VirtualBox

source: vbox/trunk/src/VBox/ExtPacks/VBoxDTrace/onnv/uts/common/sys/dtrace.h@ 76389

Last change on this file since 76389 was 62829, checked in by vboxsync, 9 years ago

ExtPacks/dtrace: warnings

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 96.6 KB
Line 
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#ifndef _SYS_DTRACE_H
28#define _SYS_DTRACE_H
29
30#ifdef __cplusplus
31extern "C" {
32#endif
33
34/*
35 * DTrace Dynamic Tracing Software: Kernel Interfaces
36 *
37 * Note: The contents of this file are private to the implementation of the
38 * Solaris system and DTrace subsystem and are subject to change at any time
39 * without notice. Applications and drivers using these interfaces will fail
40 * to run on future releases. These interfaces should not be used for any
41 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
42 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
43 */
44
45#ifndef _ASM
46
47#ifndef VBOX
48#include <sys/types.h>
49#include <sys/modctl.h>
50#include <sys/processor.h>
51#include <sys/systm.h>
52#include <sys/cyclic.h>
53#include <sys/int_limits.h>
54#else
55# include <VBoxDTraceTypes.h>
56# include <sys/ctf_api.h>
57#endif
58
59/*
60 * DTrace Universal Constants and Typedefs
61 */
62#ifdef VBOX
63#define DTRACE_CPUALL ((processorid_t)-1) /* all CPUs */
64#else
65#define DTRACE_CPUALL -1 /* all CPUs */
66#endif
67#define DTRACE_IDNONE 0 /* invalid probe identifier */
68#define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
69#define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
70#define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
71#define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
72#define DTRACE_PROVNONE 0 /* invalid provider identifier */
73#define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
74#define DTRACE_ARGNONE -1 /* invalid argument index */
75
76#define DTRACE_PROVNAMELEN 64
77#define DTRACE_MODNAMELEN 64
78#define DTRACE_FUNCNAMELEN 128
79#define DTRACE_NAMELEN 64
80#define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
81 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
82#define DTRACE_ARGTYPELEN 128
83
84typedef uint32_t dtrace_id_t; /* probe identifier */
85typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
86typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
87typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
88typedef uint16_t dtrace_actkind_t; /* action kind */
89typedef int64_t dtrace_optval_t; /* option value */
90typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
91
92typedef enum dtrace_probespec {
93 DTRACE_PROBESPEC_NONE = -1,
94 DTRACE_PROBESPEC_PROVIDER = 0,
95 DTRACE_PROBESPEC_MOD,
96 DTRACE_PROBESPEC_FUNC,
97 DTRACE_PROBESPEC_NAME
98} dtrace_probespec_t;
99
100/*
101 * DTrace Intermediate Format (DIF)
102 *
103 * The following definitions describe the DTrace Intermediate Format (DIF), a
104 * a RISC-like instruction set and program encoding used to represent
105 * predicates and actions that can be bound to DTrace probes. The constants
106 * below defining the number of available registers are suggested minimums; the
107 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
108 * registers provided by the current DTrace implementation.
109 */
110#define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
111#define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
112#define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
113#define DIF_DIR_NREGS 8 /* number of DIF integer registers */
114#define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
115
116#define DIF_OP_OR 1 /* or r1, r2, rd */
117#define DIF_OP_XOR 2 /* xor r1, r2, rd */
118#define DIF_OP_AND 3 /* and r1, r2, rd */
119#define DIF_OP_SLL 4 /* sll r1, r2, rd */
120#define DIF_OP_SRL 5 /* srl r1, r2, rd */
121#define DIF_OP_SUB 6 /* sub r1, r2, rd */
122#define DIF_OP_ADD 7 /* add r1, r2, rd */
123#define DIF_OP_MUL 8 /* mul r1, r2, rd */
124#define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
125#define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
126#define DIF_OP_SREM 11 /* srem r1, r2, rd */
127#define DIF_OP_UREM 12 /* urem r1, r2, rd */
128#define DIF_OP_NOT 13 /* not r1, rd */
129#define DIF_OP_MOV 14 /* mov r1, rd */
130#define DIF_OP_CMP 15 /* cmp r1, r2 */
131#define DIF_OP_TST 16 /* tst r1 */
132#define DIF_OP_BA 17 /* ba label */
133#define DIF_OP_BE 18 /* be label */
134#define DIF_OP_BNE 19 /* bne label */
135#define DIF_OP_BG 20 /* bg label */
136#define DIF_OP_BGU 21 /* bgu label */
137#define DIF_OP_BGE 22 /* bge label */
138#define DIF_OP_BGEU 23 /* bgeu label */
139#define DIF_OP_BL 24 /* bl label */
140#define DIF_OP_BLU 25 /* blu label */
141#define DIF_OP_BLE 26 /* ble label */
142#define DIF_OP_BLEU 27 /* bleu label */
143#define DIF_OP_LDSB 28 /* ldsb [r1], rd */
144#define DIF_OP_LDSH 29 /* ldsh [r1], rd */
145#define DIF_OP_LDSW 30 /* ldsw [r1], rd */
146#define DIF_OP_LDUB 31 /* ldub [r1], rd */
147#define DIF_OP_LDUH 32 /* lduh [r1], rd */
148#define DIF_OP_LDUW 33 /* lduw [r1], rd */
149#define DIF_OP_LDX 34 /* ldx [r1], rd */
150#define DIF_OP_RET 35 /* ret rd */
151#define DIF_OP_NOP 36 /* nop */
152#define DIF_OP_SETX 37 /* setx intindex, rd */
153#define DIF_OP_SETS 38 /* sets strindex, rd */
154#define DIF_OP_SCMP 39 /* scmp r1, r2 */
155#define DIF_OP_LDGA 40 /* ldga var, ri, rd */
156#define DIF_OP_LDGS 41 /* ldgs var, rd */
157#define DIF_OP_STGS 42 /* stgs var, rs */
158#define DIF_OP_LDTA 43 /* ldta var, ri, rd */
159#define DIF_OP_LDTS 44 /* ldts var, rd */
160#define DIF_OP_STTS 45 /* stts var, rs */
161#define DIF_OP_SRA 46 /* sra r1, r2, rd */
162#define DIF_OP_CALL 47 /* call subr, rd */
163#define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
164#define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
165#define DIF_OP_POPTS 50 /* popts */
166#define DIF_OP_FLUSHTS 51 /* flushts */
167#define DIF_OP_LDGAA 52 /* ldgaa var, rd */
168#define DIF_OP_LDTAA 53 /* ldtaa var, rd */
169#define DIF_OP_STGAA 54 /* stgaa var, rs */
170#define DIF_OP_STTAA 55 /* sttaa var, rs */
171#define DIF_OP_LDLS 56 /* ldls var, rd */
172#define DIF_OP_STLS 57 /* stls var, rs */
173#define DIF_OP_ALLOCS 58 /* allocs r1, rd */
174#define DIF_OP_COPYS 59 /* copys r1, r2, rd */
175#define DIF_OP_STB 60 /* stb r1, [rd] */
176#define DIF_OP_STH 61 /* sth r1, [rd] */
177#define DIF_OP_STW 62 /* stw r1, [rd] */
178#define DIF_OP_STX 63 /* stx r1, [rd] */
179#define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
180#define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
181#define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
182#define DIF_OP_ULDUB 67 /* uldub [r1], rd */
183#define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
184#define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
185#define DIF_OP_ULDX 70 /* uldx [r1], rd */
186#define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
187#define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
188#define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
189#define DIF_OP_RLDUB 74 /* rldub [r1], rd */
190#define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
191#define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
192#define DIF_OP_RLDX 77 /* rldx [r1], rd */
193#define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
194#define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
195
196#define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
197#define DIF_STROFF_MAX 0xffff /* highest string table offset */
198#define DIF_REGISTER_MAX 0xff /* highest register number */
199#define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
200#define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
201
202#define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
203#define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
204#define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
205
206#define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
207#define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
208#define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
209
210#define DIF_VAR_ARGS 0x0000 /* arguments array */
211#define DIF_VAR_REGS 0x0001 /* registers array */
212#define DIF_VAR_UREGS 0x0002 /* user registers array */
213#define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
214#define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
215#define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
216#define DIF_VAR_IPL 0x0103 /* interrupt priority level */
217#define DIF_VAR_EPID 0x0104 /* enabled probe ID */
218#define DIF_VAR_ID 0x0105 /* probe ID */
219#define DIF_VAR_ARG0 0x0106 /* first argument */
220#define DIF_VAR_ARG1 0x0107 /* second argument */
221#define DIF_VAR_ARG2 0x0108 /* third argument */
222#define DIF_VAR_ARG3 0x0109 /* fourth argument */
223#define DIF_VAR_ARG4 0x010a /* fifth argument */
224#define DIF_VAR_ARG5 0x010b /* sixth argument */
225#define DIF_VAR_ARG6 0x010c /* seventh argument */
226#define DIF_VAR_ARG7 0x010d /* eighth argument */
227#define DIF_VAR_ARG8 0x010e /* ninth argument */
228#define DIF_VAR_ARG9 0x010f /* tenth argument */
229#define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
230#define DIF_VAR_CALLER 0x0111 /* caller */
231#define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
232#define DIF_VAR_PROBEMOD 0x0113 /* probe module */
233#define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
234#define DIF_VAR_PROBENAME 0x0115 /* probe name */
235#define DIF_VAR_PID 0x0116 /* process ID */
236#define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
237#define DIF_VAR_EXECNAME 0x0118 /* name of executable */
238#define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
239#define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
240#define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
241#define DIF_VAR_UCALLER 0x011c /* user-level caller */
242#define DIF_VAR_PPID 0x011d /* parent process ID */
243#define DIF_VAR_UID 0x011e /* process user ID */
244#define DIF_VAR_GID 0x011f /* process group ID */
245#define DIF_VAR_ERRNO 0x0120 /* thread errno */
246
247#define DIF_SUBR_RAND 0
248#define DIF_SUBR_MUTEX_OWNED 1
249#define DIF_SUBR_MUTEX_OWNER 2
250#define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
251#define DIF_SUBR_MUTEX_TYPE_SPIN 4
252#define DIF_SUBR_RW_READ_HELD 5
253#define DIF_SUBR_RW_WRITE_HELD 6
254#define DIF_SUBR_RW_ISWRITER 7
255#define DIF_SUBR_COPYIN 8
256#define DIF_SUBR_COPYINSTR 9
257#define DIF_SUBR_SPECULATION 10
258#define DIF_SUBR_PROGENYOF 11
259#define DIF_SUBR_STRLEN 12
260#define DIF_SUBR_COPYOUT 13
261#define DIF_SUBR_COPYOUTSTR 14
262#define DIF_SUBR_ALLOCA 15
263#define DIF_SUBR_BCOPY 16
264#define DIF_SUBR_COPYINTO 17
265#define DIF_SUBR_MSGDSIZE 18
266#define DIF_SUBR_MSGSIZE 19
267#define DIF_SUBR_GETMAJOR 20
268#define DIF_SUBR_GETMINOR 21
269#define DIF_SUBR_DDI_PATHNAME 22
270#define DIF_SUBR_STRJOIN 23
271#define DIF_SUBR_LLTOSTR 24
272#define DIF_SUBR_BASENAME 25
273#define DIF_SUBR_DIRNAME 26
274#define DIF_SUBR_CLEANPATH 27
275#define DIF_SUBR_STRCHR 28
276#define DIF_SUBR_STRRCHR 29
277#define DIF_SUBR_STRSTR 30
278#define DIF_SUBR_STRTOK 31
279#define DIF_SUBR_SUBSTR 32
280#define DIF_SUBR_INDEX 33
281#define DIF_SUBR_RINDEX 34
282#define DIF_SUBR_HTONS 35
283#define DIF_SUBR_HTONL 36
284#define DIF_SUBR_HTONLL 37
285#define DIF_SUBR_NTOHS 38
286#define DIF_SUBR_NTOHL 39
287#define DIF_SUBR_NTOHLL 40
288#define DIF_SUBR_INET_NTOP 41
289#define DIF_SUBR_INET_NTOA 42
290#define DIF_SUBR_INET_NTOA6 43
291
292#define DIF_SUBR_MAX 43 /* max subroutine value */
293
294typedef uint32_t dif_instr_t;
295
296#define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
297#define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
298#define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
299#define DIF_INSTR_RD(i) ((i) & 0xff)
300#define DIF_INSTR_RS(i) ((i) & 0xff)
301#define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
302#define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
303#define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
304#define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
305#define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
306#define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
307#define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
308
309#define DIF_INSTR_FMT(op, r1, r2, d) \
310 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
311
312#define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
313#define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
314#define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
315#define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
316#define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
317#define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
318#define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
319#define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
320#define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
321#define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
322#define DIF_INSTR_NOP (DIF_OP_NOP << 24)
323#define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
324#define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
325#define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
326#define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
327#define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
328#define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
329#define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
330#define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
331#define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
332#define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
333
334#define DIF_REG_R0 0 /* %r0 is always set to zero */
335
336/*
337 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
338 * of variables, function and associative array arguments, and the return type
339 * for each DIF object (shown below). It contains a description of the type,
340 * its size in bytes, and a module identifier.
341 */
342typedef struct dtrace_diftype {
343 uint8_t dtdt_kind; /* type kind (see below) */
344 uint8_t dtdt_ckind; /* type kind in CTF */
345 uint8_t dtdt_flags; /* type flags (see below) */
346 uint8_t dtdt_pad; /* reserved for future use */
347 uint32_t dtdt_size; /* type size in bytes (unless string) */
348} dtrace_diftype_t;
349
350#define DIF_TYPE_CTF 0 /* type is a CTF type */
351#define DIF_TYPE_STRING 1 /* type is a D string */
352
353#define DIF_TF_BYREF 0x1 /* type is passed by reference */
354
355/*
356 * A DTrace Intermediate Format variable record is used to describe each of the
357 * variables referenced by a given DIF object. It contains an integer variable
358 * identifier along with variable scope and properties, as shown below. The
359 * size of this structure must be sizeof (int) aligned.
360 */
361typedef struct dtrace_difv {
362 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
363 uint32_t dtdv_id; /* variable reference identifier */
364 uint8_t dtdv_kind; /* variable kind (see below) */
365 uint8_t dtdv_scope; /* variable scope (see below) */
366 uint16_t dtdv_flags; /* variable flags (see below) */
367 dtrace_diftype_t dtdv_type; /* variable type (see above) */
368} dtrace_difv_t;
369
370#define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
371#define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
372
373#define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
374#define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
375#define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
376
377#define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
378#define DIFV_F_MOD 0x2 /* variable is written by DIFO */
379
380/*
381 * DTrace Actions
382 *
383 * The upper byte determines the class of the action; the low bytes determines
384 * the specific action within that class. The classes of actions are as
385 * follows:
386 *
387 * [ no class ] <= May record process- or kernel-related data
388 * DTRACEACT_PROC <= Only records process-related data
389 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
390 * DTRACEACT_KERNEL <= Only records kernel-related data
391 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
392 * DTRACEACT_SPECULATIVE <= Speculation-related action
393 * DTRACEACT_AGGREGATION <= Aggregating action
394 */
395#define DTRACEACT_NONE 0 /* no action */
396#define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
397#define DTRACEACT_EXIT 2 /* exit() action */
398#define DTRACEACT_PRINTF 3 /* printf() action */
399#define DTRACEACT_PRINTA 4 /* printa() action */
400#define DTRACEACT_LIBACT 5 /* library-controlled action */
401
402#define DTRACEACT_PROC 0x0100
403#define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
404#define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
405#define DTRACEACT_USYM (DTRACEACT_PROC + 3)
406#define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
407#define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
408
409#define DTRACEACT_PROC_DESTRUCTIVE 0x0200
410#define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
411#define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
412#define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
413#define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
414
415#define DTRACEACT_PROC_CONTROL 0x0300
416
417#define DTRACEACT_KERNEL 0x0400
418#define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
419#define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
420#define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
421
422#define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
423#define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
424#define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
425#define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
426
427#define DTRACEACT_SPECULATIVE 0x0600
428#define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
429#define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
430#define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
431
432#define DTRACEACT_CLASS(x) ((x) & 0xff00)
433
434#define DTRACEACT_ISDESTRUCTIVE(x) \
435 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
436 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
437
438#define DTRACEACT_ISSPECULATIVE(x) \
439 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
440
441#define DTRACEACT_ISPRINTFLIKE(x) \
442 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
443 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
444
445/*
446 * DTrace Aggregating Actions
447 *
448 * These are functions f(x) for which the following is true:
449 *
450 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
451 *
452 * where x_n is a set of arbitrary data. Aggregating actions are in their own
453 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
454 * for easier processing of the aggregation argument and data payload for a few
455 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
456 */
457#define DTRACEACT_AGGREGATION 0x0700
458#define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
459#define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
460#define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
461#define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
462#define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
463#define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
464#define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
465#define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
466
467#define DTRACEACT_ISAGG(x) \
468 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
469
470#define DTRACE_QUANTIZE_NBUCKETS \
471 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
472
473#define DTRACE_QUANTIZE_ZEROBUCKET (VBDTCAST(int)(sizeof (uint64_t) * NBBY) - 1)
474
475#define DTRACE_QUANTIZE_BUCKETVAL(buck) \
476 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
477 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
478 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
479 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
480
481#define DTRACE_LQUANTIZE_STEPSHIFT 48
482#define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
483#define DTRACE_LQUANTIZE_LEVELSHIFT 32
484#define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
485#define DTRACE_LQUANTIZE_BASESHIFT 0
486#define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
487
488#define DTRACE_LQUANTIZE_STEP(x) \
489 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
490 DTRACE_LQUANTIZE_STEPSHIFT)
491
492#define DTRACE_LQUANTIZE_LEVELS(x) \
493 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
494 DTRACE_LQUANTIZE_LEVELSHIFT)
495
496#define DTRACE_LQUANTIZE_BASE(x) \
497 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
498 DTRACE_LQUANTIZE_BASESHIFT)
499
500#define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
501#define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
502#define DTRACE_USTACK_ARG(x, y) \
503 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
504
505#ifndef _LP64
506#ifndef _LITTLE_ENDIAN
507#define DTRACE_PTR(type, name) uint32_t name##pad; type *name
508#else
509#define DTRACE_PTR(type, name) type *name; uint32_t name##pad
510#endif
511#else
512#define DTRACE_PTR(type, name) type *name
513#endif
514
515/*
516 * DTrace Object Format (DOF)
517 *
518 * DTrace programs can be persistently encoded in the DOF format so that they
519 * may be embedded in other programs (for example, in an ELF file) or in the
520 * dtrace driver configuration file for use in anonymous tracing. The DOF
521 * format is versioned and extensible so that it can be revised and so that
522 * internal data structures can be modified or extended compatibly. All DOF
523 * structures use fixed-size types, so the 32-bit and 64-bit representations
524 * are identical and consumers can use either data model transparently.
525 *
526 * The file layout is structured as follows:
527 *
528 * +---------------+-------------------+----- ... ----+---- ... ------+
529 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
530 * | (file header) | (section headers) | section data | section data |
531 * +---------------+-------------------+----- ... ----+---- ... ------+
532 * |<------------ dof_hdr.dofh_loadsz --------------->| |
533 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
534 *
535 * The file header stores meta-data including a magic number, data model for
536 * the instrumentation, data encoding, and properties of the DIF code within.
537 * The header describes its own size and the size of the section headers. By
538 * convention, an array of section headers follows the file header, and then
539 * the data for all loadable sections and unloadable sections. This permits
540 * consumer code to easily download the headers and all loadable data into the
541 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
542 *
543 * The section headers describe the size, offset, alignment, and section type
544 * for each section. Sections are described using a set of #defines that tell
545 * the consumer what kind of data is expected. Sections can contain links to
546 * other sections by storing a dof_secidx_t, an index into the section header
547 * array, inside of the section data structures. The section header includes
548 * an entry size so that sections with data arrays can grow their structures.
549 *
550 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
551 * are represented themselves as a collection of related DOF sections. This
552 * permits us to change the set of sections associated with a DIFO over time,
553 * and also permits us to encode DIFOs that contain different sets of sections.
554 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
555 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
556 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
557 *
558 * This loose coupling of the file structure (header and sections) to the
559 * structure of the DTrace program itself (ECB descriptions, action
560 * descriptions, and DIFOs) permits activities such as relocation processing
561 * to occur in a single pass without having to understand D program structure.
562 *
563 * Finally, strings are always stored in ELF-style string tables along with a
564 * string table section index and string table offset. Therefore strings in
565 * DOF are always arbitrary-length and not bound to the current implementation.
566 */
567
568#define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
569
570typedef struct dof_hdr {
571 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
572 uint32_t dofh_flags; /* file attribute flags (if any) */
573 uint32_t dofh_hdrsize; /* size of file header in bytes */
574 uint32_t dofh_secsize; /* size of section header in bytes */
575 uint32_t dofh_secnum; /* number of section headers */
576 uint64_t dofh_secoff; /* file offset of section headers */
577 uint64_t dofh_loadsz; /* file size of loadable portion */
578 uint64_t dofh_filesz; /* file size of entire DOF file */
579 uint64_t dofh_pad; /* reserved for future use */
580} dof_hdr_t;
581
582#define DOF_ID_MAG0 0 /* first byte of magic number */
583#define DOF_ID_MAG1 1 /* second byte of magic number */
584#define DOF_ID_MAG2 2 /* third byte of magic number */
585#define DOF_ID_MAG3 3 /* fourth byte of magic number */
586#define DOF_ID_MODEL 4 /* DOF data model (see below) */
587#define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
588#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
589#define DOF_ID_DIFVERS 7 /* DIF instruction set version */
590#define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
591#define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
592#define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
593
594#define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
595#define DOF_MAG_MAG1 'D'
596#define DOF_MAG_MAG2 'O'
597#define DOF_MAG_MAG3 'F'
598
599#define DOF_MAG_STRING "\177DOF"
600#define DOF_MAG_STRLEN 4
601
602#define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
603#define DOF_MODEL_ILP32 1
604#define DOF_MODEL_LP64 2
605
606#ifdef _LP64
607#define DOF_MODEL_NATIVE DOF_MODEL_LP64
608#else
609#define DOF_MODEL_NATIVE DOF_MODEL_ILP32
610#endif
611
612#define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
613#define DOF_ENCODE_LSB 1
614#define DOF_ENCODE_MSB 2
615
616#ifdef _BIG_ENDIAN
617#define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
618#else
619#define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
620#endif
621
622#define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
623#define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
624#define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
625
626#define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
627
628typedef uint32_t dof_secidx_t; /* section header table index type */
629typedef uint32_t dof_stridx_t; /* string table index type */
630
631#define DOF_SECIDX_NONE (~1U) /* null value for section indices */
632#define DOF_STRIDX_NONE (~1U) /* null value for string indices */
633
634typedef struct dof_sec {
635 uint32_t dofs_type; /* section type (see below) */
636 uint32_t dofs_align; /* section data memory alignment */
637 uint32_t dofs_flags; /* section flags (if any) */
638 uint32_t dofs_entsize; /* size of section entry (if table) */
639 uint64_t dofs_offset; /* offset of section data within file */
640 uint64_t dofs_size; /* size of section data in bytes */
641} dof_sec_t;
642
643#define DOF_SECT_NONE 0 /* null section */
644#define DOF_SECT_COMMENTS 1 /* compiler comments */
645#define DOF_SECT_SOURCE 2 /* D program source code */
646#define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
647#define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
648#define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
649#define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
650#define DOF_SECT_DIF 7 /* uint32_t array of byte code */
651#define DOF_SECT_STRTAB 8 /* string table */
652#define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
653#define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
654#define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
655#define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
656#define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
657#define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
658#define DOF_SECT_PROVIDER 15 /* dof_provider_t */
659#define DOF_SECT_PROBES 16 /* dof_probe_t array */
660#define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
661#define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
662#define DOF_SECT_INTTAB 19 /* uint64_t array */
663#define DOF_SECT_UTSNAME 20 /* struct utsname */
664#define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
665#define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
666#define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
667#define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
668#define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
669#define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
670
671#define DOF_SECF_LOAD 1 /* section should be loaded */
672
673#define DOF_SEC_ISLOADABLE(x) \
674 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
675 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
676 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
677 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
678 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
679 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
680 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
681 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
682 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
683 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
684 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
685 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
686
687typedef struct dof_ecbdesc {
688 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
689 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
690 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
691 uint32_t dofe_pad; /* reserved for future use */
692 uint64_t dofe_uarg; /* user-supplied library argument */
693} dof_ecbdesc_t;
694
695typedef struct dof_probedesc {
696 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
697 dof_stridx_t dofp_provider; /* provider string */
698 dof_stridx_t dofp_mod; /* module string */
699 dof_stridx_t dofp_func; /* function string */
700 dof_stridx_t dofp_name; /* name string */
701 uint32_t dofp_id; /* probe identifier (or zero) */
702} dof_probedesc_t;
703
704typedef struct dof_actdesc {
705 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
706 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
707 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
708 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
709 uint64_t dofa_arg; /* kind-specific argument */
710 uint64_t dofa_uarg; /* user-supplied argument */
711} dof_actdesc_t;
712
713typedef struct dof_difohdr {
714 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
715 dof_secidx_t dofd_links[1]; /* variable length array of indices */
716} dof_difohdr_t;
717
718typedef struct dof_relohdr {
719 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
720 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
721 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
722} dof_relohdr_t;
723
724typedef struct dof_relodesc {
725 dof_stridx_t dofr_name; /* string name of relocation symbol */
726 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
727 uint64_t dofr_offset; /* byte offset for relocation */
728 uint64_t dofr_data; /* additional type-specific data */
729} dof_relodesc_t;
730
731#define DOF_RELO_NONE 0 /* empty relocation entry */
732#define DOF_RELO_SETX 1 /* relocate setx value */
733
734typedef struct dof_optdesc {
735 uint32_t dofo_option; /* option identifier */
736 dof_secidx_t dofo_strtab; /* string table, if string option */
737 uint64_t dofo_value; /* option value or string index */
738} dof_optdesc_t;
739
740typedef uint32_t dof_attr_t; /* encoded stability attributes */
741
742#define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
743#define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
744#define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
745#define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
746
747typedef struct dof_provider {
748 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
749 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
750 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
751 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
752 dof_stridx_t dofpv_name; /* provider name string */
753 dof_attr_t dofpv_provattr; /* provider attributes */
754 dof_attr_t dofpv_modattr; /* module attributes */
755 dof_attr_t dofpv_funcattr; /* function attributes */
756 dof_attr_t dofpv_nameattr; /* name attributes */
757 dof_attr_t dofpv_argsattr; /* args attributes */
758 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
759} dof_provider_t;
760
761typedef struct dof_probe {
762 uint64_t dofpr_addr; /* probe base address or offset */
763 dof_stridx_t dofpr_func; /* probe function string */
764 dof_stridx_t dofpr_name; /* probe name string */
765 dof_stridx_t dofpr_nargv; /* native argument type strings */
766 dof_stridx_t dofpr_xargv; /* translated argument type strings */
767 uint32_t dofpr_argidx; /* index of first argument mapping */
768 uint32_t dofpr_offidx; /* index of first offset entry */
769 uint8_t dofpr_nargc; /* native argument count */
770 uint8_t dofpr_xargc; /* translated argument count */
771 uint16_t dofpr_noffs; /* number of offset entries for probe */
772 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
773 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
774 uint16_t dofpr_pad1; /* reserved for future use */
775 uint32_t dofpr_pad2; /* reserved for future use */
776} dof_probe_t;
777
778typedef struct dof_xlator {
779 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
780 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
781 dof_stridx_t dofxl_argv; /* input parameter type strings */
782 uint32_t dofxl_argc; /* input parameter list length */
783 dof_stridx_t dofxl_type; /* output type string name */
784 dof_attr_t dofxl_attr; /* output stability attributes */
785} dof_xlator_t;
786
787typedef struct dof_xlmember {
788 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
789 dof_stridx_t dofxm_name; /* member name */
790 dtrace_diftype_t dofxm_type; /* member type */
791} dof_xlmember_t;
792
793typedef struct dof_xlref {
794 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
795 uint32_t dofxr_member; /* index of referenced dof_xlmember */
796 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
797} dof_xlref_t;
798
799/*
800 * DTrace Intermediate Format Object (DIFO)
801 *
802 * A DIFO is used to store the compiled DIF for a D expression, its return
803 * type, and its string and variable tables. The string table is a single
804 * buffer of character data into which sets instructions and variable
805 * references can reference strings using a byte offset. The variable table
806 * is an array of dtrace_difv_t structures that describe the name and type of
807 * each variable and the id used in the DIF code. This structure is described
808 * above in the DIF section of this header file. The DIFO is used at both
809 * user-level (in the library) and in the kernel, but the structure is never
810 * passed between the two: the DOF structures form the only interface. As a
811 * result, the definition can change depending on the presence of _KERNEL.
812 */
813typedef struct dtrace_difo {
814 dif_instr_t *dtdo_buf; /* instruction buffer */
815 uint64_t *dtdo_inttab; /* integer table (optional) */
816 char *dtdo_strtab; /* string table (optional) */
817 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
818 uint_t dtdo_len; /* length of instruction buffer */
819 uint_t dtdo_intlen; /* length of integer table */
820 uint_t dtdo_strlen; /* length of string table */
821 uint_t dtdo_varlen; /* length of variable table */
822 dtrace_diftype_t dtdo_rtype; /* return type */
823 uint_t dtdo_refcnt; /* owner reference count */
824 uint_t dtdo_destructive; /* invokes destructive subroutines */
825#if !defined(_KERNEL) || defined(IN_RING3)
826 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
827 dof_relodesc_t *dtdo_ureltab; /* user relocations */
828 struct dt_node **dtdo_xlmtab; /* translator references */
829 uint_t dtdo_krelen; /* length of krelo table */
830 uint_t dtdo_urelen; /* length of urelo table */
831 uint_t dtdo_xlmlen; /* length of translator table */
832#endif
833} dtrace_difo_t;
834
835/*
836 * DTrace Enabling Description Structures
837 *
838 * When DTrace is tracking the description of a DTrace enabling entity (probe,
839 * predicate, action, ECB, record, etc.), it does so in a description
840 * structure. These structures all end in "desc", and are used at both
841 * user-level and in the kernel -- but (with the exception of
842 * dtrace_probedesc_t) they are never passed between them. Typically,
843 * user-level will use the description structures when assembling an enabling.
844 * It will then distill those description structures into a DOF object (see
845 * above), and send it into the kernel. The kernel will again use the
846 * description structures to create a description of the enabling as it reads
847 * the DOF. When the description is complete, the enabling will be actually
848 * created -- turning it into the structures that represent the enabling
849 * instead of merely describing it. Not surprisingly, the description
850 * structures bear a strong resemblance to the DOF structures that act as their
851 * conduit.
852 */
853struct dtrace_predicate;
854
855typedef struct dtrace_probedesc {
856 dtrace_id_t dtpd_id; /* probe identifier */
857 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
858 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
859 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
860 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
861} dtrace_probedesc_t;
862
863typedef struct dtrace_repldesc {
864 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
865 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
866} dtrace_repldesc_t;
867
868typedef struct dtrace_preddesc {
869 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
870 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
871} dtrace_preddesc_t;
872
873typedef struct dtrace_actdesc {
874 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
875 struct dtrace_actdesc *dtad_next; /* next action */
876 dtrace_actkind_t dtad_kind; /* kind of action */
877 uint32_t dtad_ntuple; /* number in tuple */
878 uint64_t dtad_arg; /* action argument */
879 uint64_t dtad_uarg; /* user argument */
880 int dtad_refcnt; /* reference count */
881} dtrace_actdesc_t;
882
883typedef struct dtrace_ecbdesc {
884 dtrace_actdesc_t *dted_action; /* action description(s) */
885 dtrace_preddesc_t dted_pred; /* predicate description */
886 dtrace_probedesc_t dted_probe; /* probe description */
887 uint64_t dted_uarg; /* library argument */
888 int dted_refcnt; /* reference count */
889} dtrace_ecbdesc_t;
890
891/*
892 * DTrace Metadata Description Structures
893 *
894 * DTrace separates the trace data stream from the metadata stream. The only
895 * metadata tokens placed in the data stream are enabled probe identifiers
896 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order
897 * to determine the structure of the data, DTrace consumers pass the token to
898 * the kernel, and receive in return a corresponding description of the enabled
899 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
900 * dtrace_aggdesc structure). Both of these structures are expressed in terms
901 * of record descriptions (via the dtrace_recdesc structure) that describe the
902 * exact structure of the data. Some record descriptions may also contain a
903 * format identifier; this additional bit of metadata can be retrieved from the
904 * kernel, for which a format description is returned via the dtrace_fmtdesc
905 * structure. Note that all four of these structures must be bitness-neutral
906 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
907 */
908typedef struct dtrace_recdesc {
909 dtrace_actkind_t dtrd_action; /* kind of action */
910 uint32_t dtrd_size; /* size of record */
911 uint32_t dtrd_offset; /* offset in ECB's data */
912 uint16_t dtrd_alignment; /* required alignment */
913 uint16_t dtrd_format; /* format, if any */
914 uint64_t dtrd_arg; /* action argument */
915 uint64_t dtrd_uarg; /* user argument */
916} dtrace_recdesc_t;
917
918typedef struct dtrace_eprobedesc {
919 dtrace_epid_t dtepd_epid; /* enabled probe ID */
920 dtrace_id_t dtepd_probeid; /* probe ID */
921 uint64_t dtepd_uarg; /* library argument */
922 uint32_t dtepd_size; /* total size */
923 int dtepd_nrecs; /* number of records */
924 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
925} dtrace_eprobedesc_t;
926
927typedef struct dtrace_aggdesc {
928 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
929 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
930 int dtagd_flags; /* not filled in by kernel */
931 dtrace_aggid_t dtagd_id; /* aggregation ID */
932 dtrace_epid_t dtagd_epid; /* enabled probe ID */
933 uint32_t dtagd_size; /* size in bytes */
934 int dtagd_nrecs; /* number of records */
935 uint32_t dtagd_pad; /* explicit padding */
936 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
937} dtrace_aggdesc_t;
938
939typedef struct dtrace_fmtdesc {
940 DTRACE_PTR(char, dtfd_string); /* format string */
941 int dtfd_length; /* length of format string */
942 uint16_t dtfd_format; /* format identifier */
943} dtrace_fmtdesc_t;
944
945#define DTRACE_SIZEOF_EPROBEDESC(desc) \
946 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
947 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
948
949#define DTRACE_SIZEOF_AGGDESC(desc) \
950 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
951 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
952
953/*
954 * DTrace Option Interface
955 *
956 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
957 * in a DOF image. The dof_optdesc structure contains an option identifier and
958 * an option value. The valid option identifiers are found below; the mapping
959 * between option identifiers and option identifying strings is maintained at
960 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
961 * following are potentially valid option values: all positive integers, zero
962 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
963 * predefined tokens as their values; these are defined with
964 * DTRACEOPT_{option}_{token}.
965 */
966#define DTRACEOPT_BUFSIZE 0 /* buffer size */
967#define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
968#define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
969#define DTRACEOPT_AGGSIZE 3 /* aggregation size */
970#define DTRACEOPT_SPECSIZE 4 /* speculation size */
971#define DTRACEOPT_NSPEC 5 /* number of speculations */
972#define DTRACEOPT_STRSIZE 6 /* string size */
973#define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
974#define DTRACEOPT_CPU 8 /* CPU to trace */
975#define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
976#define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
977#define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
978#define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
979#define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
980#define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
981#define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
982#define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
983#define DTRACEOPT_STATUSRATE 17 /* status rate */
984#define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
985#define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
986#define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
987#define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
988#define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
989#define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
990#define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
991#define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
992#define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
993#define DTRACEOPT_MAX 27 /* number of options */
994
995#define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
996
997#define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
998#define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
999#define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1000
1001#define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1002#define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1003
1004/*
1005 * DTrace Buffer Interface
1006 *
1007 * In order to get a snapshot of the principal or aggregation buffer,
1008 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1009 * structure. This describes which CPU user-level is interested in, and
1010 * where user-level wishes the kernel to snapshot the buffer to (the
1011 * dtbd_data field). The kernel uses the same structure to pass back some
1012 * information regarding the buffer: the size of data actually copied out, the
1013 * number of drops, the number of errors, and the offset of the oldest record.
1014 * If the buffer policy is a "switch" policy, taking a snapshot of the
1015 * principal buffer has the additional effect of switching the active and
1016 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1017 * the additional effect of switching the active and inactive buffers.
1018 */
1019typedef struct dtrace_bufdesc {
1020 uint64_t dtbd_size; /* size of buffer */
1021 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1022 uint32_t dtbd_errors; /* number of errors */
1023 uint64_t dtbd_drops; /* number of drops */
1024 DTRACE_PTR(char, dtbd_data); /* data */
1025 uint64_t dtbd_oldest; /* offset of oldest record */
1026} dtrace_bufdesc_t;
1027
1028/*
1029 * DTrace Status
1030 *
1031 * The status of DTrace is relayed via the dtrace_status structure. This
1032 * structure contains members to count drops other than the capacity drops
1033 * available via the buffer interface (see above). This consists of dynamic
1034 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1035 * speculative drops (including capacity speculative drops, drops due to busy
1036 * speculative buffers and drops due to unavailable speculative buffers).
1037 * Additionally, the status structure contains a field to indicate the number
1038 * of "fill"-policy buffers have been filled and a boolean field to indicate
1039 * that exit() has been called. If the dtst_exiting field is non-zero, no
1040 * further data will be generated until tracing is stopped (at which time any
1041 * enablings of the END action will be processed); if user-level sees that
1042 * this field is non-zero, tracing should be stopped as soon as possible.
1043 */
1044typedef struct dtrace_status {
1045 uint64_t dtst_dyndrops; /* dynamic drops */
1046 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1047 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1048 uint64_t dtst_specdrops; /* speculative drops */
1049 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1050 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1051 uint64_t dtst_errors; /* total errors */
1052 uint64_t dtst_filled; /* number of filled bufs */
1053 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1054 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1055 char dtst_killed; /* non-zero if killed */
1056 char dtst_exiting; /* non-zero if exit() called */
1057 char dtst_pad[6]; /* pad out to 64-bit align */
1058} dtrace_status_t;
1059
1060/*
1061 * DTrace Configuration
1062 *
1063 * User-level may need to understand some elements of the kernel DTrace
1064 * configuration in order to generate correct DIF. This information is
1065 * conveyed via the dtrace_conf structure.
1066 */
1067typedef struct dtrace_conf {
1068 uint_t dtc_difversion; /* supported DIF version */
1069 uint_t dtc_difintregs; /* # of DIF integer registers */
1070 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1071 uint_t dtc_ctfmodel; /* CTF data model */
1072 uint_t dtc_pad[8]; /* reserved for future use */
1073} dtrace_conf_t;
1074
1075/*
1076 * DTrace Faults
1077 *
1078 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1079 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1080 * postprocessing at user-level. Probe processing faults induce an ERROR
1081 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1082 * the error condition using thse symbolic labels.
1083 */
1084#define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1085#define DTRACEFLT_BADADDR 1 /* Bad address */
1086#define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1087#define DTRACEFLT_ILLOP 3 /* Illegal operation */
1088#define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1089#define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1090#define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1091#define DTRACEFLT_UPRIV 7 /* Illegal user access */
1092#define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1093#define DTRACEFLT_BADSTACK 9 /* Bad stack */
1094
1095#define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1096
1097/*
1098 * DTrace Argument Types
1099 *
1100 * Because it would waste both space and time, argument types do not reside
1101 * with the probe. In order to determine argument types for args[X]
1102 * variables, the D compiler queries for argument types on a probe-by-probe
1103 * basis. (This optimizes for the common case that arguments are either not
1104 * used or used in an untyped fashion.) Typed arguments are specified with a
1105 * string of the type name in the dtragd_native member of the argument
1106 * description structure. Typed arguments may be further translated to types
1107 * of greater stability; the provider indicates such a translated argument by
1108 * filling in the dtargd_xlate member with the string of the translated type.
1109 * Finally, the provider may indicate which argument value a given argument
1110 * maps to by setting the dtargd_mapping member -- allowing a single argument
1111 * to map to multiple args[X] variables.
1112 */
1113typedef struct dtrace_argdesc {
1114 dtrace_id_t dtargd_id; /* probe identifier */
1115 int dtargd_ndx; /* arg number (-1 iff none) */
1116 int dtargd_mapping; /* value mapping */
1117 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1118 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1119} dtrace_argdesc_t;
1120
1121/*
1122 * DTrace Stability Attributes
1123 *
1124 * Each DTrace provider advertises the name and data stability of each of its
1125 * probe description components, as well as its architectural dependencies.
1126 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1127 * order to compute the properties of an input program and report them.
1128 */
1129typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1130typedef uint8_t dtrace_class_t; /* architectural dependency class */
1131
1132#define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1133#define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1134#define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1135#define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1136#define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1137#define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1138#define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1139#define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1140#define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1141
1142#define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1143#define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1144#define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1145#define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1146#define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1147#define DTRACE_CLASS_COMMON 5 /* common to all systems */
1148#define DTRACE_CLASS_MAX 5 /* maximum valid class */
1149
1150#define DTRACE_PRIV_NONE 0x0000
1151#define DTRACE_PRIV_KERNEL 0x0001
1152#define DTRACE_PRIV_USER 0x0002
1153#define DTRACE_PRIV_PROC 0x0004
1154#define DTRACE_PRIV_OWNER 0x0008
1155#define DTRACE_PRIV_ZONEOWNER 0x0010
1156
1157#define DTRACE_PRIV_ALL \
1158 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1159 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1160
1161typedef struct dtrace_ppriv {
1162 uint32_t dtpp_flags; /* privilege flags */
1163 uid_t dtpp_uid; /* user ID */
1164 zoneid_t dtpp_zoneid; /* zone ID */
1165} dtrace_ppriv_t;
1166
1167typedef struct dtrace_attribute {
1168 dtrace_stability_t dtat_name; /* entity name stability */
1169 dtrace_stability_t dtat_data; /* entity data stability */
1170 dtrace_class_t dtat_class; /* entity data dependency */
1171} dtrace_attribute_t;
1172
1173typedef struct dtrace_pattr {
1174 dtrace_attribute_t dtpa_provider; /* provider attributes */
1175 dtrace_attribute_t dtpa_mod; /* module attributes */
1176 dtrace_attribute_t dtpa_func; /* function attributes */
1177 dtrace_attribute_t dtpa_name; /* name attributes */
1178 dtrace_attribute_t dtpa_args; /* args[] attributes */
1179} dtrace_pattr_t;
1180
1181typedef struct dtrace_providerdesc {
1182 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1183 dtrace_pattr_t dtvd_attr; /* stability attributes */
1184 dtrace_ppriv_t dtvd_priv; /* privileges required */
1185} dtrace_providerdesc_t;
1186
1187/*
1188 * DTrace Pseudodevice Interface
1189 *
1190 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1191 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1192 * DTrace.
1193 */
1194#define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1195#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1196#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1197#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1198#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1199#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1200#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1201#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1202#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1203#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1204#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1205#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1206#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1207#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1208#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1209#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1210#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1211
1212/*
1213 * DTrace Helpers
1214 *
1215 * In general, DTrace establishes probes in processes and takes actions on
1216 * processes without knowing their specific user-level structures. Instead of
1217 * existing in the framework, process-specific knowledge is contained by the
1218 * enabling D program -- which can apply process-specific knowledge by making
1219 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1220 * operate on user-level data. However, there may exist some specific probes
1221 * of particular semantic relevance that the application developer may wish to
1222 * explicitly export. For example, an application may wish to export a probe
1223 * at the point that it begins and ends certain well-defined transactions. In
1224 * addition to providing probes, programs may wish to offer assistance for
1225 * certain actions. For example, in highly dynamic environments (e.g., Java),
1226 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1227 * names (the translation from instruction addresses to corresponding symbol
1228 * names may only be possible in situ); these environments may wish to define
1229 * a series of actions to be applied in situ to obtain a meaningful stack
1230 * trace.
1231 *
1232 * These two mechanisms -- user-level statically defined tracing and assisting
1233 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1234 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1235 * providers, probes and their arguments. If a helper wishes to provide
1236 * action assistance, probe descriptions and corresponding DIF actions may be
1237 * specified in the helper DOF. For such helper actions, however, the probe
1238 * description describes the specific helper: all DTrace helpers have the
1239 * provider name "dtrace" and the module name "helper", and the name of the
1240 * helper is contained in the function name (for example, the ustack() helper
1241 * is named "ustack"). Any helper-specific name may be contained in the name
1242 * (for example, if a helper were to have a constructor, it might be named
1243 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1244 * action that they are helping is taken. Helper actions may only return DIF
1245 * expressions, and may only call the following subroutines:
1246 *
1247 * alloca() <= Allocates memory out of the consumer's scratch space
1248 * bcopy() <= Copies memory to scratch space
1249 * copyin() <= Copies memory from user-level into consumer's scratch
1250 * copyinto() <= Copies memory into a specific location in scratch
1251 * copyinstr() <= Copies a string into a specific location in scratch
1252 *
1253 * Helper actions may only access the following built-in variables:
1254 *
1255 * curthread <= Current kthread_t pointer
1256 * tid <= Current thread identifier
1257 * pid <= Current process identifier
1258 * ppid <= Parent process identifier
1259 * uid <= Current user ID
1260 * gid <= Current group ID
1261 * execname <= Current executable name
1262 * zonename <= Current zone name
1263 *
1264 * Helper actions may not manipulate or allocate dynamic variables, but they
1265 * may have clause-local and statically-allocated global variables. The
1266 * helper action variable state is specific to the helper action -- variables
1267 * used by the helper action may not be accessed outside of the helper
1268 * action, and the helper action may not access variables that like outside
1269 * of it. Helper actions may not load from kernel memory at-large; they are
1270 * restricting to loading current user state (via copyin() and variants) and
1271 * scratch space. As with probe enablings, helper actions are executed in
1272 * program order. The result of the helper action is the result of the last
1273 * executing helper expression.
1274 *
1275 * Helpers -- composed of either providers/probes or probes/actions (or both)
1276 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1277 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1278 * encapsulates the name and base address of the user-level library or
1279 * executable publishing the helpers and probes as well as the DOF that
1280 * contains the definitions of those helpers and probes.
1281 *
1282 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1283 * helpers and should no longer be used. No other ioctls are valid on the
1284 * helper minor node.
1285 */
1286#define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1287#define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1288#define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1289#define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1290
1291typedef struct dof_helper {
1292 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1293 uint64_t dofhp_addr; /* base address of object */
1294 uint64_t dofhp_dof; /* address of helper DOF */
1295} dof_helper_t;
1296
1297#define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1298#define DTRACEMNR_HELPER "helper" /* node for helpers */
1299#define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1300#define DTRACEMNRN_HELPER 1 /* minor for helpers */
1301#define DTRACEMNRN_CLONE 2 /* first clone minor */
1302
1303#if defined(_KERNEL) || defined(IN_RING0)
1304
1305/*
1306 * DTrace Provider API
1307 *
1308 * The following functions are implemented by the DTrace framework and are
1309 * used to implement separate in-kernel DTrace providers. Common functions
1310 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1311 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1312 *
1313 * The provider API has two halves: the API that the providers consume from
1314 * DTrace, and the API that providers make available to DTrace.
1315 *
1316 * 1 Framework-to-Provider API
1317 *
1318 * 1.1 Overview
1319 *
1320 * The Framework-to-Provider API is represented by the dtrace_pops structure
1321 * that the provider passes to the framework when registering itself. This
1322 * structure consists of the following members:
1323 *
1324 * dtps_provide() <-- Provide all probes, all modules
1325 * dtps_provide_module() <-- Provide all probes in specified module
1326 * dtps_enable() <-- Enable specified probe
1327 * dtps_disable() <-- Disable specified probe
1328 * dtps_suspend() <-- Suspend specified probe
1329 * dtps_resume() <-- Resume specified probe
1330 * dtps_getargdesc() <-- Get the argument description for args[X]
1331 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1332 * dtps_usermode() <-- Find out if the probe was fired in user mode
1333 * dtps_destroy() <-- Destroy all state associated with this probe
1334 *
1335 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1336 *
1337 * 1.2.1 Overview
1338 *
1339 * Called to indicate that the provider should provide all probes. If the
1340 * specified description is non-NULL, dtps_provide() is being called because
1341 * no probe matched a specified probe -- if the provider has the ability to
1342 * create custom probes, it may wish to create a probe that matches the
1343 * specified description.
1344 *
1345 * 1.2.2 Arguments and notes
1346 *
1347 * The first argument is the cookie as passed to dtrace_register(). The
1348 * second argument is a pointer to a probe description that the provider may
1349 * wish to consider when creating custom probes. The provider is expected to
1350 * call back into the DTrace framework via dtrace_probe_create() to create
1351 * any necessary probes. dtps_provide() may be called even if the provider
1352 * has made available all probes; the provider should check the return value
1353 * of dtrace_probe_create() to handle this case. Note that the provider need
1354 * not implement both dtps_provide() and dtps_provide_module(); see
1355 * "Arguments and Notes" for dtrace_register(), below.
1356 *
1357 * 1.2.3 Return value
1358 *
1359 * None.
1360 *
1361 * 1.2.4 Caller's context
1362 *
1363 * dtps_provide() is typically called from open() or ioctl() context, but may
1364 * be called from other contexts as well. The DTrace framework is locked in
1365 * such a way that providers may not register or unregister. This means that
1366 * the provider may not call any DTrace API that affects its registration with
1367 * the framework, including dtrace_register(), dtrace_unregister(),
1368 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1369 * that the provider may (and indeed, is expected to) call probe-related
1370 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1371 * and dtrace_probe_arg().
1372 *
1373 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1374 *
1375 * 1.3.1 Overview
1376 *
1377 * Called to indicate that the provider should provide all probes in the
1378 * specified module.
1379 *
1380 * 1.3.2 Arguments and notes
1381 *
1382 * The first argument is the cookie as passed to dtrace_register(). The
1383 * second argument is a pointer to a modctl structure that indicates the
1384 * module for which probes should be created.
1385 *
1386 * 1.3.3 Return value
1387 *
1388 * None.
1389 *
1390 * 1.3.4 Caller's context
1391 *
1392 * dtps_provide_module() may be called from open() or ioctl() context, but
1393 * may also be called from a module loading context. mod_lock is held, and
1394 * the DTrace framework is locked in such a way that providers may not
1395 * register or unregister. This means that the provider may not call any
1396 * DTrace API that affects its registration with the framework, including
1397 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1398 * dtrace_condense(). However, the context is such that the provider may (and
1399 * indeed, is expected to) call probe-related DTrace routines, including
1400 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1401 * that the provider need not implement both dtps_provide() and
1402 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1403 * below.
1404 *
1405 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1406 *
1407 * 1.4.1 Overview
1408 *
1409 * Called to enable the specified probe.
1410 *
1411 * 1.4.2 Arguments and notes
1412 *
1413 * The first argument is the cookie as passed to dtrace_register(). The
1414 * second argument is the identifier of the probe to be enabled. The third
1415 * argument is the probe argument as passed to dtrace_probe_create().
1416 * dtps_enable() will be called when a probe transitions from not being
1417 * enabled at all to having one or more ECB. The number of ECBs associated
1418 * with the probe may change without subsequent calls into the provider.
1419 * When the number of ECBs drops to zero, the provider will be explicitly
1420 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1421 * be called for a probe identifier that hasn't been explicitly enabled via
1422 * dtps_enable().
1423 *
1424 * 1.4.3 Return value
1425 *
1426 * On success, dtps_enable() should return 0. On failure, -1 should be
1427 * returned.
1428 *
1429 * 1.4.4 Caller's context
1430 *
1431 * The DTrace framework is locked in such a way that it may not be called
1432 * back into at all. cpu_lock is held. mod_lock is not held and may not
1433 * be acquired.
1434 *
1435 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1436 *
1437 * 1.5.1 Overview
1438 *
1439 * Called to disable the specified probe.
1440 *
1441 * 1.5.2 Arguments and notes
1442 *
1443 * The first argument is the cookie as passed to dtrace_register(). The
1444 * second argument is the identifier of the probe to be disabled. The third
1445 * argument is the probe argument as passed to dtrace_probe_create().
1446 * dtps_disable() will be called when a probe transitions from being enabled
1447 * to having zero ECBs. dtrace_probe() should never be called for a probe
1448 * identifier that has been explicitly enabled via dtps_disable().
1449 *
1450 * 1.5.3 Return value
1451 *
1452 * None.
1453 *
1454 * 1.5.4 Caller's context
1455 *
1456 * The DTrace framework is locked in such a way that it may not be called
1457 * back into at all. cpu_lock is held. mod_lock is not held and may not
1458 * be acquired.
1459 *
1460 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1461 *
1462 * 1.6.1 Overview
1463 *
1464 * Called to suspend the specified enabled probe. This entry point is for
1465 * providers that may need to suspend some or all of their probes when CPUs
1466 * are being powered on or when the boot monitor is being entered for a
1467 * prolonged period of time.
1468 *
1469 * 1.6.2 Arguments and notes
1470 *
1471 * The first argument is the cookie as passed to dtrace_register(). The
1472 * second argument is the identifier of the probe to be suspended. The
1473 * third argument is the probe argument as passed to dtrace_probe_create().
1474 * dtps_suspend will only be called on an enabled probe. Providers that
1475 * provide a dtps_suspend entry point will want to take roughly the action
1476 * that it takes for dtps_disable.
1477 *
1478 * 1.6.3 Return value
1479 *
1480 * None.
1481 *
1482 * 1.6.4 Caller's context
1483 *
1484 * Interrupts are disabled. The DTrace framework is in a state such that the
1485 * specified probe cannot be disabled or destroyed for the duration of
1486 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1487 * little latitude; the provider is expected to do no more than a store to
1488 * memory.
1489 *
1490 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1491 *
1492 * 1.7.1 Overview
1493 *
1494 * Called to resume the specified enabled probe. This entry point is for
1495 * providers that may need to resume some or all of their probes after the
1496 * completion of an event that induced a call to dtps_suspend().
1497 *
1498 * 1.7.2 Arguments and notes
1499 *
1500 * The first argument is the cookie as passed to dtrace_register(). The
1501 * second argument is the identifier of the probe to be resumed. The
1502 * third argument is the probe argument as passed to dtrace_probe_create().
1503 * dtps_resume will only be called on an enabled probe. Providers that
1504 * provide a dtps_resume entry point will want to take roughly the action
1505 * that it takes for dtps_enable.
1506 *
1507 * 1.7.3 Return value
1508 *
1509 * None.
1510 *
1511 * 1.7.4 Caller's context
1512 *
1513 * Interrupts are disabled. The DTrace framework is in a state such that the
1514 * specified probe cannot be disabled or destroyed for the duration of
1515 * dtps_resume(). As interrupts are disabled, the provider is afforded
1516 * little latitude; the provider is expected to do no more than a store to
1517 * memory.
1518 *
1519 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1520 * dtrace_argdesc_t *desc)
1521 *
1522 * 1.8.1 Overview
1523 *
1524 * Called to retrieve the argument description for an args[X] variable.
1525 *
1526 * 1.8.2 Arguments and notes
1527 *
1528 * The first argument is the cookie as passed to dtrace_register(). The
1529 * second argument is the identifier of the current probe. The third
1530 * argument is the probe argument as passed to dtrace_probe_create(). The
1531 * fourth argument is a pointer to the argument description. This
1532 * description is both an input and output parameter: it contains the
1533 * index of the desired argument in the dtargd_ndx field, and expects
1534 * the other fields to be filled in upon return. If there is no argument
1535 * corresponding to the specified index, the dtargd_ndx field should be set
1536 * to DTRACE_ARGNONE.
1537 *
1538 * 1.8.3 Return value
1539 *
1540 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1541 * members of the dtrace_argdesc_t structure are all output values.
1542 *
1543 * 1.8.4 Caller's context
1544 *
1545 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1546 * the DTrace framework is locked in such a way that providers may not
1547 * register or unregister. This means that the provider may not call any
1548 * DTrace API that affects its registration with the framework, including
1549 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1550 * dtrace_condense().
1551 *
1552 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1553 * int argno, int aframes)
1554 *
1555 * 1.9.1 Overview
1556 *
1557 * Called to retrieve a value for an argX or args[X] variable.
1558 *
1559 * 1.9.2 Arguments and notes
1560 *
1561 * The first argument is the cookie as passed to dtrace_register(). The
1562 * second argument is the identifier of the current probe. The third
1563 * argument is the probe argument as passed to dtrace_probe_create(). The
1564 * fourth argument is the number of the argument (the X in the example in
1565 * 1.9.1). The fifth argument is the number of stack frames that were used
1566 * to get from the actual place in the code that fired the probe to
1567 * dtrace_probe() itself, the so-called artificial frames. This argument may
1568 * be used to descend an appropriate number of frames to find the correct
1569 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1570 * function is used.
1571 *
1572 * 1.9.3 Return value
1573 *
1574 * The value of the argument.
1575 *
1576 * 1.9.4 Caller's context
1577 *
1578 * This is called from within dtrace_probe() meaning that interrupts
1579 * are disabled. No locks should be taken within this entry point.
1580 *
1581 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1582 *
1583 * 1.10.1 Overview
1584 *
1585 * Called to determine if the probe was fired in a user context.
1586 *
1587 * 1.10.2 Arguments and notes
1588 *
1589 * The first argument is the cookie as passed to dtrace_register(). The
1590 * second argument is the identifier of the current probe. The third
1591 * argument is the probe argument as passed to dtrace_probe_create(). This
1592 * entry point must not be left NULL for providers whose probes allow for
1593 * mixed mode tracing, that is to say those probes that can fire during
1594 * kernel- _or_ user-mode execution
1595 *
1596 * 1.10.3 Return value
1597 *
1598 * A boolean value.
1599 *
1600 * 1.10.4 Caller's context
1601 *
1602 * This is called from within dtrace_probe() meaning that interrupts
1603 * are disabled. No locks should be taken within this entry point.
1604 *
1605 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1606 *
1607 * 1.11.1 Overview
1608 *
1609 * Called to destroy the specified probe.
1610 *
1611 * 1.11.2 Arguments and notes
1612 *
1613 * The first argument is the cookie as passed to dtrace_register(). The
1614 * second argument is the identifier of the probe to be destroyed. The third
1615 * argument is the probe argument as passed to dtrace_probe_create(). The
1616 * provider should free all state associated with the probe. The framework
1617 * guarantees that dtps_destroy() is only called for probes that have either
1618 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1619 * Once dtps_disable() has been called for a probe, no further call will be
1620 * made specifying the probe.
1621 *
1622 * 1.11.3 Return value
1623 *
1624 * None.
1625 *
1626 * 1.11.4 Caller's context
1627 *
1628 * The DTrace framework is locked in such a way that it may not be called
1629 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1630 * acquired.
1631 *
1632 *
1633 * 2 Provider-to-Framework API
1634 *
1635 * 2.1 Overview
1636 *
1637 * The Provider-to-Framework API provides the mechanism for the provider to
1638 * register itself with the DTrace framework, to create probes, to lookup
1639 * probes and (most importantly) to fire probes. The Provider-to-Framework
1640 * consists of:
1641 *
1642 * dtrace_register() <-- Register a provider with the DTrace framework
1643 * dtrace_unregister() <-- Remove a provider's DTrace registration
1644 * dtrace_invalidate() <-- Invalidate the specified provider
1645 * dtrace_condense() <-- Remove a provider's unenabled probes
1646 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1647 * dtrace_probe_create() <-- Create a DTrace probe
1648 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1649 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1650 * dtrace_probe() <-- Fire the specified probe
1651 *
1652 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1653 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1654 * dtrace_provider_id_t *idp)
1655 *
1656 * 2.2.1 Overview
1657 *
1658 * dtrace_register() registers the calling provider with the DTrace
1659 * framework. It should generally be called by DTrace providers in their
1660 * attach(9E) entry point.
1661 *
1662 * 2.2.2 Arguments and Notes
1663 *
1664 * The first argument is the name of the provider. The second argument is a
1665 * pointer to the stability attributes for the provider. The third argument
1666 * is the privilege flags for the provider, and must be some combination of:
1667 *
1668 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1669 *
1670 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1671 * enable probes from this provider
1672 *
1673 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1674 * enable probes from this provider
1675 *
1676 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1677 * may enable probes from this provider
1678 *
1679 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1680 * the privilege requirements above. These probes
1681 * require either (a) a user ID matching the user
1682 * ID of the cred passed in the fourth argument
1683 * or (b) the PRIV_PROC_OWNER privilege.
1684 *
1685 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1686 * the privilege requirements above. These probes
1687 * require either (a) a zone ID matching the zone
1688 * ID of the cred passed in the fourth argument
1689 * or (b) the PRIV_PROC_ZONE privilege.
1690 *
1691 * Note that these flags designate the _visibility_ of the probes, not
1692 * the conditions under which they may or may not fire.
1693 *
1694 * The fourth argument is the credential that is associated with the
1695 * provider. This argument should be NULL if the privilege flags don't
1696 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1697 * framework stashes the uid and zoneid represented by this credential
1698 * for use at probe-time, in implicit predicates. These limit visibility
1699 * of the probes to users and/or zones which have sufficient privilege to
1700 * access them.
1701 *
1702 * The fifth argument is a DTrace provider operations vector, which provides
1703 * the implementation for the Framework-to-Provider API. (See Section 1,
1704 * above.) This must be non-NULL, and each member must be non-NULL. The
1705 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1706 * members (if the provider so desires, _one_ of these members may be left
1707 * NULL -- denoting that the provider only implements the other) and (2)
1708 * the dtps_suspend() and dtps_resume() members, which must either both be
1709 * NULL or both be non-NULL.
1710 *
1711 * The sixth argument is a cookie to be specified as the first argument for
1712 * each function in the Framework-to-Provider API. This argument may have
1713 * any value.
1714 *
1715 * The final argument is a pointer to dtrace_provider_id_t. If
1716 * dtrace_register() successfully completes, the provider identifier will be
1717 * stored in the memory pointed to be this argument. This argument must be
1718 * non-NULL.
1719 *
1720 * 2.2.3 Return value
1721 *
1722 * On success, dtrace_register() returns 0 and stores the new provider's
1723 * identifier into the memory pointed to by the idp argument. On failure,
1724 * dtrace_register() returns an errno:
1725 *
1726 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1727 * This may because a parameter that must be non-NULL was NULL,
1728 * because the name was invalid (either empty or an illegal
1729 * provider name) or because the attributes were invalid.
1730 *
1731 * No other failure code is returned.
1732 *
1733 * 2.2.4 Caller's context
1734 *
1735 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1736 * hold no locks across dtrace_register() that may also be acquired by
1737 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1738 *
1739 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1740 *
1741 * 2.3.1 Overview
1742 *
1743 * Unregisters the specified provider from the DTrace framework. It should
1744 * generally be called by DTrace providers in their detach(9E) entry point.
1745 *
1746 * 2.3.2 Arguments and Notes
1747 *
1748 * The only argument is the provider identifier, as returned from a
1749 * successful call to dtrace_register(). As a result of calling
1750 * dtrace_unregister(), the DTrace framework will call back into the provider
1751 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1752 * completes, however, the DTrace framework will no longer make calls through
1753 * the Framework-to-Provider API.
1754 *
1755 * 2.3.3 Return value
1756 *
1757 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1758 * returns an errno:
1759 *
1760 * EBUSY There are currently processes that have the DTrace pseudodevice
1761 * open, or there exists an anonymous enabling that hasn't yet
1762 * been claimed.
1763 *
1764 * No other failure code is returned.
1765 *
1766 * 2.3.4 Caller's context
1767 *
1768 * Because a call to dtrace_unregister() may induce calls through the
1769 * Framework-to-Provider API, the caller may not hold any lock across
1770 * dtrace_register() that is also acquired in any of the Framework-to-
1771 * Provider API functions. Additionally, mod_lock may not be held.
1772 *
1773 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1774 *
1775 * 2.4.1 Overview
1776 *
1777 * Invalidates the specified provider. All subsequent probe lookups for the
1778 * specified provider will fail, but its probes will not be removed.
1779 *
1780 * 2.4.2 Arguments and note
1781 *
1782 * The only argument is the provider identifier, as returned from a
1783 * successful call to dtrace_register(). In general, a provider's probes
1784 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1785 * an entire provider, regardless of whether or not probes are enabled or
1786 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1787 * probes from firing -- it will merely prevent any new enablings of the
1788 * provider's probes.
1789 *
1790 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1791 *
1792 * 2.5.1 Overview
1793 *
1794 * Removes all the unenabled probes for the given provider. This function is
1795 * not unlike dtrace_unregister(), except that it doesn't remove the
1796 * provider just as many of its associated probes as it can.
1797 *
1798 * 2.5.2 Arguments and Notes
1799 *
1800 * As with dtrace_unregister(), the sole argument is the provider identifier
1801 * as returned from a successful call to dtrace_register(). As a result of
1802 * calling dtrace_condense(), the DTrace framework will call back into the
1803 * given provider's dtps_destroy() entry point for each of the provider's
1804 * unenabled probes.
1805 *
1806 * 2.5.3 Return value
1807 *
1808 * Currently, dtrace_condense() always returns 0. However, consumers of this
1809 * function should check the return value as appropriate; its behavior may
1810 * change in the future.
1811 *
1812 * 2.5.4 Caller's context
1813 *
1814 * As with dtrace_unregister(), the caller may not hold any lock across
1815 * dtrace_condense() that is also acquired in the provider's entry points.
1816 * Also, mod_lock may not be held.
1817 *
1818 * 2.6 int dtrace_attached()
1819 *
1820 * 2.6.1 Overview
1821 *
1822 * Indicates whether or not DTrace has attached.
1823 *
1824 * 2.6.2 Arguments and Notes
1825 *
1826 * For most providers, DTrace makes initial contact beyond registration.
1827 * That is, once a provider has registered with DTrace, it waits to hear
1828 * from DTrace to create probes. However, some providers may wish to
1829 * proactively create probes without first being told by DTrace to do so.
1830 * If providers wish to do this, they must first call dtrace_attached() to
1831 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1832 * the provider must not make any other Provider-to-Framework API call.
1833 *
1834 * 2.6.3 Return value
1835 *
1836 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1837 *
1838 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1839 * const char *func, const char *name, int aframes, void *arg)
1840 *
1841 * 2.7.1 Overview
1842 *
1843 * Creates a probe with specified module name, function name, and name.
1844 *
1845 * 2.7.2 Arguments and Notes
1846 *
1847 * The first argument is the provider identifier, as returned from a
1848 * successful call to dtrace_register(). The second, third, and fourth
1849 * arguments are the module name, function name, and probe name,
1850 * respectively. Of these, module name and function name may both be NULL
1851 * (in which case the probe is considered to be unanchored), or they may both
1852 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1853 * string.
1854 *
1855 * The fifth argument is the number of artificial stack frames that will be
1856 * found on the stack when dtrace_probe() is called for the new probe. These
1857 * artificial frames will be automatically be pruned should the stack() or
1858 * stackdepth() functions be called as part of one of the probe's ECBs. If
1859 * the parameter doesn't add an artificial frame, this parameter should be
1860 * zero.
1861 *
1862 * The final argument is a probe argument that will be passed back to the
1863 * provider when a probe-specific operation is called. (e.g., via
1864 * dtps_enable(), dtps_disable(), etc.)
1865 *
1866 * Note that it is up to the provider to be sure that the probe that it
1867 * creates does not already exist -- if the provider is unsure of the probe's
1868 * existence, it should assure its absence with dtrace_probe_lookup() before
1869 * calling dtrace_probe_create().
1870 *
1871 * 2.7.3 Return value
1872 *
1873 * dtrace_probe_create() always succeeds, and always returns the identifier
1874 * of the newly-created probe.
1875 *
1876 * 2.7.4 Caller's context
1877 *
1878 * While dtrace_probe_create() is generally expected to be called from
1879 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1880 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1881 *
1882 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1883 * const char *func, const char *name)
1884 *
1885 * 2.8.1 Overview
1886 *
1887 * Looks up a probe based on provdider and one or more of module name,
1888 * function name and probe name.
1889 *
1890 * 2.8.2 Arguments and Notes
1891 *
1892 * The first argument is the provider identifier, as returned from a
1893 * successful call to dtrace_register(). The second, third, and fourth
1894 * arguments are the module name, function name, and probe name,
1895 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1896 * the identifier of the first probe that is provided by the specified
1897 * provider and matches all of the non-NULL matching criteria.
1898 * dtrace_probe_lookup() is generally used by a provider to be check the
1899 * existence of a probe before creating it with dtrace_probe_create().
1900 *
1901 * 2.8.3 Return value
1902 *
1903 * If the probe exists, returns its identifier. If the probe does not exist,
1904 * return DTRACE_IDNONE.
1905 *
1906 * 2.8.4 Caller's context
1907 *
1908 * While dtrace_probe_lookup() is generally expected to be called from
1909 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1910 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1911 *
1912 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1913 *
1914 * 2.9.1 Overview
1915 *
1916 * Returns the probe argument associated with the specified probe.
1917 *
1918 * 2.9.2 Arguments and Notes
1919 *
1920 * The first argument is the provider identifier, as returned from a
1921 * successful call to dtrace_register(). The second argument is a probe
1922 * identifier, as returned from dtrace_probe_lookup() or
1923 * dtrace_probe_create(). This is useful if a probe has multiple
1924 * provider-specific components to it: the provider can create the probe
1925 * once with provider-specific state, and then add to the state by looking
1926 * up the probe based on probe identifier.
1927 *
1928 * 2.9.3 Return value
1929 *
1930 * Returns the argument associated with the specified probe. If the
1931 * specified probe does not exist, or if the specified probe is not provided
1932 * by the specified provider, NULL is returned.
1933 *
1934 * 2.9.4 Caller's context
1935 *
1936 * While dtrace_probe_arg() is generally expected to be called from
1937 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1938 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1939 *
1940 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
1941 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
1942 *
1943 * 2.10.1 Overview
1944 *
1945 * The epicenter of DTrace: fires the specified probes with the specified
1946 * arguments.
1947 *
1948 * 2.10.2 Arguments and Notes
1949 *
1950 * The first argument is a probe identifier as returned by
1951 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
1952 * arguments are the values to which the D variables "arg0" through "arg4"
1953 * will be mapped.
1954 *
1955 * dtrace_probe() should be called whenever the specified probe has fired --
1956 * however the provider defines it.
1957 *
1958 * 2.10.3 Return value
1959 *
1960 * None.
1961 *
1962 * 2.10.4 Caller's context
1963 *
1964 * dtrace_probe() may be called in virtually any context: kernel, user,
1965 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
1966 * dispatcher locks held, with interrupts disabled, etc. The only latitude
1967 * that must be afforded to DTrace is the ability to make calls within
1968 * itself (and to its in-kernel subroutines) and the ability to access
1969 * arbitrary (but mapped) memory. On some platforms, this constrains
1970 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
1971 * from any context in which TL is greater than zero. dtrace_probe() may
1972 * also not be called from any routine which may be called by dtrace_probe()
1973 * -- which includes functions in the DTrace framework and some in-kernel
1974 * DTrace subroutines. All such functions "dtrace_"; providers that
1975 * instrument the kernel arbitrarily should be sure to not instrument these
1976 * routines.
1977 */
1978typedef struct dtrace_pops {
1979 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
1980 void (*dtps_provide_module)(void *arg, struct modctl *mp);
1981 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
1982 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
1983 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
1984 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
1985 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
1986 dtrace_argdesc_t *desc);
1987 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
1988 int argno, int aframes);
1989 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
1990 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
1991} dtrace_pops_t;
1992
1993typedef uintptr_t dtrace_provider_id_t;
1994
1995extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
1996 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
1997extern int dtrace_unregister(dtrace_provider_id_t);
1998extern int dtrace_condense(dtrace_provider_id_t);
1999extern void dtrace_invalidate(dtrace_provider_id_t);
2000extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2001 const char *, const char *);
2002extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2003 const char *, const char *, int, void *);
2004extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2005extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2006 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2007
2008/*
2009 * DTrace Meta Provider API
2010 *
2011 * The following functions are implemented by the DTrace framework and are
2012 * used to implement meta providers. Meta providers plug into the DTrace
2013 * framework and are used to instantiate new providers on the fly. At
2014 * present, there is only one type of meta provider and only one meta
2015 * provider may be registered with the DTrace framework at a time. The
2016 * sole meta provider type provides user-land static tracing facilities
2017 * by taking meta probe descriptions and adding a corresponding provider
2018 * into the DTrace framework.
2019 *
2020 * 1 Framework-to-Provider
2021 *
2022 * 1.1 Overview
2023 *
2024 * The Framework-to-Provider API is represented by the dtrace_mops structure
2025 * that the meta provider passes to the framework when registering itself as
2026 * a meta provider. This structure consists of the following members:
2027 *
2028 * dtms_create_probe() <-- Add a new probe to a created provider
2029 * dtms_provide_pid() <-- Create a new provider for a given process
2030 * dtms_remove_pid() <-- Remove a previously created provider
2031 *
2032 * 1.2 void dtms_create_probe(void *arg, void *parg,
2033 * dtrace_helper_probedesc_t *probedesc);
2034 *
2035 * 1.2.1 Overview
2036 *
2037 * Called by the DTrace framework to create a new probe in a provider
2038 * created by this meta provider.
2039 *
2040 * 1.2.2 Arguments and notes
2041 *
2042 * The first argument is the cookie as passed to dtrace_meta_register().
2043 * The second argument is the provider cookie for the associated provider;
2044 * this is obtained from the return value of dtms_provide_pid(). The third
2045 * argument is the helper probe description.
2046 *
2047 * 1.2.3 Return value
2048 *
2049 * None
2050 *
2051 * 1.2.4 Caller's context
2052 *
2053 * dtms_create_probe() is called from either ioctl() or module load context.
2054 * The DTrace framework is locked in such a way that meta providers may not
2055 * register or unregister. This means that the meta provider cannot call
2056 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2057 * such that the provider may (and is expected to) call provider-related
2058 * DTrace provider APIs including dtrace_probe_create().
2059 *
2060 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2061 * pid_t pid)
2062 *
2063 * 1.3.1 Overview
2064 *
2065 * Called by the DTrace framework to instantiate a new provider given the
2066 * description of the provider and probes in the mprov argument. The
2067 * meta provider should call dtrace_register() to insert the new provider
2068 * into the DTrace framework.
2069 *
2070 * 1.3.2 Arguments and notes
2071 *
2072 * The first argument is the cookie as passed to dtrace_meta_register().
2073 * The second argument is a pointer to a structure describing the new
2074 * helper provider. The third argument is the process identifier for
2075 * process associated with this new provider. Note that the name of the
2076 * provider as passed to dtrace_register() should be the contatenation of
2077 * the dtmpb_provname member of the mprov argument and the processs
2078 * identifier as a string.
2079 *
2080 * 1.3.3 Return value
2081 *
2082 * The cookie for the provider that the meta provider creates. This is
2083 * the same value that it passed to dtrace_register().
2084 *
2085 * 1.3.4 Caller's context
2086 *
2087 * dtms_provide_pid() is called from either ioctl() or module load context.
2088 * The DTrace framework is locked in such a way that meta providers may not
2089 * register or unregister. This means that the meta provider cannot call
2090 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2091 * is such that the provider may -- and is expected to -- call
2092 * provider-related DTrace provider APIs including dtrace_register().
2093 *
2094 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2095 * pid_t pid)
2096 *
2097 * 1.4.1 Overview
2098 *
2099 * Called by the DTrace framework to remove a provider that had previously
2100 * been instantiated via the dtms_provide_pid() entry point. The meta
2101 * provider need not remove the provider immediately, but this entry
2102 * point indicates that the provider should be removed as soon as possible
2103 * using the dtrace_unregister() API.
2104 *
2105 * 1.4.2 Arguments and notes
2106 *
2107 * The first argument is the cookie as passed to dtrace_meta_register().
2108 * The second argument is a pointer to a structure describing the helper
2109 * provider. The third argument is the process identifier for process
2110 * associated with this new provider.
2111 *
2112 * 1.4.3 Return value
2113 *
2114 * None
2115 *
2116 * 1.4.4 Caller's context
2117 *
2118 * dtms_remove_pid() is called from either ioctl() or exit() context.
2119 * The DTrace framework is locked in such a way that meta providers may not
2120 * register or unregister. This means that the meta provider cannot call
2121 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2122 * is such that the provider may -- and is expected to -- call
2123 * provider-related DTrace provider APIs including dtrace_unregister().
2124 */
2125typedef struct dtrace_helper_probedesc {
2126 char *dthpb_mod; /* probe module */
2127 char *dthpb_func; /* probe function */
2128 char *dthpb_name; /* probe name */
2129 uint64_t dthpb_base; /* base address */
2130 uint32_t *dthpb_offs; /* offsets array */
2131 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2132 uint32_t dthpb_noffs; /* offsets count */
2133 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2134 uint8_t *dthpb_args; /* argument mapping array */
2135 uint8_t dthpb_xargc; /* translated argument count */
2136 uint8_t dthpb_nargc; /* native argument count */
2137 char *dthpb_xtypes; /* translated types strings */
2138 char *dthpb_ntypes; /* native types strings */
2139} dtrace_helper_probedesc_t;
2140
2141typedef struct dtrace_helper_provdesc {
2142 char *dthpv_provname; /* provider name */
2143 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2144} dtrace_helper_provdesc_t;
2145
2146typedef struct dtrace_mops {
2147 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2148 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2149 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2150} dtrace_mops_t;
2151
2152typedef uintptr_t dtrace_meta_provider_id_t;
2153
2154extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2155 dtrace_meta_provider_id_t *);
2156extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2157
2158/*
2159 * DTrace Kernel Hooks
2160 *
2161 * The following functions are implemented by the base kernel and form a set of
2162 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2163 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2164 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2165 */
2166
2167typedef enum dtrace_vtime_state {
2168 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2169 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2170 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2171 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2172} dtrace_vtime_state_t;
2173
2174extern dtrace_vtime_state_t dtrace_vtime_active;
2175extern void dtrace_vtime_switch(kthread_t *next);
2176extern void dtrace_vtime_enable_tnf(void);
2177extern void dtrace_vtime_disable_tnf(void);
2178extern void dtrace_vtime_enable(void);
2179extern void dtrace_vtime_disable(void);
2180
2181struct regs;
2182
2183extern int (*dtrace_pid_probe_ptr)(struct regs *);
2184extern int (*dtrace_return_probe_ptr)(struct regs *);
2185extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2186extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2187extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2188extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2189
2190typedef uintptr_t dtrace_icookie_t;
2191typedef void (*dtrace_xcall_t)(void *);
2192
2193extern dtrace_icookie_t dtrace_interrupt_disable(void);
2194extern void dtrace_interrupt_enable(dtrace_icookie_t);
2195
2196extern void dtrace_membar_producer(void);
2197extern void dtrace_membar_consumer(void);
2198
2199extern void (*dtrace_cpu_init)(processorid_t);
2200extern void (*dtrace_modload)(struct modctl *);
2201extern void (*dtrace_modunload)(struct modctl *);
2202extern void (*dtrace_helpers_cleanup)(VBDTVOID);
2203extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2204extern void (*dtrace_cpustart_init)(VBDTVOID);
2205extern void (*dtrace_cpustart_fini)(VBDTVOID);
2206
2207extern void (*dtrace_debugger_init)(VBDTVOID);
2208extern void (*dtrace_debugger_fini)(VBDTVOID);
2209extern dtrace_cacheid_t dtrace_predcache_id;
2210
2211extern hrtime_t dtrace_gethrtime(void);
2212extern void dtrace_sync(void);
2213extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2214extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2215#ifdef VBOX
2216extern void dtrace_vpanic(const char *, va_list);
2217#else
2218extern void dtrace_vpanic(const char *, __va_list);
2219#endif
2220extern void dtrace_panic(const char *, ...);
2221
2222extern int dtrace_safe_defer_signal(void);
2223extern void dtrace_safe_synchronous_signal(void);
2224
2225extern int dtrace_mach_aframes(void);
2226
2227#if defined(__i386) || defined(__amd64)
2228extern int dtrace_instr_size(uchar_t *instr);
2229extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2230extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2231extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2232extern void dtrace_invop_callsite(void);
2233#endif
2234
2235#ifdef __sparc
2236extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2237extern void dtrace_getfsr(uint64_t *);
2238#endif
2239
2240#ifndef VBOX
2241# define VBDT_GET_CPUID() (CPU->cpu_id)
2242# define VBDT_GET_PROC() (ttoproc(curthread))
2243#else
2244# define VBDT_GET_CPUID() (RTMpCpuId())
2245# define VBDT_GET_PROC() (VBoxDtGetCurrentProc())
2246proc_t *VBoxDtGetCurrentProc(void);
2247#endif
2248
2249#define DTRACE_CPUFLAG_ISSET(flag) \
2250 (cpu_core[VBDT_GET_CPUID()].cpuc_dtrace_flags & (flag))
2251
2252#define DTRACE_CPUFLAG_SET(flag) \
2253 (cpu_core[VBDT_GET_CPUID()].cpuc_dtrace_flags |= (flag))
2254
2255#define DTRACE_CPUFLAG_CLEAR(flag) \
2256 (cpu_core[VBDT_GET_CPUID()].cpuc_dtrace_flags &= ~(flag))
2257
2258#endif /* _KERNEL || IN_RING0 */
2259
2260#endif /* _ASM */
2261
2262#if defined(__i386) || defined(__amd64)
2263
2264#define DTRACE_INVOP_PUSHL_EBP 1
2265#define DTRACE_INVOP_POPL_EBP 2
2266#define DTRACE_INVOP_LEAVE 3
2267#define DTRACE_INVOP_NOP 4
2268#define DTRACE_INVOP_RET 5
2269
2270#endif
2271
2272#ifdef __cplusplus
2273}
2274#endif
2275
2276#endif /* _SYS_DTRACE_H */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette