VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPDRVShared.c@ 1003

Last change on this file since 1003 was 982, checked in by vboxsync, 18 years ago

fixed bustage.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 138.6 KB
Line 
1/** @file
2 *
3 * VBox host drivers - Ring-0 support drivers - Shared code:
4 * Driver code for all host platforms
5 */
6
7/*
8 * Copyright (C) 2006 InnoTek Systemberatung GmbH
9 *
10 * This file is part of VirtualBox Open Source Edition (OSE), as
11 * available from http://www.virtualbox.org. This file is free software;
12 * you can redistribute it and/or modify it under the terms of the GNU
13 * General Public License as published by the Free Software Foundation,
14 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
15 * distribution. VirtualBox OSE is distributed in the hope that it will
16 * be useful, but WITHOUT ANY WARRANTY of any kind.
17 *
18 * If you received this file as part of a commercial VirtualBox
19 * distribution, then only the terms of your commercial VirtualBox
20 * license agreement apply instead of the previous paragraph.
21 */
22
23
24/*******************************************************************************
25* Header Files *
26*******************************************************************************/
27#include "SUPDRV.h"
28#ifndef PAGE_SHIFT
29# include <iprt/param.h>
30#endif
31#include <iprt/alloc.h>
32#include <iprt/semaphore.h>
33#include <iprt/spinlock.h>
34#include <iprt/thread.h>
35#include <iprt/process.h>
36#include <iprt/log.h>
37#ifdef VBOX_WITHOUT_IDT_PATCHING
38# include <VBox/vmm.h>
39#endif
40
41
42/*******************************************************************************
43* Defined Constants And Macros *
44*******************************************************************************/
45/* from x86.h - clashes with linux thus this duplication */
46#undef X86_CR0_PG
47#define X86_CR0_PG BIT(31)
48#undef X86_CR0_PE
49#define X86_CR0_PE BIT(0)
50#undef X86_CPUID_AMD_FEATURE_EDX_NX
51#define X86_CPUID_AMD_FEATURE_EDX_NX BIT(20)
52#undef MSR_K6_EFER
53#define MSR_K6_EFER 0xc0000080
54#undef MSR_K6_EFER_NXE
55#define MSR_K6_EFER_NXE BIT(11)
56#undef MSR_K6_EFER_LMA
57#define MSR_K6_EFER_LMA BIT(10)
58#undef X86_CR4_PGE
59#define X86_CR4_PGE BIT(7)
60#undef X86_CR4_PAE
61#define X86_CR4_PAE BIT(5)
62#undef X86_CPUID_AMD_FEATURE_EDX_LONG_MODE
63#define X86_CPUID_AMD_FEATURE_EDX_LONG_MODE BIT(29)
64
65
66/** The frequency by which we recalculate the u32UpdateHz and
67 * u32UpdateIntervalNS GIP members. The value must be a power of 2. */
68#define GIP_UPDATEHZ_RECALC_FREQ 0x800
69
70
71/*******************************************************************************
72* Global Variables *
73*******************************************************************************/
74/**
75 * Array of the R0 SUP API.
76 */
77static SUPFUNC g_aFunctions[] =
78{
79 /* name function */
80 { "SUPR0ObjRegister", (void *)SUPR0ObjRegister },
81 { "SUPR0ObjAddRef", (void *)SUPR0ObjAddRef },
82 { "SUPR0ObjRelease", (void *)SUPR0ObjRelease },
83 { "SUPR0ObjVerifyAccess", (void *)SUPR0ObjVerifyAccess },
84 { "SUPR0LockMem", (void *)SUPR0LockMem },
85 { "SUPR0UnlockMem", (void *)SUPR0UnlockMem },
86 { "SUPR0ContAlloc", (void *)SUPR0ContAlloc },
87 { "SUPR0ContFree", (void *)SUPR0ContFree },
88 { "SUPR0MemAlloc", (void *)SUPR0MemAlloc },
89 { "SUPR0MemGetPhys", (void *)SUPR0MemGetPhys },
90 { "SUPR0MemFree", (void *)SUPR0MemFree },
91 { "SUPR0Printf", (void *)SUPR0Printf },
92 { "RTMemAlloc", (void *)RTMemAlloc },
93 { "RTMemAllocZ", (void *)RTMemAllocZ },
94 { "RTMemFree", (void *)RTMemFree },
95/* These doesn't work yet on linux - use fast mutexes!
96 { "RTSemMutexCreate", (void *)RTSemMutexCreate },
97 { "RTSemMutexRequest", (void *)RTSemMutexRequest },
98 { "RTSemMutexRelease", (void *)RTSemMutexRelease },
99 { "RTSemMutexDestroy", (void *)RTSemMutexDestroy },
100*/
101 { "RTSemFastMutexCreate", (void *)RTSemFastMutexCreate },
102 { "RTSemFastMutexDestroy", (void *)RTSemFastMutexDestroy },
103 { "RTSemFastMutexRequest", (void *)RTSemFastMutexRequest },
104 { "RTSemFastMutexRelease", (void *)RTSemFastMutexRelease },
105 { "RTSemEventCreate", (void *)RTSemEventCreate },
106 { "RTSemEventSignal", (void *)RTSemEventSignal },
107 { "RTSemEventWait", (void *)RTSemEventWait },
108 { "RTSemEventDestroy", (void *)RTSemEventDestroy },
109 { "RTSpinlockCreate", (void *)RTSpinlockCreate },
110 { "RTSpinlockDestroy", (void *)RTSpinlockDestroy },
111 { "RTSpinlockAcquire", (void *)RTSpinlockAcquire },
112 { "RTSpinlockRelease", (void *)RTSpinlockRelease },
113 { "RTSpinlockAcquireNoInts", (void *)RTSpinlockAcquireNoInts },
114 { "RTSpinlockReleaseNoInts", (void *)RTSpinlockReleaseNoInts },
115 { "RTThreadNativeSelf", (void *)RTThreadNativeSelf },
116 { "RTThreadSleep", (void *)RTThreadSleep },
117 { "RTThreadYield", (void *)RTThreadYield },
118#if 0 /* Thread APIs, Part 2. */
119 { "RTThreadSelf", (void *)RTThreadSelf },
120 { "RTThreadCreate", (void *)RTThreadCreate },
121 { "RTThreadGetNative", (void *)RTThreadGetNative },
122 { "RTThreadWait", (void *)RTThreadWait },
123 { "RTThreadWaitNoResume", (void *)RTThreadWaitNoResume },
124 { "RTThreadGetName", (void *)RTThreadGetName },
125 { "RTThreadSelfName", (void *)RTThreadSelfName },
126 { "RTThreadGetType", (void *)RTThreadGetType },
127 { "RTThreadUserSignal", (void *)RTThreadUserSignal },
128 { "RTThreadUserReset", (void *)RTThreadUserReset },
129 { "RTThreadUserWait", (void *)RTThreadUserWait },
130 { "RTThreadUserWaitNoResume", (void *)RTThreadUserWaitNoResume },
131#endif
132 { "RTLogDefaultInstance", (void *)RTLogDefaultInstance },
133 { "RTLogRelDefaultInstance", (void *)RTLogRelDefaultInstance },
134 { "RTLogSetDefaultInstanceThread", (void *)RTLogSetDefaultInstanceThread },
135 { "RTLogLogger", (void *)RTLogLogger },
136 { "RTLogLoggerEx", (void *)RTLogLoggerEx },
137 { "RTLogLoggerExV", (void *)RTLogLoggerExV },
138 { "AssertMsg1", (void *)AssertMsg1 },
139 { "AssertMsg2", (void *)AssertMsg2 },
140};
141
142
143/*******************************************************************************
144* Internal Functions *
145*******************************************************************************/
146__BEGIN_DECLS
147static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession);
148static int supdrvMemRelease(PSUPDRVSESSION pSession, void *pv, SUPDRVMEMREFTYPE eType);
149#ifndef VBOX_WITHOUT_IDT_PATCHING
150static int supdrvIOCtl_IdtInstall(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPIDTINSTALL_IN pIn, PSUPIDTINSTALL_OUT pOut);
151static PSUPDRVPATCH supdrvIdtPatchOne(PSUPDRVDEVEXT pDevExt, PSUPDRVPATCH pPatch);
152static int supdrvIOCtl_IdtRemoveAll(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession);
153static void supdrvIdtRemoveOne(PSUPDRVDEVEXT pDevExt, PSUPDRVPATCH pPatch);
154static void supdrvIdtWrite(volatile void *pvIdtEntry, const SUPDRVIDTE *pNewIDTEntry);
155#endif /* !VBOX_WITHOUT_IDT_PATCHING */
156static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN_IN pIn, PSUPLDROPEN_OUT pOut);
157static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD_IN pIn);
158static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE_IN pIn);
159static int supdrvIOCtl_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL_IN pIn, PSUPLDRGETSYMBOL_OUT pOut);
160static int supdrvLdrSetR0EP(PSUPDRVDEVEXT pDevExt, void *pvVMMR0, void *pvVMMR0Entry);
161static void supdrvLdrUnsetR0EP(PSUPDRVDEVEXT pDevExt);
162static void supdrvLdrAddUsage(PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage);
163static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage);
164static int supdrvIOCtl_GetPagingMode(PSUPGETPAGINGMODE_OUT pOut);
165#ifdef USE_NEW_OS_INTERFACE
166static int supdrvGipCreate(PSUPDRVDEVEXT pDevExt);
167static int supdrvGipDestroy(PSUPDRVDEVEXT pDevExt);
168static DECLCALLBACK(void) supdrvGipTimer(PRTTIMER pTimer, void *pvUser);
169#endif
170
171__END_DECLS
172
173
174/**
175 * Initializes the device extentsion structure.
176 *
177 * @returns 0 on success.
178 * @returns SUPDRV_ERR_ on failure.
179 * @param pDevExt The device extension to initialize.
180 */
181int VBOXCALL supdrvInitDevExt(PSUPDRVDEVEXT pDevExt)
182{
183 /*
184 * Initialize it.
185 */
186 int rc;
187 memset(pDevExt, 0, sizeof(*pDevExt));
188 rc = RTSpinlockCreate(&pDevExt->Spinlock);
189 if (!rc)
190 {
191 rc = RTSemFastMutexCreate(&pDevExt->mtxLdr);
192 if (!rc)
193 {
194 rc = RTSemFastMutexCreate(&pDevExt->mtxGip);
195 if (!rc)
196 {
197#ifdef USE_NEW_OS_INTERFACE
198 rc = supdrvGipCreate(pDevExt);
199 if (RT_SUCCESS(rc))
200 {
201 pDevExt->u32Cookie = BIRD;
202 return 0;
203 }
204#else
205 pDevExt->u32Cookie = BIRD;
206 return 0;
207#endif
208 }
209 RTSemFastMutexDestroy(pDevExt->mtxLdr);
210 pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
211 }
212 RTSpinlockDestroy(pDevExt->Spinlock);
213 pDevExt->Spinlock = NIL_RTSPINLOCK;
214 }
215 return rc;
216}
217
218/**
219 * Delete the device extension (e.g. cleanup members).
220 *
221 * @returns 0.
222 * @param pDevExt The device extension to delete.
223 */
224int VBOXCALL supdrvDeleteDevExt(PSUPDRVDEVEXT pDevExt)
225{
226#ifndef VBOX_WITHOUT_IDT_PATCHING
227 PSUPDRVPATCH pPatch;
228#endif
229 PSUPDRVOBJ pObj;
230 PSUPDRVUSAGE pUsage;
231
232 /*
233 * Kill mutexes and spinlocks.
234 */
235 RTSemFastMutexDestroy(pDevExt->mtxGip);
236 pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
237 RTSemFastMutexDestroy(pDevExt->mtxLdr);
238 pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
239 RTSpinlockDestroy(pDevExt->Spinlock);
240 pDevExt->Spinlock = NIL_RTSPINLOCK;
241
242 /*
243 * Free lists.
244 */
245
246#ifndef VBOX_WITHOUT_IDT_PATCHING
247 /* patches */
248 /** @todo make sure we don't uninstall patches which has been patched by someone else. */
249 pPatch = pDevExt->pIdtPatchesFree;
250 pDevExt->pIdtPatchesFree = NULL;
251 while (pPatch)
252 {
253 void *pvFree = pPatch;
254 pPatch = pPatch->pNext;
255 RTMemExecFree(pvFree);
256 }
257#endif /* !VBOX_WITHOUT_IDT_PATCHING */
258
259 /* objects. */
260 pObj = pDevExt->pObjs;
261#if !defined(DEBUG_bird) || !defined(__LINUX__) /* breaks unloading, temporary, remove me! */
262 Assert(!pObj); /* (can trigger on forced unloads) */
263#endif
264 pDevExt->pObjs = NULL;
265 while (pObj)
266 {
267 void *pvFree = pObj;
268 pObj = pObj->pNext;
269 RTMemFree(pvFree);
270 }
271
272 /* usage records. */
273 pUsage = pDevExt->pUsageFree;
274 pDevExt->pUsageFree = NULL;
275 while (pUsage)
276 {
277 void *pvFree = pUsage;
278 pUsage = pUsage->pNext;
279 RTMemFree(pvFree);
280 }
281
282#ifdef USE_NEW_OS_INTERFACE
283 /* kill the GIP */
284 supdrvGipDestroy(pDevExt);
285#endif
286
287 return 0;
288}
289
290
291/**
292 * Create session.
293 *
294 * @returns 0 on success.
295 * @returns SUPDRV_ERR_ on failure.
296 * @param pDevExt Device extension.
297 * @param ppSession Where to store the pointer to the session data.
298 */
299int VBOXCALL supdrvCreateSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION *ppSession)
300{
301 /*
302 * Allocate memory for the session data.
303 */
304 int rc = SUPDRV_ERR_NO_MEMORY;
305 PSUPDRVSESSION pSession = *ppSession = (PSUPDRVSESSION)RTMemAllocZ(sizeof(*pSession));
306 if (pSession)
307 {
308 /* Initialize session data. */
309 rc = RTSpinlockCreate(&pSession->Spinlock);
310 if (!rc)
311 {
312 Assert(pSession->Spinlock != NIL_RTSPINLOCK);
313 pSession->pDevExt = pDevExt;
314 pSession->u32Cookie = BIRD_INV;
315 //pSession->pLdrUsage = NULL;
316 //pSession->pPatchUsage = NULL;
317 //pSession->pUsage = NULL;
318 //pSession->pGip = NULL;
319 //pSession->fGipReferenced = false;
320 //pSession->Bundle.cUsed = 0
321
322 dprintf(("Created session %p initial cookie=%#x\n", pSession, pSession->u32Cookie));
323 return 0;
324 }
325
326 RTMemFree(pSession);
327 *ppSession = NULL;
328 }
329
330 dprintf(("Failed to create spinlock, rc=%d!\n", rc));
331 return rc;
332}
333
334
335/**
336 * Shared code for cleaning up a session.
337 *
338 * @param pDevExt Device extension.
339 * @param pSession Session data.
340 * This data will be freed by this routine.
341 */
342void VBOXCALL supdrvCloseSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
343{
344 /*
345 * Cleanup the session first.
346 */
347 supdrvCleanupSession(pDevExt, pSession);
348
349 /*
350 * Free the rest of the session stuff.
351 */
352 RTSpinlockDestroy(pSession->Spinlock);
353 pSession->Spinlock = NIL_RTSPINLOCK;
354 pSession->pDevExt = NULL;
355 RTMemFree(pSession);
356 dprintf2(("supdrvCloseSession: returns\n"));
357}
358
359
360/**
361 * Shared code for cleaning up a session (but not quite freeing it).
362 *
363 * This is primarily intended for MAC OS X where we have to clean up the memory
364 * stuff before the file handle is closed.
365 *
366 * @param pDevExt Device extension.
367 * @param pSession Session data.
368 * This data will be freed by this routine.
369 */
370void VBOXCALL supdrvCleanupSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
371{
372 PSUPDRVBUNDLE pBundle;
373 dprintf(("supdrvCleanupSession: pSession=%p\n", pSession));
374
375 /*
376 * Remove logger instances related to this session.
377 * (This assumes the dprintf and dprintf2 macros doesn't use the normal logging.)
378 */
379 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pSession);
380
381#ifndef VBOX_WITHOUT_IDT_PATCHING
382 /*
383 * Uninstall any IDT patches installed for this session.
384 */
385 supdrvIOCtl_IdtRemoveAll(pDevExt, pSession);
386#endif
387
388 /*
389 * Release object references made in this session.
390 * In theory there should be noone racing us in this session.
391 */
392 dprintf2(("release objects - start\n"));
393 if (pSession->pUsage)
394 {
395 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
396 PSUPDRVUSAGE pUsage;
397 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
398
399 while ((pUsage = pSession->pUsage) != NULL)
400 {
401 PSUPDRVOBJ pObj = pUsage->pObj;
402 pSession->pUsage = pUsage->pNext;
403
404 AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
405 if (pUsage->cUsage < pObj->cUsage)
406 {
407 pObj->cUsage -= pUsage->cUsage;
408 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
409 }
410 else
411 {
412 /* Destroy the object and free the record. */
413 if (pDevExt->pObjs == pObj)
414 pDevExt->pObjs = pObj->pNext;
415 else
416 {
417 PSUPDRVOBJ pObjPrev;
418 for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
419 if (pObjPrev->pNext == pObj)
420 {
421 pObjPrev->pNext = pObj->pNext;
422 break;
423 }
424 Assert(pObjPrev);
425 }
426 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
427
428 pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
429 RTMemFree(pObj);
430 }
431
432 /* free it and continue. */
433 RTMemFree(pUsage);
434
435 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
436 }
437
438 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
439 AssertMsg(!pSession->pUsage, ("Some buster reregistered an object during desturction!\n"));
440 }
441 dprintf2(("release objects - done\n"));
442
443 /*
444 * Release memory allocated in the session.
445 *
446 * We do not serialize this as we assume that the application will
447 * not allocated memory while closing the file handle object.
448 */
449 dprintf2(("freeing memory:\n"));
450 pBundle = &pSession->Bundle;
451 while (pBundle)
452 {
453 PSUPDRVBUNDLE pToFree;
454 unsigned i;
455
456 /*
457 * Check and unlock all entries in the bundle.
458 */
459 for (i = 0; i < sizeof(pBundle->aMem) / sizeof(pBundle->aMem[0]); i++)
460 {
461#ifdef USE_NEW_OS_INTERFACE
462 if (pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ)
463 {
464 int rc;
465 if (pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ)
466 {
467 rc = RTR0MemObjFree(pBundle->aMem[i].MapObjR3, false);
468 AssertRC(rc); /** @todo figure out how to handle this. */
469 pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
470 }
471 rc = RTR0MemObjFree(pBundle->aMem[i].MemObj, false);
472 AssertRC(rc); /** @todo figure out how to handle this. */
473 pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
474 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
475 }
476
477#else /* !USE_NEW_OS_INTERFACE */
478 if ( pBundle->aMem[i].pvR0
479 || pBundle->aMem[i].pvR3)
480 {
481 dprintf2(("eType=%d pvR0=%p pvR3=%p cb=%d\n", pBundle->aMem[i].eType,
482 pBundle->aMem[i].pvR0, pBundle->aMem[i].pvR3, pBundle->aMem[i].cb));
483 switch (pBundle->aMem[i].eType)
484 {
485 case MEMREF_TYPE_LOCKED:
486 supdrvOSUnlockMemOne(&pBundle->aMem[i]);
487 break;
488 case MEMREF_TYPE_CONT:
489 supdrvOSContFreeOne(&pBundle->aMem[i]);
490 break;
491 case MEMREF_TYPE_LOW:
492 supdrvOSLowFreeOne(&pBundle->aMem[i]);
493 break;
494 case MEMREF_TYPE_MEM:
495 supdrvOSMemFreeOne(&pBundle->aMem[i]);
496 break;
497 default:
498 break;
499 }
500 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
501 }
502#endif /* !USE_NEW_OS_INTERFACE */
503 }
504
505 /*
506 * Advance and free previous bundle.
507 */
508 pToFree = pBundle;
509 pBundle = pBundle->pNext;
510
511 pToFree->pNext = NULL;
512 pToFree->cUsed = 0;
513 if (pToFree != &pSession->Bundle)
514 RTMemFree(pToFree);
515 }
516 dprintf2(("freeing memory - done\n"));
517
518 /*
519 * Loaded images needs to be dereferenced and possibly freed up.
520 */
521 RTSemFastMutexRequest(pDevExt->mtxLdr);
522 dprintf2(("freeing images:\n"));
523 if (pSession->pLdrUsage)
524 {
525 PSUPDRVLDRUSAGE pUsage = pSession->pLdrUsage;
526 pSession->pLdrUsage = NULL;
527 while (pUsage)
528 {
529 void *pvFree = pUsage;
530 PSUPDRVLDRIMAGE pImage = pUsage->pImage;
531 if (pImage->cUsage > pUsage->cUsage)
532 pImage->cUsage -= pUsage->cUsage;
533 else
534 supdrvLdrFree(pDevExt, pImage);
535 pUsage->pImage = NULL;
536 pUsage = pUsage->pNext;
537 RTMemFree(pvFree);
538 }
539 }
540 RTSemFastMutexRelease(pDevExt->mtxLdr);
541 dprintf2(("freeing images - done\n"));
542
543 /*
544 * Unmap the GIP.
545 */
546 dprintf2(("umapping GIP:\n"));
547#ifdef USE_NEW_OS_INTERFACE
548 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
549#else
550 if (pSession->pGip)
551#endif
552 {
553 SUPR0GipUnmap(pSession);
554#ifndef USE_NEW_OS_INTERFACE
555 pSession->pGip = NULL;
556#endif
557 pSession->fGipReferenced = 0;
558 }
559 dprintf2(("umapping GIP - done\n"));
560}
561
562
563#ifdef VBOX_WITHOUT_IDT_PATCHING
564/**
565 * Fast path I/O Control worker.
566 *
567 * @returns 0 on success.
568 * @returns One of the SUPDRV_ERR_* on failure.
569 * @param uIOCtl Function number.
570 * @param pDevExt Device extention.
571 * @param pSession Session data.
572 */
573int VBOXCALL supdrvIOCtlFast(unsigned uIOCtl, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
574{
575 /*
576 * Disable interrupts before invoking VMMR0Entry() because it ASSUMES
577 * that interrupts are disabled. (We check the two prereqs after doing
578 * this only to allow the compiler to optimize things better.)
579 */
580 RTCCUINTREG uFlags = ASMGetFlags();
581 ASMIntDisable();
582
583 int rc;
584 if (RT_LIKELY(pSession->pVM && pDevExt->pfnVMMR0Entry))
585 {
586 switch (uIOCtl)
587 {
588 case SUP_IOCTL_FAST_DO_RAW_RUN:
589 rc = pDevExt->pfnVMMR0Entry(pSession->pVM, VMMR0_DO_RAW_RUN, NULL);
590 break;
591 case SUP_IOCTL_FAST_DO_HWACC_RUN:
592 rc = pDevExt->pfnVMMR0Entry(pSession->pVM, VMMR0_DO_HWACC_RUN, NULL);
593 break;
594 case SUP_IOCTL_FAST_DO_NOP:
595 rc = pDevExt->pfnVMMR0Entry(pSession->pVM, VMMR0_DO_NOP, NULL);
596 break;
597 default:
598 rc = VERR_INTERNAL_ERROR;
599 break;
600 }
601 }
602 else
603 rc = VERR_INTERNAL_ERROR;
604
605 ASMSetFlags(uFlags);
606 return rc;
607}
608#endif /* VBOX_WITHOUT_IDT_PATCHING */
609
610
611/**
612 * I/O Control worker.
613 *
614 * @returns 0 on success.
615 * @returns One of the SUPDRV_ERR_* on failure.
616 * @param uIOCtl Function number.
617 * @param pDevExt Device extention.
618 * @param pSession Session data.
619 * @param pvIn Input data.
620 * @param cbIn Size of input data.
621 * @param pvOut Output data.
622 * IMPORTANT! This buffer may be shared with the input
623 * data, thus no writing before done reading
624 * input data!!!
625 * @param cbOut Size of output data.
626 * @param pcbReturned Size of the returned data.
627 */
628int VBOXCALL supdrvIOCtl(unsigned int uIOCtl, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession,
629 void *pvIn, unsigned cbIn, void *pvOut, unsigned cbOut, unsigned *pcbReturned)
630{
631 *pcbReturned = 0;
632 switch (uIOCtl)
633 {
634 case SUP_IOCTL_COOKIE:
635 {
636 PSUPCOOKIE_IN pIn = (PSUPCOOKIE_IN)pvIn;
637 PSUPCOOKIE_OUT pOut = (PSUPCOOKIE_OUT)pvOut;
638
639 /*
640 * Validate.
641 */
642 if ( cbIn != sizeof(*pIn)
643 || cbOut != sizeof(*pOut))
644 {
645 dprintf(("SUP_IOCTL_COOKIE: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
646 cbIn, sizeof(*pIn), cbOut, sizeof(*pOut)));
647 return SUPDRV_ERR_INVALID_PARAM;
648 }
649 if (strncmp(pIn->szMagic, SUPCOOKIE_MAGIC, sizeof(pIn->szMagic)))
650 {
651 dprintf(("SUP_IOCTL_COOKIE: invalid magic %.16s\n", pIn->szMagic));
652 return SUPDRV_ERR_INVALID_MAGIC;
653 }
654 if (pIn->u32Version != SUPDRVIOC_VERSION)
655 {
656 dprintf(("SUP_IOCTL_COOKIE: Version mismatch. Requested: %#x Current: %#x\n", pIn->u32Version, SUPDRVIOC_VERSION));
657 return SUPDRV_ERR_VERSION_MISMATCH;
658 }
659
660 /*
661 * Fill in return data and be gone.
662 */
663 /** @todo secure cookie negotiation? */
664 pOut->u32Cookie = pDevExt->u32Cookie;
665 pOut->u32SessionCookie = pSession->u32Cookie;
666 pOut->u32Version = SUPDRVIOC_VERSION;
667 pOut->pSession = pSession;
668 pOut->cFunctions = sizeof(g_aFunctions) / sizeof(g_aFunctions[0]);
669 *pcbReturned = sizeof(*pOut);
670 return 0;
671 }
672
673
674 case SUP_IOCTL_QUERY_FUNCS:
675 {
676 unsigned cFunctions;
677 PSUPQUERYFUNCS_IN pIn = (PSUPQUERYFUNCS_IN)pvIn;
678 PSUPQUERYFUNCS_OUT pOut = (PSUPQUERYFUNCS_OUT)pvOut;
679
680 /*
681 * Validate.
682 */
683 if ( cbIn != sizeof(*pIn)
684 || cbOut < sizeof(*pOut))
685 {
686 dprintf(("SUP_IOCTL_QUERY_FUNCS: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
687 cbIn, sizeof(*pIn), cbOut, sizeof(*pOut)));
688 return SUPDRV_ERR_INVALID_PARAM;
689 }
690 if ( pIn->u32Cookie != pDevExt->u32Cookie
691 || pIn->u32SessionCookie != pSession->u32Cookie )
692 {
693 dprintf(("SUP_IOCTL_QUERY_FUNCS: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
694 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
695 return SUPDRV_ERR_INVALID_MAGIC;
696 }
697
698 /*
699 * Copy the functions.
700 */
701 cFunctions = (cbOut - RT_OFFSETOF(SUPQUERYFUNCS_OUT, aFunctions)) / sizeof(pOut->aFunctions[0]);
702 cFunctions = RT_MIN(cFunctions, ELEMENTS(g_aFunctions));
703 AssertMsg(cFunctions == ELEMENTS(g_aFunctions),
704 ("Why aren't R3 querying all the functions!?! cFunctions=%d while there are %d available\n",
705 cFunctions, ELEMENTS(g_aFunctions)));
706 pOut->cFunctions = cFunctions;
707 memcpy(&pOut->aFunctions[0], g_aFunctions, sizeof(pOut->aFunctions[0]) * cFunctions);
708 *pcbReturned = RT_OFFSETOF(SUPQUERYFUNCS_OUT, aFunctions[cFunctions]);
709 return 0;
710 }
711
712
713 case SUP_IOCTL_IDT_INSTALL:
714 {
715 PSUPIDTINSTALL_IN pIn = (PSUPIDTINSTALL_IN)pvIn;
716 PSUPIDTINSTALL_OUT pOut = (PSUPIDTINSTALL_OUT)pvOut;
717
718 /*
719 * Validate.
720 */
721 if ( cbIn != sizeof(*pIn)
722 || cbOut != sizeof(*pOut))
723 {
724 dprintf(("SUP_IOCTL_INSTALL: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
725 cbIn, sizeof(*pIn), cbOut, sizeof(*pOut)));
726 return SUPDRV_ERR_INVALID_PARAM;
727 }
728 if ( pIn->u32Cookie != pDevExt->u32Cookie
729 || pIn->u32SessionCookie != pSession->u32Cookie )
730 {
731 dprintf(("SUP_IOCTL_INSTALL: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
732 pIn->u32Cookie, pDevExt->u32Cookie,
733 pIn->u32SessionCookie, pSession->u32Cookie));
734 return SUPDRV_ERR_INVALID_MAGIC;
735 }
736
737 *pcbReturned = sizeof(*pOut);
738#ifndef VBOX_WITHOUT_IDT_PATCHING
739 return supdrvIOCtl_IdtInstall(pDevExt, pSession, pIn, pOut);
740#else
741 pOut->u8Idt = 3;
742 return 0;
743#endif
744 }
745
746
747 case SUP_IOCTL_IDT_REMOVE:
748 {
749 PSUPIDTREMOVE_IN pIn = (PSUPIDTREMOVE_IN)pvIn;
750
751 /*
752 * Validate.
753 */
754 if ( cbIn != sizeof(*pIn)
755 || cbOut != 0)
756 {
757 dprintf(("SUP_IOCTL_REMOVE: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
758 cbIn, sizeof(*pIn), cbOut, 0));
759 return SUPDRV_ERR_INVALID_PARAM;
760 }
761 if ( pIn->u32Cookie != pDevExt->u32Cookie
762 || pIn->u32SessionCookie != pSession->u32Cookie )
763 {
764 dprintf(("SUP_IOCTL_REMOVE: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
765 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
766 return SUPDRV_ERR_INVALID_MAGIC;
767 }
768
769#ifndef VBOX_WITHOUT_IDT_PATCHING
770 return supdrvIOCtl_IdtRemoveAll(pDevExt, pSession);
771#else
772 return 0;
773#endif
774 }
775
776
777 case SUP_IOCTL_PINPAGES:
778 {
779 int rc;
780 PSUPPINPAGES_IN pIn = (PSUPPINPAGES_IN)pvIn;
781 PSUPPINPAGES_OUT pOut = (PSUPPINPAGES_OUT)pvOut;
782
783 /*
784 * Validate.
785 */
786 if ( cbIn != sizeof(*pIn)
787 || cbOut < sizeof(*pOut))
788 {
789 dprintf(("SUP_IOCTL_PINPAGES: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
790 cbIn, sizeof(*pIn), cbOut, sizeof(*pOut)));
791 return SUPDRV_ERR_INVALID_PARAM;
792 }
793 if ( pIn->u32Cookie != pDevExt->u32Cookie
794 || pIn->u32SessionCookie != pSession->u32Cookie )
795 {
796 dprintf(("SUP_IOCTL_PINPAGES: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
797 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
798 return SUPDRV_ERR_INVALID_MAGIC;
799 }
800 if (pIn->cb <= 0 || !pIn->pv)
801 {
802 dprintf(("SUP_IOCTL_PINPAGES: Illegal request %p %d\n", pIn->pv, pIn->cb));
803 return SUPDRV_ERR_INVALID_PARAM;
804 }
805 if ((unsigned)RT_OFFSETOF(SUPPINPAGES_OUT, aPages[pIn->cb >> PAGE_SHIFT]) > cbOut)
806 {
807 dprintf(("SUP_IOCTL_PINPAGES: Output buffer is too small! %d required %d passed in.\n",
808 RT_OFFSETOF(SUPPINPAGES_OUT, aPages[pIn->cb >> PAGE_SHIFT]), cbOut));
809 return SUPDRV_ERR_INVALID_PARAM;
810 }
811
812 /*
813 * Execute.
814 */
815 *pcbReturned = RT_OFFSETOF(SUPPINPAGES_OUT, aPages[pIn->cb >> PAGE_SHIFT]);
816 rc = SUPR0LockMem(pSession, pIn->pv, pIn->cb, &pOut->aPages[0]);
817 if (rc)
818 *pcbReturned = 0;
819 return rc;
820 }
821
822
823 case SUP_IOCTL_UNPINPAGES:
824 {
825 PSUPUNPINPAGES_IN pIn = (PSUPUNPINPAGES_IN)pvIn;
826
827 /*
828 * Validate.
829 */
830 if ( cbIn != sizeof(*pIn)
831 || cbOut != 0)
832 {
833 dprintf(("SUP_IOCTL_UNPINPAGES: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
834 cbIn, sizeof(*pIn), cbOut, 0));
835 return SUPDRV_ERR_INVALID_PARAM;
836 }
837 if ( pIn->u32Cookie != pDevExt->u32Cookie
838 || pIn->u32SessionCookie != pSession->u32Cookie)
839 {
840 dprintf(("SUP_IOCTL_UNPINPAGES: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
841 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
842 return SUPDRV_ERR_INVALID_MAGIC;
843 }
844
845 /*
846 * Execute.
847 */
848 return SUPR0UnlockMem(pSession, pIn->pv);
849 }
850
851 case SUP_IOCTL_CONT_ALLOC:
852 {
853 int rc;
854 PSUPCONTALLOC_IN pIn = (PSUPCONTALLOC_IN)pvIn;
855 PSUPCONTALLOC_OUT pOut = (PSUPCONTALLOC_OUT)pvOut;
856
857 /*
858 * Validate.
859 */
860 if ( cbIn != sizeof(*pIn)
861 || cbOut < sizeof(*pOut))
862 {
863 dprintf(("SUP_IOCTL_CONT_ALLOC: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
864 cbIn, sizeof(*pIn), cbOut, sizeof(*pOut)));
865 return SUPDRV_ERR_INVALID_PARAM;
866 }
867 if ( pIn->u32Cookie != pDevExt->u32Cookie
868 || pIn->u32SessionCookie != pSession->u32Cookie )
869 {
870 dprintf(("SUP_IOCTL_CONT_ALLOC: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
871 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
872 return SUPDRV_ERR_INVALID_MAGIC;
873 }
874
875 /*
876 * Execute.
877 */
878 rc = SUPR0ContAlloc(pSession, pIn->cb, &pOut->pvR0, &pOut->pvR3, &pOut->HCPhys);
879 if (!rc)
880 *pcbReturned = sizeof(*pOut);
881 return rc;
882 }
883
884
885 case SUP_IOCTL_CONT_FREE:
886 {
887 PSUPCONTFREE_IN pIn = (PSUPCONTFREE_IN)pvIn;
888
889 /*
890 * Validate.
891 */
892 if ( cbIn != sizeof(*pIn)
893 || cbOut != 0)
894 {
895 dprintf(("SUP_IOCTL_CONT_FREE: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
896 cbIn, sizeof(*pIn), cbOut, 0));
897 return SUPDRV_ERR_INVALID_PARAM;
898 }
899 if ( pIn->u32Cookie != pDevExt->u32Cookie
900 || pIn->u32SessionCookie != pSession->u32Cookie)
901 {
902 dprintf(("SUP_IOCTL_CONT_FREE: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
903 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
904 return SUPDRV_ERR_INVALID_MAGIC;
905 }
906
907 /*
908 * Execute.
909 */
910 return SUPR0ContFree(pSession, pIn->pv);
911 }
912
913
914 case SUP_IOCTL_LDR_OPEN:
915 {
916 PSUPLDROPEN_IN pIn = (PSUPLDROPEN_IN)pvIn;
917 PSUPLDROPEN_OUT pOut = (PSUPLDROPEN_OUT)pvOut;
918
919 /*
920 * Validate.
921 */
922 if ( cbIn != sizeof(*pIn)
923 || cbOut != sizeof(*pOut))
924 {
925 dprintf(("SUP_IOCTL_LDR_OPEN: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
926 cbIn, sizeof(*pIn), cbOut, sizeof(*pOut)));
927 return SUPDRV_ERR_INVALID_PARAM;
928 }
929 if ( pIn->u32Cookie != pDevExt->u32Cookie
930 || pIn->u32SessionCookie != pSession->u32Cookie)
931 {
932 dprintf(("SUP_IOCTL_LDR_OPEN: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
933 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
934 return SUPDRV_ERR_INVALID_MAGIC;
935 }
936 if ( pIn->cbImage <= 0
937 || pIn->cbImage >= 16*1024*1024 /*16MB*/)
938 {
939 dprintf(("SUP_IOCTL_LDR_OPEN: Invalid size %d. (max is 16MB)\n", pIn->cbImage));
940 return SUPDRV_ERR_INVALID_PARAM;
941 }
942 if (!memchr(pIn->szName, '\0', sizeof(pIn->szName)))
943 {
944 dprintf(("SUP_IOCTL_LDR_GET_SYMBOL: The image name isn't terminated!\n"));
945 return SUPDRV_ERR_INVALID_PARAM;
946 }
947 if (!pIn->szName[0])
948 {
949 dprintf(("SUP_IOCTL_LDR_OPEN: The image name is too short\n"));
950 return SUPDRV_ERR_INVALID_PARAM;
951 }
952 if (strpbrk(pIn->szName, ";:()[]{}/\\|&*%#@!~`\"'"))
953 {
954 dprintf(("SUP_IOCTL_LDR_OPEN: The name is invalid '%s'\n", pIn->szName));
955 return SUPDRV_ERR_INVALID_PARAM;
956 }
957
958 *pcbReturned = sizeof(*pOut);
959 return supdrvIOCtl_LdrOpen(pDevExt, pSession, pIn, pOut);
960 }
961
962
963 case SUP_IOCTL_LDR_LOAD:
964 {
965 PSUPLDRLOAD_IN pIn = (PSUPLDRLOAD_IN)pvIn;
966
967 /*
968 * Validate.
969 */
970 if ( cbIn <= sizeof(*pIn)
971 || cbOut != 0)
972 {
973 dprintf(("SUP_IOCTL_LDR_LOAD: Invalid input/output sizes. cbIn=%d expected greater than %d. cbOut=%d expected %d.\n",
974 cbIn, sizeof(*pIn), cbOut, 0));
975 return SUPDRV_ERR_INVALID_PARAM;
976 }
977 if ( pIn->u32Cookie != pDevExt->u32Cookie
978 || pIn->u32SessionCookie != pSession->u32Cookie)
979 {
980 dprintf(("SUP_IOCTL_LDR_LOAD: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
981 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
982 return SUPDRV_ERR_INVALID_MAGIC;
983 }
984 if ((unsigned)RT_OFFSETOF(SUPLDRLOAD_IN, achImage[pIn->cbImage]) > cbIn)
985 {
986 dprintf(("SUP_IOCTL_LDR_LOAD: Invalid size %d. InputBufferLength=%d\n",
987 pIn->cbImage, cbIn));
988 return SUPDRV_ERR_INVALID_PARAM;
989 }
990 if (pIn->cSymbols > 16384)
991 {
992 dprintf(("SUP_IOCTL_LDR_LOAD: Too many symbols. cSymbols=%u max=16384\n", pIn->cSymbols));
993 return SUPDRV_ERR_INVALID_PARAM;
994 }
995 if ( pIn->cSymbols
996 && ( pIn->offSymbols >= pIn->cbImage
997 || pIn->offSymbols + pIn->cSymbols * sizeof(SUPLDRSYM) > pIn->cbImage)
998 )
999 {
1000 dprintf(("SUP_IOCTL_LDR_LOAD: symbol table is outside the image bits! offSymbols=%u cSymbols=%d cbImage=%d\n",
1001 pIn->offSymbols, pIn->cSymbols, pIn->cbImage));
1002 return SUPDRV_ERR_INVALID_PARAM;
1003 }
1004 if ( pIn->cbStrTab
1005 && ( pIn->offStrTab >= pIn->cbImage
1006 || pIn->offStrTab + pIn->cbStrTab > pIn->cbImage
1007 || pIn->offStrTab + pIn->cbStrTab < pIn->offStrTab)
1008 )
1009 {
1010 dprintf(("SUP_IOCTL_LDR_LOAD: string table is outside the image bits! offStrTab=%u cbStrTab=%d cbImage=%d\n",
1011 pIn->offStrTab, pIn->cbStrTab, pIn->cbImage));
1012 return SUPDRV_ERR_INVALID_PARAM;
1013 }
1014
1015 if (pIn->cSymbols)
1016 {
1017 uint32_t i;
1018 PSUPLDRSYM paSyms = (PSUPLDRSYM)&pIn->achImage[pIn->offSymbols];
1019 for (i = 0; i < pIn->cSymbols; i++)
1020 {
1021 if (paSyms[i].offSymbol >= pIn->cbImage)
1022 {
1023 dprintf(("SUP_IOCTL_LDR_LOAD: symbol i=%d has an invalid symbol offset: %#x (max=%#x)\n",
1024 i, paSyms[i].offSymbol, pIn->cbImage));
1025 return SUPDRV_ERR_INVALID_PARAM;
1026 }
1027 if (paSyms[i].offName >= pIn->cbStrTab)
1028 {
1029 dprintf(("SUP_IOCTL_LDR_LOAD: symbol i=%d has an invalid name offset: %#x (max=%#x)\n",
1030 i, paSyms[i].offName, pIn->cbStrTab));
1031 return SUPDRV_ERR_INVALID_PARAM;
1032 }
1033 if (!memchr(&pIn->achImage[pIn->offStrTab + paSyms[i].offName], '\0', pIn->cbStrTab - paSyms[i].offName))
1034 {
1035 dprintf(("SUP_IOCTL_LDR_LOAD: symbol i=%d has an unterminated name! offName=%#x (max=%#x)\n",
1036 i, paSyms[i].offName, pIn->cbStrTab));
1037 return SUPDRV_ERR_INVALID_PARAM;
1038 }
1039 }
1040 }
1041
1042 return supdrvIOCtl_LdrLoad(pDevExt, pSession, pIn);
1043 }
1044
1045
1046 case SUP_IOCTL_LDR_FREE:
1047 {
1048 PSUPLDRFREE_IN pIn = (PSUPLDRFREE_IN)pvIn;
1049
1050 /*
1051 * Validate.
1052 */
1053 if ( cbIn != sizeof(*pIn)
1054 || cbOut != 0)
1055 {
1056 dprintf(("SUP_IOCTL_LDR_FREE: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
1057 cbIn, sizeof(*pIn), cbOut, 0));
1058 return SUPDRV_ERR_INVALID_PARAM;
1059 }
1060 if ( pIn->u32Cookie != pDevExt->u32Cookie
1061 || pIn->u32SessionCookie != pSession->u32Cookie)
1062 {
1063 dprintf(("SUP_IOCTL_LDR_FREE: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
1064 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
1065 return SUPDRV_ERR_INVALID_MAGIC;
1066 }
1067
1068 return supdrvIOCtl_LdrFree(pDevExt, pSession, pIn);
1069 }
1070
1071
1072 case SUP_IOCTL_LDR_GET_SYMBOL:
1073 {
1074 PSUPLDRGETSYMBOL_IN pIn = (PSUPLDRGETSYMBOL_IN)pvIn;
1075 PSUPLDRGETSYMBOL_OUT pOut = (PSUPLDRGETSYMBOL_OUT)pvOut;
1076 char *pszEnd;
1077
1078 /*
1079 * Validate.
1080 */
1081 if ( cbIn < (unsigned)RT_OFFSETOF(SUPLDRGETSYMBOL_IN, szSymbol[2])
1082 || cbOut != sizeof(*pOut))
1083 {
1084 dprintf(("SUP_IOCTL_LDR_GET_SYMBOL: Invalid input/output sizes. cbIn=%d expected >=%d. cbOut=%d expected at%d.\n",
1085 cbIn, RT_OFFSETOF(SUPLDRGETSYMBOL_IN, szSymbol[2]), cbOut, 0));
1086 return SUPDRV_ERR_INVALID_PARAM;
1087 }
1088 if ( pIn->u32Cookie != pDevExt->u32Cookie
1089 || pIn->u32SessionCookie != pSession->u32Cookie)
1090 {
1091 dprintf(("SUP_IOCTL_LDR_GET_SYMBOL: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
1092 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
1093 return SUPDRV_ERR_INVALID_MAGIC;
1094 }
1095 pszEnd = memchr(pIn->szSymbol, '\0', cbIn - RT_OFFSETOF(SUPLDRGETSYMBOL_IN, szSymbol));
1096 if (!pszEnd)
1097 {
1098 dprintf(("SUP_IOCTL_LDR_GET_SYMBOL: The symbol name isn't terminated!\n"));
1099 return SUPDRV_ERR_INVALID_PARAM;
1100 }
1101 if (pszEnd - &pIn->szSymbol[0] >= 1024)
1102 {
1103 dprintf(("SUP_IOCTL_LDR_GET_SYMBOL: The symbol name too long (%d chars, max is %d)!\n",
1104 pszEnd - &pIn->szSymbol[0], 1024));
1105 return SUPDRV_ERR_INVALID_PARAM;
1106 }
1107
1108 pOut->pvSymbol = NULL;
1109 *pcbReturned = sizeof(*pOut);
1110 return supdrvIOCtl_LdrGetSymbol(pDevExt, pSession, pIn, pOut);
1111 }
1112
1113
1114 /** @todo this interface needs re-doing, we're accessing Ring-3 buffers directly here! */
1115 case SUP_IOCTL_CALL_VMMR0:
1116 {
1117 PSUPCALLVMMR0_IN pIn = (PSUPCALLVMMR0_IN)pvIn;
1118 PSUPCALLVMMR0_OUT pOut = (PSUPCALLVMMR0_OUT)pvOut;
1119
1120 /*
1121 * Validate.
1122 */
1123 if ( cbIn != sizeof(*pIn)
1124 || cbOut != sizeof(*pOut))
1125 {
1126 dprintf(("SUP_IOCTL_CALL_VMMR0: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
1127 cbIn, sizeof(*pIn), cbOut, sizeof(*pOut)));
1128 return SUPDRV_ERR_INVALID_PARAM;
1129 }
1130 if ( pIn->u32Cookie != pDevExt->u32Cookie
1131 || pIn->u32SessionCookie != pSession->u32Cookie )
1132 {
1133 dprintf(("SUP_IOCTL_CALL_VMMR0: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
1134 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
1135 return SUPDRV_ERR_INVALID_MAGIC;
1136 }
1137
1138 /*
1139 * Do we have an entrypoint?
1140 */
1141 if (!pDevExt->pfnVMMR0Entry)
1142 return SUPDRV_ERR_GENERAL_FAILURE;
1143
1144 /*
1145 * Execute.
1146 */
1147 pOut->rc = pDevExt->pfnVMMR0Entry(pIn->pVMR0, pIn->uOperation, pIn->pvArg);
1148 *pcbReturned = sizeof(*pOut);
1149 return 0;
1150 }
1151
1152
1153 case SUP_IOCTL_GET_PAGING_MODE:
1154 {
1155 int rc;
1156 PSUPGETPAGINGMODE_IN pIn = (PSUPGETPAGINGMODE_IN)pvIn;
1157 PSUPGETPAGINGMODE_OUT pOut = (PSUPGETPAGINGMODE_OUT)pvOut;
1158
1159 /*
1160 * Validate.
1161 */
1162 if ( cbIn != sizeof(*pIn)
1163 || cbOut != sizeof(*pOut))
1164 {
1165 dprintf(("SUP_IOCTL_GET_PAGING_MODE: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
1166 cbIn, sizeof(*pIn), cbOut, sizeof(*pOut)));
1167 return SUPDRV_ERR_INVALID_PARAM;
1168 }
1169 if ( pIn->u32Cookie != pDevExt->u32Cookie
1170 || pIn->u32SessionCookie != pSession->u32Cookie )
1171 {
1172 dprintf(("SUP_IOCTL_GET_PAGING_MODE: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
1173 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
1174 return SUPDRV_ERR_INVALID_MAGIC;
1175 }
1176
1177 /*
1178 * Execute.
1179 */
1180 *pcbReturned = sizeof(*pOut);
1181 rc = supdrvIOCtl_GetPagingMode(pOut);
1182 if (rc)
1183 *pcbReturned = 0;
1184 return rc;
1185 }
1186
1187
1188 case SUP_IOCTL_LOW_ALLOC:
1189 {
1190 int rc;
1191 PSUPLOWALLOC_IN pIn = (PSUPLOWALLOC_IN)pvIn;
1192 PSUPLOWALLOC_OUT pOut = (PSUPLOWALLOC_OUT)pvOut;
1193
1194 /*
1195 * Validate.
1196 */
1197 if ( cbIn != sizeof(*pIn)
1198 || cbOut < sizeof(*pOut))
1199 {
1200 dprintf(("SUP_IOCTL_LOW_ALLOC: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
1201 cbIn, sizeof(*pIn), cbOut, sizeof(*pOut)));
1202 return SUPDRV_ERR_INVALID_PARAM;
1203 }
1204 if ( pIn->u32Cookie != pDevExt->u32Cookie
1205 || pIn->u32SessionCookie != pSession->u32Cookie )
1206 {
1207 dprintf(("SUP_IOCTL_LOW_ALLOC: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
1208 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
1209 return SUPDRV_ERR_INVALID_MAGIC;
1210 }
1211 if ((unsigned)RT_OFFSETOF(SUPLOWALLOC_OUT, aPages[pIn->cPages]) > cbOut)
1212 {
1213 dprintf(("SUP_IOCTL_LOW_ALLOC: Output buffer is too small! %d required %d passed in.\n",
1214 RT_OFFSETOF(SUPLOWALLOC_OUT, aPages[pIn->cPages]), cbOut));
1215 return SUPDRV_ERR_INVALID_PARAM;
1216 }
1217
1218 /*
1219 * Execute.
1220 */
1221 *pcbReturned = RT_OFFSETOF(SUPLOWALLOC_OUT, aPages[pIn->cPages]);
1222 rc = SUPR0LowAlloc(pSession, pIn->cPages, &pOut->pvVirt, &pOut->aPages[0]);
1223 if (rc)
1224 *pcbReturned = 0;
1225 return rc;
1226 }
1227
1228
1229 case SUP_IOCTL_LOW_FREE:
1230 {
1231 PSUPLOWFREE_IN pIn = (PSUPLOWFREE_IN)pvIn;
1232
1233 /*
1234 * Validate.
1235 */
1236 if ( cbIn != sizeof(*pIn)
1237 || cbOut != 0)
1238 {
1239 dprintf(("SUP_IOCTL_LOW_FREE: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
1240 cbIn, sizeof(*pIn), cbOut, 0));
1241 return SUPDRV_ERR_INVALID_PARAM;
1242 }
1243 if ( pIn->u32Cookie != pDevExt->u32Cookie
1244 || pIn->u32SessionCookie != pSession->u32Cookie)
1245 {
1246 dprintf(("SUP_IOCTL_LOW_FREE: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
1247 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
1248 return SUPDRV_ERR_INVALID_MAGIC;
1249 }
1250
1251 /*
1252 * Execute.
1253 */
1254 return SUPR0LowFree(pSession, pIn->pv);
1255 }
1256
1257
1258 case SUP_IOCTL_GIP_MAP:
1259 {
1260 int rc;
1261 PSUPGIPMAP_IN pIn = (PSUPGIPMAP_IN)pvIn;
1262 PSUPGIPMAP_OUT pOut = (PSUPGIPMAP_OUT)pvOut;
1263
1264 /*
1265 * Validate.
1266 */
1267 if ( cbIn != sizeof(*pIn)
1268 || cbOut != sizeof(*pOut))
1269 {
1270 dprintf(("SUP_IOCTL_GIP_MAP: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
1271 cbIn, sizeof(*pIn), cbOut, 0));
1272 return SUPDRV_ERR_INVALID_PARAM;
1273 }
1274 if ( pIn->u32Cookie != pDevExt->u32Cookie
1275 || pIn->u32SessionCookie != pSession->u32Cookie)
1276 {
1277 dprintf(("SUP_IOCTL_GIP_MAP: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
1278 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
1279 return SUPDRV_ERR_INVALID_MAGIC;
1280 }
1281
1282 /*
1283 * Execute.
1284 */
1285 rc = SUPR0GipMap(pSession, &pOut->pGipR3, &pOut->HCPhysGip);
1286 if (!rc)
1287 {
1288 pOut->pGipR0 = pDevExt->pGip;
1289 *pcbReturned = sizeof(*pOut);
1290 }
1291 return rc;
1292 }
1293
1294
1295 case SUP_IOCTL_GIP_UNMAP:
1296 {
1297 PSUPGIPUNMAP_IN pIn = (PSUPGIPUNMAP_IN)pvIn;
1298
1299 /*
1300 * Validate.
1301 */
1302 if ( cbIn != sizeof(*pIn)
1303 || cbOut != 0)
1304 {
1305 dprintf(("SUP_IOCTL_GIP_UNMAP: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
1306 cbIn, sizeof(*pIn), cbOut, 0));
1307 return SUPDRV_ERR_INVALID_PARAM;
1308 }
1309 if ( pIn->u32Cookie != pDevExt->u32Cookie
1310 || pIn->u32SessionCookie != pSession->u32Cookie)
1311 {
1312 dprintf(("SUP_IOCTL_GIP_UNMAP: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
1313 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
1314 return SUPDRV_ERR_INVALID_MAGIC;
1315 }
1316
1317 /*
1318 * Execute.
1319 */
1320 return SUPR0GipUnmap(pSession);
1321 }
1322
1323
1324 case SUP_IOCTL_SET_VM_FOR_FAST:
1325 {
1326 PSUPSETVMFORFAST_IN pIn = (PSUPSETVMFORFAST_IN)pvIn;
1327
1328 /*
1329 * Validate.
1330 */
1331 if ( cbIn != sizeof(*pIn)
1332 || cbOut != 0)
1333 {
1334 dprintf(("SUP_IOCTL_SET_VM_FOR_FAST: Invalid input/output sizes. cbIn=%d expected %d. cbOut=%d expected %d.\n",
1335 cbIn, sizeof(*pIn), cbOut, 0));
1336 return SUPDRV_ERR_INVALID_PARAM;
1337 }
1338 if ( pIn->u32Cookie != pDevExt->u32Cookie
1339 || pIn->u32SessionCookie != pSession->u32Cookie)
1340 {
1341 dprintf(("SUP_IOCTL_SET_VM_FOR_FAST: Cookie mismatch {%#x,%#x} != {%#x,%#x}!\n",
1342 pIn->u32Cookie, pDevExt->u32Cookie, pIn->u32SessionCookie, pSession->u32Cookie));
1343 return SUPDRV_ERR_INVALID_MAGIC;
1344 }
1345 if ( pIn->pVMR0 != NULL
1346 && ( !VALID_PTR(pIn->pVMR0)
1347 || ((uintptr_t)pIn->pVMR0 & (PAGE_SIZE - 1))
1348 )
1349 )
1350 {
1351 dprintf(("SUP_IOCTL_SET_VM_FOR_FAST: pVMR0=%p! Must be a valid, page aligned, pointer.\n", pIn->pVMR0));
1352 return SUPDRV_ERR_INVALID_POINTER;
1353 }
1354
1355 /*
1356 * Execute.
1357 */
1358#ifndef VBOX_WITHOUT_IDT_PATCHING
1359 OSDBGPRINT(("SUP_IOCTL_SET_VM_FOR_FAST: !VBOX_WITHOUT_IDT_PATCHING\n"));
1360 return SUPDRV_ERR_GENERAL_FAILURE;
1361#else
1362 pSession->pVM = pIn->pVMR0;
1363 return 0;
1364#endif
1365 }
1366
1367
1368 default:
1369 dprintf(("Unknown IOCTL %#x\n", uIOCtl));
1370 break;
1371 }
1372 return SUPDRV_ERR_GENERAL_FAILURE;
1373}
1374
1375
1376/**
1377 * Register a object for reference counting.
1378 * The object is registered with one reference in the specified session.
1379 *
1380 * @returns Unique identifier on success (pointer).
1381 * All future reference must use this identifier.
1382 * @returns NULL on failure.
1383 * @param pfnDestructor The destructore function which will be called when the reference count reaches 0.
1384 * @param pvUser1 The first user argument.
1385 * @param pvUser2 The second user argument.
1386 */
1387SUPR0DECL(void *) SUPR0ObjRegister(PSUPDRVSESSION pSession, SUPDRVOBJTYPE enmType, PFNSUPDRVDESTRUCTOR pfnDestructor, void *pvUser1, void *pvUser2)
1388{
1389 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
1390 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
1391 PSUPDRVOBJ pObj;
1392 PSUPDRVUSAGE pUsage;
1393
1394 /*
1395 * Validate the input.
1396 */
1397 if (!pSession)
1398 {
1399 AssertMsgFailed(("Invalid pSession=%p\n", pSession));
1400 return NULL;
1401 }
1402 if ( enmType <= SUPDRVOBJTYPE_INVALID
1403 || enmType >= SUPDRVOBJTYPE_END)
1404 {
1405 AssertMsgFailed(("Invalid enmType=%d\n", enmType));
1406 return NULL;
1407 }
1408 if (!pfnDestructor)
1409 {
1410 AssertMsgFailed(("Invalid pfnDestructor=%d\n", pfnDestructor));
1411 return NULL;
1412 }
1413
1414 /*
1415 * Allocate and initialize the object.
1416 */
1417 pObj = (PSUPDRVOBJ)RTMemAlloc(sizeof(*pObj));
1418 if (!pObj)
1419 return NULL;
1420 pObj->u32Magic = SUPDRVOBJ_MAGIC;
1421 pObj->enmType = enmType;
1422 pObj->pNext = NULL;
1423 pObj->cUsage = 1;
1424 pObj->pfnDestructor = pfnDestructor;
1425 pObj->pvUser1 = pvUser1;
1426 pObj->pvUser2 = pvUser2;
1427 pObj->CreatorUid = pSession->Uid;
1428 pObj->CreatorGid = pSession->Gid;
1429 pObj->CreatorProcess= pSession->Process;
1430 supdrvOSObjInitCreator(pObj, pSession);
1431
1432 /*
1433 * Allocate the usage record.
1434 * (We keep freed usage records around to simplity SUPR0ObjAddRef().)
1435 */
1436 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1437
1438 pUsage = pDevExt->pUsageFree;
1439 if (pUsage)
1440 pDevExt->pUsageFree = pUsage->pNext;
1441 else
1442 {
1443 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1444 pUsage = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsage));
1445 if (!pUsage)
1446 {
1447 RTMemFree(pObj);
1448 return NULL;
1449 }
1450 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1451 }
1452
1453 /*
1454 * Insert the object and create the session usage record.
1455 */
1456 /* The object. */
1457 pObj->pNext = pDevExt->pObjs;
1458 pDevExt->pObjs = pObj;
1459
1460 /* The session record. */
1461 pUsage->cUsage = 1;
1462 pUsage->pObj = pObj;
1463 pUsage->pNext = pSession->pUsage;
1464 dprintf(("SUPR0ObjRegister: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));
1465 pSession->pUsage = pUsage;
1466
1467 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1468
1469 dprintf(("SUPR0ObjRegister: returns %p (pvUser1=%p, pvUser=%p)\n", pObj, pvUser1, pvUser2));
1470 return pObj;
1471}
1472
1473
1474/**
1475 * Increment the reference counter for the object associating the reference
1476 * with the specified session.
1477 *
1478 * @returns 0 on success.
1479 * @returns SUPDRV_ERR_* on failure.
1480 * @param pvObj The identifier returned by SUPR0ObjRegister().
1481 * @param pSession The session which is referencing the object.
1482 */
1483SUPR0DECL(int) SUPR0ObjAddRef(void *pvObj, PSUPDRVSESSION pSession)
1484{
1485 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
1486 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
1487 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
1488 PSUPDRVUSAGE pUsagePre;
1489 PSUPDRVUSAGE pUsage;
1490
1491 /*
1492 * Validate the input.
1493 */
1494 if (!pSession)
1495 {
1496 AssertMsgFailed(("Invalid pSession=%p\n", pSession));
1497 return SUPDRV_ERR_INVALID_PARAM;
1498 }
1499 if (!pObj || pObj->u32Magic != SUPDRVOBJ_MAGIC)
1500 {
1501 AssertMsgFailed(("Invalid pvObj=%p magic=%#x (exepcted %#x)\n",
1502 pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC));
1503 return SUPDRV_ERR_INVALID_PARAM;
1504 }
1505
1506 /*
1507 * Preallocate the usage record.
1508 */
1509 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1510
1511 pUsagePre = pDevExt->pUsageFree;
1512 if (pUsagePre)
1513 pDevExt->pUsageFree = pUsagePre->pNext;
1514 else
1515 {
1516 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1517 pUsagePre = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsagePre));
1518 if (!pUsagePre)
1519 return SUPDRV_ERR_NO_MEMORY;
1520 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1521 }
1522
1523 /*
1524 * Reference the object.
1525 */
1526 pObj->cUsage++;
1527
1528 /*
1529 * Look for the session record.
1530 */
1531 for (pUsage = pSession->pUsage; pUsage; pUsage = pUsage->pNext)
1532 {
1533 dprintf(("SUPR0AddRef: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));
1534 if (pUsage->pObj == pObj)
1535 break;
1536 }
1537 if (pUsage)
1538 pUsage->cUsage++;
1539 else
1540 {
1541 /* create a new session record. */
1542 pUsagePre->cUsage = 1;
1543 pUsagePre->pObj = pObj;
1544 pUsagePre->pNext = pSession->pUsage;
1545 pSession->pUsage = pUsagePre;
1546 dprintf(("SUPR0ObjRelease: pUsagePre=%p:{.pObj=%p, .pNext=%p}\n", pUsagePre, pUsagePre->pObj, pUsagePre->pNext));
1547
1548 pUsagePre = NULL;
1549 }
1550
1551 /*
1552 * Put any unused usage record into the free list..
1553 */
1554 if (pUsagePre)
1555 {
1556 pUsagePre->pNext = pDevExt->pUsageFree;
1557 pDevExt->pUsageFree = pUsagePre;
1558 }
1559
1560 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1561
1562 return 0;
1563}
1564
1565
1566/**
1567 * Decrement / destroy a reference counter record for an object.
1568 *
1569 * The object is uniquely identified by pfnDestructor+pvUser1+pvUser2.
1570 *
1571 * @returns 0 on success.
1572 * @returns SUPDRV_ERR_* on failure.
1573 * @param pvObj The identifier returned by SUPR0ObjRegister().
1574 * @param pSession The session which is referencing the object.
1575 */
1576SUPR0DECL(int) SUPR0ObjRelease(void *pvObj, PSUPDRVSESSION pSession)
1577{
1578 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
1579 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
1580 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
1581 bool fDestroy = false;
1582 PSUPDRVUSAGE pUsage;
1583 PSUPDRVUSAGE pUsagePrev;
1584
1585 /*
1586 * Validate the input.
1587 */
1588 if (!pSession)
1589 {
1590 AssertMsgFailed(("Invalid pSession=%p\n", pSession));
1591 return SUPDRV_ERR_INVALID_PARAM;
1592 }
1593 if (!pObj || pObj->u32Magic != SUPDRVOBJ_MAGIC)
1594 {
1595 AssertMsgFailed(("Invalid pvObj=%p magic=%#x (exepcted %#x)\n",
1596 pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC));
1597 return SUPDRV_ERR_INVALID_PARAM;
1598 }
1599
1600 /*
1601 * Acquire the spinlock and look for the usage record.
1602 */
1603 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1604
1605 for (pUsagePrev = NULL, pUsage = pSession->pUsage;
1606 pUsage;
1607 pUsagePrev = pUsage, pUsage = pUsage->pNext)
1608 {
1609 dprintf(("SUPR0ObjRelease: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));
1610 if (pUsage->pObj == pObj)
1611 {
1612 AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
1613 if (pUsage->cUsage > 1)
1614 {
1615 pObj->cUsage--;
1616 pUsage->cUsage--;
1617 }
1618 else
1619 {
1620 /*
1621 * Free the session record.
1622 */
1623 if (pUsagePrev)
1624 pUsagePrev->pNext = pUsage->pNext;
1625 else
1626 pSession->pUsage = pUsage->pNext;
1627 pUsage->pNext = pDevExt->pUsageFree;
1628 pDevExt->pUsageFree = pUsage;
1629
1630 /* What about the object? */
1631 if (pObj->cUsage > 1)
1632 pObj->cUsage--;
1633 else
1634 {
1635 /*
1636 * Object is to be destroyed, unlink it.
1637 */
1638 fDestroy = true;
1639 if (pDevExt->pObjs == pObj)
1640 pDevExt->pObjs = pObj->pNext;
1641 else
1642 {
1643 PSUPDRVOBJ pObjPrev;
1644 for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
1645 if (pObjPrev->pNext == pObj)
1646 {
1647 pObjPrev->pNext = pObj->pNext;
1648 break;
1649 }
1650 Assert(pObjPrev);
1651 }
1652 }
1653 }
1654 break;
1655 }
1656 }
1657
1658 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1659
1660 /*
1661 * Call the destructor and free the object if required.
1662 */
1663 if (fDestroy)
1664 {
1665 pObj->u32Magic++;
1666 pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
1667 RTMemFree(pObj);
1668 }
1669
1670 AssertMsg(pUsage, ("pvObj=%p\n", pvObj));
1671 return pUsage ? 0 : SUPDRV_ERR_INVALID_PARAM;
1672}
1673
1674/**
1675 * Verifies that the current process can access the specified object.
1676 *
1677 * @returns 0 if access is granted.
1678 * @returns SUPDRV_ERR_PERMISSION_DENIED if denied access.
1679 * @returns SUPDRV_ERR_INVALID_PARAM if invalid parameter.
1680 *
1681 * @param pvObj The identifier returned by SUPR0ObjRegister().
1682 * @param pSession The session which wishes to access the object.
1683 * @param pszObjName Object string name. This is optional and depends on the object type.
1684 *
1685 * @remark The caller is responsible for making sure the object isn't removed while
1686 * we're inside this function. If uncertain about this, just call AddRef before calling us.
1687 */
1688SUPR0DECL(int) SUPR0ObjVerifyAccess(void *pvObj, PSUPDRVSESSION pSession, const char *pszObjName)
1689{
1690 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
1691 int rc = SUPDRV_ERR_GENERAL_FAILURE;
1692
1693 /*
1694 * Validate the input.
1695 */
1696 if (!pSession)
1697 {
1698 AssertMsgFailed(("Invalid pSession=%p\n", pSession));
1699 return SUPDRV_ERR_INVALID_PARAM;
1700 }
1701 if (!pObj || pObj->u32Magic != SUPDRVOBJ_MAGIC)
1702 {
1703 AssertMsgFailed(("Invalid pvObj=%p magic=%#x (exepcted %#x)\n",
1704 pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC));
1705 return SUPDRV_ERR_INVALID_PARAM;
1706 }
1707
1708 /*
1709 * Check access. (returns true if a decision has been made.)
1710 */
1711 if (supdrvOSObjCanAccess(pObj, pSession, pszObjName, &rc))
1712 return rc;
1713
1714 /*
1715 * Default policy is to allow the user to access his own
1716 * stuff but nothing else.
1717 */
1718 if (pObj->CreatorUid == pSession->Uid)
1719 return 0;
1720 return SUPDRV_ERR_PERMISSION_DENIED;
1721}
1722
1723
1724/**
1725 * Lock pages.
1726 *
1727 * @param pSession Session to which the locked memory should be associated.
1728 * @param pvR3 Start of the memory range to lock.
1729 * This must be page aligned.
1730 * @param cb Size of the memory range to lock.
1731 * This must be page aligned.
1732 */
1733SUPR0DECL(int) SUPR0LockMem(PSUPDRVSESSION pSession, void *pvR3, unsigned cb, PSUPPAGE paPages)
1734{
1735 int rc;
1736 SUPDRVMEMREF Mem = {0};
1737 dprintf(("SUPR0LockMem: pSession=%p pvR3=%p cb=%d paPages=%p\n",
1738 pSession, pvR3, cb, paPages));
1739
1740 /*
1741 * Verify input.
1742 */
1743 if (RT_ALIGN_R3PT(pvR3, PAGE_SIZE, void *) != pvR3 || !pvR3)
1744 {
1745 dprintf(("pvR3 (%p) must be page aligned and not NULL!\n", pvR3));
1746 return SUPDRV_ERR_INVALID_PARAM;
1747 }
1748 if (RT_ALIGN(cb, PAGE_SIZE) != cb)
1749 {
1750 dprintf(("cb (%u) must be page aligned!\n", cb));
1751 return SUPDRV_ERR_INVALID_PARAM;
1752 }
1753 if (!paPages)
1754 {
1755 dprintf(("paPages is NULL!\n"));
1756 return SUPDRV_ERR_INVALID_PARAM;
1757 }
1758
1759#ifdef USE_NEW_OS_INTERFACE
1760 /*
1761 * Let IPRT do the job.
1762 */
1763 Mem.eType = MEMREF_TYPE_LOCKED;
1764 rc = RTR0MemObjLockUser(&Mem.MemObj, pvR3, cb, RTR0ProcHandleSelf());
1765 if (RT_SUCCESS(rc))
1766 {
1767 unsigned iPage = cb >> PAGE_SHIFT;
1768 while (iPage-- > 0)
1769 {
1770 paPages[iPage].uReserved = 0;
1771 paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
1772 if (RT_UNLIKELY(paPages[iPage].Phys == NIL_RTCCPHYS))
1773 {
1774 AssertMsgFailed(("iPage=%d\n", iPage));
1775 rc = VERR_INTERNAL_ERROR;
1776 break;
1777 }
1778 }
1779 if (RT_SUCCESS(rc))
1780 rc = supdrvMemAdd(&Mem, pSession);
1781 if (RT_FAILURE(rc))
1782 {
1783 int rc2 = RTR0MemObjFree(Mem.MemObj, false);
1784 AssertRC(rc2);
1785 }
1786 }
1787
1788#else /* !USE_NEW_OS_INTERFACE */
1789
1790 /*
1791 * Let the OS specific code have a go.
1792 */
1793 Mem.pvR0 = NULL;
1794 Mem.pvR3 = pvR3;
1795 Mem.eType = MEMREF_TYPE_LOCKED;
1796 Mem.cb = cb;
1797 rc = supdrvOSLockMemOne(&Mem, paPages);
1798 if (rc)
1799 return rc;
1800
1801 /*
1802 * Everything when fine, add the memory reference to the session.
1803 */
1804 rc = supdrvMemAdd(&Mem, pSession);
1805 if (rc)
1806 supdrvOSUnlockMemOne(&Mem);
1807#endif /* !USE_NEW_OS_INTERFACE */
1808 return rc;
1809}
1810
1811
1812/**
1813 * Unlocks the memory pointed to by pv.
1814 *
1815 * @returns 0 on success.
1816 * @returns SUPDRV_ERR_* on failure
1817 * @param pSession Session to which the memory was locked.
1818 * @param pvR3 Memory to unlock.
1819 */
1820SUPR0DECL(int) SUPR0UnlockMem(PSUPDRVSESSION pSession, void *pvR3)
1821{
1822 dprintf(("SUPR0UnlockMem: pSession=%p pvR3=%p\n", pSession, pvR3));
1823 return supdrvMemRelease(pSession, pvR3, MEMREF_TYPE_LOCKED);
1824}
1825
1826
1827/**
1828 * Allocates a chunk of page aligned memory with contiguous and fixed physical
1829 * backing.
1830 *
1831 * @returns 0 on success.
1832 * @returns SUPDRV_ERR_* on failure.
1833 * @param pSession Session data.
1834 * @param cb Number of bytes to allocate.
1835 * @param ppvR0 Where to put the address of Ring-0 mapping the allocated memory. optional
1836 * @param ppvR3 Where to put the address of Ring-3 mapping the allocated memory.
1837 * @param pHCPhys Where to put the physical address of allocated memory.
1838 */
1839SUPR0DECL(int) SUPR0ContAlloc(PSUPDRVSESSION pSession, unsigned cb, void **ppvR0, PRTR3PTR ppvR3, PRTHCPHYS pHCPhys)
1840{
1841 int rc;
1842 SUPDRVMEMREF Mem = {0};
1843 dprintf(("SUPR0ContAlloc: pSession=%p cb=%d ppvR0=%p ppvR3=%p pHCPhys=%p\n", pSession, cb, ppvR0, ppvR3, pHCPhys));
1844
1845 /*
1846 * Validate input.
1847 */
1848 if (!pSession || !ppvR3 || !pHCPhys)
1849 {
1850 dprintf(("Null pointer. All of these should be set: pSession=%p ppvR3=%p pHCPhys=%p\n",
1851 pSession, ppvR3, pHCPhys));
1852 return SUPDRV_ERR_INVALID_PARAM;
1853
1854 }
1855 if (cb <= 64 || cb >= PAGE_SIZE * 256)
1856 {
1857 dprintf(("Illegal request cb=%d, must be greater than 64 and smaller than PAGE_SIZE*256\n", cb));
1858 return SUPDRV_ERR_INVALID_PARAM;
1859 }
1860
1861#ifdef USE_NEW_OS_INTERFACE
1862 /*
1863 * Let IPRT do the job.
1864 */
1865 rc = RTR0MemObjAllocCont(&Mem.MemObj, cb, true /* executable R0 mapping */);
1866 if (RT_SUCCESS(rc))
1867 {
1868 int rc2;
1869 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (void *)-1, 0,
1870 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
1871 if (RT_SUCCESS(rc))
1872 {
1873 Mem.eType = MEMREF_TYPE_CONT;
1874 rc = supdrvMemAdd(&Mem, pSession);
1875 if (!rc)
1876 {
1877 if (ppvR0)
1878 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
1879 *ppvR3 = RTR0MemObjAddress(Mem.MapObjR3);
1880 *pHCPhys = RTR0MemObjGetPagePhysAddr(Mem.MemObj, 0);
1881 return 0;
1882 }
1883
1884 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
1885 AssertRC(rc2);
1886 }
1887 rc2 = RTR0MemObjFree(Mem.MemObj, false);
1888 AssertRC(rc2);
1889 }
1890
1891#else /* !USE_NEW_OS_INTERFACE */
1892
1893 /*
1894 * Let the OS specific code have a go.
1895 */
1896 Mem.pvR0 = NULL;
1897 Mem.pvR3 = NULL;
1898 Mem.eType = MEMREF_TYPE_CONT;
1899 Mem.cb = cb;
1900 rc = supdrvOSContAllocOne(&Mem, ppvR0, ppvR3, pHCPhys);
1901 if (rc)
1902 return rc;
1903 AssertMsg(!((uintptr_t)*ppvR3 & (PAGE_SIZE - 1)) || !(*pHCPhys & (PAGE_SIZE - 1)),
1904 ("Memory is not page aligned! *ppvR0=%p *ppvR3=%p phys=%VHp\n", ppvR0 ? *ppvR0 : NULL, *ppvR3, *pHCPhys));
1905
1906 /*
1907 * Everything when fine, add the memory reference to the session.
1908 */
1909 rc = supdrvMemAdd(&Mem, pSession);
1910 if (rc)
1911 supdrvOSContFreeOne(&Mem);
1912#endif /* !USE_NEW_OS_INTERFACE */
1913
1914 return rc;
1915}
1916
1917
1918/**
1919 * Frees memory allocated using SUPR0ContAlloc().
1920 *
1921 * @returns 0 on success.
1922 * @returns SUPDRV_ERR_* on failure.
1923 * @param pSession The session to which the memory was allocated.
1924 * @param pv Pointer to the memory.
1925 */
1926SUPR0DECL(int) SUPR0ContFree(PSUPDRVSESSION pSession, void *pv)
1927{
1928 dprintf(("SUPR0ContFree: pSession=%p pv=%p\n", pSession, pv));
1929 return supdrvMemRelease(pSession, pv, MEMREF_TYPE_CONT);
1930}
1931
1932
1933/**
1934 * Allocates a chunk of page aligned memory with fixed physical backing below 4GB.
1935 *
1936 * @returns 0 on success.
1937 * @returns SUPDRV_ERR_* on failure.
1938 * @param pSession Session data.
1939 * @param cPages Number of pages to allocate.
1940 * @param ppvR3 Where to put the address of Ring-3 mapping of the allocated memory.
1941 * @param paPages Where to put the physical addresses of allocated memory.
1942 */
1943SUPR0DECL(int) SUPR0LowAlloc(PSUPDRVSESSION pSession, unsigned cPages, void **ppvR3, PSUPPAGE paPages)
1944{
1945 unsigned iPage;
1946 int rc;
1947 SUPDRVMEMREF Mem = {0};
1948 dprintf(("SUPR0LowAlloc: pSession=%p cPages=%d ppvR3=%p paPages=%p\n", pSession, cPages, ppvR3, paPages));
1949
1950 /*
1951 * Validate input.
1952 */
1953 if (!pSession || !ppvR3 || !paPages)
1954 {
1955 dprintf(("Null pointer. All of these should be set: pSession=%p ppvR3=%p paPages=%p\n",
1956 pSession, ppvR3, paPages));
1957 return SUPDRV_ERR_INVALID_PARAM;
1958
1959 }
1960 if (cPages < 1 || cPages > 256)
1961 {
1962 dprintf(("Illegal request cPages=%d, must be greater than 0 and smaller than 256.\n", cPages));
1963 return SUPDRV_ERR_INVALID_PARAM;
1964 }
1965
1966#ifdef USE_NEW_OS_INTERFACE
1967 /*
1968 * Let IPRT do the work.
1969 */
1970 rc = RTR0MemObjAllocLow(&Mem.MemObj, cPages << PAGE_SHIFT, true /* executable ring-0 mapping */);
1971 if (RT_SUCCESS(rc))
1972 {
1973 int rc2;
1974 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (void *)-1, 0,
1975 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
1976 if (RT_SUCCESS(rc))
1977 {
1978 Mem.eType = MEMREF_TYPE_LOW;
1979 rc = supdrvMemAdd(&Mem, pSession);
1980 if (!rc)
1981 {
1982 for (iPage = 0; iPage < cPages; iPage++)
1983 {
1984 paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
1985 paPages[iPage].uReserved = 0;
1986 AssertMsg(!(paPages[iPage].Phys & (PAGE_SIZE - 1)), ("iPage=%d Phys=%VHp\n", paPages[iPage].Phys));
1987 }
1988 /*if (ppvR0)
1989 *ppvR0 = RTR0MemObjAddress(Mem.MemObj); */
1990 *ppvR3 = RTR0MemObjAddress(Mem.MapObjR3);
1991 return 0;
1992 }
1993
1994 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
1995 AssertRC(rc2);
1996 }
1997
1998 rc2 = RTR0MemObjFree(Mem.MemObj, false);
1999 AssertRC(rc2);
2000 }
2001
2002#else /* !USE_NEW_OS_INTERFACE */
2003
2004 /*
2005 * Let the OS specific code have a go.
2006 */
2007 Mem.pvR0 = NULL;
2008 Mem.pvR3 = NULL;
2009 Mem.eType = MEMREF_TYPE_LOW;
2010 Mem.cb = cPages << PAGE_SHIFT;
2011 rc = supdrvOSLowAllocOne(&Mem, ppvR3, paPages);
2012 if (rc)
2013 return rc;
2014 AssertMsg(!((uintptr_t)*ppvR3 & (PAGE_SIZE - 1)), ("Memory is not page aligned! virt=%p\n", *ppvR3));
2015 for (iPage = 0; iPage < cPages; iPage++)
2016 AssertMsg(!(paPages[iPage].Phys & (PAGE_SIZE - 1)), ("iPage=%d Phys=%VHp\n", paPages[iPage].Phys));
2017
2018 /*
2019 * Everything when fine, add the memory reference to the session.
2020 */
2021 rc = supdrvMemAdd(&Mem, pSession);
2022 if (rc)
2023 supdrvOSLowFreeOne(&Mem);
2024#endif /* !USE_NEW_OS_INTERFACE */
2025 return rc;
2026}
2027
2028
2029/**
2030 * Frees memory allocated using SUPR0LowAlloc().
2031 *
2032 * @returns 0 on success.
2033 * @returns SUPDRV_ERR_* on failure.
2034 * @param pSession The session to which the memory was allocated.
2035 * @param pv Pointer to the memory.
2036 */
2037SUPR0DECL(int) SUPR0LowFree(PSUPDRVSESSION pSession, void *pv)
2038{
2039 dprintf(("SUPR0LowFree: pSession=%p pv=%p\n", pSession, pv));
2040 return supdrvMemRelease(pSession, pv, MEMREF_TYPE_LOW);
2041}
2042
2043
2044/**
2045 * Allocates a chunk of memory with both R0 and R3 mappings.
2046 * The memory is fixed and it's possible to query the physical addresses using SUPR0MemGetPhys().
2047 *
2048 * @returns 0 on success.
2049 * @returns SUPDRV_ERR_* on failure.
2050 * @param pSession The session to associated the allocation with.
2051 * @param cb Number of bytes to allocate.
2052 * @param ppvR0 Where to store the address of the Ring-0 mapping.
2053 * @param ppvR3 Where to store the address of the Ring-3 mapping.
2054 */
2055SUPR0DECL(int) SUPR0MemAlloc(PSUPDRVSESSION pSession, unsigned cb, void **ppvR0, void **ppvR3)
2056{
2057 int rc;
2058 SUPDRVMEMREF Mem = {0};
2059 dprintf(("SUPR0MemAlloc: pSession=%p cb=%d ppvR0=%p ppvR3=%p\n", pSession, cb, ppvR0, ppvR3));
2060
2061 /*
2062 * Validate input.
2063 */
2064 if (!pSession || !ppvR0 || !ppvR3)
2065 {
2066 dprintf(("Null pointer. All of these should be set: pSession=%p ppvR0=%p ppvR3=%p\n",
2067 pSession, ppvR0, ppvR3));
2068 return SUPDRV_ERR_INVALID_PARAM;
2069
2070 }
2071 if (cb < 1 || cb >= PAGE_SIZE * 256)
2072 {
2073 dprintf(("Illegal request cb=%u; must be greater than 0 and smaller than 4MB.\n", cb));
2074 return SUPDRV_ERR_INVALID_PARAM;
2075 }
2076
2077#ifdef USE_NEW_OS_INTERFACE
2078 /*
2079 * Let IPRT do the work.
2080 */
2081 rc = RTR0MemObjAllocPage(&Mem.MemObj, cb, true /* executable ring-0 mapping */);
2082 if (RT_SUCCESS(rc))
2083 {
2084 int rc2;
2085 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (void*)-1, 0,
2086 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2087 if (RT_SUCCESS(rc))
2088 {
2089 Mem.eType = MEMREF_TYPE_MEM;
2090 rc = supdrvMemAdd(&Mem, pSession);
2091 if (!rc)
2092 {
2093 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2094 *ppvR3 = RTR0MemObjAddress(Mem.MapObjR3);
2095 return 0;
2096 }
2097 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2098 AssertRC(rc2);
2099 }
2100
2101 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2102 AssertRC(rc2);
2103 }
2104
2105#else /* !USE_NEW_OS_INTERFACE */
2106
2107 /*
2108 * Let the OS specific code have a go.
2109 */
2110 Mem.pvR0 = NULL;
2111 Mem.pvR3 = NULL;
2112 Mem.eType = MEMREF_TYPE_MEM;
2113 Mem.cb = cb;
2114 rc = supdrvOSMemAllocOne(&Mem, ppvR0, ppvR3);
2115 if (rc)
2116 return rc;
2117 AssertMsg(!((uintptr_t)*ppvR0 & (PAGE_SIZE - 1)), ("Memory is not page aligned! pvR0=%p\n", *ppvR0));
2118 AssertMsg(!((uintptr_t)*ppvR3 & (PAGE_SIZE - 1)), ("Memory is not page aligned! pvR3=%p\n", *ppvR3));
2119
2120 /*
2121 * Everything when fine, add the memory reference to the session.
2122 */
2123 rc = supdrvMemAdd(&Mem, pSession);
2124 if (rc)
2125 supdrvOSMemFreeOne(&Mem);
2126#endif /* !USE_NEW_OS_INTERFACE */
2127 return rc;
2128}
2129
2130
2131/**
2132 * Get the physical addresses of memory allocated using SUPR0MemAlloc().
2133 *
2134 * @returns 0 on success.
2135 * @returns SUPDRV_ERR_* on failure.
2136 * @param pSession The session to which the memory was allocated.
2137 * @param pv The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
2138 */
2139SUPR0DECL(int) SUPR0MemGetPhys(PSUPDRVSESSION pSession, void *pv, PSUPPAGE paPages)
2140{
2141 PSUPDRVBUNDLE pBundle;
2142 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2143 dprintf(("SUPR0MemGetPhys: pSession=%p pv=%p paPages=%p\n", pSession, pv, paPages));
2144
2145 /*
2146 * Validate input.
2147 */
2148 if (!pSession)
2149 {
2150 dprintf(("pSession must not be NULL!"));
2151 return SUPDRV_ERR_INVALID_PARAM;
2152 }
2153 if (!pv || !paPages)
2154 {
2155 dprintf(("Illegal address pv=%p or/and paPages=%p\n", pv, paPages));
2156 return SUPDRV_ERR_INVALID_PARAM;
2157 }
2158
2159 /*
2160 * Search for the address.
2161 */
2162 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2163 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2164 {
2165 if (pBundle->cUsed > 0)
2166 {
2167 unsigned i;
2168 for (i = 0; i < sizeof(pBundle->aMem) / sizeof(pBundle->aMem[0]); i++)
2169 {
2170#ifdef USE_NEW_OS_INTERFACE
2171 if ( pBundle->aMem[i].eType == MEMREF_TYPE_MEM
2172 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2173 && ( RTR0MemObjAddress(pBundle->aMem[i].MemObj) == pv
2174 || ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2175 && RTR0MemObjAddress(pBundle->aMem[i].MapObjR3) == pv)
2176 )
2177 )
2178 {
2179 const unsigned cPages = RTR0MemObjSize(pBundle->aMem[i].MemObj) >> PAGE_SHIFT;
2180 unsigned iPage;
2181 for (iPage = 0; iPage < cPages; iPage++)
2182 {
2183 paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(pBundle->aMem[i].MemObj, iPage);
2184 paPages[iPage].uReserved = 0;
2185 }
2186 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2187 return 0;
2188 }
2189#else /* !USE_NEW_OS_INTERFACE */
2190 if ( pBundle->aMem[i].eType == MEMREF_TYPE_MEM
2191 && ( pBundle->aMem[i].pvR0 == pv
2192 || pBundle->aMem[i].pvR3 == pv))
2193 {
2194 supdrvOSMemGetPages(&pBundle->aMem[i], paPages);
2195 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2196 return 0;
2197 }
2198#endif
2199 }
2200 }
2201 }
2202 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2203 dprintf(("Failed to find %p!!!\n", pv));
2204 return SUPDRV_ERR_INVALID_PARAM;
2205}
2206
2207
2208/**
2209 * Free memory allocated by SUPR0MemAlloc().
2210 *
2211 * @returns 0 on success.
2212 * @returns SUPDRV_ERR_* on failure.
2213 * @param pSession The session owning the allocation.
2214 * @param pv The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
2215 */
2216SUPR0DECL(int) SUPR0MemFree(PSUPDRVSESSION pSession, void *pv)
2217{
2218 dprintf(("SUPR0MemFree: pSession=%p pv=%p\n", pSession, pv));
2219 return supdrvMemRelease(pSession, pv, MEMREF_TYPE_MEM);
2220}
2221
2222
2223/**
2224 * Maps the GIP into userspace and/or get the physical address of the GIP.
2225 *
2226 * @returns 0 on success.
2227 * @returns SUPDRV_ERR_* on failure.
2228 * @param pSession Session to which the GIP mapping should belong.
2229 * @param ppGip Where to store the address of the mapping. (optional)
2230 * @param pHCPhysGip Where to store the physical address. (optional)
2231 *
2232 * @remark There is no reference counting on the mapping, so one call to this function
2233 * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
2234 * and remove the session as a GIP user.
2235 */
2236SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PCSUPGLOBALINFOPAGE *ppGip, RTHCPHYS *pHCPhysGid)
2237{
2238 int rc = 0;
2239 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
2240 PCSUPGLOBALINFOPAGE pGip = NULL;
2241 RTHCPHYS HCPhys = NIL_RTHCPHYS;
2242 dprintf(("SUPR0GipMap: pSession=%p ppGip=%p pHCPhysGid=%p\n", pSession, ppGip, pHCPhysGid));
2243
2244 /*
2245 * Validate
2246 */
2247 if (!ppGip && !pHCPhysGid)
2248 return 0;
2249
2250 RTSemFastMutexRequest(pDevExt->mtxGip);
2251 if (pDevExt->pGip)
2252 {
2253 /*
2254 * Map it?
2255 */
2256 if (ppGip)
2257 {
2258#ifdef USE_NEW_OS_INTERFACE
2259 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
2260 rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (void*)-1, 0,
2261 RTMEM_PROT_READ, RTR0ProcHandleSelf());
2262 if (RT_SUCCESS(rc))
2263 {
2264 pGip = (PCSUPGLOBALINFOPAGE)RTR0MemObjAddress(pSession->GipMapObjR3);
2265 rc = VINF_SUCCESS; /** @todo remove this and replace the !rc below with RT_SUCCESS(rc). */
2266 }
2267#else /* !USE_NEW_OS_INTERFACE */
2268 if (!pSession->pGip)
2269 rc = supdrvOSGipMap(pSession->pDevExt, &pSession->pGip);
2270 if (!rc)
2271 pGip = pSession->pGip;
2272#endif /* !USE_NEW_OS_INTERFACE */
2273 }
2274
2275 /*
2276 * Get physical address.
2277 */
2278 if (pHCPhysGid && !rc)
2279 HCPhys = pDevExt->HCPhysGip;
2280
2281 /*
2282 * Reference globally.
2283 */
2284 if (!pSession->fGipReferenced && !rc)
2285 {
2286 pSession->fGipReferenced = 1;
2287 pDevExt->cGipUsers++;
2288 if (pDevExt->cGipUsers == 1)
2289 {
2290 dprintf(("SUPR0GipMap: Resumes GIP updating\n"));
2291 ASMAtomicXchgU32(&pDevExt->pGip->u32TransactionId,
2292 pDevExt->pGip->u32TransactionId & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
2293 ASMAtomicXchgU64(&pDevExt->pGip->u64NanoTSLastUpdateHz, 0);
2294#ifdef USE_NEW_OS_INTERFACE
2295 rc = RTTimerStart(pDevExt->pGipTimer, 0); AssertRC(rc); rc = 0;
2296#else
2297 supdrvOSGipResume(pDevExt);
2298#endif
2299 }
2300 }
2301 }
2302 else
2303 {
2304 rc = SUPDRV_ERR_GENERAL_FAILURE;
2305 dprintf(("SUPR0GipMap: GIP is not available!\n"));
2306 }
2307 RTSemFastMutexRelease(pDevExt->mtxGip);
2308
2309 /*
2310 * Write returns.
2311 */
2312 if (pHCPhysGid)
2313 *pHCPhysGid = HCPhys;
2314 if (ppGip)
2315 *ppGip = pGip;
2316
2317 dprintf(("SUPR0GipMap: returns %d *pHCPhysGid=%lx *ppGip=%p\n", rc, (unsigned long)HCPhys, pGip));
2318 return rc;
2319}
2320
2321
2322/**
2323 * Unmaps any user mapping of the GIP and terminates all GIP access
2324 * from this session.
2325 *
2326 * @returns 0 on success.
2327 * @returns SUPDRV_ERR_* on failure.
2328 * @param pSession Session to which the GIP mapping should belong.
2329 */
2330SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
2331{
2332 int rc = 0;
2333 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
2334 dprintf(("SUPR0GipUnmap: pSession=%p\n", pSession));
2335
2336 RTSemFastMutexRequest(pDevExt->mtxGip);
2337
2338 /*
2339 * Unmap anything?
2340 */
2341#ifdef USE_NEW_OS_INTERFACE
2342 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
2343 {
2344 rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
2345 AssertRC(rc);
2346 if (RT_SUCCESS(rc))
2347 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
2348 }
2349#else
2350 if (pSession->pGip)
2351 {
2352 rc = supdrvOSGipUnmap(pDevExt, pSession->pGip);
2353 if (!rc)
2354 pSession->pGip = NULL;
2355 }
2356#endif
2357
2358 /*
2359 * Dereference global GIP.
2360 */
2361 if (pSession->fGipReferenced && !rc)
2362 {
2363 pSession->fGipReferenced = 0;
2364 if ( pDevExt->cGipUsers > 0
2365 && !--pDevExt->cGipUsers)
2366 {
2367 dprintf(("SUPR0GipUnmap: Suspends GIP updating\n"));
2368#ifdef USE_NEW_OS_INTERFACE
2369 rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = 0;
2370#else
2371 supdrvOSGipSuspend(pDevExt);
2372#endif
2373 }
2374 }
2375
2376 RTSemFastMutexRelease(pDevExt->mtxGip);
2377
2378 return rc;
2379}
2380
2381
2382/**
2383 * Adds a memory object to the session.
2384 *
2385 * @returns 0 on success.
2386 * @returns SUPDRV_ERR_* on failure.
2387 * @param pMem Memory tracking structure containing the
2388 * information to track.
2389 * @param pSession The session.
2390 */
2391static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession)
2392{
2393 PSUPDRVBUNDLE pBundle;
2394 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2395
2396 /*
2397 * Find free entry and record the allocation.
2398 */
2399 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2400 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2401 {
2402 if (pBundle->cUsed < sizeof(pBundle->aMem) / sizeof(pBundle->aMem[0]))
2403 {
2404 unsigned i;
2405 for (i = 0; i < sizeof(pBundle->aMem) / sizeof(pBundle->aMem[0]); i++)
2406 {
2407#ifdef USE_NEW_OS_INTERFACE
2408 if (pBundle->aMem[i].MemObj == NIL_RTR0MEMOBJ)
2409#else /* !USE_NEW_OS_INTERFACE */
2410 if ( !pBundle->aMem[i].pvR0
2411 && !pBundle->aMem[i].pvR3)
2412#endif /* !USE_NEW_OS_INTERFACE */
2413 {
2414 pBundle->cUsed++;
2415 pBundle->aMem[i] = *pMem;
2416 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2417 return 0;
2418 }
2419 }
2420 AssertFailed(); /* !!this can't be happening!!! */
2421 }
2422 }
2423 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2424
2425 /*
2426 * Need to allocate a new bundle.
2427 * Insert into the last entry in the bundle.
2428 */
2429 pBundle = (PSUPDRVBUNDLE)RTMemAlloc(sizeof(*pBundle));
2430 if (!pBundle)
2431 return SUPDRV_ERR_NO_MEMORY;
2432 memset(pBundle, 0, sizeof(*pBundle));
2433
2434 /* take last entry. */
2435 pBundle->cUsed++;
2436 pBundle->aMem[sizeof(pBundle->aMem) / sizeof(pBundle->aMem[0]) - 1] = *pMem;
2437
2438 /* insert into list. */
2439 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2440 pBundle->pNext = pSession->Bundle.pNext;
2441 pSession->Bundle.pNext = pBundle;
2442 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2443
2444 return 0;
2445}
2446
2447
2448/**
2449 * Releases a memory object referenced by pointer and type.
2450 *
2451 * @returns 0 on success.
2452 * @returns SUPDRV_ERR_INVALID_PARAM on failure.
2453 * @param pSession Session data.
2454 * @param pv Pointer to memory. This is matched against both the R0 and R3 addresses.
2455 * @param eType Memory type.
2456 */
2457static int supdrvMemRelease(PSUPDRVSESSION pSession, void *pv, SUPDRVMEMREFTYPE eType)
2458{
2459 PSUPDRVBUNDLE pBundle;
2460 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2461
2462 /*
2463 * Validate input.
2464 */
2465 if (!pSession)
2466 {
2467 dprintf(("pSession must not be NULL!"));
2468 return SUPDRV_ERR_INVALID_PARAM;
2469 }
2470 if (!pv)
2471 {
2472 dprintf(("Illegal address %p\n", pv));
2473 return SUPDRV_ERR_INVALID_PARAM;
2474 }
2475
2476 /*
2477 * Search for the address.
2478 */
2479 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2480 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2481 {
2482 if (pBundle->cUsed > 0)
2483 {
2484 unsigned i;
2485 for (i = 0; i < sizeof(pBundle->aMem) / sizeof(pBundle->aMem[0]); i++)
2486 {
2487#ifdef USE_NEW_OS_INTERFACE
2488 if ( pBundle->aMem[i].eType == eType
2489 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2490 && ( RTR0MemObjAddress(pBundle->aMem[i].MemObj) == pv
2491 || ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2492 && RTR0MemObjAddress(pBundle->aMem[i].MapObjR3) == pv))
2493 )
2494 {
2495 /* Make a copy of it and release it outside the spinlock. */
2496 SUPDRVMEMREF Mem = pBundle->aMem[i];
2497 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
2498 pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
2499 pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
2500 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2501
2502 if (Mem.MapObjR3)
2503 {
2504 int rc = RTR0MemObjFree(Mem.MapObjR3, false);
2505 AssertRC(rc); /** @todo figure out how to handle this. */
2506 }
2507 if (Mem.MemObj)
2508 {
2509 int rc = RTR0MemObjFree(Mem.MemObj, false);
2510 AssertRC(rc); /** @todo figure out how to handle this. */
2511 }
2512 return 0;
2513 }
2514#else /* !USE_NEW_OS_INTERFACE */
2515 if ( pBundle->aMem[i].eType == eType
2516 && ( pBundle->aMem[i].pvR0 == pv
2517 || pBundle->aMem[i].pvR3 == pv))
2518 {
2519 /* Make a copy of it and release it outside the spinlock. */
2520 SUPDRVMEMREF Mem = pBundle->aMem[i];
2521 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
2522 pBundle->aMem[i].pvR0 = NULL;
2523 pBundle->aMem[i].pvR3 = NULL;
2524 pBundle->aMem[i].cb = 0;
2525 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2526
2527 /* Type specific free operation. */
2528 switch (Mem.eType)
2529 {
2530 case MEMREF_TYPE_LOCKED:
2531 supdrvOSUnlockMemOne(&Mem);
2532 break;
2533 case MEMREF_TYPE_CONT:
2534 supdrvOSContFreeOne(&Mem);
2535 break;
2536 case MEMREF_TYPE_LOW:
2537 supdrvOSLowFreeOne(&Mem);
2538 break;
2539 case MEMREF_TYPE_MEM:
2540 supdrvOSMemFreeOne(&Mem);
2541 break;
2542 default:
2543 case MEMREF_TYPE_UNUSED:
2544 break;
2545 }
2546 return 0;
2547 }
2548#endif /* !USE_NEW_OS_INTERFACE */
2549 }
2550 }
2551 }
2552 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2553 dprintf(("Failed to find %p!!! (eType=%d)\n", pv, eType));
2554 return SUPDRV_ERR_INVALID_PARAM;
2555}
2556
2557
2558#ifndef VBOX_WITHOUT_IDT_PATCHING
2559/**
2560 * Install IDT for the current CPU.
2561 *
2562 * @returns 0 on success.
2563 * @returns SUPDRV_ERR_NO_MEMORY or SUPDRV_ERROR_IDT_FAILED on failure.
2564 * @param pIn Input data.
2565 * @param pOut Output data.
2566 */
2567static int supdrvIOCtl_IdtInstall(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPIDTINSTALL_IN pIn, PSUPIDTINSTALL_OUT pOut)
2568{
2569 PSUPDRVPATCHUSAGE pUsagePre;
2570 PSUPDRVPATCH pPatchPre;
2571 RTIDTR Idtr;
2572 PSUPDRVPATCH pPatch;
2573 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2574 dprintf(("supdrvIOCtl_IdtInstall\n"));
2575
2576 /*
2577 * Preallocate entry for this CPU cause we don't wanna do
2578 * that inside the spinlock!
2579 */
2580 pUsagePre = (PSUPDRVPATCHUSAGE)RTMemAlloc(sizeof(*pUsagePre));
2581 if (!pUsagePre)
2582 return SUPDRV_ERR_NO_MEMORY;
2583
2584 /*
2585 * Take the spinlock and see what we need to do.
2586 */
2587 RTSpinlockAcquireNoInts(pDevExt->Spinlock, &SpinlockTmp);
2588
2589 /* check if we already got a free patch. */
2590 if (!pDevExt->pIdtPatchesFree)
2591 {
2592 /*
2593 * Allocate a patch - outside the spinlock of course.
2594 */
2595 RTSpinlockReleaseNoInts(pDevExt->Spinlock, &SpinlockTmp);
2596
2597 pPatchPre = (PSUPDRVPATCH)RTMemExecAlloc(sizeof(*pPatchPre));
2598 if (!pPatchPre)
2599 return SUPDRV_ERR_NO_MEMORY;
2600
2601 RTSpinlockAcquireNoInts(pDevExt->Spinlock, &SpinlockTmp);
2602 }
2603 else
2604 {
2605 pPatchPre = pDevExt->pIdtPatchesFree;
2606 pDevExt->pIdtPatchesFree = pPatchPre->pNext;
2607 }
2608
2609 /* look for matching patch entry */
2610 ASMGetIDTR(&Idtr);
2611 pPatch = pDevExt->pIdtPatches;
2612 while (pPatch && pPatch->pvIdt != (void *)Idtr.pIdt)
2613 pPatch = pPatch->pNext;
2614
2615 if (!pPatch)
2616 {
2617 /*
2618 * Create patch.
2619 */
2620 pPatch = supdrvIdtPatchOne(pDevExt, pPatchPre);
2621 if (pPatch)
2622 pPatchPre = NULL; /* mark as used. */
2623 }
2624 else
2625 {
2626 /*
2627 * Simply increment patch usage.
2628 */
2629 pPatch->cUsage++;
2630 }
2631
2632 if (pPatch)
2633 {
2634 /*
2635 * Increment and add if need be the session usage record for this patch.
2636 */
2637 PSUPDRVPATCHUSAGE pUsage = pSession->pPatchUsage;
2638 while (pUsage && pUsage->pPatch != pPatch)
2639 pUsage = pUsage->pNext;
2640
2641 if (!pUsage)
2642 {
2643 /*
2644 * Add usage record.
2645 */
2646 pUsagePre->cUsage = 1;
2647 pUsagePre->pPatch = pPatch;
2648 pUsagePre->pNext = pSession->pPatchUsage;
2649 pSession->pPatchUsage = pUsagePre;
2650 pUsagePre = NULL; /* mark as used. */
2651 }
2652 else
2653 {
2654 /*
2655 * Increment usage count.
2656 */
2657 pUsage->cUsage++;
2658 }
2659 }
2660
2661 /* free patch - we accumulate them for paranoid saftly reasons. */
2662 if (pPatchPre)
2663 {
2664 pPatchPre->pNext = pDevExt->pIdtPatchesFree;
2665 pDevExt->pIdtPatchesFree = pPatchPre;
2666 }
2667
2668 RTSpinlockReleaseNoInts(pDevExt->Spinlock, &SpinlockTmp);
2669
2670 /*
2671 * Free unused preallocated buffers.
2672 */
2673 if (pUsagePre)
2674 RTMemFree(pUsagePre);
2675
2676 pOut->u8Idt = pDevExt->u8Idt;
2677
2678 return pPatch ? 0 : SUPDRV_ERR_IDT_FAILED;
2679}
2680
2681
2682/**
2683 * This creates a IDT patch entry.
2684 * If the first patch being installed it'll also determin the IDT entry
2685 * to use.
2686 *
2687 * @returns pPatch on success.
2688 * @returns NULL on failure.
2689 * @param pDevExt Pointer to globals.
2690 * @param pPatch Patch entry to use.
2691 * This will be linked into SUPDRVDEVEXT::pIdtPatches on
2692 * successful return.
2693 * @remark Call must be owning the SUPDRVDEVEXT::Spinlock!
2694 */
2695static PSUPDRVPATCH supdrvIdtPatchOne(PSUPDRVDEVEXT pDevExt, PSUPDRVPATCH pPatch)
2696{
2697 RTIDTR Idtr;
2698 PSUPDRVIDTE paIdt;
2699 dprintf(("supdrvIOCtl_IdtPatchOne: pPatch=%p\n", pPatch));
2700
2701 /*
2702 * Get IDT.
2703 */
2704 ASMGetIDTR(&Idtr);
2705 paIdt = (PSUPDRVIDTE)Idtr.pIdt;
2706 if ((uintptr_t)paIdt < 0x80000000)
2707 {
2708 AssertMsgFailed(("bad paIdt=%p\n", paIdt));
2709 return NULL;
2710 }
2711
2712 if (!pDevExt->u8Idt)
2713 {
2714 /*
2715 * Test out the alternatives.
2716 *
2717 * At the moment we do not support chaining thus we ASSUME that one of
2718 * these 48 entries is unused (which is not a problem on Win32 and
2719 * Linux to my knowledge).
2720 */
2721 /** @todo we MUST change this detection to try grab an entry which is NOT in use. This can be
2722 * combined with gathering info about which guest system call gates we can hook up directly. */
2723 unsigned i;
2724 uint8_t u8Idt = 0;
2725 static uint8_t au8Ints[] =
2726 {
2727#ifdef __WIN__ /* We don't use 0xef and above because they are system stuff on linux (ef is IPI,
2728 * local apic timer, or some other frequently fireing thing). */
2729 0xef, 0xee, 0xed, 0xec,
2730#endif
2731 0xeb, 0xea, 0xe9, 0xe8,
2732 0xdf, 0xde, 0xdd, 0xdc,
2733 0x7b, 0x7a, 0x79, 0x78,
2734 0xbf, 0xbe, 0xbd, 0xbc,
2735 };
2736#if defined(__AMD64__) && defined(DEBUG)
2737 static int s_iWobble = 0;
2738 unsigned iMax = !(s_iWobble++ % 2) ? 0x80 : 0x100;
2739 dprintf(("IDT: Idtr=%p:%#x\n", (void *)Idtr.pIdt, (unsigned)Idtr.cbIdt));
2740 for (i = iMax - 0x80; i*16+15 < Idtr.cbIdt && i < iMax; i++)
2741 {
2742 dprintf(("%#x: %04x:%08x%04x%04x P=%d DPL=%d IST=%d Type1=%#x u32Reserved=%#x u5Reserved=%#x\n",
2743 i, paIdt[i].u16SegSel, paIdt[i].u32OffsetTop, paIdt[i].u16OffsetHigh, paIdt[i].u16OffsetLow,
2744 paIdt[i].u1Present, paIdt[i].u2DPL, paIdt[i].u3IST, paIdt[i].u5Type2,
2745 paIdt[i].u32Reserved, paIdt[i].u5Reserved));
2746 }
2747#endif
2748 /* look for entries which are not present or otherwise unused. */
2749 for (i = 0; i < sizeof(au8Ints) / sizeof(au8Ints[0]); i++)
2750 {
2751 u8Idt = au8Ints[i];
2752 if ( u8Idt * sizeof(SUPDRVIDTE) < Idtr.cbIdt
2753 && ( !paIdt[u8Idt].u1Present
2754 || paIdt[u8Idt].u5Type2 == 0))
2755 break;
2756 u8Idt = 0;
2757 }
2758 if (!u8Idt)
2759 {
2760 /* try again, look for a compatible entry .*/
2761 for (i = 0; i < sizeof(au8Ints) / sizeof(au8Ints[0]); i++)
2762 {
2763 u8Idt = au8Ints[i];
2764 if ( u8Idt * sizeof(SUPDRVIDTE) < Idtr.cbIdt
2765 && paIdt[u8Idt].u1Present
2766 && paIdt[u8Idt].u5Type2 == SUPDRV_IDTE_TYPE2_INTERRUPT_GATE
2767 && !(paIdt[u8Idt].u16SegSel & 3))
2768 break;
2769 u8Idt = 0;
2770 }
2771 if (!u8Idt)
2772 {
2773 dprintf(("Failed to find appropirate IDT entry!!\n"));
2774 return NULL;
2775 }
2776 }
2777 pDevExt->u8Idt = u8Idt;
2778 dprintf(("supdrvIOCtl_IdtPatchOne: u8Idt=%x\n", u8Idt));
2779 }
2780
2781 /*
2782 * Prepare the patch
2783 */
2784 memset(pPatch, 0, sizeof(*pPatch));
2785 pPatch->pvIdt = paIdt;
2786 pPatch->cUsage = 1;
2787 pPatch->pIdtEntry = &paIdt[pDevExt->u8Idt];
2788 pPatch->SavedIdt = paIdt[pDevExt->u8Idt];
2789 pPatch->ChangedIdt.u16OffsetLow = (uint32_t)((uintptr_t)&pPatch->auCode[0] & 0xffff);
2790 pPatch->ChangedIdt.u16OffsetHigh = (uint32_t)((uintptr_t)&pPatch->auCode[0] >> 16);
2791#ifdef __AMD64__
2792 pPatch->ChangedIdt.u32OffsetTop = (uint32_t)((uintptr_t)&pPatch->auCode[0] >> 32);
2793#endif
2794 pPatch->ChangedIdt.u16SegSel = ASMGetCS();
2795#ifdef __AMD64__
2796 pPatch->ChangedIdt.u3IST = 0;
2797 pPatch->ChangedIdt.u5Reserved = 0;
2798#else /* x86 */
2799 pPatch->ChangedIdt.u5Reserved = 0;
2800 pPatch->ChangedIdt.u3Type1 = 0;
2801#endif /* x86 */
2802 pPatch->ChangedIdt.u5Type2 = SUPDRV_IDTE_TYPE2_INTERRUPT_GATE;
2803 pPatch->ChangedIdt.u2DPL = 3;
2804 pPatch->ChangedIdt.u1Present = 1;
2805
2806 /*
2807 * Generate the patch code.
2808 */
2809 {
2810#ifdef __AMD64__
2811 union
2812 {
2813 uint8_t *pb;
2814 uint32_t *pu32;
2815 uint64_t *pu64;
2816 } u, uFixJmp, uFixCall, uNotNested;
2817 u.pb = &pPatch->auCode[0];
2818
2819 /* check the cookie */
2820 *u.pb++ = 0x3d; // cmp eax, GLOBALCOOKIE
2821 *u.pu32++ = pDevExt->u32Cookie;
2822
2823 *u.pb++ = 0x74; // jz @VBoxCall
2824 *u.pb++ = 2;
2825
2826 /* jump to forwarder code. */
2827 *u.pb++ = 0xeb;
2828 uFixJmp = u;
2829 *u.pb++ = 0xfe;
2830
2831 // @VBoxCall:
2832 *u.pb++ = 0x0f; // swapgs
2833 *u.pb++ = 0x01;
2834 *u.pb++ = 0xf8;
2835
2836 /*
2837 * Call VMMR0Entry
2838 * We don't have to push the arguments here, but we have to
2839 * reserve some stack space for the interrupt forwarding.
2840 */
2841# ifdef __WIN__
2842 *u.pb++ = 0x50; // push rax ; alignment filler.
2843 *u.pb++ = 0x41; // push r8 ; uArg
2844 *u.pb++ = 0x50;
2845 *u.pb++ = 0x52; // push rdx ; uOperation
2846 *u.pb++ = 0x51; // push rcx ; pVM
2847# else
2848 *u.pb++ = 0x51; // push rcx ; alignment filler.
2849 *u.pb++ = 0x52; // push rdx ; uArg
2850 *u.pb++ = 0x56; // push rsi ; uOperation
2851 *u.pb++ = 0x57; // push rdi ; pVM
2852# endif
2853
2854 *u.pb++ = 0xff; // call qword [pfnVMMR0Entry wrt rip]
2855 *u.pb++ = 0x15;
2856 uFixCall = u;
2857 *u.pu32++ = 0;
2858
2859 *u.pb++ = 0x48; // add rsp, 20h ; remove call frame.
2860 *u.pb++ = 0x81;
2861 *u.pb++ = 0xc4;
2862 *u.pu32++ = 0x20;
2863
2864 *u.pb++ = 0x0f; // swapgs
2865 *u.pb++ = 0x01;
2866 *u.pb++ = 0xf8;
2867
2868 /* Return to R3. */
2869 uNotNested = u;
2870 *u.pb++ = 0x48; // iretq
2871 *u.pb++ = 0xcf;
2872
2873 while ((uintptr_t)u.pb & 0x7) // align 8
2874 *u.pb++ = 0xcc;
2875
2876 /* Pointer to the VMMR0Entry. */ // pfnVMMR0Entry dq StubVMMR0Entry
2877 *uFixCall.pu32 = (uint32_t)(u.pb - uFixCall.pb - 4); uFixCall.pb = NULL;
2878 pPatch->offVMMR0EntryFixup = (uint16_t)(u.pb - &pPatch->auCode[0]);
2879 *u.pu64++ = pDevExt->pvVMMR0 ? (uint64_t)pDevExt->pfnVMMR0Entry : (uint64_t)u.pb + 8;
2880
2881 /* stub entry. */ // StubVMMR0Entry:
2882 pPatch->offStub = (uint16_t)(u.pb - &pPatch->auCode[0]);
2883 *u.pb++ = 0x33; // xor eax, eax
2884 *u.pb++ = 0xc0;
2885
2886 *u.pb++ = 0x48; // dec rax
2887 *u.pb++ = 0xff;
2888 *u.pb++ = 0xc8;
2889
2890 *u.pb++ = 0xc3; // ret
2891
2892 /* forward to the original handler using a retf. */
2893 *uFixJmp.pb = (uint8_t)(u.pb - uFixJmp.pb - 1); uFixJmp.pb = NULL;
2894
2895 *u.pb++ = 0x68; // push <target cs>
2896 *u.pu32++ = !pPatch->SavedIdt.u5Type2 ? ASMGetCS() : pPatch->SavedIdt.u16SegSel;
2897
2898 *u.pb++ = 0x68; // push <low target rip>
2899 *u.pu32++ = !pPatch->SavedIdt.u5Type2
2900 ? (uint32_t)(uintptr_t)uNotNested.pb
2901 : (uint32_t)pPatch->SavedIdt.u16OffsetLow
2902 | (uint32_t)pPatch->SavedIdt.u16OffsetHigh << 16;
2903
2904 *u.pb++ = 0xc7; // mov dword [rsp + 4], <high target rip>
2905 *u.pb++ = 0x44;
2906 *u.pb++ = 0x24;
2907 *u.pb++ = 0x04;
2908 *u.pu32++ = !pPatch->SavedIdt.u5Type2
2909 ? (uint32_t)((uint64_t)uNotNested.pb >> 32)
2910 : pPatch->SavedIdt.u32OffsetTop;
2911
2912 *u.pb++ = 0x48; // retf ; does this require prefix?
2913 *u.pb++ = 0xcb;
2914
2915#else /* __X86__ */
2916
2917 union
2918 {
2919 uint8_t *pb;
2920 uint16_t *pu16;
2921 uint32_t *pu32;
2922 } u, uFixJmpNotNested, uFixJmp, uFixCall, uNotNested;
2923 u.pb = &pPatch->auCode[0];
2924
2925 /* check the cookie */
2926 *u.pb++ = 0x81; // cmp esi, GLOBALCOOKIE
2927 *u.pb++ = 0xfe;
2928 *u.pu32++ = pDevExt->u32Cookie;
2929
2930 *u.pb++ = 0x74; // jz VBoxCall
2931 uFixJmp = u;
2932 *u.pb++ = 0;
2933
2934 /* jump (far) to the original handler / not-nested-stub. */
2935 *u.pb++ = 0xea; // jmp far NotNested
2936 uFixJmpNotNested = u;
2937 *u.pu32++ = 0;
2938 *u.pu16++ = 0;
2939
2940 /* save selector registers. */ // VBoxCall:
2941 *uFixJmp.pb = (uint8_t)(u.pb - uFixJmp.pb - 1);
2942 *u.pb++ = 0x0f; // push fs
2943 *u.pb++ = 0xa0;
2944
2945 *u.pb++ = 0x1e; // push ds
2946
2947 *u.pb++ = 0x06; // push es
2948
2949 /* call frame */
2950 *u.pb++ = 0x51; // push ecx
2951
2952 *u.pb++ = 0x52; // push edx
2953
2954 *u.pb++ = 0x50; // push eax
2955
2956 /* load ds, es and perhaps fs before call. */
2957 *u.pb++ = 0xb8; // mov eax, KernelDS
2958 *u.pu32++ = ASMGetDS();
2959
2960 *u.pb++ = 0x8e; // mov ds, eax
2961 *u.pb++ = 0xd8;
2962
2963 *u.pb++ = 0x8e; // mov es, eax
2964 *u.pb++ = 0xc0;
2965
2966#ifdef __WIN__
2967 *u.pb++ = 0xb8; // mov eax, KernelFS
2968 *u.pu32++ = ASMGetFS();
2969
2970 *u.pb++ = 0x8e; // mov fs, eax
2971 *u.pb++ = 0xe0;
2972#endif
2973
2974 /* do the call. */
2975 *u.pb++ = 0xe8; // call _VMMR0Entry / StubVMMR0Entry
2976 uFixCall = u;
2977 pPatch->offVMMR0EntryFixup = (uint16_t)(u.pb - &pPatch->auCode[0]);
2978 *u.pu32++ = 0xfffffffb;
2979
2980 *u.pb++ = 0x83; // add esp, 0ch ; cdecl
2981 *u.pb++ = 0xc4;
2982 *u.pb++ = 0x0c;
2983
2984 /* restore selector registers. */
2985 *u.pb++ = 0x07; // pop es
2986 //
2987 *u.pb++ = 0x1f; // pop ds
2988
2989 *u.pb++ = 0x0f; // pop fs
2990 *u.pb++ = 0xa1;
2991
2992 uNotNested = u; // NotNested:
2993 *u.pb++ = 0xcf; // iretd
2994
2995 /* the stub VMMR0Entry. */ // StubVMMR0Entry:
2996 pPatch->offStub = (uint16_t)(u.pb - &pPatch->auCode[0]);
2997 *u.pb++ = 0x33; // xor eax, eax
2998 *u.pb++ = 0xc0;
2999
3000 *u.pb++ = 0x48; // dec eax
3001
3002 *u.pb++ = 0xc3; // ret
3003
3004 /* Fixup the VMMR0Entry call. */
3005 if (pDevExt->pvVMMR0)
3006 *uFixCall.pu32 = (uint32_t)pDevExt->pfnVMMR0Entry - (uint32_t)(uFixCall.pu32 + 1);
3007 else
3008 *uFixCall.pu32 = (uint32_t)&pPatch->auCode[pPatch->offStub] - (uint32_t)(uFixCall.pu32 + 1);
3009
3010 /* Fixup the forward / nested far jump. */
3011 if (!pPatch->SavedIdt.u5Type2)
3012 {
3013 *uFixJmpNotNested.pu32++ = (uint32_t)uNotNested.pb;
3014 *uFixJmpNotNested.pu16++ = ASMGetCS();
3015 }
3016 else
3017 {
3018 *uFixJmpNotNested.pu32++ = ((uint32_t)pPatch->SavedIdt.u16OffsetHigh << 16) | pPatch->SavedIdt.u16OffsetLow;
3019 *uFixJmpNotNested.pu16++ = pPatch->SavedIdt.u16SegSel;
3020 }
3021#endif /* __X86__ */
3022 Assert(u.pb <= &pPatch->auCode[sizeof(pPatch->auCode)]);
3023#if 0
3024 /* dump the patch code */
3025 dprintf(("patch code: %p\n", &pPatch->auCode[0]));
3026 for (uFixCall.pb = &pPatch->auCode[0]; uFixCall.pb < u.pb; uFixCall.pb++)
3027 dprintf(("0x%02x,\n", *uFixCall.pb));
3028#endif
3029 }
3030
3031 /*
3032 * Install the patch.
3033 */
3034 supdrvIdtWrite(pPatch->pIdtEntry, &pPatch->ChangedIdt);
3035 AssertMsg(!memcmp((void *)pPatch->pIdtEntry, &pPatch->ChangedIdt, sizeof(pPatch->ChangedIdt)), ("The stupid change code didn't work!!!!!\n"));
3036
3037 /*
3038 * Link in the patch.
3039 */
3040 pPatch->pNext = pDevExt->pIdtPatches;
3041 pDevExt->pIdtPatches = pPatch;
3042
3043 return pPatch;
3044}
3045
3046
3047/**
3048 * Removes the sessions IDT references.
3049 * This will uninstall our IDT patch if we left unreferenced.
3050 *
3051 * @returns 0 indicating success.
3052 * @param pDevExt Device globals.
3053 * @param pSession Session data.
3054 */
3055static int supdrvIOCtl_IdtRemoveAll(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
3056{
3057 PSUPDRVPATCHUSAGE pUsage;
3058 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
3059 dprintf(("supdrvIOCtl_IdtRemoveAll: pSession=%p\n", pSession));
3060
3061 /*
3062 * Take the spinlock.
3063 */
3064 RTSpinlockAcquireNoInts(pDevExt->Spinlock, &SpinlockTmp);
3065
3066 /*
3067 * Walk usage list.
3068 */
3069 pUsage = pSession->pPatchUsage;
3070 while (pUsage)
3071 {
3072 if (pUsage->pPatch->cUsage <= pUsage->cUsage)
3073 supdrvIdtRemoveOne(pDevExt, pUsage->pPatch);
3074 else
3075 pUsage->pPatch->cUsage -= pUsage->cUsage;
3076
3077 /* next */
3078 pUsage = pUsage->pNext;
3079 }
3080
3081 /*
3082 * Empty the usage chain and we're done inside the spinlock.
3083 */
3084 pUsage = pSession->pPatchUsage;
3085 pSession->pPatchUsage = NULL;
3086
3087 RTSpinlockReleaseNoInts(pDevExt->Spinlock, &SpinlockTmp);
3088
3089 /*
3090 * Free usage entries.
3091 */
3092 while (pUsage)
3093 {
3094 void *pvToFree = pUsage;
3095 pUsage->cUsage = 0;
3096 pUsage->pPatch = NULL;
3097 pUsage = pUsage->pNext;
3098 RTMemFree(pvToFree);
3099 }
3100
3101 return 0;
3102}
3103
3104
3105/**
3106 * Remove one patch.
3107 *
3108 * @param pDevExt Device globals.
3109 * @param pPatch Patch entry to remove.
3110 * @remark Caller must own SUPDRVDEVEXT::Spinlock!
3111 */
3112static void supdrvIdtRemoveOne(PSUPDRVDEVEXT pDevExt, PSUPDRVPATCH pPatch)
3113{
3114 dprintf(("supdrvIdtRemoveOne: pPatch=%p\n", pPatch));
3115
3116 pPatch->cUsage = 0;
3117
3118 /*
3119 * If the IDT entry was changed it have to kick around for ever!
3120 * This will be attempted freed again, perhaps next time we'll succeed :-)
3121 */
3122 if (memcmp((void *)pPatch->pIdtEntry, &pPatch->ChangedIdt, sizeof(pPatch->ChangedIdt)))
3123 {
3124 AssertMsgFailed(("The hijacked IDT entry has CHANGED!!!\n"));
3125 return;
3126 }
3127
3128 /*
3129 * Unlink it.
3130 */
3131 if (pDevExt->pIdtPatches != pPatch)
3132 {
3133 PSUPDRVPATCH pPatchPrev = pDevExt->pIdtPatches;
3134 while (pPatchPrev)
3135 {
3136 if (pPatchPrev->pNext == pPatch)
3137 {
3138 pPatchPrev->pNext = pPatch->pNext;
3139 break;
3140 }
3141 pPatchPrev = pPatchPrev->pNext;
3142 }
3143 Assert(!pPatchPrev);
3144 }
3145 else
3146 pDevExt->pIdtPatches = pPatch->pNext;
3147 pPatch->pNext = NULL;
3148
3149
3150 /*
3151 * Verify and restore the IDT.
3152 */
3153 AssertMsg(!memcmp((void *)pPatch->pIdtEntry, &pPatch->ChangedIdt, sizeof(pPatch->ChangedIdt)), ("The hijacked IDT entry has CHANGED!!!\n"));
3154 supdrvIdtWrite(pPatch->pIdtEntry, &pPatch->SavedIdt);
3155 AssertMsg(!memcmp((void *)pPatch->pIdtEntry, &pPatch->SavedIdt, sizeof(pPatch->SavedIdt)), ("The hijacked IDT entry has CHANGED!!!\n"));
3156
3157 /*
3158 * Put it in the free list.
3159 * (This free list stuff is to calm my paranoia.)
3160 */
3161 pPatch->pvIdt = NULL;
3162 pPatch->pIdtEntry = NULL;
3163
3164 pPatch->pNext = pDevExt->pIdtPatchesFree;
3165 pDevExt->pIdtPatchesFree = pPatch;
3166}
3167
3168
3169/**
3170 * Write to an IDT entry.
3171 *
3172 * @param pvIdtEntry Where to write.
3173 * @param pNewIDTEntry What to write.
3174 */
3175static void supdrvIdtWrite(volatile void *pvIdtEntry, const SUPDRVIDTE *pNewIDTEntry)
3176{
3177 RTUINTREG uCR0;
3178 RTUINTREG uFlags;
3179
3180 /*
3181 * On SMP machines (P4 hyperthreading included) we must preform a
3182 * 64-bit locked write when updating the IDT entry.
3183 *
3184 * The F00F bugfix for linux (and probably other OSes) causes
3185 * the IDT to be pointing to an readonly mapping. We get around that
3186 * by temporarily turning of WP. Since we're inside a spinlock at this
3187 * point, interrupts are disabled and there isn't any way the WP bit
3188 * flipping can cause any trouble.
3189 */
3190
3191 /* Save & Clear interrupt flag; Save & clear WP. */
3192 uFlags = ASMGetFlags();
3193 ASMSetFlags(uFlags & ~(RTUINTREG)(1 << 9)); /*X86_EFL_IF*/
3194 Assert(!(ASMGetFlags() & (1 << 9)));
3195 uCR0 = ASMGetCR0();
3196 ASMSetCR0(uCR0 & ~(RTUINTREG)(1 << 16)); /*X86_CR0_WP*/
3197
3198 /* Update IDT Entry */
3199#ifdef __AMD64__
3200 ASMAtomicXchgU128((volatile uint128_t *)pvIdtEntry, *(uint128_t *)(uintptr_t)pNewIDTEntry);
3201#else
3202 ASMAtomicXchgU64((volatile uint64_t *)pvIdtEntry, *(uint64_t *)(uintptr_t)pNewIDTEntry);
3203#endif
3204
3205 /* Restore CR0 & Flags */
3206 ASMSetCR0(uCR0);
3207 ASMSetFlags(uFlags);
3208}
3209#endif /* !VBOX_WITHOUT_IDT_PATCHING */
3210
3211
3212/**
3213 * Opens an image. If it's the first time it's opened the call must upload
3214 * the bits using the supdrvIOCtl_LdrLoad() / SUPDRV_IOCTL_LDR_LOAD function.
3215 *
3216 * This is the 1st step of the loading.
3217 *
3218 * @returns 0 on success.
3219 * @returns SUPDRV_ERR_* on failure.
3220 * @param pDevExt Device globals.
3221 * @param pSession Session data.
3222 * @param pIn Input.
3223 * @param pOut Output. (May overlap pIn.)
3224 */
3225static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN_IN pIn, PSUPLDROPEN_OUT pOut)
3226{
3227 PSUPDRVLDRIMAGE pImage;
3228 unsigned cb;
3229 void *pv;
3230 dprintf(("supdrvIOCtl_LdrOpen: szName=%s cbImage=%d\n", pIn->szName, pIn->cbImage));
3231
3232 /*
3233 * Check if we got an instance of the image already.
3234 */
3235 RTSemFastMutexRequest(pDevExt->mtxLdr);
3236 for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
3237 {
3238 if (!strcmp(pImage->szName, pIn->szName))
3239 {
3240 pImage->cUsage++;
3241 pOut->pvImageBase = pImage->pvImage;
3242 pOut->fNeedsLoading = pImage->uState == SUP_IOCTL_LDR_OPEN;
3243 supdrvLdrAddUsage(pSession, pImage);
3244 RTSemFastMutexRelease(pDevExt->mtxLdr);
3245 return 0;
3246 }
3247 }
3248 /* (not found - add it!) */
3249
3250 /*
3251 * Allocate memory.
3252 */
3253 cb = pIn->cbImage + sizeof(SUPDRVLDRIMAGE) + 31;
3254 pv = RTMemExecAlloc(cb);
3255 if (!pv)
3256 {
3257 RTSemFastMutexRelease(pDevExt->mtxLdr);
3258 return SUPDRV_ERR_NO_MEMORY;
3259 }
3260
3261 /*
3262 * Setup and link in the LDR stuff.
3263 */
3264 pImage = (PSUPDRVLDRIMAGE)pv;
3265 pImage->pvImage = ALIGNP(pImage + 1, 32);
3266 pImage->cbImage = pIn->cbImage;
3267 pImage->pfnModuleInit = NULL;
3268 pImage->pfnModuleTerm = NULL;
3269 pImage->uState = SUP_IOCTL_LDR_OPEN;
3270 pImage->cUsage = 1;
3271 strcpy(pImage->szName, pIn->szName);
3272
3273 pImage->pNext = pDevExt->pLdrImages;
3274 pDevExt->pLdrImages = pImage;
3275
3276 supdrvLdrAddUsage(pSession, pImage);
3277
3278 pOut->pvImageBase = pImage->pvImage;
3279 pOut->fNeedsLoading = 1;
3280 RTSemFastMutexRelease(pDevExt->mtxLdr);
3281 return 0;
3282}
3283
3284
3285/**
3286 * Loads the image bits.
3287 *
3288 * This is the 2nd step of the loading.
3289 *
3290 * @returns 0 on success.
3291 * @returns SUPDRV_ERR_* on failure.
3292 * @param pDevExt Device globals.
3293 * @param pSession Session data.
3294 * @param pIn Input.
3295 */
3296static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD_IN pIn)
3297{
3298 PSUPDRVLDRUSAGE pUsage;
3299 PSUPDRVLDRIMAGE pImage;
3300 int rc;
3301 dprintf(("supdrvIOCtl_LdrLoad: pvImageBase=%p cbImage=%d\n", pIn->pvImageBase, pIn->cbImage));
3302
3303 /*
3304 * Find the ldr image.
3305 */
3306 RTSemFastMutexRequest(pDevExt->mtxLdr);
3307 pUsage = pSession->pLdrUsage;
3308 while (pUsage && pUsage->pImage->pvImage != pIn->pvImageBase)
3309 pUsage = pUsage->pNext;
3310 if (!pUsage)
3311 {
3312 RTSemFastMutexRelease(pDevExt->mtxLdr);
3313 dprintf(("SUP_IOCTL_LDR_LOAD: couldn't find image!\n"));
3314 return SUPDRV_ERR_INVALID_HANDLE;
3315 }
3316 pImage = pUsage->pImage;
3317 if (pImage->cbImage != pIn->cbImage)
3318 {
3319 RTSemFastMutexRelease(pDevExt->mtxLdr);
3320 dprintf(("SUP_IOCTL_LDR_LOAD: image size mismatch!! %d(prep) != %d(load)\n", pImage->cbImage, pIn->cbImage));
3321 return SUPDRV_ERR_INVALID_HANDLE;
3322 }
3323 if (pImage->uState != SUP_IOCTL_LDR_OPEN)
3324 {
3325 unsigned uState = pImage->uState;
3326 RTSemFastMutexRelease(pDevExt->mtxLdr);
3327 if (uState != SUP_IOCTL_LDR_LOAD)
3328 AssertMsgFailed(("SUP_IOCTL_LDR_LOAD: invalid image state %d (%#x)!\n", uState, uState));
3329 return SUPDRV_ERR_ALREADY_LOADED;
3330 }
3331 switch (pIn->eEPType)
3332 {
3333 case EP_NOTHING:
3334 break;
3335 case EP_VMMR0:
3336 if (!pIn->EP.VMMR0.pvVMMR0 || !pIn->EP.VMMR0.pvVMMR0Entry)
3337 {
3338 RTSemFastMutexRelease(pDevExt->mtxLdr);
3339 dprintf(("pvVMMR0=%p or pIn->EP.VMMR0.pvVMMR0Entry=%p is NULL!\n",
3340 pIn->EP.VMMR0.pvVMMR0, pIn->EP.VMMR0.pvVMMR0Entry));
3341 return SUPDRV_ERR_INVALID_PARAM;
3342 }
3343 if ((uintptr_t)pIn->EP.VMMR0.pvVMMR0Entry - (uintptr_t)pImage->pvImage >= pIn->cbImage)
3344 {
3345 RTSemFastMutexRelease(pDevExt->mtxLdr);
3346 dprintf(("SUP_IOCTL_LDR_LOAD: pvVMMR0Entry=%p is outside the image (%p %d bytes)\n",
3347 pIn->EP.VMMR0.pvVMMR0Entry, pImage->pvImage, pIn->cbImage));
3348 return SUPDRV_ERR_INVALID_PARAM;
3349 }
3350 break;
3351 default:
3352 RTSemFastMutexRelease(pDevExt->mtxLdr);
3353 dprintf(("Invalid eEPType=%d\n", pIn->eEPType));
3354 return SUPDRV_ERR_INVALID_PARAM;
3355 }
3356 if ( pIn->pfnModuleInit
3357 && (uintptr_t)pIn->pfnModuleInit - (uintptr_t)pImage->pvImage >= pIn->cbImage)
3358 {
3359 RTSemFastMutexRelease(pDevExt->mtxLdr);
3360 dprintf(("SUP_IOCTL_LDR_LOAD: pfnModuleInit=%p is outside the image (%p %d bytes)\n",
3361 pIn->pfnModuleInit, pImage->pvImage, pIn->cbImage));
3362 return SUPDRV_ERR_INVALID_PARAM;
3363 }
3364 if ( pIn->pfnModuleTerm
3365 && (uintptr_t)pIn->pfnModuleTerm - (uintptr_t)pImage->pvImage >= pIn->cbImage)
3366 {
3367 RTSemFastMutexRelease(pDevExt->mtxLdr);
3368 dprintf(("SUP_IOCTL_LDR_LOAD: pfnModuleTerm=%p is outside the image (%p %d bytes)\n",
3369 pIn->pfnModuleTerm, pImage->pvImage, pIn->cbImage));
3370 return SUPDRV_ERR_INVALID_PARAM;
3371 }
3372
3373 /*
3374 * Copy the memory.
3375 */
3376 /* no need to do try/except as this is a buffered request. */
3377 memcpy(pImage->pvImage, &pIn->achImage[0], pImage->cbImage);
3378 pImage->uState = SUP_IOCTL_LDR_LOAD;
3379 pImage->pfnModuleInit = pIn->pfnModuleInit;
3380 pImage->pfnModuleTerm = pIn->pfnModuleTerm;
3381 pImage->offSymbols = pIn->offSymbols;
3382 pImage->cSymbols = pIn->cSymbols;
3383 pImage->offStrTab = pIn->offStrTab;
3384 pImage->cbStrTab = pIn->cbStrTab;
3385
3386 /*
3387 * Update any entry points.
3388 */
3389 switch (pIn->eEPType)
3390 {
3391 default:
3392 case EP_NOTHING:
3393 rc = 0;
3394 break;
3395 case EP_VMMR0:
3396 rc = supdrvLdrSetR0EP(pDevExt, pIn->EP.VMMR0.pvVMMR0, pIn->EP.VMMR0.pvVMMR0Entry);
3397 break;
3398 }
3399
3400 /*
3401 * On success call the module initialization.
3402 */
3403 dprintf(("supdrvIOCtl_LdrLoad: pfnModuleInit=%p\n", pImage->pfnModuleInit));
3404 if (!rc && pImage->pfnModuleInit)
3405 {
3406 dprintf(("supdrvIOCtl_LdrLoad: calling pfnModuleInit=%p\n", pImage->pfnModuleInit));
3407 rc = pImage->pfnModuleInit();
3408 if (rc && pDevExt->pvVMMR0 == pImage->pvImage)
3409 supdrvLdrUnsetR0EP(pDevExt);
3410 }
3411
3412 if (rc)
3413 pImage->uState = SUP_IOCTL_LDR_OPEN;
3414
3415 RTSemFastMutexRelease(pDevExt->mtxLdr);
3416 return rc;
3417}
3418
3419
3420/**
3421 * Frees a previously loaded (prep'ed) image.
3422 *
3423 * @returns 0 on success.
3424 * @returns SUPDRV_ERR_* on failure.
3425 * @param pDevExt Device globals.
3426 * @param pSession Session data.
3427 * @param pIn Input.
3428 */
3429static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE_IN pIn)
3430{
3431 PSUPDRVLDRUSAGE pUsagePrev;
3432 PSUPDRVLDRUSAGE pUsage;
3433 PSUPDRVLDRIMAGE pImage;
3434 dprintf(("supdrvIOCtl_LdrFree: pvImageBase=%p\n", pIn->pvImageBase));
3435
3436 /*
3437 * Find the ldr image.
3438 */
3439 RTSemFastMutexRequest(pDevExt->mtxLdr);
3440 pUsagePrev = NULL;
3441 pUsage = pSession->pLdrUsage;
3442 while (pUsage && pUsage->pImage->pvImage != pIn->pvImageBase)
3443 {
3444 pUsagePrev = pUsage;
3445 pUsage = pUsage->pNext;
3446 }
3447 if (!pUsage)
3448 {
3449 RTSemFastMutexRelease(pDevExt->mtxLdr);
3450 dprintf(("SUP_IOCTL_LDR_FREE: couldn't find image!\n"));
3451 return SUPDRV_ERR_INVALID_HANDLE;
3452 }
3453
3454 /*
3455 * Check if we can remove anything.
3456 */
3457 pImage = pUsage->pImage;
3458 if (pImage->cUsage <= 1 || pUsage->cUsage <= 1)
3459 {
3460 /* unlink it */
3461 if (pUsagePrev)
3462 pUsagePrev->pNext = pUsage->pNext;
3463 else
3464 pSession->pLdrUsage = pUsage->pNext;
3465 /* free it */
3466 pUsage->pImage = NULL;
3467 pUsage->pNext = NULL;
3468 RTMemFree(pUsage);
3469
3470 /*
3471 * Derefrence the image.
3472 */
3473 if (pImage->cUsage <= 1)
3474 supdrvLdrFree(pDevExt, pImage);
3475 else
3476 pImage->cUsage--;
3477 }
3478 else
3479 {
3480 /*
3481 * Dereference both image and usage.
3482 */
3483 pImage->cUsage--;
3484 pUsage->cUsage--;
3485 }
3486
3487 RTSemFastMutexRelease(pDevExt->mtxLdr);
3488 return 0;
3489}
3490
3491
3492/**
3493 * Gets the address of a symbol in an open image.
3494 *
3495 * @returns 0 on success.
3496 * @returns SUPDRV_ERR_* on failure.
3497 * @param pDevExt Device globals.
3498 * @param pSession Session data.
3499 * @param pIn Input.
3500 * @param pOut Output. (May overlap pIn.)
3501 */
3502static int supdrvIOCtl_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL_IN pIn, PSUPLDRGETSYMBOL_OUT pOut)
3503{
3504 PSUPDRVLDRIMAGE pImage;
3505 PSUPDRVLDRUSAGE pUsage;
3506 uint32_t i;
3507 PSUPLDRSYM paSyms;
3508 const char *pchStrings;
3509 const size_t cbSymbol = strlen(pIn->szSymbol) + 1;
3510 void *pvSymbol = NULL;
3511 int rc = SUPDRV_ERR_GENERAL_FAILURE; /** @todo better error code. */
3512 dprintf2(("supdrvIOCtl_LdrGetSymbol: pvImageBase=%p szSymbol=\"%s\"\n", pIn->pvImageBase, pIn->szSymbol));
3513
3514 /*
3515 * Find the ldr image.
3516 */
3517 RTSemFastMutexRequest(pDevExt->mtxLdr);
3518 pUsage = pSession->pLdrUsage;
3519 while (pUsage && pUsage->pImage->pvImage != pIn->pvImageBase)
3520 pUsage = pUsage->pNext;
3521 if (!pUsage)
3522 {
3523 RTSemFastMutexRelease(pDevExt->mtxLdr);
3524 dprintf(("SUP_IOCTL_LDR_GET_SYMBOL: couldn't find image!\n"));
3525 return SUPDRV_ERR_INVALID_HANDLE;
3526 }
3527 pImage = pUsage->pImage;
3528 if (pImage->uState != SUP_IOCTL_LDR_LOAD)
3529 {
3530 unsigned uState = pImage->uState;
3531 RTSemFastMutexRelease(pDevExt->mtxLdr);
3532 dprintf(("SUP_IOCTL_LDR_GET_SYMBOL: invalid image state %d (%#x)!\n", uState, uState)); NOREF(uState);
3533 return SUPDRV_ERR_ALREADY_LOADED;
3534 }
3535
3536 /*
3537 * Search the symbol string.
3538 */
3539 pchStrings = (const char *)((uint8_t *)pImage->pvImage + pImage->offStrTab);
3540 paSyms = (PSUPLDRSYM)((uint8_t *)pImage->pvImage + pImage->offSymbols);
3541 for (i = 0; i < pImage->cSymbols; i++)
3542 {
3543 if ( paSyms[i].offSymbol < pImage->cbImage /* paranoia */
3544 && paSyms[i].offName + cbSymbol <= pImage->cbStrTab
3545 && !memcmp(pchStrings + paSyms[i].offName, pIn->szSymbol, cbSymbol))
3546 {
3547 pvSymbol = (uint8_t *)pImage->pvImage + paSyms[i].offSymbol;
3548 rc = 0;
3549 break;
3550 }
3551 }
3552 RTSemFastMutexRelease(pDevExt->mtxLdr);
3553 pOut->pvSymbol = pvSymbol;
3554 return rc;
3555}
3556
3557
3558/**
3559 * Updates the IDT patches to point to the specified VMM R0 entry
3560 * point (i.e. VMMR0Enter()).
3561 *
3562 * @returns 0 on success.
3563 * @returns SUPDRV_ERR_* on failure.
3564 * @param pDevExt Device globals.
3565 * @param pSession Session data.
3566 * @param pVMMR0 VMMR0 image handle.
3567 * @param pVMMR0Entry VMMR0Entry address.
3568 * @remark Caller must own the loader mutex.
3569 */
3570static int supdrvLdrSetR0EP(PSUPDRVDEVEXT pDevExt, void *pvVMMR0, void *pvVMMR0Entry)
3571{
3572 int rc;
3573 dprintf(("supdrvLdrSetR0EP pvVMMR0=%p pvVMMR0Entry=%p\n", pvVMMR0, pvVMMR0Entry));
3574
3575
3576 /*
3577 * Check if not yet set.
3578 */
3579 rc = 0;
3580 if (!pDevExt->pvVMMR0)
3581 {
3582#ifndef VBOX_WITHOUT_IDT_PATCHING
3583 PSUPDRVPATCH pPatch;
3584#endif
3585
3586 /*
3587 * Set it and update IDT patch code.
3588 */
3589 pDevExt->pvVMMR0 = pvVMMR0;
3590 pDevExt->pfnVMMR0Entry = pvVMMR0Entry;
3591#ifndef VBOX_WITHOUT_IDT_PATCHING
3592 for (pPatch = pDevExt->pIdtPatches; pPatch; pPatch = pPatch->pNext)
3593 {
3594# ifdef __AMD64__
3595 ASMAtomicXchgU64((volatile uint64_t *)&pPatch->auCode[pPatch->offVMMR0EntryFixup], (uint64_t)pvVMMR0);
3596# else /* __X86__ */
3597 ASMAtomicXchgU32((volatile uint32_t *)&pPatch->auCode[pPatch->offVMMR0EntryFixup],
3598 (uint32_t)pvVMMR0 - (uint32_t)&pPatch->auCode[pPatch->offVMMR0EntryFixup + 4]);
3599# endif
3600 }
3601#endif /* !VBOX_WITHOUT_IDT_PATCHING */
3602 }
3603 else
3604 {
3605 /*
3606 * Return failure or success depending on whether the
3607 * values match or not.
3608 */
3609 if ( pDevExt->pvVMMR0 != pvVMMR0
3610 || (void *)pDevExt->pfnVMMR0Entry != pvVMMR0Entry)
3611 {
3612 AssertMsgFailed(("SUP_IOCTL_LDR_SETR0EP: Already set pointing to a different module!\n"));
3613 rc = SUPDRV_ERR_INVALID_PARAM;
3614 }
3615 }
3616 return rc;
3617}
3618
3619
3620/**
3621 * Unsets the R0 entry point installed by supdrvLdrSetR0EP.
3622 *
3623 * @param pDevExt Device globals.
3624 */
3625static void supdrvLdrUnsetR0EP(PSUPDRVDEVEXT pDevExt)
3626{
3627#ifndef VBOX_WITHOUT_IDT_PATCHING
3628 PSUPDRVPATCH pPatch;
3629#endif
3630
3631 pDevExt->pvVMMR0 = NULL;
3632 pDevExt->pfnVMMR0Entry = NULL;
3633
3634#ifndef VBOX_WITHOUT_IDT_PATCHING
3635 for (pPatch = pDevExt->pIdtPatches; pPatch; pPatch = pPatch->pNext)
3636 {
3637# ifdef __AMD64__
3638 ASMAtomicXchgU64((volatile uint64_t *)&pPatch->auCode[pPatch->offVMMR0EntryFixup],
3639 (uint64_t)&pPatch->auCode[pPatch->offStub]);
3640# else /* __X86__ */
3641 ASMAtomicXchgU32((volatile uint32_t *)&pPatch->auCode[pPatch->offVMMR0EntryFixup],
3642 (uint32_t)&pPatch->auCode[pPatch->offStub] - (uint32_t)&pPatch->auCode[pPatch->offVMMR0EntryFixup + 4]);
3643# endif
3644 }
3645#endif /* !VBOX_WITHOUT_IDT_PATCHING */
3646}
3647
3648
3649/**
3650 * Adds a usage reference in the specified session of an image.
3651 *
3652 * @param pSession Session in question.
3653 * @param pImage Image which the session is using.
3654 */
3655static void supdrvLdrAddUsage(PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage)
3656{
3657 PSUPDRVLDRUSAGE pUsage;
3658 dprintf(("supdrvLdrAddUsage: pImage=%p\n", pImage));
3659
3660 /*
3661 * Referenced it already?
3662 */
3663 pUsage = pSession->pLdrUsage;
3664 while (pUsage)
3665 {
3666 if (pUsage->pImage == pImage)
3667 {
3668 pUsage->cUsage++;
3669 return;
3670 }
3671 pUsage = pUsage->pNext;
3672 }
3673
3674 /*
3675 * Allocate new usage record.
3676 */
3677 pUsage = (PSUPDRVLDRUSAGE)RTMemAlloc(sizeof(*pUsage));
3678 Assert(pUsage);
3679 if (pUsage)
3680 {
3681 pUsage->cUsage = 1;
3682 pUsage->pImage = pImage;
3683 pUsage->pNext = pSession->pLdrUsage;
3684 pSession->pLdrUsage = pUsage;
3685 }
3686 /* ignore errors... */
3687}
3688
3689
3690/**
3691 * Frees a load image.
3692 *
3693 * @param pDevExt Pointer to device extension.
3694 * @param pImage Pointer to the image we're gonna free.
3695 * This image must exit!
3696 * @remark The caller MUST own SUPDRVDEVEXT::mtxLdr!
3697 */
3698static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage)
3699{
3700 PSUPDRVLDRIMAGE pImagePrev;
3701 dprintf(("supdrvLdrFree: pImage=%p\n", pImage));
3702
3703 /* find it - arg. should've used doubly linked list. */
3704 Assert(pDevExt->pLdrImages);
3705 pImagePrev = NULL;
3706 if (pDevExt->pLdrImages != pImage)
3707 {
3708 pImagePrev = pDevExt->pLdrImages;
3709 while (pImagePrev->pNext != pImage)
3710 pImagePrev = pImagePrev->pNext;
3711 Assert(pImagePrev->pNext == pImage);
3712 }
3713
3714 /* unlink */
3715 if (pImagePrev)
3716 pImagePrev->pNext = pImage->pNext;
3717 else
3718 pDevExt->pLdrImages = pImage->pNext;
3719
3720 /* check if this is VMMR0.r0 and fix the Idt patches if it is. */
3721 if (pDevExt->pvVMMR0 == pImage->pvImage)
3722 supdrvLdrUnsetR0EP(pDevExt);
3723
3724 /* call termination function if fully loaded. */
3725 if ( pImage->pfnModuleTerm
3726 && pImage->uState == SUP_IOCTL_LDR_LOAD)
3727 {
3728 dprintf(("supdrvIOCtl_LdrLoad: calling pfnModuleTerm=%p\n", pImage->pfnModuleTerm));
3729 pImage->pfnModuleTerm();
3730 }
3731
3732 /* free the image */
3733 pImage->cUsage = 0;
3734 pImage->pNext = 0;
3735 pImage->uState = SUP_IOCTL_LDR_FREE;
3736 RTMemExecFree(pImage);
3737}
3738
3739
3740/**
3741 * Gets the current paging mode of the CPU and stores in in pOut.
3742 */
3743static int supdrvIOCtl_GetPagingMode(PSUPGETPAGINGMODE_OUT pOut)
3744{
3745 RTUINTREG cr0 = ASMGetCR0();
3746 if ((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
3747 pOut->enmMode = SUPPAGINGMODE_INVALID;
3748 else
3749 {
3750 RTUINTREG cr4 = ASMGetCR4();
3751 uint32_t fNXEPlusLMA = 0;
3752 if (cr4 & X86_CR4_PAE)
3753 {
3754 uint32_t fAmdFeatures = ASMCpuId_EDX(0x80000001);
3755 if (fAmdFeatures & (X86_CPUID_AMD_FEATURE_EDX_NX | X86_CPUID_AMD_FEATURE_EDX_LONG_MODE))
3756 {
3757 uint64_t efer = ASMRdMsr(MSR_K6_EFER);
3758 if ((fAmdFeatures & X86_CPUID_AMD_FEATURE_EDX_NX) && (efer & MSR_K6_EFER_NXE))
3759 fNXEPlusLMA |= BIT(0);
3760 if ((fAmdFeatures & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE) && (efer & MSR_K6_EFER_LMA))
3761 fNXEPlusLMA |= BIT(1);
3762 }
3763 }
3764
3765 switch ((cr4 & (X86_CR4_PAE | X86_CR4_PGE)) | fNXEPlusLMA)
3766 {
3767 case 0:
3768 pOut->enmMode = SUPPAGINGMODE_32_BIT;
3769 break;
3770
3771 case X86_CR4_PGE:
3772 pOut->enmMode = SUPPAGINGMODE_32_BIT_GLOBAL;
3773 break;
3774
3775 case X86_CR4_PAE:
3776 pOut->enmMode = SUPPAGINGMODE_PAE;
3777 break;
3778
3779 case X86_CR4_PAE | BIT(0):
3780 pOut->enmMode = SUPPAGINGMODE_PAE_NX;
3781 break;
3782
3783 case X86_CR4_PAE | X86_CR4_PGE:
3784 pOut->enmMode = SUPPAGINGMODE_PAE_GLOBAL;
3785 break;
3786
3787 case X86_CR4_PAE | X86_CR4_PGE | BIT(0):
3788 pOut->enmMode = SUPPAGINGMODE_PAE_GLOBAL;
3789 break;
3790
3791 case BIT(1) | X86_CR4_PAE:
3792 pOut->enmMode = SUPPAGINGMODE_AMD64;
3793 break;
3794
3795 case BIT(1) | X86_CR4_PAE | BIT(0):
3796 pOut->enmMode = SUPPAGINGMODE_AMD64_NX;
3797 break;
3798
3799 case BIT(1) | X86_CR4_PAE | X86_CR4_PGE:
3800 pOut->enmMode = SUPPAGINGMODE_AMD64_GLOBAL;
3801 break;
3802
3803 case BIT(1) | X86_CR4_PAE | X86_CR4_PGE | BIT(0):
3804 pOut->enmMode = SUPPAGINGMODE_AMD64_GLOBAL_NX;
3805 break;
3806
3807 default:
3808 AssertMsgFailed(("Cannot happen! cr4=%#x fNXEPlusLMA=%d\n", cr4, fNXEPlusLMA));
3809 pOut->enmMode = SUPPAGINGMODE_INVALID;
3810 break;
3811 }
3812 }
3813 return 0;
3814}
3815
3816
3817#if !defined(SUPDRV_OS_HAVE_LOW) && !defined(USE_NEW_OS_INTERFACE) /* Use same backend as the contiguous stuff */
3818/**
3819 * OS Specific code for allocating page aligned memory with fixed
3820 * physical backing below 4GB.
3821 *
3822 * @returns 0 on success.
3823 * @returns SUPDRV_ERR_* on failure.
3824 * @param pMem Memory reference record of the memory to be allocated.
3825 * (This is not linked in anywhere.)
3826 * @param ppvR3 Where to store the Ring-3 mapping of the allocated memory.
3827 * @param paPagesOut Where to store the physical addresss.
3828 */
3829int VBOXCALL supdrvOSLowAllocOne(PSUPDRVMEMREF pMem, void **ppvR3, PSUPPAGE paPagesOut)
3830{
3831 RTHCPHYS HCPhys;
3832 int rc = supdrvOSContAllocOne(pMem, NULL, ppvR3, &HCPhys);
3833 if (!rc)
3834 {
3835 unsigned iPage = pMem->cb >> PAGE_SHIFT;
3836 while (iPage-- > 0)
3837 {
3838 paPagesOut[iPage].Phys = HCPhys + (iPage << PAGE_SHIFT);
3839 paPagesOut[iPage].uReserved = 0;
3840 }
3841 }
3842 return rc;
3843}
3844
3845
3846/**
3847 * Frees low memory.
3848 *
3849 * @param pMem Memory reference record of the memory to be freed.
3850 */
3851void VBOXCALL supdrvOSLowFreeOne(PSUPDRVMEMREF pMem)
3852{
3853 supdrvOSContFreeOne(pMem);
3854}
3855#endif /* !SUPDRV_OS_HAVE_LOW */
3856
3857
3858#ifdef USE_NEW_OS_INTERFACE
3859/**
3860 * Creates the GIP.
3861 *
3862 * @returns negative errno.
3863 * @param pDevExt Instance data. GIP stuff may be updated.
3864 */
3865static int supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
3866{
3867 PSUPGLOBALINFOPAGE pGip;
3868 RTHCPHYS HCPhysGip;
3869 uint32_t u32SystemResolution;
3870 uint32_t u32Interval;
3871 int rc;
3872
3873 dprintf(("supdrvGipCreate:\n"));
3874
3875 /* assert order */
3876 Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
3877 Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
3878 Assert(!pDevExt->pGipTimer);
3879
3880 /*
3881 * Allocate a suitable page with a default kernel mapping.
3882 */
3883 rc = RTR0MemObjAllocLow(&pDevExt->GipMemObj, PAGE_SIZE, false);
3884 if (RT_FAILURE(rc))
3885 {
3886 OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
3887 return rc;
3888 }
3889 pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
3890 HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
3891
3892 /*
3893 * Try bump up the system timer resolution.
3894 * The more interrupts the better...
3895 */
3896 if ( RT_SUCCESS(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
3897 || RT_SUCCESS(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
3898 || RT_SUCCESS(RTTimerRequestSystemGranularity( 3906250 /* 256 HZ */, &u32SystemResolution))
3899 || RT_SUCCESS(RTTimerRequestSystemGranularity( 4000000 /* 250 HZ */, &u32SystemResolution))
3900 || RT_SUCCESS(RTTimerRequestSystemGranularity( 7812500 /* 128 HZ */, &u32SystemResolution))
3901 || RT_SUCCESS(RTTimerRequestSystemGranularity(10000000 /* 100 HZ */, &u32SystemResolution))
3902 || RT_SUCCESS(RTTimerRequestSystemGranularity(15625000 /* 64 HZ */, &u32SystemResolution))
3903 || RT_SUCCESS(RTTimerRequestSystemGranularity(31250000 /* 32 HZ */, &u32SystemResolution))
3904 )
3905 {
3906 Assert(RTTimerGetSystemGranularity() <= u32SystemResolution);
3907 pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
3908 }
3909
3910 /*
3911 * Find a reasonable update interval, something close to 10ms would be nice,
3912 * and create a recurring timer.
3913 */
3914 u32Interval = u32SystemResolution = RTTimerGetSystemGranularity();
3915 while (u32Interval < 10000000 /* 10 ms */)
3916 u32Interval += u32SystemResolution;
3917
3918 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0, supdrvGipTimer, pDevExt);
3919 if (RT_FAILURE(rc))
3920 {
3921 OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %RU32 ns interval. rc=%d\n", u32Interval, rc));
3922 Assert(!pDevExt->pGipTimer);
3923 supdrvGipDestroy(pDevExt);
3924 return rc;
3925 }
3926
3927 /*
3928 * We're good.
3929 */
3930 supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), 1000000000 / u32Interval /*=Hz*/);
3931 return 0;
3932}
3933
3934
3935/**
3936 * Terminates the GIP.
3937 *
3938 * @returns negative errno.
3939 * @param pDevExt Instance data. GIP stuff may be updated.
3940 */
3941static int supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
3942{
3943 int rc;
3944
3945 /*
3946 * Invalid the GIP data.
3947 */
3948 if (pDevExt->pGip)
3949 {
3950 supdrvGipTerm(pDevExt->pGip);
3951 pDevExt->pGip = 0;
3952 }
3953
3954 /*
3955 * Destroy the timer and free the GIP memory object.
3956 */
3957 if (pDevExt->pGipTimer)
3958 {
3959 rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
3960 pDevExt->pGipTimer = NULL;
3961 }
3962
3963 if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
3964 {
3965 rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
3966 pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
3967 }
3968
3969 /*
3970 * Finally, release the system timer resolution request if one succeeded.
3971 */
3972 if (pDevExt->u32SystemTimerGranularityGrant)
3973 {
3974 rc = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant); AssertRC(rc);
3975 pDevExt->u32SystemTimerGranularityGrant = 0;
3976 }
3977
3978 return 0;
3979}
3980
3981
3982/**
3983 * Timer callback function.
3984 * @param pTimer The timer.
3985 * @param pvUser The device extension.
3986 */
3987static DECLCALLBACK(void) supdrvGipTimer(PRTTIMER pTimer, void *pvUser)
3988{
3989 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
3990 supdrvGipUpdate(pDevExt->pGip, RTTimeSystemNanoTS());
3991}
3992#endif /* USE_NEW_OS_INTERFACE */
3993
3994
3995/**
3996 * Initializes the GIP data.
3997 *
3998 * @returns VBox status code.
3999 * @param pDevExt Pointer to the device instance data.
4000 * @param pGip Pointer to the read-write kernel mapping of the GIP.
4001 * @param HCPhys The physical address of the GIP.
4002 * @param u64NanoTS The current nanosecond timestamp.
4003 * @param uUpdateHz The update freqence.
4004 */
4005int VBOXCALL supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys, uint64_t u64NanoTS, unsigned uUpdateHz)
4006{
4007 dprintf(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz));
4008
4009 memset(pGip, 0, PAGE_SIZE);
4010 pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
4011 pGip->u32UpdateHz = uUpdateHz;
4012 pGip->u32UpdateIntervalNS = 1000000000 / uUpdateHz;
4013 pGip->u32TransactionId = 2;
4014 pGip->u64NanoTS = u64NanoTS;
4015 pGip->u64NanoTSLastUpdateHz = u64NanoTS;
4016 pGip->u64TSC = ASMReadTSC();
4017
4018 /*
4019 * We don't know the following values until we've executed updates.
4020 * So, we'll just insert very high values.
4021 */
4022 pGip->u64CpuHz = _4G + 1;
4023 pGip->u32UpdateIntervalTSC = _2G / 4;
4024 pGip->au32TSCHistory[0] = _2G / 4;
4025 pGip->au32TSCHistory[1] = _2G / 4;
4026 pGip->au32TSCHistory[2] = _2G / 4;
4027 pGip->au32TSCHistory[3] = _2G / 4;
4028 pGip->au32TSCHistory[4] = _2G / 4;
4029 pGip->au32TSCHistory[5] = _2G / 4;
4030 pGip->au32TSCHistory[6] = _2G / 4;
4031 pGip->au32TSCHistory[7] = _2G / 4;
4032
4033 /*
4034 * Link it to the device extension.
4035 */
4036 pDevExt->pGip = pGip;
4037 pDevExt->HCPhysGip = HCPhys;
4038 pDevExt->cGipUsers = 0;
4039
4040 return 0;
4041}
4042
4043
4044/**
4045 * Invalidates the GIP data upon termination.
4046 *
4047 * @param pGip Pointer to the read-write kernel mapping of the GIP.
4048 */
4049void VBOXCALL supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
4050{
4051 pGip->iTSCHistoryHead = ~0;
4052 pGip->u64NanoTS = 0;
4053 pGip->u64TSC = 0;
4054 pGip->u32Magic = 0;
4055 pGip->iTSCHistoryHead = 0;
4056}
4057
4058
4059/**
4060 * Updates the GIP.
4061 *
4062 * @param pGip Pointer to the GIP.
4063 * @param u64NanoTS The current nanosecond timesamp.
4064 */
4065void VBOXCALL supdrvGipUpdate(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS)
4066{
4067 uint64_t u64TSC;
4068 uint64_t u64TSCDelta;
4069 uint32_t u32UpdateIntervalTSC;
4070 uint32_t u32UpdateIntervalTSCSlack;
4071 unsigned iTSCHistoryHead;
4072 uint64_t u64CpuHz;
4073
4074 /*
4075 * Start update transaction.
4076 */
4077 if (!(ASMAtomicIncU32(&pGip->u32TransactionId) & 1))
4078 {
4079 /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
4080 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGip->u32TransactionId));
4081 ASMAtomicIncU32(&pGip->u32TransactionId);
4082 pGip->cErrors++;
4083 return;
4084 }
4085
4086 ASMAtomicXchgU64(&pGip->u64NanoTS, u64NanoTS);
4087
4088 /*
4089 * Recalc the update frequency every 0x800th time.
4090 */
4091 if (!(pGip->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
4092 {
4093 if (pGip->u64NanoTSLastUpdateHz)
4094 {
4095#ifdef __AMD64__ /** @todo fix 64-bit div here to work on x86 linux. */
4096 uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
4097 uint32_t u32UpdateHz = (uint32_t)((UINT64_C(1000000000) * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
4098 if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
4099 {
4100 ASMAtomicXchgU32(&pGip->u32UpdateHz, u32UpdateHz);
4101 ASMAtomicXchgU32(&pGip->u32UpdateIntervalNS, 1000000000 / u32UpdateHz);
4102 }
4103#endif
4104 }
4105 ASMAtomicXchgU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS);
4106 }
4107
4108 /*
4109 * Calc TSC delta.
4110 */
4111 /** @todo validate the NanoTS delta, don't trust the OS to call us when it should... */
4112 u64TSC = ASMReadTSC();
4113 u64TSCDelta = u64TSC - pGip->u64TSC;
4114 ASMAtomicXchgU64(&pGip->u64TSC, u64TSC);
4115
4116 if (u64TSCDelta >> 32)
4117 {
4118 u64TSCDelta = pGip->u32UpdateIntervalTSC;
4119 pGip->cErrors++;
4120 }
4121
4122 /*
4123 * TSC History.
4124 */
4125 Assert(ELEMENTS(pGip->au32TSCHistory) == 8);
4126
4127 iTSCHistoryHead = (pGip->iTSCHistoryHead + 1) & 7;
4128 ASMAtomicXchgU32(&pGip->iTSCHistoryHead, iTSCHistoryHead);
4129 ASMAtomicXchgU32(&pGip->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
4130
4131 /*
4132 * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
4133 */
4134 if (pGip->u32UpdateHz >= 1000)
4135 {
4136 uint32_t u32;
4137 u32 = pGip->au32TSCHistory[0];
4138 u32 += pGip->au32TSCHistory[1];
4139 u32 += pGip->au32TSCHistory[2];
4140 u32 += pGip->au32TSCHistory[3];
4141 u32 >>= 2;
4142 u32UpdateIntervalTSC = pGip->au32TSCHistory[4];
4143 u32UpdateIntervalTSC += pGip->au32TSCHistory[5];
4144 u32UpdateIntervalTSC += pGip->au32TSCHistory[6];
4145 u32UpdateIntervalTSC += pGip->au32TSCHistory[7];
4146 u32UpdateIntervalTSC >>= 2;
4147 u32UpdateIntervalTSC += u32;
4148 u32UpdateIntervalTSC >>= 1;
4149
4150 /* Value choosen for a 2GHz Athlon64 running linux 2.6.10/11, . */
4151 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
4152 }
4153 else if (pGip->u32UpdateHz >= 90)
4154 {
4155 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
4156 u32UpdateIntervalTSC += pGip->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
4157 u32UpdateIntervalTSC >>= 1;
4158
4159 /* value choosen on a 2GHz thinkpad running windows */
4160 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
4161 }
4162 else
4163 {
4164 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
4165
4166 /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
4167 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
4168 }
4169 ASMAtomicXchgU32(&pGip->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
4170
4171 /*
4172 * CpuHz.
4173 */
4174 u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, pGip->u32UpdateHz);
4175 ASMAtomicXchgU64(&pGip->u64CpuHz, u64CpuHz);
4176
4177 /*
4178 * Complete transaction.
4179 */
4180 ASMAtomicIncU32(&pGip->u32TransactionId);
4181}
4182
4183
4184#ifndef DEBUG /** @todo change #ifndef DEBUG -> #ifdef LOG_ENABLED */
4185/**
4186 * Stub function for non-debug builds.
4187 */
4188RTDECL(PRTLOGGER) RTLogDefaultInstance(void)
4189{
4190 return NULL;
4191}
4192
4193RTDECL(PRTLOGGER) RTLogRelDefaultInstance(void)
4194{
4195 return NULL;
4196}
4197
4198/**
4199 * Stub function for non-debug builds.
4200 */
4201RTDECL(int) RTLogSetDefaultInstanceThread(PRTLOGGER pLogger, uintptr_t uKey)
4202{
4203 return 0;
4204}
4205
4206/**
4207 * Stub function for non-debug builds.
4208 */
4209RTDECL(void) RTLogLogger(PRTLOGGER pLogger, void *pvCallerRet, const char *pszFormat, ...)
4210{
4211}
4212
4213/**
4214 * Stub function for non-debug builds.
4215 */
4216RTDECL(void) RTLogLoggerEx(PRTLOGGER pLogger, unsigned fFlags, unsigned iGroup, const char *pszFormat, ...)
4217{
4218}
4219
4220/**
4221 * Stub function for non-debug builds.
4222 */
4223RTDECL(void) RTLogLoggerExV(PRTLOGGER pLogger, unsigned fFlags, unsigned iGroup, const char *pszFormat, va_list args)
4224{
4225}
4226#endif /* !DEBUG */
4227
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette