VirtualBox

source: vbox/trunk/src/VBox/ExtPacks/VBoxDTrace/onnv/uts/common/sys/dtrace.h@ 53663

Last change on this file since 53663 was 53652, checked in by vboxsync, 10 years ago

VBoxDTrace: porting libdtrace... (r22)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 96.6 KB
Line 
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#ifndef _SYS_DTRACE_H
28#define _SYS_DTRACE_H
29
30#ifdef __cplusplus
31extern "C" {
32#endif
33
34/*
35 * DTrace Dynamic Tracing Software: Kernel Interfaces
36 *
37 * Note: The contents of this file are private to the implementation of the
38 * Solaris system and DTrace subsystem and are subject to change at any time
39 * without notice. Applications and drivers using these interfaces will fail
40 * to run on future releases. These interfaces should not be used for any
41 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
42 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
43 */
44
45#ifndef _ASM
46
47#ifndef VBOX
48#include <sys/types.h>
49#include <sys/modctl.h>
50#include <sys/processor.h>
51#include <sys/systm.h>
52#include <sys/cyclic.h>
53#include <sys/int_limits.h>
54#else
55# include <VBoxDTraceTypes.h>
56# include <sys/ctf_api.h>
57#endif
58
59/*
60 * DTrace Universal Constants and Typedefs
61 */
62#define DTRACE_CPUALL -1 /* all CPUs */
63#define DTRACE_IDNONE 0 /* invalid probe identifier */
64#define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
65#define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
66#define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
67#define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
68#define DTRACE_PROVNONE 0 /* invalid provider identifier */
69#define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
70#define DTRACE_ARGNONE -1 /* invalid argument index */
71
72#define DTRACE_PROVNAMELEN 64
73#define DTRACE_MODNAMELEN 64
74#define DTRACE_FUNCNAMELEN 128
75#define DTRACE_NAMELEN 64
76#define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
77 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
78#define DTRACE_ARGTYPELEN 128
79
80typedef uint32_t dtrace_id_t; /* probe identifier */
81typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
82typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
83typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
84typedef uint16_t dtrace_actkind_t; /* action kind */
85typedef int64_t dtrace_optval_t; /* option value */
86typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
87
88typedef enum dtrace_probespec {
89 DTRACE_PROBESPEC_NONE = -1,
90 DTRACE_PROBESPEC_PROVIDER = 0,
91 DTRACE_PROBESPEC_MOD,
92 DTRACE_PROBESPEC_FUNC,
93 DTRACE_PROBESPEC_NAME
94} dtrace_probespec_t;
95
96/*
97 * DTrace Intermediate Format (DIF)
98 *
99 * The following definitions describe the DTrace Intermediate Format (DIF), a
100 * a RISC-like instruction set and program encoding used to represent
101 * predicates and actions that can be bound to DTrace probes. The constants
102 * below defining the number of available registers are suggested minimums; the
103 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
104 * registers provided by the current DTrace implementation.
105 */
106#define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
107#define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
108#define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
109#define DIF_DIR_NREGS 8 /* number of DIF integer registers */
110#define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
111
112#define DIF_OP_OR 1 /* or r1, r2, rd */
113#define DIF_OP_XOR 2 /* xor r1, r2, rd */
114#define DIF_OP_AND 3 /* and r1, r2, rd */
115#define DIF_OP_SLL 4 /* sll r1, r2, rd */
116#define DIF_OP_SRL 5 /* srl r1, r2, rd */
117#define DIF_OP_SUB 6 /* sub r1, r2, rd */
118#define DIF_OP_ADD 7 /* add r1, r2, rd */
119#define DIF_OP_MUL 8 /* mul r1, r2, rd */
120#define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
121#define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
122#define DIF_OP_SREM 11 /* srem r1, r2, rd */
123#define DIF_OP_UREM 12 /* urem r1, r2, rd */
124#define DIF_OP_NOT 13 /* not r1, rd */
125#define DIF_OP_MOV 14 /* mov r1, rd */
126#define DIF_OP_CMP 15 /* cmp r1, r2 */
127#define DIF_OP_TST 16 /* tst r1 */
128#define DIF_OP_BA 17 /* ba label */
129#define DIF_OP_BE 18 /* be label */
130#define DIF_OP_BNE 19 /* bne label */
131#define DIF_OP_BG 20 /* bg label */
132#define DIF_OP_BGU 21 /* bgu label */
133#define DIF_OP_BGE 22 /* bge label */
134#define DIF_OP_BGEU 23 /* bgeu label */
135#define DIF_OP_BL 24 /* bl label */
136#define DIF_OP_BLU 25 /* blu label */
137#define DIF_OP_BLE 26 /* ble label */
138#define DIF_OP_BLEU 27 /* bleu label */
139#define DIF_OP_LDSB 28 /* ldsb [r1], rd */
140#define DIF_OP_LDSH 29 /* ldsh [r1], rd */
141#define DIF_OP_LDSW 30 /* ldsw [r1], rd */
142#define DIF_OP_LDUB 31 /* ldub [r1], rd */
143#define DIF_OP_LDUH 32 /* lduh [r1], rd */
144#define DIF_OP_LDUW 33 /* lduw [r1], rd */
145#define DIF_OP_LDX 34 /* ldx [r1], rd */
146#define DIF_OP_RET 35 /* ret rd */
147#define DIF_OP_NOP 36 /* nop */
148#define DIF_OP_SETX 37 /* setx intindex, rd */
149#define DIF_OP_SETS 38 /* sets strindex, rd */
150#define DIF_OP_SCMP 39 /* scmp r1, r2 */
151#define DIF_OP_LDGA 40 /* ldga var, ri, rd */
152#define DIF_OP_LDGS 41 /* ldgs var, rd */
153#define DIF_OP_STGS 42 /* stgs var, rs */
154#define DIF_OP_LDTA 43 /* ldta var, ri, rd */
155#define DIF_OP_LDTS 44 /* ldts var, rd */
156#define DIF_OP_STTS 45 /* stts var, rs */
157#define DIF_OP_SRA 46 /* sra r1, r2, rd */
158#define DIF_OP_CALL 47 /* call subr, rd */
159#define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
160#define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
161#define DIF_OP_POPTS 50 /* popts */
162#define DIF_OP_FLUSHTS 51 /* flushts */
163#define DIF_OP_LDGAA 52 /* ldgaa var, rd */
164#define DIF_OP_LDTAA 53 /* ldtaa var, rd */
165#define DIF_OP_STGAA 54 /* stgaa var, rs */
166#define DIF_OP_STTAA 55 /* sttaa var, rs */
167#define DIF_OP_LDLS 56 /* ldls var, rd */
168#define DIF_OP_STLS 57 /* stls var, rs */
169#define DIF_OP_ALLOCS 58 /* allocs r1, rd */
170#define DIF_OP_COPYS 59 /* copys r1, r2, rd */
171#define DIF_OP_STB 60 /* stb r1, [rd] */
172#define DIF_OP_STH 61 /* sth r1, [rd] */
173#define DIF_OP_STW 62 /* stw r1, [rd] */
174#define DIF_OP_STX 63 /* stx r1, [rd] */
175#define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
176#define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
177#define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
178#define DIF_OP_ULDUB 67 /* uldub [r1], rd */
179#define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
180#define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
181#define DIF_OP_ULDX 70 /* uldx [r1], rd */
182#define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
183#define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
184#define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
185#define DIF_OP_RLDUB 74 /* rldub [r1], rd */
186#define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
187#define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
188#define DIF_OP_RLDX 77 /* rldx [r1], rd */
189#define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
190#define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
191
192#define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
193#define DIF_STROFF_MAX 0xffff /* highest string table offset */
194#define DIF_REGISTER_MAX 0xff /* highest register number */
195#define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
196#define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
197
198#define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
199#define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
200#define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
201
202#define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
203#define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
204#define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
205
206#define DIF_VAR_ARGS 0x0000 /* arguments array */
207#define DIF_VAR_REGS 0x0001 /* registers array */
208#define DIF_VAR_UREGS 0x0002 /* user registers array */
209#define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
210#define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
211#define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
212#define DIF_VAR_IPL 0x0103 /* interrupt priority level */
213#define DIF_VAR_EPID 0x0104 /* enabled probe ID */
214#define DIF_VAR_ID 0x0105 /* probe ID */
215#define DIF_VAR_ARG0 0x0106 /* first argument */
216#define DIF_VAR_ARG1 0x0107 /* second argument */
217#define DIF_VAR_ARG2 0x0108 /* third argument */
218#define DIF_VAR_ARG3 0x0109 /* fourth argument */
219#define DIF_VAR_ARG4 0x010a /* fifth argument */
220#define DIF_VAR_ARG5 0x010b /* sixth argument */
221#define DIF_VAR_ARG6 0x010c /* seventh argument */
222#define DIF_VAR_ARG7 0x010d /* eighth argument */
223#define DIF_VAR_ARG8 0x010e /* ninth argument */
224#define DIF_VAR_ARG9 0x010f /* tenth argument */
225#define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
226#define DIF_VAR_CALLER 0x0111 /* caller */
227#define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
228#define DIF_VAR_PROBEMOD 0x0113 /* probe module */
229#define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
230#define DIF_VAR_PROBENAME 0x0115 /* probe name */
231#define DIF_VAR_PID 0x0116 /* process ID */
232#define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
233#define DIF_VAR_EXECNAME 0x0118 /* name of executable */
234#define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
235#define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
236#define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
237#define DIF_VAR_UCALLER 0x011c /* user-level caller */
238#define DIF_VAR_PPID 0x011d /* parent process ID */
239#define DIF_VAR_UID 0x011e /* process user ID */
240#define DIF_VAR_GID 0x011f /* process group ID */
241#define DIF_VAR_ERRNO 0x0120 /* thread errno */
242
243#define DIF_SUBR_RAND 0
244#define DIF_SUBR_MUTEX_OWNED 1
245#define DIF_SUBR_MUTEX_OWNER 2
246#define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
247#define DIF_SUBR_MUTEX_TYPE_SPIN 4
248#define DIF_SUBR_RW_READ_HELD 5
249#define DIF_SUBR_RW_WRITE_HELD 6
250#define DIF_SUBR_RW_ISWRITER 7
251#define DIF_SUBR_COPYIN 8
252#define DIF_SUBR_COPYINSTR 9
253#define DIF_SUBR_SPECULATION 10
254#define DIF_SUBR_PROGENYOF 11
255#define DIF_SUBR_STRLEN 12
256#define DIF_SUBR_COPYOUT 13
257#define DIF_SUBR_COPYOUTSTR 14
258#define DIF_SUBR_ALLOCA 15
259#define DIF_SUBR_BCOPY 16
260#define DIF_SUBR_COPYINTO 17
261#define DIF_SUBR_MSGDSIZE 18
262#define DIF_SUBR_MSGSIZE 19
263#define DIF_SUBR_GETMAJOR 20
264#define DIF_SUBR_GETMINOR 21
265#define DIF_SUBR_DDI_PATHNAME 22
266#define DIF_SUBR_STRJOIN 23
267#define DIF_SUBR_LLTOSTR 24
268#define DIF_SUBR_BASENAME 25
269#define DIF_SUBR_DIRNAME 26
270#define DIF_SUBR_CLEANPATH 27
271#define DIF_SUBR_STRCHR 28
272#define DIF_SUBR_STRRCHR 29
273#define DIF_SUBR_STRSTR 30
274#define DIF_SUBR_STRTOK 31
275#define DIF_SUBR_SUBSTR 32
276#define DIF_SUBR_INDEX 33
277#define DIF_SUBR_RINDEX 34
278#define DIF_SUBR_HTONS 35
279#define DIF_SUBR_HTONL 36
280#define DIF_SUBR_HTONLL 37
281#define DIF_SUBR_NTOHS 38
282#define DIF_SUBR_NTOHL 39
283#define DIF_SUBR_NTOHLL 40
284#define DIF_SUBR_INET_NTOP 41
285#define DIF_SUBR_INET_NTOA 42
286#define DIF_SUBR_INET_NTOA6 43
287
288#define DIF_SUBR_MAX 43 /* max subroutine value */
289
290typedef uint32_t dif_instr_t;
291
292#define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
293#define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
294#define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
295#define DIF_INSTR_RD(i) ((i) & 0xff)
296#define DIF_INSTR_RS(i) ((i) & 0xff)
297#define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
298#define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
299#define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
300#define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
301#define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
302#define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
303#define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
304
305#define DIF_INSTR_FMT(op, r1, r2, d) \
306 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
307
308#define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
309#define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
310#define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
311#define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
312#define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
313#define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
314#define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
315#define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
316#define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
317#define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
318#define DIF_INSTR_NOP (DIF_OP_NOP << 24)
319#define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
320#define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
321#define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
322#define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
323#define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
324#define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
325#define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
326#define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
327#define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
328#define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
329
330#define DIF_REG_R0 0 /* %r0 is always set to zero */
331
332/*
333 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
334 * of variables, function and associative array arguments, and the return type
335 * for each DIF object (shown below). It contains a description of the type,
336 * its size in bytes, and a module identifier.
337 */
338typedef struct dtrace_diftype {
339 uint8_t dtdt_kind; /* type kind (see below) */
340 uint8_t dtdt_ckind; /* type kind in CTF */
341 uint8_t dtdt_flags; /* type flags (see below) */
342 uint8_t dtdt_pad; /* reserved for future use */
343 uint32_t dtdt_size; /* type size in bytes (unless string) */
344} dtrace_diftype_t;
345
346#define DIF_TYPE_CTF 0 /* type is a CTF type */
347#define DIF_TYPE_STRING 1 /* type is a D string */
348
349#define DIF_TF_BYREF 0x1 /* type is passed by reference */
350
351/*
352 * A DTrace Intermediate Format variable record is used to describe each of the
353 * variables referenced by a given DIF object. It contains an integer variable
354 * identifier along with variable scope and properties, as shown below. The
355 * size of this structure must be sizeof (int) aligned.
356 */
357typedef struct dtrace_difv {
358 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
359 uint32_t dtdv_id; /* variable reference identifier */
360 uint8_t dtdv_kind; /* variable kind (see below) */
361 uint8_t dtdv_scope; /* variable scope (see below) */
362 uint16_t dtdv_flags; /* variable flags (see below) */
363 dtrace_diftype_t dtdv_type; /* variable type (see above) */
364} dtrace_difv_t;
365
366#define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
367#define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
368
369#define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
370#define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
371#define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
372
373#define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
374#define DIFV_F_MOD 0x2 /* variable is written by DIFO */
375
376/*
377 * DTrace Actions
378 *
379 * The upper byte determines the class of the action; the low bytes determines
380 * the specific action within that class. The classes of actions are as
381 * follows:
382 *
383 * [ no class ] <= May record process- or kernel-related data
384 * DTRACEACT_PROC <= Only records process-related data
385 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
386 * DTRACEACT_KERNEL <= Only records kernel-related data
387 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
388 * DTRACEACT_SPECULATIVE <= Speculation-related action
389 * DTRACEACT_AGGREGATION <= Aggregating action
390 */
391#define DTRACEACT_NONE 0 /* no action */
392#define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
393#define DTRACEACT_EXIT 2 /* exit() action */
394#define DTRACEACT_PRINTF 3 /* printf() action */
395#define DTRACEACT_PRINTA 4 /* printa() action */
396#define DTRACEACT_LIBACT 5 /* library-controlled action */
397
398#define DTRACEACT_PROC 0x0100
399#define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
400#define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
401#define DTRACEACT_USYM (DTRACEACT_PROC + 3)
402#define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
403#define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
404
405#define DTRACEACT_PROC_DESTRUCTIVE 0x0200
406#define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
407#define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
408#define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
409#define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
410
411#define DTRACEACT_PROC_CONTROL 0x0300
412
413#define DTRACEACT_KERNEL 0x0400
414#define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
415#define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
416#define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
417
418#define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
419#define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
420#define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
421#define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
422
423#define DTRACEACT_SPECULATIVE 0x0600
424#define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
425#define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
426#define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
427
428#define DTRACEACT_CLASS(x) ((x) & 0xff00)
429
430#define DTRACEACT_ISDESTRUCTIVE(x) \
431 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
432 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
433
434#define DTRACEACT_ISSPECULATIVE(x) \
435 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
436
437#define DTRACEACT_ISPRINTFLIKE(x) \
438 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
439 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
440
441/*
442 * DTrace Aggregating Actions
443 *
444 * These are functions f(x) for which the following is true:
445 *
446 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
447 *
448 * where x_n is a set of arbitrary data. Aggregating actions are in their own
449 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
450 * for easier processing of the aggregation argument and data payload for a few
451 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
452 */
453#define DTRACEACT_AGGREGATION 0x0700
454#define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
455#define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
456#define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
457#define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
458#define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
459#define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
460#define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
461#define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
462
463#define DTRACEACT_ISAGG(x) \
464 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
465
466#define DTRACE_QUANTIZE_NBUCKETS \
467 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
468
469#define DTRACE_QUANTIZE_ZEROBUCKET (VBDTCAST(int)(sizeof (uint64_t) * NBBY) - 1)
470
471#define DTRACE_QUANTIZE_BUCKETVAL(buck) \
472 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
473 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
474 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
475 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
476
477#define DTRACE_LQUANTIZE_STEPSHIFT 48
478#define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
479#define DTRACE_LQUANTIZE_LEVELSHIFT 32
480#define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
481#define DTRACE_LQUANTIZE_BASESHIFT 0
482#define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
483
484#define DTRACE_LQUANTIZE_STEP(x) \
485 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
486 DTRACE_LQUANTIZE_STEPSHIFT)
487
488#define DTRACE_LQUANTIZE_LEVELS(x) \
489 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
490 DTRACE_LQUANTIZE_LEVELSHIFT)
491
492#define DTRACE_LQUANTIZE_BASE(x) \
493 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
494 DTRACE_LQUANTIZE_BASESHIFT)
495
496#define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
497#define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
498#define DTRACE_USTACK_ARG(x, y) \
499 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
500
501#ifndef _LP64
502#ifndef _LITTLE_ENDIAN
503#define DTRACE_PTR(type, name) uint32_t name##pad; type *name
504#else
505#define DTRACE_PTR(type, name) type *name; uint32_t name##pad
506#endif
507#else
508#define DTRACE_PTR(type, name) type *name
509#endif
510
511/*
512 * DTrace Object Format (DOF)
513 *
514 * DTrace programs can be persistently encoded in the DOF format so that they
515 * may be embedded in other programs (for example, in an ELF file) or in the
516 * dtrace driver configuration file for use in anonymous tracing. The DOF
517 * format is versioned and extensible so that it can be revised and so that
518 * internal data structures can be modified or extended compatibly. All DOF
519 * structures use fixed-size types, so the 32-bit and 64-bit representations
520 * are identical and consumers can use either data model transparently.
521 *
522 * The file layout is structured as follows:
523 *
524 * +---------------+-------------------+----- ... ----+---- ... ------+
525 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
526 * | (file header) | (section headers) | section data | section data |
527 * +---------------+-------------------+----- ... ----+---- ... ------+
528 * |<------------ dof_hdr.dofh_loadsz --------------->| |
529 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
530 *
531 * The file header stores meta-data including a magic number, data model for
532 * the instrumentation, data encoding, and properties of the DIF code within.
533 * The header describes its own size and the size of the section headers. By
534 * convention, an array of section headers follows the file header, and then
535 * the data for all loadable sections and unloadable sections. This permits
536 * consumer code to easily download the headers and all loadable data into the
537 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
538 *
539 * The section headers describe the size, offset, alignment, and section type
540 * for each section. Sections are described using a set of #defines that tell
541 * the consumer what kind of data is expected. Sections can contain links to
542 * other sections by storing a dof_secidx_t, an index into the section header
543 * array, inside of the section data structures. The section header includes
544 * an entry size so that sections with data arrays can grow their structures.
545 *
546 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
547 * are represented themselves as a collection of related DOF sections. This
548 * permits us to change the set of sections associated with a DIFO over time,
549 * and also permits us to encode DIFOs that contain different sets of sections.
550 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
551 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
552 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
553 *
554 * This loose coupling of the file structure (header and sections) to the
555 * structure of the DTrace program itself (ECB descriptions, action
556 * descriptions, and DIFOs) permits activities such as relocation processing
557 * to occur in a single pass without having to understand D program structure.
558 *
559 * Finally, strings are always stored in ELF-style string tables along with a
560 * string table section index and string table offset. Therefore strings in
561 * DOF are always arbitrary-length and not bound to the current implementation.
562 */
563
564#define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
565
566typedef struct dof_hdr {
567 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
568 uint32_t dofh_flags; /* file attribute flags (if any) */
569 uint32_t dofh_hdrsize; /* size of file header in bytes */
570 uint32_t dofh_secsize; /* size of section header in bytes */
571 uint32_t dofh_secnum; /* number of section headers */
572 uint64_t dofh_secoff; /* file offset of section headers */
573 uint64_t dofh_loadsz; /* file size of loadable portion */
574 uint64_t dofh_filesz; /* file size of entire DOF file */
575 uint64_t dofh_pad; /* reserved for future use */
576} dof_hdr_t;
577
578#define DOF_ID_MAG0 0 /* first byte of magic number */
579#define DOF_ID_MAG1 1 /* second byte of magic number */
580#define DOF_ID_MAG2 2 /* third byte of magic number */
581#define DOF_ID_MAG3 3 /* fourth byte of magic number */
582#define DOF_ID_MODEL 4 /* DOF data model (see below) */
583#define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
584#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
585#define DOF_ID_DIFVERS 7 /* DIF instruction set version */
586#define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
587#define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
588#define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
589
590#define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
591#define DOF_MAG_MAG1 'D'
592#define DOF_MAG_MAG2 'O'
593#define DOF_MAG_MAG3 'F'
594
595#define DOF_MAG_STRING "\177DOF"
596#define DOF_MAG_STRLEN 4
597
598#define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
599#define DOF_MODEL_ILP32 1
600#define DOF_MODEL_LP64 2
601
602#ifdef _LP64
603#define DOF_MODEL_NATIVE DOF_MODEL_LP64
604#else
605#define DOF_MODEL_NATIVE DOF_MODEL_ILP32
606#endif
607
608#define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
609#define DOF_ENCODE_LSB 1
610#define DOF_ENCODE_MSB 2
611
612#ifdef _BIG_ENDIAN
613#define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
614#else
615#define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
616#endif
617
618#define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
619#define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
620#define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
621
622#define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
623
624typedef uint32_t dof_secidx_t; /* section header table index type */
625typedef uint32_t dof_stridx_t; /* string table index type */
626
627#define DOF_SECIDX_NONE (~1U) /* null value for section indices */
628#define DOF_STRIDX_NONE (~1U) /* null value for string indices */
629
630typedef struct dof_sec {
631 uint32_t dofs_type; /* section type (see below) */
632 uint32_t dofs_align; /* section data memory alignment */
633 uint32_t dofs_flags; /* section flags (if any) */
634 uint32_t dofs_entsize; /* size of section entry (if table) */
635 uint64_t dofs_offset; /* offset of section data within file */
636 uint64_t dofs_size; /* size of section data in bytes */
637} dof_sec_t;
638
639#define DOF_SECT_NONE 0 /* null section */
640#define DOF_SECT_COMMENTS 1 /* compiler comments */
641#define DOF_SECT_SOURCE 2 /* D program source code */
642#define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
643#define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
644#define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
645#define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
646#define DOF_SECT_DIF 7 /* uint32_t array of byte code */
647#define DOF_SECT_STRTAB 8 /* string table */
648#define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
649#define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
650#define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
651#define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
652#define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
653#define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
654#define DOF_SECT_PROVIDER 15 /* dof_provider_t */
655#define DOF_SECT_PROBES 16 /* dof_probe_t array */
656#define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
657#define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
658#define DOF_SECT_INTTAB 19 /* uint64_t array */
659#define DOF_SECT_UTSNAME 20 /* struct utsname */
660#define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
661#define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
662#define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
663#define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
664#define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
665#define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
666
667#define DOF_SECF_LOAD 1 /* section should be loaded */
668
669#define DOF_SEC_ISLOADABLE(x) \
670 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
671 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
672 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
673 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
674 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
675 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
676 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
677 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
678 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
679 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
680 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
681 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
682
683typedef struct dof_ecbdesc {
684 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
685 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
686 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
687 uint32_t dofe_pad; /* reserved for future use */
688 uint64_t dofe_uarg; /* user-supplied library argument */
689} dof_ecbdesc_t;
690
691typedef struct dof_probedesc {
692 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
693 dof_stridx_t dofp_provider; /* provider string */
694 dof_stridx_t dofp_mod; /* module string */
695 dof_stridx_t dofp_func; /* function string */
696 dof_stridx_t dofp_name; /* name string */
697 uint32_t dofp_id; /* probe identifier (or zero) */
698} dof_probedesc_t;
699
700typedef struct dof_actdesc {
701 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
702 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
703 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
704 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
705 uint64_t dofa_arg; /* kind-specific argument */
706 uint64_t dofa_uarg; /* user-supplied argument */
707} dof_actdesc_t;
708
709typedef struct dof_difohdr {
710 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
711 dof_secidx_t dofd_links[1]; /* variable length array of indices */
712} dof_difohdr_t;
713
714typedef struct dof_relohdr {
715 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
716 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
717 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
718} dof_relohdr_t;
719
720typedef struct dof_relodesc {
721 dof_stridx_t dofr_name; /* string name of relocation symbol */
722 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
723 uint64_t dofr_offset; /* byte offset for relocation */
724 uint64_t dofr_data; /* additional type-specific data */
725} dof_relodesc_t;
726
727#define DOF_RELO_NONE 0 /* empty relocation entry */
728#define DOF_RELO_SETX 1 /* relocate setx value */
729
730typedef struct dof_optdesc {
731 uint32_t dofo_option; /* option identifier */
732 dof_secidx_t dofo_strtab; /* string table, if string option */
733 uint64_t dofo_value; /* option value or string index */
734} dof_optdesc_t;
735
736typedef uint32_t dof_attr_t; /* encoded stability attributes */
737
738#define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
739#define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
740#define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
741#define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
742
743typedef struct dof_provider {
744 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
745 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
746 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
747 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
748 dof_stridx_t dofpv_name; /* provider name string */
749 dof_attr_t dofpv_provattr; /* provider attributes */
750 dof_attr_t dofpv_modattr; /* module attributes */
751 dof_attr_t dofpv_funcattr; /* function attributes */
752 dof_attr_t dofpv_nameattr; /* name attributes */
753 dof_attr_t dofpv_argsattr; /* args attributes */
754 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
755} dof_provider_t;
756
757typedef struct dof_probe {
758 uint64_t dofpr_addr; /* probe base address or offset */
759 dof_stridx_t dofpr_func; /* probe function string */
760 dof_stridx_t dofpr_name; /* probe name string */
761 dof_stridx_t dofpr_nargv; /* native argument type strings */
762 dof_stridx_t dofpr_xargv; /* translated argument type strings */
763 uint32_t dofpr_argidx; /* index of first argument mapping */
764 uint32_t dofpr_offidx; /* index of first offset entry */
765 uint8_t dofpr_nargc; /* native argument count */
766 uint8_t dofpr_xargc; /* translated argument count */
767 uint16_t dofpr_noffs; /* number of offset entries for probe */
768 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
769 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
770 uint16_t dofpr_pad1; /* reserved for future use */
771 uint32_t dofpr_pad2; /* reserved for future use */
772} dof_probe_t;
773
774typedef struct dof_xlator {
775 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
776 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
777 dof_stridx_t dofxl_argv; /* input parameter type strings */
778 uint32_t dofxl_argc; /* input parameter list length */
779 dof_stridx_t dofxl_type; /* output type string name */
780 dof_attr_t dofxl_attr; /* output stability attributes */
781} dof_xlator_t;
782
783typedef struct dof_xlmember {
784 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
785 dof_stridx_t dofxm_name; /* member name */
786 dtrace_diftype_t dofxm_type; /* member type */
787} dof_xlmember_t;
788
789typedef struct dof_xlref {
790 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
791 uint32_t dofxr_member; /* index of referenced dof_xlmember */
792 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
793} dof_xlref_t;
794
795/*
796 * DTrace Intermediate Format Object (DIFO)
797 *
798 * A DIFO is used to store the compiled DIF for a D expression, its return
799 * type, and its string and variable tables. The string table is a single
800 * buffer of character data into which sets instructions and variable
801 * references can reference strings using a byte offset. The variable table
802 * is an array of dtrace_difv_t structures that describe the name and type of
803 * each variable and the id used in the DIF code. This structure is described
804 * above in the DIF section of this header file. The DIFO is used at both
805 * user-level (in the library) and in the kernel, but the structure is never
806 * passed between the two: the DOF structures form the only interface. As a
807 * result, the definition can change depending on the presence of _KERNEL.
808 */
809typedef struct dtrace_difo {
810 dif_instr_t *dtdo_buf; /* instruction buffer */
811 uint64_t *dtdo_inttab; /* integer table (optional) */
812 char *dtdo_strtab; /* string table (optional) */
813 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
814 uint_t dtdo_len; /* length of instruction buffer */
815 uint_t dtdo_intlen; /* length of integer table */
816 uint_t dtdo_strlen; /* length of string table */
817 uint_t dtdo_varlen; /* length of variable table */
818 dtrace_diftype_t dtdo_rtype; /* return type */
819 uint_t dtdo_refcnt; /* owner reference count */
820 uint_t dtdo_destructive; /* invokes destructive subroutines */
821#if !defined(_KERNEL) || defined(IN_RING3)
822 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
823 dof_relodesc_t *dtdo_ureltab; /* user relocations */
824 struct dt_node **dtdo_xlmtab; /* translator references */
825 uint_t dtdo_krelen; /* length of krelo table */
826 uint_t dtdo_urelen; /* length of urelo table */
827 uint_t dtdo_xlmlen; /* length of translator table */
828#endif
829} dtrace_difo_t;
830
831/*
832 * DTrace Enabling Description Structures
833 *
834 * When DTrace is tracking the description of a DTrace enabling entity (probe,
835 * predicate, action, ECB, record, etc.), it does so in a description
836 * structure. These structures all end in "desc", and are used at both
837 * user-level and in the kernel -- but (with the exception of
838 * dtrace_probedesc_t) they are never passed between them. Typically,
839 * user-level will use the description structures when assembling an enabling.
840 * It will then distill those description structures into a DOF object (see
841 * above), and send it into the kernel. The kernel will again use the
842 * description structures to create a description of the enabling as it reads
843 * the DOF. When the description is complete, the enabling will be actually
844 * created -- turning it into the structures that represent the enabling
845 * instead of merely describing it. Not surprisingly, the description
846 * structures bear a strong resemblance to the DOF structures that act as their
847 * conduit.
848 */
849struct dtrace_predicate;
850
851typedef struct dtrace_probedesc {
852 dtrace_id_t dtpd_id; /* probe identifier */
853 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
854 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
855 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
856 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
857} dtrace_probedesc_t;
858
859typedef struct dtrace_repldesc {
860 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
861 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
862} dtrace_repldesc_t;
863
864typedef struct dtrace_preddesc {
865 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
866 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
867} dtrace_preddesc_t;
868
869typedef struct dtrace_actdesc {
870 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
871 struct dtrace_actdesc *dtad_next; /* next action */
872 dtrace_actkind_t dtad_kind; /* kind of action */
873 uint32_t dtad_ntuple; /* number in tuple */
874 uint64_t dtad_arg; /* action argument */
875 uint64_t dtad_uarg; /* user argument */
876 int dtad_refcnt; /* reference count */
877} dtrace_actdesc_t;
878
879typedef struct dtrace_ecbdesc {
880 dtrace_actdesc_t *dted_action; /* action description(s) */
881 dtrace_preddesc_t dted_pred; /* predicate description */
882 dtrace_probedesc_t dted_probe; /* probe description */
883 uint64_t dted_uarg; /* library argument */
884 int dted_refcnt; /* reference count */
885} dtrace_ecbdesc_t;
886
887/*
888 * DTrace Metadata Description Structures
889 *
890 * DTrace separates the trace data stream from the metadata stream. The only
891 * metadata tokens placed in the data stream are enabled probe identifiers
892 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order
893 * to determine the structure of the data, DTrace consumers pass the token to
894 * the kernel, and receive in return a corresponding description of the enabled
895 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
896 * dtrace_aggdesc structure). Both of these structures are expressed in terms
897 * of record descriptions (via the dtrace_recdesc structure) that describe the
898 * exact structure of the data. Some record descriptions may also contain a
899 * format identifier; this additional bit of metadata can be retrieved from the
900 * kernel, for which a format description is returned via the dtrace_fmtdesc
901 * structure. Note that all four of these structures must be bitness-neutral
902 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
903 */
904typedef struct dtrace_recdesc {
905 dtrace_actkind_t dtrd_action; /* kind of action */
906 uint32_t dtrd_size; /* size of record */
907 uint32_t dtrd_offset; /* offset in ECB's data */
908 uint16_t dtrd_alignment; /* required alignment */
909 uint16_t dtrd_format; /* format, if any */
910 uint64_t dtrd_arg; /* action argument */
911 uint64_t dtrd_uarg; /* user argument */
912} dtrace_recdesc_t;
913
914typedef struct dtrace_eprobedesc {
915 dtrace_epid_t dtepd_epid; /* enabled probe ID */
916 dtrace_id_t dtepd_probeid; /* probe ID */
917 uint64_t dtepd_uarg; /* library argument */
918 uint32_t dtepd_size; /* total size */
919 int dtepd_nrecs; /* number of records */
920 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
921} dtrace_eprobedesc_t;
922
923typedef struct dtrace_aggdesc {
924 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
925 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
926 int dtagd_flags; /* not filled in by kernel */
927 dtrace_aggid_t dtagd_id; /* aggregation ID */
928 dtrace_epid_t dtagd_epid; /* enabled probe ID */
929 uint32_t dtagd_size; /* size in bytes */
930 int dtagd_nrecs; /* number of records */
931 uint32_t dtagd_pad; /* explicit padding */
932 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
933} dtrace_aggdesc_t;
934
935typedef struct dtrace_fmtdesc {
936 DTRACE_PTR(char, dtfd_string); /* format string */
937 int dtfd_length; /* length of format string */
938 uint16_t dtfd_format; /* format identifier */
939} dtrace_fmtdesc_t;
940
941#define DTRACE_SIZEOF_EPROBEDESC(desc) \
942 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
943 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
944
945#define DTRACE_SIZEOF_AGGDESC(desc) \
946 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
947 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
948
949/*
950 * DTrace Option Interface
951 *
952 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
953 * in a DOF image. The dof_optdesc structure contains an option identifier and
954 * an option value. The valid option identifiers are found below; the mapping
955 * between option identifiers and option identifying strings is maintained at
956 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
957 * following are potentially valid option values: all positive integers, zero
958 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
959 * predefined tokens as their values; these are defined with
960 * DTRACEOPT_{option}_{token}.
961 */
962#define DTRACEOPT_BUFSIZE 0 /* buffer size */
963#define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
964#define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
965#define DTRACEOPT_AGGSIZE 3 /* aggregation size */
966#define DTRACEOPT_SPECSIZE 4 /* speculation size */
967#define DTRACEOPT_NSPEC 5 /* number of speculations */
968#define DTRACEOPT_STRSIZE 6 /* string size */
969#define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
970#define DTRACEOPT_CPU 8 /* CPU to trace */
971#define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
972#define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
973#define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
974#define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
975#define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
976#define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
977#define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
978#define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
979#define DTRACEOPT_STATUSRATE 17 /* status rate */
980#define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
981#define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
982#define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
983#define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
984#define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
985#define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
986#define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
987#define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
988#define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
989#define DTRACEOPT_MAX 27 /* number of options */
990
991#define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
992
993#define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
994#define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
995#define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
996
997#define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
998#define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
999
1000/*
1001 * DTrace Buffer Interface
1002 *
1003 * In order to get a snapshot of the principal or aggregation buffer,
1004 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1005 * structure. This describes which CPU user-level is interested in, and
1006 * where user-level wishes the kernel to snapshot the buffer to (the
1007 * dtbd_data field). The kernel uses the same structure to pass back some
1008 * information regarding the buffer: the size of data actually copied out, the
1009 * number of drops, the number of errors, and the offset of the oldest record.
1010 * If the buffer policy is a "switch" policy, taking a snapshot of the
1011 * principal buffer has the additional effect of switching the active and
1012 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1013 * the additional effect of switching the active and inactive buffers.
1014 */
1015typedef struct dtrace_bufdesc {
1016 uint64_t dtbd_size; /* size of buffer */
1017 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1018 uint32_t dtbd_errors; /* number of errors */
1019 uint64_t dtbd_drops; /* number of drops */
1020 DTRACE_PTR(char, dtbd_data); /* data */
1021 uint64_t dtbd_oldest; /* offset of oldest record */
1022} dtrace_bufdesc_t;
1023
1024/*
1025 * DTrace Status
1026 *
1027 * The status of DTrace is relayed via the dtrace_status structure. This
1028 * structure contains members to count drops other than the capacity drops
1029 * available via the buffer interface (see above). This consists of dynamic
1030 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1031 * speculative drops (including capacity speculative drops, drops due to busy
1032 * speculative buffers and drops due to unavailable speculative buffers).
1033 * Additionally, the status structure contains a field to indicate the number
1034 * of "fill"-policy buffers have been filled and a boolean field to indicate
1035 * that exit() has been called. If the dtst_exiting field is non-zero, no
1036 * further data will be generated until tracing is stopped (at which time any
1037 * enablings of the END action will be processed); if user-level sees that
1038 * this field is non-zero, tracing should be stopped as soon as possible.
1039 */
1040typedef struct dtrace_status {
1041 uint64_t dtst_dyndrops; /* dynamic drops */
1042 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1043 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1044 uint64_t dtst_specdrops; /* speculative drops */
1045 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1046 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1047 uint64_t dtst_errors; /* total errors */
1048 uint64_t dtst_filled; /* number of filled bufs */
1049 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1050 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1051 char dtst_killed; /* non-zero if killed */
1052 char dtst_exiting; /* non-zero if exit() called */
1053 char dtst_pad[6]; /* pad out to 64-bit align */
1054} dtrace_status_t;
1055
1056/*
1057 * DTrace Configuration
1058 *
1059 * User-level may need to understand some elements of the kernel DTrace
1060 * configuration in order to generate correct DIF. This information is
1061 * conveyed via the dtrace_conf structure.
1062 */
1063typedef struct dtrace_conf {
1064 uint_t dtc_difversion; /* supported DIF version */
1065 uint_t dtc_difintregs; /* # of DIF integer registers */
1066 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1067 uint_t dtc_ctfmodel; /* CTF data model */
1068 uint_t dtc_pad[8]; /* reserved for future use */
1069} dtrace_conf_t;
1070
1071/*
1072 * DTrace Faults
1073 *
1074 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1075 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1076 * postprocessing at user-level. Probe processing faults induce an ERROR
1077 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1078 * the error condition using thse symbolic labels.
1079 */
1080#define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1081#define DTRACEFLT_BADADDR 1 /* Bad address */
1082#define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1083#define DTRACEFLT_ILLOP 3 /* Illegal operation */
1084#define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1085#define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1086#define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1087#define DTRACEFLT_UPRIV 7 /* Illegal user access */
1088#define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1089#define DTRACEFLT_BADSTACK 9 /* Bad stack */
1090
1091#define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1092
1093/*
1094 * DTrace Argument Types
1095 *
1096 * Because it would waste both space and time, argument types do not reside
1097 * with the probe. In order to determine argument types for args[X]
1098 * variables, the D compiler queries for argument types on a probe-by-probe
1099 * basis. (This optimizes for the common case that arguments are either not
1100 * used or used in an untyped fashion.) Typed arguments are specified with a
1101 * string of the type name in the dtragd_native member of the argument
1102 * description structure. Typed arguments may be further translated to types
1103 * of greater stability; the provider indicates such a translated argument by
1104 * filling in the dtargd_xlate member with the string of the translated type.
1105 * Finally, the provider may indicate which argument value a given argument
1106 * maps to by setting the dtargd_mapping member -- allowing a single argument
1107 * to map to multiple args[X] variables.
1108 */
1109typedef struct dtrace_argdesc {
1110 dtrace_id_t dtargd_id; /* probe identifier */
1111 int dtargd_ndx; /* arg number (-1 iff none) */
1112 int dtargd_mapping; /* value mapping */
1113 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1114 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1115} dtrace_argdesc_t;
1116
1117/*
1118 * DTrace Stability Attributes
1119 *
1120 * Each DTrace provider advertises the name and data stability of each of its
1121 * probe description components, as well as its architectural dependencies.
1122 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1123 * order to compute the properties of an input program and report them.
1124 */
1125typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1126typedef uint8_t dtrace_class_t; /* architectural dependency class */
1127
1128#define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1129#define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1130#define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1131#define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1132#define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1133#define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1134#define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1135#define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1136#define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1137
1138#define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1139#define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1140#define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1141#define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1142#define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1143#define DTRACE_CLASS_COMMON 5 /* common to all systems */
1144#define DTRACE_CLASS_MAX 5 /* maximum valid class */
1145
1146#define DTRACE_PRIV_NONE 0x0000
1147#define DTRACE_PRIV_KERNEL 0x0001
1148#define DTRACE_PRIV_USER 0x0002
1149#define DTRACE_PRIV_PROC 0x0004
1150#define DTRACE_PRIV_OWNER 0x0008
1151#define DTRACE_PRIV_ZONEOWNER 0x0010
1152
1153#define DTRACE_PRIV_ALL \
1154 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1155 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1156
1157typedef struct dtrace_ppriv {
1158 uint32_t dtpp_flags; /* privilege flags */
1159 uid_t dtpp_uid; /* user ID */
1160 zoneid_t dtpp_zoneid; /* zone ID */
1161} dtrace_ppriv_t;
1162
1163typedef struct dtrace_attribute {
1164 dtrace_stability_t dtat_name; /* entity name stability */
1165 dtrace_stability_t dtat_data; /* entity data stability */
1166 dtrace_class_t dtat_class; /* entity data dependency */
1167} dtrace_attribute_t;
1168
1169typedef struct dtrace_pattr {
1170 dtrace_attribute_t dtpa_provider; /* provider attributes */
1171 dtrace_attribute_t dtpa_mod; /* module attributes */
1172 dtrace_attribute_t dtpa_func; /* function attributes */
1173 dtrace_attribute_t dtpa_name; /* name attributes */
1174 dtrace_attribute_t dtpa_args; /* args[] attributes */
1175} dtrace_pattr_t;
1176
1177typedef struct dtrace_providerdesc {
1178 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1179 dtrace_pattr_t dtvd_attr; /* stability attributes */
1180 dtrace_ppriv_t dtvd_priv; /* privileges required */
1181} dtrace_providerdesc_t;
1182
1183/*
1184 * DTrace Pseudodevice Interface
1185 *
1186 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1187 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1188 * DTrace.
1189 */
1190#define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1191#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1192#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1193#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1194#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1195#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1196#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1197#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1198#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1199#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1200#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1201#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1202#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1203#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1204#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1205#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1206#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1207
1208/*
1209 * DTrace Helpers
1210 *
1211 * In general, DTrace establishes probes in processes and takes actions on
1212 * processes without knowing their specific user-level structures. Instead of
1213 * existing in the framework, process-specific knowledge is contained by the
1214 * enabling D program -- which can apply process-specific knowledge by making
1215 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1216 * operate on user-level data. However, there may exist some specific probes
1217 * of particular semantic relevance that the application developer may wish to
1218 * explicitly export. For example, an application may wish to export a probe
1219 * at the point that it begins and ends certain well-defined transactions. In
1220 * addition to providing probes, programs may wish to offer assistance for
1221 * certain actions. For example, in highly dynamic environments (e.g., Java),
1222 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1223 * names (the translation from instruction addresses to corresponding symbol
1224 * names may only be possible in situ); these environments may wish to define
1225 * a series of actions to be applied in situ to obtain a meaningful stack
1226 * trace.
1227 *
1228 * These two mechanisms -- user-level statically defined tracing and assisting
1229 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1230 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1231 * providers, probes and their arguments. If a helper wishes to provide
1232 * action assistance, probe descriptions and corresponding DIF actions may be
1233 * specified in the helper DOF. For such helper actions, however, the probe
1234 * description describes the specific helper: all DTrace helpers have the
1235 * provider name "dtrace" and the module name "helper", and the name of the
1236 * helper is contained in the function name (for example, the ustack() helper
1237 * is named "ustack"). Any helper-specific name may be contained in the name
1238 * (for example, if a helper were to have a constructor, it might be named
1239 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1240 * action that they are helping is taken. Helper actions may only return DIF
1241 * expressions, and may only call the following subroutines:
1242 *
1243 * alloca() <= Allocates memory out of the consumer's scratch space
1244 * bcopy() <= Copies memory to scratch space
1245 * copyin() <= Copies memory from user-level into consumer's scratch
1246 * copyinto() <= Copies memory into a specific location in scratch
1247 * copyinstr() <= Copies a string into a specific location in scratch
1248 *
1249 * Helper actions may only access the following built-in variables:
1250 *
1251 * curthread <= Current kthread_t pointer
1252 * tid <= Current thread identifier
1253 * pid <= Current process identifier
1254 * ppid <= Parent process identifier
1255 * uid <= Current user ID
1256 * gid <= Current group ID
1257 * execname <= Current executable name
1258 * zonename <= Current zone name
1259 *
1260 * Helper actions may not manipulate or allocate dynamic variables, but they
1261 * may have clause-local and statically-allocated global variables. The
1262 * helper action variable state is specific to the helper action -- variables
1263 * used by the helper action may not be accessed outside of the helper
1264 * action, and the helper action may not access variables that like outside
1265 * of it. Helper actions may not load from kernel memory at-large; they are
1266 * restricting to loading current user state (via copyin() and variants) and
1267 * scratch space. As with probe enablings, helper actions are executed in
1268 * program order. The result of the helper action is the result of the last
1269 * executing helper expression.
1270 *
1271 * Helpers -- composed of either providers/probes or probes/actions (or both)
1272 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1273 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1274 * encapsulates the name and base address of the user-level library or
1275 * executable publishing the helpers and probes as well as the DOF that
1276 * contains the definitions of those helpers and probes.
1277 *
1278 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1279 * helpers and should no longer be used. No other ioctls are valid on the
1280 * helper minor node.
1281 */
1282#define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1283#define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1284#define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1285#define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1286
1287typedef struct dof_helper {
1288 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1289 uint64_t dofhp_addr; /* base address of object */
1290 uint64_t dofhp_dof; /* address of helper DOF */
1291} dof_helper_t;
1292
1293#define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1294#define DTRACEMNR_HELPER "helper" /* node for helpers */
1295#define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1296#define DTRACEMNRN_HELPER 1 /* minor for helpers */
1297#define DTRACEMNRN_CLONE 2 /* first clone minor */
1298
1299#if defined(_KERNEL) || defined(IN_RING0)
1300
1301/*
1302 * DTrace Provider API
1303 *
1304 * The following functions are implemented by the DTrace framework and are
1305 * used to implement separate in-kernel DTrace providers. Common functions
1306 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1307 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1308 *
1309 * The provider API has two halves: the API that the providers consume from
1310 * DTrace, and the API that providers make available to DTrace.
1311 *
1312 * 1 Framework-to-Provider API
1313 *
1314 * 1.1 Overview
1315 *
1316 * The Framework-to-Provider API is represented by the dtrace_pops structure
1317 * that the provider passes to the framework when registering itself. This
1318 * structure consists of the following members:
1319 *
1320 * dtps_provide() <-- Provide all probes, all modules
1321 * dtps_provide_module() <-- Provide all probes in specified module
1322 * dtps_enable() <-- Enable specified probe
1323 * dtps_disable() <-- Disable specified probe
1324 * dtps_suspend() <-- Suspend specified probe
1325 * dtps_resume() <-- Resume specified probe
1326 * dtps_getargdesc() <-- Get the argument description for args[X]
1327 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1328 * dtps_usermode() <-- Find out if the probe was fired in user mode
1329 * dtps_destroy() <-- Destroy all state associated with this probe
1330 *
1331 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1332 *
1333 * 1.2.1 Overview
1334 *
1335 * Called to indicate that the provider should provide all probes. If the
1336 * specified description is non-NULL, dtps_provide() is being called because
1337 * no probe matched a specified probe -- if the provider has the ability to
1338 * create custom probes, it may wish to create a probe that matches the
1339 * specified description.
1340 *
1341 * 1.2.2 Arguments and notes
1342 *
1343 * The first argument is the cookie as passed to dtrace_register(). The
1344 * second argument is a pointer to a probe description that the provider may
1345 * wish to consider when creating custom probes. The provider is expected to
1346 * call back into the DTrace framework via dtrace_probe_create() to create
1347 * any necessary probes. dtps_provide() may be called even if the provider
1348 * has made available all probes; the provider should check the return value
1349 * of dtrace_probe_create() to handle this case. Note that the provider need
1350 * not implement both dtps_provide() and dtps_provide_module(); see
1351 * "Arguments and Notes" for dtrace_register(), below.
1352 *
1353 * 1.2.3 Return value
1354 *
1355 * None.
1356 *
1357 * 1.2.4 Caller's context
1358 *
1359 * dtps_provide() is typically called from open() or ioctl() context, but may
1360 * be called from other contexts as well. The DTrace framework is locked in
1361 * such a way that providers may not register or unregister. This means that
1362 * the provider may not call any DTrace API that affects its registration with
1363 * the framework, including dtrace_register(), dtrace_unregister(),
1364 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1365 * that the provider may (and indeed, is expected to) call probe-related
1366 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1367 * and dtrace_probe_arg().
1368 *
1369 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1370 *
1371 * 1.3.1 Overview
1372 *
1373 * Called to indicate that the provider should provide all probes in the
1374 * specified module.
1375 *
1376 * 1.3.2 Arguments and notes
1377 *
1378 * The first argument is the cookie as passed to dtrace_register(). The
1379 * second argument is a pointer to a modctl structure that indicates the
1380 * module for which probes should be created.
1381 *
1382 * 1.3.3 Return value
1383 *
1384 * None.
1385 *
1386 * 1.3.4 Caller's context
1387 *
1388 * dtps_provide_module() may be called from open() or ioctl() context, but
1389 * may also be called from a module loading context. mod_lock is held, and
1390 * the DTrace framework is locked in such a way that providers may not
1391 * register or unregister. This means that the provider may not call any
1392 * DTrace API that affects its registration with the framework, including
1393 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1394 * dtrace_condense(). However, the context is such that the provider may (and
1395 * indeed, is expected to) call probe-related DTrace routines, including
1396 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1397 * that the provider need not implement both dtps_provide() and
1398 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1399 * below.
1400 *
1401 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1402 *
1403 * 1.4.1 Overview
1404 *
1405 * Called to enable the specified probe.
1406 *
1407 * 1.4.2 Arguments and notes
1408 *
1409 * The first argument is the cookie as passed to dtrace_register(). The
1410 * second argument is the identifier of the probe to be enabled. The third
1411 * argument is the probe argument as passed to dtrace_probe_create().
1412 * dtps_enable() will be called when a probe transitions from not being
1413 * enabled at all to having one or more ECB. The number of ECBs associated
1414 * with the probe may change without subsequent calls into the provider.
1415 * When the number of ECBs drops to zero, the provider will be explicitly
1416 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1417 * be called for a probe identifier that hasn't been explicitly enabled via
1418 * dtps_enable().
1419 *
1420 * 1.4.3 Return value
1421 *
1422 * On success, dtps_enable() should return 0. On failure, -1 should be
1423 * returned.
1424 *
1425 * 1.4.4 Caller's context
1426 *
1427 * The DTrace framework is locked in such a way that it may not be called
1428 * back into at all. cpu_lock is held. mod_lock is not held and may not
1429 * be acquired.
1430 *
1431 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1432 *
1433 * 1.5.1 Overview
1434 *
1435 * Called to disable the specified probe.
1436 *
1437 * 1.5.2 Arguments and notes
1438 *
1439 * The first argument is the cookie as passed to dtrace_register(). The
1440 * second argument is the identifier of the probe to be disabled. The third
1441 * argument is the probe argument as passed to dtrace_probe_create().
1442 * dtps_disable() will be called when a probe transitions from being enabled
1443 * to having zero ECBs. dtrace_probe() should never be called for a probe
1444 * identifier that has been explicitly enabled via dtps_disable().
1445 *
1446 * 1.5.3 Return value
1447 *
1448 * None.
1449 *
1450 * 1.5.4 Caller's context
1451 *
1452 * The DTrace framework is locked in such a way that it may not be called
1453 * back into at all. cpu_lock is held. mod_lock is not held and may not
1454 * be acquired.
1455 *
1456 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1457 *
1458 * 1.6.1 Overview
1459 *
1460 * Called to suspend the specified enabled probe. This entry point is for
1461 * providers that may need to suspend some or all of their probes when CPUs
1462 * are being powered on or when the boot monitor is being entered for a
1463 * prolonged period of time.
1464 *
1465 * 1.6.2 Arguments and notes
1466 *
1467 * The first argument is the cookie as passed to dtrace_register(). The
1468 * second argument is the identifier of the probe to be suspended. The
1469 * third argument is the probe argument as passed to dtrace_probe_create().
1470 * dtps_suspend will only be called on an enabled probe. Providers that
1471 * provide a dtps_suspend entry point will want to take roughly the action
1472 * that it takes for dtps_disable.
1473 *
1474 * 1.6.3 Return value
1475 *
1476 * None.
1477 *
1478 * 1.6.4 Caller's context
1479 *
1480 * Interrupts are disabled. The DTrace framework is in a state such that the
1481 * specified probe cannot be disabled or destroyed for the duration of
1482 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1483 * little latitude; the provider is expected to do no more than a store to
1484 * memory.
1485 *
1486 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1487 *
1488 * 1.7.1 Overview
1489 *
1490 * Called to resume the specified enabled probe. This entry point is for
1491 * providers that may need to resume some or all of their probes after the
1492 * completion of an event that induced a call to dtps_suspend().
1493 *
1494 * 1.7.2 Arguments and notes
1495 *
1496 * The first argument is the cookie as passed to dtrace_register(). The
1497 * second argument is the identifier of the probe to be resumed. The
1498 * third argument is the probe argument as passed to dtrace_probe_create().
1499 * dtps_resume will only be called on an enabled probe. Providers that
1500 * provide a dtps_resume entry point will want to take roughly the action
1501 * that it takes for dtps_enable.
1502 *
1503 * 1.7.3 Return value
1504 *
1505 * None.
1506 *
1507 * 1.7.4 Caller's context
1508 *
1509 * Interrupts are disabled. The DTrace framework is in a state such that the
1510 * specified probe cannot be disabled or destroyed for the duration of
1511 * dtps_resume(). As interrupts are disabled, the provider is afforded
1512 * little latitude; the provider is expected to do no more than a store to
1513 * memory.
1514 *
1515 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1516 * dtrace_argdesc_t *desc)
1517 *
1518 * 1.8.1 Overview
1519 *
1520 * Called to retrieve the argument description for an args[X] variable.
1521 *
1522 * 1.8.2 Arguments and notes
1523 *
1524 * The first argument is the cookie as passed to dtrace_register(). The
1525 * second argument is the identifier of the current probe. The third
1526 * argument is the probe argument as passed to dtrace_probe_create(). The
1527 * fourth argument is a pointer to the argument description. This
1528 * description is both an input and output parameter: it contains the
1529 * index of the desired argument in the dtargd_ndx field, and expects
1530 * the other fields to be filled in upon return. If there is no argument
1531 * corresponding to the specified index, the dtargd_ndx field should be set
1532 * to DTRACE_ARGNONE.
1533 *
1534 * 1.8.3 Return value
1535 *
1536 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1537 * members of the dtrace_argdesc_t structure are all output values.
1538 *
1539 * 1.8.4 Caller's context
1540 *
1541 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1542 * the DTrace framework is locked in such a way that providers may not
1543 * register or unregister. This means that the provider may not call any
1544 * DTrace API that affects its registration with the framework, including
1545 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1546 * dtrace_condense().
1547 *
1548 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1549 * int argno, int aframes)
1550 *
1551 * 1.9.1 Overview
1552 *
1553 * Called to retrieve a value for an argX or args[X] variable.
1554 *
1555 * 1.9.2 Arguments and notes
1556 *
1557 * The first argument is the cookie as passed to dtrace_register(). The
1558 * second argument is the identifier of the current probe. The third
1559 * argument is the probe argument as passed to dtrace_probe_create(). The
1560 * fourth argument is the number of the argument (the X in the example in
1561 * 1.9.1). The fifth argument is the number of stack frames that were used
1562 * to get from the actual place in the code that fired the probe to
1563 * dtrace_probe() itself, the so-called artificial frames. This argument may
1564 * be used to descend an appropriate number of frames to find the correct
1565 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1566 * function is used.
1567 *
1568 * 1.9.3 Return value
1569 *
1570 * The value of the argument.
1571 *
1572 * 1.9.4 Caller's context
1573 *
1574 * This is called from within dtrace_probe() meaning that interrupts
1575 * are disabled. No locks should be taken within this entry point.
1576 *
1577 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1578 *
1579 * 1.10.1 Overview
1580 *
1581 * Called to determine if the probe was fired in a user context.
1582 *
1583 * 1.10.2 Arguments and notes
1584 *
1585 * The first argument is the cookie as passed to dtrace_register(). The
1586 * second argument is the identifier of the current probe. The third
1587 * argument is the probe argument as passed to dtrace_probe_create(). This
1588 * entry point must not be left NULL for providers whose probes allow for
1589 * mixed mode tracing, that is to say those probes that can fire during
1590 * kernel- _or_ user-mode execution
1591 *
1592 * 1.10.3 Return value
1593 *
1594 * A boolean value.
1595 *
1596 * 1.10.4 Caller's context
1597 *
1598 * This is called from within dtrace_probe() meaning that interrupts
1599 * are disabled. No locks should be taken within this entry point.
1600 *
1601 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1602 *
1603 * 1.11.1 Overview
1604 *
1605 * Called to destroy the specified probe.
1606 *
1607 * 1.11.2 Arguments and notes
1608 *
1609 * The first argument is the cookie as passed to dtrace_register(). The
1610 * second argument is the identifier of the probe to be destroyed. The third
1611 * argument is the probe argument as passed to dtrace_probe_create(). The
1612 * provider should free all state associated with the probe. The framework
1613 * guarantees that dtps_destroy() is only called for probes that have either
1614 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1615 * Once dtps_disable() has been called for a probe, no further call will be
1616 * made specifying the probe.
1617 *
1618 * 1.11.3 Return value
1619 *
1620 * None.
1621 *
1622 * 1.11.4 Caller's context
1623 *
1624 * The DTrace framework is locked in such a way that it may not be called
1625 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1626 * acquired.
1627 *
1628 *
1629 * 2 Provider-to-Framework API
1630 *
1631 * 2.1 Overview
1632 *
1633 * The Provider-to-Framework API provides the mechanism for the provider to
1634 * register itself with the DTrace framework, to create probes, to lookup
1635 * probes and (most importantly) to fire probes. The Provider-to-Framework
1636 * consists of:
1637 *
1638 * dtrace_register() <-- Register a provider with the DTrace framework
1639 * dtrace_unregister() <-- Remove a provider's DTrace registration
1640 * dtrace_invalidate() <-- Invalidate the specified provider
1641 * dtrace_condense() <-- Remove a provider's unenabled probes
1642 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1643 * dtrace_probe_create() <-- Create a DTrace probe
1644 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1645 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1646 * dtrace_probe() <-- Fire the specified probe
1647 *
1648 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1649 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1650 * dtrace_provider_id_t *idp)
1651 *
1652 * 2.2.1 Overview
1653 *
1654 * dtrace_register() registers the calling provider with the DTrace
1655 * framework. It should generally be called by DTrace providers in their
1656 * attach(9E) entry point.
1657 *
1658 * 2.2.2 Arguments and Notes
1659 *
1660 * The first argument is the name of the provider. The second argument is a
1661 * pointer to the stability attributes for the provider. The third argument
1662 * is the privilege flags for the provider, and must be some combination of:
1663 *
1664 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1665 *
1666 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1667 * enable probes from this provider
1668 *
1669 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1670 * enable probes from this provider
1671 *
1672 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1673 * may enable probes from this provider
1674 *
1675 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1676 * the privilege requirements above. These probes
1677 * require either (a) a user ID matching the user
1678 * ID of the cred passed in the fourth argument
1679 * or (b) the PRIV_PROC_OWNER privilege.
1680 *
1681 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1682 * the privilege requirements above. These probes
1683 * require either (a) a zone ID matching the zone
1684 * ID of the cred passed in the fourth argument
1685 * or (b) the PRIV_PROC_ZONE privilege.
1686 *
1687 * Note that these flags designate the _visibility_ of the probes, not
1688 * the conditions under which they may or may not fire.
1689 *
1690 * The fourth argument is the credential that is associated with the
1691 * provider. This argument should be NULL if the privilege flags don't
1692 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1693 * framework stashes the uid and zoneid represented by this credential
1694 * for use at probe-time, in implicit predicates. These limit visibility
1695 * of the probes to users and/or zones which have sufficient privilege to
1696 * access them.
1697 *
1698 * The fifth argument is a DTrace provider operations vector, which provides
1699 * the implementation for the Framework-to-Provider API. (See Section 1,
1700 * above.) This must be non-NULL, and each member must be non-NULL. The
1701 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1702 * members (if the provider so desires, _one_ of these members may be left
1703 * NULL -- denoting that the provider only implements the other) and (2)
1704 * the dtps_suspend() and dtps_resume() members, which must either both be
1705 * NULL or both be non-NULL.
1706 *
1707 * The sixth argument is a cookie to be specified as the first argument for
1708 * each function in the Framework-to-Provider API. This argument may have
1709 * any value.
1710 *
1711 * The final argument is a pointer to dtrace_provider_id_t. If
1712 * dtrace_register() successfully completes, the provider identifier will be
1713 * stored in the memory pointed to be this argument. This argument must be
1714 * non-NULL.
1715 *
1716 * 2.2.3 Return value
1717 *
1718 * On success, dtrace_register() returns 0 and stores the new provider's
1719 * identifier into the memory pointed to by the idp argument. On failure,
1720 * dtrace_register() returns an errno:
1721 *
1722 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1723 * This may because a parameter that must be non-NULL was NULL,
1724 * because the name was invalid (either empty or an illegal
1725 * provider name) or because the attributes were invalid.
1726 *
1727 * No other failure code is returned.
1728 *
1729 * 2.2.4 Caller's context
1730 *
1731 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1732 * hold no locks across dtrace_register() that may also be acquired by
1733 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1734 *
1735 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1736 *
1737 * 2.3.1 Overview
1738 *
1739 * Unregisters the specified provider from the DTrace framework. It should
1740 * generally be called by DTrace providers in their detach(9E) entry point.
1741 *
1742 * 2.3.2 Arguments and Notes
1743 *
1744 * The only argument is the provider identifier, as returned from a
1745 * successful call to dtrace_register(). As a result of calling
1746 * dtrace_unregister(), the DTrace framework will call back into the provider
1747 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1748 * completes, however, the DTrace framework will no longer make calls through
1749 * the Framework-to-Provider API.
1750 *
1751 * 2.3.3 Return value
1752 *
1753 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1754 * returns an errno:
1755 *
1756 * EBUSY There are currently processes that have the DTrace pseudodevice
1757 * open, or there exists an anonymous enabling that hasn't yet
1758 * been claimed.
1759 *
1760 * No other failure code is returned.
1761 *
1762 * 2.3.4 Caller's context
1763 *
1764 * Because a call to dtrace_unregister() may induce calls through the
1765 * Framework-to-Provider API, the caller may not hold any lock across
1766 * dtrace_register() that is also acquired in any of the Framework-to-
1767 * Provider API functions. Additionally, mod_lock may not be held.
1768 *
1769 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1770 *
1771 * 2.4.1 Overview
1772 *
1773 * Invalidates the specified provider. All subsequent probe lookups for the
1774 * specified provider will fail, but its probes will not be removed.
1775 *
1776 * 2.4.2 Arguments and note
1777 *
1778 * The only argument is the provider identifier, as returned from a
1779 * successful call to dtrace_register(). In general, a provider's probes
1780 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1781 * an entire provider, regardless of whether or not probes are enabled or
1782 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1783 * probes from firing -- it will merely prevent any new enablings of the
1784 * provider's probes.
1785 *
1786 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1787 *
1788 * 2.5.1 Overview
1789 *
1790 * Removes all the unenabled probes for the given provider. This function is
1791 * not unlike dtrace_unregister(), except that it doesn't remove the
1792 * provider just as many of its associated probes as it can.
1793 *
1794 * 2.5.2 Arguments and Notes
1795 *
1796 * As with dtrace_unregister(), the sole argument is the provider identifier
1797 * as returned from a successful call to dtrace_register(). As a result of
1798 * calling dtrace_condense(), the DTrace framework will call back into the
1799 * given provider's dtps_destroy() entry point for each of the provider's
1800 * unenabled probes.
1801 *
1802 * 2.5.3 Return value
1803 *
1804 * Currently, dtrace_condense() always returns 0. However, consumers of this
1805 * function should check the return value as appropriate; its behavior may
1806 * change in the future.
1807 *
1808 * 2.5.4 Caller's context
1809 *
1810 * As with dtrace_unregister(), the caller may not hold any lock across
1811 * dtrace_condense() that is also acquired in the provider's entry points.
1812 * Also, mod_lock may not be held.
1813 *
1814 * 2.6 int dtrace_attached()
1815 *
1816 * 2.6.1 Overview
1817 *
1818 * Indicates whether or not DTrace has attached.
1819 *
1820 * 2.6.2 Arguments and Notes
1821 *
1822 * For most providers, DTrace makes initial contact beyond registration.
1823 * That is, once a provider has registered with DTrace, it waits to hear
1824 * from DTrace to create probes. However, some providers may wish to
1825 * proactively create probes without first being told by DTrace to do so.
1826 * If providers wish to do this, they must first call dtrace_attached() to
1827 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1828 * the provider must not make any other Provider-to-Framework API call.
1829 *
1830 * 2.6.3 Return value
1831 *
1832 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1833 *
1834 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1835 * const char *func, const char *name, int aframes, void *arg)
1836 *
1837 * 2.7.1 Overview
1838 *
1839 * Creates a probe with specified module name, function name, and name.
1840 *
1841 * 2.7.2 Arguments and Notes
1842 *
1843 * The first argument is the provider identifier, as returned from a
1844 * successful call to dtrace_register(). The second, third, and fourth
1845 * arguments are the module name, function name, and probe name,
1846 * respectively. Of these, module name and function name may both be NULL
1847 * (in which case the probe is considered to be unanchored), or they may both
1848 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1849 * string.
1850 *
1851 * The fifth argument is the number of artificial stack frames that will be
1852 * found on the stack when dtrace_probe() is called for the new probe. These
1853 * artificial frames will be automatically be pruned should the stack() or
1854 * stackdepth() functions be called as part of one of the probe's ECBs. If
1855 * the parameter doesn't add an artificial frame, this parameter should be
1856 * zero.
1857 *
1858 * The final argument is a probe argument that will be passed back to the
1859 * provider when a probe-specific operation is called. (e.g., via
1860 * dtps_enable(), dtps_disable(), etc.)
1861 *
1862 * Note that it is up to the provider to be sure that the probe that it
1863 * creates does not already exist -- if the provider is unsure of the probe's
1864 * existence, it should assure its absence with dtrace_probe_lookup() before
1865 * calling dtrace_probe_create().
1866 *
1867 * 2.7.3 Return value
1868 *
1869 * dtrace_probe_create() always succeeds, and always returns the identifier
1870 * of the newly-created probe.
1871 *
1872 * 2.7.4 Caller's context
1873 *
1874 * While dtrace_probe_create() is generally expected to be called from
1875 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1876 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1877 *
1878 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1879 * const char *func, const char *name)
1880 *
1881 * 2.8.1 Overview
1882 *
1883 * Looks up a probe based on provdider and one or more of module name,
1884 * function name and probe name.
1885 *
1886 * 2.8.2 Arguments and Notes
1887 *
1888 * The first argument is the provider identifier, as returned from a
1889 * successful call to dtrace_register(). The second, third, and fourth
1890 * arguments are the module name, function name, and probe name,
1891 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1892 * the identifier of the first probe that is provided by the specified
1893 * provider and matches all of the non-NULL matching criteria.
1894 * dtrace_probe_lookup() is generally used by a provider to be check the
1895 * existence of a probe before creating it with dtrace_probe_create().
1896 *
1897 * 2.8.3 Return value
1898 *
1899 * If the probe exists, returns its identifier. If the probe does not exist,
1900 * return DTRACE_IDNONE.
1901 *
1902 * 2.8.4 Caller's context
1903 *
1904 * While dtrace_probe_lookup() is generally expected to be called from
1905 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1906 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1907 *
1908 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1909 *
1910 * 2.9.1 Overview
1911 *
1912 * Returns the probe argument associated with the specified probe.
1913 *
1914 * 2.9.2 Arguments and Notes
1915 *
1916 * The first argument is the provider identifier, as returned from a
1917 * successful call to dtrace_register(). The second argument is a probe
1918 * identifier, as returned from dtrace_probe_lookup() or
1919 * dtrace_probe_create(). This is useful if a probe has multiple
1920 * provider-specific components to it: the provider can create the probe
1921 * once with provider-specific state, and then add to the state by looking
1922 * up the probe based on probe identifier.
1923 *
1924 * 2.9.3 Return value
1925 *
1926 * Returns the argument associated with the specified probe. If the
1927 * specified probe does not exist, or if the specified probe is not provided
1928 * by the specified provider, NULL is returned.
1929 *
1930 * 2.9.4 Caller's context
1931 *
1932 * While dtrace_probe_arg() is generally expected to be called from
1933 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1934 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1935 *
1936 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
1937 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
1938 *
1939 * 2.10.1 Overview
1940 *
1941 * The epicenter of DTrace: fires the specified probes with the specified
1942 * arguments.
1943 *
1944 * 2.10.2 Arguments and Notes
1945 *
1946 * The first argument is a probe identifier as returned by
1947 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
1948 * arguments are the values to which the D variables "arg0" through "arg4"
1949 * will be mapped.
1950 *
1951 * dtrace_probe() should be called whenever the specified probe has fired --
1952 * however the provider defines it.
1953 *
1954 * 2.10.3 Return value
1955 *
1956 * None.
1957 *
1958 * 2.10.4 Caller's context
1959 *
1960 * dtrace_probe() may be called in virtually any context: kernel, user,
1961 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
1962 * dispatcher locks held, with interrupts disabled, etc. The only latitude
1963 * that must be afforded to DTrace is the ability to make calls within
1964 * itself (and to its in-kernel subroutines) and the ability to access
1965 * arbitrary (but mapped) memory. On some platforms, this constrains
1966 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
1967 * from any context in which TL is greater than zero. dtrace_probe() may
1968 * also not be called from any routine which may be called by dtrace_probe()
1969 * -- which includes functions in the DTrace framework and some in-kernel
1970 * DTrace subroutines. All such functions "dtrace_"; providers that
1971 * instrument the kernel arbitrarily should be sure to not instrument these
1972 * routines.
1973 */
1974typedef struct dtrace_pops {
1975 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
1976 void (*dtps_provide_module)(void *arg, struct modctl *mp);
1977 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
1978 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
1979 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
1980 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
1981 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
1982 dtrace_argdesc_t *desc);
1983 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
1984 int argno, int aframes);
1985 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
1986 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
1987} dtrace_pops_t;
1988
1989typedef uintptr_t dtrace_provider_id_t;
1990
1991extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
1992 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
1993extern int dtrace_unregister(dtrace_provider_id_t);
1994extern int dtrace_condense(dtrace_provider_id_t);
1995extern void dtrace_invalidate(dtrace_provider_id_t);
1996extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
1997 const char *, const char *);
1998extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
1999 const char *, const char *, int, void *);
2000extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2001extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2002 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2003
2004/*
2005 * DTrace Meta Provider API
2006 *
2007 * The following functions are implemented by the DTrace framework and are
2008 * used to implement meta providers. Meta providers plug into the DTrace
2009 * framework and are used to instantiate new providers on the fly. At
2010 * present, there is only one type of meta provider and only one meta
2011 * provider may be registered with the DTrace framework at a time. The
2012 * sole meta provider type provides user-land static tracing facilities
2013 * by taking meta probe descriptions and adding a corresponding provider
2014 * into the DTrace framework.
2015 *
2016 * 1 Framework-to-Provider
2017 *
2018 * 1.1 Overview
2019 *
2020 * The Framework-to-Provider API is represented by the dtrace_mops structure
2021 * that the meta provider passes to the framework when registering itself as
2022 * a meta provider. This structure consists of the following members:
2023 *
2024 * dtms_create_probe() <-- Add a new probe to a created provider
2025 * dtms_provide_pid() <-- Create a new provider for a given process
2026 * dtms_remove_pid() <-- Remove a previously created provider
2027 *
2028 * 1.2 void dtms_create_probe(void *arg, void *parg,
2029 * dtrace_helper_probedesc_t *probedesc);
2030 *
2031 * 1.2.1 Overview
2032 *
2033 * Called by the DTrace framework to create a new probe in a provider
2034 * created by this meta provider.
2035 *
2036 * 1.2.2 Arguments and notes
2037 *
2038 * The first argument is the cookie as passed to dtrace_meta_register().
2039 * The second argument is the provider cookie for the associated provider;
2040 * this is obtained from the return value of dtms_provide_pid(). The third
2041 * argument is the helper probe description.
2042 *
2043 * 1.2.3 Return value
2044 *
2045 * None
2046 *
2047 * 1.2.4 Caller's context
2048 *
2049 * dtms_create_probe() is called from either ioctl() or module load context.
2050 * The DTrace framework is locked in such a way that meta providers may not
2051 * register or unregister. This means that the meta provider cannot call
2052 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2053 * such that the provider may (and is expected to) call provider-related
2054 * DTrace provider APIs including dtrace_probe_create().
2055 *
2056 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2057 * pid_t pid)
2058 *
2059 * 1.3.1 Overview
2060 *
2061 * Called by the DTrace framework to instantiate a new provider given the
2062 * description of the provider and probes in the mprov argument. The
2063 * meta provider should call dtrace_register() to insert the new provider
2064 * into the DTrace framework.
2065 *
2066 * 1.3.2 Arguments and notes
2067 *
2068 * The first argument is the cookie as passed to dtrace_meta_register().
2069 * The second argument is a pointer to a structure describing the new
2070 * helper provider. The third argument is the process identifier for
2071 * process associated with this new provider. Note that the name of the
2072 * provider as passed to dtrace_register() should be the contatenation of
2073 * the dtmpb_provname member of the mprov argument and the processs
2074 * identifier as a string.
2075 *
2076 * 1.3.3 Return value
2077 *
2078 * The cookie for the provider that the meta provider creates. This is
2079 * the same value that it passed to dtrace_register().
2080 *
2081 * 1.3.4 Caller's context
2082 *
2083 * dtms_provide_pid() is called from either ioctl() or module load context.
2084 * The DTrace framework is locked in such a way that meta providers may not
2085 * register or unregister. This means that the meta provider cannot call
2086 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2087 * is such that the provider may -- and is expected to -- call
2088 * provider-related DTrace provider APIs including dtrace_register().
2089 *
2090 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2091 * pid_t pid)
2092 *
2093 * 1.4.1 Overview
2094 *
2095 * Called by the DTrace framework to remove a provider that had previously
2096 * been instantiated via the dtms_provide_pid() entry point. The meta
2097 * provider need not remove the provider immediately, but this entry
2098 * point indicates that the provider should be removed as soon as possible
2099 * using the dtrace_unregister() API.
2100 *
2101 * 1.4.2 Arguments and notes
2102 *
2103 * The first argument is the cookie as passed to dtrace_meta_register().
2104 * The second argument is a pointer to a structure describing the helper
2105 * provider. The third argument is the process identifier for process
2106 * associated with this new provider.
2107 *
2108 * 1.4.3 Return value
2109 *
2110 * None
2111 *
2112 * 1.4.4 Caller's context
2113 *
2114 * dtms_remove_pid() is called from either ioctl() or exit() context.
2115 * The DTrace framework is locked in such a way that meta providers may not
2116 * register or unregister. This means that the meta provider cannot call
2117 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2118 * is such that the provider may -- and is expected to -- call
2119 * provider-related DTrace provider APIs including dtrace_unregister().
2120 */
2121typedef struct dtrace_helper_probedesc {
2122 char *dthpb_mod; /* probe module */
2123 char *dthpb_func; /* probe function */
2124 char *dthpb_name; /* probe name */
2125 uint64_t dthpb_base; /* base address */
2126 uint32_t *dthpb_offs; /* offsets array */
2127 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2128 uint32_t dthpb_noffs; /* offsets count */
2129 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2130 uint8_t *dthpb_args; /* argument mapping array */
2131 uint8_t dthpb_xargc; /* translated argument count */
2132 uint8_t dthpb_nargc; /* native argument count */
2133 char *dthpb_xtypes; /* translated types strings */
2134 char *dthpb_ntypes; /* native types strings */
2135} dtrace_helper_probedesc_t;
2136
2137typedef struct dtrace_helper_provdesc {
2138 char *dthpv_provname; /* provider name */
2139 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2140} dtrace_helper_provdesc_t;
2141
2142typedef struct dtrace_mops {
2143 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2144 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2145 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2146} dtrace_mops_t;
2147
2148typedef uintptr_t dtrace_meta_provider_id_t;
2149
2150extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2151 dtrace_meta_provider_id_t *);
2152extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2153
2154/*
2155 * DTrace Kernel Hooks
2156 *
2157 * The following functions are implemented by the base kernel and form a set of
2158 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2159 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2160 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2161 */
2162
2163typedef enum dtrace_vtime_state {
2164 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2165 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2166 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2167 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2168} dtrace_vtime_state_t;
2169
2170extern dtrace_vtime_state_t dtrace_vtime_active;
2171extern void dtrace_vtime_switch(kthread_t *next);
2172extern void dtrace_vtime_enable_tnf(void);
2173extern void dtrace_vtime_disable_tnf(void);
2174extern void dtrace_vtime_enable(void);
2175extern void dtrace_vtime_disable(void);
2176
2177struct regs;
2178
2179extern int (*dtrace_pid_probe_ptr)(struct regs *);
2180extern int (*dtrace_return_probe_ptr)(struct regs *);
2181extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2182extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2183extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2184extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2185
2186typedef uintptr_t dtrace_icookie_t;
2187typedef void (*dtrace_xcall_t)(void *);
2188
2189extern dtrace_icookie_t dtrace_interrupt_disable(void);
2190extern void dtrace_interrupt_enable(dtrace_icookie_t);
2191
2192extern void dtrace_membar_producer(void);
2193extern void dtrace_membar_consumer(void);
2194
2195extern void (*dtrace_cpu_init)(processorid_t);
2196extern void (*dtrace_modload)(struct modctl *);
2197extern void (*dtrace_modunload)(struct modctl *);
2198extern void (*dtrace_helpers_cleanup)(VBDTVOID);
2199extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2200extern void (*dtrace_cpustart_init)(VBDTVOID);
2201extern void (*dtrace_cpustart_fini)(VBDTVOID);
2202
2203extern void (*dtrace_debugger_init)(VBDTVOID);
2204extern void (*dtrace_debugger_fini)(VBDTVOID);
2205extern dtrace_cacheid_t dtrace_predcache_id;
2206
2207extern hrtime_t dtrace_gethrtime(void);
2208extern void dtrace_sync(void);
2209extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2210extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2211#ifdef VBOX
2212extern void dtrace_vpanic(const char *, va_list);
2213#else
2214extern void dtrace_vpanic(const char *, __va_list);
2215#endif
2216extern void dtrace_panic(const char *, ...);
2217
2218extern int dtrace_safe_defer_signal(void);
2219extern void dtrace_safe_synchronous_signal(void);
2220
2221extern int dtrace_mach_aframes(void);
2222
2223#if defined(__i386) || defined(__amd64)
2224extern int dtrace_instr_size(uchar_t *instr);
2225extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2226extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2227extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2228extern void dtrace_invop_callsite(void);
2229#endif
2230
2231#ifdef __sparc
2232extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2233extern void dtrace_getfsr(uint64_t *);
2234#endif
2235
2236#ifndef VBOX
2237# define VBDT_GET_CPUID() (CPU->cpu_id)
2238# define VBDT_GET_PROC() (ttoproc(curthread))
2239#else
2240# define VBDT_GET_CPUID() (RTMpCpuId())
2241# define VBDT_GET_PROC() (VBoxDtGetCurrentProc())
2242proc_t *VBoxDtGetCurrentProc(void);
2243#endif
2244
2245#define DTRACE_CPUFLAG_ISSET(flag) \
2246 (cpu_core[VBDT_GET_CPUID()].cpuc_dtrace_flags & (flag))
2247
2248#define DTRACE_CPUFLAG_SET(flag) \
2249 (cpu_core[VBDT_GET_CPUID()].cpuc_dtrace_flags |= (flag))
2250
2251#define DTRACE_CPUFLAG_CLEAR(flag) \
2252 (cpu_core[VBDT_GET_CPUID()].cpuc_dtrace_flags &= ~(flag))
2253
2254#endif /* _KERNEL || IN_RING0 */
2255
2256#endif /* _ASM */
2257
2258#if defined(__i386) || defined(__amd64)
2259
2260#define DTRACE_INVOP_PUSHL_EBP 1
2261#define DTRACE_INVOP_POPL_EBP 2
2262#define DTRACE_INVOP_LEAVE 3
2263#define DTRACE_INVOP_NOP 4
2264#define DTRACE_INVOP_RET 5
2265
2266#endif
2267
2268#ifdef __cplusplus
2269}
2270#endif
2271
2272#endif /* _SYS_DTRACE_H */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette