: Partner of ILeds. */ R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector; /** Pointer to the configuration page area. */ R3PTRTYPE(PMptConfigurationPagesSupported) pConfigurationPages; /** Indicates that PDMDevHlpAsyncNotificationCompleted should be called when * a port is entering the idle state. */ bool volatile fSignalIdle; /** Flag whether we have tasks which need to be processed again- */ bool volatile fRedo; /** Flag whether the worker thread is sleeping. */ volatile bool fWrkThreadSleeping; /** Alignment padding. */ bool afPadding2[HC_ARCH_BITS == 32 ? 1 : 5]; /** List of tasks which can be redone. */ R3PTRTYPE(volatile PLSILOGICREQ) pTasksRedoHead; /** Current address to read from or write to in the diagnostic memory region. */ uint32_t u32DiagMemAddr; /** Current size of the memory regions. */ uint32_t cbMemRegns; #if HC_ARCH_BITS ==32 uint32_t u32Padding3; #endif union { /** List of memory regions - PLSILOGICMEMREGN. */ RTLISTANCHOR ListMemRegns; uint8_t u8Padding[2 * sizeof(RTUINTPTR)]; }; /** The support driver session handle. */ R3R0PTRTYPE(PSUPDRVSESSION) pSupDrvSession; /** Worker thread. */ R3PTRTYPE(PPDMTHREAD) pThreadWrk; /** The event semaphore the processing thread waits on. */ SUPSEMEVENT hEvtProcess; } LSILOGISCSI; /** Pointer to the device instance data of the LsiLogic emulation. */ typedef LSILOGICSCSI *PLSILOGICSCSI; /** * Task state object which holds all necessary data while * processing the request from the guest. */ typedef struct LSILOGICREQ { /** Next in the redo list. */ PLSILOGICREQ pRedoNext; /** Target device. */ PLSILOGICDEVICE pTargetDevice; /** The message request from the guest. */ MptRequestUnion GuestRequest; /** Reply message if the request produces one. */ MptReplyUnion IOCReply; /** SCSI request structure for the SCSI driver. */ PDMSCSIREQUEST PDMScsiRequest; /** Address of the message request frame in guests memory. * Used to read the S/G entries in the second step. */ RTGCPHYS GCPhysMessageFrameAddr; /** Physical start address of the S/G list. */ RTGCPHYS GCPhysSgStart; /** Chain offset */ uint32_t cChainOffset; /** Segment describing the I/O buffer. */ RTSGSEG SegIoBuf; /** Additional memory allocation for this task. */ void *pvAlloc; /** Siize of the allocation. */ size_t cbAlloc; /** Number of times we had too much memory allocated for the request. */ unsigned cAllocTooMuch; /** Pointer to the sense buffer. */ uint8_t abSenseBuffer[18]; /** Flag whether the request was issued from the BIOS. */ bool fBIOS; } LSILOGICREQ; #ifndef VBOX_DEVICE_STRUCT_TESTCASE /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ RT_C_DECLS_BEGIN #ifdef IN_RING3 static void lsilogicR3InitializeConfigurationPages(PLSILOGICSCSI pThis); static void lsilogicR3ConfigurationPagesFree(PLSILOGICSCSI pThis); static int lsilogicR3ProcessConfigurationRequest(PLSILOGICSCSI pThis, PMptConfigurationRequest pConfigurationReq, PMptConfigurationReply pReply); #endif RT_C_DECLS_END /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** Key sequence the guest has to write to enable access * to diagnostic memory. */ static const uint8_t g_lsilogicDiagnosticAccess[] = {0x04, 0x0b, 0x02, 0x07, 0x0d}; /** * Updates the status of the interrupt pin of the device. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. */ static void lsilogicUpdateInterrupt(PLSILOGICSCSI pThis) { uint32_t uIntSts; LogFlowFunc(("Updating interrupts\n")); /* Mask out doorbell status so that it does not affect interrupt updating. */ uIntSts = (ASMAtomicReadU32(&pThis->uInterruptStatus) & ~LSILOGIC_REG_HOST_INTR_STATUS_DOORBELL_STS); /* Check maskable interrupts. */ uIntSts &= ~(ASMAtomicReadU32(&pThis->uInterruptMask) & ~LSILOGIC_REG_HOST_INTR_MASK_IRQ_ROUTING); if (uIntSts) { LogFlowFunc(("Setting interrupt\n")); PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0, 1); } else { LogFlowFunc(("Clearing interrupt\n")); PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0, 0); } } /** * Sets a given interrupt status bit in the status register and * updates the interrupt status. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. * @param uStatus The status bit to set. */ DECLINLINE(void) lsilogicSetInterrupt(PLSILOGICSCSI pThis, uint32_t uStatus) { ASMAtomicOrU32(&pThis->uInterruptStatus, uStatus); lsilogicUpdateInterrupt(pThis); } /** * Clears a given interrupt status bit in the status register and * updates the interrupt status. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. * @param uStatus The status bit to set. */ DECLINLINE(void) lsilogicClearInterrupt(PLSILOGICSCSI pThis, uint32_t uStatus) { ASMAtomicAndU32(&pThis->uInterruptStatus, ~uStatus); lsilogicUpdateInterrupt(pThis); } /** * Sets the I/O controller into fault state and sets the fault code. * * @returns nothing * @param pThis Pointer to the LsiLogic device state. * @param uIOCFaultCode Fault code to set. */ DECLINLINE(void) lsilogicSetIOCFaultCode(PLSILOGICSCSI pThis, uint16_t uIOCFaultCode) { if (pThis->enmState != LSILOGICSTATE_FAULT) { LogFunc(("Setting I/O controller into FAULT state: uIOCFaultCode=%u\n", uIOCFaultCode)); pThis->enmState = LSILOGICSTATE_FAULT; pThis->u16IOCFaultCode = uIOCFaultCode; } else LogFunc(("We are already in FAULT state\n")); } /** * Returns the number of frames in the reply free queue. * * @returns Number of frames in the reply free queue. * @param pThis Pointer to the LsiLogic device state. */ DECLINLINE(uint32_t) lsilogicReplyFreeQueueGetFrameCount(PLSILOGICSCSI pThis) { uint32_t cReplyFrames = 0; if (pThis->uReplyFreeQueueNextAddressRead <= pThis->uReplyFreeQueueNextEntryFreeWrite) cReplyFrames = pThis->uReplyFreeQueueNextEntryFreeWrite - pThis->uReplyFreeQueueNextAddressRead; else cReplyFrames = pThis->cReplyQueueEntries - pThis->uReplyFreeQueueNextAddressRead + pThis->uReplyFreeQueueNextEntryFreeWrite; return cReplyFrames; } /** * Returns the number of free entries in the reply post queue. * * @returns Number of frames in the reply free queue. * @param pThis Pointer to the LsiLogic device state. */ DECLINLINE(uint32_t) lsilogicReplyPostQueueGetFrameCount(PLSILOGICSCSI pThis) { uint32_t cReplyFrames = 0; if (pThis->uReplyPostQueueNextAddressRead <= pThis->uReplyPostQueueNextEntryFreeWrite) cReplyFrames = pThis->cReplyQueueEntries - pThis->uReplyPostQueueNextEntryFreeWrite + pThis->uReplyPostQueueNextAddressRead; else cReplyFrames = pThis->uReplyPostQueueNextEntryFreeWrite - pThis->uReplyPostQueueNextAddressRead; return cReplyFrames; } #ifdef IN_RING3 /** * Performs a hard reset on the controller. * * @returns VBox status code. * @param pThis Pointer to the LsiLogic device state. */ static int lsilogicR3HardReset(PLSILOGICSCSI pThis) { pThis->enmState = LSILOGICSTATE_RESET; pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_NOT_IN_USE; /* The interrupts are masked out. */ pThis->uInterruptMask |= LSILOGIC_REG_HOST_INTR_MASK_DOORBELL | LSILOGIC_REG_HOST_INTR_MASK_REPLY; /* Reset interrupt states. */ pThis->uInterruptStatus = 0; lsilogicUpdateInterrupt(pThis); /* Reset the queues. */ pThis->uReplyFreeQueueNextEntryFreeWrite = 0; pThis->uReplyFreeQueueNextAddressRead = 0; pThis->uReplyPostQueueNextEntryFreeWrite = 0; pThis->uReplyPostQueueNextAddressRead = 0; pThis->uRequestQueueNextEntryFreeWrite = 0; pThis->uRequestQueueNextAddressRead = 0; /* Disable diagnostic access. */ pThis->iDiagnosticAccess = 0; pThis->fDiagnosticEnabled = false; pThis->fDiagRegsEnabled = false; /* Set default values. */ pThis->cMaxDevices = pThis->cDeviceStates; pThis->cMaxBuses = 1; pThis->cbReplyFrame = 128; /* @todo Figure out where it is needed. */ pThis->u16NextHandle = 1; pThis->u32DiagMemAddr = 0; lsilogicR3ConfigurationPagesFree(pThis); lsilogicR3InitializeConfigurationPages(pThis); /* Mark that we finished performing the reset. */ pThis->enmState = LSILOGICSTATE_READY; return VINF_SUCCESS; } /** * Frees the configuration pages if allocated. * * @returns nothing. * @param pThis The LsiLogic controller instance */ static void lsilogicR3ConfigurationPagesFree(PLSILOGICSCSI pThis) { if (pThis->pConfigurationPages) { /* Destroy device list if we emulate a SAS controller. */ if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { PMptConfigurationPagesSas pSasPages = &pThis->pConfigurationPages->u.SasPages; PMptSASDevice pSASDeviceCurr = pSasPages->pSASDeviceHead; while (pSASDeviceCurr) { PMptSASDevice pFree = pSASDeviceCurr; pSASDeviceCurr = pSASDeviceCurr->pNext; RTMemFree(pFree); } if (pSasPages->paPHYs) RTMemFree(pSasPages->paPHYs); if (pSasPages->pManufacturingPage7) RTMemFree(pSasPages->pManufacturingPage7); if (pSasPages->pSASIOUnitPage0) RTMemFree(pSasPages->pSASIOUnitPage0); if (pSasPages->pSASIOUnitPage1) RTMemFree(pSasPages->pSASIOUnitPage1); } RTMemFree(pThis->pConfigurationPages); } } /** * Finishes a context reply. * * @returns nothing * @param pThis Pointer to the LsiLogic device state. * @param u32MessageContext The message context ID to post. */ static void lsilogicR3FinishContextReply(PLSILOGICSCSI pThis, uint32_t u32MessageContext) { int rc; LogFlowFunc(("pThis=%#p u32MessageContext=%#x\n", pThis, u32MessageContext)); AssertMsg(pThis->enmDoorbellState == LSILOGICDOORBELLSTATE_NOT_IN_USE, ("We are in a doorbell function\n")); /* Write message context ID into reply post queue. */ rc = PDMCritSectEnter(&pThis->ReplyPostQueueCritSect, VINF_SUCCESS); AssertRC(rc); /* Check for a entry in the queue. */ if (!lsilogicReplyPostQueueGetFrameCount(pThis)) { /* Set error code. */ lsilogicSetIOCFaultCode(pThis, LSILOGIC_IOCSTATUS_INSUFFICIENT_RESOURCES); PDMCritSectLeave(&pThis->ReplyPostQueueCritSect); return; } /* We have a context reply. */ ASMAtomicWriteU32(&pThis->CTX_SUFF(pReplyPostQueueBase)[pThis->uReplyPostQueueNextEntryFreeWrite], u32MessageContext); ASMAtomicIncU32(&pThis->uReplyPostQueueNextEntryFreeWrite); pThis->uReplyPostQueueNextEntryFreeWrite %= pThis->cReplyQueueEntries; /* Set interrupt. */ lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_REPLY_INTR); PDMCritSectLeave(&pThis->ReplyPostQueueCritSect); } #endif /* IN_RING3 */ /** * Takes necessary steps to finish a reply frame. * * @returns nothing * @param pThis Pointer to the LsiLogic device state. * @param pReply Pointer to the reply message. * @param fForceReplyFifo Flag whether the use of the reply post fifo is forced. */ static void lsilogicFinishAddressReply(PLSILOGICSCSI pThis, PMptReplyUnion pReply, bool fForceReplyFifo) { /* * If we are in a doorbell function we set the reply size now and * set the system doorbell status interrupt to notify the guest that * we are ready to send the reply. */ if (pThis->enmDoorbellState != LSILOGICDOORBELLSTATE_NOT_IN_USE && !fForceReplyFifo) { /* Set size of the reply in 16bit words. The size in the reply is in 32bit dwords. */ pThis->cReplySize = pReply->Header.u8MessageLength * 2; Log(("%s: cReplySize=%u\n", __FUNCTION__, pThis->cReplySize)); pThis->uNextReplyEntryRead = 0; lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); } else { /* * The reply queues are only used if the request was fetched from the request queue. * Requests from the request queue are always transferred to R3. So it is not possible * that this case happens in R0 or GC. */ #ifdef IN_RING3 int rc; /* Grab a free reply message from the queue. */ rc = PDMCritSectEnter(&pThis->ReplyFreeQueueCritSect, VINF_SUCCESS); AssertRC(rc); /* Check for a free reply frame. */ if (!lsilogicReplyFreeQueueGetFrameCount(pThis)) { /* Set error code. */ lsilogicSetIOCFaultCode(pThis, LSILOGIC_IOCSTATUS_INSUFFICIENT_RESOURCES); PDMCritSectLeave(&pThis->ReplyFreeQueueCritSect); return; } uint32_t u32ReplyFrameAddressLow = pThis->CTX_SUFF(pReplyFreeQueueBase)[pThis->uReplyFreeQueueNextAddressRead]; pThis->uReplyFreeQueueNextAddressRead++; pThis->uReplyFreeQueueNextAddressRead %= pThis->cReplyQueueEntries; PDMCritSectLeave(&pThis->ReplyFreeQueueCritSect); /* Build 64bit physical address. */ RTGCPHYS GCPhysReplyMessage = LSILOGIC_RTGCPHYS_FROM_U32(pThis->u32HostMFAHighAddr, u32ReplyFrameAddressLow); size_t cbReplyCopied = (pThis->cbReplyFrame < sizeof(MptReplyUnion)) ? pThis->cbReplyFrame : sizeof(MptReplyUnion); /* Write reply to guest memory. */ PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), GCPhysReplyMessage, pReply, cbReplyCopied); /* Write low 32bits of reply frame into post reply queue. */ rc = PDMCritSectEnter(&pThis->ReplyPostQueueCritSect, VINF_SUCCESS); AssertRC(rc); /* Check for a entry in the queue. */ if (!lsilogicReplyPostQueueGetFrameCount(pThis)) { /* Set error code. */ lsilogicSetIOCFaultCode(pThis, LSILOGIC_IOCSTATUS_INSUFFICIENT_RESOURCES); PDMCritSectLeave(&pThis->ReplyPostQueueCritSect); return; } /* We have a address reply. Set the 31th bit to indicate that. */ ASMAtomicWriteU32(&pThis->CTX_SUFF(pReplyPostQueueBase)[pThis->uReplyPostQueueNextEntryFreeWrite], RT_BIT(31) | (u32ReplyFrameAddressLow >> 1)); ASMAtomicIncU32(&pThis->uReplyPostQueueNextEntryFreeWrite); pThis->uReplyPostQueueNextEntryFreeWrite %= pThis->cReplyQueueEntries; if (fForceReplyFifo) { pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_NOT_IN_USE; lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); } /* Set interrupt. */ lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_REPLY_INTR); PDMCritSectLeave(&pThis->ReplyPostQueueCritSect); #else AssertMsgFailed(("This is not allowed to happen.\n")); #endif } } #ifdef IN_RING3 /** * Tries to find a memory region which covers the given address. * * @returns Pointer to memory region or NULL if not found. * @param pThis Pointer to the LsiLogic device state. * @param u32Addr The 32bit address to search for. */ static PLSILOGICMEMREGN lsilogicR3MemRegionFindByAddr(PLSILOGICSCSI pThis, uint32_t u32Addr) { PLSILOGICMEMREGN pIt; PLSILOGICMEMREGN pRegion = NULL; RTListForEach(&pThis->ListMemRegns, pIt, LSILOGICMEMREGN, NodeList) { if ( u32Addr >= pIt->u32AddrStart && u32Addr <= pIt->u32AddrEnd) { pRegion = pIt; break; } } return pRegion; } /** * Frees all allocated memory regions. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. */ static void lsilogicR3MemRegionsFree(PLSILOGICSCSI pThis) { PLSILOGICMEMREGN pIt; PLSILOGICMEMREGN pItNext; RTListForEachSafe(&pThis->ListMemRegns, pIt, pItNext, LSILOGICMEMREGN, NodeList) { RTListNodeRemove(&pIt->NodeList); RTMemFree(pIt); } pThis->cbMemRegns = 0; } /** * Inserts a given memory region into the list. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. * @param pRegion The region to insert. */ static void lsilogicR3MemRegionInsert(PLSILOGICSCSI pThis, PLSILOGICMEMREGN pRegion) { PLSILOGICMEMREGN pIt; bool fInserted = false; /* Insert at the right position. */ RTListForEach(&pThis->ListMemRegns, pIt, LSILOGICMEMREGN, NodeList) { if (pRegion->u32AddrEnd < pIt->u32AddrStart) { RTListNodeInsertBefore(&pIt->NodeList, &pRegion->NodeList); fInserted = true; break; } } if (!fInserted) RTListAppend(&pThis->ListMemRegns, &pRegion->NodeList); } /** * Count number of memory regions. * * @returns Number of memory regions. * @param pThis Pointer to the LsiLogic device state. */ static uint32_t lsilogicR3MemRegionsCount(PLSILOGICSCSI pThis) { uint32_t cRegions = 0; PLSILOGICMEMREGN pIt; RTListForEach(&pThis->ListMemRegns, pIt, LSILOGICMEMREGN, NodeList) { cRegions++; } return cRegions; } /** * Handles a write to the diagnostic data register. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. * @param u32Data Data to write. */ static void lsilogicR3DiagRegDataWrite(PLSILOGICSCSI pThis, uint32_t u32Data) { PLSILOGICMEMREGN pRegion = lsilogicR3MemRegionFindByAddr(pThis, pThis->u32DiagMemAddr); if (pRegion) { uint32_t offRegion = pThis->u32DiagMemAddr - pRegion->u32AddrStart; AssertMsg( offRegion % 4 == 0 && pThis->u32DiagMemAddr <= pRegion->u32AddrEnd, ("Region offset not on a word boundary or crosses memory region\n")); offRegion /= 4; pRegion->au32Data[offRegion] = u32Data; } else { PLSILOGICMEMREGN pIt; pRegion = NULL; /* Create new region, first check whether we can extend another region. */ RTListForEach(&pThis->ListMemRegns, pIt, LSILOGICMEMREGN, NodeList) { if (pThis->u32DiagMemAddr == pIt->u32AddrEnd + sizeof(uint32_t)) { pRegion = pIt; break; } } if (pRegion) { /* Reallocate. */ RTListNodeRemove(&pRegion->NodeList); uint32_t cRegionSizeOld = (pRegion->u32AddrEnd - pRegion->u32AddrStart) / 4 + 1; uint32_t cRegionSizeNew = cRegionSizeOld + 512; if (pThis->cbMemRegns + 512 * sizeof(uint32_t) < LSILOGIC_MEMORY_REGIONS_MAX) { PLSILOGICMEMREGN pRegionNew = (PLSILOGICMEMREGN)RTMemRealloc(pRegion, RT_OFFSETOF(LSILOGICMEMREGN, au32Data[cRegionSizeNew])); if (pRegionNew) { pRegion = pRegionNew; memset(&pRegion->au32Data[cRegionSizeOld], 0, 512 * sizeof(uint32_t)); pRegion->au32Data[cRegionSizeOld] = u32Data; pRegion->u32AddrEnd = pRegion->u32AddrStart + (cRegionSizeNew - 1) * sizeof(uint32_t); pThis->cbMemRegns += 512 * sizeof(uint32_t); } /* else: Silently fail, there is nothing we can do here and the guest might work nevertheless. */ lsilogicR3MemRegionInsert(pThis, pRegion); } } else { if (pThis->cbMemRegns + 512 * sizeof(uint32_t) < LSILOGIC_MEMORY_REGIONS_MAX) { /* Create completely new. */ pRegion = (PLSILOGICMEMREGN)RTMemAllocZ(RT_OFFSETOF(LSILOGICMEMREGN, au32Data[512])); if (pRegion) { pRegion->u32AddrStart = pThis->u32DiagMemAddr; pRegion->u32AddrEnd = pRegion->u32AddrStart + (512 - 1) * sizeof(uint32_t); pRegion->au32Data[0] = u32Data; pThis->cbMemRegns += 512 * sizeof(uint32_t); lsilogicR3MemRegionInsert(pThis, pRegion); } /* else: Silently fail, there is nothing we can do here and the guest might work nevertheless. */ } } } /* Memory access is always 32bit big. */ pThis->u32DiagMemAddr += sizeof(uint32_t); } /** * Handles a read from the diagnostic data register. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. * @param pu32Data Where to store the data. */ static void lsilogicR3DiagRegDataRead(PLSILOGICSCSI pThis, uint32_t *pu32Data) { PLSILOGICMEMREGN pRegion = lsilogicR3MemRegionFindByAddr(pThis, pThis->u32DiagMemAddr); if (pRegion) { uint32_t offRegion = pThis->u32DiagMemAddr - pRegion->u32AddrStart; AssertMsg( offRegion % 4 == 0 && pThis->u32DiagMemAddr <= pRegion->u32AddrEnd, ("Region offset not on a word boundary or crosses memory region\n")); offRegion /= 4; *pu32Data = pRegion->au32Data[offRegion]; } else /* No region, default value 0. */ *pu32Data = 0; /* Memory access is always 32bit big. */ pThis->u32DiagMemAddr += sizeof(uint32_t); } /** * Handles a write to the diagnostic memory address register. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. * @param u32Addr Address to write. */ static void lsilogicR3DiagRegAddressWrite(PLSILOGICSCSI pThis, uint32_t u32Addr) { pThis->u32DiagMemAddr = u32Addr & ~UINT32_C(0x3); /* 32bit alignment. */ } /** * Handles a read from the diagnostic memory address register. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. * @param pu32Addr Where to store the current address. */ static void lsilogicR3DiagRegAddressRead(PLSILOGICSCSI pThis, uint32_t *pu32Addr) { *pu32Addr = pThis->u32DiagMemAddr; } /** * Processes a given Request from the guest * * @returns VBox status code. * @param pThis Pointer to the LsiLogic device state. * @param pMessageHdr Pointer to the message header of the request. * @param pReply Pointer to the reply. */ static int lsilogicR3ProcessMessageRequest(PLSILOGICSCSI pThis, PMptMessageHdr pMessageHdr, PMptReplyUnion pReply) { int rc = VINF_SUCCESS; bool fForceReplyPostFifo = false; # ifdef LOG_ENABLED if (pMessageHdr->u8Function < RT_ELEMENTS(g_apszMPTFunctionNames)) Log(("Message request function: %s\n", g_apszMPTFunctionNames[pMessageHdr->u8Function])); else Log(("Message request function: \n")); # endif memset(pReply, 0, sizeof(MptReplyUnion)); switch (pMessageHdr->u8Function) { case MPT_MESSAGE_HDR_FUNCTION_SCSI_TASK_MGMT: { PMptSCSITaskManagementRequest pTaskMgmtReq = (PMptSCSITaskManagementRequest)pMessageHdr; LogFlow(("u8TaskType=%u\n", pTaskMgmtReq->u8TaskType)); LogFlow(("u32TaskMessageContext=%#x\n", pTaskMgmtReq->u32TaskMessageContext)); pReply->SCSITaskManagement.u8MessageLength = 6; /* 6 32bit dwords. */ pReply->SCSITaskManagement.u8TaskType = pTaskMgmtReq->u8TaskType; pReply->SCSITaskManagement.u32TerminationCount = 0; fForceReplyPostFifo = true; break; } case MPT_MESSAGE_HDR_FUNCTION_IOC_INIT: { /* * This request sets the I/O controller to the * operational state. */ PMptIOCInitRequest pIOCInitReq = (PMptIOCInitRequest)pMessageHdr; /* Update configuration values. */ pThis->enmWhoInit = (LSILOGICWHOINIT)pIOCInitReq->u8WhoInit; pThis->cbReplyFrame = pIOCInitReq->u16ReplyFrameSize; pThis->cMaxBuses = pIOCInitReq->u8MaxBuses; pThis->cMaxDevices = pIOCInitReq->u8MaxDevices; pThis->u32HostMFAHighAddr = pIOCInitReq->u32HostMfaHighAddr; pThis->u32SenseBufferHighAddr = pIOCInitReq->u32SenseBufferHighAddr; if (pThis->enmState == LSILOGICSTATE_READY) { pThis->enmState = LSILOGICSTATE_OPERATIONAL; } /* Return reply. */ pReply->IOCInit.u8MessageLength = 5; pReply->IOCInit.u8WhoInit = pThis->enmWhoInit; pReply->IOCInit.u8MaxDevices = pThis->cMaxDevices; pReply->IOCInit.u8MaxBuses = pThis->cMaxBuses; break; } case MPT_MESSAGE_HDR_FUNCTION_IOC_FACTS: { pReply->IOCFacts.u8MessageLength = 15; /* 15 32bit dwords. */ if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) { pReply->IOCFacts.u16MessageVersion = 0x0102; /* Version from the specification. */ pReply->IOCFacts.u8NumberOfPorts = pThis->cPorts; } else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { pReply->IOCFacts.u16MessageVersion = 0x0105; /* Version from the specification. */ pReply->IOCFacts.u8NumberOfPorts = pThis->cPorts; } else AssertMsgFailed(("Invalid controller type %d\n", pThis->enmCtrlType)); pReply->IOCFacts.u8IOCNumber = 0; /* PCI function number. */ pReply->IOCFacts.u16IOCExceptions = 0; pReply->IOCFacts.u8MaxChainDepth = LSILOGICSCSI_MAXIMUM_CHAIN_DEPTH; pReply->IOCFacts.u8WhoInit = pThis->enmWhoInit; pReply->IOCFacts.u8BlockSize = 12; /* Block size in 32bit dwords. This is the largest request we can get (SCSI I/O). */ pReply->IOCFacts.u8Flags = 0; /* Bit 0 is set if the guest must upload the FW prior to using the controller. Obviously not needed here. */ pReply->IOCFacts.u16ReplyQueueDepth = pThis->cReplyQueueEntries - 1; /* One entry is always free. */ pReply->IOCFacts.u16RequestFrameSize = 128; /* @todo Figure out where it is needed. */ pReply->IOCFacts.u32CurrentHostMFAHighAddr = pThis->u32HostMFAHighAddr; pReply->IOCFacts.u16GlobalCredits = pThis->cRequestQueueEntries - 1; /* One entry is always free. */ pReply->IOCFacts.u8EventState = 0; /* Event notifications not enabled. */ pReply->IOCFacts.u32CurrentSenseBufferHighAddr = pThis->u32SenseBufferHighAddr; pReply->IOCFacts.u16CurReplyFrameSize = pThis->cbReplyFrame; pReply->IOCFacts.u8MaxDevices = pThis->cMaxDevices; pReply->IOCFacts.u8MaxBuses = pThis->cMaxBuses; /* Check for a valid firmware image in the IOC memory which was downlaoded by tzhe guest earlier. */ PLSILOGICMEMREGN pRegion = lsilogicR3MemRegionFindByAddr(pThis, LSILOGIC_FWIMGHDR_LOAD_ADDRESS); if (pRegion) { uint32_t offImgHdr = (LSILOGIC_FWIMGHDR_LOAD_ADDRESS - pRegion->u32AddrStart) / 4; PFwImageHdr pFwImgHdr = (PFwImageHdr)&pRegion->au32Data[offImgHdr]; /* Check for the signature. */ /** @todo: Checksum validation. */ if ( pFwImgHdr->u32Signature1 == LSILOGIC_FWIMGHDR_SIGNATURE1 && pFwImgHdr->u32Signature2 == LSILOGIC_FWIMGHDR_SIGNATURE2 && pFwImgHdr->u32Signature3 == LSILOGIC_FWIMGHDR_SIGNATURE3) { LogFlowFunc(("IOC Facts: Found valid firmware image header in memory, using version (%#x), size (%d) and product ID (%#x) from there\n", pFwImgHdr->u32FwVersion, pFwImgHdr->u32ImageSize, pFwImgHdr->u16ProductId)); pReply->IOCFacts.u16ProductID = pFwImgHdr->u16ProductId; pReply->IOCFacts.u32FwImageSize = pFwImgHdr->u32ImageSize; pReply->IOCFacts.u32FWVersion = pFwImgHdr->u32FwVersion; } } else { pReply->IOCFacts.u16ProductID = 0xcafe; /* Our own product ID :) */ pReply->IOCFacts.u32FwImageSize = 0; /* No image needed. */ pReply->IOCFacts.u32FWVersion = 0; } break; } case MPT_MESSAGE_HDR_FUNCTION_PORT_FACTS: { PMptPortFactsRequest pPortFactsReq = (PMptPortFactsRequest)pMessageHdr; pReply->PortFacts.u8MessageLength = 10; pReply->PortFacts.u8PortNumber = pPortFactsReq->u8PortNumber; if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) { /* This controller only supports one bus with bus number 0. */ if (pPortFactsReq->u8PortNumber >= pThis->cPorts) { pReply->PortFacts.u8PortType = 0; /* Not existant. */ } else { pReply->PortFacts.u8PortType = 0x01; /* SCSI Port. */ pReply->PortFacts.u16MaxDevices = LSILOGICSCSI_PCI_SPI_DEVICES_PER_BUS_MAX; pReply->PortFacts.u16ProtocolFlags = RT_BIT(3) | RT_BIT(0); /* SCSI initiator and LUN supported. */ pReply->PortFacts.u16PortSCSIID = 7; /* Default */ pReply->PortFacts.u16MaxPersistentIDs = 0; pReply->PortFacts.u16MaxPostedCmdBuffers = 0; /* Only applies for target mode which we dont support. */ pReply->PortFacts.u16MaxLANBuckets = 0; /* Only for the LAN controller. */ } } else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { if (pPortFactsReq->u8PortNumber >= pThis->cPorts) { pReply->PortFacts.u8PortType = 0; /* Not existant. */ } else { pReply->PortFacts.u8PortType = 0x30; /* SAS Port. */ pReply->PortFacts.u16MaxDevices = pThis->cPorts; pReply->PortFacts.u16ProtocolFlags = RT_BIT(3) | RT_BIT(0); /* SCSI initiator and LUN supported. */ pReply->PortFacts.u16PortSCSIID = pThis->cPorts; pReply->PortFacts.u16MaxPersistentIDs = 0; pReply->PortFacts.u16MaxPostedCmdBuffers = 0; /* Only applies for target mode which we dont support. */ pReply->PortFacts.u16MaxLANBuckets = 0; /* Only for the LAN controller. */ } } else AssertMsgFailed(("Invalid controller type %d\n", pThis->enmCtrlType)); break; } case MPT_MESSAGE_HDR_FUNCTION_PORT_ENABLE: { /* * The port enable request notifies the IOC to make the port available and perform * appropriate discovery on the associated link. */ PMptPortEnableRequest pPortEnableReq = (PMptPortEnableRequest)pMessageHdr; pReply->PortEnable.u8MessageLength = 5; pReply->PortEnable.u8PortNumber = pPortEnableReq->u8PortNumber; break; } case MPT_MESSAGE_HDR_FUNCTION_EVENT_NOTIFICATION: { PMptEventNotificationRequest pEventNotificationReq = (PMptEventNotificationRequest)pMessageHdr; if (pEventNotificationReq->u8Switch) pThis->fEventNotificationEnabled = true; else pThis->fEventNotificationEnabled = false; pReply->EventNotification.u16EventDataLength = 1; /* 1 32bit D-Word. */ pReply->EventNotification.u8MessageLength = 8; pReply->EventNotification.u8MessageFlags = (1 << 7); pReply->EventNotification.u8AckRequired = 0; pReply->EventNotification.u32Event = MPT_EVENT_EVENT_CHANGE; pReply->EventNotification.u32EventContext = 0; pReply->EventNotification.u32EventData = pThis->fEventNotificationEnabled ? 1 : 0; break; } case MPT_MESSAGE_HDR_FUNCTION_EVENT_ACK: { AssertMsgFailed(("todo")); break; } case MPT_MESSAGE_HDR_FUNCTION_CONFIG: { PMptConfigurationRequest pConfigurationReq = (PMptConfigurationRequest)pMessageHdr; rc = lsilogicR3ProcessConfigurationRequest(pThis, pConfigurationReq, &pReply->Configuration); AssertRC(rc); break; } case MPT_MESSAGE_HDR_FUNCTION_FW_UPLOAD: { PMptFWUploadRequest pFWUploadReq = (PMptFWUploadRequest)pMessageHdr; pReply->FWUpload.u8ImageType = pFWUploadReq->u8ImageType; pReply->FWUpload.u8MessageLength = 6; pReply->FWUpload.u32ActualImageSize = 0; break; } case MPT_MESSAGE_HDR_FUNCTION_FW_DOWNLOAD: { //PMptFWDownloadRequest pFWDownloadReq = (PMptFWDownloadRequest)pMessageHdr; pReply->FWDownload.u8MessageLength = 5; LogFlowFunc(("FW Download request issued\n")); break; } case MPT_MESSAGE_HDR_FUNCTION_SCSI_IO_REQUEST: /* Should be handled already. */ default: AssertMsgFailed(("Invalid request function %#x\n", pMessageHdr->u8Function)); } /* Copy common bits from request message frame to reply. */ pReply->Header.u8Function = pMessageHdr->u8Function; pReply->Header.u32MessageContext = pMessageHdr->u32MessageContext; lsilogicFinishAddressReply(pThis, pReply, fForceReplyPostFifo); return rc; } #endif /* IN_RING3 */ /** * Writes a value to a register at a given offset. * * @returns VBox status code. * @param pThis Pointer to the LsiLogic device state. * @param offReg Offset of the register to write. * @param u32 The value being written. */ static int lsilogicRegisterWrite(PLSILOGICSCSI pThis, uint32_t offReg, uint32_t u32) { LogFlowFunc(("pThis=%#p offReg=%#x u32=%#x\n", pThis, offReg, u32)); switch (offReg) { case LSILOGIC_REG_REPLY_QUEUE: { /* Add the entry to the reply free queue. */ ASMAtomicWriteU32(&pThis->CTX_SUFF(pReplyFreeQueueBase)[pThis->uReplyFreeQueueNextEntryFreeWrite], u32); pThis->uReplyFreeQueueNextEntryFreeWrite++; pThis->uReplyFreeQueueNextEntryFreeWrite %= pThis->cReplyQueueEntries; break; } case LSILOGIC_REG_REQUEST_QUEUE: { uint32_t uNextWrite = ASMAtomicReadU32(&pThis->uRequestQueueNextEntryFreeWrite); ASMAtomicWriteU32(&pThis->CTX_SUFF(pRequestQueueBase)[uNextWrite], u32); /* * Don't update the value in place. It can happen that we get preempted * after the increment but before the modulo. * Another EMT will read the wrong value when processing the queues * and hang in an endless loop creating thousands of requests. */ uNextWrite++; uNextWrite %= pThis->cRequestQueueEntries; ASMAtomicWriteU32(&pThis->uRequestQueueNextEntryFreeWrite, uNextWrite); /* Send notification to R3 if there is not one sent already. Do this * only if the worker thread is not sleeping or might go sleeping. */ if (!ASMAtomicXchgBool(&pThis->fNotificationSent, true)) { if (ASMAtomicReadBool(&pThis->fWrkThreadSleeping)) { #ifdef IN_RC PPDMQUEUEITEMCORE pNotificationItem = PDMQueueAlloc(pThis->CTX_SUFF(pNotificationQueue)); AssertPtr(pNotificationItem); PDMQueueInsert(pThis->CTX_SUFF(pNotificationQueue), pNotificationItem); #else LogFlowFunc(("Signal event semaphore\n")); int rc = SUPSemEventSignal(pThis->pSupDrvSession, pThis->hEvtProcess); AssertRC(rc); #endif } } break; } case LSILOGIC_REG_DOORBELL: { /* * When the guest writes to this register a real device would set the * doorbell status bit in the interrupt status register to indicate that the IOP * has still to process the message. * The guest needs to wait with posting new messages here until the bit is cleared. * Because the guest is not continuing execution while we are here we can skip this. */ if (pThis->enmDoorbellState == LSILOGICDOORBELLSTATE_NOT_IN_USE) { uint32_t uFunction = LSILOGIC_REG_DOORBELL_GET_FUNCTION(u32); switch (uFunction) { case LSILOGIC_DOORBELL_FUNCTION_IO_UNIT_RESET: case LSILOGIC_DOORBELL_FUNCTION_IOC_MSG_UNIT_RESET: { /* * The I/O unit reset does much more on real hardware like * reloading the firmware, nothing we need to do here, * so this is like the IOC message unit reset. */ pThis->enmState = LSILOGICSTATE_RESET; /* Reset interrupt status. */ pThis->uInterruptStatus = 0; lsilogicUpdateInterrupt(pThis); /* Reset the queues. */ pThis->uReplyFreeQueueNextEntryFreeWrite = 0; pThis->uReplyFreeQueueNextAddressRead = 0; pThis->uReplyPostQueueNextEntryFreeWrite = 0; pThis->uReplyPostQueueNextAddressRead = 0; pThis->uRequestQueueNextEntryFreeWrite = 0; pThis->uRequestQueueNextAddressRead = 0; /* Only the IOC message unit reset transisionts to the ready state. */ if (uFunction == LSILOGIC_DOORBELL_FUNCTION_IOC_MSG_UNIT_RESET) pThis->enmState = LSILOGICSTATE_READY; break; } case LSILOGIC_DOORBELL_FUNCTION_HANDSHAKE: { pThis->cMessage = LSILOGIC_REG_DOORBELL_GET_SIZE(u32); pThis->iMessage = 0; AssertMsg(pThis->cMessage <= RT_ELEMENTS(pThis->aMessage), ("Message doesn't fit into the buffer, cMessage=%u", pThis->cMessage)); pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_FN_HANDSHAKE; /* Update the interrupt status to notify the guest that a doorbell function was started. */ lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); break; } case LSILOGIC_DOORBELL_FUNCTION_REPLY_FRAME_REMOVAL: { pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_RFR_FRAME_COUNT_LOW; /* Update the interrupt status to notify the guest that a doorbell function was started. */ lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); break; } default: AssertMsgFailed(("Unknown function %u to perform\n", uFunction)); } } else if (pThis->enmDoorbellState == LSILOGICDOORBELLSTATE_FN_HANDSHAKE) { /* * We are already performing a doorbell function. * Get the remaining parameters. */ AssertMsg(pThis->iMessage < RT_ELEMENTS(pThis->aMessage), ("Message is too big to fit into the buffer\n")); /* * If the last byte of the message is written, force a switch to R3 because some requests might force * a reply through the FIFO which cannot be handled in GC or R0. */ #ifndef IN_RING3 if (pThis->iMessage == pThis->cMessage - 1) return VINF_IOM_R3_MMIO_WRITE; #endif pThis->aMessage[pThis->iMessage++] = u32; #ifdef IN_RING3 if (pThis->iMessage == pThis->cMessage) { int rc = lsilogicR3ProcessMessageRequest(pThis, (PMptMessageHdr)pThis->aMessage, &pThis->ReplyBuffer); AssertRC(rc); } #endif } break; } case LSILOGIC_REG_HOST_INTR_STATUS: { /* * Clear the bits the guest wants except the system doorbell interrupt and the IO controller * status bit. * The former bit is always cleared no matter what the guest writes to the register and * the latter one is read only. */ ASMAtomicAndU32(&pThis->uInterruptStatus, ~LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); /* * Check if there is still a doorbell function in progress. Set the * system doorbell interrupt bit again if it is. * We do not use lsilogicSetInterrupt here because the interrupt status * is updated afterwards anyway. */ if ( (pThis->enmDoorbellState == LSILOGICDOORBELLSTATE_FN_HANDSHAKE) && (pThis->cMessage == pThis->iMessage)) { if (pThis->uNextReplyEntryRead == pThis->cReplySize) { /* Reply finished. Reset doorbell in progress status. */ Log(("%s: Doorbell function finished\n", __FUNCTION__)); pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_NOT_IN_USE; } ASMAtomicOrU32(&pThis->uInterruptStatus, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); } else if ( pThis->enmDoorbellState != LSILOGICDOORBELLSTATE_NOT_IN_USE && pThis->enmDoorbellState != LSILOGICDOORBELLSTATE_FN_HANDSHAKE) { /* Reply frame removal, check whether the reply free queue is empty. */ if ( pThis->uReplyFreeQueueNextAddressRead == pThis->uReplyFreeQueueNextEntryFreeWrite && pThis->enmDoorbellState == LSILOGICDOORBELLSTATE_RFR_NEXT_FRAME_LOW) pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_NOT_IN_USE; ASMAtomicOrU32(&pThis->uInterruptStatus, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); } lsilogicUpdateInterrupt(pThis); break; } case LSILOGIC_REG_HOST_INTR_MASK: { ASMAtomicWriteU32(&pThis->uInterruptMask, u32 & LSILOGIC_REG_HOST_INTR_MASK_W_MASK); lsilogicUpdateInterrupt(pThis); break; } case LSILOGIC_REG_WRITE_SEQUENCE: { if (pThis->fDiagnosticEnabled) { /* Any value will cause a reset and disabling access. */ pThis->fDiagnosticEnabled = false; pThis->iDiagnosticAccess = 0; pThis->fDiagRegsEnabled = false; } else if ((u32 & 0xf) == g_lsilogicDiagnosticAccess[pThis->iDiagnosticAccess]) { pThis->iDiagnosticAccess++; if (pThis->iDiagnosticAccess == RT_ELEMENTS(g_lsilogicDiagnosticAccess)) { /* * Key sequence successfully written. Enable access to diagnostic * memory and register. */ pThis->fDiagnosticEnabled = true; } } else { /* Wrong value written - reset to beginning. */ pThis->iDiagnosticAccess = 0; } break; } case LSILOGIC_REG_HOST_DIAGNOSTIC: { if (pThis->fDiagnosticEnabled) { #ifndef IN_RING3 return VINF_IOM_R3_MMIO_WRITE; #else if (u32 & LSILOGIC_REG_HOST_DIAGNOSTIC_RESET_ADAPTER) lsilogicR3HardReset(pThis); else if (u32 & LSILOGIC_REG_HOST_DIAGNOSTIC_DIAG_RW_ENABLE) pThis->fDiagRegsEnabled = true; #endif } break; } case LSILOGIC_REG_DIAG_RW_DATA: { if (pThis->fDiagRegsEnabled) { #ifndef IN_RING3 return VINF_IOM_R3_MMIO_WRITE; #else lsilogicR3DiagRegDataWrite(pThis, u32); #endif } break; } case LSILOGIC_REG_DIAG_RW_ADDRESS: { if (pThis->fDiagRegsEnabled) { #ifndef IN_RING3 return VINF_IOM_R3_MMIO_WRITE; #else lsilogicR3DiagRegAddressWrite(pThis, u32); #endif } break; } default: /* Ignore. */ { break; } } return VINF_SUCCESS; } /** * Reads the content of a register at a given offset. * * @returns VBox status code. * @param pThis Pointer to the LsiLogic device state. * @param offReg Offset of the register to read. * @param pu32 Where to store the content of the register. */ static int lsilogicRegisterRead(PLSILOGICSCSI pThis, uint32_t offReg, uint32_t *pu32) { int rc = VINF_SUCCESS; uint32_t u32 = 0; Assert(!(offReg & 3)); /* Align to a 4 byte offset. */ switch (offReg) { case LSILOGIC_REG_REPLY_QUEUE: { rc = PDMCritSectEnter(&pThis->ReplyPostQueueCritSect, VINF_IOM_R3_MMIO_READ); if (rc != VINF_SUCCESS) break; uint32_t idxReplyPostQueueWrite = ASMAtomicUoReadU32(&pThis->uReplyPostQueueNextEntryFreeWrite); uint32_t idxReplyPostQueueRead = ASMAtomicUoReadU32(&pThis->uReplyPostQueueNextAddressRead); if (idxReplyPostQueueWrite != idxReplyPostQueueRead) { u32 = pThis->CTX_SUFF(pReplyPostQueueBase)[idxReplyPostQueueRead]; idxReplyPostQueueRead++; idxReplyPostQueueRead %= pThis->cReplyQueueEntries; ASMAtomicWriteU32(&pThis->uReplyPostQueueNextAddressRead, idxReplyPostQueueRead); } else { /* The reply post queue is empty. Reset interrupt. */ u32 = UINT32_C(0xffffffff); lsilogicClearInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_REPLY_INTR); } PDMCritSectLeave(&pThis->ReplyPostQueueCritSect); Log(("%s: Returning address %#x\n", __FUNCTION__, u32)); break; } case LSILOGIC_REG_DOORBELL: { u32 = LSILOGIC_REG_DOORBELL_SET_STATE(pThis->enmState); u32 |= LSILOGIC_REG_DOORBELL_SET_USED(pThis->enmDoorbellState); u32 |= LSILOGIC_REG_DOORBELL_SET_WHOINIT(pThis->enmWhoInit); /* * If there is a doorbell function in progress we pass the return value * instead of the status code. We transfer 16bit of the reply * during one read. */ switch (pThis->enmDoorbellState) { case LSILOGICDOORBELLSTATE_NOT_IN_USE: /* We return the status code of the I/O controller. */ u32 |= pThis->u16IOCFaultCode; break; case LSILOGICDOORBELLSTATE_FN_HANDSHAKE: /* Return next 16bit value. */ u32 |= pThis->ReplyBuffer.au16Reply[pThis->uNextReplyEntryRead++]; lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); break; case LSILOGICDOORBELLSTATE_RFR_FRAME_COUNT_LOW: { uint32_t cReplyFrames = lsilogicReplyFreeQueueGetFrameCount(pThis); u32 |= cReplyFrames & UINT32_C(0xffff); pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_RFR_FRAME_COUNT_HIGH; lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); break; } case LSILOGICDOORBELLSTATE_RFR_FRAME_COUNT_HIGH: { uint32_t cReplyFrames = lsilogicReplyFreeQueueGetFrameCount(pThis); u32 |= cReplyFrames >> 16; pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_RFR_NEXT_FRAME_LOW; lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); break; } case LSILOGICDOORBELLSTATE_RFR_NEXT_FRAME_LOW: if (pThis->uReplyFreeQueueNextEntryFreeWrite != pThis->uReplyFreeQueueNextAddressRead) { u32 |= pThis->CTX_SUFF(pReplyFreeQueueBase)[pThis->uReplyFreeQueueNextAddressRead] & UINT32_C(0xffff); pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_RFR_NEXT_FRAME_HIGH; lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); } break; case LSILOGICDOORBELLSTATE_RFR_NEXT_FRAME_HIGH: u32 |= pThis->CTX_SUFF(pReplyFreeQueueBase)[pThis->uReplyFreeQueueNextAddressRead] >> 16; pThis->uReplyFreeQueueNextAddressRead++; pThis->uReplyFreeQueueNextAddressRead %= pThis->cReplyQueueEntries; pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_RFR_NEXT_FRAME_LOW; lsilogicSetInterrupt(pThis, LSILOGIC_REG_HOST_INTR_STATUS_SYSTEM_DOORBELL); break; default: AssertMsgFailed(("Invalid doorbell state %d\n", pThis->enmDoorbellState)); } break; } case LSILOGIC_REG_HOST_INTR_STATUS: { u32 = ASMAtomicReadU32(&pThis->uInterruptStatus); break; } case LSILOGIC_REG_HOST_INTR_MASK: { u32 = ASMAtomicReadU32(&pThis->uInterruptMask); break; } case LSILOGIC_REG_HOST_DIAGNOSTIC: { if (pThis->fDiagnosticEnabled) u32 |= LSILOGIC_REG_HOST_DIAGNOSTIC_DRWE; if (pThis->fDiagRegsEnabled) u32 |= LSILOGIC_REG_HOST_DIAGNOSTIC_DIAG_RW_ENABLE; break; } case LSILOGIC_REG_DIAG_RW_DATA: { if (pThis->fDiagRegsEnabled) { #ifndef IN_RING3 return VINF_IOM_R3_MMIO_READ; #else lsilogicR3DiagRegDataRead(pThis, &u32); #endif } } case LSILOGIC_REG_DIAG_RW_ADDRESS: { if (pThis->fDiagRegsEnabled) { #ifndef IN_RING3 return VINF_IOM_R3_MMIO_READ; #else lsilogicR3DiagRegAddressRead(pThis, &u32); #endif } } case LSILOGIC_REG_TEST_BASE_ADDRESS: /* The spec doesn't say anything about these registers, so we just ignore them */ default: /* Ignore. */ { /** @todo LSILOGIC_REG_DIAG_* should return all F's when accessed by MMIO. We * return 0. Likely to apply to undefined offsets as well. */ break; } } *pu32 = u32; LogFlowFunc(("pThis=%#p offReg=%#x u32=%#x\n", pThis, offReg, u32)); return rc; } /** * @callback_method_impl{FNIOMIOPORTOUT} */ PDMBOTHCBDECL(int) lsilogicIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); uint32_t offReg = Port - pThis->IOPortBase; int rc; if (!(offReg & 3)) { rc = lsilogicRegisterWrite(pThis, offReg, u32); if (rc == VINF_IOM_R3_MMIO_WRITE) rc = VINF_IOM_R3_IOPORT_WRITE; } else { Log(("lsilogicIOPortWrite: Ignoring misaligned write - offReg=%#x u32=%#x cb=%#x\n", offReg, u32, cb)); rc = VINF_SUCCESS; } return rc; } /** * @callback_method_impl{FNIOMIOPORTIN} */ PDMBOTHCBDECL(int) lsilogicIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); uint32_t offReg = Port - pThis->IOPortBase; int rc = lsilogicRegisterRead(pThis, offReg & ~(uint32_t)3, pu32); if (rc == VINF_IOM_R3_MMIO_READ) rc = VINF_IOM_R3_IOPORT_READ; return rc; } /** * @callback_method_impl{FNIOMMMIOWRITE} */ PDMBOTHCBDECL(int) lsilogicMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); uint32_t offReg = GCPhysAddr - pThis->GCPhysMMIOBase; uint32_t u32; int rc; /* See comments in lsilogicR3Map regarding size and alignment. */ if (cb == 4) u32 = *(uint32_t const *)pv; else { if (cb > 4) u32 = *(uint32_t const *)pv; else if (cb >= 2) u32 = *(uint16_t const *)pv; else u32 = *(uint8_t const *)pv; Log(("lsilogicMMIOWrite: Non-DWORD write access - offReg=%#x u32=%#x cb=%#x\n", offReg, u32, cb)); } if (!(offReg & 3)) rc = lsilogicRegisterWrite(pThis, offReg, u32); else { Log(("lsilogicIOPortWrite: Ignoring misaligned write - offReg=%#x u32=%#x cb=%#x\n", offReg, u32, cb)); rc = VINF_SUCCESS; } return rc; } /** * @callback_method_impl{FNIOMMMIOREAD} */ PDMBOTHCBDECL(int) lsilogicMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); uint32_t offReg = GCPhysAddr - pThis->GCPhysMMIOBase; Assert(!(offReg & 3)); Assert(cb == 4); return lsilogicRegisterRead(pThis, offReg, (uint32_t *)pv); } PDMBOTHCBDECL(int) lsilogicDiagnosticWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); LogFlowFunc(("pThis=%#p GCPhysAddr=%RGp pv=%#p{%.*Rhxs} cb=%u\n", pThis, GCPhysAddr, pv, cb, pv, cb)); return VINF_SUCCESS; } PDMBOTHCBDECL(int) lsilogicDiagnosticRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); LogFlowFunc(("pThis=%#p GCPhysAddr=%RGp pv=%#p{%.*Rhxs} cb=%u\n", pThis, GCPhysAddr, pv, cb, pv, cb)); return VINF_SUCCESS; } #ifdef IN_RING3 # ifdef LOG_ENABLED /** * Dump an SG entry. * * @returns nothing. * @param pSGEntry Pointer to the SG entry to dump */ static void lsilogicDumpSGEntry(PMptSGEntryUnion pSGEntry) { if (LogIsEnabled()) { switch (pSGEntry->Simple32.u2ElementType) { case MPTSGENTRYTYPE_SIMPLE: { Log(("%s: Dumping info for SIMPLE SG entry:\n", __FUNCTION__)); Log(("%s: u24Length=%u\n", __FUNCTION__, pSGEntry->Simple32.u24Length)); Log(("%s: fEndOfList=%d\n", __FUNCTION__, pSGEntry->Simple32.fEndOfList)); Log(("%s: f64BitAddress=%d\n", __FUNCTION__, pSGEntry->Simple32.f64BitAddress)); Log(("%s: fBufferContainsData=%d\n", __FUNCTION__, pSGEntry->Simple32.fBufferContainsData)); Log(("%s: fLocalAddress=%d\n", __FUNCTION__, pSGEntry->Simple32.fLocalAddress)); Log(("%s: fEndOfBuffer=%d\n", __FUNCTION__, pSGEntry->Simple32.fEndOfBuffer)); Log(("%s: fLastElement=%d\n", __FUNCTION__, pSGEntry->Simple32.fLastElement)); Log(("%s: u32DataBufferAddressLow=%u\n", __FUNCTION__, pSGEntry->Simple32.u32DataBufferAddressLow)); if (pSGEntry->Simple32.f64BitAddress) { Log(("%s: u32DataBufferAddressHigh=%u\n", __FUNCTION__, pSGEntry->Simple64.u32DataBufferAddressHigh)); Log(("%s: GCDataBufferAddress=%RGp\n", __FUNCTION__, ((uint64_t)pSGEntry->Simple64.u32DataBufferAddressHigh << 32) | pSGEntry->Simple64.u32DataBufferAddressLow)); } else Log(("%s: GCDataBufferAddress=%RGp\n", __FUNCTION__, pSGEntry->Simple32.u32DataBufferAddressLow)); break; } case MPTSGENTRYTYPE_CHAIN: { Log(("%s: Dumping info for CHAIN SG entry:\n", __FUNCTION__)); Log(("%s: u16Length=%u\n", __FUNCTION__, pSGEntry->Chain.u16Length)); Log(("%s: u8NExtChainOffset=%d\n", __FUNCTION__, pSGEntry->Chain.u8NextChainOffset)); Log(("%s: f64BitAddress=%d\n", __FUNCTION__, pSGEntry->Chain.f64BitAddress)); Log(("%s: fLocalAddress=%d\n", __FUNCTION__, pSGEntry->Chain.fLocalAddress)); Log(("%s: u32SegmentAddressLow=%u\n", __FUNCTION__, pSGEntry->Chain.u32SegmentAddressLow)); Log(("%s: u32SegmentAddressHigh=%u\n", __FUNCTION__, pSGEntry->Chain.u32SegmentAddressHigh)); if (pSGEntry->Chain.f64BitAddress) Log(("%s: GCSegmentAddress=%RGp\n", __FUNCTION__, ((uint64_t)pSGEntry->Chain.u32SegmentAddressHigh << 32) | pSGEntry->Chain.u32SegmentAddressLow)); else Log(("%s: GCSegmentAddress=%RGp\n", __FUNCTION__, pSGEntry->Chain.u32SegmentAddressLow)); break; } } } } # endif /* LOG_ENABLED */ /** * Walks the guest S/G buffer calling the given copy worker for every buffer. * * @returns nothing. * @param pDevIns Device instance data. * @param pLsiReq LSI request state. * @param cbCopy How much bytes to copy. * @param pfnIoBufCopy Copy worker to call. */ static void lsilogicSgBufWalker(PPDMDEVINS pDevIns, PLSILOGICREQ pLsiReq, size_t cbCopy, PFNLSILOGICIOBUFCOPY pfnIoBufCopy) { bool fEndOfList = false; RTGCPHYS GCPhysSgEntryNext = pLsiReq->GCPhysSgStart; RTGCPHYS GCPhysSegmentStart = pLsiReq->GCPhysSgStart; uint32_t cChainOffsetNext = pLsiReq->cChainOffset; uint8_t *pbBuf = (uint8_t *)pLsiReq->SegIoBuf.pvSeg; /* Go through the list until we reach the end. */ while ( !fEndOfList && cbCopy) { bool fEndOfSegment = false; while ( !fEndOfSegment && cbCopy) { MptSGEntryUnion SGEntry; Log(("%s: Reading SG entry from %RGp\n", __FUNCTION__, GCPhysSgEntryNext)); /* Read the entry. */ PDMDevHlpPhysRead(pDevIns, GCPhysSgEntryNext, &SGEntry, sizeof(MptSGEntryUnion)); # ifdef LOG_ENABLED lsilogicDumpSGEntry(&SGEntry); # endif AssertMsg(SGEntry.Simple32.u2ElementType == MPTSGENTRYTYPE_SIMPLE, ("Invalid SG entry type\n")); /* Check if this is a zero element and abort. */ if ( !SGEntry.Simple32.u24Length && SGEntry.Simple32.fEndOfList && SGEntry.Simple32.fEndOfBuffer) return; uint32_t cbCopyThis = SGEntry.Simple32.u24Length; RTGCPHYS GCPhysAddrDataBuffer = SGEntry.Simple32.u32DataBufferAddressLow; if (SGEntry.Simple32.f64BitAddress) { GCPhysAddrDataBuffer |= ((uint64_t)SGEntry.Simple64.u32DataBufferAddressHigh) << 32; GCPhysSgEntryNext += sizeof(MptSGEntrySimple64); } else GCPhysSgEntryNext += sizeof(MptSGEntrySimple32); pfnIoBufCopy(pDevIns, GCPhysAddrDataBuffer, pbBuf, cbCopyThis); pbBuf += cbCopyThis; cbCopy -= cbCopyThis; /* Check if we reached the end of the list. */ if (SGEntry.Simple32.fEndOfList) { /* We finished. */ fEndOfSegment = true; fEndOfList = true; } else if (SGEntry.Simple32.fLastElement) fEndOfSegment = true; } /* while (!fEndOfSegment) */ /* Get next chain element. */ if (cChainOffsetNext) { MptSGEntryChain SGEntryChain; PDMDevHlpPhysRead(pDevIns, GCPhysSegmentStart + cChainOffsetNext, &SGEntryChain, sizeof(MptSGEntryChain)); AssertMsg(SGEntryChain.u2ElementType == MPTSGENTRYTYPE_CHAIN, ("Invalid SG entry type\n")); /* Set the next address now. */ GCPhysSgEntryNext = SGEntryChain.u32SegmentAddressLow; if (SGEntryChain.f64BitAddress) GCPhysSgEntryNext |= ((uint64_t)SGEntryChain.u32SegmentAddressHigh) << 32; GCPhysSegmentStart = GCPhysSgEntryNext; cChainOffsetNext = SGEntryChain.u8NextChainOffset * sizeof(uint32_t); } } /* while (!fEndOfList) */ } static DECLCALLBACK(void) lsilogicCopyFromGuest(PPDMDEVINS pDevIns, RTGCPHYS GCPhysIoBuf, void *pvBuf, size_t cbCopy) { PDMDevHlpPhysRead(pDevIns, GCPhysIoBuf, pvBuf, cbCopy); } static DECLCALLBACK(void) lsilogicCopyToGuest(PPDMDEVINS pDevIns, RTGCPHYS GCPhysIoBuf, void *pvBuf, size_t cbCopy) { PDMDevHlpPCIPhysWrite(pDevIns, GCPhysIoBuf, pvBuf, cbCopy); } /** * Copy from a guest S/G buffer to the I/O buffer. * * @returns nothing. * @param pDevIns Device instance data. * @param pLsiReq Request data. * @param cbCopy How much to copy over. */ DECLINLINE(void) lsilogicCopyFromSgBuf(PPDMDEVINS pDevIns, PLSILOGICREQ pLsiReq, size_t cbCopy) { lsilogicSgBufWalker(pDevIns, pLsiReq, cbCopy, lsilogicCopyFromGuest); } /** * Copy from an I/O buffer to the guest S/G buffer. * * @returns nothing. * @param pDevIns Device instance data. * @param pLsiReq Request data. * @param cbCopy How much to copy over. */ DECLINLINE(void) lsilogicCopyToSgBuf(PPDMDEVINS pDevIns, PLSILOGICREQ pLsiReq, size_t cbCopy) { lsilogicSgBufWalker(pDevIns, pLsiReq, cbCopy, lsilogicCopyToGuest); } /** * Allocates memory for the given request using already allocated memory if possible. * * @returns Pointer to the memory or NULL on failure * @param pLsiReq The request to allocate memory for. * @param cb The amount of memory to allocate. */ static void *lsilogicReqMemAlloc(PLSILOGICREQ pLsiReq, size_t cb) { if (pLsiReq->cbAlloc > cb) pLsiReq->cAllocTooMuch++; else if (pLsiReq->cbAlloc < cb) { if (pLsiReq->cbAlloc) RTMemPageFree(pLsiReq->pvAlloc, pLsiReq->cbAlloc); pLsiReq->cbAlloc = RT_ALIGN_Z(cb, _4K); pLsiReq->pvAlloc = RTMemPageAlloc(pLsiReq->cbAlloc); pLsiReq->cAllocTooMuch = 0; if (RT_UNLIKELY(!pLsiReq->pvAlloc)) pLsiReq->cbAlloc = 0; } return pLsiReq->pvAlloc; } /** * Frees memory allocated for the given request. * * @returns nothing. * @param pLsiReq The request. */ static void lsilogicReqMemFree(PLSILOGICREQ pLsiReq) { if (pLsiReq->cAllocTooMuch >= LSILOGIC_MAX_ALLOC_TOO_MUCH) { RTMemPageFree(pLsiReq->pvAlloc, pLsiReq->cbAlloc); pLsiReq->cbAlloc = 0; pLsiReq->cAllocTooMuch = 0; } } /** * Allocate I/O memory and copies the guest buffer for writes. * * @returns VBox status code. * @param pDevIns The device instance. * @param pLsiReq The request state. * @param cbTransfer Amount of bytes to allocate. */ static int lsilogicIoBufAllocate(PPDMDEVINS pDevIns, PLSILOGICREQ pLsiReq, size_t cbTransfer) { uint8_t uTxDir = MPT_SCSIIO_REQUEST_CONTROL_TXDIR_GET(pLsiReq->GuestRequest.SCSIIO.u32Control); AssertMsg( uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_WRITE || uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_READ || uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_NONE, ("Allocating I/O memory for a non I/O request is not allowed\n")); pLsiReq->SegIoBuf.pvSeg = lsilogicReqMemAlloc(pLsiReq, cbTransfer); if (!pLsiReq->SegIoBuf.pvSeg) return VERR_NO_MEMORY; pLsiReq->SegIoBuf.cbSeg = cbTransfer; if ( uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_WRITE || uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_NONE) lsilogicCopyFromSgBuf(pDevIns, pLsiReq, cbTransfer); return VINF_SUCCESS; } /** * Frees the I/O memory of the given request and updates the guest buffer if necessary. * * @returns nothing. * @param pDevIns The device instance. * @param pLsiReq The request state. * @param fCopyToGuest Flag whether to update the guest buffer if necessary. * Nothing is copied if false even if the request was a read. */ static void lsilogicIoBufFree(PPDMDEVINS pDevIns, PLSILOGICREQ pLsiReq, bool fCopyToGuest) { uint8_t uTxDir = MPT_SCSIIO_REQUEST_CONTROL_TXDIR_GET(pLsiReq->GuestRequest.SCSIIO.u32Control); AssertMsg( uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_WRITE || uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_READ || uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_NONE, ("Allocating I/O memory for a non I/O request is not allowed\n")); if ( ( uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_READ || uTxDir == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_NONE) && fCopyToGuest) lsilogicCopyToSgBuf(pDevIns, pLsiReq, pLsiReq->SegIoBuf.cbSeg); lsilogicReqMemFree(pLsiReq); pLsiReq->SegIoBuf.pvSeg = NULL; pLsiReq->SegIoBuf.cbSeg = 0; } # ifdef LOG_ENABLED static void lsilogicR3DumpSCSIIORequest(PMptSCSIIORequest pSCSIIORequest) { if (LogIsEnabled()) { Log(("%s: u8TargetID=%d\n", __FUNCTION__, pSCSIIORequest->u8TargetID)); Log(("%s: u8Bus=%d\n", __FUNCTION__, pSCSIIORequest->u8Bus)); Log(("%s: u8ChainOffset=%d\n", __FUNCTION__, pSCSIIORequest->u8ChainOffset)); Log(("%s: u8Function=%d\n", __FUNCTION__, pSCSIIORequest->u8Function)); Log(("%s: u8CDBLength=%d\n", __FUNCTION__, pSCSIIORequest->u8CDBLength)); Log(("%s: u8SenseBufferLength=%d\n", __FUNCTION__, pSCSIIORequest->u8SenseBufferLength)); Log(("%s: u8MessageFlags=%d\n", __FUNCTION__, pSCSIIORequest->u8MessageFlags)); Log(("%s: u32MessageContext=%#x\n", __FUNCTION__, pSCSIIORequest->u32MessageContext)); for (unsigned i = 0; i < RT_ELEMENTS(pSCSIIORequest->au8LUN); i++) Log(("%s: u8LUN[%d]=%d\n", __FUNCTION__, i, pSCSIIORequest->au8LUN[i])); Log(("%s: u32Control=%#x\n", __FUNCTION__, pSCSIIORequest->u32Control)); for (unsigned i = 0; i < RT_ELEMENTS(pSCSIIORequest->au8CDB); i++) Log(("%s: u8CDB[%d]=%d\n", __FUNCTION__, i, pSCSIIORequest->au8CDB[i])); Log(("%s: u32DataLength=%#x\n", __FUNCTION__, pSCSIIORequest->u32DataLength)); Log(("%s: u32SenseBufferLowAddress=%#x\n", __FUNCTION__, pSCSIIORequest->u32SenseBufferLowAddress)); } } # endif static void lsilogicR3WarningDiskFull(PPDMDEVINS pDevIns) { int rc; LogRel(("LsiLogic#%d: Host disk full\n", pDevIns->iInstance)); rc = PDMDevHlpVMSetRuntimeError(pDevIns, VMSETRTERR_FLAGS_SUSPEND | VMSETRTERR_FLAGS_NO_WAIT, "DevLsiLogic_DISKFULL", N_("Host system reported disk full. VM execution is suspended. You can resume after freeing some space")); AssertRC(rc); } static void lsilogicR3WarningFileTooBig(PPDMDEVINS pDevIns) { int rc; LogRel(("LsiLogic#%d: File too big\n", pDevIns->iInstance)); rc = PDMDevHlpVMSetRuntimeError(pDevIns, VMSETRTERR_FLAGS_SUSPEND | VMSETRTERR_FLAGS_NO_WAIT, "DevLsiLogic_FILETOOBIG", N_("Host system reported that the file size limit of the host file system has been exceeded. VM execution is suspended. You need to move your virtual hard disk to a filesystem which allows bigger files")); AssertRC(rc); } static void lsilogicR3WarningISCSI(PPDMDEVINS pDevIns) { int rc; LogRel(("LsiLogic#%d: iSCSI target unavailable\n", pDevIns->iInstance)); rc = PDMDevHlpVMSetRuntimeError(pDevIns, VMSETRTERR_FLAGS_SUSPEND | VMSETRTERR_FLAGS_NO_WAIT, "DevLsiLogic_ISCSIDOWN", N_("The iSCSI target has stopped responding. VM execution is suspended. You can resume when it is available again")); AssertRC(rc); } static void lsilogicR3WarningUnknown(PPDMDEVINS pDevIns, int rc) { int rc2; LogRel(("LsiLogic#%d: Unknown but recoverable error has occurred (rc=%Rrc)\n", pDevIns->iInstance, rc)); rc2 = PDMDevHlpVMSetRuntimeError(pDevIns, VMSETRTERR_FLAGS_SUSPEND | VMSETRTERR_FLAGS_NO_WAIT, "DevLsiLogic_UNKNOWN", N_("An unknown but recoverable I/O error has occurred (rc=%Rrc). VM execution is suspended. You can resume when the error is fixed"), rc); AssertRC(rc2); } static void lsilogicR3RedoSetWarning(PLSILOGICSCSI pThis, int rc) { if (rc == VERR_DISK_FULL) lsilogicR3WarningDiskFull(pThis->CTX_SUFF(pDevIns)); else if (rc == VERR_FILE_TOO_BIG) lsilogicR3WarningFileTooBig(pThis->CTX_SUFF(pDevIns)); else if (rc == VERR_BROKEN_PIPE || rc == VERR_NET_CONNECTION_REFUSED) { /* iSCSI connection abort (first error) or failure to reestablish * connection (second error). Pause VM. On resume we'll retry. */ lsilogicR3WarningISCSI(pThis->CTX_SUFF(pDevIns)); } else lsilogicR3WarningUnknown(pThis->CTX_SUFF(pDevIns), rc); } /** * Processes a SCSI I/O request by setting up the request * and sending it to the underlying SCSI driver. * Steps needed to complete request are done in the * callback called by the driver below upon completion of * the request. * * @returns VBox status code. * @param pThis Pointer to the LsiLogic device state. * @param pLsiReq Pointer to the task state data. */ static int lsilogicR3ProcessSCSIIORequest(PLSILOGICSCSI pThis, PLSILOGICREQ pLsiReq) { int rc = VINF_SUCCESS; # ifdef LOG_ENABLED lsilogicR3DumpSCSIIORequest(&pLsiReq->GuestRequest.SCSIIO); # endif pLsiReq->fBIOS = false; pLsiReq->GCPhysSgStart = pLsiReq->GCPhysMessageFrameAddr + sizeof(MptSCSIIORequest); pLsiReq->cChainOffset = pLsiReq->GuestRequest.SCSIIO.u8ChainOffset; if (pLsiReq->cChainOffset) pLsiReq->cChainOffset = pLsiReq->cChainOffset * sizeof(uint32_t) - sizeof(MptSCSIIORequest); if (RT_LIKELY( (pLsiReq->GuestRequest.SCSIIO.u8TargetID < pThis->cDeviceStates) && (pLsiReq->GuestRequest.SCSIIO.u8Bus == 0))) { PLSILOGICDEVICE pTargetDevice; pTargetDevice = &pThis->paDeviceStates[pLsiReq->GuestRequest.SCSIIO.u8TargetID]; if (pTargetDevice->pDrvBase) { if (pLsiReq->GuestRequest.SCSIIO.u32DataLength) { rc = lsilogicIoBufAllocate(pThis->CTX_SUFF(pDevIns), pLsiReq, pLsiReq->GuestRequest.SCSIIO.u32DataLength); AssertRC(rc); /** @todo: Insufficient resources error. */ } /* Setup the SCSI request. */ pLsiReq->pTargetDevice = pTargetDevice; pLsiReq->PDMScsiRequest.uLogicalUnit = pLsiReq->GuestRequest.SCSIIO.au8LUN[1]; uint8_t uDataDirection = MPT_SCSIIO_REQUEST_CONTROL_TXDIR_GET(pLsiReq->GuestRequest.SCSIIO.u32Control); if (uDataDirection == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_NONE) pLsiReq->PDMScsiRequest.uDataDirection = PDMSCSIREQUESTTXDIR_NONE; else if (uDataDirection == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_WRITE) pLsiReq->PDMScsiRequest.uDataDirection = PDMSCSIREQUESTTXDIR_TO_DEVICE; else if (uDataDirection == MPT_SCSIIO_REQUEST_CONTROL_TXDIR_READ) pLsiReq->PDMScsiRequest.uDataDirection = PDMSCSIREQUESTTXDIR_FROM_DEVICE; pLsiReq->PDMScsiRequest.cbCDB = pLsiReq->GuestRequest.SCSIIO.u8CDBLength; pLsiReq->PDMScsiRequest.pbCDB = pLsiReq->GuestRequest.SCSIIO.au8CDB; pLsiReq->PDMScsiRequest.cbScatterGather = pLsiReq->GuestRequest.SCSIIO.u32DataLength; if (pLsiReq->PDMScsiRequest.cbScatterGather) { pLsiReq->PDMScsiRequest.cScatterGatherEntries = 1; pLsiReq->PDMScsiRequest.paScatterGatherHead = &pLsiReq->SegIoBuf; } else { pLsiReq->PDMScsiRequest.cScatterGatherEntries = 0; pLsiReq->PDMScsiRequest.paScatterGatherHead = NULL; } pLsiReq->PDMScsiRequest.cbSenseBuffer = sizeof(pLsiReq->abSenseBuffer); memset(pLsiReq->abSenseBuffer, 0, pLsiReq->PDMScsiRequest.cbSenseBuffer); pLsiReq->PDMScsiRequest.pbSenseBuffer = pLsiReq->abSenseBuffer; pLsiReq->PDMScsiRequest.pvUser = pLsiReq; ASMAtomicIncU32(&pTargetDevice->cOutstandingRequests); rc = pTargetDevice->pDrvSCSIConnector->pfnSCSIRequestSend(pTargetDevice->pDrvSCSIConnector, &pLsiReq->PDMScsiRequest); AssertMsgRC(rc, ("Sending request to SCSI layer failed rc=%Rrc\n", rc)); return VINF_SUCCESS; } else { /* Device is not present report SCSI selection timeout. */ pLsiReq->IOCReply.SCSIIOError.u16IOCStatus = MPT_SCSI_IO_ERROR_IOCSTATUS_DEVICE_NOT_THERE; } } else { /* Report out of bounds target ID or bus. */ if (pLsiReq->GuestRequest.SCSIIO.u8Bus != 0) pLsiReq->IOCReply.SCSIIOError.u16IOCStatus = MPT_SCSI_IO_ERROR_IOCSTATUS_INVALID_BUS; else pLsiReq->IOCReply.SCSIIOError.u16IOCStatus = MPT_SCSI_IO_ERROR_IOCSTATUS_INVALID_TARGETID; } static int g_cLogged = 0; if (g_cLogged++ < MAX_REL_LOG_ERRORS) { LogRel(("LsiLogic#%d: %d/%d (Bus/Target) doesn't exist\n", pThis->CTX_SUFF(pDevIns)->iInstance, pLsiReq->GuestRequest.SCSIIO.u8TargetID, pLsiReq->GuestRequest.SCSIIO.u8Bus)); /* Log the CDB too */ LogRel(("LsiLogic#%d: Guest issued CDB {%#x", pThis->CTX_SUFF(pDevIns)->iInstance, pLsiReq->GuestRequest.SCSIIO.au8CDB[0])); for (unsigned i = 1; i < pLsiReq->GuestRequest.SCSIIO.u8CDBLength; i++) LogRel((", %#x", pLsiReq->GuestRequest.SCSIIO.au8CDB[i])); LogRel(("}\n")); } /* The rest is equal to both errors. */ pLsiReq->IOCReply.SCSIIOError.u8TargetID = pLsiReq->GuestRequest.SCSIIO.u8TargetID; pLsiReq->IOCReply.SCSIIOError.u8Bus = pLsiReq->GuestRequest.SCSIIO.u8Bus; pLsiReq->IOCReply.SCSIIOError.u8MessageLength = sizeof(MptSCSIIOErrorReply) / 4; pLsiReq->IOCReply.SCSIIOError.u8Function = pLsiReq->GuestRequest.SCSIIO.u8Function; pLsiReq->IOCReply.SCSIIOError.u8CDBLength = pLsiReq->GuestRequest.SCSIIO.u8CDBLength; pLsiReq->IOCReply.SCSIIOError.u8SenseBufferLength = pLsiReq->GuestRequest.SCSIIO.u8SenseBufferLength; pLsiReq->IOCReply.SCSIIOError.u32MessageContext = pLsiReq->GuestRequest.SCSIIO.u32MessageContext; pLsiReq->IOCReply.SCSIIOError.u8SCSIStatus = SCSI_STATUS_OK; pLsiReq->IOCReply.SCSIIOError.u8SCSIState = MPT_SCSI_IO_ERROR_SCSI_STATE_TERMINATED; pLsiReq->IOCReply.SCSIIOError.u32IOCLogInfo = 0; pLsiReq->IOCReply.SCSIIOError.u32TransferCount = 0; pLsiReq->IOCReply.SCSIIOError.u32SenseCount = 0; pLsiReq->IOCReply.SCSIIOError.u32ResponseInfo = 0; lsilogicFinishAddressReply(pThis, &pLsiReq->IOCReply, false); RTMemCacheFree(pThis->hTaskCache, pLsiReq); return rc; } /** * @interface_method_impl{PDMISCSIPORT,pfnSCSIRequestCompleted} */ static DECLCALLBACK(int) lsilogicR3DeviceSCSIRequestCompleted(PPDMISCSIPORT pInterface, PPDMSCSIREQUEST pSCSIRequest, int rcCompletion, bool fRedo, int rcReq) { PLSILOGICREQ pLsiReq = (PLSILOGICREQ)pSCSIRequest->pvUser; PLSILOGICDEVICE pLsiLogicDevice = pLsiReq->pTargetDevice; PLSILOGICSCSI pThis = pLsiLogicDevice->CTX_SUFF(pLsiLogic); /* If the task failed but it is possible to redo it again after a suspend * add it to the list. */ if (fRedo) { if (!pLsiReq->fBIOS && pLsiReq->PDMScsiRequest.cbScatterGather) lsilogicIoBufFree(pThis->CTX_SUFF(pDevIns), pLsiReq, false /* fCopyToGuest */); /* Add to the list. */ do { pLsiReq->pRedoNext = ASMAtomicReadPtrT(&pThis->pTasksRedoHead, PLSILOGICREQ); } while (!ASMAtomicCmpXchgPtr(&pThis->pTasksRedoHead, pLsiReq, pLsiReq->pRedoNext)); /* Suspend the VM if not done already. */ if (!ASMAtomicXchgBool(&pThis->fRedo, true)) lsilogicR3RedoSetWarning(pThis, rcReq); } else { if (RT_UNLIKELY(pLsiReq->fBIOS)) { int rc = vboxscsiRequestFinished(&pThis->VBoxSCSI, pSCSIRequest, rcCompletion); AssertMsgRC(rc, ("Finishing BIOS SCSI request failed rc=%Rrc\n", rc)); } else { RTGCPHYS GCPhysAddrSenseBuffer; GCPhysAddrSenseBuffer = pLsiReq->GuestRequest.SCSIIO.u32SenseBufferLowAddress; GCPhysAddrSenseBuffer |= ((uint64_t)pThis->u32SenseBufferHighAddr << 32); /* Copy the sense buffer over. */ PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), GCPhysAddrSenseBuffer, pLsiReq->abSenseBuffer, RT_UNLIKELY( pLsiReq->GuestRequest.SCSIIO.u8SenseBufferLength < pLsiReq->PDMScsiRequest.cbSenseBuffer) ? pLsiReq->GuestRequest.SCSIIO.u8SenseBufferLength : pLsiReq->PDMScsiRequest.cbSenseBuffer); if (pLsiReq->PDMScsiRequest.cbScatterGather) lsilogicIoBufFree(pThis->CTX_SUFF(pDevIns), pLsiReq, true /* fCopyToGuest */); if (RT_LIKELY(rcCompletion == SCSI_STATUS_OK)) lsilogicR3FinishContextReply(pThis, pLsiReq->GuestRequest.SCSIIO.u32MessageContext); else { /* The SCSI target encountered an error during processing post a reply. */ memset(&pLsiReq->IOCReply, 0, sizeof(MptReplyUnion)); pLsiReq->IOCReply.SCSIIOError.u8TargetID = pLsiReq->GuestRequest.SCSIIO.u8TargetID; pLsiReq->IOCReply.SCSIIOError.u8Bus = pLsiReq->GuestRequest.SCSIIO.u8Bus; pLsiReq->IOCReply.SCSIIOError.u8MessageLength = 8; pLsiReq->IOCReply.SCSIIOError.u8Function = pLsiReq->GuestRequest.SCSIIO.u8Function; pLsiReq->IOCReply.SCSIIOError.u8CDBLength = pLsiReq->GuestRequest.SCSIIO.u8CDBLength; pLsiReq->IOCReply.SCSIIOError.u8SenseBufferLength = pLsiReq->GuestRequest.SCSIIO.u8SenseBufferLength; pLsiReq->IOCReply.SCSIIOError.u8MessageFlags = pLsiReq->GuestRequest.SCSIIO.u8MessageFlags; pLsiReq->IOCReply.SCSIIOError.u32MessageContext = pLsiReq->GuestRequest.SCSIIO.u32MessageContext; pLsiReq->IOCReply.SCSIIOError.u8SCSIStatus = rcCompletion; pLsiReq->IOCReply.SCSIIOError.u8SCSIState = MPT_SCSI_IO_ERROR_SCSI_STATE_AUTOSENSE_VALID; pLsiReq->IOCReply.SCSIIOError.u16IOCStatus = 0; pLsiReq->IOCReply.SCSIIOError.u32IOCLogInfo = 0; pLsiReq->IOCReply.SCSIIOError.u32TransferCount = 0; pLsiReq->IOCReply.SCSIIOError.u32SenseCount = sizeof(pLsiReq->abSenseBuffer); pLsiReq->IOCReply.SCSIIOError.u32ResponseInfo = 0; lsilogicFinishAddressReply(pThis, &pLsiReq->IOCReply, false); } } RTMemCacheFree(pThis->hTaskCache, pLsiReq); } ASMAtomicDecU32(&pLsiLogicDevice->cOutstandingRequests); if (pLsiLogicDevice->cOutstandingRequests == 0 && pThis->fSignalIdle) PDMDevHlpAsyncNotificationCompleted(pThis->pDevInsR3); return VINF_SUCCESS; } /** * @interface_method_impl{PDMISCSIPORT,pfnQueryDeviceLocation} */ static DECLCALLBACK(int) lsilogicR3QueryDeviceLocation(PPDMISCSIPORT pInterface, const char **ppcszController, uint32_t *piInstance, uint32_t *piLUN) { PLSILOGICDEVICE pLsiLogicDevice = RT_FROM_MEMBER(pInterface, LSILOGICDEVICE, ISCSIPort); PPDMDEVINS pDevIns = pLsiLogicDevice->CTX_SUFF(pLsiLogic)->CTX_SUFF(pDevIns); AssertPtrReturn(ppcszController, VERR_INVALID_POINTER); AssertPtrReturn(piInstance, VERR_INVALID_POINTER); AssertPtrReturn(piLUN, VERR_INVALID_POINTER); *ppcszController = pDevIns->pReg->szName; *piInstance = pDevIns->iInstance; *piLUN = pLsiLogicDevice->iLUN; return VINF_SUCCESS; } /** * Return the configuration page header and data * which matches the given page type and number. * * @returns VINF_SUCCESS if successful * VERR_NOT_FOUND if the requested page could be found. * @param u8PageNumber Number of the page to get. * @param ppPageHeader Where to store the pointer to the page header. * @param ppbPageData Where to store the pointer to the page data. */ static int lsilogicR3ConfigurationIOUnitPageGetFromNumber(PLSILOGICSCSI pThis, PMptConfigurationPagesSupported pPages, uint8_t u8PageNumber, PMptConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; AssertPtr(ppPageHeader); Assert(ppbPageData); switch (u8PageNumber) { case 0: *ppPageHeader = &pPages->IOUnitPage0.u.fields.Header; *ppbPageData = pPages->IOUnitPage0.u.abPageData; *pcbPage = sizeof(pPages->IOUnitPage0); break; case 1: *ppPageHeader = &pPages->IOUnitPage1.u.fields.Header; *ppbPageData = pPages->IOUnitPage1.u.abPageData; *pcbPage = sizeof(pPages->IOUnitPage1); break; case 2: *ppPageHeader = &pPages->IOUnitPage2.u.fields.Header; *ppbPageData = pPages->IOUnitPage2.u.abPageData; *pcbPage = sizeof(pPages->IOUnitPage2); break; case 3: *ppPageHeader = &pPages->IOUnitPage3.u.fields.Header; *ppbPageData = pPages->IOUnitPage3.u.abPageData; *pcbPage = sizeof(pPages->IOUnitPage3); break; case 4: *ppPageHeader = &pPages->IOUnitPage4.u.fields.Header; *ppbPageData = pPages->IOUnitPage4.u.abPageData; *pcbPage = sizeof(pPages->IOUnitPage4); break; default: rc = VERR_NOT_FOUND; } return rc; } /** * Return the configuration page header and data * which matches the given page type and number. * * @returns VINF_SUCCESS if successful * VERR_NOT_FOUND if the requested page could be found. * @param u8PageNumber Number of the page to get. * @param ppPageHeader Where to store the pointer to the page header. * @param ppbPageData Where to store the pointer to the page data. */ static int lsilogicR3ConfigurationIOCPageGetFromNumber(PLSILOGICSCSI pThis, PMptConfigurationPagesSupported pPages, uint8_t u8PageNumber, PMptConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; AssertPtr(ppPageHeader); Assert(ppbPageData); switch (u8PageNumber) { case 0: *ppPageHeader = &pPages->IOCPage0.u.fields.Header; *ppbPageData = pPages->IOCPage0.u.abPageData; *pcbPage = sizeof(pPages->IOCPage0); break; case 1: *ppPageHeader = &pPages->IOCPage1.u.fields.Header; *ppbPageData = pPages->IOCPage1.u.abPageData; *pcbPage = sizeof(pPages->IOCPage1); break; case 2: *ppPageHeader = &pPages->IOCPage2.u.fields.Header; *ppbPageData = pPages->IOCPage2.u.abPageData; *pcbPage = sizeof(pPages->IOCPage2); break; case 3: *ppPageHeader = &pPages->IOCPage3.u.fields.Header; *ppbPageData = pPages->IOCPage3.u.abPageData; *pcbPage = sizeof(pPages->IOCPage3); break; case 4: *ppPageHeader = &pPages->IOCPage4.u.fields.Header; *ppbPageData = pPages->IOCPage4.u.abPageData; *pcbPage = sizeof(pPages->IOCPage4); break; case 6: *ppPageHeader = &pPages->IOCPage6.u.fields.Header; *ppbPageData = pPages->IOCPage6.u.abPageData; *pcbPage = sizeof(pPages->IOCPage6); break; default: rc = VERR_NOT_FOUND; } return rc; } /** * Return the configuration page header and data * which matches the given page type and number. * * @returns VINF_SUCCESS if successful * VERR_NOT_FOUND if the requested page could be found. * @param u8PageNumber Number of the page to get. * @param ppPageHeader Where to store the pointer to the page header. * @param ppbPageData Where to store the pointer to the page data. */ static int lsilogicR3ConfigurationManufacturingPageGetFromNumber(PLSILOGICSCSI pThis, PMptConfigurationPagesSupported pPages, uint8_t u8PageNumber, PMptConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; AssertPtr(ppPageHeader); Assert(ppbPageData); switch (u8PageNumber) { case 0: *ppPageHeader = &pPages->ManufacturingPage0.u.fields.Header; *ppbPageData = pPages->ManufacturingPage0.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage0); break; case 1: *ppPageHeader = &pPages->ManufacturingPage1.u.fields.Header; *ppbPageData = pPages->ManufacturingPage1.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage1); break; case 2: *ppPageHeader = &pPages->ManufacturingPage2.u.fields.Header; *ppbPageData = pPages->ManufacturingPage2.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage2); break; case 3: *ppPageHeader = &pPages->ManufacturingPage3.u.fields.Header; *ppbPageData = pPages->ManufacturingPage3.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage3); break; case 4: *ppPageHeader = &pPages->ManufacturingPage4.u.fields.Header; *ppbPageData = pPages->ManufacturingPage4.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage4); break; case 5: *ppPageHeader = &pPages->ManufacturingPage5.u.fields.Header; *ppbPageData = pPages->ManufacturingPage5.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage5); break; case 6: *ppPageHeader = &pPages->ManufacturingPage6.u.fields.Header; *ppbPageData = pPages->ManufacturingPage6.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage6); break; case 7: if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { *ppPageHeader = &pPages->u.SasPages.pManufacturingPage7->u.fields.Header; *ppbPageData = pPages->u.SasPages.pManufacturingPage7->u.abPageData; *pcbPage = pPages->u.SasPages.cbManufacturingPage7; } else rc = VERR_NOT_FOUND; break; case 8: *ppPageHeader = &pPages->ManufacturingPage8.u.fields.Header; *ppbPageData = pPages->ManufacturingPage8.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage8); break; case 9: *ppPageHeader = &pPages->ManufacturingPage9.u.fields.Header; *ppbPageData = pPages->ManufacturingPage9.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage9); break; case 10: *ppPageHeader = &pPages->ManufacturingPage10.u.fields.Header; *ppbPageData = pPages->ManufacturingPage10.u.abPageData; *pcbPage = sizeof(pPages->ManufacturingPage10); break; default: rc = VERR_NOT_FOUND; } return rc; } /** * Return the configuration page header and data * which matches the given page type and number. * * @returns VINF_SUCCESS if successful * VERR_NOT_FOUND if the requested page could be found. * @param u8PageNumber Number of the page to get. * @param ppPageHeader Where to store the pointer to the page header. * @param ppbPageData Where to store the pointer to the page data. */ static int lsilogicR3ConfigurationBiosPageGetFromNumber(PLSILOGICSCSI pThis, PMptConfigurationPagesSupported pPages, uint8_t u8PageNumber, PMptConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; AssertPtr(ppPageHeader); Assert(ppbPageData); switch (u8PageNumber) { case 1: *ppPageHeader = &pPages->BIOSPage1.u.fields.Header; *ppbPageData = pPages->BIOSPage1.u.abPageData; *pcbPage = sizeof(pPages->BIOSPage1); break; case 2: *ppPageHeader = &pPages->BIOSPage2.u.fields.Header; *ppbPageData = pPages->BIOSPage2.u.abPageData; *pcbPage = sizeof(pPages->BIOSPage2); break; case 4: *ppPageHeader = &pPages->BIOSPage4.u.fields.Header; *ppbPageData = pPages->BIOSPage4.u.abPageData; *pcbPage = sizeof(pPages->BIOSPage4); break; default: rc = VERR_NOT_FOUND; } return rc; } /** * Return the configuration page header and data * which matches the given page type and number. * * @returns VINF_SUCCESS if successful * VERR_NOT_FOUND if the requested page could be found. * @param u8PageNumber Number of the page to get. * @param ppPageHeader Where to store the pointer to the page header. * @param ppbPageData Where to store the pointer to the page data. */ static int lsilogicR3ConfigurationSCSISPIPortPageGetFromNumber(PLSILOGICSCSI pThis, PMptConfigurationPagesSupported pPages, uint8_t u8Port, uint8_t u8PageNumber, PMptConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; AssertPtr(ppPageHeader); Assert(ppbPageData); if (u8Port >= RT_ELEMENTS(pPages->u.SpiPages.aPortPages)) return VERR_NOT_FOUND; switch (u8PageNumber) { case 0: *ppPageHeader = &pPages->u.SpiPages.aPortPages[u8Port].SCSISPIPortPage0.u.fields.Header; *ppbPageData = pPages->u.SpiPages.aPortPages[u8Port].SCSISPIPortPage0.u.abPageData; *pcbPage = sizeof(pPages->u.SpiPages.aPortPages[u8Port].SCSISPIPortPage0); break; case 1: *ppPageHeader = &pPages->u.SpiPages.aPortPages[u8Port].SCSISPIPortPage1.u.fields.Header; *ppbPageData = pPages->u.SpiPages.aPortPages[u8Port].SCSISPIPortPage1.u.abPageData; *pcbPage = sizeof(pPages->u.SpiPages.aPortPages[u8Port].SCSISPIPortPage1); break; case 2: *ppPageHeader = &pPages->u.SpiPages.aPortPages[u8Port].SCSISPIPortPage2.u.fields.Header; *ppbPageData = pPages->u.SpiPages.aPortPages[u8Port].SCSISPIPortPage2.u.abPageData; *pcbPage = sizeof(pPages->u.SpiPages.aPortPages[u8Port].SCSISPIPortPage2); break; default: rc = VERR_NOT_FOUND; } return rc; } /** * Return the configuration page header and data * which matches the given page type and number. * * @returns VINF_SUCCESS if successful * VERR_NOT_FOUND if the requested page could be found. * @param u8PageNumber Number of the page to get. * @param ppPageHeader Where to store the pointer to the page header. * @param ppbPageData Where to store the pointer to the page data. */ static int lsilogicR3ConfigurationSCSISPIDevicePageGetFromNumber(PLSILOGICSCSI pThis, PMptConfigurationPagesSupported pPages, uint8_t u8Bus, uint8_t u8TargetID, uint8_t u8PageNumber, PMptConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; AssertPtr(ppPageHeader); Assert(ppbPageData); if (u8Bus >= RT_ELEMENTS(pPages->u.SpiPages.aBuses)) return VERR_NOT_FOUND; if (u8TargetID >= RT_ELEMENTS(pPages->u.SpiPages.aBuses[u8Bus].aDevicePages)) return VERR_NOT_FOUND; switch (u8PageNumber) { case 0: *ppPageHeader = &pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage0.u.fields.Header; *ppbPageData = pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage0.u.abPageData; *pcbPage = sizeof(pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage0); break; case 1: *ppPageHeader = &pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage1.u.fields.Header; *ppbPageData = pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage1.u.abPageData; *pcbPage = sizeof(pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage1); break; case 2: *ppPageHeader = &pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage2.u.fields.Header; *ppbPageData = pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage2.u.abPageData; *pcbPage = sizeof(pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage2); break; case 3: *ppPageHeader = &pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage3.u.fields.Header; *ppbPageData = pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage3.u.abPageData; *pcbPage = sizeof(pPages->u.SpiPages.aBuses[u8Bus].aDevicePages[u8TargetID].SCSISPIDevicePage3); break; default: rc = VERR_NOT_FOUND; } return rc; } static int lsilogicR3ConfigurationSASIOUnitPageGetFromNumber(PLSILOGICSCSI pThis, PMptConfigurationPagesSupported pPages, uint8_t u8PageNumber, PMptExtendedConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; switch (u8PageNumber) { case 0: *ppPageHeader = &pPages->u.SasPages.pSASIOUnitPage0->u.fields.ExtHeader; *ppbPageData = pPages->u.SasPages.pSASIOUnitPage0->u.abPageData; *pcbPage = pPages->u.SasPages.cbSASIOUnitPage0; break; case 1: *ppPageHeader = &pPages->u.SasPages.pSASIOUnitPage1->u.fields.ExtHeader; *ppbPageData = pPages->u.SasPages.pSASIOUnitPage1->u.abPageData; *pcbPage = pPages->u.SasPages.cbSASIOUnitPage1; break; case 2: *ppPageHeader = &pPages->u.SasPages.SASIOUnitPage2.u.fields.ExtHeader; *ppbPageData = pPages->u.SasPages.SASIOUnitPage2.u.abPageData; *pcbPage = sizeof(pPages->u.SasPages.SASIOUnitPage2); break; case 3: *ppPageHeader = &pPages->u.SasPages.SASIOUnitPage3.u.fields.ExtHeader; *ppbPageData = pPages->u.SasPages.SASIOUnitPage3.u.abPageData; *pcbPage = sizeof(pPages->u.SasPages.SASIOUnitPage3); break; default: rc = VERR_NOT_FOUND; } return rc; } static int lsilogicR3ConfigurationSASPHYPageGetFromNumber(PLSILOGICSCSI pThis, PMptConfigurationPagesSupported pPages, uint8_t u8PageNumber, MptConfigurationPageAddress PageAddress, PMptExtendedConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; uint8_t uAddressForm = MPT_CONFIGURATION_PAGE_ADDRESS_GET_SAS_FORM(PageAddress); PMptConfigurationPagesSas pPagesSas = &pPages->u.SasPages; PMptPHY pPHYPages = NULL; Log(("Address form %d\n", uAddressForm)); if (uAddressForm == 0) /* PHY number */ { uint8_t u8PhyNumber = PageAddress.SASPHY.Form0.u8PhyNumber; Log(("PHY number %d\n", u8PhyNumber)); if (u8PhyNumber >= pPagesSas->cPHYs) return VERR_NOT_FOUND; pPHYPages = &pPagesSas->paPHYs[u8PhyNumber]; } else if (uAddressForm == 1) /* Index form */ { uint16_t u16Index = PageAddress.SASPHY.Form1.u16Index; Log(("PHY index %d\n", u16Index)); if (u16Index >= pPagesSas->cPHYs) return VERR_NOT_FOUND; pPHYPages = &pPagesSas->paPHYs[u16Index]; } else rc = VERR_NOT_FOUND; /* Correct? */ if (pPHYPages) { switch (u8PageNumber) { case 0: *ppPageHeader = &pPHYPages->SASPHYPage0.u.fields.ExtHeader; *ppbPageData = pPHYPages->SASPHYPage0.u.abPageData; *pcbPage = sizeof(pPHYPages->SASPHYPage0); break; case 1: *ppPageHeader = &pPHYPages->SASPHYPage1.u.fields.ExtHeader; *ppbPageData = pPHYPages->SASPHYPage1.u.abPageData; *pcbPage = sizeof(pPHYPages->SASPHYPage1); break; default: rc = VERR_NOT_FOUND; } } else rc = VERR_NOT_FOUND; return rc; } static int lsilogicR3ConfigurationSASDevicePageGetFromNumber(PLSILOGICSCSI pThis, PMptConfigurationPagesSupported pPages, uint8_t u8PageNumber, MptConfigurationPageAddress PageAddress, PMptExtendedConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; uint8_t uAddressForm = MPT_CONFIGURATION_PAGE_ADDRESS_GET_SAS_FORM(PageAddress); PMptConfigurationPagesSas pPagesSas = &pPages->u.SasPages; PMptSASDevice pSASDevice = NULL; Log(("Address form %d\n", uAddressForm)); if (uAddressForm == 0) { uint16_t u16Handle = PageAddress.SASDevice.Form0And2.u16Handle; Log(("Get next handle %#x\n", u16Handle)); pSASDevice = pPagesSas->pSASDeviceHead; /* Get the first device? */ if (u16Handle != 0xffff) { /* No, search for the right one. */ while ( pSASDevice && pSASDevice->SASDevicePage0.u.fields.u16DevHandle != u16Handle) pSASDevice = pSASDevice->pNext; if (pSASDevice) pSASDevice = pSASDevice->pNext; } } else if (uAddressForm == 1) { uint8_t u8TargetID = PageAddress.SASDevice.Form1.u8TargetID; uint8_t u8Bus = PageAddress.SASDevice.Form1.u8Bus; Log(("u8TargetID=%d u8Bus=%d\n", u8TargetID, u8Bus)); pSASDevice = pPagesSas->pSASDeviceHead; while ( pSASDevice && ( pSASDevice->SASDevicePage0.u.fields.u8TargetID != u8TargetID || pSASDevice->SASDevicePage0.u.fields.u8Bus != u8Bus)) pSASDevice = pSASDevice->pNext; } else if (uAddressForm == 2) { uint16_t u16Handle = PageAddress.SASDevice.Form0And2.u16Handle; Log(("Handle %#x\n", u16Handle)); pSASDevice = pPagesSas->pSASDeviceHead; while ( pSASDevice && pSASDevice->SASDevicePage0.u.fields.u16DevHandle != u16Handle) pSASDevice = pSASDevice->pNext; } if (pSASDevice) { switch (u8PageNumber) { case 0: *ppPageHeader = &pSASDevice->SASDevicePage0.u.fields.ExtHeader; *ppbPageData = pSASDevice->SASDevicePage0.u.abPageData; *pcbPage = sizeof(pSASDevice->SASDevicePage0); break; case 1: *ppPageHeader = &pSASDevice->SASDevicePage1.u.fields.ExtHeader; *ppbPageData = pSASDevice->SASDevicePage1.u.abPageData; *pcbPage = sizeof(pSASDevice->SASDevicePage1); break; case 2: *ppPageHeader = &pSASDevice->SASDevicePage2.u.fields.ExtHeader; *ppbPageData = pSASDevice->SASDevicePage2.u.abPageData; *pcbPage = sizeof(pSASDevice->SASDevicePage2); break; default: rc = VERR_NOT_FOUND; } } else rc = VERR_NOT_FOUND; return rc; } /** * Returns the extended configuration page header and data. * @returns VINF_SUCCESS if successful * VERR_NOT_FOUND if the requested page could be found. * @param pThis Pointer to the LsiLogic device state. * @param pConfigurationReq The configuration request. * @param u8PageNumber Number of the page to get. * @param ppPageHeader Where to store the pointer to the page header. * @param ppbPageData Where to store the pointer to the page data. */ static int lsilogicR3ConfigurationPageGetExtended(PLSILOGICSCSI pThis, PMptConfigurationRequest pConfigurationReq, PMptExtendedConfigurationPageHeader *ppPageHeader, uint8_t **ppbPageData, size_t *pcbPage) { int rc = VINF_SUCCESS; Log(("Extended page requested:\n")); Log(("u8ExtPageType=%#x\n", pConfigurationReq->u8ExtPageType)); Log(("u8ExtPageLength=%d\n", pConfigurationReq->u16ExtPageLength)); switch (pConfigurationReq->u8ExtPageType) { case MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASIOUNIT: { rc = lsilogicR3ConfigurationSASIOUnitPageGetFromNumber(pThis, pThis->pConfigurationPages, pConfigurationReq->u8PageNumber, ppPageHeader, ppbPageData, pcbPage); break; } case MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASPHYS: { rc = lsilogicR3ConfigurationSASPHYPageGetFromNumber(pThis, pThis->pConfigurationPages, pConfigurationReq->u8PageNumber, pConfigurationReq->PageAddress, ppPageHeader, ppbPageData, pcbPage); break; } case MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASDEVICE: { rc = lsilogicR3ConfigurationSASDevicePageGetFromNumber(pThis, pThis->pConfigurationPages, pConfigurationReq->u8PageNumber, pConfigurationReq->PageAddress, ppPageHeader, ppbPageData, pcbPage); break; } case MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASEXPANDER: /* No expanders supported */ case MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_ENCLOSURE: /* No enclosures supported */ default: rc = VERR_NOT_FOUND; } return rc; } /** * Processes a Configuration request. * * @returns VBox status code. * @param pThis Pointer to the LsiLogic device state. * @param pConfigurationReq Pointer to the request structure. * @param pReply Pointer to the reply message frame */ static int lsilogicR3ProcessConfigurationRequest(PLSILOGICSCSI pThis, PMptConfigurationRequest pConfigurationReq, PMptConfigurationReply pReply) { int rc = VINF_SUCCESS; uint8_t *pbPageData = NULL; PMptConfigurationPageHeader pPageHeader = NULL; PMptExtendedConfigurationPageHeader pExtPageHeader = NULL; uint8_t u8PageType; uint8_t u8PageAttribute; size_t cbPage = 0; LogFlowFunc(("pThis=%#p\n", pThis)); u8PageType = MPT_CONFIGURATION_PAGE_TYPE_GET(pConfigurationReq->u8PageType); u8PageAttribute = MPT_CONFIGURATION_PAGE_ATTRIBUTE_GET(pConfigurationReq->u8PageType); Log(("GuestRequest:\n")); Log(("u8Action=%#x\n", pConfigurationReq->u8Action)); Log(("u8PageType=%#x\n", u8PageType)); Log(("u8PageNumber=%d\n", pConfigurationReq->u8PageNumber)); Log(("u8PageLength=%d\n", pConfigurationReq->u8PageLength)); Log(("u8PageVersion=%d\n", pConfigurationReq->u8PageVersion)); /* Copy common bits from the request into the reply. */ pReply->u8MessageLength = 6; /* 6 32bit D-Words. */ pReply->u8Action = pConfigurationReq->u8Action; pReply->u8Function = pConfigurationReq->u8Function; pReply->u32MessageContext = pConfigurationReq->u32MessageContext; switch (u8PageType) { case MPT_CONFIGURATION_PAGE_TYPE_IO_UNIT: { /* Get the page data. */ rc = lsilogicR3ConfigurationIOUnitPageGetFromNumber(pThis, pThis->pConfigurationPages, pConfigurationReq->u8PageNumber, &pPageHeader, &pbPageData, &cbPage); break; } case MPT_CONFIGURATION_PAGE_TYPE_IOC: { /* Get the page data. */ rc = lsilogicR3ConfigurationIOCPageGetFromNumber(pThis, pThis->pConfigurationPages, pConfigurationReq->u8PageNumber, &pPageHeader, &pbPageData, &cbPage); break; } case MPT_CONFIGURATION_PAGE_TYPE_MANUFACTURING: { /* Get the page data. */ rc = lsilogicR3ConfigurationManufacturingPageGetFromNumber(pThis, pThis->pConfigurationPages, pConfigurationReq->u8PageNumber, &pPageHeader, &pbPageData, &cbPage); break; } case MPT_CONFIGURATION_PAGE_TYPE_SCSI_SPI_PORT: { /* Get the page data. */ rc = lsilogicR3ConfigurationSCSISPIPortPageGetFromNumber(pThis, pThis->pConfigurationPages, pConfigurationReq->PageAddress.MPIPortNumber.u8PortNumber, pConfigurationReq->u8PageNumber, &pPageHeader, &pbPageData, &cbPage); break; } case MPT_CONFIGURATION_PAGE_TYPE_SCSI_SPI_DEVICE: { /* Get the page data. */ rc = lsilogicR3ConfigurationSCSISPIDevicePageGetFromNumber(pThis, pThis->pConfigurationPages, pConfigurationReq->PageAddress.BusAndTargetId.u8Bus, pConfigurationReq->PageAddress.BusAndTargetId.u8TargetID, pConfigurationReq->u8PageNumber, &pPageHeader, &pbPageData, &cbPage); break; } case MPT_CONFIGURATION_PAGE_TYPE_BIOS: { rc = lsilogicR3ConfigurationBiosPageGetFromNumber(pThis, pThis->pConfigurationPages, pConfigurationReq->u8PageNumber, &pPageHeader, &pbPageData, &cbPage); break; } case MPT_CONFIGURATION_PAGE_TYPE_EXTENDED: { rc = lsilogicR3ConfigurationPageGetExtended(pThis, pConfigurationReq, &pExtPageHeader, &pbPageData, &cbPage); break; } default: rc = VERR_NOT_FOUND; } if (rc == VERR_NOT_FOUND) { Log(("Page not found\n")); pReply->u8PageType = pConfigurationReq->u8PageType; pReply->u8PageNumber = pConfigurationReq->u8PageNumber; pReply->u8PageLength = pConfigurationReq->u8PageLength; pReply->u8PageVersion = pConfigurationReq->u8PageVersion; pReply->u16IOCStatus = MPT_IOCSTATUS_CONFIG_INVALID_PAGE; return VINF_SUCCESS; } if (u8PageType == MPT_CONFIGURATION_PAGE_TYPE_EXTENDED) { pReply->u8PageType = pExtPageHeader->u8PageType; pReply->u8PageNumber = pExtPageHeader->u8PageNumber; pReply->u8PageVersion = pExtPageHeader->u8PageVersion; pReply->u8ExtPageType = pExtPageHeader->u8ExtPageType; pReply->u16ExtPageLength = pExtPageHeader->u16ExtPageLength; for (int i = 0; i < pExtPageHeader->u16ExtPageLength; i++) LogFlowFunc(("PageData[%d]=%#x\n", i, ((uint32_t *)pbPageData)[i])); } else { pReply->u8PageType = pPageHeader->u8PageType; pReply->u8PageNumber = pPageHeader->u8PageNumber; pReply->u8PageLength = pPageHeader->u8PageLength; pReply->u8PageVersion = pPageHeader->u8PageVersion; for (int i = 0; i < pReply->u8PageLength; i++) LogFlowFunc(("PageData[%d]=%#x\n", i, ((uint32_t *)pbPageData)[i])); } /* * Don't use the scatter gather handling code as the configuration request always have only one * simple element. */ switch (pConfigurationReq->u8Action) { case MPT_CONFIGURATION_REQUEST_ACTION_DEFAULT: /* Nothing to do. We are always using the defaults. */ case MPT_CONFIGURATION_REQUEST_ACTION_HEADER: { /* Already copied above nothing to do. */ break; } case MPT_CONFIGURATION_REQUEST_ACTION_READ_NVRAM: case MPT_CONFIGURATION_REQUEST_ACTION_READ_CURRENT: case MPT_CONFIGURATION_REQUEST_ACTION_READ_DEFAULT: { uint32_t cbBuffer = pConfigurationReq->SimpleSGElement.u24Length; if (cbBuffer != 0) { RTGCPHYS GCPhysAddrPageBuffer = pConfigurationReq->SimpleSGElement.u32DataBufferAddressLow; if (pConfigurationReq->SimpleSGElement.f64BitAddress) GCPhysAddrPageBuffer |= (uint64_t)pConfigurationReq->SimpleSGElement.u32DataBufferAddressHigh << 32; PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), GCPhysAddrPageBuffer, pbPageData, RT_MIN(cbBuffer, cbPage)); } break; } case MPT_CONFIGURATION_REQUEST_ACTION_WRITE_CURRENT: case MPT_CONFIGURATION_REQUEST_ACTION_WRITE_NVRAM: { uint32_t cbBuffer = pConfigurationReq->SimpleSGElement.u24Length; if (cbBuffer != 0) { RTGCPHYS GCPhysAddrPageBuffer = pConfigurationReq->SimpleSGElement.u32DataBufferAddressLow; if (pConfigurationReq->SimpleSGElement.f64BitAddress) GCPhysAddrPageBuffer |= (uint64_t)pConfigurationReq->SimpleSGElement.u32DataBufferAddressHigh << 32; LogFlow(("cbBuffer=%u cbPage=%u\n", cbBuffer, cbPage)); PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), GCPhysAddrPageBuffer, pbPageData, RT_MIN(cbBuffer, cbPage)); } break; } default: AssertMsgFailed(("todo\n")); } return VINF_SUCCESS; } /** * Initializes the configuration pages for the SPI SCSI controller. * * @returns nothing * @param pThis Pointer to the LsiLogic device state. */ static void lsilogicR3InitializeConfigurationPagesSpi(PLSILOGICSCSI pThis) { PMptConfigurationPagesSpi pPages = &pThis->pConfigurationPages->u.SpiPages; AssertMsg(pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI, ("Controller is not the SPI SCSI one\n")); LogFlowFunc(("pThis=%#p\n", pThis)); /* Clear everything first. */ memset(pPages, 0, sizeof(MptConfigurationPagesSpi)); for (unsigned i = 0; i < RT_ELEMENTS(pPages->aPortPages); i++) { /* SCSI-SPI port page 0. */ pPages->aPortPages[i].SCSISPIPortPage0.u.fields.Header.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_SCSI_SPI_PORT; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.Header.u8PageNumber = 0; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.Header.u8PageLength = sizeof(MptConfigurationPageSCSISPIPort0) / 4; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.fInformationUnitTransfersCapable = true; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.fDTCapable = true; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.fQASCapable = true; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.u8MinimumSynchronousTransferPeriod = 0; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.u8MaximumSynchronousOffset = 0xff; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.fWide = true; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.fAIPCapable = true; pPages->aPortPages[i].SCSISPIPortPage0.u.fields.u2SignalingType = 0x3; /* Single Ended. */ /* SCSI-SPI port page 1. */ pPages->aPortPages[i].SCSISPIPortPage1.u.fields.Header.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE | MPT_CONFIGURATION_PAGE_TYPE_SCSI_SPI_PORT; pPages->aPortPages[i].SCSISPIPortPage1.u.fields.Header.u8PageNumber = 1; pPages->aPortPages[i].SCSISPIPortPage1.u.fields.Header.u8PageLength = sizeof(MptConfigurationPageSCSISPIPort1) / 4; pPages->aPortPages[i].SCSISPIPortPage1.u.fields.u8SCSIID = 7; pPages->aPortPages[i].SCSISPIPortPage1.u.fields.u16PortResponseIDsBitmask = (1 << 7); pPages->aPortPages[i].SCSISPIPortPage1.u.fields.u32OnBusTimerValue = 0; /* SCSI-SPI port page 2. */ pPages->aPortPages[i].SCSISPIPortPage2.u.fields.Header.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE | MPT_CONFIGURATION_PAGE_TYPE_SCSI_SPI_PORT; pPages->aPortPages[i].SCSISPIPortPage2.u.fields.Header.u8PageNumber = 2; pPages->aPortPages[i].SCSISPIPortPage2.u.fields.Header.u8PageLength = sizeof(MptConfigurationPageSCSISPIPort2) / 4; pPages->aPortPages[i].SCSISPIPortPage2.u.fields.u4HostSCSIID = 7; pPages->aPortPages[i].SCSISPIPortPage2.u.fields.u2InitializeHBA = 0x3; pPages->aPortPages[i].SCSISPIPortPage2.u.fields.fTerminationDisabled = true; for (unsigned iDevice = 0; iDevice < RT_ELEMENTS(pPages->aPortPages[i].SCSISPIPortPage2.u.fields.aDeviceSettings); iDevice++) { pPages->aPortPages[i].SCSISPIPortPage2.u.fields.aDeviceSettings[iDevice].fBootChoice = true; } /* Everything else 0 for now. */ } for (unsigned uBusCurr = 0; uBusCurr < RT_ELEMENTS(pPages->aBuses); uBusCurr++) { for (unsigned uDeviceCurr = 0; uDeviceCurr < RT_ELEMENTS(pPages->aBuses[uBusCurr].aDevicePages); uDeviceCurr++) { /* SCSI-SPI device page 0. */ pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage0.u.fields.Header.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_SCSI_SPI_DEVICE; pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage0.u.fields.Header.u8PageNumber = 0; pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage0.u.fields.Header.u8PageLength = sizeof(MptConfigurationPageSCSISPIDevice0) / 4; /* Everything else 0 for now. */ /* SCSI-SPI device page 1. */ pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage1.u.fields.Header.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE | MPT_CONFIGURATION_PAGE_TYPE_SCSI_SPI_DEVICE; pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage1.u.fields.Header.u8PageNumber = 1; pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage1.u.fields.Header.u8PageLength = sizeof(MptConfigurationPageSCSISPIDevice1) / 4; /* Everything else 0 for now. */ /* SCSI-SPI device page 2. */ pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage2.u.fields.Header.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE | MPT_CONFIGURATION_PAGE_TYPE_SCSI_SPI_DEVICE; pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage2.u.fields.Header.u8PageNumber = 2; pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage2.u.fields.Header.u8PageLength = sizeof(MptConfigurationPageSCSISPIDevice2) / 4; /* Everything else 0 for now. */ pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage3.u.fields.Header.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_SCSI_SPI_DEVICE; pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage3.u.fields.Header.u8PageNumber = 3; pPages->aBuses[uBusCurr].aDevicePages[uDeviceCurr].SCSISPIDevicePage3.u.fields.Header.u8PageLength = sizeof(MptConfigurationPageSCSISPIDevice3) / 4; /* Everything else 0 for now. */ } } } /** * Generates a handle. * * @returns the handle. * @param pThis Pointer to the LsiLogic device state. */ DECLINLINE(uint16_t) lsilogicGetHandle(PLSILOGICSCSI pThis) { uint16_t u16Handle = pThis->u16NextHandle++; return u16Handle; } /** * Generates a SAS address (WWID) * * @returns nothing. * @param pSASAddress Pointer to an unitialised SAS address. * @param iId iId which will go into the address. * * @todo Generate better SAS addresses. (Request a block from SUN probably) */ void lsilogicSASAddressGenerate(PSASADDRESS pSASAddress, unsigned iId) { pSASAddress->u8Address[0] = (0x5 << 5); pSASAddress->u8Address[1] = 0x01; pSASAddress->u8Address[2] = 0x02; pSASAddress->u8Address[3] = 0x03; pSASAddress->u8Address[4] = 0x04; pSASAddress->u8Address[5] = 0x05; pSASAddress->u8Address[6] = 0x06; pSASAddress->u8Address[7] = iId; } /** * Initializes the configuration pages for the SAS SCSI controller. * * @returns nothing * @param pThis Pointer to the LsiLogic device state. */ static void lsilogicR3InitializeConfigurationPagesSas(PLSILOGICSCSI pThis) { PMptConfigurationPagesSas pPages = &pThis->pConfigurationPages->u.SasPages; AssertMsg(pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS, ("Controller is not the SAS SCSI one\n")); LogFlowFunc(("pThis=%#p\n", pThis)); /* Manufacturing Page 7 - Connector settings. */ pPages->cbManufacturingPage7 = LSILOGICSCSI_MANUFACTURING7_GET_SIZE(pThis->cPorts); PMptConfigurationPageManufacturing7 pManufacturingPage7 = (PMptConfigurationPageManufacturing7)RTMemAllocZ(pPages->cbManufacturingPage7); AssertPtr(pManufacturingPage7); MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(pManufacturingPage7, 0, 7, MPT_CONFIGURATION_PAGE_ATTRIBUTE_PERSISTENT_READONLY); /* Set size manually. */ if (pPages->cbManufacturingPage7 / 4 > 255) pManufacturingPage7->u.fields.Header.u8PageLength = 255; else pManufacturingPage7->u.fields.Header.u8PageLength = pPages->cbManufacturingPage7 / 4; pManufacturingPage7->u.fields.u8NumPhys = pThis->cPorts; pPages->pManufacturingPage7 = pManufacturingPage7; /* SAS I/O unit page 0 - Port specific information. */ pPages->cbSASIOUnitPage0 = LSILOGICSCSI_SASIOUNIT0_GET_SIZE(pThis->cPorts); PMptConfigurationPageSASIOUnit0 pSASPage0 = (PMptConfigurationPageSASIOUnit0)RTMemAllocZ(pPages->cbSASIOUnitPage0); AssertPtr(pSASPage0); MPT_CONFIG_EXTENDED_PAGE_HEADER_INIT(pSASPage0, pPages->cbSASIOUnitPage0, 0, MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY, MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASIOUNIT); pSASPage0->u.fields.u8NumPhys = pThis->cPorts; pPages->pSASIOUnitPage0 = pSASPage0; /* SAS I/O unit page 1 - Port specific settings. */ pPages->cbSASIOUnitPage1 = LSILOGICSCSI_SASIOUNIT1_GET_SIZE(pThis->cPorts); PMptConfigurationPageSASIOUnit1 pSASPage1 = (PMptConfigurationPageSASIOUnit1)RTMemAllocZ(pPages->cbSASIOUnitPage1); AssertPtr(pSASPage1); MPT_CONFIG_EXTENDED_PAGE_HEADER_INIT(pSASPage1, pPages->cbSASIOUnitPage1, 1, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE, MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASIOUNIT); pSASPage1->u.fields.u8NumPhys = pSASPage0->u.fields.u8NumPhys; pSASPage1->u.fields.u16ControlFlags = 0; pSASPage1->u.fields.u16AdditionalControlFlags = 0; pPages->pSASIOUnitPage1 = pSASPage1; /* SAS I/O unit page 2 - Port specific information. */ pPages->SASIOUnitPage2.u.fields.ExtHeader.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_EXTENDED; pPages->SASIOUnitPage2.u.fields.ExtHeader.u8PageNumber = 2; pPages->SASIOUnitPage2.u.fields.ExtHeader.u8ExtPageType = MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASIOUNIT; pPages->SASIOUnitPage2.u.fields.ExtHeader.u16ExtPageLength = sizeof(MptConfigurationPageSASIOUnit2) / 4; /* SAS I/O unit page 3 - Port specific information. */ pPages->SASIOUnitPage3.u.fields.ExtHeader.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_EXTENDED; pPages->SASIOUnitPage3.u.fields.ExtHeader.u8PageNumber = 3; pPages->SASIOUnitPage3.u.fields.ExtHeader.u8ExtPageType = MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASIOUNIT; pPages->SASIOUnitPage3.u.fields.ExtHeader.u16ExtPageLength = sizeof(MptConfigurationPageSASIOUnit3) / 4; pPages->cPHYs = pThis->cPorts; pPages->paPHYs = (PMptPHY)RTMemAllocZ(pPages->cPHYs * sizeof(MptPHY)); AssertPtr(pPages->paPHYs); /* Initialize the PHY configuration */ for (unsigned i = 0; i < pThis->cPorts; i++) { PMptPHY pPHYPages = &pPages->paPHYs[i]; uint16_t u16ControllerHandle = lsilogicGetHandle(pThis); pManufacturingPage7->u.fields.aPHY[i].u8Location = LSILOGICSCSI_MANUFACTURING7_LOCATION_AUTO; pSASPage0->u.fields.aPHY[i].u8Port = i; pSASPage0->u.fields.aPHY[i].u8PortFlags = 0; pSASPage0->u.fields.aPHY[i].u8PhyFlags = 0; pSASPage0->u.fields.aPHY[i].u8NegotiatedLinkRate = LSILOGICSCSI_SASIOUNIT0_NEGOTIATED_RATE_FAILED; pSASPage0->u.fields.aPHY[i].u32ControllerPhyDeviceInfo = LSILOGICSCSI_SASIOUNIT0_DEVICE_TYPE_SET(LSILOGICSCSI_SASIOUNIT0_DEVICE_TYPE_NO); pSASPage0->u.fields.aPHY[i].u16ControllerDevHandle = u16ControllerHandle; pSASPage0->u.fields.aPHY[i].u16AttachedDevHandle = 0; /* No device attached. */ pSASPage0->u.fields.aPHY[i].u32DiscoveryStatus = 0; /* No errors */ pSASPage1->u.fields.aPHY[i].u8Port = i; pSASPage1->u.fields.aPHY[i].u8PortFlags = 0; pSASPage1->u.fields.aPHY[i].u8PhyFlags = 0; pSASPage1->u.fields.aPHY[i].u8MaxMinLinkRate = LSILOGICSCSI_SASIOUNIT1_LINK_RATE_MIN_SET(LSILOGICSCSI_SASIOUNIT1_LINK_RATE_15GB) | LSILOGICSCSI_SASIOUNIT1_LINK_RATE_MAX_SET(LSILOGICSCSI_SASIOUNIT1_LINK_RATE_30GB); pSASPage1->u.fields.aPHY[i].u32ControllerPhyDeviceInfo = LSILOGICSCSI_SASIOUNIT0_DEVICE_TYPE_SET(LSILOGICSCSI_SASIOUNIT0_DEVICE_TYPE_NO); /* SAS PHY page 0. */ pPHYPages->SASPHYPage0.u.fields.ExtHeader.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_EXTENDED; pPHYPages->SASPHYPage0.u.fields.ExtHeader.u8PageNumber = 0; pPHYPages->SASPHYPage0.u.fields.ExtHeader.u8ExtPageType = MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASPHYS; pPHYPages->SASPHYPage0.u.fields.ExtHeader.u16ExtPageLength = sizeof(MptConfigurationPageSASPHY0) / 4; pPHYPages->SASPHYPage0.u.fields.u8AttachedPhyIdentifier = i; pPHYPages->SASPHYPage0.u.fields.u32AttachedDeviceInfo = LSILOGICSCSI_SASPHY0_DEV_INFO_DEVICE_TYPE_SET(LSILOGICSCSI_SASPHY0_DEV_INFO_DEVICE_TYPE_NO); pPHYPages->SASPHYPage0.u.fields.u8ProgrammedLinkRate = LSILOGICSCSI_SASIOUNIT1_LINK_RATE_MIN_SET(LSILOGICSCSI_SASIOUNIT1_LINK_RATE_15GB) | LSILOGICSCSI_SASIOUNIT1_LINK_RATE_MAX_SET(LSILOGICSCSI_SASIOUNIT1_LINK_RATE_30GB); pPHYPages->SASPHYPage0.u.fields.u8HwLinkRate = LSILOGICSCSI_SASIOUNIT1_LINK_RATE_MIN_SET(LSILOGICSCSI_SASIOUNIT1_LINK_RATE_15GB) | LSILOGICSCSI_SASIOUNIT1_LINK_RATE_MAX_SET(LSILOGICSCSI_SASIOUNIT1_LINK_RATE_30GB); /* SAS PHY page 1. */ pPHYPages->SASPHYPage1.u.fields.ExtHeader.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_EXTENDED; pPHYPages->SASPHYPage1.u.fields.ExtHeader.u8PageNumber = 1; pPHYPages->SASPHYPage1.u.fields.ExtHeader.u8ExtPageType = MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASPHYS; pPHYPages->SASPHYPage1.u.fields.ExtHeader.u16ExtPageLength = sizeof(MptConfigurationPageSASPHY1) / 4; /* Settings for present devices. */ if (pThis->paDeviceStates[i].pDrvBase) { uint16_t u16DeviceHandle = lsilogicGetHandle(pThis); SASADDRESS SASAddress; PMptSASDevice pSASDevice = (PMptSASDevice)RTMemAllocZ(sizeof(MptSASDevice)); AssertPtr(pSASDevice); memset(&SASAddress, 0, sizeof(SASADDRESS)); lsilogicSASAddressGenerate(&SASAddress, i); pSASPage0->u.fields.aPHY[i].u8NegotiatedLinkRate = LSILOGICSCSI_SASIOUNIT0_NEGOTIATED_RATE_SET(LSILOGICSCSI_SASIOUNIT0_NEGOTIATED_RATE_30GB); pSASPage0->u.fields.aPHY[i].u32ControllerPhyDeviceInfo = LSILOGICSCSI_SASIOUNIT0_DEVICE_TYPE_SET(LSILOGICSCSI_SASIOUNIT0_DEVICE_TYPE_END) | LSILOGICSCSI_SASIOUNIT0_DEVICE_SSP_TARGET; pSASPage0->u.fields.aPHY[i].u16AttachedDevHandle = u16DeviceHandle; pSASPage1->u.fields.aPHY[i].u32ControllerPhyDeviceInfo = LSILOGICSCSI_SASIOUNIT0_DEVICE_TYPE_SET(LSILOGICSCSI_SASIOUNIT0_DEVICE_TYPE_END) | LSILOGICSCSI_SASIOUNIT0_DEVICE_SSP_TARGET; pSASPage0->u.fields.aPHY[i].u16ControllerDevHandle = u16DeviceHandle; pPHYPages->SASPHYPage0.u.fields.u32AttachedDeviceInfo = LSILOGICSCSI_SASPHY0_DEV_INFO_DEVICE_TYPE_SET(LSILOGICSCSI_SASPHY0_DEV_INFO_DEVICE_TYPE_END); pPHYPages->SASPHYPage0.u.fields.SASAddress = SASAddress; pPHYPages->SASPHYPage0.u.fields.u16OwnerDevHandle = u16DeviceHandle; pPHYPages->SASPHYPage0.u.fields.u16AttachedDevHandle = u16DeviceHandle; /* SAS device page 0. */ pSASDevice->SASDevicePage0.u.fields.ExtHeader.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_EXTENDED; pSASDevice->SASDevicePage0.u.fields.ExtHeader.u8PageNumber = 0; pSASDevice->SASDevicePage0.u.fields.ExtHeader.u8ExtPageType = MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASDEVICE; pSASDevice->SASDevicePage0.u.fields.ExtHeader.u16ExtPageLength = sizeof(MptConfigurationPageSASDevice0) / 4; pSASDevice->SASDevicePage0.u.fields.SASAddress = SASAddress; pSASDevice->SASDevicePage0.u.fields.u16ParentDevHandle = u16ControllerHandle; pSASDevice->SASDevicePage0.u.fields.u8PhyNum = i; pSASDevice->SASDevicePage0.u.fields.u8AccessStatus = LSILOGICSCSI_SASDEVICE0_STATUS_NO_ERRORS; pSASDevice->SASDevicePage0.u.fields.u16DevHandle = u16DeviceHandle; pSASDevice->SASDevicePage0.u.fields.u8TargetID = i; pSASDevice->SASDevicePage0.u.fields.u8Bus = 0; pSASDevice->SASDevicePage0.u.fields.u32DeviceInfo = LSILOGICSCSI_SASPHY0_DEV_INFO_DEVICE_TYPE_SET(LSILOGICSCSI_SASPHY0_DEV_INFO_DEVICE_TYPE_END) | LSILOGICSCSI_SASIOUNIT0_DEVICE_SSP_TARGET; pSASDevice->SASDevicePage0.u.fields.u16Flags = LSILOGICSCSI_SASDEVICE0_FLAGS_DEVICE_PRESENT | LSILOGICSCSI_SASDEVICE0_FLAGS_DEVICE_MAPPED_TO_BUS_AND_TARGET_ID | LSILOGICSCSI_SASDEVICE0_FLAGS_DEVICE_MAPPING_PERSISTENT; pSASDevice->SASDevicePage0.u.fields.u8PhysicalPort = i; /* SAS device page 1. */ pSASDevice->SASDevicePage1.u.fields.ExtHeader.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_EXTENDED; pSASDevice->SASDevicePage1.u.fields.ExtHeader.u8PageNumber = 1; pSASDevice->SASDevicePage1.u.fields.ExtHeader.u8ExtPageType = MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASDEVICE; pSASDevice->SASDevicePage1.u.fields.ExtHeader.u16ExtPageLength = sizeof(MptConfigurationPageSASDevice1) / 4; pSASDevice->SASDevicePage1.u.fields.SASAddress = SASAddress; pSASDevice->SASDevicePage1.u.fields.u16DevHandle = u16DeviceHandle; pSASDevice->SASDevicePage1.u.fields.u8TargetID = i; pSASDevice->SASDevicePage1.u.fields.u8Bus = 0; /* SAS device page 2. */ pSASDevice->SASDevicePage2.u.fields.ExtHeader.u8PageType = MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY | MPT_CONFIGURATION_PAGE_TYPE_EXTENDED; pSASDevice->SASDevicePage2.u.fields.ExtHeader.u8PageNumber = 2; pSASDevice->SASDevicePage2.u.fields.ExtHeader.u8ExtPageType = MPT_CONFIGURATION_PAGE_TYPE_EXTENDED_SASDEVICE; pSASDevice->SASDevicePage2.u.fields.ExtHeader.u16ExtPageLength = sizeof(MptConfigurationPageSASDevice2) / 4; pSASDevice->SASDevicePage2.u.fields.SASAddress = SASAddress; /* Link into device list. */ if (!pPages->cDevices) { pPages->pSASDeviceHead = pSASDevice; pPages->pSASDeviceTail = pSASDevice; pPages->cDevices = 1; } else { pSASDevice->pPrev = pPages->pSASDeviceTail; pPages->pSASDeviceTail->pNext = pSASDevice; pPages->pSASDeviceTail = pSASDevice; pPages->cDevices++; } } } } /** * Initializes the configuration pages. * * @returns nothing * @param pThis Pointer to the LsiLogic device state. */ static void lsilogicR3InitializeConfigurationPages(PLSILOGICSCSI pThis) { /* Initialize the common pages. */ PMptConfigurationPagesSupported pPages = (PMptConfigurationPagesSupported)RTMemAllocZ(sizeof(MptConfigurationPagesSupported)); pThis->pConfigurationPages = pPages; LogFlowFunc(("pThis=%#p\n", pThis)); /* Clear everything first. */ memset(pPages, 0, sizeof(MptConfigurationPagesSupported)); /* Manufacturing Page 0. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage0, MptConfigurationPageManufacturing0, 0, MPT_CONFIGURATION_PAGE_ATTRIBUTE_PERSISTENT_READONLY); strncpy((char *)pPages->ManufacturingPage0.u.fields.abChipName, "VBox MPT Fusion", 16); strncpy((char *)pPages->ManufacturingPage0.u.fields.abChipRevision, "1.0", 8); strncpy((char *)pPages->ManufacturingPage0.u.fields.abBoardName, "VBox MPT Fusion", 16); strncpy((char *)pPages->ManufacturingPage0.u.fields.abBoardAssembly, "SUN", 8); strncpy((char *)pPages->ManufacturingPage0.u.fields.abBoardTracerNumber, "CAFECAFECAFECAFE", 16); /* Manufacturing Page 1 - I don't know what this contains so we leave it 0 for now. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage1, MptConfigurationPageManufacturing1, 1, MPT_CONFIGURATION_PAGE_ATTRIBUTE_PERSISTENT_READONLY); /* Manufacturing Page 2. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage2, MptConfigurationPageManufacturing2, 2, MPT_CONFIGURATION_PAGE_ATTRIBUTE_PERSISTENT_READONLY); if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) { pPages->ManufacturingPage2.u.fields.u16PCIDeviceID = LSILOGICSCSI_PCI_SPI_DEVICE_ID; pPages->ManufacturingPage2.u.fields.u8PCIRevisionID = LSILOGICSCSI_PCI_SPI_REVISION_ID; } else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { pPages->ManufacturingPage2.u.fields.u16PCIDeviceID = LSILOGICSCSI_PCI_SAS_DEVICE_ID; pPages->ManufacturingPage2.u.fields.u8PCIRevisionID = LSILOGICSCSI_PCI_SAS_REVISION_ID; } /* Manufacturing Page 3. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage3, MptConfigurationPageManufacturing3, 3, MPT_CONFIGURATION_PAGE_ATTRIBUTE_PERSISTENT_READONLY); if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) { pPages->ManufacturingPage3.u.fields.u16PCIDeviceID = LSILOGICSCSI_PCI_SPI_DEVICE_ID; pPages->ManufacturingPage3.u.fields.u8PCIRevisionID = LSILOGICSCSI_PCI_SPI_REVISION_ID; } else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { pPages->ManufacturingPage3.u.fields.u16PCIDeviceID = LSILOGICSCSI_PCI_SAS_DEVICE_ID; pPages->ManufacturingPage3.u.fields.u8PCIRevisionID = LSILOGICSCSI_PCI_SAS_REVISION_ID; } /* Manufacturing Page 4 - I don't know what this contains so we leave it 0 for now. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage4, MptConfigurationPageManufacturing4, 4, MPT_CONFIGURATION_PAGE_ATTRIBUTE_PERSISTENT_READONLY); /* Manufacturing Page 5 - WWID settings. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage5, MptConfigurationPageManufacturing5, 5, MPT_CONFIGURATION_PAGE_ATTRIBUTE_PERSISTENT_READONLY); /* Manufacturing Page 6 - Product specific settings. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage6, MptConfigurationPageManufacturing6, 6, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); /* Manufacturing Page 8 - Product specific settings. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage8, MptConfigurationPageManufacturing8, 8, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); /* Manufacturing Page 9 - Product specific settings. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage9, MptConfigurationPageManufacturing9, 9, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); /* Manufacturing Page 10 - Product specific settings. */ MPT_CONFIG_PAGE_HEADER_INIT_MANUFACTURING(&pPages->ManufacturingPage10, MptConfigurationPageManufacturing10, 10, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); /* I/O Unit page 0. */ MPT_CONFIG_PAGE_HEADER_INIT_IO_UNIT(&pPages->IOUnitPage0, MptConfigurationPageIOUnit0, 0, MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY); pPages->IOUnitPage0.u.fields.u64UniqueIdentifier = 0xcafe; /* I/O Unit page 1. */ MPT_CONFIG_PAGE_HEADER_INIT_IO_UNIT(&pPages->IOUnitPage1, MptConfigurationPageIOUnit1, 1, MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY); pPages->IOUnitPage1.u.fields.fSingleFunction = true; pPages->IOUnitPage1.u.fields.fAllPathsMapped = false; pPages->IOUnitPage1.u.fields.fIntegratedRAIDDisabled = true; pPages->IOUnitPage1.u.fields.f32BitAccessForced = false; /* I/O Unit page 2. */ MPT_CONFIG_PAGE_HEADER_INIT_IO_UNIT(&pPages->IOUnitPage2, MptConfigurationPageIOUnit2, 2, MPT_CONFIGURATION_PAGE_ATTRIBUTE_PERSISTENT); pPages->IOUnitPage2.u.fields.fPauseOnError = false; pPages->IOUnitPage2.u.fields.fVerboseModeEnabled = false; pPages->IOUnitPage2.u.fields.fDisableColorVideo = false; pPages->IOUnitPage2.u.fields.fNotHookInt40h = false; pPages->IOUnitPage2.u.fields.u32BIOSVersion = 0xcafecafe; pPages->IOUnitPage2.u.fields.aAdapterOrder[0].fAdapterEnabled = true; pPages->IOUnitPage2.u.fields.aAdapterOrder[0].fAdapterEmbedded = true; pPages->IOUnitPage2.u.fields.aAdapterOrder[0].u8PCIBusNumber = 0; pPages->IOUnitPage2.u.fields.aAdapterOrder[0].u8PCIDevFn = pThis->PciDev.devfn; /* I/O Unit page 3. */ MPT_CONFIG_PAGE_HEADER_INIT_IO_UNIT(&pPages->IOUnitPage3, MptConfigurationPageIOUnit3, 3, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); pPages->IOUnitPage3.u.fields.u8GPIOCount = 0; /* I/O Unit page 4. */ MPT_CONFIG_PAGE_HEADER_INIT_IO_UNIT(&pPages->IOUnitPage4, MptConfigurationPageIOUnit4, 4, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); /* IOC page 0. */ MPT_CONFIG_PAGE_HEADER_INIT_IOC(&pPages->IOCPage0, MptConfigurationPageIOC0, 0, MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY); pPages->IOCPage0.u.fields.u32TotalNVStore = 0; pPages->IOCPage0.u.fields.u32FreeNVStore = 0; if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) { pPages->IOCPage0.u.fields.u16VendorId = LSILOGICSCSI_PCI_VENDOR_ID; pPages->IOCPage0.u.fields.u16DeviceId = LSILOGICSCSI_PCI_SPI_DEVICE_ID; pPages->IOCPage0.u.fields.u8RevisionId = LSILOGICSCSI_PCI_SPI_REVISION_ID; pPages->IOCPage0.u.fields.u32ClassCode = LSILOGICSCSI_PCI_SPI_CLASS_CODE; pPages->IOCPage0.u.fields.u16SubsystemVendorId = LSILOGICSCSI_PCI_SPI_SUBSYSTEM_VENDOR_ID; pPages->IOCPage0.u.fields.u16SubsystemId = LSILOGICSCSI_PCI_SPI_SUBSYSTEM_ID; } else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { pPages->IOCPage0.u.fields.u16VendorId = LSILOGICSCSI_PCI_VENDOR_ID; pPages->IOCPage0.u.fields.u16DeviceId = LSILOGICSCSI_PCI_SAS_DEVICE_ID; pPages->IOCPage0.u.fields.u8RevisionId = LSILOGICSCSI_PCI_SAS_REVISION_ID; pPages->IOCPage0.u.fields.u32ClassCode = LSILOGICSCSI_PCI_SAS_CLASS_CODE; pPages->IOCPage0.u.fields.u16SubsystemVendorId = LSILOGICSCSI_PCI_SAS_SUBSYSTEM_VENDOR_ID; pPages->IOCPage0.u.fields.u16SubsystemId = LSILOGICSCSI_PCI_SAS_SUBSYSTEM_ID; } /* IOC page 1. */ MPT_CONFIG_PAGE_HEADER_INIT_IOC(&pPages->IOCPage1, MptConfigurationPageIOC1, 1, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); pPages->IOCPage1.u.fields.fReplyCoalescingEnabled = false; pPages->IOCPage1.u.fields.u32CoalescingTimeout = 0; pPages->IOCPage1.u.fields.u8CoalescingDepth = 0; /* IOC page 2. */ MPT_CONFIG_PAGE_HEADER_INIT_IOC(&pPages->IOCPage2, MptConfigurationPageIOC2, 2, MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY); /* Everything else here is 0. */ /* IOC page 3. */ MPT_CONFIG_PAGE_HEADER_INIT_IOC(&pPages->IOCPage3, MptConfigurationPageIOC3, 3, MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY); /* Everything else here is 0. */ /* IOC page 4. */ MPT_CONFIG_PAGE_HEADER_INIT_IOC(&pPages->IOCPage4, MptConfigurationPageIOC4, 4, MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY); /* Everything else here is 0. */ /* IOC page 6. */ MPT_CONFIG_PAGE_HEADER_INIT_IOC(&pPages->IOCPage6, MptConfigurationPageIOC6, 6, MPT_CONFIGURATION_PAGE_ATTRIBUTE_READONLY); /* Everything else here is 0. */ /* BIOS page 1. */ MPT_CONFIG_PAGE_HEADER_INIT_BIOS(&pPages->BIOSPage1, MptConfigurationPageBIOS1, 1, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); /* BIOS page 2. */ MPT_CONFIG_PAGE_HEADER_INIT_BIOS(&pPages->BIOSPage2, MptConfigurationPageBIOS2, 2, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); /* BIOS page 4. */ MPT_CONFIG_PAGE_HEADER_INIT_BIOS(&pPages->BIOSPage4, MptConfigurationPageBIOS4, 4, MPT_CONFIGURATION_PAGE_ATTRIBUTE_CHANGEABLE); if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) lsilogicR3InitializeConfigurationPagesSpi(pThis); else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) lsilogicR3InitializeConfigurationPagesSas(pThis); else AssertMsgFailed(("Invalid controller type %d\n", pThis->enmCtrlType)); } /** * @callback_method_impl{FNPDMQUEUEDEV, Transmit queue consumer.} */ static DECLCALLBACK(bool) lsilogicR3NotifyQueueConsumer(PPDMDEVINS pDevIns, PPDMQUEUEITEMCORE pItem) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); int rc = VINF_SUCCESS; LogFlowFunc(("pDevIns=%#p pItem=%#p\n", pDevIns, pItem)); rc = SUPSemEventSignal(pThis->pSupDrvSession, pThis->hEvtProcess); AssertRC(rc); return true; } /** * Sets the emulated controller type from a given string. * * @returns VBox status code. * * @param pThis Pointer to the LsiLogic device state. * @param pcszCtrlType The string to use. */ static int lsilogicR3GetCtrlTypeFromString(PLSILOGICSCSI pThis, const char *pcszCtrlType) { int rc = VERR_INVALID_PARAMETER; if (!RTStrCmp(pcszCtrlType, LSILOGICSCSI_PCI_SPI_CTRLNAME)) { pThis->enmCtrlType = LSILOGICCTRLTYPE_SCSI_SPI; rc = VINF_SUCCESS; } else if (!RTStrCmp(pcszCtrlType, LSILOGICSCSI_PCI_SAS_CTRLNAME)) { pThis->enmCtrlType = LSILOGICCTRLTYPE_SCSI_SAS; rc = VINF_SUCCESS; } return rc; } /** * @callback_method_impl{FNIOMIOPORTIN, Legacy ISA port.} */ static DECLCALLBACK(int) lsilogicR3IsaIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); Assert(cb == 1); uint8_t iRegister = pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI ? Port - LSILOGIC_BIOS_IO_PORT : Port - LSILOGIC_SAS_BIOS_IO_PORT; int rc = vboxscsiReadRegister(&pThis->VBoxSCSI, iRegister, pu32); Log2(("%s: pu32=%p:{%.*Rhxs} iRegister=%d rc=%Rrc\n", __FUNCTION__, pu32, 1, pu32, iRegister, rc)); return rc; } /** * Prepares a request from the BIOS. * * @returns VBox status code. * @param pThis Pointer to the LsiLogic device state. */ static int lsilogicR3PrepareBiosScsiRequest(PLSILOGICSCSI pThis) { int rc; PLSILOGICREQ pLsiReq; uint32_t uTargetDevice; rc = RTMemCacheAllocEx(pThis->hTaskCache, (void **)&pLsiReq); AssertMsgRCReturn(rc, ("Getting task from cache failed rc=%Rrc\n", rc), rc); pLsiReq->fBIOS = true; rc = vboxscsiSetupRequest(&pThis->VBoxSCSI, &pLsiReq->PDMScsiRequest, &uTargetDevice); AssertMsgRCReturn(rc, ("Setting up SCSI request failed rc=%Rrc\n", rc), rc); pLsiReq->PDMScsiRequest.pvUser = pLsiReq; if (uTargetDevice < pThis->cDeviceStates) { pLsiReq->pTargetDevice = &pThis->paDeviceStates[uTargetDevice]; if (pLsiReq->pTargetDevice->pDrvBase) { ASMAtomicIncU32(&pLsiReq->pTargetDevice->cOutstandingRequests); rc = pLsiReq->pTargetDevice->pDrvSCSIConnector->pfnSCSIRequestSend(pLsiReq->pTargetDevice->pDrvSCSIConnector, &pLsiReq->PDMScsiRequest); AssertMsgRCReturn(rc, ("Sending request to SCSI layer failed rc=%Rrc\n", rc), rc); return VINF_SUCCESS; } } /* Device is not present. */ AssertMsg(pLsiReq->PDMScsiRequest.pbCDB[0] == SCSI_INQUIRY, ("Device is not present but command is not inquiry\n")); SCSIINQUIRYDATA ScsiInquiryData; memset(&ScsiInquiryData, 0, sizeof(SCSIINQUIRYDATA)); ScsiInquiryData.u5PeripheralDeviceType = SCSI_INQUIRY_DATA_PERIPHERAL_DEVICE_TYPE_UNKNOWN; ScsiInquiryData.u3PeripheralQualifier = SCSI_INQUIRY_DATA_PERIPHERAL_QUALIFIER_NOT_CONNECTED_NOT_SUPPORTED; memcpy(pThis->VBoxSCSI.pbBuf, &ScsiInquiryData, 5); rc = vboxscsiRequestFinished(&pThis->VBoxSCSI, &pLsiReq->PDMScsiRequest, SCSI_STATUS_OK); AssertMsgRCReturn(rc, ("Finishing BIOS SCSI request failed rc=%Rrc\n", rc), rc); RTMemCacheFree(pThis->hTaskCache, pLsiReq); return rc; } /** * @callback_method_impl{FNIOMIOPORTOUT, Legacy ISA port.} */ static DECLCALLBACK(int) lsilogicR3IsaIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); Log2(("#%d %s: pvUser=%#p cb=%d u32=%#x Port=%#x\n", pDevIns->iInstance, __FUNCTION__, pvUser, cb, u32, Port)); Assert(cb == 1); uint8_t iRegister = pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI ? Port - LSILOGIC_BIOS_IO_PORT : Port - LSILOGIC_SAS_BIOS_IO_PORT; int rc = vboxscsiWriteRegister(&pThis->VBoxSCSI, iRegister, (uint8_t)u32); if (rc == VERR_MORE_DATA) { rc = lsilogicR3PrepareBiosScsiRequest(pThis); AssertRC(rc); } else if (RT_FAILURE(rc)) AssertMsgFailed(("Writing BIOS register failed %Rrc\n", rc)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTOUTSTRING, * Port I/O Handler for primary port range OUT string operations.} */ static DECLCALLBACK(int) lsilogicR3IsaIOPortWriteStr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint8_t const *pbSrc, uint32_t *pcTransfers, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); Log2(("#%d %s: pvUser=%#p cb=%d Port=%#x\n", pDevIns->iInstance, __FUNCTION__, pvUser, cb, Port)); uint8_t iRegister = pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI ? Port - LSILOGIC_BIOS_IO_PORT : Port - LSILOGIC_SAS_BIOS_IO_PORT; int rc = vboxscsiWriteString(pDevIns, &pThis->VBoxSCSI, iRegister, pbSrc, pcTransfers, cb); if (rc == VERR_MORE_DATA) { rc = lsilogicR3PrepareBiosScsiRequest(pThis); AssertRC(rc); } else if (RT_FAILURE(rc)) AssertMsgFailed(("Writing BIOS register failed %Rrc\n", rc)); return rc; } /** * @callback_method_impl{FNIOMIOPORTINSTRING, * Port I/O Handler for primary port range IN string operations.} */ static DECLCALLBACK(int) lsilogicR3IsaIOPortReadStr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint8_t *pbDst, uint32_t *pcTransfers, unsigned cb) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); LogFlowFunc(("#%d %s: pvUser=%#p cb=%d Port=%#x\n", pDevIns->iInstance, __FUNCTION__, pvUser, cb, Port)); uint8_t iRegister = pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI ? Port - LSILOGIC_BIOS_IO_PORT : Port - LSILOGIC_SAS_BIOS_IO_PORT; return vboxscsiReadString(pDevIns, &pThis->VBoxSCSI, iRegister, pbDst, pcTransfers, cb); } /** * @callback_method_impl{FNPCIIOREGIONMAP} */ static DECLCALLBACK(int) lsilogicR3Map(PPCIDEVICE pPciDev, /*unsigned*/ int iRegion, RTGCPHYS GCPhysAddress, uint32_t cb, PCIADDRESSSPACE enmType) { PPDMDEVINS pDevIns = pPciDev->pDevIns; PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); int rc = VINF_SUCCESS; const char *pcszCtrl = pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI ? "LsiLogic" : "LsiLogicSas"; const char *pcszDiag = pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI ? "LsiLogicDiag" : "LsiLogicSasDiag"; Log2(("%s: registering area at GCPhysAddr=%RGp cb=%u\n", __FUNCTION__, GCPhysAddress, cb)); AssertMsg( (enmType == PCI_ADDRESS_SPACE_MEM && cb >= LSILOGIC_PCI_SPACE_MEM_SIZE) || (enmType == PCI_ADDRESS_SPACE_IO && cb >= LSILOGIC_PCI_SPACE_IO_SIZE), ("PCI region type and size do not match\n")); if (enmType == PCI_ADDRESS_SPACE_MEM && iRegion == 1) { /* * Non-4-byte read access to LSILOGIC_REG_REPLY_QUEUE may cause real strange behavior * because the data is part of a physical guest address. But some drivers use 1-byte * access to scan for SCSI controllers. So, we simplify our code by telling IOM to * read DWORDs. * * Regarding writes, we couldn't find anything specific in the specs about what should * happen. So far we've ignored unaligned writes and assumed the missing bytes of * byte and word access to be zero. We suspect that IOMMMIO_FLAGS_WRITE_ONLY_DWORD * or IOMMMIO_FLAGS_WRITE_DWORD_ZEROED would be the most appropriate here, but since we * don't have real hw to test one, the old behavior is kept exactly like it used to be. */ /** @todo Check out unaligned writes and non-dword writes on real LsiLogic * hardware. */ rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/, IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_PASSTHRU, lsilogicMMIOWrite, lsilogicMMIORead, pcszCtrl); if (RT_FAILURE(rc)) return rc; if (pThis->fR0Enabled) { rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/, "lsilogicMMIOWrite", "lsilogicMMIORead"); if (RT_FAILURE(rc)) return rc; } if (pThis->fGCEnabled) { rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/, "lsilogicMMIOWrite", "lsilogicMMIORead"); if (RT_FAILURE(rc)) return rc; } pThis->GCPhysMMIOBase = GCPhysAddress; } else if (enmType == PCI_ADDRESS_SPACE_MEM && iRegion == 2) { /* We use the assigned size here, because we currently only support page aligned MMIO ranges. */ rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/, IOMMMIO_FLAGS_READ_PASSTHRU | IOMMMIO_FLAGS_WRITE_PASSTHRU, lsilogicDiagnosticWrite, lsilogicDiagnosticRead, pcszDiag); if (RT_FAILURE(rc)) return rc; if (pThis->fR0Enabled) { rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/, "lsilogicDiagnosticWrite", "lsilogicDiagnosticRead"); if (RT_FAILURE(rc)) return rc; } if (pThis->fGCEnabled) { rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/, "lsilogicDiagnosticWrite", "lsilogicDiagnosticRead"); if (RT_FAILURE(rc)) return rc; } } else if (enmType == PCI_ADDRESS_SPACE_IO) { rc = PDMDevHlpIOPortRegister(pDevIns, (RTIOPORT)GCPhysAddress, LSILOGIC_PCI_SPACE_IO_SIZE, NULL, lsilogicIOPortWrite, lsilogicIOPortRead, NULL, NULL, pcszCtrl); if (RT_FAILURE(rc)) return rc; if (pThis->fR0Enabled) { rc = PDMDevHlpIOPortRegisterR0(pDevIns, (RTIOPORT)GCPhysAddress, LSILOGIC_PCI_SPACE_IO_SIZE, 0, "lsilogicIOPortWrite", "lsilogicIOPortRead", NULL, NULL, pcszCtrl); if (RT_FAILURE(rc)) return rc; } if (pThis->fGCEnabled) { rc = PDMDevHlpIOPortRegisterRC(pDevIns, (RTIOPORT)GCPhysAddress, LSILOGIC_PCI_SPACE_IO_SIZE, 0, "lsilogicIOPortWrite", "lsilogicIOPortRead", NULL, NULL, pcszCtrl); if (RT_FAILURE(rc)) return rc; } pThis->IOPortBase = (RTIOPORT)GCPhysAddress; } else AssertMsgFailed(("Invalid enmType=%d iRegion=%d\n", enmType, iRegion)); return rc; } /** * @callback_method_impl{PFNDBGFHANDLERDEV} */ static DECLCALLBACK(void) lsilogicR3Info(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); bool fVerbose = false; /* * Parse args. */ if (pszArgs) fVerbose = strstr(pszArgs, "verbose") != NULL; /* * Show info. */ pHlp->pfnPrintf(pHlp, "%s#%d: port=%RTiop mmio=%RGp max-devices=%u GC=%RTbool R0=%RTbool\n", pDevIns->pReg->szName, pDevIns->iInstance, pThis->IOPortBase, pThis->GCPhysMMIOBase, pThis->cDeviceStates, pThis->fGCEnabled ? true : false, pThis->fR0Enabled ? true : false); /* * Show general state. */ pHlp->pfnPrintf(pHlp, "enmState=%u\n", pThis->enmState); pHlp->pfnPrintf(pHlp, "enmWhoInit=%u\n", pThis->enmWhoInit); pHlp->pfnPrintf(pHlp, "enmDoorbellState=%d\n", pThis->enmDoorbellState); pHlp->pfnPrintf(pHlp, "fDiagnosticEnabled=%RTbool\n", pThis->fDiagnosticEnabled); pHlp->pfnPrintf(pHlp, "fNotificationSent=%RTbool\n", pThis->fNotificationSent); pHlp->pfnPrintf(pHlp, "fEventNotificationEnabled=%RTbool\n", pThis->fEventNotificationEnabled); pHlp->pfnPrintf(pHlp, "uInterruptMask=%#x\n", pThis->uInterruptMask); pHlp->pfnPrintf(pHlp, "uInterruptStatus=%#x\n", pThis->uInterruptStatus); pHlp->pfnPrintf(pHlp, "u16IOCFaultCode=%#06x\n", pThis->u16IOCFaultCode); pHlp->pfnPrintf(pHlp, "u32HostMFAHighAddr=%#x\n", pThis->u32HostMFAHighAddr); pHlp->pfnPrintf(pHlp, "u32SenseBufferHighAddr=%#x\n", pThis->u32SenseBufferHighAddr); pHlp->pfnPrintf(pHlp, "cMaxDevices=%u\n", pThis->cMaxDevices); pHlp->pfnPrintf(pHlp, "cMaxBuses=%u\n", pThis->cMaxBuses); pHlp->pfnPrintf(pHlp, "cbReplyFrame=%u\n", pThis->cbReplyFrame); pHlp->pfnPrintf(pHlp, "cReplyQueueEntries=%u\n", pThis->cReplyQueueEntries); pHlp->pfnPrintf(pHlp, "cRequestQueueEntries=%u\n", pThis->cRequestQueueEntries); pHlp->pfnPrintf(pHlp, "cPorts=%u\n", pThis->cPorts); /* * Show queue status. */ pHlp->pfnPrintf(pHlp, "uReplyFreeQueueNextEntryFreeWrite=%u\n", pThis->uReplyFreeQueueNextEntryFreeWrite); pHlp->pfnPrintf(pHlp, "uReplyFreeQueueNextAddressRead=%u\n", pThis->uReplyFreeQueueNextAddressRead); pHlp->pfnPrintf(pHlp, "uReplyPostQueueNextEntryFreeWrite=%u\n", pThis->uReplyPostQueueNextEntryFreeWrite); pHlp->pfnPrintf(pHlp, "uReplyPostQueueNextAddressRead=%u\n", pThis->uReplyPostQueueNextAddressRead); pHlp->pfnPrintf(pHlp, "uRequestQueueNextEntryFreeWrite=%u\n", pThis->uRequestQueueNextEntryFreeWrite); pHlp->pfnPrintf(pHlp, "uRequestQueueNextAddressRead=%u\n", pThis->uRequestQueueNextAddressRead); /* * Show queue content if verbose */ if (fVerbose) { for (unsigned i = 0; i < pThis->cReplyQueueEntries; i++) pHlp->pfnPrintf(pHlp, "RFQ[%u]=%#x\n", i, pThis->pReplyFreeQueueBaseR3[i]); pHlp->pfnPrintf(pHlp, "\n"); for (unsigned i = 0; i < pThis->cReplyQueueEntries; i++) pHlp->pfnPrintf(pHlp, "RPQ[%u]=%#x\n", i, pThis->pReplyPostQueueBaseR3[i]); pHlp->pfnPrintf(pHlp, "\n"); for (unsigned i = 0; i < pThis->cRequestQueueEntries; i++) pHlp->pfnPrintf(pHlp, "ReqQ[%u]=%#x\n", i, pThis->pRequestQueueBaseR3[i]); } /* * Print the device status. */ for (unsigned i = 0; i < pThis->cDeviceStates; i++) { PLSILOGICDEVICE pDevice = &pThis->paDeviceStates[i]; pHlp->pfnPrintf(pHlp, "\n"); pHlp->pfnPrintf(pHlp, "Device[%u]: device-attached=%RTbool cOutstandingRequests=%u\n", i, pDevice->pDrvBase != NULL, pDevice->cOutstandingRequests); } } /** * Allocate the queues. * * @returns VBox status code. * * @param pThis Pointer to the LsiLogic device state. */ static int lsilogicR3QueuesAlloc(PLSILOGICSCSI pThis) { PVM pVM = PDMDevHlpGetVM(pThis->pDevInsR3); uint32_t cbQueues; Assert(!pThis->pReplyFreeQueueBaseR3); cbQueues = 2*pThis->cReplyQueueEntries * sizeof(uint32_t); cbQueues += pThis->cRequestQueueEntries * sizeof(uint32_t); int rc = MMHyperAlloc(pVM, cbQueues, 1, MM_TAG_PDM_DEVICE_USER, (void **)&pThis->pReplyFreeQueueBaseR3); if (RT_FAILURE(rc)) return VERR_NO_MEMORY; pThis->pReplyFreeQueueBaseR0 = MMHyperR3ToR0(pVM, (void *)pThis->pReplyFreeQueueBaseR3); pThis->pReplyFreeQueueBaseRC = MMHyperR3ToRC(pVM, (void *)pThis->pReplyFreeQueueBaseR3); pThis->pReplyPostQueueBaseR3 = pThis->pReplyFreeQueueBaseR3 + pThis->cReplyQueueEntries; pThis->pReplyPostQueueBaseR0 = MMHyperR3ToR0(pVM, (void *)pThis->pReplyPostQueueBaseR3); pThis->pReplyPostQueueBaseRC = MMHyperR3ToRC(pVM, (void *)pThis->pReplyPostQueueBaseR3); pThis->pRequestQueueBaseR3 = pThis->pReplyPostQueueBaseR3 + pThis->cReplyQueueEntries; pThis->pRequestQueueBaseR0 = MMHyperR3ToR0(pVM, (void *)pThis->pRequestQueueBaseR3); pThis->pRequestQueueBaseRC = MMHyperR3ToRC(pVM, (void *)pThis->pRequestQueueBaseR3); return VINF_SUCCESS; } /** * Free the hyper memory used or the queues. * * @returns nothing. * * @param pThis Pointer to the LsiLogic device state. */ static void lsilogicR3QueuesFree(PLSILOGICSCSI pThis) { PVM pVM = PDMDevHlpGetVM(pThis->pDevInsR3); int rc = VINF_SUCCESS; AssertPtr(pThis->pReplyFreeQueueBaseR3); rc = MMHyperFree(pVM, (void *)pThis->pReplyFreeQueueBaseR3); AssertRC(rc); pThis->pReplyFreeQueueBaseR3 = NULL; pThis->pReplyPostQueueBaseR3 = NULL; pThis->pRequestQueueBaseR3 = NULL; } /* The worker thread. */ static DECLCALLBACK(int) lsilogicR3Worker(PPDMDEVINS pDevIns, PPDMTHREAD pThread) { PLSILOGICSCSI pThis = (PLSILOGICSCSI)pThread->pvUser; int rc = VINF_SUCCESS; if (pThread->enmState == PDMTHREADSTATE_INITIALIZING) return VINF_SUCCESS; while (pThread->enmState == PDMTHREADSTATE_RUNNING) { ASMAtomicWriteBool(&pThis->fWrkThreadSleeping, true); bool fNotificationSent = ASMAtomicXchgBool(&pThis->fNotificationSent, false); if (!fNotificationSent) { Assert(ASMAtomicReadBool(&pThis->fWrkThreadSleeping)); rc = SUPSemEventWaitNoResume(pThis->pSupDrvSession, pThis->hEvtProcess, RT_INDEFINITE_WAIT); AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc); if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING)) break; LogFlowFunc(("Woken up with rc=%Rrc\n", rc)); ASMAtomicWriteBool(&pThis->fNotificationSent, false); } ASMAtomicWriteBool(&pThis->fWrkThreadSleeping, false); /* Only process request which arrived before we received the notification. */ uint32_t uRequestQueueNextEntryWrite = ASMAtomicReadU32(&pThis->uRequestQueueNextEntryFreeWrite); /* Go through the messages now and process them. */ while ( RT_LIKELY(pThis->enmState == LSILOGICSTATE_OPERATIONAL) && (pThis->uRequestQueueNextAddressRead != uRequestQueueNextEntryWrite)) { uint32_t u32RequestMessageFrameDesc = pThis->CTX_SUFF(pRequestQueueBase)[pThis->uRequestQueueNextAddressRead]; RTGCPHYS GCPhysMessageFrameAddr = LSILOGIC_RTGCPHYS_FROM_U32(pThis->u32HostMFAHighAddr, (u32RequestMessageFrameDesc & ~0x07)); PLSILOGICREQ pLsiReq; /* Get new task state. */ rc = RTMemCacheAllocEx(pThis->hTaskCache, (void **)&pLsiReq); AssertRC(rc); pLsiReq->GCPhysMessageFrameAddr = GCPhysMessageFrameAddr; /* Read the message header from the guest first. */ PDMDevHlpPhysRead(pDevIns, GCPhysMessageFrameAddr, &pLsiReq->GuestRequest, sizeof(MptMessageHdr)); /* Determine the size of the request. */ uint32_t cbRequest = 0; switch (pLsiReq->GuestRequest.Header.u8Function) { case MPT_MESSAGE_HDR_FUNCTION_SCSI_IO_REQUEST: cbRequest = sizeof(MptSCSIIORequest); break; case MPT_MESSAGE_HDR_FUNCTION_SCSI_TASK_MGMT: cbRequest = sizeof(MptSCSITaskManagementRequest); break; case MPT_MESSAGE_HDR_FUNCTION_IOC_INIT: cbRequest = sizeof(MptIOCInitRequest); break; case MPT_MESSAGE_HDR_FUNCTION_IOC_FACTS: cbRequest = sizeof(MptIOCFactsRequest); break; case MPT_MESSAGE_HDR_FUNCTION_CONFIG: cbRequest = sizeof(MptConfigurationRequest); break; case MPT_MESSAGE_HDR_FUNCTION_PORT_FACTS: cbRequest = sizeof(MptPortFactsRequest); break; case MPT_MESSAGE_HDR_FUNCTION_PORT_ENABLE: cbRequest = sizeof(MptPortEnableRequest); break; case MPT_MESSAGE_HDR_FUNCTION_EVENT_NOTIFICATION: cbRequest = sizeof(MptEventNotificationRequest); break; case MPT_MESSAGE_HDR_FUNCTION_EVENT_ACK: AssertMsgFailed(("todo\n")); //cbRequest = sizeof(MptEventAckRequest); break; case MPT_MESSAGE_HDR_FUNCTION_FW_DOWNLOAD: cbRequest = sizeof(MptFWDownloadRequest); break; case MPT_MESSAGE_HDR_FUNCTION_FW_UPLOAD: cbRequest = sizeof(MptFWUploadRequest); break; default: AssertMsgFailed(("Unknown function issued %u\n", pLsiReq->GuestRequest.Header.u8Function)); lsilogicSetIOCFaultCode(pThis, LSILOGIC_IOCSTATUS_INVALID_FUNCTION); } if (cbRequest != 0) { /* Read the complete message frame from guest memory now. */ PDMDevHlpPhysRead(pDevIns, GCPhysMessageFrameAddr, &pLsiReq->GuestRequest, cbRequest); /* Handle SCSI I/O requests now. */ if (pLsiReq->GuestRequest.Header.u8Function == MPT_MESSAGE_HDR_FUNCTION_SCSI_IO_REQUEST) { rc = lsilogicR3ProcessSCSIIORequest(pThis, pLsiReq); AssertRC(rc); } else { MptReplyUnion Reply; rc = lsilogicR3ProcessMessageRequest(pThis, &pLsiReq->GuestRequest.Header, &Reply); AssertRC(rc); RTMemCacheFree(pThis->hTaskCache, pLsiReq); } pThis->uRequestQueueNextAddressRead++; pThis->uRequestQueueNextAddressRead %= pThis->cRequestQueueEntries; } } /* While request frames available. */ } /* While running */ return VINF_SUCCESS; } /** * Unblock the worker thread so it can respond to a state change. * * @returns VBox status code. * @param pDevIns The pcnet device instance. * @param pThread The send thread. */ static DECLCALLBACK(int) lsilogicR3WorkerWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); return SUPSemEventSignal(pThis->pSupDrvSession, pThis->hEvtProcess); } /** * Kicks the controller to process pending tasks after the VM was resumed * or loaded from a saved state. * * @returns nothing. * @param pThis Pointer to the LsiLogic device state. */ static void lsilogicR3Kick(PLSILOGICSCSI pThis) { if (pThis->fNotificationSent) { /* Send a notifier to the PDM queue that there are pending requests. */ PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pThis->CTX_SUFF(pNotificationQueue)); AssertMsg(pItem, ("Allocating item for queue failed\n")); PDMQueueInsert(pThis->CTX_SUFF(pNotificationQueue), (PPDMQUEUEITEMCORE)pItem); } else if (pThis->VBoxSCSI.fBusy) { /* The BIOS had a request active when we got suspended. Resume it. */ int rc = lsilogicR3PrepareBiosScsiRequest(pThis); AssertRC(rc); } } /* * Saved state. */ /** * @callback_method_impl{FNSSMDEVLIVEEXEC} */ static DECLCALLBACK(int) lsilogicR3LiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); SSMR3PutU32(pSSM, pThis->enmCtrlType); SSMR3PutU32(pSSM, pThis->cDeviceStates); SSMR3PutU32(pSSM, pThis->cPorts); /* Save the device config. */ for (unsigned i = 0; i < pThis->cDeviceStates; i++) SSMR3PutBool(pSSM, pThis->paDeviceStates[i].pDrvBase != NULL); return VINF_SSM_DONT_CALL_AGAIN; } /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) lsilogicR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); /* Every device first. */ lsilogicR3LiveExec(pDevIns, pSSM, SSM_PASS_FINAL); for (unsigned i = 0; i < pThis->cDeviceStates; i++) { PLSILOGICDEVICE pDevice = &pThis->paDeviceStates[i]; AssertMsg(!pDevice->cOutstandingRequests, ("There are still outstanding requests on this device\n")); SSMR3PutU32(pSSM, pDevice->cOutstandingRequests); } /* Now the main device state. */ SSMR3PutU32 (pSSM, pThis->enmState); SSMR3PutU32 (pSSM, pThis->enmWhoInit); SSMR3PutU32 (pSSM, pThis->enmDoorbellState); SSMR3PutBool (pSSM, pThis->fDiagnosticEnabled); SSMR3PutBool (pSSM, pThis->fNotificationSent); SSMR3PutBool (pSSM, pThis->fEventNotificationEnabled); SSMR3PutU32 (pSSM, pThis->uInterruptMask); SSMR3PutU32 (pSSM, pThis->uInterruptStatus); for (unsigned i = 0; i < RT_ELEMENTS(pThis->aMessage); i++) SSMR3PutU32 (pSSM, pThis->aMessage[i]); SSMR3PutU32 (pSSM, pThis->iMessage); SSMR3PutU32 (pSSM, pThis->cMessage); SSMR3PutMem (pSSM, &pThis->ReplyBuffer, sizeof(pThis->ReplyBuffer)); SSMR3PutU32 (pSSM, pThis->uNextReplyEntryRead); SSMR3PutU32 (pSSM, pThis->cReplySize); SSMR3PutU16 (pSSM, pThis->u16IOCFaultCode); SSMR3PutU32 (pSSM, pThis->u32HostMFAHighAddr); SSMR3PutU32 (pSSM, pThis->u32SenseBufferHighAddr); SSMR3PutU8 (pSSM, pThis->cMaxDevices); SSMR3PutU8 (pSSM, pThis->cMaxBuses); SSMR3PutU16 (pSSM, pThis->cbReplyFrame); SSMR3PutU32 (pSSM, pThis->iDiagnosticAccess); SSMR3PutU32 (pSSM, pThis->cReplyQueueEntries); SSMR3PutU32 (pSSM, pThis->cRequestQueueEntries); SSMR3PutU32 (pSSM, pThis->uReplyFreeQueueNextEntryFreeWrite); SSMR3PutU32 (pSSM, pThis->uReplyFreeQueueNextAddressRead); SSMR3PutU32 (pSSM, pThis->uReplyPostQueueNextEntryFreeWrite); SSMR3PutU32 (pSSM, pThis->uReplyPostQueueNextAddressRead); SSMR3PutU32 (pSSM, pThis->uRequestQueueNextEntryFreeWrite); SSMR3PutU32 (pSSM, pThis->uRequestQueueNextAddressRead); for (unsigned i = 0; i < pThis->cReplyQueueEntries; i++) SSMR3PutU32(pSSM, pThis->pReplyFreeQueueBaseR3[i]); for (unsigned i = 0; i < pThis->cReplyQueueEntries; i++) SSMR3PutU32(pSSM, pThis->pReplyPostQueueBaseR3[i]); for (unsigned i = 0; i < pThis->cRequestQueueEntries; i++) SSMR3PutU32(pSSM, pThis->pRequestQueueBaseR3[i]); SSMR3PutU16 (pSSM, pThis->u16NextHandle); /* Save diagnostic memory register and data regions. */ SSMR3PutU32 (pSSM, pThis->u32DiagMemAddr); SSMR3PutU32 (pSSM, lsilogicR3MemRegionsCount(pThis)); PLSILOGICMEMREGN pIt = NULL; RTListForEach(&pThis->ListMemRegns, pIt, LSILOGICMEMREGN, NodeList) { SSMR3PutU32(pSSM, pIt->u32AddrStart); SSMR3PutU32(pSSM, pIt->u32AddrEnd); SSMR3PutMem(pSSM, &pIt->au32Data[0], (pIt->u32AddrEnd - pIt->u32AddrStart + 1) * sizeof(uint32_t)); } PMptConfigurationPagesSupported pPages = pThis->pConfigurationPages; SSMR3PutMem (pSSM, &pPages->ManufacturingPage0, sizeof(MptConfigurationPageManufacturing0)); SSMR3PutMem (pSSM, &pPages->ManufacturingPage1, sizeof(MptConfigurationPageManufacturing1)); SSMR3PutMem (pSSM, &pPages->ManufacturingPage2, sizeof(MptConfigurationPageManufacturing2)); SSMR3PutMem (pSSM, &pPages->ManufacturingPage3, sizeof(MptConfigurationPageManufacturing3)); SSMR3PutMem (pSSM, &pPages->ManufacturingPage4, sizeof(MptConfigurationPageManufacturing4)); SSMR3PutMem (pSSM, &pPages->ManufacturingPage5, sizeof(MptConfigurationPageManufacturing5)); SSMR3PutMem (pSSM, &pPages->ManufacturingPage6, sizeof(MptConfigurationPageManufacturing6)); SSMR3PutMem (pSSM, &pPages->ManufacturingPage8, sizeof(MptConfigurationPageManufacturing8)); SSMR3PutMem (pSSM, &pPages->ManufacturingPage9, sizeof(MptConfigurationPageManufacturing9)); SSMR3PutMem (pSSM, &pPages->ManufacturingPage10, sizeof(MptConfigurationPageManufacturing10)); SSMR3PutMem (pSSM, &pPages->IOUnitPage0, sizeof(MptConfigurationPageIOUnit0)); SSMR3PutMem (pSSM, &pPages->IOUnitPage1, sizeof(MptConfigurationPageIOUnit1)); SSMR3PutMem (pSSM, &pPages->IOUnitPage2, sizeof(MptConfigurationPageIOUnit2)); SSMR3PutMem (pSSM, &pPages->IOUnitPage3, sizeof(MptConfigurationPageIOUnit3)); SSMR3PutMem (pSSM, &pPages->IOUnitPage4, sizeof(MptConfigurationPageIOUnit4)); SSMR3PutMem (pSSM, &pPages->IOCPage0, sizeof(MptConfigurationPageIOC0)); SSMR3PutMem (pSSM, &pPages->IOCPage1, sizeof(MptConfigurationPageIOC1)); SSMR3PutMem (pSSM, &pPages->IOCPage2, sizeof(MptConfigurationPageIOC2)); SSMR3PutMem (pSSM, &pPages->IOCPage3, sizeof(MptConfigurationPageIOC3)); SSMR3PutMem (pSSM, &pPages->IOCPage4, sizeof(MptConfigurationPageIOC4)); SSMR3PutMem (pSSM, &pPages->IOCPage6, sizeof(MptConfigurationPageIOC6)); SSMR3PutMem (pSSM, &pPages->BIOSPage1, sizeof(MptConfigurationPageBIOS1)); SSMR3PutMem (pSSM, &pPages->BIOSPage2, sizeof(MptConfigurationPageBIOS2)); SSMR3PutMem (pSSM, &pPages->BIOSPage4, sizeof(MptConfigurationPageBIOS4)); /* Device dependent pages */ if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) { PMptConfigurationPagesSpi pSpiPages = &pPages->u.SpiPages; SSMR3PutMem(pSSM, &pSpiPages->aPortPages[0].SCSISPIPortPage0, sizeof(MptConfigurationPageSCSISPIPort0)); SSMR3PutMem(pSSM, &pSpiPages->aPortPages[0].SCSISPIPortPage1, sizeof(MptConfigurationPageSCSISPIPort1)); SSMR3PutMem(pSSM, &pSpiPages->aPortPages[0].SCSISPIPortPage2, sizeof(MptConfigurationPageSCSISPIPort2)); for (unsigned i = 0; i < RT_ELEMENTS(pSpiPages->aBuses[0].aDevicePages); i++) { SSMR3PutMem(pSSM, &pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage0, sizeof(MptConfigurationPageSCSISPIDevice0)); SSMR3PutMem(pSSM, &pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage1, sizeof(MptConfigurationPageSCSISPIDevice1)); SSMR3PutMem(pSSM, &pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage2, sizeof(MptConfigurationPageSCSISPIDevice2)); SSMR3PutMem(pSSM, &pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage3, sizeof(MptConfigurationPageSCSISPIDevice3)); } } else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { PMptConfigurationPagesSas pSasPages = &pPages->u.SasPages; SSMR3PutU32(pSSM, pSasPages->cbManufacturingPage7); SSMR3PutU32(pSSM, pSasPages->cbSASIOUnitPage0); SSMR3PutU32(pSSM, pSasPages->cbSASIOUnitPage1); SSMR3PutMem(pSSM, pSasPages->pManufacturingPage7, pSasPages->cbManufacturingPage7); SSMR3PutMem(pSSM, pSasPages->pSASIOUnitPage0, pSasPages->cbSASIOUnitPage0); SSMR3PutMem(pSSM, pSasPages->pSASIOUnitPage1, pSasPages->cbSASIOUnitPage1); SSMR3PutMem(pSSM, &pSasPages->SASIOUnitPage2, sizeof(MptConfigurationPageSASIOUnit2)); SSMR3PutMem(pSSM, &pSasPages->SASIOUnitPage3, sizeof(MptConfigurationPageSASIOUnit3)); SSMR3PutU32(pSSM, pSasPages->cPHYs); for (unsigned i = 0; i < pSasPages->cPHYs; i++) { SSMR3PutMem(pSSM, &pSasPages->paPHYs[i].SASPHYPage0, sizeof(MptConfigurationPageSASPHY0)); SSMR3PutMem(pSSM, &pSasPages->paPHYs[i].SASPHYPage1, sizeof(MptConfigurationPageSASPHY1)); } /* The number of devices first. */ SSMR3PutU32(pSSM, pSasPages->cDevices); PMptSASDevice pCurr = pSasPages->pSASDeviceHead; while (pCurr) { SSMR3PutMem(pSSM, &pCurr->SASDevicePage0, sizeof(MptConfigurationPageSASDevice0)); SSMR3PutMem(pSSM, &pCurr->SASDevicePage1, sizeof(MptConfigurationPageSASDevice1)); SSMR3PutMem(pSSM, &pCurr->SASDevicePage2, sizeof(MptConfigurationPageSASDevice2)); pCurr = pCurr->pNext; } } else AssertMsgFailed(("Invalid controller type %d\n", pThis->enmCtrlType)); vboxscsiR3SaveExec(&pThis->VBoxSCSI, pSSM); return SSMR3PutU32(pSSM, ~0); } /** * @callback_method_impl{FNSSMDEVLOADDONE} */ static DECLCALLBACK(int) lsilogicR3LoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); lsilogicR3Kick(pThis); return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) lsilogicR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); int rc; if ( uVersion != LSILOGIC_SAVED_STATE_VERSION && uVersion != LSILOGIC_SAVED_STATE_VERSION_PRE_DIAG_MEM && uVersion != LSILOGIC_SAVED_STATE_VERSION_BOOL_DOORBELL && uVersion != LSILOGIC_SAVED_STATE_VERSION_PRE_SAS && uVersion != LSILOGIC_SAVED_STATE_VERSION_VBOX_30) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; /* device config */ if (uVersion > LSILOGIC_SAVED_STATE_VERSION_PRE_SAS) { LSILOGICCTRLTYPE enmCtrlType; uint32_t cDeviceStates, cPorts; rc = SSMR3GetU32(pSSM, (uint32_t *)&enmCtrlType); AssertRCReturn(rc, rc); rc = SSMR3GetU32(pSSM, &cDeviceStates); AssertRCReturn(rc, rc); rc = SSMR3GetU32(pSSM, &cPorts); AssertRCReturn(rc, rc); if (enmCtrlType != pThis->enmCtrlType) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Target config mismatch (Controller type): config=%d state=%d"), pThis->enmCtrlType, enmCtrlType); if (cDeviceStates != pThis->cDeviceStates) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Target config mismatch (Device states): config=%u state=%u"), pThis->cDeviceStates, cDeviceStates); if (cPorts != pThis->cPorts) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Target config mismatch (Ports): config=%u state=%u"), pThis->cPorts, cPorts); } if (uVersion > LSILOGIC_SAVED_STATE_VERSION_VBOX_30) { for (unsigned i = 0; i < pThis->cDeviceStates; i++) { bool fPresent; rc = SSMR3GetBool(pSSM, &fPresent); AssertRCReturn(rc, rc); if (fPresent != (pThis->paDeviceStates[i].pDrvBase != NULL)) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Target %u config mismatch: config=%RTbool state=%RTbool"), i, pThis->paDeviceStates[i].pDrvBase != NULL, fPresent); } } if (uPass != SSM_PASS_FINAL) return VINF_SUCCESS; /* Every device first. */ for (unsigned i = 0; i < pThis->cDeviceStates; i++) { PLSILOGICDEVICE pDevice = &pThis->paDeviceStates[i]; AssertMsg(!pDevice->cOutstandingRequests, ("There are still outstanding requests on this device\n")); SSMR3GetU32(pSSM, (uint32_t *)&pDevice->cOutstandingRequests); } /* Now the main device state. */ SSMR3GetU32 (pSSM, (uint32_t *)&pThis->enmState); SSMR3GetU32 (pSSM, (uint32_t *)&pThis->enmWhoInit); if (uVersion <= LSILOGIC_SAVED_STATE_VERSION_BOOL_DOORBELL) { bool fDoorbellInProgress = false; /* * The doorbell status flag distinguishes only between * doorbell not in use or a Function handshake is currently in progress. */ SSMR3GetBool (pSSM, &fDoorbellInProgress); if (fDoorbellInProgress) pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_FN_HANDSHAKE; else pThis->enmDoorbellState = LSILOGICDOORBELLSTATE_NOT_IN_USE; } else SSMR3GetU32(pSSM, (uint32_t *)&pThis->enmDoorbellState); SSMR3GetBool (pSSM, &pThis->fDiagnosticEnabled); SSMR3GetBool (pSSM, &pThis->fNotificationSent); SSMR3GetBool (pSSM, &pThis->fEventNotificationEnabled); SSMR3GetU32 (pSSM, (uint32_t *)&pThis->uInterruptMask); SSMR3GetU32 (pSSM, (uint32_t *)&pThis->uInterruptStatus); for (unsigned i = 0; i < RT_ELEMENTS(pThis->aMessage); i++) SSMR3GetU32 (pSSM, &pThis->aMessage[i]); SSMR3GetU32 (pSSM, &pThis->iMessage); SSMR3GetU32 (pSSM, &pThis->cMessage); SSMR3GetMem (pSSM, &pThis->ReplyBuffer, sizeof(pThis->ReplyBuffer)); SSMR3GetU32 (pSSM, &pThis->uNextReplyEntryRead); SSMR3GetU32 (pSSM, &pThis->cReplySize); SSMR3GetU16 (pSSM, &pThis->u16IOCFaultCode); SSMR3GetU32 (pSSM, &pThis->u32HostMFAHighAddr); SSMR3GetU32 (pSSM, &pThis->u32SenseBufferHighAddr); SSMR3GetU8 (pSSM, &pThis->cMaxDevices); SSMR3GetU8 (pSSM, &pThis->cMaxBuses); SSMR3GetU16 (pSSM, &pThis->cbReplyFrame); SSMR3GetU32 (pSSM, &pThis->iDiagnosticAccess); uint32_t cReplyQueueEntries, cRequestQueueEntries; SSMR3GetU32 (pSSM, &cReplyQueueEntries); SSMR3GetU32 (pSSM, &cRequestQueueEntries); if ( cReplyQueueEntries != pThis->cReplyQueueEntries || cRequestQueueEntries != pThis->cRequestQueueEntries) { LogFlow(("Reallocating queues cReplyQueueEntries=%u cRequestQueuEntries=%u\n", cReplyQueueEntries, cRequestQueueEntries)); lsilogicR3QueuesFree(pThis); pThis->cReplyQueueEntries = cReplyQueueEntries; pThis->cRequestQueueEntries = cRequestQueueEntries; rc = lsilogicR3QueuesAlloc(pThis); if (RT_FAILURE(rc)) return rc; } SSMR3GetU32 (pSSM, (uint32_t *)&pThis->uReplyFreeQueueNextEntryFreeWrite); SSMR3GetU32 (pSSM, (uint32_t *)&pThis->uReplyFreeQueueNextAddressRead); SSMR3GetU32 (pSSM, (uint32_t *)&pThis->uReplyPostQueueNextEntryFreeWrite); SSMR3GetU32 (pSSM, (uint32_t *)&pThis->uReplyPostQueueNextAddressRead); SSMR3GetU32 (pSSM, (uint32_t *)&pThis->uRequestQueueNextEntryFreeWrite); SSMR3GetU32 (pSSM, (uint32_t *)&pThis->uRequestQueueNextAddressRead); PMptConfigurationPagesSupported pPages = pThis->pConfigurationPages; if (uVersion <= LSILOGIC_SAVED_STATE_VERSION_PRE_SAS) { PMptConfigurationPagesSpi pSpiPages = &pPages->u.SpiPages; MptConfigurationPagesSupported_SSM_V2 ConfigPagesV2; if (pThis->enmCtrlType != LSILOGICCTRLTYPE_SCSI_SPI) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch: Expected SPI SCSI controller")); SSMR3GetMem(pSSM, &ConfigPagesV2, sizeof(MptConfigurationPagesSupported_SSM_V2)); pPages->ManufacturingPage0 = ConfigPagesV2.ManufacturingPage0; pPages->ManufacturingPage1 = ConfigPagesV2.ManufacturingPage1; pPages->ManufacturingPage2 = ConfigPagesV2.ManufacturingPage2; pPages->ManufacturingPage3 = ConfigPagesV2.ManufacturingPage3; pPages->ManufacturingPage4 = ConfigPagesV2.ManufacturingPage4; pPages->IOUnitPage0 = ConfigPagesV2.IOUnitPage0; pPages->IOUnitPage1 = ConfigPagesV2.IOUnitPage1; pPages->IOUnitPage2 = ConfigPagesV2.IOUnitPage2; pPages->IOUnitPage3 = ConfigPagesV2.IOUnitPage3; pPages->IOCPage0 = ConfigPagesV2.IOCPage0; pPages->IOCPage1 = ConfigPagesV2.IOCPage1; pPages->IOCPage2 = ConfigPagesV2.IOCPage2; pPages->IOCPage3 = ConfigPagesV2.IOCPage3; pPages->IOCPage4 = ConfigPagesV2.IOCPage4; pPages->IOCPage6 = ConfigPagesV2.IOCPage6; pSpiPages->aPortPages[0].SCSISPIPortPage0 = ConfigPagesV2.aPortPages[0].SCSISPIPortPage0; pSpiPages->aPortPages[0].SCSISPIPortPage1 = ConfigPagesV2.aPortPages[0].SCSISPIPortPage1; pSpiPages->aPortPages[0].SCSISPIPortPage2 = ConfigPagesV2.aPortPages[0].SCSISPIPortPage2; for (unsigned i = 0; i < RT_ELEMENTS(pPages->u.SpiPages.aBuses[0].aDevicePages); i++) { pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage0 = ConfigPagesV2.aBuses[0].aDevicePages[i].SCSISPIDevicePage0; pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage1 = ConfigPagesV2.aBuses[0].aDevicePages[i].SCSISPIDevicePage1; pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage2 = ConfigPagesV2.aBuses[0].aDevicePages[i].SCSISPIDevicePage2; pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage3 = ConfigPagesV2.aBuses[0].aDevicePages[i].SCSISPIDevicePage3; } } else { /* Queue content */ for (unsigned i = 0; i < pThis->cReplyQueueEntries; i++) SSMR3GetU32(pSSM, (uint32_t *)&pThis->pReplyFreeQueueBaseR3[i]); for (unsigned i = 0; i < pThis->cReplyQueueEntries; i++) SSMR3GetU32(pSSM, (uint32_t *)&pThis->pReplyPostQueueBaseR3[i]); for (unsigned i = 0; i < pThis->cRequestQueueEntries; i++) SSMR3GetU32(pSSM, (uint32_t *)&pThis->pRequestQueueBaseR3[i]); SSMR3GetU16(pSSM, &pThis->u16NextHandle); if (uVersion > LSILOGIC_SAVED_STATE_VERSION_PRE_DIAG_MEM) { uint32_t cMemRegions = 0; /* Save diagnostic memory register and data regions. */ SSMR3GetU32 (pSSM, &pThis->u32DiagMemAddr); SSMR3GetU32 (pSSM, &cMemRegions); while (cMemRegions) { uint32_t u32AddrStart = 0; uint32_t u32AddrEnd = 0; uint32_t cRegion = 0; PLSILOGICMEMREGN pRegion = NULL; SSMR3GetU32(pSSM, &u32AddrStart); SSMR3GetU32(pSSM, &u32AddrEnd); cRegion = u32AddrEnd - u32AddrStart + 1; pRegion = (PLSILOGICMEMREGN)RTMemAllocZ(RT_OFFSETOF(LSILOGICMEMREGN, au32Data[cRegion])); if (pRegion) { pRegion->u32AddrStart = u32AddrStart; pRegion->u32AddrEnd = u32AddrEnd; SSMR3GetMem(pSSM, &pRegion->au32Data[0], cRegion * sizeof(uint32_t)); lsilogicR3MemRegionInsert(pThis, pRegion); pThis->cbMemRegns += cRegion * sizeof(uint32_t); } else { /* Leave a log message but continue. */ LogRel(("LsiLogic: Out of memory while restoring the state, might not work as expected\n")); SSMR3Skip(pSSM, cRegion * sizeof(uint32_t)); } cMemRegions--; } } /* Configuration pages */ SSMR3GetMem(pSSM, &pPages->ManufacturingPage0, sizeof(MptConfigurationPageManufacturing0)); SSMR3GetMem(pSSM, &pPages->ManufacturingPage1, sizeof(MptConfigurationPageManufacturing1)); SSMR3GetMem(pSSM, &pPages->ManufacturingPage2, sizeof(MptConfigurationPageManufacturing2)); SSMR3GetMem(pSSM, &pPages->ManufacturingPage3, sizeof(MptConfigurationPageManufacturing3)); SSMR3GetMem(pSSM, &pPages->ManufacturingPage4, sizeof(MptConfigurationPageManufacturing4)); SSMR3GetMem(pSSM, &pPages->ManufacturingPage5, sizeof(MptConfigurationPageManufacturing5)); SSMR3GetMem(pSSM, &pPages->ManufacturingPage6, sizeof(MptConfigurationPageManufacturing6)); SSMR3GetMem(pSSM, &pPages->ManufacturingPage8, sizeof(MptConfigurationPageManufacturing8)); SSMR3GetMem(pSSM, &pPages->ManufacturingPage9, sizeof(MptConfigurationPageManufacturing9)); SSMR3GetMem(pSSM, &pPages->ManufacturingPage10, sizeof(MptConfigurationPageManufacturing10)); SSMR3GetMem(pSSM, &pPages->IOUnitPage0, sizeof(MptConfigurationPageIOUnit0)); SSMR3GetMem(pSSM, &pPages->IOUnitPage1, sizeof(MptConfigurationPageIOUnit1)); SSMR3GetMem(pSSM, &pPages->IOUnitPage2, sizeof(MptConfigurationPageIOUnit2)); SSMR3GetMem(pSSM, &pPages->IOUnitPage3, sizeof(MptConfigurationPageIOUnit3)); SSMR3GetMem(pSSM, &pPages->IOUnitPage4, sizeof(MptConfigurationPageIOUnit4)); SSMR3GetMem(pSSM, &pPages->IOCPage0, sizeof(MptConfigurationPageIOC0)); SSMR3GetMem(pSSM, &pPages->IOCPage1, sizeof(MptConfigurationPageIOC1)); SSMR3GetMem(pSSM, &pPages->IOCPage2, sizeof(MptConfigurationPageIOC2)); SSMR3GetMem(pSSM, &pPages->IOCPage3, sizeof(MptConfigurationPageIOC3)); SSMR3GetMem(pSSM, &pPages->IOCPage4, sizeof(MptConfigurationPageIOC4)); SSMR3GetMem(pSSM, &pPages->IOCPage6, sizeof(MptConfigurationPageIOC6)); SSMR3GetMem(pSSM, &pPages->BIOSPage1, sizeof(MptConfigurationPageBIOS1)); SSMR3GetMem(pSSM, &pPages->BIOSPage2, sizeof(MptConfigurationPageBIOS2)); SSMR3GetMem(pSSM, &pPages->BIOSPage4, sizeof(MptConfigurationPageBIOS4)); /* Device dependent pages */ if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) { PMptConfigurationPagesSpi pSpiPages = &pPages->u.SpiPages; SSMR3GetMem(pSSM, &pSpiPages->aPortPages[0].SCSISPIPortPage0, sizeof(MptConfigurationPageSCSISPIPort0)); SSMR3GetMem(pSSM, &pSpiPages->aPortPages[0].SCSISPIPortPage1, sizeof(MptConfigurationPageSCSISPIPort1)); SSMR3GetMem(pSSM, &pSpiPages->aPortPages[0].SCSISPIPortPage2, sizeof(MptConfigurationPageSCSISPIPort2)); for (unsigned i = 0; i < RT_ELEMENTS(pSpiPages->aBuses[0].aDevicePages); i++) { SSMR3GetMem(pSSM, &pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage0, sizeof(MptConfigurationPageSCSISPIDevice0)); SSMR3GetMem(pSSM, &pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage1, sizeof(MptConfigurationPageSCSISPIDevice1)); SSMR3GetMem(pSSM, &pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage2, sizeof(MptConfigurationPageSCSISPIDevice2)); SSMR3GetMem(pSSM, &pSpiPages->aBuses[0].aDevicePages[i].SCSISPIDevicePage3, sizeof(MptConfigurationPageSCSISPIDevice3)); } } else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { uint32_t cbPage0, cbPage1, cPHYs, cbManufacturingPage7; PMptConfigurationPagesSas pSasPages = &pPages->u.SasPages; SSMR3GetU32(pSSM, &cbManufacturingPage7); SSMR3GetU32(pSSM, &cbPage0); SSMR3GetU32(pSSM, &cbPage1); if ( (cbPage0 != pSasPages->cbSASIOUnitPage0) || (cbPage1 != pSasPages->cbSASIOUnitPage1) || (cbManufacturingPage7 != pSasPages->cbManufacturingPage7)) return VERR_SSM_LOAD_CONFIG_MISMATCH; AssertPtr(pSasPages->pManufacturingPage7); AssertPtr(pSasPages->pSASIOUnitPage0); AssertPtr(pSasPages->pSASIOUnitPage1); SSMR3GetMem(pSSM, pSasPages->pManufacturingPage7, pSasPages->cbManufacturingPage7); SSMR3GetMem(pSSM, pSasPages->pSASIOUnitPage0, pSasPages->cbSASIOUnitPage0); SSMR3GetMem(pSSM, pSasPages->pSASIOUnitPage1, pSasPages->cbSASIOUnitPage1); SSMR3GetMem(pSSM, &pSasPages->SASIOUnitPage2, sizeof(MptConfigurationPageSASIOUnit2)); SSMR3GetMem(pSSM, &pSasPages->SASIOUnitPage3, sizeof(MptConfigurationPageSASIOUnit3)); SSMR3GetU32(pSSM, &cPHYs); if (cPHYs != pSasPages->cPHYs) return VERR_SSM_LOAD_CONFIG_MISMATCH; AssertPtr(pSasPages->paPHYs); for (unsigned i = 0; i < pSasPages->cPHYs; i++) { SSMR3GetMem(pSSM, &pSasPages->paPHYs[i].SASPHYPage0, sizeof(MptConfigurationPageSASPHY0)); SSMR3GetMem(pSSM, &pSasPages->paPHYs[i].SASPHYPage1, sizeof(MptConfigurationPageSASPHY1)); } /* The number of devices first. */ SSMR3GetU32(pSSM, &pSasPages->cDevices); PMptSASDevice pCurr = pSasPages->pSASDeviceHead; for (unsigned i = 0; i < pSasPages->cDevices; i++) { SSMR3GetMem(pSSM, &pCurr->SASDevicePage0, sizeof(MptConfigurationPageSASDevice0)); SSMR3GetMem(pSSM, &pCurr->SASDevicePage1, sizeof(MptConfigurationPageSASDevice1)); SSMR3GetMem(pSSM, &pCurr->SASDevicePage2, sizeof(MptConfigurationPageSASDevice2)); pCurr = pCurr->pNext; } Assert(!pCurr); } else AssertMsgFailed(("Invalid controller type %d\n", pThis->enmCtrlType)); } rc = vboxscsiR3LoadExec(&pThis->VBoxSCSI, pSSM); if (RT_FAILURE(rc)) { LogRel(("LsiLogic: Failed to restore BIOS state: %Rrc.\n", rc)); return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic: Failed to restore BIOS state\n")); } uint32_t u32; rc = SSMR3GetU32(pSSM, &u32); if (RT_FAILURE(rc)) return rc; AssertMsgReturn(u32 == ~0U, ("%#x\n", u32), VERR_SSM_DATA_UNIT_FORMAT_CHANGED); return VINF_SUCCESS; } /* * The device level IBASE and LED interfaces. */ /** * @interface_method_impl{PDMILEDPORTS,pfnQueryInterface, For a SCSI device.} * * @remarks Called by the scsi driver, proxying the main calls. */ static DECLCALLBACK(int) lsilogicR3DeviceQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed) { PLSILOGICDEVICE pDevice = RT_FROM_MEMBER(pInterface, LSILOGICDEVICE, ILed); if (iLUN == 0) { *ppLed = &pDevice->Led; Assert((*ppLed)->u32Magic == PDMLED_MAGIC); return VINF_SUCCESS; } return VERR_PDM_LUN_NOT_FOUND; } /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) lsilogicR3DeviceQueryInterface(PPDMIBASE pInterface, const char *pszIID) { PLSILOGICDEVICE pDevice = RT_FROM_MEMBER(pInterface, LSILOGICDEVICE, IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pDevice->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMISCSIPORT, &pDevice->ISCSIPort); PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pDevice->ILed); return NULL; } /* * The controller level IBASE and LED interfaces. */ /** * Gets the pointer to the status LED of a unit. * * @returns VBox status code. * @param pInterface Pointer to the interface structure containing the called function pointer. * @param iLUN The unit which status LED we desire. * @param ppLed Where to store the LED pointer. */ static DECLCALLBACK(int) lsilogicR3StatusQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed) { PLSILOGICSCSI pThis = RT_FROM_MEMBER(pInterface, LSILOGICSCSI, ILeds); if (iLUN < pThis->cDeviceStates) { *ppLed = &pThis->paDeviceStates[iLUN].Led; Assert((*ppLed)->u32Magic == PDMLED_MAGIC); return VINF_SUCCESS; } return VERR_PDM_LUN_NOT_FOUND; } /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) lsilogicR3StatusQueryInterface(PPDMIBASE pInterface, const char *pszIID) { PLSILOGICSCSI pThis = RT_FROM_MEMBER(pInterface, LSILOGICSCSI, IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThis->ILeds); return NULL; } /* * The PDM device interface and some helpers. */ /** * Checks if all asynchronous I/O is finished. * * Used by lsilogicR3Reset, lsilogicR3Suspend and lsilogicR3PowerOff. * * @returns true if quiesced, false if busy. * @param pDevIns The device instance. */ static bool lsilogicR3AllAsyncIOIsFinished(PPDMDEVINS pDevIns) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); for (uint32_t i = 0; i < pThis->cDeviceStates; i++) { PLSILOGICDEVICE pThisDevice = &pThis->paDeviceStates[i]; if (pThisDevice->pDrvBase) { if (pThisDevice->cOutstandingRequests != 0) return false; } } return true; } /** * @callback_method_impl{FNPDMDEVASYNCNOTIFY, * Callback employed by lsilogicR3Suspend and lsilogicR3PowerOff.} */ static DECLCALLBACK(bool) lsilogicR3IsAsyncSuspendOrPowerOffDone(PPDMDEVINS pDevIns) { if (!lsilogicR3AllAsyncIOIsFinished(pDevIns)) return false; PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); ASMAtomicWriteBool(&pThis->fSignalIdle, false); return true; } /** * Common worker for ahciR3Suspend and ahciR3PowerOff. */ static void lsilogicR3SuspendOrPowerOff(PPDMDEVINS pDevIns) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); ASMAtomicWriteBool(&pThis->fSignalIdle, true); if (!lsilogicR3AllAsyncIOIsFinished(pDevIns)) PDMDevHlpSetAsyncNotification(pDevIns, lsilogicR3IsAsyncSuspendOrPowerOffDone); else { ASMAtomicWriteBool(&pThis->fSignalIdle, false); AssertMsg(!pThis->fNotificationSent, ("The PDM Queue should be empty at this point\n")); if (pThis->fRedo) { /* * We have tasks which we need to redo. Put the message frame addresses * into the request queue (we save the requests). * Guest execution is suspended at this point so there is no race between us and * lsilogicRegisterWrite. */ PLSILOGICREQ pLsiReq = pThis->pTasksRedoHead; pThis->pTasksRedoHead = NULL; while (pLsiReq) { PLSILOGICREQ pFree; if (!pLsiReq->fBIOS) { /* Write only the lower 32bit part of the address. */ ASMAtomicWriteU32(&pThis->CTX_SUFF(pRequestQueueBase)[pThis->uRequestQueueNextEntryFreeWrite], pLsiReq->GCPhysMessageFrameAddr & UINT32_C(0xffffffff)); pThis->uRequestQueueNextEntryFreeWrite++; pThis->uRequestQueueNextEntryFreeWrite %= pThis->cRequestQueueEntries; pThis->fNotificationSent = true; } else { AssertMsg(!pLsiReq->pRedoNext, ("Only one BIOS task can be active!\n")); vboxscsiSetRequestRedo(&pThis->VBoxSCSI, &pLsiReq->PDMScsiRequest); } pFree = pLsiReq; pLsiReq = pLsiReq->pRedoNext; RTMemCacheFree(pThis->hTaskCache, pFree); } pThis->fRedo = false; } } } /** * @interface_method_impl{PDMDEVREG,pfnSuspend} */ static DECLCALLBACK(void) lsilogicR3Suspend(PPDMDEVINS pDevIns) { Log(("lsilogicR3Suspend\n")); lsilogicR3SuspendOrPowerOff(pDevIns); } /** * @interface_method_impl{PDMDEVREG,pfnResume} */ static DECLCALLBACK(void) lsilogicR3Resume(PPDMDEVINS pDevIns) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); Log(("lsilogicR3Resume\n")); lsilogicR3Kick(pThis); } /** * @interface_method_impl{PDMDEVREG,pfnDetach} * * One harddisk at one port has been unplugged. * The VM is suspended at this point. */ static DECLCALLBACK(void) lsilogicR3Detach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); PLSILOGICDEVICE pDevice = &pThis->paDeviceStates[iLUN]; if (iLUN >= pThis->cDeviceStates) return; AssertMsg(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG, ("LsiLogic: Device does not support hotplugging\n")); Log(("%s:\n", __FUNCTION__)); /* * Zero some important members. */ pDevice->pDrvBase = NULL; pDevice->pDrvSCSIConnector = NULL; } /** * @interface_method_impl{PDMDEVREG,pfnAttach} */ static DECLCALLBACK(int) lsilogicR3Attach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); PLSILOGICDEVICE pDevice = &pThis->paDeviceStates[iLUN]; int rc; if (iLUN >= pThis->cDeviceStates) return VERR_PDM_LUN_NOT_FOUND; AssertMsgReturn(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG, ("LsiLogic: Device does not support hotplugging\n"), VERR_INVALID_PARAMETER); /* the usual paranoia */ AssertRelease(!pDevice->pDrvBase); AssertRelease(!pDevice->pDrvSCSIConnector); Assert(pDevice->iLUN == iLUN); /* * Try attach the block device and get the interfaces, * required as well as optional. */ rc = PDMDevHlpDriverAttach(pDevIns, pDevice->iLUN, &pDevice->IBase, &pDevice->pDrvBase, NULL); if (RT_SUCCESS(rc)) { /* Get SCSI connector interface. */ pDevice->pDrvSCSIConnector = PDMIBASE_QUERY_INTERFACE(pDevice->pDrvBase, PDMISCSICONNECTOR); AssertMsgReturn(pDevice->pDrvSCSIConnector, ("Missing SCSI interface below\n"), VERR_PDM_MISSING_INTERFACE); } else AssertMsgFailed(("Failed to attach LUN#%d. rc=%Rrc\n", pDevice->iLUN, rc)); if (RT_FAILURE(rc)) { pDevice->pDrvBase = NULL; pDevice->pDrvSCSIConnector = NULL; } return rc; } /** * Common reset worker. * * @param pDevIns The device instance data. */ static void lsilogicR3ResetCommon(PPDMDEVINS pDevIns) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); int rc; rc = lsilogicR3HardReset(pThis); AssertRC(rc); vboxscsiInitialize(&pThis->VBoxSCSI); } /** * @callback_method_impl{FNPDMDEVASYNCNOTIFY, * Callback employed by lsilogicR3Reset.} */ static DECLCALLBACK(bool) lsilogicR3IsAsyncResetDone(PPDMDEVINS pDevIns) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); if (!lsilogicR3AllAsyncIOIsFinished(pDevIns)) return false; ASMAtomicWriteBool(&pThis->fSignalIdle, false); lsilogicR3ResetCommon(pDevIns); return true; } /** * @interface_method_impl{PDMDEVREG,pfnReset} */ static DECLCALLBACK(void) lsilogicR3Reset(PPDMDEVINS pDevIns) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); ASMAtomicWriteBool(&pThis->fSignalIdle, true); if (!lsilogicR3AllAsyncIOIsFinished(pDevIns)) PDMDevHlpSetAsyncNotification(pDevIns, lsilogicR3IsAsyncResetDone); else { ASMAtomicWriteBool(&pThis->fSignalIdle, false); lsilogicR3ResetCommon(pDevIns); } } /** * @interface_method_impl{PDMDEVREG,pfnRelocate} */ static DECLCALLBACK(void) lsilogicR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); pThis->pNotificationQueueRC = PDMQueueRCPtr(pThis->pNotificationQueueR3); /* Relocate queues. */ pThis->pReplyFreeQueueBaseRC += offDelta; pThis->pReplyPostQueueBaseRC += offDelta; pThis->pRequestQueueBaseRC += offDelta; } /** * @interface_method_impl{PDMDEVREG,pfnPowerOff} */ static DECLCALLBACK(void) lsilogicR3PowerOff(PPDMDEVINS pDevIns) { Log(("lsilogicR3PowerOff\n")); lsilogicR3SuspendOrPowerOff(pDevIns); } /** * @interface_method_impl{PDMDEVREG,pfnDestruct} */ static DECLCALLBACK(int) lsilogicR3Destruct(PPDMDEVINS pDevIns) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns); PDMR3CritSectDelete(&pThis->ReplyFreeQueueCritSect); PDMR3CritSectDelete(&pThis->ReplyPostQueueCritSect); RTMemFree(pThis->paDeviceStates); pThis->paDeviceStates = NULL; /* Destroy task cache. */ if (pThis->hTaskCache != NIL_RTMEMCACHE) { int rc = RTMemCacheDestroy(pThis->hTaskCache); AssertRC(rc); pThis->hTaskCache = NIL_RTMEMCACHE; } if (pThis->hEvtProcess != NIL_SUPSEMEVENT) { SUPSemEventClose(pThis->pSupDrvSession, pThis->hEvtProcess); pThis->hEvtProcess = NIL_SUPSEMEVENT; } lsilogicR3ConfigurationPagesFree(pThis); lsilogicR3MemRegionsFree(pThis); return VINF_SUCCESS; } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) lsilogicR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { PLSILOGICSCSI pThis = PDMINS_2_DATA(pDevIns, PLSILOGICSCSI); int rc = VINF_SUCCESS; PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* * Initialize enought of the state to make the destructure not trip up. */ pThis->hTaskCache = NIL_RTMEMCACHE; pThis->hEvtProcess = NIL_SUPSEMEVENT; RTListInit(&pThis->ListMemRegns); /* * Validate and read configuration. */ rc = CFGMR3AreValuesValid(pCfg, "GCEnabled\0" "R0Enabled\0" "ReplyQueueDepth\0" "RequestQueueDepth\0" "ControllerType\0" "NumPorts\0" "Bootable\0"); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, N_("LsiLogic configuration error: unknown option specified")); rc = CFGMR3QueryBoolDef(pCfg, "GCEnabled", &pThis->fGCEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic configuration error: failed to read GCEnabled as boolean")); Log(("%s: fGCEnabled=%d\n", __FUNCTION__, pThis->fGCEnabled)); rc = CFGMR3QueryBoolDef(pCfg, "R0Enabled", &pThis->fR0Enabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic configuration error: failed to read R0Enabled as boolean")); Log(("%s: fR0Enabled=%d\n", __FUNCTION__, pThis->fR0Enabled)); rc = CFGMR3QueryU32Def(pCfg, "ReplyQueueDepth", &pThis->cReplyQueueEntries, LSILOGICSCSI_REPLY_QUEUE_DEPTH_DEFAULT); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic configuration error: failed to read ReplyQueue as integer")); Log(("%s: ReplyQueueDepth=%u\n", __FUNCTION__, pThis->cReplyQueueEntries)); rc = CFGMR3QueryU32Def(pCfg, "RequestQueueDepth", &pThis->cRequestQueueEntries, LSILOGICSCSI_REQUEST_QUEUE_DEPTH_DEFAULT); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic configuration error: failed to read RequestQueue as integer")); Log(("%s: RequestQueueDepth=%u\n", __FUNCTION__, pThis->cRequestQueueEntries)); char *pszCtrlType; rc = CFGMR3QueryStringAllocDef(pCfg, "ControllerType", &pszCtrlType, LSILOGICSCSI_PCI_SPI_CTRLNAME); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic configuration error: failed to read ControllerType as string")); Log(("%s: ControllerType=%s\n", __FUNCTION__, pszCtrlType)); rc = lsilogicR3GetCtrlTypeFromString(pThis, pszCtrlType); MMR3HeapFree(pszCtrlType); char szDevTag[20]; RTStrPrintf(szDevTag, sizeof(szDevTag), "LSILOGIC%s-%u", pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI ? "SPI" : "SAS", iInstance); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic configuration error: failed to determine controller type from string")); rc = CFGMR3QueryU8(pCfg, "NumPorts", &pThis->cPorts); if (rc == VERR_CFGM_VALUE_NOT_FOUND) { if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) pThis->cPorts = LSILOGICSCSI_PCI_SPI_PORTS_MAX; else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) pThis->cPorts = LSILOGICSCSI_PCI_SAS_PORTS_DEFAULT; else AssertMsgFailed(("Invalid controller type: %d\n", pThis->enmCtrlType)); } else if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic configuration error: failed to read NumPorts as integer")); bool fBootable; rc = CFGMR3QueryBoolDef(pCfg, "Bootable", &fBootable, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic configuration error: failed to read Bootable as boolean")); Log(("%s: Bootable=%RTbool\n", __FUNCTION__, fBootable)); /* Init static parts. */ PCIDevSetVendorId(&pThis->PciDev, LSILOGICSCSI_PCI_VENDOR_ID); /* LsiLogic */ if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) { PCIDevSetDeviceId (&pThis->PciDev, LSILOGICSCSI_PCI_SPI_DEVICE_ID); /* LSI53C1030 */ PCIDevSetSubSystemVendorId(&pThis->PciDev, LSILOGICSCSI_PCI_SPI_SUBSYSTEM_VENDOR_ID); PCIDevSetSubSystemId (&pThis->PciDev, LSILOGICSCSI_PCI_SPI_SUBSYSTEM_ID); } else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) { PCIDevSetDeviceId (&pThis->PciDev, LSILOGICSCSI_PCI_SAS_DEVICE_ID); /* SAS1068 */ PCIDevSetSubSystemVendorId(&pThis->PciDev, LSILOGICSCSI_PCI_SAS_SUBSYSTEM_VENDOR_ID); PCIDevSetSubSystemId (&pThis->PciDev, LSILOGICSCSI_PCI_SAS_SUBSYSTEM_ID); } else AssertMsgFailed(("Invalid controller type: %d\n", pThis->enmCtrlType)); PCIDevSetClassProg (&pThis->PciDev, 0x00); /* SCSI */ PCIDevSetClassSub (&pThis->PciDev, 0x00); /* SCSI */ PCIDevSetClassBase (&pThis->PciDev, 0x01); /* Mass storage */ PCIDevSetInterruptPin(&pThis->PciDev, 0x01); /* Interrupt pin A */ # ifdef VBOX_WITH_MSI_DEVICES PCIDevSetStatus(&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST); PCIDevSetCapabilityList(&pThis->PciDev, 0x80); # endif pThis->pDevInsR3 = pDevIns; pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns); pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); pThis->pSupDrvSession = PDMDevHlpGetSupDrvSession(pDevIns); pThis->IBase.pfnQueryInterface = lsilogicR3StatusQueryInterface; pThis->ILeds.pfnQueryStatusLed = lsilogicR3StatusQueryStatusLed; /* * Create critical sections protecting the reply post and free queues. * Note! We do our own syncronization, so NOP the default crit sect for the device. */ rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); AssertRCReturn(rc, rc); rc = PDMDevHlpCritSectInit(pDevIns, &pThis->ReplyFreeQueueCritSect, RT_SRC_POS, "%sRFQ", szDevTag); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic: cannot create critical section for reply free queue")); rc = PDMDevHlpCritSectInit(pDevIns, &pThis->ReplyPostQueueCritSect, RT_SRC_POS, "%sRPQ", szDevTag); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic: cannot create critical section for reply post queue")); /* * Register the PCI device, it's I/O regions. */ rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev); if (RT_FAILURE(rc)) return rc; # ifdef VBOX_WITH_MSI_DEVICES PDMMSIREG MsiReg; RT_ZERO(MsiReg); /* use this code for MSI-X support */ # if 0 MsiReg.cMsixVectors = 1; MsiReg.iMsixCapOffset = 0x80; MsiReg.iMsixNextOffset = 0x00; MsiReg.iMsixBar = 3; # else MsiReg.cMsiVectors = 1; MsiReg.iMsiCapOffset = 0x80; MsiReg.iMsiNextOffset = 0x00; # endif rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg); if (RT_FAILURE (rc)) { /* That's OK, we can work without MSI */ PCIDevSetCapabilityList(&pThis->PciDev, 0x0); } # endif rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, LSILOGIC_PCI_SPACE_IO_SIZE, PCI_ADDRESS_SPACE_IO, lsilogicR3Map); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpPCIIORegionRegister(pDevIns, 1, LSILOGIC_PCI_SPACE_MEM_SIZE, PCI_ADDRESS_SPACE_MEM, lsilogicR3Map); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpPCIIORegionRegister(pDevIns, 2, LSILOGIC_PCI_SPACE_MEM_SIZE, PCI_ADDRESS_SPACE_MEM, lsilogicR3Map); if (RT_FAILURE(rc)) return rc; /* Initialize task queue. (Need two items to handle SMP guest concurrency.) */ char szTaggedText[64]; RTStrPrintf(szTaggedText, sizeof(szTaggedText), "%s-Task", szDevTag); rc = PDMDevHlpQueueCreate(pDevIns, sizeof(PDMQUEUEITEMCORE), 2, 0, lsilogicR3NotifyQueueConsumer, true, szTaggedText, &pThis->pNotificationQueueR3); if (RT_FAILURE(rc)) return rc; pThis->pNotificationQueueR0 = PDMQueueR0Ptr(pThis->pNotificationQueueR3); pThis->pNotificationQueueRC = PDMQueueRCPtr(pThis->pNotificationQueueR3); /* * We need one entry free in the queue. */ pThis->cReplyQueueEntries++; pThis->cRequestQueueEntries++; /* * Allocate memory for the queues. */ rc = lsilogicR3QueuesAlloc(pThis); if (RT_FAILURE(rc)) return rc; /* * Allocate task cache. */ rc = RTMemCacheCreate(&pThis->hTaskCache, sizeof(LSILOGICREQ), 0, UINT32_MAX, NULL, NULL, NULL, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Cannot create task cache")); if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) pThis->cDeviceStates = pThis->cPorts * LSILOGICSCSI_PCI_SPI_DEVICES_PER_BUS_MAX; else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) pThis->cDeviceStates = pThis->cPorts * LSILOGICSCSI_PCI_SAS_DEVICES_PER_PORT_MAX; else AssertMsgFailed(("Invalid controller type: %d\n", pThis->enmCtrlType)); /* * Create event semaphore and worker thread. */ rc = PDMDevHlpThreadCreate(pDevIns, &pThis->pThreadWrk, pThis, lsilogicR3Worker, lsilogicR3WorkerWakeUp, 0, RTTHREADTYPE_IO, szDevTag); if (RT_FAILURE(rc)) return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("LsiLogic: Failed to create worker thread %s"), szDevTag); rc = SUPSemEventCreate(pThis->pSupDrvSession, &pThis->hEvtProcess); if (RT_FAILURE(rc)) return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("LsiLogic: Failed to create SUP event semaphore")); /* * Allocate device states. */ pThis->paDeviceStates = (PLSILOGICDEVICE)RTMemAllocZ(sizeof(LSILOGICDEVICE) * pThis->cDeviceStates); if (!pThis->paDeviceStates) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to allocate memory for device states")); for (unsigned i = 0; i < pThis->cDeviceStates; i++) { char szName[24]; PLSILOGICDEVICE pDevice = &pThis->paDeviceStates[i]; /* Initialize static parts of the device. */ pDevice->iLUN = i; pDevice->pLsiLogicR3 = pThis; pDevice->Led.u32Magic = PDMLED_MAGIC; pDevice->IBase.pfnQueryInterface = lsilogicR3DeviceQueryInterface; pDevice->ISCSIPort.pfnSCSIRequestCompleted = lsilogicR3DeviceSCSIRequestCompleted; pDevice->ISCSIPort.pfnQueryDeviceLocation = lsilogicR3QueryDeviceLocation; pDevice->ILed.pfnQueryStatusLed = lsilogicR3DeviceQueryStatusLed; RTStrPrintf(szName, sizeof(szName), "Device%u", i); /* Attach SCSI driver. */ rc = PDMDevHlpDriverAttach(pDevIns, pDevice->iLUN, &pDevice->IBase, &pDevice->pDrvBase, szName); if (RT_SUCCESS(rc)) { /* Get SCSI connector interface. */ pDevice->pDrvSCSIConnector = PDMIBASE_QUERY_INTERFACE(pDevice->pDrvBase, PDMISCSICONNECTOR); AssertMsgReturn(pDevice->pDrvSCSIConnector, ("Missing SCSI interface below\n"), VERR_PDM_MISSING_INTERFACE); } else if (rc == VERR_PDM_NO_ATTACHED_DRIVER) { pDevice->pDrvBase = NULL; rc = VINF_SUCCESS; Log(("LsiLogic: no driver attached to device %s\n", szName)); } else { AssertLogRelMsgFailed(("LsiLogic: Failed to attach %s\n", szName)); return rc; } } /* * Attach status driver (optional). */ PPDMIBASE pBase; rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThis->IBase, &pBase, "Status Port"); if (RT_SUCCESS(rc)) pThis->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS); else if (rc != VERR_PDM_NO_ATTACHED_DRIVER) { AssertMsgFailed(("Failed to attach to status driver. rc=%Rrc\n", rc)); return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic cannot attach to status driver")); } /* Initialize the SCSI emulation for the BIOS. */ rc = vboxscsiInitialize(&pThis->VBoxSCSI); AssertRC(rc); /* * Register I/O port space in ISA region for BIOS access * if the controller is marked as bootable. */ if (fBootable) { if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI) rc = PDMDevHlpIOPortRegister(pDevIns, LSILOGIC_BIOS_IO_PORT, 4, NULL, lsilogicR3IsaIOPortWrite, lsilogicR3IsaIOPortRead, lsilogicR3IsaIOPortWriteStr, lsilogicR3IsaIOPortReadStr, "LsiLogic BIOS"); else if (pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SAS) rc = PDMDevHlpIOPortRegister(pDevIns, LSILOGIC_SAS_BIOS_IO_PORT, 4, NULL, lsilogicR3IsaIOPortWrite, lsilogicR3IsaIOPortRead, lsilogicR3IsaIOPortWriteStr, lsilogicR3IsaIOPortReadStr, "LsiLogic SAS BIOS"); else AssertMsgFailed(("Invalid controller type %d\n", pThis->enmCtrlType)); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic cannot register legacy I/O handlers")); } /* Register save state handlers. */ rc = PDMDevHlpSSMRegisterEx(pDevIns, LSILOGIC_SAVED_STATE_VERSION, sizeof(*pThis), NULL, NULL, lsilogicR3LiveExec, NULL, NULL, lsilogicR3SaveExec, NULL, NULL, lsilogicR3LoadExec, lsilogicR3LoadDone); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("LsiLogic cannot register save state handlers")); pThis->enmWhoInit = LSILOGICWHOINIT_SYSTEM_BIOS; /* * Register the info item. */ char szTmp[128]; RTStrPrintf(szTmp, sizeof(szTmp), "%s%u", pDevIns->pReg->szName, pDevIns->iInstance); PDMDevHlpDBGFInfoRegister(pDevIns, szTmp, pThis->enmCtrlType == LSILOGICCTRLTYPE_SCSI_SPI ? "LsiLogic SPI info." : "LsiLogic SAS info.", lsilogicR3Info); /* Perform hard reset. */ rc = lsilogicR3HardReset(pThis); AssertRC(rc); return rc; } /** * The device registration structure - SPI SCSI controller. */ const PDMDEVREG g_DeviceLsiLogicSCSI = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "lsilogicscsi", /* szRCMod */ "VBoxDDRC.rc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "LSI Logic 53c1030 SCSI controller.\n", /* fFlags */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0 | PDM_DEVREG_FLAGS_FIRST_SUSPEND_NOTIFICATION | PDM_DEVREG_FLAGS_FIRST_POWEROFF_NOTIFICATION, /* fClass */ PDM_DEVREG_CLASS_STORAGE, /* cMaxInstances */ ~0U, /* cbInstance */ sizeof(LSILOGICSCSI), /* pfnConstruct */ lsilogicR3Construct, /* pfnDestruct */ lsilogicR3Destruct, /* pfnRelocate */ lsilogicR3Relocate, /* pfnMemSetup */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ lsilogicR3Reset, /* pfnSuspend */ lsilogicR3Suspend, /* pfnResume */ lsilogicR3Resume, /* pfnAttach */ lsilogicR3Attach, /* pfnDetach */ lsilogicR3Detach, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ lsilogicR3PowerOff, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; /** * The device registration structure - SAS controller. */ const PDMDEVREG g_DeviceLsiLogicSAS = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "lsilogicsas", /* szRCMod */ "VBoxDDRC.rc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "LSI Logic SAS1068 controller.\n", /* fFlags */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0 | PDM_DEVREG_FLAGS_FIRST_SUSPEND_NOTIFICATION | PDM_DEVREG_FLAGS_FIRST_POWEROFF_NOTIFICATION | PDM_DEVREG_FLAGS_FIRST_RESET_NOTIFICATION, /* fClass */ PDM_DEVREG_CLASS_STORAGE, /* cMaxInstances */ ~0U, /* cbInstance */ sizeof(LSILOGICSCSI), /* pfnConstruct */ lsilogicR3Construct, /* pfnDestruct */ lsilogicR3Destruct, /* pfnRelocate */ lsilogicR3Relocate, /* pfnMemSetup */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ lsilogicR3Reset, /* pfnSuspend */ lsilogicR3Suspend, /* pfnResume */ lsilogicR3Resume, /* pfnAttach */ lsilogicR3Attach, /* pfnDetach */ lsilogicR3Detach, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ lsilogicR3PowerOff, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */