/* $Id: tstDisasm-2.cpp 41781 2012-06-16 19:02:30Z vboxsync $ */ /** @file * Testcase - Generic Disassembler Tool. */ /* * Copyright (C) 2008 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ typedef enum { kAsmStyle_Default, kAsmStyle_yasm, kAsmStyle_masm, kAsmStyle_gas, kAsmStyle_invalid } ASMSTYLE; typedef enum { kUndefOp_Fail, kUndefOp_All, kUndefOp_DefineByte, kUndefOp_End } UNDEFOPHANDLING; typedef struct MYDISSTATE { DISCPUSTATE Cpu; uint64_t uAddress; /**< The current instruction address. */ uint8_t *pbInstr; /**< The current instruction (pointer). */ uint32_t cbInstr; /**< The size of the current instruction. */ bool fUndefOp; /**< Whether the current instruction is really an undefined opcode.*/ UNDEFOPHANDLING enmUndefOp; /**< How to treat undefined opcodes. */ int rc; /**< Set if we hit EOF. */ size_t cbLeft; /**< The number of bytes left. (read) */ uint8_t *pbNext; /**< The next byte. (read) */ uint64_t uNextAddr; /**< The address of the next byte. (read) */ char szLine[256]; /**< The disassembler text output. */ } MYDISSTATE; typedef MYDISSTATE *PMYDISSTATE; /** * Default style. * * @param pState The disassembler state. */ static void MyDisasDefaultFormatter(PMYDISSTATE pState) { RTPrintf("%s", pState->szLine); } /** * Yasm style. * * @param pState The disassembler state. */ static void MyDisasYasmFormatter(PMYDISSTATE pState) { char szTmp[256]; #if 0 /* a very quick hack. */ strcpy(szTmp, RTStrStripL(strchr(pState->szLine, ':') + 1)); char *psz = strrchr(szTmp, '['); *psz = '\0'; RTStrStripR(szTmp); psz = strstr(szTmp, " ptr "); if (psz) memset(psz, ' ', 5); char *pszEnd = strchr(szTmp, '\0'); while (pszEnd - &szTmp[0] < 71) *pszEnd++ = ' '; *pszEnd = '\0'; #else size_t cch = DISFormatYasmEx(&pState->Cpu, szTmp, sizeof(szTmp), DIS_FMT_FLAGS_STRICT | DIS_FMT_FLAGS_ADDR_RIGHT | DIS_FMT_FLAGS_ADDR_COMMENT | DIS_FMT_FLAGS_BYTES_RIGHT | DIS_FMT_FLAGS_BYTES_COMMENT | DIS_FMT_FLAGS_BYTES_SPACED, NULL, NULL); Assert(cch < sizeof(szTmp)); while (cch < 71) szTmp[cch++] = ' '; szTmp[cch] = '\0'; #endif RTPrintf(" %s ; %s", szTmp, pState->szLine); } /** * Masm style. * * @param pState The disassembler state. */ static void MyDisasMasmFormatter(PMYDISSTATE pState) { RTPrintf("masm not implemented: %s", pState->szLine); } /** * This is a temporary workaround for catching a few illegal opcodes * that the disassembler is currently letting thru, just enough to make * the assemblers happy. * * We're too close to a release to dare mess with these things now as * they may consequences for performance and let alone introduce bugs. * * @returns true if it's valid. false if it isn't. * * @param pCpu The disassembler output. */ static bool MyDisasIsValidInstruction(DISCPUSTATE const *pCpu) { switch (pCpu->pCurInstr->uOpcode) { /* These doesn't take memory operands. */ case OP_MOV_CR: case OP_MOV_DR: case OP_MOV_TR: if (pCpu->ModRM.Bits.Mod != 3) return false; break; /* The 0x8f /0 variant of this instruction doesn't get its /r value verified. */ case OP_POP: if ( pCpu->bOpCode == 0x8f && pCpu->ModRM.Bits.Reg != 0) return false; break; /* The 0xc6 /0 and 0xc7 /0 variants of this instruction don't get their /r values verified. */ case OP_MOV: if ( ( pCpu->bOpCode == 0xc6 || pCpu->bOpCode == 0xc7) && pCpu->ModRM.Bits.Reg != 0) return false; break; default: break; } return true; } /** * @interface_method_impl{FNDISREADBYTES} */ static DECLCALLBACK(int) MyDisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead) { PMYDISSTATE pState = (PMYDISSTATE)pDis; RTUINTPTR uSrcAddr = pState->Cpu.uInstrAddr + offInstr; if (RT_LIKELY( pState->uNextAddr == uSrcAddr && pState->cbLeft >= cbMinRead)) { /* * Straight forward reading. */ //size_t cbToRead = cbMaxRead; size_t cbToRead = cbMinRead; memcpy(&pState->Cpu.abInstr[offInstr], pState->pbNext, cbToRead); pState->Cpu.cbCachedInstr = offInstr + cbToRead; pState->pbNext += cbToRead; pState->cbLeft -= cbToRead; pState->uNextAddr += cbToRead; return VINF_SUCCESS; } if (pState->uNextAddr == uSrcAddr) { /* * Reading too much. */ if (pState->cbLeft > 0) { memcpy(&pState->Cpu.abInstr[offInstr], pState->pbNext, pState->cbLeft); offInstr += (uint8_t)pState->cbLeft; cbMinRead -= (uint8_t)pState->cbLeft; pState->pbNext += pState->cbLeft; pState->uNextAddr += pState->cbLeft; pState->cbLeft = 0; } memset(&pState->Cpu.abInstr[offInstr], 0xcc, cbMinRead); pState->rc = VERR_EOF; } else { /* * Non-sequential read, that's an error. */ RTStrmPrintf(g_pStdErr, "Reading before current instruction!\n"); memset(&pState->Cpu.abInstr[offInstr], 0x90, cbMinRead); pState->rc = VERR_INTERNAL_ERROR; } pState->Cpu.cbCachedInstr = offInstr + cbMinRead; return pState->rc; } /** * Disassembles a block of memory. * * @returns VBox status code. * @param argv0 Program name (for errors and warnings). * @param enmCpuMode The cpu mode to disassemble in. * @param uAddress The address we're starting to disassemble at. * @param uHighlightAddr The address of the instruction that should be * highlighted. Pass UINT64_MAX to keep quiet. * @param pbFile Where to start disassemble. * @param cbFile How much to disassemble. * @param enmStyle The assembly output style. * @param fListing Whether to print in a listing like mode. * @param enmUndefOp How to deal with undefined opcodes. */ static int MyDisasmBlock(const char *argv0, DISCPUMODE enmCpuMode, uint64_t uAddress, uint64_t uHighlightAddr, uint8_t *pbFile, size_t cbFile, ASMSTYLE enmStyle, bool fListing, UNDEFOPHANDLING enmUndefOp) { /* * Initialize the CPU context. */ MYDISSTATE State; State.uAddress = uAddress; State.pbInstr = pbFile; State.cbInstr = 0; State.enmUndefOp = enmUndefOp; State.rc = VINF_SUCCESS; State.cbLeft = cbFile; State.pbNext = pbFile; State.uNextAddr = uAddress; void (*pfnFormatter)(PMYDISSTATE pState); switch (enmStyle) { case kAsmStyle_Default: pfnFormatter = MyDisasDefaultFormatter; break; case kAsmStyle_yasm: RTPrintf(" BITS %d\n", enmCpuMode == DISCPUMODE_16BIT ? 16 : enmCpuMode == DISCPUMODE_32BIT ? 32 : 64); pfnFormatter = MyDisasYasmFormatter; break; case kAsmStyle_masm: pfnFormatter = MyDisasMasmFormatter; break; default: AssertFailedReturn(VERR_INTERNAL_ERROR); } /* * The loop. */ int rcRet = VINF_SUCCESS; while (State.cbLeft > 0) { /* * Disassemble it. */ State.cbInstr = 0; State.cbLeft += State.pbNext - State.pbInstr; State.uNextAddr = State.uAddress; State.pbNext = State.pbInstr; int rc = DISInstrToStrWithReader(State.uAddress, enmCpuMode, MyDisasInstrRead, &State, &State.Cpu, &State.cbInstr, State.szLine, sizeof(State.szLine)); if ( RT_SUCCESS(rc) || ( ( rc == VERR_DIS_INVALID_OPCODE || rc == VERR_DIS_GEN_FAILURE) && State.enmUndefOp == kUndefOp_DefineByte)) { State.fUndefOp = rc == VERR_DIS_INVALID_OPCODE || rc == VERR_DIS_GEN_FAILURE || State.Cpu.pCurInstr->uOpcode == OP_INVALID || State.Cpu.pCurInstr->uOpcode == OP_ILLUD2 || ( State.enmUndefOp == kUndefOp_DefineByte && !MyDisasIsValidInstruction(&State.Cpu)); if (State.fUndefOp && State.enmUndefOp == kUndefOp_DefineByte) { if (!State.cbInstr) { State.Cpu.abInstr[0] = 0; State.Cpu.pfnReadBytes(&State.Cpu, 0, 1, 1); State.cbInstr = 1; } RTPrintf(" db"); for (unsigned off = 0; off < State.cbInstr; off++) RTPrintf(off ? ", %03xh" : " %03xh", State.Cpu.abInstr[off]); RTPrintf(" ; %s\n", State.szLine); } else if (!State.fUndefOp && State.enmUndefOp == kUndefOp_All) { RTPrintf("%s: error at %#RX64: unexpected valid instruction (op=%d)\n", argv0, State.uAddress, State.Cpu.pCurInstr->uOpcode); pfnFormatter(&State); rcRet = VERR_GENERAL_FAILURE; } else if (State.fUndefOp && State.enmUndefOp == kUndefOp_Fail) { RTPrintf("%s: error at %#RX64: undefined opcode (op=%d)\n", argv0, State.uAddress, State.Cpu.pCurInstr->uOpcode); pfnFormatter(&State); rcRet = VERR_GENERAL_FAILURE; } else { /* Use db for odd encodings that we can't make the assembler use. */ if ( State.enmUndefOp == kUndefOp_DefineByte && DISFormatYasmIsOddEncoding(&State.Cpu)) { RTPrintf(" db"); for (unsigned off = 0; off < State.cbInstr; off++) RTPrintf(off ? ", %03xh" : " %03xh", State.Cpu.abInstr[off]); RTPrintf(" ; "); } pfnFormatter(&State); } } else { State.cbInstr = State.pbNext - State.pbInstr; if (!State.cbLeft) RTPrintf("%s: error at %#RX64: read beyond the end (%Rrc)\n", argv0, State.uAddress, rc); else if (State.cbInstr) RTPrintf("%s: error at %#RX64: %Rrc cbInstr=%d\n", argv0, State.uAddress, rc, State.cbInstr); else { RTPrintf("%s: error at %#RX64: %Rrc cbInstr=%d!\n", argv0, State.uAddress, rc, State.cbInstr); if (rcRet == VINF_SUCCESS) rcRet = rc; break; } } /* Highlight this instruction? */ if (uHighlightAddr - State.uAddress < State.cbInstr) RTPrintf("; ^^^^^^^^^^^^^^^^^^^^^\n"); /* next */ State.uAddress += State.cbInstr; State.pbInstr += State.cbInstr; } return rcRet; } /** * Converts a hex char to a number. * * @returns 0..15 on success, -1 on failure. * @param ch The character. */ static int HexDigitToNum(char ch) { switch (ch) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; case 'A': case 'a': return 0xa; case 'B': case 'b': return 0xb; case 'C': case 'c': return 0xc; case 'D': case 'd': return 0xd; case 'E': case 'e': return 0xe; case 'F': case 'f': return 0xf; default: RTPrintf("error: Invalid hex digig '%c'\n", ch); return -1; } } /** * Prints usage info. * * @returns 1. * @param argv0 The program name. */ static int Usage(const char *argv0) { RTStrmPrintf(g_pStdErr, "usage: %s [options] [file2..fileN]\n" " or: %s [options] <-x|--hex-bytes> [more hex..]\n" " or: %s <--help|-h>\n" "\n" "Options:\n" " --address|-a
\n" " The base address. Default: 0\n" " --max-bytes|-b \n" " The maximum number of bytes to disassemble. Default: 1GB\n" " --cpumode|-c <16|32|64>\n" " The cpu mode. Default: 32\n" " --listing|-l, --no-listing|-L\n" " Enables or disables listing mode. Default: --no-listing\n" " --offset|-o \n" " The file offset at which to start disassembling. Default: 0\n" " --style|-s \n" " The assembly output style. Default: default\n" " --undef-op|-u \n" " How to treat undefined opcodes. Default: fail\n" , argv0, argv0); return 1; } int main(int argc, char **argv) { RTR3InitExe(argc, &argv, 0); const char * const argv0 = RTPathFilename(argv[0]); /* options */ uint64_t uAddress = 0; uint64_t uHighlightAddr = UINT64_MAX; ASMSTYLE enmStyle = kAsmStyle_Default; UNDEFOPHANDLING enmUndefOp = kUndefOp_Fail; bool fListing = true; DISCPUMODE enmCpuMode = DISCPUMODE_32BIT; RTFOFF off = 0; RTFOFF cbMax = _1G; bool fHexBytes = false; /* * Parse arguments. */ static const RTGETOPTDEF g_aOptions[] = { { "--address", 'a', RTGETOPT_REQ_UINT64 }, { "--cpumode", 'c', RTGETOPT_REQ_UINT32 }, { "--bytes", 'b', RTGETOPT_REQ_INT64 }, { "--listing", 'l', RTGETOPT_REQ_NOTHING }, { "--no-listing", 'L', RTGETOPT_REQ_NOTHING }, { "--offset", 'o', RTGETOPT_REQ_INT64 }, { "--style", 's', RTGETOPT_REQ_STRING }, { "--undef-op", 'u', RTGETOPT_REQ_STRING }, { "--hex-bytes", 'x', RTGETOPT_REQ_NOTHING }, }; int ch; RTGETOPTUNION ValueUnion; RTGETOPTSTATE GetState; RTGetOptInit(&GetState, argc, argv, g_aOptions, RT_ELEMENTS(g_aOptions), 1, RTGETOPTINIT_FLAGS_OPTS_FIRST); while ( (ch = RTGetOpt(&GetState, &ValueUnion)) && ch != VINF_GETOPT_NOT_OPTION) { switch (ch) { case 'a': uAddress = ValueUnion.u64; break; case 'b': cbMax = ValueUnion.i64; break; case 'c': if (ValueUnion.u32 == 16) enmCpuMode = DISCPUMODE_16BIT; else if (ValueUnion.u32 == 32) enmCpuMode = DISCPUMODE_32BIT; else if (ValueUnion.u32 == 64) enmCpuMode = DISCPUMODE_64BIT; else { RTStrmPrintf(g_pStdErr, "%s: Invalid CPU mode value %RU32\n", argv0, ValueUnion.u32); return 1; } break; case 'h': return Usage(argv0); case 'l': fListing = true; break; case 'L': fListing = false; break; case 'o': off = ValueUnion.i64; break; case 's': if (!strcmp(ValueUnion.psz, "default")) enmStyle = kAsmStyle_Default; else if (!strcmp(ValueUnion.psz, "yasm")) enmStyle = kAsmStyle_yasm; else if (!strcmp(ValueUnion.psz, "masm")) { enmStyle = kAsmStyle_masm; RTStrmPrintf(g_pStdErr, "%s: masm style isn't implemented yet\n", argv0); return 1; } else { RTStrmPrintf(g_pStdErr, "%s: unknown assembly style: %s\n", argv0, ValueUnion.psz); return 1; } break; case 'u': if (!strcmp(ValueUnion.psz, "fail")) enmUndefOp = kUndefOp_Fail; else if (!strcmp(ValueUnion.psz, "all")) enmUndefOp = kUndefOp_All; else if (!strcmp(ValueUnion.psz, "db")) enmUndefOp = kUndefOp_DefineByte; else { RTStrmPrintf(g_pStdErr, "%s: unknown undefined opcode handling method: %s\n", argv0, ValueUnion.psz); return 1; } break; case 'x': fHexBytes = true; break; case 'V': RTPrintf("$Revision: $\n"); return 0; default: return RTGetOptPrintError(ch, &ValueUnion); } } int iArg = GetState.iNext - 1; /** @todo Not pretty, add RTGetOptInit flag for this. */ if (iArg >= argc) return Usage(argv0); int rc = VINF_SUCCESS; if (fHexBytes) { /* * Convert the remaining arguments from a hex byte string into * a buffer that we disassemble. */ size_t cb = 0; uint8_t *pb = NULL; for ( ; iArg < argc; iArg++) { char ch2; const char *psz = argv[iArg]; while (*psz) { /** @todo this stuff belongs in IPRT, same stuff as mac address reading. Could be reused for IPv6 with a different item size.*/ /* skip white space, and for the benefit of linux panics '<' and '>'. */ while (RT_C_IS_SPACE(ch2 = *psz) || ch2 == '<' || ch2 == '>') { if (ch2 == '<') uHighlightAddr = uAddress + cb; psz++; } if (!ch2) break; /* one digit followed by a space or EOS, or two digits. */ int iNum = HexDigitToNum(*psz++); if (iNum == -1) return 1; if (!RT_C_IS_SPACE(ch2 = *psz) && ch2 != '\0' && ch2 != '>') { int iDigit = HexDigitToNum(*psz++); if (iDigit == -1) return 1; iNum = iNum * 16 + iDigit; } /* add the byte */ if (!(cb % 4 /*64*/)) { pb = (uint8_t *)RTMemRealloc(pb, cb + 64); if (!pb) { RTPrintf("%s: error: RTMemRealloc failed\n", argv[0]); return 1; } } pb[cb++] = (uint8_t)iNum; } } /* * Disassemble it. */ rc = MyDisasmBlock(argv0, enmCpuMode, uAddress, uHighlightAddr, pb, cb, enmStyle, fListing, enmUndefOp); } else { /* * Process the files. */ for ( ; iArg < argc; iArg++) { /* * Read the file into memory. */ void *pvFile; size_t cbFile; rc = RTFileReadAllEx(argv[iArg], off, cbMax, RTFILE_RDALL_O_DENY_NONE, &pvFile, &cbFile); if (RT_FAILURE(rc)) { RTStrmPrintf(g_pStdErr, "%s: %s: %Rrc\n", argv0, argv[iArg], rc); break; } /* * Disassemble it. */ rc = MyDisasmBlock(argv0, enmCpuMode, uAddress, uHighlightAddr, (uint8_t *)pvFile, cbFile, enmStyle, fListing, enmUndefOp); if (RT_FAILURE(rc)) break; } } return RT_SUCCESS(rc) ? 0 : 1; }