VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPDrv.c@ 20953

Last change on this file since 20953 was 20860, checked in by vboxsync, 16 years ago

SUP: Bumped major version because of layout changes in RTLOGGER. Executed the todo list: retire old page alloc api and drop the windows lock/unlock hack (locking not used directly anywhere except as a fallback that doesn't apply to windows).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 204.9 KB
Line 
1/* $Revision: 20860 $ */
2/** @file
3 * VBoxDrv - The VirtualBox Support Driver - Common code.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 *
26 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
27 * Clara, CA 95054 USA or visit http://www.sun.com if you need
28 * additional information or have any questions.
29 */
30
31/*******************************************************************************
32* Header Files *
33*******************************************************************************/
34#define LOG_GROUP LOG_GROUP_SUP_DRV
35#include "SUPDrvInternal.h"
36#ifndef PAGE_SHIFT
37# include <iprt/param.h>
38#endif
39#include <iprt/alloc.h>
40#include <iprt/cpuset.h>
41#include <iprt/handletable.h>
42#include <iprt/mp.h>
43#include <iprt/power.h>
44#include <iprt/process.h>
45#include <iprt/semaphore.h>
46#include <iprt/spinlock.h>
47#include <iprt/thread.h>
48#include <iprt/uuid.h>
49#include <VBox/param.h>
50#include <VBox/log.h>
51#include <VBox/err.h>
52#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
53# include <iprt/crc32.h>
54# include <iprt/net.h>
55# include <iprt/string.h>
56#endif
57/* VBox/x86.h not compatible with the Linux kernel sources */
58#ifdef RT_OS_LINUX
59# define X86_CPUID_VENDOR_AMD_EBX 0x68747541
60# define X86_CPUID_VENDOR_AMD_ECX 0x444d4163
61# define X86_CPUID_VENDOR_AMD_EDX 0x69746e65
62#else
63# include <VBox/x86.h>
64#endif
65
66/*
67 * Logging assignments:
68 * Log - useful stuff, like failures.
69 * LogFlow - program flow, except the really noisy bits.
70 * Log2 - Cleanup.
71 * Log3 - Loader flow noise.
72 * Log4 - Call VMMR0 flow noise.
73 * Log5 - Native yet-to-be-defined noise.
74 * Log6 - Native ioctl flow noise.
75 *
76 * Logging requires BUILD_TYPE=debug and possibly changes to the logger
77 * instanciation in log-vbox.c(pp).
78 */
79
80
81/*******************************************************************************
82* Defined Constants And Macros *
83*******************************************************************************/
84/* from x86.h - clashes with linux thus this duplication */
85#undef X86_CR0_PG
86#define X86_CR0_PG RT_BIT(31)
87#undef X86_CR0_PE
88#define X86_CR0_PE RT_BIT(0)
89#undef X86_CPUID_AMD_FEATURE_EDX_NX
90#define X86_CPUID_AMD_FEATURE_EDX_NX RT_BIT(20)
91#undef MSR_K6_EFER
92#define MSR_K6_EFER 0xc0000080
93#undef MSR_K6_EFER_NXE
94#define MSR_K6_EFER_NXE RT_BIT(11)
95#undef MSR_K6_EFER_LMA
96#define MSR_K6_EFER_LMA RT_BIT(10)
97#undef X86_CR4_PGE
98#define X86_CR4_PGE RT_BIT(7)
99#undef X86_CR4_PAE
100#define X86_CR4_PAE RT_BIT(5)
101#undef X86_CPUID_AMD_FEATURE_EDX_LONG_MODE
102#define X86_CPUID_AMD_FEATURE_EDX_LONG_MODE RT_BIT(29)
103
104
105/** The frequency by which we recalculate the u32UpdateHz and
106 * u32UpdateIntervalNS GIP members. The value must be a power of 2. */
107#define GIP_UPDATEHZ_RECALC_FREQ 0x800
108
109/**
110 * Validates a session pointer.
111 *
112 * @returns true/false accordingly.
113 * @param pSession The session.
114 */
115#define SUP_IS_SESSION_VALID(pSession) \
116 ( VALID_PTR(pSession) \
117 && pSession->u32Cookie == BIRD_INV)
118
119/** @def VBOX_SVN_REV
120 * The makefile should define this if it can. */
121#ifndef VBOX_SVN_REV
122# define VBOX_SVN_REV 0
123#endif
124
125/*******************************************************************************
126* Internal Functions *
127*******************************************************************************/
128static DECLCALLBACK(int) supdrvSessionObjHandleRetain(RTHANDLETABLE hHandleTable, void *pvObj, void *pvCtx, void *pvUser);
129static DECLCALLBACK(void) supdrvSessionObjHandleDelete(RTHANDLETABLE hHandleTable, uint32_t h, void *pvObj, void *pvCtx, void *pvUser);
130static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession);
131static int supdrvMemRelease(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, SUPDRVMEMREFTYPE eType);
132static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN pReq);
133static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD pReq);
134static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE pReq);
135static int supdrvIOCtl_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL pReq);
136static int supdrvIDC_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQGETSYM pReq);
137static int supdrvLdrSetVMMR0EPs(PSUPDRVDEVEXT pDevExt, void *pvVMMR0, void *pvVMMR0EntryInt, void *pvVMMR0EntryFast, void *pvVMMR0EntryEx);
138static void supdrvLdrUnsetVMMR0EPs(PSUPDRVDEVEXT pDevExt);
139static int supdrvLdrAddUsage(PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage);
140static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage);
141static int supdrvIOCtl_CallServiceModule(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPCALLSERVICE pReq);
142static int supdrvIOCtl_LoggerSettings(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLOGGERSETTINGS pReq);
143static SUPGIPMODE supdrvGipDeterminTscMode(PSUPDRVDEVEXT pDevExt);
144static int supdrvGipCreate(PSUPDRVDEVEXT pDevExt);
145static void supdrvGipDestroy(PSUPDRVDEVEXT pDevExt);
146static DECLCALLBACK(void) supdrvGipSyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
147static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
148static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser);
149
150#ifdef RT_WITH_W64_UNWIND_HACK
151DECLASM(int) supdrvNtWrapVMMR0EntryEx(PFNRT pfnVMMR0EntryEx, PVM pVM, VMCPUID idCpu, unsigned uOperation, PSUPVMMR0REQHDR pReq, uint64_t u64Arg, PSUPDRVSESSION pSession);
152DECLASM(int) supdrvNtWrapVMMR0EntryFast(PFNRT pfnVMMR0EntryFast, PVM pVM, VMCPUID idCpu, unsigned uOperation);
153DECLASM(void) supdrvNtWrapObjDestructor(PFNRT pfnDestruction, void *pvObj, void *pvUser1, void *pvUser2);
154DECLASM(void *) supdrvNtWrapQueryFactoryInterface(PFNRT pfnQueryFactoryInterface, struct SUPDRVFACTORY const *pSupDrvFactory, PSUPDRVSESSION pSession, const char *pszInterfaceUuid);
155DECLASM(int) supdrvNtWrapModuleInit(PFNRT pfnModuleInit);
156DECLASM(void) supdrvNtWrapModuleTerm(PFNRT pfnModuleTerm);
157DECLASM(int) supdrvNtWrapServiceReqHandler(PFNRT pfnServiceReqHandler, PSUPDRVSESSION pSession, uint32_t uOperation, uint64_t u64Arg, PSUPR0SERVICEREQHDR pReqHdr);
158
159DECLASM(int) UNWIND_WRAP(SUPR0ComponentRegisterFactory)(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory);
160DECLASM(int) UNWIND_WRAP(SUPR0ComponentDeregisterFactory)(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory);
161DECLASM(int) UNWIND_WRAP(SUPR0ComponentQueryFactory)(PSUPDRVSESSION pSession, const char *pszName, const char *pszInterfaceUuid, void **ppvFactoryIf);
162DECLASM(void *) UNWIND_WRAP(SUPR0ObjRegister)(PSUPDRVSESSION pSession, SUPDRVOBJTYPE enmType, PFNSUPDRVDESTRUCTOR pfnDestructor, void *pvUser1, void *pvUser2);
163DECLASM(int) UNWIND_WRAP(SUPR0ObjAddRef)(void *pvObj, PSUPDRVSESSION pSession);
164DECLASM(int) UNWIND_WRAP(SUPR0ObjAddRefEx)(void *pvObj, PSUPDRVSESSION pSession, bool fNoPreempt);
165DECLASM(int) UNWIND_WRAP(SUPR0ObjRelease)(void *pvObj, PSUPDRVSESSION pSession);
166DECLASM(int) UNWIND_WRAP(SUPR0ObjVerifyAccess)(void *pvObj, PSUPDRVSESSION pSession, const char *pszObjName);
167DECLASM(int) UNWIND_WRAP(SUPR0LockMem)(PSUPDRVSESSION pSession, RTR3PTR pvR3, uint32_t cPages, PRTHCPHYS paPages);
168DECLASM(int) UNWIND_WRAP(SUPR0UnlockMem)(PSUPDRVSESSION pSession, RTR3PTR pvR3);
169DECLASM(int) UNWIND_WRAP(SUPR0ContAlloc)(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS pHCPhys);
170DECLASM(int) UNWIND_WRAP(SUPR0ContFree)(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr);
171DECLASM(int) UNWIND_WRAP(SUPR0LowAlloc)(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS paPages);
172DECLASM(int) UNWIND_WRAP(SUPR0LowFree)(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr);
173DECLASM(int) UNWIND_WRAP(SUPR0MemAlloc)(PSUPDRVSESSION pSession, uint32_t cb, PRTR0PTR ppvR0, PRTR3PTR ppvR3);
174DECLASM(int) UNWIND_WRAP(SUPR0MemGetPhys)(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, PSUPPAGE paPages);
175DECLASM(int) UNWIND_WRAP(SUPR0MemFree)(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr);
176DECLASM(int) UNWIND_WRAP(SUPR0PageAllocEx)(PSUPDRVSESSION pSession, uint32_t cPages, uint32_t fFlags, PRTR3PTR ppvR3, PRTR0PTR ppvR0, PRTHCPHYS paPages);
177DECLASM(int) UNWIND_WRAP(SUPR0PageFree)(PSUPDRVSESSION pSession, RTR3PTR pvR3);
178//DECLASM(int) UNWIND_WRAP(SUPR0Printf)(const char *pszFormat, ...);
179DECLASM(int) UNWIND_WRAP(SUPSemEventCreate)(PSUPDRVSESSION pSession, PSUPSEMEVENT phEvent);
180DECLASM(int) UNWIND_WRAP(SUPSemEventClose)(PSUPDRVSESSION pSession, SUPSEMEVENT hEvent);
181DECLASM(int) UNWIND_WRAP(SUPSemEventSignal)(PSUPDRVSESSION pSession, SUPSEMEVENT hEvent);
182DECLASM(int) UNWIND_WRAP(SUPSemEventWait)(PSUPDRVSESSION pSession, SUPSEMEVENT hEvent, uint32_t cMillies);
183DECLASM(int) UNWIND_WRAP(SUPSemEventWaitNoResume)(PSUPDRVSESSION pSession, SUPSEMEVENT hEvent, uint32_t cMillies);
184DECLASM(int) UNWIND_WRAP(SUPSemEventMultiCreate)(PSUPDRVSESSION pSession, PSUPSEMEVENTMULTI phEventMulti);
185DECLASM(int) UNWIND_WRAP(SUPSemEventMultiClose)(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti);
186DECLASM(int) UNWIND_WRAP(SUPSemEventMultiSignal)(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti);
187DECLASM(int) UNWIND_WRAP(SUPSemEventMultiReset)(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti);
188DECLASM(int) UNWIND_WRAP(SUPSemEventMultiWait)(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti, uint32_t cMillies);
189DECLASM(int) UNWIND_WRAP(SUPSemEventMultiWaitNoResume)(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti, uint32_t cMillies);
190DECLASM(SUPPAGINGMODE) UNWIND_WRAP(SUPR0GetPagingMode)(void);
191DECLASM(void *) UNWIND_WRAP(RTMemAlloc)(size_t cb) RT_NO_THROW;
192DECLASM(void *) UNWIND_WRAP(RTMemAllocZ)(size_t cb) RT_NO_THROW;
193DECLASM(void) UNWIND_WRAP(RTMemFree)(void *pv) RT_NO_THROW;
194DECLASM(void *) UNWIND_WRAP(RTMemDup)(const void *pvSrc, size_t cb) RT_NO_THROW;
195DECLASM(void *) UNWIND_WRAP(RTMemDupEx)(const void *pvSrc, size_t cbSrc, size_t cbExtra) RT_NO_THROW;
196DECLASM(void *) UNWIND_WRAP(RTMemRealloc)(void *pvOld, size_t cbNew) RT_NO_THROW;
197DECLASM(int) UNWIND_WRAP(RTR0MemObjAllocLow)(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable);
198DECLASM(int) UNWIND_WRAP(RTR0MemObjAllocPage)(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable);
199DECLASM(int) UNWIND_WRAP(RTR0MemObjAllocPhys)(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest);
200DECLASM(int) UNWIND_WRAP(RTR0MemObjAllocPhysNC)(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest);
201DECLASM(int) UNWIND_WRAP(RTR0MemObjAllocCont)(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable);
202DECLASM(int) UNWIND_WRAP(RTR0MemObjEnterPhys)(PRTR0MEMOBJ pMemObj, RTHCPHYS Phys, size_t cb);
203DECLASM(int) UNWIND_WRAP(RTR0MemObjLockUser)(PRTR0MEMOBJ pMemObj, RTR3PTR R3Ptr, size_t cb, RTR0PROCESS R0Process);
204DECLASM(int) UNWIND_WRAP(RTR0MemObjMapKernel)(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed, size_t uAlignment, unsigned fProt);
205DECLASM(int) UNWIND_WRAP(RTR0MemObjMapKernelEx)(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed, size_t uAlignment, unsigned fProt, size_t offSub, size_t cbSub);
206DECLASM(int) UNWIND_WRAP(RTR0MemObjMapUser)(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process);
207DECLASM(int) UNWIND_WRAP(RTR0MemObjProtect)(RTR0MEMOBJ hMemObj, size_t offsub, size_t cbSub, uint32_t fProt);
208/*DECLASM(void *) UNWIND_WRAP(RTR0MemObjAddress)(RTR0MEMOBJ MemObj); - not necessary */
209/*DECLASM(RTR3PTR) UNWIND_WRAP(RTR0MemObjAddressR3)(RTR0MEMOBJ MemObj); - not necessary */
210/*DECLASM(size_t) UNWIND_WRAP(RTR0MemObjSize)(RTR0MEMOBJ MemObj); - not necessary */
211/*DECLASM(bool) UNWIND_WRAP(RTR0MemObjIsMapping)(RTR0MEMOBJ MemObj); - not necessary */
212/*DECLASM(RTHCPHYS) UNWIND_WRAP(RTR0MemObjGetPagePhysAddr)(RTR0MEMOBJ MemObj, size_t iPage); - not necessary */
213DECLASM(int) UNWIND_WRAP(RTR0MemObjFree)(RTR0MEMOBJ MemObj, bool fFreeMappings);
214/* RTProcSelf - not necessary */
215/* RTR0ProcHandleSelf - not necessary */
216DECLASM(int) UNWIND_WRAP(RTSemFastMutexCreate)(PRTSEMFASTMUTEX pMutexSem);
217DECLASM(int) UNWIND_WRAP(RTSemFastMutexDestroy)(RTSEMFASTMUTEX MutexSem);
218DECLASM(int) UNWIND_WRAP(RTSemFastMutexRequest)(RTSEMFASTMUTEX MutexSem);
219DECLASM(int) UNWIND_WRAP(RTSemFastMutexRelease)(RTSEMFASTMUTEX MutexSem);
220DECLASM(int) UNWIND_WRAP(RTSemEventCreate)(PRTSEMEVENT pEventSem);
221DECLASM(int) UNWIND_WRAP(RTSemEventSignal)(RTSEMEVENT EventSem);
222DECLASM(int) UNWIND_WRAP(RTSemEventWait)(RTSEMEVENT EventSem, unsigned cMillies);
223DECLASM(int) UNWIND_WRAP(RTSemEventWaitNoResume)(RTSEMEVENT EventSem, unsigned cMillies);
224DECLASM(int) UNWIND_WRAP(RTSemEventDestroy)(RTSEMEVENT EventSem);
225DECLASM(int) UNWIND_WRAP(RTSemEventMultiCreate)(PRTSEMEVENTMULTI pEventMultiSem);
226DECLASM(int) UNWIND_WRAP(RTSemEventMultiSignal)(RTSEMEVENTMULTI EventMultiSem);
227DECLASM(int) UNWIND_WRAP(RTSemEventMultiReset)(RTSEMEVENTMULTI EventMultiSem);
228DECLASM(int) UNWIND_WRAP(RTSemEventMultiWait)(RTSEMEVENTMULTI EventMultiSem, unsigned cMillies);
229DECLASM(int) UNWIND_WRAP(RTSemEventMultiWaitNoResume)(RTSEMEVENTMULTI EventMultiSem, unsigned cMillies);
230DECLASM(int) UNWIND_WRAP(RTSemEventMultiDestroy)(RTSEMEVENTMULTI EventMultiSem);
231DECLASM(int) UNWIND_WRAP(RTSpinlockCreate)(PRTSPINLOCK pSpinlock);
232DECLASM(int) UNWIND_WRAP(RTSpinlockDestroy)(RTSPINLOCK Spinlock);
233DECLASM(void) UNWIND_WRAP(RTSpinlockAcquire)(RTSPINLOCK Spinlock, PRTSPINLOCKTMP pTmp);
234DECLASM(void) UNWIND_WRAP(RTSpinlockRelease)(RTSPINLOCK Spinlock, PRTSPINLOCKTMP pTmp);
235DECLASM(void) UNWIND_WRAP(RTSpinlockAcquireNoInts)(RTSPINLOCK Spinlock, PRTSPINLOCKTMP pTmp);
236DECLASM(void) UNWIND_WRAP(RTSpinlockReleaseNoInts)(RTSPINLOCK Spinlock, PRTSPINLOCKTMP pTmp);
237/* RTTimeNanoTS - not necessary */
238/* RTTimeMilliTS - not necessary */
239/* RTTimeSystemNanoTS - not necessary */
240/* RTTimeSystemMilliTS - not necessary */
241/* RTThreadNativeSelf - not necessary */
242DECLASM(int) UNWIND_WRAP(RTThreadSleep)(unsigned cMillies);
243DECLASM(bool) UNWIND_WRAP(RTThreadYield)(void);
244#if 0
245/* RTThreadSelf - not necessary */
246DECLASM(int) UNWIND_WRAP(RTThreadCreate)(PRTTHREAD pThread, PFNRTTHREAD pfnThread, void *pvUser, size_t cbStack,
247 RTTHREADTYPE enmType, unsigned fFlags, const char *pszName);
248DECLASM(RTNATIVETHREAD) UNWIND_WRAP(RTThreadGetNative)(RTTHREAD Thread);
249DECLASM(int) UNWIND_WRAP(RTThreadWait)(RTTHREAD Thread, unsigned cMillies, int *prc);
250DECLASM(int) UNWIND_WRAP(RTThreadWaitNoResume)(RTTHREAD Thread, unsigned cMillies, int *prc);
251DECLASM(const char *) UNWIND_WRAP(RTThreadGetName)(RTTHREAD Thread);
252DECLASM(const char *) UNWIND_WRAP(RTThreadSelfName)(void);
253DECLASM(RTTHREADTYPE) UNWIND_WRAP(RTThreadGetType)(RTTHREAD Thread);
254DECLASM(int) UNWIND_WRAP(RTThreadUserSignal)(RTTHREAD Thread);
255DECLASM(int) UNWIND_WRAP(RTThreadUserReset)(RTTHREAD Thread);
256DECLASM(int) UNWIND_WRAP(RTThreadUserWait)(RTTHREAD Thread, unsigned cMillies);
257DECLASM(int) UNWIND_WRAP(RTThreadUserWaitNoResume)(RTTHREAD Thread, unsigned cMillies);
258#endif
259/* RTThreadPreemptIsEnabled - not necessary */
260/* RTThreadPreemptIsPending - not necessary */
261/* RTThreadPreemptIsPendingTrusty - not necessary */
262/* RTThreadPreemptDisable - not necessary */
263DECLASM(void) UNWIND_WRAP(RTThreadPreemptRestore)(RTTHREADPREEMPTSTATE pState);
264/* RTLogDefaultInstance - a bit of a gamble, but we do not want the overhead! */
265/* RTMpCpuId - not necessary */
266/* RTMpCpuIdFromSetIndex - not necessary */
267/* RTMpCpuIdToSetIndex - not necessary */
268/* RTMpIsCpuPossible - not necessary */
269/* RTMpGetCount - not necessary */
270/* RTMpGetMaxCpuId - not necessary */
271/* RTMpGetOnlineCount - not necessary */
272/* RTMpGetOnlineSet - not necessary */
273/* RTMpGetSet - not necessary */
274/* RTMpIsCpuOnline - not necessary */
275DECLASM(int) UNWIND_WRAP(RTMpIsCpuWorkPending)(void);
276DECLASM(int) UNWIND_WRAP(RTMpOnAll)(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2);
277DECLASM(int) UNWIND_WRAP(RTMpOnOthers)(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2);
278DECLASM(int) UNWIND_WRAP(RTMpOnSpecific)(RTCPUID idCpu, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2);
279DECLASM(int) UNWIND_WRAP(RTMpPokeCpu)(RTCPUID idCpu);
280/* RTLogRelDefaultInstance - not necessary. */
281DECLASM(int) UNWIND_WRAP(RTLogSetDefaultInstanceThread)(PRTLOGGER pLogger, uintptr_t uKey);
282/* RTLogLogger - can't wrap this buster. */
283/* RTLogLoggerEx - can't wrap this buster. */
284DECLASM(void) UNWIND_WRAP(RTLogLoggerExV)(PRTLOGGER pLogger, unsigned fFlags, unsigned iGroup, const char *pszFormat, va_list args);
285/* RTLogPrintf - can't wrap this buster. */ /** @todo provide va_list log wrappers in RuntimeR0. */
286DECLASM(void) UNWIND_WRAP(RTLogPrintfV)(const char *pszFormat, va_list args);
287DECLASM(void) UNWIND_WRAP(AssertMsg1)(const char *pszExpr, unsigned uLine, const char *pszFile, const char *pszFunction);
288/* AssertMsg2 - can't wrap this buster. */
289#endif /* RT_WITH_W64_UNWIND_HACK */
290
291
292/*******************************************************************************
293* Global Variables *
294*******************************************************************************/
295/**
296 * Array of the R0 SUP API.
297 */
298static SUPFUNC g_aFunctions[] =
299{
300 /* name function */
301 /* Entries with absolute addresses determined at runtime, fixup
302 code makes ugly ASSUMPTIONS about the order here: */
303 { "SUPR0AbsIs64bit", (void *)0 },
304 { "SUPR0Abs64bitKernelCS", (void *)0 },
305 { "SUPR0Abs64bitKernelSS", (void *)0 },
306 { "SUPR0Abs64bitKernelDS", (void *)0 },
307 { "SUPR0AbsKernelCS", (void *)0 },
308 { "SUPR0AbsKernelSS", (void *)0 },
309 { "SUPR0AbsKernelDS", (void *)0 },
310 { "SUPR0AbsKernelES", (void *)0 },
311 { "SUPR0AbsKernelFS", (void *)0 },
312 { "SUPR0AbsKernelGS", (void *)0 },
313 /* Normal function pointers: */
314 { "SUPR0ComponentRegisterFactory", (void *)UNWIND_WRAP(SUPR0ComponentRegisterFactory) },
315 { "SUPR0ComponentDeregisterFactory", (void *)UNWIND_WRAP(SUPR0ComponentDeregisterFactory) },
316 { "SUPR0ComponentQueryFactory", (void *)UNWIND_WRAP(SUPR0ComponentQueryFactory) },
317 { "SUPR0ObjRegister", (void *)UNWIND_WRAP(SUPR0ObjRegister) },
318 { "SUPR0ObjAddRef", (void *)UNWIND_WRAP(SUPR0ObjAddRef) },
319 { "SUPR0ObjAddRefEx", (void *)UNWIND_WRAP(SUPR0ObjAddRefEx) },
320 { "SUPR0ObjRelease", (void *)UNWIND_WRAP(SUPR0ObjRelease) },
321 { "SUPR0ObjVerifyAccess", (void *)UNWIND_WRAP(SUPR0ObjVerifyAccess) },
322 { "SUPR0LockMem", (void *)UNWIND_WRAP(SUPR0LockMem) },
323 { "SUPR0UnlockMem", (void *)UNWIND_WRAP(SUPR0UnlockMem) },
324 { "SUPR0ContAlloc", (void *)UNWIND_WRAP(SUPR0ContAlloc) },
325 { "SUPR0ContFree", (void *)UNWIND_WRAP(SUPR0ContFree) },
326 { "SUPR0LowAlloc", (void *)UNWIND_WRAP(SUPR0LowAlloc) },
327 { "SUPR0LowFree", (void *)UNWIND_WRAP(SUPR0LowFree) },
328 { "SUPR0MemAlloc", (void *)UNWIND_WRAP(SUPR0MemAlloc) },
329 { "SUPR0MemGetPhys", (void *)UNWIND_WRAP(SUPR0MemGetPhys) },
330 { "SUPR0MemFree", (void *)UNWIND_WRAP(SUPR0MemFree) },
331 { "SUPR0PageAllocEx", (void *)UNWIND_WRAP(SUPR0PageAllocEx) },
332 { "SUPR0PageFree", (void *)UNWIND_WRAP(SUPR0PageFree) },
333 { "SUPR0Printf", (void *)SUPR0Printf }, /** @todo needs wrapping? */
334 { "SUPSemEventCreate", (void *)UNWIND_WRAP(SUPSemEventCreate) },
335 { "SUPSemEventClose", (void *)UNWIND_WRAP(SUPSemEventClose) },
336 { "SUPSemEventSignal", (void *)UNWIND_WRAP(SUPSemEventSignal) },
337 { "SUPSemEventWait", (void *)UNWIND_WRAP(SUPSemEventWait) },
338 { "SUPSemEventWaitNoResume", (void *)UNWIND_WRAP(SUPSemEventWaitNoResume) },
339 { "SUPSemEventMultiCreate", (void *)UNWIND_WRAP(SUPSemEventMultiCreate) },
340 { "SUPSemEventMultiClose", (void *)UNWIND_WRAP(SUPSemEventMultiClose) },
341 { "SUPSemEventMultiSignal", (void *)UNWIND_WRAP(SUPSemEventMultiSignal) },
342 { "SUPSemEventMultiReset", (void *)UNWIND_WRAP(SUPSemEventMultiReset) },
343 { "SUPSemEventMultiWait", (void *)UNWIND_WRAP(SUPSemEventMultiWait) },
344 { "SUPSemEventMultiWaitNoResume", (void *)UNWIND_WRAP(SUPSemEventMultiWaitNoResume) },
345 { "SUPR0GetPagingMode", (void *)UNWIND_WRAP(SUPR0GetPagingMode) },
346 { "SUPR0EnableVTx", (void *)SUPR0EnableVTx },
347 { "RTMemAlloc", (void *)UNWIND_WRAP(RTMemAlloc) },
348 { "RTMemAllocZ", (void *)UNWIND_WRAP(RTMemAllocZ) },
349 { "RTMemFree", (void *)UNWIND_WRAP(RTMemFree) },
350 /*{ "RTMemDup", (void *)UNWIND_WRAP(RTMemDup) },
351 { "RTMemDupEx", (void *)UNWIND_WRAP(RTMemDupEx) },*/
352 { "RTMemRealloc", (void *)UNWIND_WRAP(RTMemRealloc) },
353 { "RTR0MemObjAllocLow", (void *)UNWIND_WRAP(RTR0MemObjAllocLow) },
354 { "RTR0MemObjAllocPage", (void *)UNWIND_WRAP(RTR0MemObjAllocPage) },
355 { "RTR0MemObjAllocPhys", (void *)UNWIND_WRAP(RTR0MemObjAllocPhys) },
356 { "RTR0MemObjAllocPhysNC", (void *)UNWIND_WRAP(RTR0MemObjAllocPhysNC) },
357 { "RTR0MemObjAllocCont", (void *)UNWIND_WRAP(RTR0MemObjAllocCont) },
358 { "RTR0MemObjEnterPhys", (void *)UNWIND_WRAP(RTR0MemObjEnterPhys) },
359 { "RTR0MemObjLockUser", (void *)UNWIND_WRAP(RTR0MemObjLockUser) },
360 { "RTR0MemObjMapKernel", (void *)UNWIND_WRAP(RTR0MemObjMapKernel) },
361 { "RTR0MemObjMapKernelEx", (void *)UNWIND_WRAP(RTR0MemObjMapKernelEx) },
362 { "RTR0MemObjMapUser", (void *)UNWIND_WRAP(RTR0MemObjMapUser) },
363 { "RTR0MemObjProtect", (void *)UNWIND_WRAP(RTR0MemObjProtect) },
364 { "RTR0MemObjAddress", (void *)RTR0MemObjAddress },
365 { "RTR0MemObjAddressR3", (void *)RTR0MemObjAddressR3 },
366 { "RTR0MemObjSize", (void *)RTR0MemObjSize },
367 { "RTR0MemObjIsMapping", (void *)RTR0MemObjIsMapping },
368 { "RTR0MemObjGetPagePhysAddr", (void *)RTR0MemObjGetPagePhysAddr },
369 { "RTR0MemObjFree", (void *)UNWIND_WRAP(RTR0MemObjFree) },
370/* These don't work yet on linux - use fast mutexes!
371 { "RTSemMutexCreate", (void *)RTSemMutexCreate },
372 { "RTSemMutexRequest", (void *)RTSemMutexRequest },
373 { "RTSemMutexRelease", (void *)RTSemMutexRelease },
374 { "RTSemMutexDestroy", (void *)RTSemMutexDestroy },
375*/
376 { "RTProcSelf", (void *)RTProcSelf },
377 { "RTR0ProcHandleSelf", (void *)RTR0ProcHandleSelf },
378 { "RTSemFastMutexCreate", (void *)UNWIND_WRAP(RTSemFastMutexCreate) },
379 { "RTSemFastMutexDestroy", (void *)UNWIND_WRAP(RTSemFastMutexDestroy) },
380 { "RTSemFastMutexRequest", (void *)UNWIND_WRAP(RTSemFastMutexRequest) },
381 { "RTSemFastMutexRelease", (void *)UNWIND_WRAP(RTSemFastMutexRelease) },
382 { "RTSemEventCreate", (void *)UNWIND_WRAP(RTSemEventCreate) },
383 { "RTSemEventSignal", (void *)UNWIND_WRAP(RTSemEventSignal) },
384 { "RTSemEventWait", (void *)UNWIND_WRAP(RTSemEventWait) },
385 { "RTSemEventWaitNoResume", (void *)UNWIND_WRAP(RTSemEventWaitNoResume) },
386 { "RTSemEventDestroy", (void *)UNWIND_WRAP(RTSemEventDestroy) },
387 { "RTSemEventMultiCreate", (void *)UNWIND_WRAP(RTSemEventMultiCreate) },
388 { "RTSemEventMultiSignal", (void *)UNWIND_WRAP(RTSemEventMultiSignal) },
389 { "RTSemEventMultiReset", (void *)UNWIND_WRAP(RTSemEventMultiReset) },
390 { "RTSemEventMultiWait", (void *)UNWIND_WRAP(RTSemEventMultiWait) },
391 { "RTSemEventMultiWaitNoResume", (void *)UNWIND_WRAP(RTSemEventMultiWaitNoResume) },
392 { "RTSemEventMultiDestroy", (void *)UNWIND_WRAP(RTSemEventMultiDestroy) },
393 { "RTSpinlockCreate", (void *)UNWIND_WRAP(RTSpinlockCreate) },
394 { "RTSpinlockDestroy", (void *)UNWIND_WRAP(RTSpinlockDestroy) },
395 { "RTSpinlockAcquire", (void *)UNWIND_WRAP(RTSpinlockAcquire) },
396 { "RTSpinlockRelease", (void *)UNWIND_WRAP(RTSpinlockRelease) },
397 { "RTSpinlockAcquireNoInts", (void *)UNWIND_WRAP(RTSpinlockAcquireNoInts) },
398 { "RTSpinlockReleaseNoInts", (void *)UNWIND_WRAP(RTSpinlockReleaseNoInts) },
399 { "RTTimeNanoTS", (void *)RTTimeNanoTS },
400 { "RTTimeMilliTS", (void *)RTTimeMilliTS },
401 { "RTTimeSystemNanoTS", (void *)RTTimeSystemNanoTS },
402 { "RTTimeSystemMilliTS", (void *)RTTimeSystemMilliTS },
403 { "RTThreadNativeSelf", (void *)RTThreadNativeSelf },
404 { "RTThreadSleep", (void *)UNWIND_WRAP(RTThreadSleep) },
405 { "RTThreadYield", (void *)UNWIND_WRAP(RTThreadYield) },
406#if 0 /* Thread APIs, Part 2. */
407 { "RTThreadSelf", (void *)UNWIND_WRAP(RTThreadSelf) },
408 { "RTThreadCreate", (void *)UNWIND_WRAP(RTThreadCreate) }, /** @todo need to wrap the callback */
409 { "RTThreadGetNative", (void *)UNWIND_WRAP(RTThreadGetNative) },
410 { "RTThreadWait", (void *)UNWIND_WRAP(RTThreadWait) },
411 { "RTThreadWaitNoResume", (void *)UNWIND_WRAP(RTThreadWaitNoResume) },
412 { "RTThreadGetName", (void *)UNWIND_WRAP(RTThreadGetName) },
413 { "RTThreadSelfName", (void *)UNWIND_WRAP(RTThreadSelfName) },
414 { "RTThreadGetType", (void *)UNWIND_WRAP(RTThreadGetType) },
415 { "RTThreadUserSignal", (void *)UNWIND_WRAP(RTThreadUserSignal) },
416 { "RTThreadUserReset", (void *)UNWIND_WRAP(RTThreadUserReset) },
417 { "RTThreadUserWait", (void *)UNWIND_WRAP(RTThreadUserWait) },
418 { "RTThreadUserWaitNoResume", (void *)UNWIND_WRAP(RTThreadUserWaitNoResume) },
419#endif
420 { "RTThreadPreemptIsEnabled", (void *)RTThreadPreemptIsEnabled },
421 { "RTThreadPreemptIsPending", (void *)RTThreadPreemptIsPending },
422 { "RTThreadPreemptIsPendingTrusty", (void *)RTThreadPreemptIsPendingTrusty },
423 { "RTThreadPreemptDisable", (void *)RTThreadPreemptDisable },
424 { "RTThreadPreemptRestore", (void *)UNWIND_WRAP(RTThreadPreemptRestore) },
425
426 { "RTLogDefaultInstance", (void *)RTLogDefaultInstance },
427 { "RTMpCpuId", (void *)RTMpCpuId },
428 { "RTMpCpuIdFromSetIndex", (void *)RTMpCpuIdFromSetIndex },
429 { "RTMpCpuIdToSetIndex", (void *)RTMpCpuIdToSetIndex },
430 { "RTMpIsCpuPossible", (void *)RTMpIsCpuPossible },
431 { "RTMpGetCount", (void *)RTMpGetCount },
432 { "RTMpGetMaxCpuId", (void *)RTMpGetMaxCpuId },
433 { "RTMpGetOnlineCount", (void *)RTMpGetOnlineCount },
434 { "RTMpGetOnlineSet", (void *)RTMpGetOnlineSet },
435 { "RTMpGetSet", (void *)RTMpGetSet },
436 { "RTMpIsCpuOnline", (void *)RTMpIsCpuOnline },
437 { "RTMpIsCpuWorkPending", (void *)UNWIND_WRAP(RTMpIsCpuWorkPending) },
438 { "RTMpOnAll", (void *)UNWIND_WRAP(RTMpOnAll) },
439 { "RTMpOnOthers", (void *)UNWIND_WRAP(RTMpOnOthers) },
440 { "RTMpOnSpecific", (void *)UNWIND_WRAP(RTMpOnSpecific) },
441 { "RTMpPokeCpu", (void *)UNWIND_WRAP(RTMpPokeCpu) },
442 { "RTPowerNotificationRegister", (void *)RTPowerNotificationRegister },
443 { "RTPowerNotificationDeregister", (void *)RTPowerNotificationDeregister },
444 { "RTLogRelDefaultInstance", (void *)RTLogRelDefaultInstance },
445 { "RTLogSetDefaultInstanceThread", (void *)UNWIND_WRAP(RTLogSetDefaultInstanceThread) },
446 { "RTLogLogger", (void *)RTLogLogger }, /** @todo remove this */
447 { "RTLogLoggerEx", (void *)RTLogLoggerEx }, /** @todo remove this */
448 { "RTLogLoggerExV", (void *)UNWIND_WRAP(RTLogLoggerExV) },
449 { "RTLogPrintf", (void *)RTLogPrintf }, /** @todo remove this */
450 { "RTLogPrintfV", (void *)UNWIND_WRAP(RTLogPrintfV) },
451 { "AssertMsg1", (void *)UNWIND_WRAP(AssertMsg1) },
452 { "AssertMsg2", (void *)AssertMsg2 }, /** @todo replace this by RTAssertMsg2V */
453#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS)
454 { "RTR0AssertPanicSystem", (void *)RTR0AssertPanicSystem },
455#endif
456#if defined(RT_OS_DARWIN)
457 { "RTAssertMsg1", (void *)RTAssertMsg1 },
458 { "RTAssertMsg2", (void *)RTAssertMsg2 },
459 { "RTAssertMsg2V", (void *)RTAssertMsg2V },
460#endif
461};
462
463#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
464/**
465 * Drag in the rest of IRPT since we share it with the
466 * rest of the kernel modules on darwin.
467 */
468PFNRT g_apfnVBoxDrvIPRTDeps[] =
469{
470 (PFNRT)RTCrc32,
471 (PFNRT)RTErrConvertFromErrno,
472 (PFNRT)RTNetIPv4IsHdrValid,
473 (PFNRT)RTNetIPv4TCPChecksum,
474 (PFNRT)RTNetIPv4UDPChecksum,
475 (PFNRT)RTUuidCompare,
476 (PFNRT)RTUuidCompareStr,
477 (PFNRT)RTUuidFromStr,
478 (PFNRT)RTStrDup,
479 (PFNRT)RTStrFree,
480 NULL
481};
482#endif /* RT_OS_DARWIN || RT_OS_SOLARIS || RT_OS_SOLARIS */
483
484
485/**
486 * Initializes the device extentsion structure.
487 *
488 * @returns IPRT status code.
489 * @param pDevExt The device extension to initialize.
490 */
491int VBOXCALL supdrvInitDevExt(PSUPDRVDEVEXT pDevExt)
492{
493 int rc;
494
495#ifdef SUPDRV_WITH_RELEASE_LOGGER
496 /*
497 * Create the release log.
498 */
499 static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES;
500 PRTLOGGER pRelLogger;
501 rc = RTLogCreate(&pRelLogger, 0 /* fFlags */, "all",
502 "VBOX_RELEASE_LOG", RT_ELEMENTS(s_apszGroups), s_apszGroups,
503 RTLOGDEST_STDOUT | RTLOGDEST_DEBUGGER, NULL);
504 if (RT_SUCCESS(rc))
505 RTLogRelSetDefaultInstance(pRelLogger);
506#endif
507
508 /*
509 * Initialize it.
510 */
511 memset(pDevExt, 0, sizeof(*pDevExt));
512 rc = RTSpinlockCreate(&pDevExt->Spinlock);
513 if (!rc)
514 {
515 rc = RTSemFastMutexCreate(&pDevExt->mtxLdr);
516 if (!rc)
517 {
518 rc = RTSemFastMutexCreate(&pDevExt->mtxComponentFactory);
519 if (!rc)
520 {
521 rc = RTSemFastMutexCreate(&pDevExt->mtxGip);
522 if (!rc)
523 {
524 rc = supdrvGipCreate(pDevExt);
525 if (RT_SUCCESS(rc))
526 {
527 pDevExt->u32Cookie = BIRD; /** @todo make this random? */
528
529 /*
530 * Fixup the absolute symbols.
531 *
532 * Because of the table indexing assumptions we'll have a little #ifdef orgy
533 * here rather than distributing this to OS specific files. At least for now.
534 */
535#ifdef RT_OS_DARWIN
536# if ARCH_BITS == 32
537 if (SUPR0GetPagingMode() >= SUPPAGINGMODE_AMD64)
538 {
539 g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
540 g_aFunctions[1].pfn = (void *)0x80; /* SUPR0Abs64bitKernelCS - KERNEL64_CS, seg.h */
541 g_aFunctions[2].pfn = (void *)0x88; /* SUPR0Abs64bitKernelSS - KERNEL64_SS, seg.h */
542 g_aFunctions[3].pfn = (void *)0x88; /* SUPR0Abs64bitKernelDS - KERNEL64_SS, seg.h */
543 }
544 else
545 g_aFunctions[0].pfn = g_aFunctions[1].pfn = g_aFunctions[2].pfn = g_aFunctions[4].pfn = (void *)0;
546 g_aFunctions[4].pfn = (void *)0x08; /* SUPR0AbsKernelCS - KERNEL_CS, seg.h */
547 g_aFunctions[5].pfn = (void *)0x10; /* SUPR0AbsKernelSS - KERNEL_DS, seg.h */
548 g_aFunctions[6].pfn = (void *)0x10; /* SUPR0AbsKernelDS - KERNEL_DS, seg.h */
549 g_aFunctions[7].pfn = (void *)0x10; /* SUPR0AbsKernelES - KERNEL_DS, seg.h */
550 g_aFunctions[8].pfn = (void *)0x10; /* SUPR0AbsKernelFS - KERNEL_DS, seg.h */
551 g_aFunctions[9].pfn = (void *)0x48; /* SUPR0AbsKernelGS - CPU_DATA_GS, seg.h */
552# else /* 64-bit darwin: */
553 g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
554 g_aFunctions[1].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0Abs64bitKernelCS */
555 g_aFunctions[2].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0Abs64bitKernelSS */
556 g_aFunctions[3].pfn = (void *)0; /* SUPR0Abs64bitKernelDS */
557 g_aFunctions[4].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0AbsKernelCS */
558 g_aFunctions[5].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0AbsKernelSS */
559 g_aFunctions[6].pfn = (void *)0; /* SUPR0AbsKernelDS */
560 g_aFunctions[7].pfn = (void *)0; /* SUPR0AbsKernelES */
561 g_aFunctions[8].pfn = (void *)0; /* SUPR0AbsKernelFS */
562 g_aFunctions[9].pfn = (void *)0; /* SUPR0AbsKernelGS */
563
564# endif
565#else /* !RT_OS_DARWIN */
566# if ARCH_BITS == 64
567 g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
568 g_aFunctions[1].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0Abs64bitKernelCS */
569 g_aFunctions[2].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0Abs64bitKernelSS */
570 g_aFunctions[3].pfn = (void *)(uintptr_t)ASMGetDS(); /* SUPR0Abs64bitKernelDS */
571# else
572 g_aFunctions[0].pfn = g_aFunctions[1].pfn = g_aFunctions[2].pfn = g_aFunctions[4].pfn = (void *)0;
573# endif
574 g_aFunctions[4].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0AbsKernelCS */
575 g_aFunctions[5].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0AbsKernelSS */
576 g_aFunctions[6].pfn = (void *)(uintptr_t)ASMGetDS(); /* SUPR0AbsKernelDS */
577 g_aFunctions[7].pfn = (void *)(uintptr_t)ASMGetES(); /* SUPR0AbsKernelES */
578 g_aFunctions[8].pfn = (void *)(uintptr_t)ASMGetFS(); /* SUPR0AbsKernelFS */
579 g_aFunctions[9].pfn = (void *)(uintptr_t)ASMGetGS(); /* SUPR0AbsKernelGS */
580#endif /* !RT_OS_DARWIN */
581 return VINF_SUCCESS;
582 }
583
584 RTSemFastMutexDestroy(pDevExt->mtxGip);
585 pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
586 }
587 RTSemFastMutexDestroy(pDevExt->mtxComponentFactory);
588 pDevExt->mtxComponentFactory = NIL_RTSEMFASTMUTEX;
589 }
590 RTSemFastMutexDestroy(pDevExt->mtxLdr);
591 pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
592 }
593 RTSpinlockDestroy(pDevExt->Spinlock);
594 pDevExt->Spinlock = NIL_RTSPINLOCK;
595 }
596#ifdef SUPDRV_WITH_RELEASE_LOGGER
597 RTLogDestroy(RTLogRelSetDefaultInstance(NULL));
598 RTLogDestroy(RTLogSetDefaultInstance(NULL));
599#endif
600
601 return rc;
602}
603
604
605/**
606 * Delete the device extension (e.g. cleanup members).
607 *
608 * @param pDevExt The device extension to delete.
609 */
610void VBOXCALL supdrvDeleteDevExt(PSUPDRVDEVEXT pDevExt)
611{
612 PSUPDRVOBJ pObj;
613 PSUPDRVUSAGE pUsage;
614
615 /*
616 * Kill mutexes and spinlocks.
617 */
618 RTSemFastMutexDestroy(pDevExt->mtxGip);
619 pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
620 RTSemFastMutexDestroy(pDevExt->mtxLdr);
621 pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
622 RTSpinlockDestroy(pDevExt->Spinlock);
623 pDevExt->Spinlock = NIL_RTSPINLOCK;
624 RTSemFastMutexDestroy(pDevExt->mtxComponentFactory);
625 pDevExt->mtxComponentFactory = NIL_RTSEMFASTMUTEX;
626
627 /*
628 * Free lists.
629 */
630 /* objects. */
631 pObj = pDevExt->pObjs;
632#if !defined(DEBUG_bird) || !defined(RT_OS_LINUX) /* breaks unloading, temporary, remove me! */
633 Assert(!pObj); /* (can trigger on forced unloads) */
634#endif
635 pDevExt->pObjs = NULL;
636 while (pObj)
637 {
638 void *pvFree = pObj;
639 pObj = pObj->pNext;
640 RTMemFree(pvFree);
641 }
642
643 /* usage records. */
644 pUsage = pDevExt->pUsageFree;
645 pDevExt->pUsageFree = NULL;
646 while (pUsage)
647 {
648 void *pvFree = pUsage;
649 pUsage = pUsage->pNext;
650 RTMemFree(pvFree);
651 }
652
653 /* kill the GIP. */
654 supdrvGipDestroy(pDevExt);
655
656#ifdef SUPDRV_WITH_RELEASE_LOGGER
657 /* destroy the loggers. */
658 RTLogDestroy(RTLogRelSetDefaultInstance(NULL));
659 RTLogDestroy(RTLogSetDefaultInstance(NULL));
660#endif
661}
662
663
664/**
665 * Create session.
666 *
667 * @returns IPRT status code.
668 * @param pDevExt Device extension.
669 * @param fUser Flag indicating whether this is a user or kernel session.
670 * @param ppSession Where to store the pointer to the session data.
671 */
672int VBOXCALL supdrvCreateSession(PSUPDRVDEVEXT pDevExt, bool fUser, PSUPDRVSESSION *ppSession)
673{
674 /*
675 * Allocate memory for the session data.
676 */
677 int rc = VERR_NO_MEMORY;
678 PSUPDRVSESSION pSession = *ppSession = (PSUPDRVSESSION)RTMemAllocZ(sizeof(*pSession));
679 if (pSession)
680 {
681 /* Initialize session data. */
682 rc = RTSpinlockCreate(&pSession->Spinlock);
683 if (!rc)
684 {
685 rc = RTHandleTableCreateEx(&pSession->hHandleTable,
686 RTHANDLETABLE_FLAGS_LOCKED | RTHANDLETABLE_FLAGS_CONTEXT,
687 1 /*uBase*/, 32768 /*cMax*/, supdrvSessionObjHandleRetain, pSession);
688 if (RT_SUCCESS(rc))
689 {
690 Assert(pSession->Spinlock != NIL_RTSPINLOCK);
691 pSession->pDevExt = pDevExt;
692 pSession->u32Cookie = BIRD_INV;
693 /*pSession->pLdrUsage = NULL;
694 pSession->pVM = NULL;
695 pSession->pUsage = NULL;
696 pSession->pGip = NULL;
697 pSession->fGipReferenced = false;
698 pSession->Bundle.cUsed = 0; */
699 pSession->Uid = NIL_RTUID;
700 pSession->Gid = NIL_RTGID;
701 if (fUser)
702 {
703 pSession->Process = RTProcSelf();
704 pSession->R0Process = RTR0ProcHandleSelf();
705 }
706 else
707 {
708 pSession->Process = NIL_RTPROCESS;
709 pSession->R0Process = NIL_RTR0PROCESS;
710 }
711
712 LogFlow(("Created session %p initial cookie=%#x\n", pSession, pSession->u32Cookie));
713 return VINF_SUCCESS;
714 }
715
716 RTSpinlockDestroy(pSession->Spinlock);
717 }
718 RTMemFree(pSession);
719 *ppSession = NULL;
720 Log(("Failed to create spinlock, rc=%d!\n", rc));
721 }
722
723 return rc;
724}
725
726
727/**
728 * Shared code for cleaning up a session.
729 *
730 * @param pDevExt Device extension.
731 * @param pSession Session data.
732 * This data will be freed by this routine.
733 */
734void VBOXCALL supdrvCloseSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
735{
736 /*
737 * Cleanup the session first.
738 */
739 supdrvCleanupSession(pDevExt, pSession);
740
741 /*
742 * Free the rest of the session stuff.
743 */
744 RTSpinlockDestroy(pSession->Spinlock);
745 pSession->Spinlock = NIL_RTSPINLOCK;
746 pSession->pDevExt = NULL;
747 RTMemFree(pSession);
748 LogFlow(("supdrvCloseSession: returns\n"));
749}
750
751
752/**
753 * Shared code for cleaning up a session (but not quite freeing it).
754 *
755 * This is primarily intended for MAC OS X where we have to clean up the memory
756 * stuff before the file handle is closed.
757 *
758 * @param pDevExt Device extension.
759 * @param pSession Session data.
760 * This data will be freed by this routine.
761 */
762void VBOXCALL supdrvCleanupSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
763{
764 int rc;
765 PSUPDRVBUNDLE pBundle;
766 LogFlow(("supdrvCleanupSession: pSession=%p\n", pSession));
767
768 /*
769 * Remove logger instances related to this session.
770 */
771 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pSession);
772
773 /*
774 * Destroy the handle table.
775 */
776 rc = RTHandleTableDestroy(pSession->hHandleTable, supdrvSessionObjHandleDelete, pSession);
777 AssertRC(rc);
778 pSession->hHandleTable = NIL_RTHANDLETABLE;
779
780 /*
781 * Release object references made in this session.
782 * In theory there should be noone racing us in this session.
783 */
784 Log2(("release objects - start\n"));
785 if (pSession->pUsage)
786 {
787 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
788 PSUPDRVUSAGE pUsage;
789 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
790
791 while ((pUsage = pSession->pUsage) != NULL)
792 {
793 PSUPDRVOBJ pObj = pUsage->pObj;
794 pSession->pUsage = pUsage->pNext;
795
796 AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
797 if (pUsage->cUsage < pObj->cUsage)
798 {
799 pObj->cUsage -= pUsage->cUsage;
800 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
801 }
802 else
803 {
804 /* Destroy the object and free the record. */
805 if (pDevExt->pObjs == pObj)
806 pDevExt->pObjs = pObj->pNext;
807 else
808 {
809 PSUPDRVOBJ pObjPrev;
810 for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
811 if (pObjPrev->pNext == pObj)
812 {
813 pObjPrev->pNext = pObj->pNext;
814 break;
815 }
816 Assert(pObjPrev);
817 }
818 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
819
820 Log(("supdrvCleanupSession: destroying %p/%d (%p/%p) cpid=%RTproc pid=%RTproc dtor=%p\n",
821 pObj, pObj->enmType, pObj->pvUser1, pObj->pvUser2, pObj->CreatorProcess, RTProcSelf(), pObj->pfnDestructor));
822 if (pObj->pfnDestructor)
823#ifdef RT_WITH_W64_UNWIND_HACK
824 supdrvNtWrapObjDestructor((PFNRT)pObj->pfnDestructor, pObj, pObj->pvUser1, pObj->pvUser2);
825#else
826 pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
827#endif
828 RTMemFree(pObj);
829 }
830
831 /* free it and continue. */
832 RTMemFree(pUsage);
833
834 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
835 }
836
837 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
838 AssertMsg(!pSession->pUsage, ("Some buster reregistered an object during desturction!\n"));
839 }
840 Log2(("release objects - done\n"));
841
842 /*
843 * Release memory allocated in the session.
844 *
845 * We do not serialize this as we assume that the application will
846 * not allocated memory while closing the file handle object.
847 */
848 Log2(("freeing memory:\n"));
849 pBundle = &pSession->Bundle;
850 while (pBundle)
851 {
852 PSUPDRVBUNDLE pToFree;
853 unsigned i;
854
855 /*
856 * Check and unlock all entries in the bundle.
857 */
858 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
859 {
860 if (pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ)
861 {
862 int rc;
863 Log2(("eType=%d pvR0=%p pvR3=%p cb=%ld\n", pBundle->aMem[i].eType, RTR0MemObjAddress(pBundle->aMem[i].MemObj),
864 (void *)RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3), (long)RTR0MemObjSize(pBundle->aMem[i].MemObj)));
865 if (pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ)
866 {
867 rc = RTR0MemObjFree(pBundle->aMem[i].MapObjR3, false);
868 AssertRC(rc); /** @todo figure out how to handle this. */
869 pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
870 }
871 rc = RTR0MemObjFree(pBundle->aMem[i].MemObj, true /* fFreeMappings */);
872 AssertRC(rc); /** @todo figure out how to handle this. */
873 pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
874 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
875 }
876 }
877
878 /*
879 * Advance and free previous bundle.
880 */
881 pToFree = pBundle;
882 pBundle = pBundle->pNext;
883
884 pToFree->pNext = NULL;
885 pToFree->cUsed = 0;
886 if (pToFree != &pSession->Bundle)
887 RTMemFree(pToFree);
888 }
889 Log2(("freeing memory - done\n"));
890
891 /*
892 * Deregister component factories.
893 */
894 RTSemFastMutexRequest(pDevExt->mtxComponentFactory);
895 Log2(("deregistering component factories:\n"));
896 if (pDevExt->pComponentFactoryHead)
897 {
898 PSUPDRVFACTORYREG pPrev = NULL;
899 PSUPDRVFACTORYREG pCur = pDevExt->pComponentFactoryHead;
900 while (pCur)
901 {
902 if (pCur->pSession == pSession)
903 {
904 /* unlink it */
905 PSUPDRVFACTORYREG pNext = pCur->pNext;
906 if (pPrev)
907 pPrev->pNext = pNext;
908 else
909 pDevExt->pComponentFactoryHead = pNext;
910
911 /* free it */
912 pCur->pNext = NULL;
913 pCur->pSession = NULL;
914 pCur->pFactory = NULL;
915 RTMemFree(pCur);
916
917 /* next */
918 pCur = pNext;
919 }
920 else
921 {
922 /* next */
923 pPrev = pCur;
924 pCur = pCur->pNext;
925 }
926 }
927 }
928 RTSemFastMutexRelease(pDevExt->mtxComponentFactory);
929 Log2(("deregistering component factories - done\n"));
930
931 /*
932 * Loaded images needs to be dereferenced and possibly freed up.
933 */
934 RTSemFastMutexRequest(pDevExt->mtxLdr);
935 Log2(("freeing images:\n"));
936 if (pSession->pLdrUsage)
937 {
938 PSUPDRVLDRUSAGE pUsage = pSession->pLdrUsage;
939 pSession->pLdrUsage = NULL;
940 while (pUsage)
941 {
942 void *pvFree = pUsage;
943 PSUPDRVLDRIMAGE pImage = pUsage->pImage;
944 if (pImage->cUsage > pUsage->cUsage)
945 pImage->cUsage -= pUsage->cUsage;
946 else
947 supdrvLdrFree(pDevExt, pImage);
948 pUsage->pImage = NULL;
949 pUsage = pUsage->pNext;
950 RTMemFree(pvFree);
951 }
952 }
953 RTSemFastMutexRelease(pDevExt->mtxLdr);
954 Log2(("freeing images - done\n"));
955
956 /*
957 * Unmap the GIP.
958 */
959 Log2(("umapping GIP:\n"));
960 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
961 {
962 SUPR0GipUnmap(pSession);
963 pSession->fGipReferenced = 0;
964 }
965 Log2(("umapping GIP - done\n"));
966}
967
968
969/**
970 * RTHandleTableDestroy callback used by supdrvCleanupSession.
971 *
972 * @returns IPRT status code, see SUPR0ObjAddRef.
973 * @param hHandleTable The handle table handle. Ignored.
974 * @param pvObj The object pointer.
975 * @param pvCtx Context, the handle type. Ignored.
976 * @param pvUser Session pointer.
977 */
978static DECLCALLBACK(int) supdrvSessionObjHandleRetain(RTHANDLETABLE hHandleTable, void *pvObj, void *pvCtx, void *pvUser)
979{
980 NOREF(pvCtx);
981 NOREF(hHandleTable);
982 return SUPR0ObjAddRef(pvObj, (PSUPDRVSESSION)pvUser);
983}
984
985
986/**
987 * RTHandleTableDestroy callback used by supdrvCleanupSession.
988 *
989 * @param hHandleTable The handle table handle. Ignored.
990 * @param h The handle value. Ignored.
991 * @param pvObj The object pointer.
992 * @param pvCtx Context, the handle type. Ignored.
993 * @param pvUser Session pointer.
994 */
995static DECLCALLBACK(void) supdrvSessionObjHandleDelete(RTHANDLETABLE hHandleTable, uint32_t h, void *pvObj, void *pvCtx, void *pvUser)
996{
997 NOREF(pvCtx);
998 NOREF(h);
999 NOREF(hHandleTable);
1000 SUPR0ObjRelease(pvObj, (PSUPDRVSESSION)pvUser);
1001}
1002
1003
1004/**
1005 * Fast path I/O Control worker.
1006 *
1007 * @returns VBox status code that should be passed down to ring-3 unchanged.
1008 * @param uIOCtl Function number.
1009 * @param idCpu VMCPU id.
1010 * @param pDevExt Device extention.
1011 * @param pSession Session data.
1012 */
1013int VBOXCALL supdrvIOCtlFast(uintptr_t uIOCtl, VMCPUID idCpu, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
1014{
1015 /*
1016 * We check the two prereqs after doing this only to allow the compiler to optimize things better.
1017 */
1018 if (RT_LIKELY(pSession->pVM && pDevExt->pfnVMMR0EntryFast))
1019 {
1020 switch (uIOCtl)
1021 {
1022 case SUP_IOCTL_FAST_DO_RAW_RUN:
1023#ifdef RT_WITH_W64_UNWIND_HACK
1024 supdrvNtWrapVMMR0EntryFast((PFNRT)pDevExt->pfnVMMR0EntryFast, pSession->pVM, idCpu, SUP_VMMR0_DO_RAW_RUN);
1025#else
1026 pDevExt->pfnVMMR0EntryFast(pSession->pVM, idCpu, SUP_VMMR0_DO_RAW_RUN);
1027#endif
1028 break;
1029 case SUP_IOCTL_FAST_DO_HWACC_RUN:
1030#ifdef RT_WITH_W64_UNWIND_HACK
1031 supdrvNtWrapVMMR0EntryFast((PFNRT)pDevExt->pfnVMMR0EntryFast, pSession->pVM, idCpu, SUP_VMMR0_DO_HWACC_RUN);
1032#else
1033 pDevExt->pfnVMMR0EntryFast(pSession->pVM, idCpu, SUP_VMMR0_DO_HWACC_RUN);
1034#endif
1035 break;
1036 case SUP_IOCTL_FAST_DO_NOP:
1037#ifdef RT_WITH_W64_UNWIND_HACK
1038 supdrvNtWrapVMMR0EntryFast((PFNRT)pDevExt->pfnVMMR0EntryFast, pSession->pVM, idCpu, SUP_VMMR0_DO_NOP);
1039#else
1040 pDevExt->pfnVMMR0EntryFast(pSession->pVM, idCpu, SUP_VMMR0_DO_NOP);
1041#endif
1042 break;
1043 default:
1044 return VERR_INTERNAL_ERROR;
1045 }
1046 return VINF_SUCCESS;
1047 }
1048 return VERR_INTERNAL_ERROR;
1049}
1050
1051
1052/**
1053 * Helper for supdrvIOCtl. Check if pszStr contains any character of pszChars.
1054 * We would use strpbrk here if this function would be contained in the RedHat kABI white
1055 * list, see http://www.kerneldrivers.org/RHEL5.
1056 *
1057 * @return 1 if pszStr does contain any character of pszChars, 0 otherwise.
1058 * @param pszStr String to check
1059 * @param pszChars Character set
1060 */
1061static int supdrvCheckInvalidChar(const char *pszStr, const char *pszChars)
1062{
1063 int chCur;
1064 while ((chCur = *pszStr++) != '\0')
1065 {
1066 int ch;
1067 const char *psz = pszChars;
1068 while ((ch = *psz++) != '\0')
1069 if (ch == chCur)
1070 return 1;
1071
1072 }
1073 return 0;
1074}
1075
1076
1077/**
1078 * I/O Control worker.
1079 *
1080 * @returns 0 on success.
1081 * @returns VERR_INVALID_PARAMETER if the request is invalid.
1082 *
1083 * @param uIOCtl Function number.
1084 * @param pDevExt Device extention.
1085 * @param pSession Session data.
1086 * @param pReqHdr The request header.
1087 */
1088int VBOXCALL supdrvIOCtl(uintptr_t uIOCtl, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPREQHDR pReqHdr)
1089{
1090 /*
1091 * Validate the request.
1092 */
1093 /* this first check could probably be omitted as its also done by the OS specific code... */
1094 if (RT_UNLIKELY( (pReqHdr->fFlags & SUPREQHDR_FLAGS_MAGIC_MASK) != SUPREQHDR_FLAGS_MAGIC
1095 || pReqHdr->cbIn < sizeof(*pReqHdr)
1096 || pReqHdr->cbOut < sizeof(*pReqHdr)))
1097 {
1098 OSDBGPRINT(("vboxdrv: Bad ioctl request header; cbIn=%#lx cbOut=%#lx fFlags=%#lx\n",
1099 (long)pReqHdr->cbIn, (long)pReqHdr->cbOut, (long)pReqHdr->fFlags));
1100 return VERR_INVALID_PARAMETER;
1101 }
1102 if (RT_UNLIKELY(uIOCtl == SUP_IOCTL_COOKIE))
1103 {
1104 if (pReqHdr->u32Cookie != SUPCOOKIE_INITIAL_COOKIE)
1105 {
1106 OSDBGPRINT(("SUP_IOCTL_COOKIE: bad cookie %#lx\n", (long)pReqHdr->u32Cookie));
1107 return VERR_INVALID_PARAMETER;
1108 }
1109 }
1110 else if (RT_UNLIKELY( pReqHdr->u32Cookie != pDevExt->u32Cookie
1111 || pReqHdr->u32SessionCookie != pSession->u32Cookie))
1112 {
1113 OSDBGPRINT(("vboxdrv: bad cookie %#lx / %#lx.\n", (long)pReqHdr->u32Cookie, (long)pReqHdr->u32SessionCookie));
1114 return VERR_INVALID_PARAMETER;
1115 }
1116
1117/*
1118 * Validation macros
1119 */
1120#define REQ_CHECK_SIZES_EX(Name, cbInExpect, cbOutExpect) \
1121 do { \
1122 if (RT_UNLIKELY(pReqHdr->cbIn != (cbInExpect) || pReqHdr->cbOut != (cbOutExpect))) \
1123 { \
1124 OSDBGPRINT(( #Name ": Invalid input/output sizes. cbIn=%ld expected %ld. cbOut=%ld expected %ld.\n", \
1125 (long)pReq->Hdr.cbIn, (long)(cbInExpect), (long)pReq->Hdr.cbOut, (long)(cbOutExpect))); \
1126 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1127 } \
1128 } while (0)
1129
1130#define REQ_CHECK_SIZES(Name) REQ_CHECK_SIZES_EX(Name, Name ## _SIZE_IN, Name ## _SIZE_OUT)
1131
1132#define REQ_CHECK_SIZE_IN(Name, cbInExpect) \
1133 do { \
1134 if (RT_UNLIKELY(pReqHdr->cbIn != (cbInExpect))) \
1135 { \
1136 OSDBGPRINT(( #Name ": Invalid input/output sizes. cbIn=%ld expected %ld.\n", \
1137 (long)pReq->Hdr.cbIn, (long)(cbInExpect))); \
1138 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1139 } \
1140 } while (0)
1141
1142#define REQ_CHECK_SIZE_OUT(Name, cbOutExpect) \
1143 do { \
1144 if (RT_UNLIKELY(pReqHdr->cbOut != (cbOutExpect))) \
1145 { \
1146 OSDBGPRINT(( #Name ": Invalid input/output sizes. cbOut=%ld expected %ld.\n", \
1147 (long)pReq->Hdr.cbOut, (long)(cbOutExpect))); \
1148 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1149 } \
1150 } while (0)
1151
1152#define REQ_CHECK_EXPR(Name, expr) \
1153 do { \
1154 if (RT_UNLIKELY(!(expr))) \
1155 { \
1156 OSDBGPRINT(( #Name ": %s\n", #expr)); \
1157 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1158 } \
1159 } while (0)
1160
1161#define REQ_CHECK_EXPR_FMT(expr, fmt) \
1162 do { \
1163 if (RT_UNLIKELY(!(expr))) \
1164 { \
1165 OSDBGPRINT( fmt ); \
1166 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1167 } \
1168 } while (0)
1169
1170
1171 /*
1172 * The switch.
1173 */
1174 switch (SUP_CTL_CODE_NO_SIZE(uIOCtl))
1175 {
1176 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_COOKIE):
1177 {
1178 PSUPCOOKIE pReq = (PSUPCOOKIE)pReqHdr;
1179 REQ_CHECK_SIZES(SUP_IOCTL_COOKIE);
1180 if (strncmp(pReq->u.In.szMagic, SUPCOOKIE_MAGIC, sizeof(pReq->u.In.szMagic)))
1181 {
1182 OSDBGPRINT(("SUP_IOCTL_COOKIE: invalid magic %.16s\n", pReq->u.In.szMagic));
1183 pReq->Hdr.rc = VERR_INVALID_MAGIC;
1184 return 0;
1185 }
1186
1187#if 0
1188 /*
1189 * Call out to the OS specific code and let it do permission checks on the
1190 * client process.
1191 */
1192 if (!supdrvOSValidateClientProcess(pDevExt, pSession))
1193 {
1194 pReq->u.Out.u32Cookie = 0xffffffff;
1195 pReq->u.Out.u32SessionCookie = 0xffffffff;
1196 pReq->u.Out.u32SessionVersion = 0xffffffff;
1197 pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
1198 pReq->u.Out.pSession = NULL;
1199 pReq->u.Out.cFunctions = 0;
1200 pReq->Hdr.rc = VERR_PERMISSION_DENIED;
1201 return 0;
1202 }
1203#endif
1204
1205 /*
1206 * Match the version.
1207 * The current logic is very simple, match the major interface version.
1208 */
1209 if ( pReq->u.In.u32MinVersion > SUPDRV_IOC_VERSION
1210 || (pReq->u.In.u32MinVersion & 0xffff0000) != (SUPDRV_IOC_VERSION & 0xffff0000))
1211 {
1212 OSDBGPRINT(("SUP_IOCTL_COOKIE: Version mismatch. Requested: %#x Min: %#x Current: %#x\n",
1213 pReq->u.In.u32ReqVersion, pReq->u.In.u32MinVersion, SUPDRV_IOC_VERSION));
1214 pReq->u.Out.u32Cookie = 0xffffffff;
1215 pReq->u.Out.u32SessionCookie = 0xffffffff;
1216 pReq->u.Out.u32SessionVersion = 0xffffffff;
1217 pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
1218 pReq->u.Out.pSession = NULL;
1219 pReq->u.Out.cFunctions = 0;
1220 pReq->Hdr.rc = VERR_VERSION_MISMATCH;
1221 return 0;
1222 }
1223
1224 /*
1225 * Fill in return data and be gone.
1226 * N.B. The first one to change SUPDRV_IOC_VERSION shall makes sure that
1227 * u32SessionVersion <= u32ReqVersion!
1228 */
1229 /** @todo Somehow validate the client and negotiate a secure cookie... */
1230 pReq->u.Out.u32Cookie = pDevExt->u32Cookie;
1231 pReq->u.Out.u32SessionCookie = pSession->u32Cookie;
1232 pReq->u.Out.u32SessionVersion = SUPDRV_IOC_VERSION;
1233 pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
1234 pReq->u.Out.pSession = pSession;
1235 pReq->u.Out.cFunctions = sizeof(g_aFunctions) / sizeof(g_aFunctions[0]);
1236 pReq->Hdr.rc = VINF_SUCCESS;
1237 return 0;
1238 }
1239
1240 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_QUERY_FUNCS(0)):
1241 {
1242 /* validate */
1243 PSUPQUERYFUNCS pReq = (PSUPQUERYFUNCS)pReqHdr;
1244 REQ_CHECK_SIZES_EX(SUP_IOCTL_QUERY_FUNCS, SUP_IOCTL_QUERY_FUNCS_SIZE_IN, SUP_IOCTL_QUERY_FUNCS_SIZE_OUT(RT_ELEMENTS(g_aFunctions)));
1245
1246 /* execute */
1247 pReq->u.Out.cFunctions = RT_ELEMENTS(g_aFunctions);
1248 memcpy(&pReq->u.Out.aFunctions[0], g_aFunctions, sizeof(g_aFunctions));
1249 pReq->Hdr.rc = VINF_SUCCESS;
1250 return 0;
1251 }
1252
1253 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_LOCK):
1254 {
1255 /* validate */
1256 PSUPPAGELOCK pReq = (PSUPPAGELOCK)pReqHdr;
1257 REQ_CHECK_SIZE_IN(SUP_IOCTL_PAGE_LOCK, SUP_IOCTL_PAGE_LOCK_SIZE_IN);
1258 REQ_CHECK_SIZE_OUT(SUP_IOCTL_PAGE_LOCK, SUP_IOCTL_PAGE_LOCK_SIZE_OUT(pReq->u.In.cPages));
1259 REQ_CHECK_EXPR(SUP_IOCTL_PAGE_LOCK, pReq->u.In.cPages > 0);
1260 REQ_CHECK_EXPR(SUP_IOCTL_PAGE_LOCK, pReq->u.In.pvR3 >= PAGE_SIZE);
1261
1262 /* execute */
1263 pReq->Hdr.rc = SUPR0LockMem(pSession, pReq->u.In.pvR3, pReq->u.In.cPages, &pReq->u.Out.aPages[0]);
1264 if (RT_FAILURE(pReq->Hdr.rc))
1265 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1266 return 0;
1267 }
1268
1269 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_UNLOCK):
1270 {
1271 /* validate */
1272 PSUPPAGEUNLOCK pReq = (PSUPPAGEUNLOCK)pReqHdr;
1273 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_UNLOCK);
1274
1275 /* execute */
1276 pReq->Hdr.rc = SUPR0UnlockMem(pSession, pReq->u.In.pvR3);
1277 return 0;
1278 }
1279
1280 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CONT_ALLOC):
1281 {
1282 /* validate */
1283 PSUPCONTALLOC pReq = (PSUPCONTALLOC)pReqHdr;
1284 REQ_CHECK_SIZES(SUP_IOCTL_CONT_ALLOC);
1285
1286 /* execute */
1287 pReq->Hdr.rc = SUPR0ContAlloc(pSession, pReq->u.In.cPages, &pReq->u.Out.pvR0, &pReq->u.Out.pvR3, &pReq->u.Out.HCPhys);
1288 if (RT_FAILURE(pReq->Hdr.rc))
1289 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1290 return 0;
1291 }
1292
1293 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CONT_FREE):
1294 {
1295 /* validate */
1296 PSUPCONTFREE pReq = (PSUPCONTFREE)pReqHdr;
1297 REQ_CHECK_SIZES(SUP_IOCTL_CONT_FREE);
1298
1299 /* execute */
1300 pReq->Hdr.rc = SUPR0ContFree(pSession, (RTHCUINTPTR)pReq->u.In.pvR3);
1301 return 0;
1302 }
1303
1304 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_OPEN):
1305 {
1306 /* validate */
1307 PSUPLDROPEN pReq = (PSUPLDROPEN)pReqHdr;
1308 REQ_CHECK_SIZES(SUP_IOCTL_LDR_OPEN);
1309 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImage > 0);
1310 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImage < _1M*16);
1311 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.szName[0]);
1312 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, memchr(pReq->u.In.szName, '\0', sizeof(pReq->u.In.szName)));
1313 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, !supdrvCheckInvalidChar(pReq->u.In.szName, ";:()[]{}/\\|&*%#@!~`\"'"));
1314
1315 /* execute */
1316 pReq->Hdr.rc = supdrvIOCtl_LdrOpen(pDevExt, pSession, pReq);
1317 return 0;
1318 }
1319
1320 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_LOAD):
1321 {
1322 /* validate */
1323 PSUPLDRLOAD pReq = (PSUPLDRLOAD)pReqHdr;
1324 REQ_CHECK_EXPR(Name, pReq->Hdr.cbIn >= sizeof(*pReq));
1325 REQ_CHECK_SIZES_EX(SUP_IOCTL_LDR_LOAD, SUP_IOCTL_LDR_LOAD_SIZE_IN(pReq->u.In.cbImage), SUP_IOCTL_LDR_LOAD_SIZE_OUT);
1326 REQ_CHECK_EXPR(SUP_IOCTL_LDR_LOAD, pReq->u.In.cSymbols <= 16384);
1327 REQ_CHECK_EXPR_FMT( !pReq->u.In.cSymbols
1328 || ( pReq->u.In.offSymbols < pReq->u.In.cbImage
1329 && pReq->u.In.offSymbols + pReq->u.In.cSymbols * sizeof(SUPLDRSYM) <= pReq->u.In.cbImage),
1330 ("SUP_IOCTL_LDR_LOAD: offSymbols=%#lx cSymbols=%#lx cbImage=%#lx\n", (long)pReq->u.In.offSymbols,
1331 (long)pReq->u.In.cSymbols, (long)pReq->u.In.cbImage));
1332 REQ_CHECK_EXPR_FMT( !pReq->u.In.cbStrTab
1333 || ( pReq->u.In.offStrTab < pReq->u.In.cbImage
1334 && pReq->u.In.offStrTab + pReq->u.In.cbStrTab <= pReq->u.In.cbImage
1335 && pReq->u.In.cbStrTab <= pReq->u.In.cbImage),
1336 ("SUP_IOCTL_LDR_LOAD: offStrTab=%#lx cbStrTab=%#lx cbImage=%#lx\n", (long)pReq->u.In.offStrTab,
1337 (long)pReq->u.In.cbStrTab, (long)pReq->u.In.cbImage));
1338
1339 if (pReq->u.In.cSymbols)
1340 {
1341 uint32_t i;
1342 PSUPLDRSYM paSyms = (PSUPLDRSYM)&pReq->u.In.achImage[pReq->u.In.offSymbols];
1343 for (i = 0; i < pReq->u.In.cSymbols; i++)
1344 {
1345 REQ_CHECK_EXPR_FMT(paSyms[i].offSymbol < pReq->u.In.cbImage,
1346 ("SUP_IOCTL_LDR_LOAD: sym #%ld: symb off %#lx (max=%#lx)\n", (long)i, (long)paSyms[i].offSymbol, (long)pReq->u.In.cbImage));
1347 REQ_CHECK_EXPR_FMT(paSyms[i].offName < pReq->u.In.cbStrTab,
1348 ("SUP_IOCTL_LDR_LOAD: sym #%ld: name off %#lx (max=%#lx)\n", (long)i, (long)paSyms[i].offName, (long)pReq->u.In.cbImage));
1349 REQ_CHECK_EXPR_FMT(memchr(&pReq->u.In.achImage[pReq->u.In.offStrTab + paSyms[i].offName], '\0', pReq->u.In.cbStrTab - paSyms[i].offName),
1350 ("SUP_IOCTL_LDR_LOAD: sym #%ld: unterminated name! (%#lx / %#lx)\n", (long)i, (long)paSyms[i].offName, (long)pReq->u.In.cbImage));
1351 }
1352 }
1353
1354 /* execute */
1355 pReq->Hdr.rc = supdrvIOCtl_LdrLoad(pDevExt, pSession, pReq);
1356 return 0;
1357 }
1358
1359 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_FREE):
1360 {
1361 /* validate */
1362 PSUPLDRFREE pReq = (PSUPLDRFREE)pReqHdr;
1363 REQ_CHECK_SIZES(SUP_IOCTL_LDR_FREE);
1364
1365 /* execute */
1366 pReq->Hdr.rc = supdrvIOCtl_LdrFree(pDevExt, pSession, pReq);
1367 return 0;
1368 }
1369
1370 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_GET_SYMBOL):
1371 {
1372 /* validate */
1373 PSUPLDRGETSYMBOL pReq = (PSUPLDRGETSYMBOL)pReqHdr;
1374 REQ_CHECK_SIZES(SUP_IOCTL_LDR_GET_SYMBOL);
1375 REQ_CHECK_EXPR(SUP_IOCTL_LDR_GET_SYMBOL, memchr(pReq->u.In.szSymbol, '\0', sizeof(pReq->u.In.szSymbol)));
1376
1377 /* execute */
1378 pReq->Hdr.rc = supdrvIOCtl_LdrGetSymbol(pDevExt, pSession, pReq);
1379 return 0;
1380 }
1381
1382 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CALL_VMMR0(0)):
1383 {
1384 /* validate */
1385 PSUPCALLVMMR0 pReq = (PSUPCALLVMMR0)pReqHdr;
1386 Log4(("SUP_IOCTL_CALL_VMMR0: op=%u in=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1387 pReq->u.In.uOperation, pReq->Hdr.cbIn, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1388
1389 if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_VMMR0_SIZE(0))
1390 {
1391 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_VMMR0, SUP_IOCTL_CALL_VMMR0_SIZE_IN(0), SUP_IOCTL_CALL_VMMR0_SIZE_OUT(0));
1392
1393 /* execute */
1394 if (RT_LIKELY(pDevExt->pfnVMMR0EntryEx))
1395#ifdef RT_WITH_W64_UNWIND_HACK
1396 pReq->Hdr.rc = supdrvNtWrapVMMR0EntryEx((PFNRT)pDevExt->pfnVMMR0EntryEx, pReq->u.In.pVMR0, pReq->u.In.idCpu, pReq->u.In.uOperation, NULL, pReq->u.In.u64Arg, pSession);
1397#else
1398 pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(pReq->u.In.pVMR0, pReq->u.In.idCpu, pReq->u.In.uOperation, NULL, pReq->u.In.u64Arg, pSession);
1399#endif
1400 else
1401 pReq->Hdr.rc = VERR_WRONG_ORDER;
1402 }
1403 else
1404 {
1405 PSUPVMMR0REQHDR pVMMReq = (PSUPVMMR0REQHDR)&pReq->abReqPkt[0];
1406 REQ_CHECK_EXPR_FMT(pReq->Hdr.cbIn >= SUP_IOCTL_CALL_VMMR0_SIZE(sizeof(SUPVMMR0REQHDR)),
1407 ("SUP_IOCTL_CALL_VMMR0: cbIn=%#x < %#lx\n", pReq->Hdr.cbIn, SUP_IOCTL_CALL_VMMR0_SIZE(sizeof(SUPVMMR0REQHDR))));
1408 REQ_CHECK_EXPR(SUP_IOCTL_CALL_VMMR0, pVMMReq->u32Magic == SUPVMMR0REQHDR_MAGIC);
1409 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_VMMR0, SUP_IOCTL_CALL_VMMR0_SIZE_IN(pVMMReq->cbReq), SUP_IOCTL_CALL_VMMR0_SIZE_OUT(pVMMReq->cbReq));
1410
1411 /* execute */
1412 if (RT_LIKELY(pDevExt->pfnVMMR0EntryEx))
1413#ifdef RT_WITH_W64_UNWIND_HACK
1414 pReq->Hdr.rc = supdrvNtWrapVMMR0EntryEx((PFNRT)pDevExt->pfnVMMR0EntryEx, pReq->u.In.pVMR0, pReq->u.In.idCpu, pReq->u.In.uOperation, pVMMReq, pReq->u.In.u64Arg, pSession);
1415#else
1416 pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(pReq->u.In.pVMR0, pReq->u.In.idCpu, pReq->u.In.uOperation, pVMMReq, pReq->u.In.u64Arg, pSession);
1417#endif
1418 else
1419 pReq->Hdr.rc = VERR_WRONG_ORDER;
1420 }
1421
1422 if ( RT_FAILURE(pReq->Hdr.rc)
1423 && pReq->Hdr.rc != VERR_INTERRUPTED
1424 && pReq->Hdr.rc != VERR_TIMEOUT)
1425 Log(("SUP_IOCTL_CALL_VMMR0: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1426 pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1427 else
1428 Log4(("SUP_IOCTL_CALL_VMMR0: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1429 pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1430 return 0;
1431 }
1432
1433 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GET_PAGING_MODE):
1434 {
1435 /* validate */
1436 PSUPGETPAGINGMODE pReq = (PSUPGETPAGINGMODE)pReqHdr;
1437 REQ_CHECK_SIZES(SUP_IOCTL_GET_PAGING_MODE);
1438
1439 /* execute */
1440 pReq->Hdr.rc = VINF_SUCCESS;
1441 pReq->u.Out.enmMode = SUPR0GetPagingMode();
1442 return 0;
1443 }
1444
1445 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOW_ALLOC):
1446 {
1447 /* validate */
1448 PSUPLOWALLOC pReq = (PSUPLOWALLOC)pReqHdr;
1449 REQ_CHECK_EXPR(SUP_IOCTL_LOW_ALLOC, pReq->Hdr.cbIn <= SUP_IOCTL_LOW_ALLOC_SIZE_IN);
1450 REQ_CHECK_SIZES_EX(SUP_IOCTL_LOW_ALLOC, SUP_IOCTL_LOW_ALLOC_SIZE_IN, SUP_IOCTL_LOW_ALLOC_SIZE_OUT(pReq->u.In.cPages));
1451
1452 /* execute */
1453 pReq->Hdr.rc = SUPR0LowAlloc(pSession, pReq->u.In.cPages, &pReq->u.Out.pvR0, &pReq->u.Out.pvR3, &pReq->u.Out.aPages[0]);
1454 if (RT_FAILURE(pReq->Hdr.rc))
1455 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1456 return 0;
1457 }
1458
1459 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOW_FREE):
1460 {
1461 /* validate */
1462 PSUPLOWFREE pReq = (PSUPLOWFREE)pReqHdr;
1463 REQ_CHECK_SIZES(SUP_IOCTL_LOW_FREE);
1464
1465 /* execute */
1466 pReq->Hdr.rc = SUPR0LowFree(pSession, (RTHCUINTPTR)pReq->u.In.pvR3);
1467 return 0;
1468 }
1469
1470 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GIP_MAP):
1471 {
1472 /* validate */
1473 PSUPGIPMAP pReq = (PSUPGIPMAP)pReqHdr;
1474 REQ_CHECK_SIZES(SUP_IOCTL_GIP_MAP);
1475
1476 /* execute */
1477 pReq->Hdr.rc = SUPR0GipMap(pSession, &pReq->u.Out.pGipR3, &pReq->u.Out.HCPhysGip);
1478 if (RT_SUCCESS(pReq->Hdr.rc))
1479 pReq->u.Out.pGipR0 = pDevExt->pGip;
1480 return 0;
1481 }
1482
1483 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GIP_UNMAP):
1484 {
1485 /* validate */
1486 PSUPGIPUNMAP pReq = (PSUPGIPUNMAP)pReqHdr;
1487 REQ_CHECK_SIZES(SUP_IOCTL_GIP_UNMAP);
1488
1489 /* execute */
1490 pReq->Hdr.rc = SUPR0GipUnmap(pSession);
1491 return 0;
1492 }
1493
1494 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SET_VM_FOR_FAST):
1495 {
1496 /* validate */
1497 PSUPSETVMFORFAST pReq = (PSUPSETVMFORFAST)pReqHdr;
1498 REQ_CHECK_SIZES(SUP_IOCTL_SET_VM_FOR_FAST);
1499 REQ_CHECK_EXPR_FMT( !pReq->u.In.pVMR0
1500 || ( VALID_PTR(pReq->u.In.pVMR0)
1501 && !((uintptr_t)pReq->u.In.pVMR0 & (PAGE_SIZE - 1))),
1502 ("SUP_IOCTL_SET_VM_FOR_FAST: pVMR0=%p!\n", pReq->u.In.pVMR0));
1503 /* execute */
1504 pSession->pVM = pReq->u.In.pVMR0;
1505 pReq->Hdr.rc = VINF_SUCCESS;
1506 return 0;
1507 }
1508
1509 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_ALLOC_EX):
1510 {
1511 /* validate */
1512 PSUPPAGEALLOCEX pReq = (PSUPPAGEALLOCEX)pReqHdr;
1513 REQ_CHECK_EXPR(SUP_IOCTL_PAGE_ALLOC_EX, pReq->Hdr.cbIn <= SUP_IOCTL_PAGE_ALLOC_EX_SIZE_IN);
1514 REQ_CHECK_SIZES_EX(SUP_IOCTL_PAGE_ALLOC_EX, SUP_IOCTL_PAGE_ALLOC_EX_SIZE_IN, SUP_IOCTL_PAGE_ALLOC_EX_SIZE_OUT(pReq->u.In.cPages));
1515 REQ_CHECK_EXPR_FMT(pReq->u.In.fKernelMapping || pReq->u.In.fUserMapping,
1516 ("SUP_IOCTL_PAGE_ALLOC_EX: No mapping requested!\n"));
1517 REQ_CHECK_EXPR_FMT(pReq->u.In.fUserMapping,
1518 ("SUP_IOCTL_PAGE_ALLOC_EX: Must have user mapping!\n"));
1519 REQ_CHECK_EXPR_FMT(!pReq->u.In.fReserved0 && !pReq->u.In.fReserved1,
1520 ("SUP_IOCTL_PAGE_ALLOC_EX: fReserved0=%d fReserved1=%d\n", pReq->u.In.fReserved0, pReq->u.In.fReserved1));
1521
1522 /* execute */
1523 pReq->Hdr.rc = SUPR0PageAllocEx(pSession, pReq->u.In.cPages, 0 /* fFlags */,
1524 pReq->u.In.fUserMapping ? &pReq->u.Out.pvR3 : NULL,
1525 pReq->u.In.fKernelMapping ? &pReq->u.Out.pvR0 : NULL,
1526 &pReq->u.Out.aPages[0]);
1527 if (RT_FAILURE(pReq->Hdr.rc))
1528 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1529 return 0;
1530 }
1531
1532 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_MAP_KERNEL):
1533 {
1534 /* validate */
1535 PSUPPAGEMAPKERNEL pReq = (PSUPPAGEMAPKERNEL)pReqHdr;
1536 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_MAP_KERNEL);
1537 REQ_CHECK_EXPR_FMT(!pReq->u.In.fFlags, ("SUP_IOCTL_PAGE_MAP_KERNEL: fFlags=%#x! MBZ\n", pReq->u.In.fFlags));
1538 REQ_CHECK_EXPR_FMT(!(pReq->u.In.offSub & PAGE_OFFSET_MASK), ("SUP_IOCTL_PAGE_MAP_KERNEL: offSub=%#x\n", pReq->u.In.offSub));
1539 REQ_CHECK_EXPR_FMT(pReq->u.In.cbSub && !(pReq->u.In.cbSub & PAGE_OFFSET_MASK),
1540 ("SUP_IOCTL_PAGE_MAP_KERNEL: cbSub=%#x\n", pReq->u.In.cbSub));
1541
1542 /* execute */
1543 pReq->Hdr.rc = SUPR0PageMapKernel(pSession, pReq->u.In.pvR3, pReq->u.In.offSub, pReq->u.In.cbSub,
1544 pReq->u.In.fFlags, &pReq->u.Out.pvR0);
1545 if (RT_FAILURE(pReq->Hdr.rc))
1546 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1547 return 0;
1548 }
1549
1550 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_PROTECT):
1551 {
1552 /* validate */
1553 PSUPPAGEPROTECT pReq = (PSUPPAGEPROTECT)pReqHdr;
1554 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_PROTECT);
1555 REQ_CHECK_EXPR_FMT(!(pReq->u.In.fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_NONE)),
1556 ("SUP_IOCTL_PAGE_PROTECT: fProt=%#x!\n", pReq->u.In.fProt));
1557 REQ_CHECK_EXPR_FMT(!(pReq->u.In.offSub & PAGE_OFFSET_MASK), ("SUP_IOCTL_PAGE_PROTECT: offSub=%#x\n", pReq->u.In.offSub));
1558 REQ_CHECK_EXPR_FMT(pReq->u.In.cbSub && !(pReq->u.In.cbSub & PAGE_OFFSET_MASK),
1559 ("SUP_IOCTL_PAGE_PROTECT: cbSub=%#x\n", pReq->u.In.cbSub));
1560
1561 /* execute */
1562 pReq->Hdr.rc = SUPR0PageProtect(pSession, pReq->u.In.pvR3, pReq->u.In.pvR0, pReq->u.In.offSub, pReq->u.In.cbSub, pReq->u.In.fProt);
1563 return 0;
1564 }
1565
1566 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_FREE):
1567 {
1568 /* validate */
1569 PSUPPAGEFREE pReq = (PSUPPAGEFREE)pReqHdr;
1570 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_FREE);
1571
1572 /* execute */
1573 pReq->Hdr.rc = SUPR0PageFree(pSession, pReq->u.In.pvR3);
1574 return 0;
1575 }
1576
1577 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CALL_SERVICE(0)):
1578 {
1579 /* validate */
1580 PSUPCALLSERVICE pReq = (PSUPCALLSERVICE)pReqHdr;
1581 Log4(("SUP_IOCTL_CALL_SERVICE: op=%u in=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1582 pReq->u.In.uOperation, pReq->Hdr.cbIn, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1583
1584 if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_SERVICE_SIZE(0))
1585 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_SERVICE, SUP_IOCTL_CALL_SERVICE_SIZE_IN(0), SUP_IOCTL_CALL_SERVICE_SIZE_OUT(0));
1586 else
1587 {
1588 PSUPR0SERVICEREQHDR pSrvReq = (PSUPR0SERVICEREQHDR)&pReq->abReqPkt[0];
1589 REQ_CHECK_EXPR_FMT(pReq->Hdr.cbIn >= SUP_IOCTL_CALL_SERVICE_SIZE(sizeof(SUPR0SERVICEREQHDR)),
1590 ("SUP_IOCTL_CALL_SERVICE: cbIn=%#x < %#lx\n", pReq->Hdr.cbIn, SUP_IOCTL_CALL_SERVICE_SIZE(sizeof(SUPR0SERVICEREQHDR))));
1591 REQ_CHECK_EXPR(SUP_IOCTL_CALL_SERVICE, pSrvReq->u32Magic == SUPR0SERVICEREQHDR_MAGIC);
1592 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_SERVICE, SUP_IOCTL_CALL_SERVICE_SIZE_IN(pSrvReq->cbReq), SUP_IOCTL_CALL_SERVICE_SIZE_OUT(pSrvReq->cbReq));
1593 }
1594 REQ_CHECK_EXPR(SUP_IOCTL_CALL_SERVICE, memchr(pReq->u.In.szName, '\0', sizeof(pReq->u.In.szName)));
1595
1596 /* execute */
1597 pReq->Hdr.rc = supdrvIOCtl_CallServiceModule(pDevExt, pSession, pReq);
1598 return 0;
1599 }
1600
1601 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOGGER_SETTINGS(0)):
1602 {
1603 /* validate */
1604 PSUPLOGGERSETTINGS pReq = (PSUPLOGGERSETTINGS)pReqHdr;
1605 size_t cbStrTab;
1606 REQ_CHECK_SIZE_OUT(SUP_IOCTL_LOGGER_SETTINGS, SUP_IOCTL_LOGGER_SETTINGS_SIZE_OUT);
1607 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->Hdr.cbIn >= SUP_IOCTL_LOGGER_SETTINGS_SIZE_IN(1));
1608 cbStrTab = pReq->Hdr.cbIn - SUP_IOCTL_LOGGER_SETTINGS_SIZE_IN(0);
1609 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offGroups < cbStrTab);
1610 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offFlags < cbStrTab);
1611 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offDestination < cbStrTab);
1612 REQ_CHECK_EXPR_FMT(pReq->u.In.szStrings[cbStrTab - 1] == '\0',
1613 ("SUP_IOCTL_LOGGER_SETTINGS: cbIn=%#x cbStrTab=%#zx LastChar=%d\n",
1614 pReq->Hdr.cbIn, cbStrTab, pReq->u.In.szStrings[cbStrTab - 1]));
1615 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.fWhich <= SUPLOGGERSETTINGS_WHICH_RELEASE);
1616 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.fWhat <= SUPLOGGERSETTINGS_WHAT_DESTROY);
1617
1618 /* execute */
1619 pReq->Hdr.rc = supdrvIOCtl_LoggerSettings(pDevExt, pSession, pReq);
1620 return 0;
1621 }
1622
1623 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SEM_CREATE):
1624 {
1625 /* validate */
1626 PSUPSEMCREATE pReq = (PSUPSEMCREATE)pReqHdr;
1627 REQ_CHECK_SIZES_EX(SUP_IOCTL_SEM_CREATE, SUP_IOCTL_SEM_CREATE_SIZE_IN, SUP_IOCTL_SEM_CREATE_SIZE_OUT);
1628
1629 /* execute */
1630 switch (pReq->u.In.uType)
1631 {
1632 case SUP_SEM_TYPE_EVENT:
1633 {
1634 SUPSEMEVENT hEvent;
1635 pReq->Hdr.rc = SUPSemEventCreate(pSession, &hEvent);
1636 pReq->u.Out.hSem = (uint32_t)(uintptr_t)hEvent;
1637 break;
1638 }
1639
1640 case SUP_SEM_TYPE_EVENT_MULTI:
1641 {
1642 SUPSEMEVENTMULTI hEventMulti;
1643 pReq->Hdr.rc = SUPSemEventMultiCreate(pSession, &hEventMulti);
1644 pReq->u.Out.hSem = (uint32_t)(uintptr_t)hEventMulti;
1645 break;
1646 }
1647
1648 default:
1649 pReq->Hdr.rc = VERR_INVALID_PARAMETER;
1650 break;
1651 }
1652 return 0;
1653 }
1654
1655 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SEM_OP):
1656 {
1657 /* validate */
1658 PSUPSEMOP pReq = (PSUPSEMOP)pReqHdr;
1659 REQ_CHECK_SIZES_EX(SUP_IOCTL_SEM_OP, SUP_IOCTL_SEM_OP_SIZE_IN, SUP_IOCTL_SEM_OP_SIZE_OUT);
1660
1661 /* execute */
1662 switch (pReq->u.In.uType)
1663 {
1664 case SUP_SEM_TYPE_EVENT:
1665 {
1666 SUPSEMEVENT hEvent = (SUPSEMEVENT)(uintptr_t)pReq->u.In.hSem;
1667 switch (pReq->u.In.uOp)
1668 {
1669 case SUPSEMOP_WAIT:
1670 pReq->Hdr.rc = SUPSemEventWaitNoResume(pSession, hEvent, pReq->u.In.cMillies);
1671 break;
1672 case SUPSEMOP_SIGNAL:
1673 pReq->Hdr.rc = SUPSemEventSignal(pSession, hEvent);
1674 break;
1675 case SUPSEMOP_CLOSE:
1676 pReq->Hdr.rc = SUPSemEventClose(pSession, hEvent);
1677 break;
1678 case SUPSEMOP_RESET:
1679 default:
1680 pReq->Hdr.rc = VERR_INVALID_FUNCTION;
1681 break;
1682 }
1683 break;
1684 }
1685
1686 case SUP_SEM_TYPE_EVENT_MULTI:
1687 {
1688 SUPSEMEVENTMULTI hEventMulti = (SUPSEMEVENTMULTI)(uintptr_t)pReq->u.In.hSem;
1689 switch (pReq->u.In.uOp)
1690 {
1691 case SUPSEMOP_WAIT:
1692 pReq->Hdr.rc = SUPSemEventMultiWaitNoResume(pSession, hEventMulti, pReq->u.In.cMillies);
1693 break;
1694 case SUPSEMOP_SIGNAL:
1695 pReq->Hdr.rc = SUPSemEventMultiSignal(pSession, hEventMulti);
1696 break;
1697 case SUPSEMOP_CLOSE:
1698 pReq->Hdr.rc = SUPSemEventMultiClose(pSession, hEventMulti);
1699 break;
1700 case SUPSEMOP_RESET:
1701 pReq->Hdr.rc = SUPSemEventMultiReset(pSession, hEventMulti);
1702 break;
1703 default:
1704 pReq->Hdr.rc = VERR_INVALID_FUNCTION;
1705 break;
1706 }
1707 break;
1708 }
1709
1710 default:
1711 pReq->Hdr.rc = VERR_INVALID_PARAMETER;
1712 break;
1713 }
1714 return 0;
1715 }
1716
1717 default:
1718 Log(("Unknown IOCTL %#lx\n", (long)uIOCtl));
1719 break;
1720 }
1721 return SUPDRV_ERR_GENERAL_FAILURE;
1722}
1723
1724
1725/**
1726 * Inter-Driver Communcation (IDC) worker.
1727 *
1728 * @returns VBox status code.
1729 * @retval VINF_SUCCESS on success.
1730 * @retval VERR_INVALID_PARAMETER if the request is invalid.
1731 * @retval VERR_NOT_SUPPORTED if the request isn't supported.
1732 *
1733 * @param uReq The request (function) code.
1734 * @param pDevExt Device extention.
1735 * @param pSession Session data.
1736 * @param pReqHdr The request header.
1737 */
1738int VBOXCALL supdrvIDC(uintptr_t uReq, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQHDR pReqHdr)
1739{
1740 /*
1741 * The OS specific code has already validated the pSession
1742 * pointer, and the request size being greater or equal to
1743 * size of the header.
1744 *
1745 * So, just check that pSession is a kernel context session.
1746 */
1747 if (RT_UNLIKELY( pSession
1748 && pSession->R0Process != NIL_RTR0PROCESS))
1749 return VERR_INVALID_PARAMETER;
1750
1751/*
1752 * Validation macro.
1753 */
1754#define REQ_CHECK_IDC_SIZE(Name, cbExpect) \
1755 do { \
1756 if (RT_UNLIKELY(pReqHdr->cb != (cbExpect))) \
1757 { \
1758 OSDBGPRINT(( #Name ": Invalid input/output sizes. cb=%ld expected %ld.\n", \
1759 (long)pReqHdr->cb, (long)(cbExpect))); \
1760 return pReqHdr->rc = VERR_INVALID_PARAMETER; \
1761 } \
1762 } while (0)
1763
1764 switch (uReq)
1765 {
1766 case SUPDRV_IDC_REQ_CONNECT:
1767 {
1768 PSUPDRVIDCREQCONNECT pReq = (PSUPDRVIDCREQCONNECT)pReqHdr;
1769 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_CONNECT, sizeof(*pReq));
1770
1771 /*
1772 * Validate the cookie and other input.
1773 */
1774 if (pReq->Hdr.pSession != NULL)
1775 {
1776 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: pSession=%p expected NULL!\n", pReq->Hdr.pSession));
1777 return pReqHdr->rc = VERR_INVALID_PARAMETER;
1778 }
1779 if (pReq->u.In.u32MagicCookie != SUPDRVIDCREQ_CONNECT_MAGIC_COOKIE)
1780 {
1781 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: u32MagicCookie=%#x expected %#x!\n",
1782 (unsigned)pReq->u.In.u32MagicCookie, (unsigned)SUPDRVIDCREQ_CONNECT_MAGIC_COOKIE));
1783 return pReqHdr->rc = VERR_INVALID_PARAMETER;
1784 }
1785 if ( pReq->u.In.uMinVersion > pReq->u.In.uReqVersion
1786 || (pReq->u.In.uMinVersion & UINT32_C(0xffff0000)) != (pReq->u.In.uReqVersion & UINT32_C(0xffff0000)))
1787 {
1788 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: uMinVersion=%#x uMaxVersion=%#x doesn't match!\n",
1789 pReq->u.In.uMinVersion, pReq->u.In.uReqVersion));
1790 return pReqHdr->rc = VERR_INVALID_PARAMETER;
1791 }
1792
1793 /*
1794 * Match the version.
1795 * The current logic is very simple, match the major interface version.
1796 */
1797 if ( pReq->u.In.uMinVersion > SUPDRV_IDC_VERSION
1798 || (pReq->u.In.uMinVersion & 0xffff0000) != (SUPDRV_IDC_VERSION & 0xffff0000))
1799 {
1800 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: Version mismatch. Requested: %#x Min: %#x Current: %#x\n",
1801 pReq->u.In.uReqVersion, pReq->u.In.uMinVersion, (unsigned)SUPDRV_IDC_VERSION));
1802 pReq->u.Out.pSession = NULL;
1803 pReq->u.Out.uSessionVersion = 0xffffffff;
1804 pReq->u.Out.uDriverVersion = SUPDRV_IDC_VERSION;
1805 pReq->u.Out.uDriverRevision = VBOX_SVN_REV;
1806 pReq->Hdr.rc = VERR_VERSION_MISMATCH;
1807 return VINF_SUCCESS;
1808 }
1809
1810 pReq->u.Out.pSession = NULL;
1811 pReq->u.Out.uSessionVersion = SUPDRV_IDC_VERSION;
1812 pReq->u.Out.uDriverVersion = SUPDRV_IDC_VERSION;
1813 pReq->u.Out.uDriverRevision = VBOX_SVN_REV;
1814
1815 /*
1816 * On NT we will already have a session associated with the
1817 * client, just like with the SUP_IOCTL_COOKIE request, while
1818 * the other doesn't.
1819 */
1820#ifdef RT_OS_WINDOWS
1821 pReq->Hdr.rc = VINF_SUCCESS;
1822#else
1823 AssertReturn(!pSession, VERR_INTERNAL_ERROR);
1824 pReq->Hdr.rc = supdrvCreateSession(pDevExt, false /* fUser */, &pSession);
1825 if (RT_FAILURE(pReq->Hdr.rc))
1826 {
1827 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: failed to create session, rc=%d\n", pReq->Hdr.rc));
1828 return VINF_SUCCESS;
1829 }
1830#endif
1831
1832 pReq->u.Out.pSession = pSession;
1833 pReq->Hdr.pSession = pSession;
1834
1835 return VINF_SUCCESS;
1836 }
1837
1838 case SUPDRV_IDC_REQ_DISCONNECT:
1839 {
1840 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_DISCONNECT, sizeof(*pReqHdr));
1841
1842#ifdef RT_OS_WINDOWS
1843 /* Windows will destroy the session when the file object is destroyed. */
1844#else
1845 supdrvCloseSession(pDevExt, pSession);
1846#endif
1847 return pReqHdr->rc = VINF_SUCCESS;
1848 }
1849
1850 case SUPDRV_IDC_REQ_GET_SYMBOL:
1851 {
1852 PSUPDRVIDCREQGETSYM pReq = (PSUPDRVIDCREQGETSYM)pReqHdr;
1853 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_GET_SYMBOL, sizeof(*pReq));
1854
1855 pReq->Hdr.rc = supdrvIDC_LdrGetSymbol(pDevExt, pSession, pReq);
1856 return VINF_SUCCESS;
1857 }
1858
1859 case SUPDRV_IDC_REQ_COMPONENT_REGISTER_FACTORY:
1860 {
1861 PSUPDRVIDCREQCOMPREGFACTORY pReq = (PSUPDRVIDCREQCOMPREGFACTORY)pReqHdr;
1862 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_COMPONENT_REGISTER_FACTORY, sizeof(*pReq));
1863
1864 pReq->Hdr.rc = SUPR0ComponentRegisterFactory(pSession, pReq->u.In.pFactory);
1865 return VINF_SUCCESS;
1866 }
1867
1868 case SUPDRV_IDC_REQ_COMPONENT_DEREGISTER_FACTORY:
1869 {
1870 PSUPDRVIDCREQCOMPDEREGFACTORY pReq = (PSUPDRVIDCREQCOMPDEREGFACTORY)pReqHdr;
1871 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_COMPONENT_DEREGISTER_FACTORY, sizeof(*pReq));
1872
1873 pReq->Hdr.rc = SUPR0ComponentDeregisterFactory(pSession, pReq->u.In.pFactory);
1874 return VINF_SUCCESS;
1875 }
1876
1877 default:
1878 Log(("Unknown IDC %#lx\n", (long)uReq));
1879 break;
1880 }
1881
1882#undef REQ_CHECK_IDC_SIZE
1883 return VERR_NOT_SUPPORTED;
1884}
1885
1886
1887/**
1888 * Register a object for reference counting.
1889 * The object is registered with one reference in the specified session.
1890 *
1891 * @returns Unique identifier on success (pointer).
1892 * All future reference must use this identifier.
1893 * @returns NULL on failure.
1894 * @param pfnDestructor The destructore function which will be called when the reference count reaches 0.
1895 * @param pvUser1 The first user argument.
1896 * @param pvUser2 The second user argument.
1897 */
1898SUPR0DECL(void *) SUPR0ObjRegister(PSUPDRVSESSION pSession, SUPDRVOBJTYPE enmType, PFNSUPDRVDESTRUCTOR pfnDestructor, void *pvUser1, void *pvUser2)
1899{
1900 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
1901 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
1902 PSUPDRVOBJ pObj;
1903 PSUPDRVUSAGE pUsage;
1904
1905 /*
1906 * Validate the input.
1907 */
1908 AssertReturn(SUP_IS_SESSION_VALID(pSession), NULL);
1909 AssertReturn(enmType > SUPDRVOBJTYPE_INVALID && enmType < SUPDRVOBJTYPE_END, NULL);
1910 AssertPtrReturn(pfnDestructor, NULL);
1911
1912 /*
1913 * Allocate and initialize the object.
1914 */
1915 pObj = (PSUPDRVOBJ)RTMemAlloc(sizeof(*pObj));
1916 if (!pObj)
1917 return NULL;
1918 pObj->u32Magic = SUPDRVOBJ_MAGIC;
1919 pObj->enmType = enmType;
1920 pObj->pNext = NULL;
1921 pObj->cUsage = 1;
1922 pObj->pfnDestructor = pfnDestructor;
1923 pObj->pvUser1 = pvUser1;
1924 pObj->pvUser2 = pvUser2;
1925 pObj->CreatorUid = pSession->Uid;
1926 pObj->CreatorGid = pSession->Gid;
1927 pObj->CreatorProcess= pSession->Process;
1928 supdrvOSObjInitCreator(pObj, pSession);
1929
1930 /*
1931 * Allocate the usage record.
1932 * (We keep freed usage records around to simplify SUPR0ObjAddRefEx().)
1933 */
1934 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1935
1936 pUsage = pDevExt->pUsageFree;
1937 if (pUsage)
1938 pDevExt->pUsageFree = pUsage->pNext;
1939 else
1940 {
1941 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1942 pUsage = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsage));
1943 if (!pUsage)
1944 {
1945 RTMemFree(pObj);
1946 return NULL;
1947 }
1948 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1949 }
1950
1951 /*
1952 * Insert the object and create the session usage record.
1953 */
1954 /* The object. */
1955 pObj->pNext = pDevExt->pObjs;
1956 pDevExt->pObjs = pObj;
1957
1958 /* The session record. */
1959 pUsage->cUsage = 1;
1960 pUsage->pObj = pObj;
1961 pUsage->pNext = pSession->pUsage;
1962 /* Log2(("SUPR0ObjRegister: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext)); */
1963 pSession->pUsage = pUsage;
1964
1965 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1966
1967 Log(("SUPR0ObjRegister: returns %p (pvUser1=%p, pvUser=%p)\n", pObj, pvUser1, pvUser2));
1968 return pObj;
1969}
1970
1971
1972/**
1973 * Increment the reference counter for the object associating the reference
1974 * with the specified session.
1975 *
1976 * @returns IPRT status code.
1977 * @param pvObj The identifier returned by SUPR0ObjRegister().
1978 * @param pSession The session which is referencing the object.
1979 *
1980 * @remarks The caller should not own any spinlocks and must carefully protect
1981 * itself against potential race with the destructor so freed memory
1982 * isn't accessed here.
1983 */
1984SUPR0DECL(int) SUPR0ObjAddRef(void *pvObj, PSUPDRVSESSION pSession)
1985{
1986 return SUPR0ObjAddRefEx(pvObj, pSession, false /* fNoBlocking */);
1987}
1988
1989
1990/**
1991 * Increment the reference counter for the object associating the reference
1992 * with the specified session.
1993 *
1994 * @returns IPRT status code.
1995 * @retval VERR_TRY_AGAIN if fNoBlocking was set and a new usage record
1996 * couldn't be allocated. (If you see this you're not doing the right
1997 * thing and it won't ever work reliably.)
1998 *
1999 * @param pvObj The identifier returned by SUPR0ObjRegister().
2000 * @param pSession The session which is referencing the object.
2001 * @param fNoBlocking Set if it's not OK to block. Never try to make the
2002 * first reference to an object in a session with this
2003 * argument set.
2004 *
2005 * @remarks The caller should not own any spinlocks and must carefully protect
2006 * itself against potential race with the destructor so freed memory
2007 * isn't accessed here.
2008 */
2009SUPR0DECL(int) SUPR0ObjAddRefEx(void *pvObj, PSUPDRVSESSION pSession, bool fNoBlocking)
2010{
2011 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2012 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
2013 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
2014 int rc = VINF_SUCCESS;
2015 PSUPDRVUSAGE pUsagePre;
2016 PSUPDRVUSAGE pUsage;
2017
2018 /*
2019 * Validate the input.
2020 * Be ready for the destruction race (someone might be stuck in the
2021 * destructor waiting a lock we own).
2022 */
2023 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2024 AssertPtrReturn(pObj, VERR_INVALID_POINTER);
2025 AssertMsgReturn(pObj->u32Magic == SUPDRVOBJ_MAGIC || pObj->u32Magic == SUPDRVOBJ_MAGIC_DEAD,
2026 ("Invalid pvObj=%p magic=%#x (expected %#x or %#x)\n", pvObj, pObj->u32Magic, SUPDRVOBJ_MAGIC, SUPDRVOBJ_MAGIC_DEAD),
2027 VERR_INVALID_PARAMETER);
2028
2029 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
2030
2031 if (RT_UNLIKELY(pObj->u32Magic != SUPDRVOBJ_MAGIC))
2032 {
2033 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2034
2035 AssertMsgFailed(("pvObj=%p magic=%#x\n", pvObj, pObj->u32Magic));
2036 return VERR_WRONG_ORDER;
2037 }
2038
2039 /*
2040 * Preallocate the usage record if we can.
2041 */
2042 pUsagePre = pDevExt->pUsageFree;
2043 if (pUsagePre)
2044 pDevExt->pUsageFree = pUsagePre->pNext;
2045 else if (!fNoBlocking)
2046 {
2047 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2048 pUsagePre = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsagePre));
2049 if (!pUsagePre)
2050 return VERR_NO_MEMORY;
2051
2052 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
2053 if (RT_UNLIKELY(pObj->u32Magic != SUPDRVOBJ_MAGIC))
2054 {
2055 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2056
2057 AssertMsgFailed(("pvObj=%p magic=%#x\n", pvObj, pObj->u32Magic));
2058 return VERR_WRONG_ORDER;
2059 }
2060 }
2061
2062 /*
2063 * Reference the object.
2064 */
2065 pObj->cUsage++;
2066
2067 /*
2068 * Look for the session record.
2069 */
2070 for (pUsage = pSession->pUsage; pUsage; pUsage = pUsage->pNext)
2071 {
2072 /*Log(("SUPR0AddRef: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));*/
2073 if (pUsage->pObj == pObj)
2074 break;
2075 }
2076 if (pUsage)
2077 pUsage->cUsage++;
2078 else if (pUsagePre)
2079 {
2080 /* create a new session record. */
2081 pUsagePre->cUsage = 1;
2082 pUsagePre->pObj = pObj;
2083 pUsagePre->pNext = pSession->pUsage;
2084 pSession->pUsage = pUsagePre;
2085 /*Log(("SUPR0AddRef: pUsagePre=%p:{.pObj=%p, .pNext=%p}\n", pUsagePre, pUsagePre->pObj, pUsagePre->pNext));*/
2086
2087 pUsagePre = NULL;
2088 }
2089 else
2090 {
2091 pObj->cUsage--;
2092 rc = VERR_TRY_AGAIN;
2093 }
2094
2095 /*
2096 * Put any unused usage record into the free list..
2097 */
2098 if (pUsagePre)
2099 {
2100 pUsagePre->pNext = pDevExt->pUsageFree;
2101 pDevExt->pUsageFree = pUsagePre;
2102 }
2103
2104 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2105
2106 return rc;
2107}
2108
2109
2110/**
2111 * Decrement / destroy a reference counter record for an object.
2112 *
2113 * The object is uniquely identified by pfnDestructor+pvUser1+pvUser2.
2114 *
2115 * @returns IPRT status code.
2116 * @retval VINF_SUCCESS if not destroyed.
2117 * @retval VINF_OBJECT_DESTROYED if it's destroyed by this release call.
2118 * @retval VERR_INVALID_PARAMETER if the object isn't valid. Will assert in
2119 * string builds.
2120 *
2121 * @param pvObj The identifier returned by SUPR0ObjRegister().
2122 * @param pSession The session which is referencing the object.
2123 */
2124SUPR0DECL(int) SUPR0ObjRelease(void *pvObj, PSUPDRVSESSION pSession)
2125{
2126 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2127 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
2128 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
2129 int rc = VERR_INVALID_PARAMETER;
2130 PSUPDRVUSAGE pUsage;
2131 PSUPDRVUSAGE pUsagePrev;
2132
2133 /*
2134 * Validate the input.
2135 */
2136 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2137 AssertMsgReturn(VALID_PTR(pObj) && pObj->u32Magic == SUPDRVOBJ_MAGIC,
2138 ("Invalid pvObj=%p magic=%#x (exepcted %#x)\n", pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC),
2139 VERR_INVALID_PARAMETER);
2140
2141 /*
2142 * Acquire the spinlock and look for the usage record.
2143 */
2144 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
2145
2146 for (pUsagePrev = NULL, pUsage = pSession->pUsage;
2147 pUsage;
2148 pUsagePrev = pUsage, pUsage = pUsage->pNext)
2149 {
2150 /*Log2(("SUPR0ObjRelease: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));*/
2151 if (pUsage->pObj == pObj)
2152 {
2153 rc = VINF_SUCCESS;
2154 AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
2155 if (pUsage->cUsage > 1)
2156 {
2157 pObj->cUsage--;
2158 pUsage->cUsage--;
2159 }
2160 else
2161 {
2162 /*
2163 * Free the session record.
2164 */
2165 if (pUsagePrev)
2166 pUsagePrev->pNext = pUsage->pNext;
2167 else
2168 pSession->pUsage = pUsage->pNext;
2169 pUsage->pNext = pDevExt->pUsageFree;
2170 pDevExt->pUsageFree = pUsage;
2171
2172 /* What about the object? */
2173 if (pObj->cUsage > 1)
2174 pObj->cUsage--;
2175 else
2176 {
2177 /*
2178 * Object is to be destroyed, unlink it.
2179 */
2180 pObj->u32Magic = SUPDRVOBJ_MAGIC_DEAD;
2181 rc = VINF_OBJECT_DESTROYED;
2182 if (pDevExt->pObjs == pObj)
2183 pDevExt->pObjs = pObj->pNext;
2184 else
2185 {
2186 PSUPDRVOBJ pObjPrev;
2187 for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
2188 if (pObjPrev->pNext == pObj)
2189 {
2190 pObjPrev->pNext = pObj->pNext;
2191 break;
2192 }
2193 Assert(pObjPrev);
2194 }
2195 }
2196 }
2197 break;
2198 }
2199 }
2200
2201 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2202
2203 /*
2204 * Call the destructor and free the object if required.
2205 */
2206 if (rc == VINF_OBJECT_DESTROYED)
2207 {
2208 Log(("SUPR0ObjRelease: destroying %p/%d (%p/%p) cpid=%RTproc pid=%RTproc dtor=%p\n",
2209 pObj, pObj->enmType, pObj->pvUser1, pObj->pvUser2, pObj->CreatorProcess, RTProcSelf(), pObj->pfnDestructor));
2210 if (pObj->pfnDestructor)
2211#ifdef RT_WITH_W64_UNWIND_HACK
2212 supdrvNtWrapObjDestructor((PFNRT)pObj->pfnDestructor, pObj, pObj->pvUser1, pObj->pvUser2);
2213#else
2214 pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
2215#endif
2216 RTMemFree(pObj);
2217 }
2218
2219 AssertMsg(pUsage, ("pvObj=%p\n", pvObj));
2220 return rc;
2221}
2222
2223
2224/**
2225 * Verifies that the current process can access the specified object.
2226 *
2227 * @returns The following IPRT status code:
2228 * @retval VINF_SUCCESS if access was granted.
2229 * @retval VERR_PERMISSION_DENIED if denied access.
2230 * @retval VERR_INVALID_PARAMETER if invalid parameter.
2231 *
2232 * @param pvObj The identifier returned by SUPR0ObjRegister().
2233 * @param pSession The session which wishes to access the object.
2234 * @param pszObjName Object string name. This is optional and depends on the object type.
2235 *
2236 * @remark The caller is responsible for making sure the object isn't removed while
2237 * we're inside this function. If uncertain about this, just call AddRef before calling us.
2238 */
2239SUPR0DECL(int) SUPR0ObjVerifyAccess(void *pvObj, PSUPDRVSESSION pSession, const char *pszObjName)
2240{
2241 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
2242 int rc;
2243
2244 /*
2245 * Validate the input.
2246 */
2247 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2248 AssertMsgReturn(VALID_PTR(pObj) && pObj->u32Magic == SUPDRVOBJ_MAGIC,
2249 ("Invalid pvObj=%p magic=%#x (exepcted %#x)\n", pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC),
2250 VERR_INVALID_PARAMETER);
2251
2252 /*
2253 * Check access. (returns true if a decision has been made.)
2254 */
2255 rc = VERR_INTERNAL_ERROR;
2256 if (supdrvOSObjCanAccess(pObj, pSession, pszObjName, &rc))
2257 return rc;
2258
2259 /*
2260 * Default policy is to allow the user to access his own
2261 * stuff but nothing else.
2262 */
2263 if (pObj->CreatorUid == pSession->Uid)
2264 return VINF_SUCCESS;
2265 return VERR_PERMISSION_DENIED;
2266}
2267
2268
2269/**
2270 * Lock pages.
2271 *
2272 * @returns IPRT status code.
2273 * @param pSession Session to which the locked memory should be associated.
2274 * @param pvR3 Start of the memory range to lock.
2275 * This must be page aligned.
2276 * @param cPages Number of pages to lock.
2277 * @param paPages Where to put the physical addresses of locked memory.
2278 */
2279SUPR0DECL(int) SUPR0LockMem(PSUPDRVSESSION pSession, RTR3PTR pvR3, uint32_t cPages, PRTHCPHYS paPages)
2280{
2281 int rc;
2282 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2283 const size_t cb = (size_t)cPages << PAGE_SHIFT;
2284 LogFlow(("SUPR0LockMem: pSession=%p pvR3=%p cPages=%d paPages=%p\n", pSession, (void *)pvR3, cPages, paPages));
2285
2286 /*
2287 * Verify input.
2288 */
2289 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2290 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
2291 if ( RT_ALIGN_R3PT(pvR3, PAGE_SIZE, RTR3PTR) != pvR3
2292 || !pvR3)
2293 {
2294 Log(("pvR3 (%p) must be page aligned and not NULL!\n", (void *)pvR3));
2295 return VERR_INVALID_PARAMETER;
2296 }
2297
2298 /*
2299 * Let IPRT do the job.
2300 */
2301 Mem.eType = MEMREF_TYPE_LOCKED;
2302 rc = RTR0MemObjLockUser(&Mem.MemObj, pvR3, cb, RTR0ProcHandleSelf());
2303 if (RT_SUCCESS(rc))
2304 {
2305 uint32_t iPage = cPages;
2306 AssertMsg(RTR0MemObjAddressR3(Mem.MemObj) == pvR3, ("%p == %p\n", RTR0MemObjAddressR3(Mem.MemObj), pvR3));
2307 AssertMsg(RTR0MemObjSize(Mem.MemObj) == cb, ("%x == %x\n", RTR0MemObjSize(Mem.MemObj), cb));
2308
2309 while (iPage-- > 0)
2310 {
2311 paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
2312 if (RT_UNLIKELY(paPages[iPage] == NIL_RTCCPHYS))
2313 {
2314 AssertMsgFailed(("iPage=%d\n", iPage));
2315 rc = VERR_INTERNAL_ERROR;
2316 break;
2317 }
2318 }
2319 if (RT_SUCCESS(rc))
2320 rc = supdrvMemAdd(&Mem, pSession);
2321 if (RT_FAILURE(rc))
2322 {
2323 int rc2 = RTR0MemObjFree(Mem.MemObj, false);
2324 AssertRC(rc2);
2325 }
2326 }
2327
2328 return rc;
2329}
2330
2331
2332/**
2333 * Unlocks the memory pointed to by pv.
2334 *
2335 * @returns IPRT status code.
2336 * @param pSession Session to which the memory was locked.
2337 * @param pvR3 Memory to unlock.
2338 */
2339SUPR0DECL(int) SUPR0UnlockMem(PSUPDRVSESSION pSession, RTR3PTR pvR3)
2340{
2341 LogFlow(("SUPR0UnlockMem: pSession=%p pvR3=%p\n", pSession, (void *)pvR3));
2342 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2343 return supdrvMemRelease(pSession, (RTHCUINTPTR)pvR3, MEMREF_TYPE_LOCKED);
2344}
2345
2346
2347/**
2348 * Allocates a chunk of page aligned memory with contiguous and fixed physical
2349 * backing.
2350 *
2351 * @returns IPRT status code.
2352 * @param pSession Session data.
2353 * @param cPages Number of pages to allocate.
2354 * @param ppvR0 Where to put the address of Ring-0 mapping the allocated memory.
2355 * @param ppvR3 Where to put the address of Ring-3 mapping the allocated memory.
2356 * @param pHCPhys Where to put the physical address of allocated memory.
2357 */
2358SUPR0DECL(int) SUPR0ContAlloc(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS pHCPhys)
2359{
2360 int rc;
2361 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2362 LogFlow(("SUPR0ContAlloc: pSession=%p cPages=%d ppvR0=%p ppvR3=%p pHCPhys=%p\n", pSession, cPages, ppvR0, ppvR3, pHCPhys));
2363
2364 /*
2365 * Validate input.
2366 */
2367 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2368 if (!ppvR3 || !ppvR0 || !pHCPhys)
2369 {
2370 Log(("Null pointer. All of these should be set: pSession=%p ppvR0=%p ppvR3=%p pHCPhys=%p\n",
2371 pSession, ppvR0, ppvR3, pHCPhys));
2372 return VERR_INVALID_PARAMETER;
2373
2374 }
2375 if (cPages < 1 || cPages >= 256)
2376 {
2377 Log(("Illegal request cPages=%d, must be greater than 0 and smaller than 256.\n", cPages));
2378 return VERR_PAGE_COUNT_OUT_OF_RANGE;
2379 }
2380
2381 /*
2382 * Let IPRT do the job.
2383 */
2384 rc = RTR0MemObjAllocCont(&Mem.MemObj, cPages << PAGE_SHIFT, true /* executable R0 mapping */);
2385 if (RT_SUCCESS(rc))
2386 {
2387 int rc2;
2388 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2389 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2390 if (RT_SUCCESS(rc))
2391 {
2392 Mem.eType = MEMREF_TYPE_CONT;
2393 rc = supdrvMemAdd(&Mem, pSession);
2394 if (!rc)
2395 {
2396 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2397 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2398 *pHCPhys = RTR0MemObjGetPagePhysAddr(Mem.MemObj, 0);
2399 return 0;
2400 }
2401
2402 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2403 AssertRC(rc2);
2404 }
2405 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2406 AssertRC(rc2);
2407 }
2408
2409 return rc;
2410}
2411
2412
2413/**
2414 * Frees memory allocated using SUPR0ContAlloc().
2415 *
2416 * @returns IPRT status code.
2417 * @param pSession The session to which the memory was allocated.
2418 * @param uPtr Pointer to the memory (ring-3 or ring-0).
2419 */
2420SUPR0DECL(int) SUPR0ContFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
2421{
2422 LogFlow(("SUPR0ContFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
2423 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2424 return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_CONT);
2425}
2426
2427
2428/**
2429 * Allocates a chunk of page aligned memory with fixed physical backing below 4GB.
2430 *
2431 * The memory isn't zeroed.
2432 *
2433 * @returns IPRT status code.
2434 * @param pSession Session data.
2435 * @param cPages Number of pages to allocate.
2436 * @param ppvR0 Where to put the address of Ring-0 mapping of the allocated memory.
2437 * @param ppvR3 Where to put the address of Ring-3 mapping of the allocated memory.
2438 * @param paPages Where to put the physical addresses of allocated memory.
2439 */
2440SUPR0DECL(int) SUPR0LowAlloc(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS paPages)
2441{
2442 unsigned iPage;
2443 int rc;
2444 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2445 LogFlow(("SUPR0LowAlloc: pSession=%p cPages=%d ppvR3=%p ppvR0=%p paPages=%p\n", pSession, cPages, ppvR3, ppvR0, paPages));
2446
2447 /*
2448 * Validate input.
2449 */
2450 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2451 if (!ppvR3 || !ppvR0 || !paPages)
2452 {
2453 Log(("Null pointer. All of these should be set: pSession=%p ppvR3=%p ppvR0=%p paPages=%p\n",
2454 pSession, ppvR3, ppvR0, paPages));
2455 return VERR_INVALID_PARAMETER;
2456
2457 }
2458 if (cPages < 1 || cPages >= 256)
2459 {
2460 Log(("Illegal request cPages=%d, must be greater than 0 and smaller than 256.\n", cPages));
2461 return VERR_PAGE_COUNT_OUT_OF_RANGE;
2462 }
2463
2464 /*
2465 * Let IPRT do the work.
2466 */
2467 rc = RTR0MemObjAllocLow(&Mem.MemObj, cPages << PAGE_SHIFT, true /* executable ring-0 mapping */);
2468 if (RT_SUCCESS(rc))
2469 {
2470 int rc2;
2471 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2472 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2473 if (RT_SUCCESS(rc))
2474 {
2475 Mem.eType = MEMREF_TYPE_LOW;
2476 rc = supdrvMemAdd(&Mem, pSession);
2477 if (!rc)
2478 {
2479 for (iPage = 0; iPage < cPages; iPage++)
2480 {
2481 paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
2482 AssertMsg(!(paPages[iPage] & (PAGE_SIZE - 1)), ("iPage=%d Phys=%RHp\n", paPages[iPage]));
2483 }
2484 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2485 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2486 return 0;
2487 }
2488
2489 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2490 AssertRC(rc2);
2491 }
2492
2493 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2494 AssertRC(rc2);
2495 }
2496
2497 return rc;
2498}
2499
2500
2501/**
2502 * Frees memory allocated using SUPR0LowAlloc().
2503 *
2504 * @returns IPRT status code.
2505 * @param pSession The session to which the memory was allocated.
2506 * @param uPtr Pointer to the memory (ring-3 or ring-0).
2507 */
2508SUPR0DECL(int) SUPR0LowFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
2509{
2510 LogFlow(("SUPR0LowFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
2511 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2512 return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_LOW);
2513}
2514
2515
2516
2517/**
2518 * Allocates a chunk of memory with both R0 and R3 mappings.
2519 * The memory is fixed and it's possible to query the physical addresses using SUPR0MemGetPhys().
2520 *
2521 * @returns IPRT status code.
2522 * @param pSession The session to associated the allocation with.
2523 * @param cb Number of bytes to allocate.
2524 * @param ppvR0 Where to store the address of the Ring-0 mapping.
2525 * @param ppvR3 Where to store the address of the Ring-3 mapping.
2526 */
2527SUPR0DECL(int) SUPR0MemAlloc(PSUPDRVSESSION pSession, uint32_t cb, PRTR0PTR ppvR0, PRTR3PTR ppvR3)
2528{
2529 int rc;
2530 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2531 LogFlow(("SUPR0MemAlloc: pSession=%p cb=%d ppvR0=%p ppvR3=%p\n", pSession, cb, ppvR0, ppvR3));
2532
2533 /*
2534 * Validate input.
2535 */
2536 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2537 AssertPtrReturn(ppvR0, VERR_INVALID_POINTER);
2538 AssertPtrReturn(ppvR3, VERR_INVALID_POINTER);
2539 if (cb < 1 || cb >= _4M)
2540 {
2541 Log(("Illegal request cb=%u; must be greater than 0 and smaller than 4MB.\n", cb));
2542 return VERR_INVALID_PARAMETER;
2543 }
2544
2545 /*
2546 * Let IPRT do the work.
2547 */
2548 rc = RTR0MemObjAllocPage(&Mem.MemObj, cb, true /* executable ring-0 mapping */);
2549 if (RT_SUCCESS(rc))
2550 {
2551 int rc2;
2552 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2553 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2554 if (RT_SUCCESS(rc))
2555 {
2556 Mem.eType = MEMREF_TYPE_MEM;
2557 rc = supdrvMemAdd(&Mem, pSession);
2558 if (!rc)
2559 {
2560 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2561 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2562 return VINF_SUCCESS;
2563 }
2564
2565 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2566 AssertRC(rc2);
2567 }
2568
2569 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2570 AssertRC(rc2);
2571 }
2572
2573 return rc;
2574}
2575
2576
2577/**
2578 * Get the physical addresses of memory allocated using SUPR0MemAlloc().
2579 *
2580 * @returns IPRT status code.
2581 * @param pSession The session to which the memory was allocated.
2582 * @param uPtr The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
2583 * @param paPages Where to store the physical addresses.
2584 */
2585SUPR0DECL(int) SUPR0MemGetPhys(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, PSUPPAGE paPages) /** @todo switch this bugger to RTHCPHYS */
2586{
2587 PSUPDRVBUNDLE pBundle;
2588 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2589 LogFlow(("SUPR0MemGetPhys: pSession=%p uPtr=%p paPages=%p\n", pSession, (void *)uPtr, paPages));
2590
2591 /*
2592 * Validate input.
2593 */
2594 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2595 AssertPtrReturn(paPages, VERR_INVALID_POINTER);
2596 AssertReturn(uPtr, VERR_INVALID_PARAMETER);
2597
2598 /*
2599 * Search for the address.
2600 */
2601 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2602 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2603 {
2604 if (pBundle->cUsed > 0)
2605 {
2606 unsigned i;
2607 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
2608 {
2609 if ( pBundle->aMem[i].eType == MEMREF_TYPE_MEM
2610 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2611 && ( (RTHCUINTPTR)RTR0MemObjAddress(pBundle->aMem[i].MemObj) == uPtr
2612 || ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2613 && RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == uPtr)
2614 )
2615 )
2616 {
2617 const size_t cPages = RTR0MemObjSize(pBundle->aMem[i].MemObj) >> PAGE_SHIFT;
2618 size_t iPage;
2619 for (iPage = 0; iPage < cPages; iPage++)
2620 {
2621 paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(pBundle->aMem[i].MemObj, iPage);
2622 paPages[iPage].uReserved = 0;
2623 }
2624 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2625 return VINF_SUCCESS;
2626 }
2627 }
2628 }
2629 }
2630 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2631 Log(("Failed to find %p!!!\n", (void *)uPtr));
2632 return VERR_INVALID_PARAMETER;
2633}
2634
2635
2636/**
2637 * Free memory allocated by SUPR0MemAlloc().
2638 *
2639 * @returns IPRT status code.
2640 * @param pSession The session owning the allocation.
2641 * @param uPtr The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
2642 */
2643SUPR0DECL(int) SUPR0MemFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
2644{
2645 LogFlow(("SUPR0MemFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
2646 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2647 return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_MEM);
2648}
2649
2650
2651/**
2652 * Allocates a chunk of memory with a kernel or/and a user mode mapping.
2653 *
2654 * The memory is fixed and it's possible to query the physical addresses using
2655 * SUPR0MemGetPhys().
2656 *
2657 * @returns IPRT status code.
2658 * @param pSession The session to associated the allocation with.
2659 * @param cPages The number of pages to allocate.
2660 * @param fFlags Flags, reserved for the future. Must be zero.
2661 * @param ppvR3 Where to store the address of the Ring-3 mapping.
2662 * NULL if no ring-3 mapping.
2663 * @param ppvR3 Where to store the address of the Ring-0 mapping.
2664 * NULL if no ring-0 mapping.
2665 * @param paPages Where to store the addresses of the pages. Optional.
2666 */
2667SUPR0DECL(int) SUPR0PageAllocEx(PSUPDRVSESSION pSession, uint32_t cPages, uint32_t fFlags, PRTR3PTR ppvR3, PRTR0PTR ppvR0, PRTHCPHYS paPages)
2668{
2669 int rc;
2670 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2671 LogFlow(("SUPR0PageAlloc: pSession=%p cb=%d ppvR3=%p\n", pSession, cPages, ppvR3));
2672
2673 /*
2674 * Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
2675 */
2676 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2677 AssertPtrNullReturn(ppvR3, VERR_INVALID_POINTER);
2678 AssertPtrNullReturn(ppvR0, VERR_INVALID_POINTER);
2679 AssertReturn(ppvR3 || ppvR0, VERR_INVALID_PARAMETER);
2680 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2681 if (cPages < 1 || cPages > VBOX_MAX_ALLOC_PAGE_COUNT)
2682 {
2683 Log(("SUPR0PageAlloc: Illegal request cb=%u; must be greater than 0 and smaller than 128MB.\n", cPages));
2684 return VERR_PAGE_COUNT_OUT_OF_RANGE;
2685 }
2686
2687 /*
2688 * Let IPRT do the work.
2689 */
2690 if (ppvR0)
2691 rc = RTR0MemObjAllocPage(&Mem.MemObj, (size_t)cPages * PAGE_SIZE, true /* fExecutable */);
2692 else
2693 rc = RTR0MemObjAllocPhysNC(&Mem.MemObj, (size_t)cPages * PAGE_SIZE, NIL_RTHCPHYS);
2694 if (RT_SUCCESS(rc))
2695 {
2696 int rc2;
2697 if (ppvR3)
2698 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2699 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2700 else
2701 Mem.MapObjR3 = NIL_RTR0MEMOBJ;
2702 if (RT_SUCCESS(rc))
2703 {
2704 Mem.eType = MEMREF_TYPE_PAGE;
2705 rc = supdrvMemAdd(&Mem, pSession);
2706 if (!rc)
2707 {
2708 if (ppvR3)
2709 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2710 if (ppvR0)
2711 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2712 if (paPages)
2713 {
2714 uint32_t iPage = cPages;
2715 while (iPage-- > 0)
2716 {
2717 paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MapObjR3, iPage);
2718 Assert(paPages[iPage] != NIL_RTHCPHYS);
2719 }
2720 }
2721 return VINF_SUCCESS;
2722 }
2723
2724 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2725 AssertRC(rc2);
2726 }
2727
2728 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2729 AssertRC(rc2);
2730 }
2731 return rc;
2732}
2733
2734
2735/**
2736 * Maps a chunk of memory previously allocated by SUPR0PageAllocEx into kernel
2737 * space.
2738 *
2739 * @returns IPRT status code.
2740 * @param pSession The session to associated the allocation with.
2741 * @param pvR3 The ring-3 address returned by SUPR0PageAllocEx.
2742 * @param offSub Where to start mapping. Must be page aligned.
2743 * @param cbSub How much to map. Must be page aligned.
2744 * @param fFlags Flags, MBZ.
2745 * @param ppvR0 Where to reutrn the address of the ring-0 mapping on
2746 * success.
2747 */
2748SUPR0DECL(int) SUPR0PageMapKernel(PSUPDRVSESSION pSession, RTR3PTR pvR3, uint32_t offSub, uint32_t cbSub,
2749 uint32_t fFlags, PRTR0PTR ppvR0)
2750{
2751 int rc;
2752 PSUPDRVBUNDLE pBundle;
2753 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2754 RTR0MEMOBJ hMemObj = NIL_RTR0MEMOBJ;
2755 LogFlow(("SUPR0PageMapKernel: pSession=%p pvR3=%p offSub=%#x cbSub=%#x\n", pSession, pvR3, offSub, cbSub));
2756
2757 /*
2758 * Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
2759 */
2760 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2761 AssertPtrNullReturn(ppvR0, VERR_INVALID_POINTER);
2762 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2763 AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2764 AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2765 AssertReturn(cbSub, VERR_INVALID_PARAMETER);
2766
2767 /*
2768 * Find the memory object.
2769 */
2770 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2771 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2772 {
2773 if (pBundle->cUsed > 0)
2774 {
2775 unsigned i;
2776 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
2777 {
2778 if ( ( pBundle->aMem[i].eType == MEMREF_TYPE_PAGE
2779 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2780 && pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2781 && RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == pvR3)
2782 || ( pBundle->aMem[i].eType == MEMREF_TYPE_LOCKED
2783 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2784 && pBundle->aMem[i].MapObjR3 == NIL_RTR0MEMOBJ
2785 && RTR0MemObjAddressR3(pBundle->aMem[i].MemObj) == pvR3))
2786 {
2787 hMemObj = pBundle->aMem[i].MemObj;
2788 break;
2789 }
2790 }
2791 }
2792 }
2793 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2794
2795 rc = VERR_INVALID_PARAMETER;
2796 if (hMemObj != NIL_RTR0MEMOBJ)
2797 {
2798 /*
2799 * Do some furter input validations before calling IPRT.
2800 * (Cleanup is done indirectly by telling RTR0MemObjFree to include mappings.)
2801 */
2802 size_t cbMemObj = RTR0MemObjSize(hMemObj);
2803 if ( offSub < cbMemObj
2804 && cbSub <= cbMemObj
2805 && offSub + cbSub <= cbMemObj)
2806 {
2807 RTR0MEMOBJ hMapObj;
2808 rc = RTR0MemObjMapKernelEx(&hMapObj, hMemObj, (void *)-1, 0,
2809 RTMEM_PROT_READ | RTMEM_PROT_WRITE, offSub, cbSub);
2810 if (RT_SUCCESS(rc))
2811 *ppvR0 = RTR0MemObjAddress(hMapObj);
2812 }
2813 else
2814 SUPR0Printf("SUPR0PageMapKernel: cbMemObj=%#x offSub=%#x cbSub=%#x\n", cbMemObj, offSub, cbSub);
2815
2816 }
2817 return rc;
2818}
2819
2820
2821/**
2822 * Changes the page level protection of one or more pages previously allocated
2823 * by SUPR0PageAllocEx.
2824 *
2825 * @returns IPRT status code.
2826 * @param pSession The session to associated the allocation with.
2827 * @param pvR3 The ring-3 address returned by SUPR0PageAllocEx.
2828 * NIL_RTR3PTR if the ring-3 mapping should be unaffected.
2829 * @param pvR0 The ring-0 address returned by SUPR0PageAllocEx.
2830 * NIL_RTR0PTR if the ring-0 mapping should be unaffected.
2831 * @param offSub Where to start changing. Must be page aligned.
2832 * @param cbSub How much to change. Must be page aligned.
2833 * @param fProt The new page level protection, see RTMEM_PROT_*.
2834 */
2835SUPR0DECL(int) SUPR0PageProtect(PSUPDRVSESSION pSession, RTR3PTR pvR3, RTR0PTR pvR0, uint32_t offSub, uint32_t cbSub, uint32_t fProt)
2836{
2837 int rc;
2838 PSUPDRVBUNDLE pBundle;
2839 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2840 RTR0MEMOBJ hMemObjR0 = NIL_RTR0MEMOBJ;
2841 RTR0MEMOBJ hMemObjR3 = NIL_RTR0MEMOBJ;
2842 LogFlow(("SUPR0PageProtect: pSession=%p pvR3=%p pvR0=%p offSub=%#x cbSub=%#x fProt-%#x\n", pSession, pvR3, pvR0, offSub, cbSub, fProt));
2843
2844 /*
2845 * Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
2846 */
2847 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2848 AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_NONE)), VERR_INVALID_PARAMETER);
2849 AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2850 AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2851 AssertReturn(cbSub, VERR_INVALID_PARAMETER);
2852
2853 /*
2854 * Find the memory object.
2855 */
2856 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2857 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2858 {
2859 if (pBundle->cUsed > 0)
2860 {
2861 unsigned i;
2862 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
2863 {
2864 if ( pBundle->aMem[i].eType == MEMREF_TYPE_PAGE
2865 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2866 && ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2867 || pvR3 == NIL_RTR3PTR)
2868 && ( pvR0 != NIL_RTR0PTR
2869 || RTR0MemObjAddress(pBundle->aMem[i].MemObj))
2870 && ( pvR3 != NIL_RTR3PTR
2871 || RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == pvR3))
2872 {
2873 if (pvR0 != NIL_RTR0PTR)
2874 hMemObjR0 = pBundle->aMem[i].MemObj;
2875 if (pvR3 != NIL_RTR3PTR)
2876 hMemObjR3 = pBundle->aMem[i].MapObjR3;
2877 break;
2878 }
2879 }
2880 }
2881 }
2882 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2883
2884 rc = VERR_INVALID_PARAMETER;
2885 if ( hMemObjR0 != NIL_RTR0MEMOBJ
2886 || hMemObjR3 != NIL_RTR0MEMOBJ)
2887 {
2888 /*
2889 * Do some furter input validations before calling IPRT.
2890 */
2891 size_t cbMemObj = hMemObjR0 != NIL_RTR0PTR ? RTR0MemObjSize(hMemObjR0) : RTR0MemObjSize(hMemObjR3);
2892 if ( offSub < cbMemObj
2893 && cbSub <= cbMemObj
2894 && offSub + cbSub <= cbMemObj)
2895 {
2896 rc = VINF_SUCCESS;
2897 if (hMemObjR3 != NIL_RTR0PTR)
2898 rc = RTR0MemObjProtect(hMemObjR3, offSub, cbSub, fProt);
2899 if (hMemObjR0 != NIL_RTR0PTR && RT_SUCCESS(rc))
2900 rc = RTR0MemObjProtect(hMemObjR0, offSub, cbSub, fProt);
2901 }
2902 else
2903 SUPR0Printf("SUPR0PageMapKernel: cbMemObj=%#x offSub=%#x cbSub=%#x\n", cbMemObj, offSub, cbSub);
2904
2905 }
2906 return rc;
2907
2908}
2909
2910
2911/**
2912 * Free memory allocated by SUPR0PageAlloc() and SUPR0PageAllocEx().
2913 *
2914 * @returns IPRT status code.
2915 * @param pSession The session owning the allocation.
2916 * @param pvR3 The Ring-3 address returned by SUPR0PageAlloc() or
2917 * SUPR0PageAllocEx().
2918 */
2919SUPR0DECL(int) SUPR0PageFree(PSUPDRVSESSION pSession, RTR3PTR pvR3)
2920{
2921 LogFlow(("SUPR0PageFree: pSession=%p pvR3=%p\n", pSession, (void *)pvR3));
2922 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2923 return supdrvMemRelease(pSession, (RTHCUINTPTR)pvR3, MEMREF_TYPE_PAGE);
2924}
2925
2926
2927/**
2928 * Maps the GIP into userspace and/or get the physical address of the GIP.
2929 *
2930 * @returns IPRT status code.
2931 * @param pSession Session to which the GIP mapping should belong.
2932 * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional)
2933 * @param pHCPhysGip Where to store the physical address. (optional)
2934 *
2935 * @remark There is no reference counting on the mapping, so one call to this function
2936 * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
2937 * and remove the session as a GIP user.
2938 */
2939SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip)
2940{
2941 int rc = VINF_SUCCESS;
2942 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
2943 RTR3PTR pGip = NIL_RTR3PTR;
2944 RTHCPHYS HCPhys = NIL_RTHCPHYS;
2945 LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip));
2946
2947 /*
2948 * Validate
2949 */
2950 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2951 AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER);
2952 AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER);
2953
2954 RTSemFastMutexRequest(pDevExt->mtxGip);
2955 if (pDevExt->pGip)
2956 {
2957 /*
2958 * Map it?
2959 */
2960 if (ppGipR3)
2961 {
2962 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
2963 rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0,
2964 RTMEM_PROT_READ, RTR0ProcHandleSelf());
2965 if (RT_SUCCESS(rc))
2966 {
2967 pGip = RTR0MemObjAddressR3(pSession->GipMapObjR3);
2968 rc = VINF_SUCCESS; /** @todo remove this and replace the !rc below with RT_SUCCESS(rc). */
2969 }
2970 }
2971
2972 /*
2973 * Get physical address.
2974 */
2975 if (pHCPhysGip && !rc)
2976 HCPhys = pDevExt->HCPhysGip;
2977
2978 /*
2979 * Reference globally.
2980 */
2981 if (!pSession->fGipReferenced && !rc)
2982 {
2983 pSession->fGipReferenced = 1;
2984 pDevExt->cGipUsers++;
2985 if (pDevExt->cGipUsers == 1)
2986 {
2987 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2988 unsigned i;
2989
2990 LogFlow(("SUPR0GipMap: Resumes GIP updating\n"));
2991
2992 for (i = 0; i < RT_ELEMENTS(pGip->aCPUs); i++)
2993 ASMAtomicXchgU32(&pGip->aCPUs[i].u32TransactionId, pGip->aCPUs[i].u32TransactionId & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
2994 ASMAtomicXchgU64(&pGip->u64NanoTSLastUpdateHz, 0);
2995
2996 rc = RTTimerStart(pDevExt->pGipTimer, 0);
2997 AssertRC(rc); rc = VINF_SUCCESS;
2998 }
2999 }
3000 }
3001 else
3002 {
3003 rc = SUPDRV_ERR_GENERAL_FAILURE;
3004 Log(("SUPR0GipMap: GIP is not available!\n"));
3005 }
3006 RTSemFastMutexRelease(pDevExt->mtxGip);
3007
3008 /*
3009 * Write returns.
3010 */
3011 if (pHCPhysGip)
3012 *pHCPhysGip = HCPhys;
3013 if (ppGipR3)
3014 *ppGipR3 = pGip;
3015
3016#ifdef DEBUG_DARWIN_GIP
3017 OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGip=%p\n", rc, (unsigned long)HCPhys, (void *)pGip));
3018#else
3019 LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGip=%p\n", rc, (unsigned long)HCPhys, (void *)pGip));
3020#endif
3021 return rc;
3022}
3023
3024
3025/**
3026 * Unmaps any user mapping of the GIP and terminates all GIP access
3027 * from this session.
3028 *
3029 * @returns IPRT status code.
3030 * @param pSession Session to which the GIP mapping should belong.
3031 */
3032SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
3033{
3034 int rc = VINF_SUCCESS;
3035 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
3036#ifdef DEBUG_DARWIN_GIP
3037 OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n",
3038 pSession,
3039 pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL,
3040 pSession->GipMapObjR3));
3041#else
3042 LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession));
3043#endif
3044 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3045
3046 RTSemFastMutexRequest(pDevExt->mtxGip);
3047
3048 /*
3049 * Unmap anything?
3050 */
3051 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
3052 {
3053 rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
3054 AssertRC(rc);
3055 if (RT_SUCCESS(rc))
3056 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
3057 }
3058
3059 /*
3060 * Dereference global GIP.
3061 */
3062 if (pSession->fGipReferenced && !rc)
3063 {
3064 pSession->fGipReferenced = 0;
3065 if ( pDevExt->cGipUsers > 0
3066 && !--pDevExt->cGipUsers)
3067 {
3068 LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n"));
3069 rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS;
3070 }
3071 }
3072
3073 RTSemFastMutexRelease(pDevExt->mtxGip);
3074
3075 return rc;
3076}
3077
3078
3079/**
3080 * Register a component factory with the support driver.
3081 *
3082 * This is currently restricted to kernel sessions only.
3083 *
3084 * @returns VBox status code.
3085 * @retval VINF_SUCCESS on success.
3086 * @retval VERR_NO_MEMORY if we're out of memory.
3087 * @retval VERR_ALREADY_EXISTS if the factory has already been registered.
3088 * @retval VERR_ACCESS_DENIED if it isn't a kernel session.
3089 * @retval VERR_INVALID_PARAMETER on invalid parameter.
3090 * @retval VERR_INVALID_POINTER on invalid pointer parameter.
3091 *
3092 * @param pSession The SUPDRV session (must be a ring-0 session).
3093 * @param pFactory Pointer to the component factory registration structure.
3094 *
3095 * @remarks This interface is also available via SUPR0IdcComponentRegisterFactory.
3096 */
3097SUPR0DECL(int) SUPR0ComponentRegisterFactory(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory)
3098{
3099 PSUPDRVFACTORYREG pNewReg;
3100 const char *psz;
3101 int rc;
3102
3103 /*
3104 * Validate parameters.
3105 */
3106 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3107 AssertReturn(pSession->R0Process == NIL_RTR0PROCESS, VERR_ACCESS_DENIED);
3108 AssertPtrReturn(pFactory, VERR_INVALID_POINTER);
3109 AssertPtrReturn(pFactory->pfnQueryFactoryInterface, VERR_INVALID_POINTER);
3110 psz = (const char *)memchr(pFactory->szName, '\0', sizeof(pFactory->szName));
3111 AssertReturn(psz, VERR_INVALID_PARAMETER);
3112
3113 /*
3114 * Allocate and initialize a new registration structure.
3115 */
3116 pNewReg = (PSUPDRVFACTORYREG)RTMemAlloc(sizeof(SUPDRVFACTORYREG));
3117 if (pNewReg)
3118 {
3119 pNewReg->pNext = NULL;
3120 pNewReg->pFactory = pFactory;
3121 pNewReg->pSession = pSession;
3122 pNewReg->cchName = psz - &pFactory->szName[0];
3123
3124 /*
3125 * Add it to the tail of the list after checking for prior registration.
3126 */
3127 rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
3128 if (RT_SUCCESS(rc))
3129 {
3130 PSUPDRVFACTORYREG pPrev = NULL;
3131 PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
3132 while (pCur && pCur->pFactory != pFactory)
3133 {
3134 pPrev = pCur;
3135 pCur = pCur->pNext;
3136 }
3137 if (!pCur)
3138 {
3139 if (pPrev)
3140 pPrev->pNext = pNewReg;
3141 else
3142 pSession->pDevExt->pComponentFactoryHead = pNewReg;
3143 rc = VINF_SUCCESS;
3144 }
3145 else
3146 rc = VERR_ALREADY_EXISTS;
3147
3148 RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
3149 }
3150
3151 if (RT_FAILURE(rc))
3152 RTMemFree(pNewReg);
3153 }
3154 else
3155 rc = VERR_NO_MEMORY;
3156 return rc;
3157}
3158
3159
3160/**
3161 * Deregister a component factory.
3162 *
3163 * @returns VBox status code.
3164 * @retval VINF_SUCCESS on success.
3165 * @retval VERR_NOT_FOUND if the factory wasn't registered.
3166 * @retval VERR_ACCESS_DENIED if it isn't a kernel session.
3167 * @retval VERR_INVALID_PARAMETER on invalid parameter.
3168 * @retval VERR_INVALID_POINTER on invalid pointer parameter.
3169 *
3170 * @param pSession The SUPDRV session (must be a ring-0 session).
3171 * @param pFactory Pointer to the component factory registration structure
3172 * previously passed SUPR0ComponentRegisterFactory().
3173 *
3174 * @remarks This interface is also available via SUPR0IdcComponentDeregisterFactory.
3175 */
3176SUPR0DECL(int) SUPR0ComponentDeregisterFactory(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory)
3177{
3178 int rc;
3179
3180 /*
3181 * Validate parameters.
3182 */
3183 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3184 AssertReturn(pSession->R0Process == NIL_RTR0PROCESS, VERR_ACCESS_DENIED);
3185 AssertPtrReturn(pFactory, VERR_INVALID_POINTER);
3186
3187 /*
3188 * Take the lock and look for the registration record.
3189 */
3190 rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
3191 if (RT_SUCCESS(rc))
3192 {
3193 PSUPDRVFACTORYREG pPrev = NULL;
3194 PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
3195 while (pCur && pCur->pFactory != pFactory)
3196 {
3197 pPrev = pCur;
3198 pCur = pCur->pNext;
3199 }
3200 if (pCur)
3201 {
3202 if (!pPrev)
3203 pSession->pDevExt->pComponentFactoryHead = pCur->pNext;
3204 else
3205 pPrev->pNext = pCur->pNext;
3206
3207 pCur->pNext = NULL;
3208 pCur->pFactory = NULL;
3209 pCur->pSession = NULL;
3210 rc = VINF_SUCCESS;
3211 }
3212 else
3213 rc = VERR_NOT_FOUND;
3214
3215 RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
3216
3217 RTMemFree(pCur);
3218 }
3219 return rc;
3220}
3221
3222
3223/**
3224 * Queries a component factory.
3225 *
3226 * @returns VBox status code.
3227 * @retval VERR_INVALID_PARAMETER on invalid parameter.
3228 * @retval VERR_INVALID_POINTER on invalid pointer parameter.
3229 * @retval VERR_SUPDRV_COMPONENT_NOT_FOUND if the component factory wasn't found.
3230 * @retval VERR_SUPDRV_INTERFACE_NOT_SUPPORTED if the interface wasn't supported.
3231 *
3232 * @param pSession The SUPDRV session.
3233 * @param pszName The name of the component factory.
3234 * @param pszInterfaceUuid The UUID of the factory interface (stringified).
3235 * @param ppvFactoryIf Where to store the factory interface.
3236 */
3237SUPR0DECL(int) SUPR0ComponentQueryFactory(PSUPDRVSESSION pSession, const char *pszName, const char *pszInterfaceUuid, void **ppvFactoryIf)
3238{
3239 const char *pszEnd;
3240 size_t cchName;
3241 int rc;
3242
3243 /*
3244 * Validate parameters.
3245 */
3246 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3247
3248 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
3249 pszEnd = memchr(pszName, '\0', RT_SIZEOFMEMB(SUPDRVFACTORY, szName));
3250 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
3251 cchName = pszEnd - pszName;
3252
3253 AssertPtrReturn(pszInterfaceUuid, VERR_INVALID_POINTER);
3254 pszEnd = memchr(pszInterfaceUuid, '\0', RTUUID_STR_LENGTH);
3255 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
3256
3257 AssertPtrReturn(ppvFactoryIf, VERR_INVALID_POINTER);
3258 *ppvFactoryIf = NULL;
3259
3260 /*
3261 * Take the lock and try all factories by this name.
3262 */
3263 rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
3264 if (RT_SUCCESS(rc))
3265 {
3266 PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
3267 rc = VERR_SUPDRV_COMPONENT_NOT_FOUND;
3268 while (pCur)
3269 {
3270 if ( pCur->cchName == cchName
3271 && !memcmp(pCur->pFactory->szName, pszName, cchName))
3272 {
3273#ifdef RT_WITH_W64_UNWIND_HACK
3274 void *pvFactory = supdrvNtWrapQueryFactoryInterface((PFNRT)pCur->pFactory->pfnQueryFactoryInterface, pCur->pFactory, pSession, pszInterfaceUuid);
3275#else
3276 void *pvFactory = pCur->pFactory->pfnQueryFactoryInterface(pCur->pFactory, pSession, pszInterfaceUuid);
3277#endif
3278 if (pvFactory)
3279 {
3280 *ppvFactoryIf = pvFactory;
3281 rc = VINF_SUCCESS;
3282 break;
3283 }
3284 rc = VERR_SUPDRV_INTERFACE_NOT_SUPPORTED;
3285 }
3286
3287 /* next */
3288 pCur = pCur->pNext;
3289 }
3290
3291 RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
3292 }
3293 return rc;
3294}
3295
3296
3297/**
3298 * Destructor for objects created by SUPSemEventCreate.
3299 *
3300 * @param pvObj The object handle.
3301 * @param pvUser1 The IPRT event handle.
3302 * @param pvUser2 NULL.
3303 */
3304static DECLCALLBACK(void) supR0SemEventDestructor(void *pvObj, void *pvUser1, void *pvUser2)
3305{
3306 Assert(pvUser2 == NULL);
3307 NOREF(pvObj);
3308 RTSemEventDestroy((RTSEMEVENT)pvUser1);
3309}
3310
3311
3312SUPDECL(int) SUPSemEventCreate(PSUPDRVSESSION pSession, PSUPSEMEVENT phEvent)
3313{
3314 int rc;
3315 RTSEMEVENT hEventReal;
3316
3317 /*
3318 * Input validation.
3319 */
3320 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3321 AssertPtrReturn(phEvent, VERR_INVALID_POINTER);
3322
3323 /*
3324 * Create the event semaphore object.
3325 */
3326 rc = RTSemEventCreate(&hEventReal);
3327 if (RT_SUCCESS(rc))
3328 {
3329 void *pvObj = SUPR0ObjRegister(pSession, SUPDRVOBJTYPE_SEM_EVENT, supR0SemEventDestructor, hEventReal, NULL);
3330 if (pvObj)
3331 {
3332 uint32_t h32;
3333 rc = RTHandleTableAllocWithCtx(pSession->hHandleTable, pvObj, SUPDRV_HANDLE_CTX_EVENT, &h32);
3334 if (RT_SUCCESS(rc))
3335 {
3336 *phEvent = (SUPSEMEVENT)(uintptr_t)h32;
3337 return VINF_SUCCESS;
3338 }
3339 SUPR0ObjRelease(pvObj, pSession);
3340 }
3341 else
3342 RTSemEventDestroy(hEventReal);
3343 }
3344 return rc;
3345}
3346
3347
3348SUPDECL(int) SUPSemEventClose(PSUPDRVSESSION pSession, SUPSEMEVENT hEvent)
3349{
3350 uint32_t h32;
3351 PSUPDRVOBJ pObj;
3352
3353 /*
3354 * Input validation.
3355 */
3356 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3357 if (hEvent == NIL_SUPSEMEVENT)
3358 return VINF_SUCCESS;
3359 h32 = (uint32_t)(uintptr_t)hEvent;
3360 if (h32 != (uintptr_t)hEvent)
3361 return VERR_INVALID_HANDLE;
3362
3363 /*
3364 * Do the job.
3365 */
3366 pObj = (PSUPDRVOBJ)RTHandleTableFreeWithCtx(pSession->hHandleTable, h32, SUPDRV_HANDLE_CTX_EVENT);
3367 if (!pObj)
3368 return VERR_INVALID_HANDLE;
3369
3370 Assert(pObj->cUsage >= 2);
3371 SUPR0ObjRelease(pObj, pSession); /* The free call above. */
3372 return SUPR0ObjRelease(pObj, pSession); /* The handle table reference. */
3373}
3374
3375
3376SUPDECL(int) SUPSemEventSignal(PSUPDRVSESSION pSession, SUPSEMEVENT hEvent)
3377{
3378 int rc;
3379 uint32_t h32;
3380 PSUPDRVOBJ pObj;
3381
3382 /*
3383 * Input validation.
3384 */
3385 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3386 h32 = (uint32_t)(uintptr_t)hEvent;
3387 if (h32 != (uintptr_t)hEvent)
3388 return VERR_INVALID_HANDLE;
3389 pObj = (PSUPDRVOBJ)RTHandleTableLookupWithCtx(pSession->hHandleTable, h32, SUPDRV_HANDLE_CTX_EVENT);
3390 if (!pObj)
3391 return VERR_INVALID_HANDLE;
3392
3393 /*
3394 * Do the job.
3395 */
3396 rc = RTSemEventSignal((RTSEMEVENT)pObj->pvUser1);
3397
3398 SUPR0ObjRelease(pObj, pSession);
3399 return rc;
3400}
3401
3402
3403SUPDECL(int) SUPSemEventWait(PSUPDRVSESSION pSession, SUPSEMEVENT hEvent, uint32_t cMillies)
3404{
3405 int rc;
3406 uint32_t h32;
3407 PSUPDRVOBJ pObj;
3408
3409 /*
3410 * Input validation.
3411 */
3412 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3413 h32 = (uint32_t)(uintptr_t)hEvent;
3414 if (h32 != (uintptr_t)hEvent)
3415 return VERR_INVALID_HANDLE;
3416 pObj = (PSUPDRVOBJ)RTHandleTableLookupWithCtx(pSession->hHandleTable, h32, SUPDRV_HANDLE_CTX_EVENT);
3417 if (!pObj)
3418 return VERR_INVALID_HANDLE;
3419
3420 /*
3421 * Do the job.
3422 */
3423 rc = RTSemEventWait((RTSEMEVENT)pObj->pvUser1, cMillies);
3424
3425 SUPR0ObjRelease(pObj, pSession);
3426 return rc;
3427}
3428
3429
3430SUPDECL(int) SUPSemEventWaitNoResume(PSUPDRVSESSION pSession, SUPSEMEVENT hEvent, uint32_t cMillies)
3431{
3432 int rc;
3433 uint32_t h32;
3434 PSUPDRVOBJ pObj;
3435
3436 /*
3437 * Input validation.
3438 */
3439 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3440 h32 = (uint32_t)(uintptr_t)hEvent;
3441 if (h32 != (uintptr_t)hEvent)
3442 return VERR_INVALID_HANDLE;
3443 pObj = (PSUPDRVOBJ)RTHandleTableLookupWithCtx(pSession->hHandleTable, h32, SUPDRV_HANDLE_CTX_EVENT);
3444 if (!pObj)
3445 return VERR_INVALID_HANDLE;
3446
3447 /*
3448 * Do the job.
3449 */
3450 rc = RTSemEventWaitNoResume((RTSEMEVENT)pObj->pvUser1, cMillies);
3451
3452 SUPR0ObjRelease(pObj, pSession);
3453 return rc;
3454}
3455
3456
3457/**
3458 * Destructor for objects created by SUPSemEventMultiCreate.
3459 *
3460 * @param pvObj The object handle.
3461 * @param pvUser1 The IPRT event handle.
3462 * @param pvUser2 NULL.
3463 */
3464static DECLCALLBACK(void) supR0SemEventMultiDestructor(void *pvObj, void *pvUser1, void *pvUser2)
3465{
3466 Assert(pvUser2 == NULL);
3467 NOREF(pvObj);
3468 RTSemEventMultiDestroy((RTSEMEVENTMULTI)pvUser1);
3469}
3470
3471
3472SUPDECL(int) SUPSemEventMultiCreate(PSUPDRVSESSION pSession, PSUPSEMEVENTMULTI phEventMulti)
3473{
3474 int rc;
3475 RTSEMEVENTMULTI hEventMultReal;
3476
3477 /*
3478 * Input validation.
3479 */
3480 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3481 AssertPtrReturn(phEventMulti, VERR_INVALID_POINTER);
3482
3483 /*
3484 * Create the event semaphore object.
3485 */
3486 rc = RTSemEventMultiCreate(&hEventMultReal);
3487 if (RT_SUCCESS(rc))
3488 {
3489 void *pvObj = SUPR0ObjRegister(pSession, SUPDRVOBJTYPE_SEM_EVENT_MULTI, supR0SemEventMultiDestructor, hEventMultReal, NULL);
3490 if (pvObj)
3491 {
3492 uint32_t h32;
3493 rc = RTHandleTableAllocWithCtx(pSession->hHandleTable, pvObj, SUPDRV_HANDLE_CTX_EVENT_MULTI, &h32);
3494 if (RT_SUCCESS(rc))
3495 {
3496 *phEventMulti = (SUPSEMEVENTMULTI)(uintptr_t)h32;
3497 return VINF_SUCCESS;
3498 }
3499 SUPR0ObjRelease(pvObj, pSession);
3500 }
3501 else
3502 RTSemEventMultiDestroy(hEventMultReal);
3503 }
3504 return rc;
3505}
3506
3507
3508SUPDECL(int) SUPSemEventMultiClose(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti)
3509{
3510 uint32_t h32;
3511 PSUPDRVOBJ pObj;
3512
3513 /*
3514 * Input validation.
3515 */
3516 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3517 if (hEventMulti == NIL_SUPSEMEVENTMULTI)
3518 return VINF_SUCCESS;
3519 h32 = (uint32_t)(uintptr_t)hEventMulti;
3520 if (h32 != (uintptr_t)hEventMulti)
3521 return VERR_INVALID_HANDLE;
3522
3523 /*
3524 * Do the job.
3525 */
3526 pObj = (PSUPDRVOBJ)RTHandleTableFreeWithCtx(pSession->hHandleTable, h32, SUPDRV_HANDLE_CTX_EVENT_MULTI);
3527 if (!pObj)
3528 return VERR_INVALID_HANDLE;
3529
3530 Assert(pObj->cUsage >= 2);
3531 SUPR0ObjRelease(pObj, pSession); /* The free call above. */
3532 return SUPR0ObjRelease(pObj, pSession); /* The handle table reference. */
3533}
3534
3535
3536SUPDECL(int) SUPSemEventMultiSignal(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti)
3537{
3538 int rc;
3539 uint32_t h32;
3540 PSUPDRVOBJ pObj;
3541
3542 /*
3543 * Input validation.
3544 */
3545 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3546 h32 = (uint32_t)(uintptr_t)hEventMulti;
3547 if (h32 != (uintptr_t)hEventMulti)
3548 return VERR_INVALID_HANDLE;
3549 pObj = (PSUPDRVOBJ)RTHandleTableLookupWithCtx(pSession->hHandleTable, h32, SUPDRV_HANDLE_CTX_EVENT_MULTI);
3550 if (!pObj)
3551 return VERR_INVALID_HANDLE;
3552
3553 /*
3554 * Do the job.
3555 */
3556 rc = RTSemEventMultiSignal((RTSEMEVENTMULTI)pObj->pvUser1);
3557
3558 SUPR0ObjRelease(pObj, pSession);
3559 return rc;
3560}
3561
3562
3563SUPDECL(int) SUPSemEventMultiReset(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti)
3564{
3565 int rc;
3566 uint32_t h32;
3567 PSUPDRVOBJ pObj;
3568
3569 /*
3570 * Input validation.
3571 */
3572 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3573 h32 = (uint32_t)(uintptr_t)hEventMulti;
3574 if (h32 != (uintptr_t)hEventMulti)
3575 return VERR_INVALID_HANDLE;
3576 pObj = (PSUPDRVOBJ)RTHandleTableLookupWithCtx(pSession->hHandleTable, h32, SUPDRV_HANDLE_CTX_EVENT_MULTI);
3577 if (!pObj)
3578 return VERR_INVALID_HANDLE;
3579
3580 /*
3581 * Do the job.
3582 */
3583 rc = RTSemEventMultiReset((RTSEMEVENTMULTI)pObj->pvUser1);
3584
3585 SUPR0ObjRelease(pObj, pSession);
3586 return rc;
3587}
3588
3589
3590SUPDECL(int) SUPSemEventMultiWait(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti, uint32_t cMillies)
3591{
3592 int rc;
3593 uint32_t h32;
3594 PSUPDRVOBJ pObj;
3595
3596 /*
3597 * Input validation.
3598 */
3599 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3600 h32 = (uint32_t)(uintptr_t)hEventMulti;
3601 if (h32 != (uintptr_t)hEventMulti)
3602 return VERR_INVALID_HANDLE;
3603 pObj = (PSUPDRVOBJ)RTHandleTableLookupWithCtx(pSession->hHandleTable, h32, SUPDRV_HANDLE_CTX_EVENT_MULTI);
3604 if (!pObj)
3605 return VERR_INVALID_HANDLE;
3606
3607 /*
3608 * Do the job.
3609 */
3610 rc = RTSemEventMultiWait((RTSEMEVENTMULTI)pObj->pvUser1, cMillies);
3611
3612 SUPR0ObjRelease(pObj, pSession);
3613 return rc;
3614}
3615
3616
3617SUPDECL(int) SUPSemEventMultiWaitNoResume(PSUPDRVSESSION pSession, SUPSEMEVENTMULTI hEventMulti, uint32_t cMillies)
3618{
3619 int rc;
3620 uint32_t h32;
3621 PSUPDRVOBJ pObj;
3622
3623 /*
3624 * Input validation.
3625 */
3626 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3627 h32 = (uint32_t)(uintptr_t)hEventMulti;
3628 if (h32 != (uintptr_t)hEventMulti)
3629 return VERR_INVALID_HANDLE;
3630 pObj = (PSUPDRVOBJ)RTHandleTableLookupWithCtx(pSession->hHandleTable, h32, SUPDRV_HANDLE_CTX_EVENT_MULTI);
3631 if (!pObj)
3632 return VERR_INVALID_HANDLE;
3633
3634 /*
3635 * Do the job.
3636 */
3637 rc = RTSemEventMultiWaitNoResume((RTSEMEVENTMULTI)pObj->pvUser1, cMillies);
3638
3639 SUPR0ObjRelease(pObj, pSession);
3640 return rc;
3641}
3642
3643
3644/**
3645 * Adds a memory object to the session.
3646 *
3647 * @returns IPRT status code.
3648 * @param pMem Memory tracking structure containing the
3649 * information to track.
3650 * @param pSession The session.
3651 */
3652static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession)
3653{
3654 PSUPDRVBUNDLE pBundle;
3655 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
3656
3657 /*
3658 * Find free entry and record the allocation.
3659 */
3660 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
3661 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
3662 {
3663 if (pBundle->cUsed < RT_ELEMENTS(pBundle->aMem))
3664 {
3665 unsigned i;
3666 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
3667 {
3668 if (pBundle->aMem[i].MemObj == NIL_RTR0MEMOBJ)
3669 {
3670 pBundle->cUsed++;
3671 pBundle->aMem[i] = *pMem;
3672 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3673 return VINF_SUCCESS;
3674 }
3675 }
3676 AssertFailed(); /* !!this can't be happening!!! */
3677 }
3678 }
3679 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3680
3681 /*
3682 * Need to allocate a new bundle.
3683 * Insert into the last entry in the bundle.
3684 */
3685 pBundle = (PSUPDRVBUNDLE)RTMemAllocZ(sizeof(*pBundle));
3686 if (!pBundle)
3687 return VERR_NO_MEMORY;
3688
3689 /* take last entry. */
3690 pBundle->cUsed++;
3691 pBundle->aMem[RT_ELEMENTS(pBundle->aMem) - 1] = *pMem;
3692
3693 /* insert into list. */
3694 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
3695 pBundle->pNext = pSession->Bundle.pNext;
3696 pSession->Bundle.pNext = pBundle;
3697 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3698
3699 return VINF_SUCCESS;
3700}
3701
3702
3703/**
3704 * Releases a memory object referenced by pointer and type.
3705 *
3706 * @returns IPRT status code.
3707 * @param pSession Session data.
3708 * @param uPtr Pointer to memory. This is matched against both the R0 and R3 addresses.
3709 * @param eType Memory type.
3710 */
3711static int supdrvMemRelease(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, SUPDRVMEMREFTYPE eType)
3712{
3713 PSUPDRVBUNDLE pBundle;
3714 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
3715
3716 /*
3717 * Validate input.
3718 */
3719 if (!uPtr)
3720 {
3721 Log(("Illegal address %p\n", (void *)uPtr));
3722 return VERR_INVALID_PARAMETER;
3723 }
3724
3725 /*
3726 * Search for the address.
3727 */
3728 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
3729 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
3730 {
3731 if (pBundle->cUsed > 0)
3732 {
3733 unsigned i;
3734 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
3735 {
3736 if ( pBundle->aMem[i].eType == eType
3737 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
3738 && ( (RTHCUINTPTR)RTR0MemObjAddress(pBundle->aMem[i].MemObj) == uPtr
3739 || ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
3740 && RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == uPtr))
3741 )
3742 {
3743 /* Make a copy of it and release it outside the spinlock. */
3744 SUPDRVMEMREF Mem = pBundle->aMem[i];
3745 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
3746 pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
3747 pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
3748 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3749
3750 if (Mem.MapObjR3 != NIL_RTR0MEMOBJ)
3751 {
3752 int rc = RTR0MemObjFree(Mem.MapObjR3, false);
3753 AssertRC(rc); /** @todo figure out how to handle this. */
3754 }
3755 if (Mem.MemObj != NIL_RTR0MEMOBJ)
3756 {
3757 int rc = RTR0MemObjFree(Mem.MemObj, true /* fFreeMappings */);
3758 AssertRC(rc); /** @todo figure out how to handle this. */
3759 }
3760 return VINF_SUCCESS;
3761 }
3762 }
3763 }
3764 }
3765 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3766 Log(("Failed to find %p!!! (eType=%d)\n", (void *)uPtr, eType));
3767 return VERR_INVALID_PARAMETER;
3768}
3769
3770
3771/**
3772 * Opens an image. If it's the first time it's opened the call must upload
3773 * the bits using the supdrvIOCtl_LdrLoad() / SUPDRV_IOCTL_LDR_LOAD function.
3774 *
3775 * This is the 1st step of the loading.
3776 *
3777 * @returns IPRT status code.
3778 * @param pDevExt Device globals.
3779 * @param pSession Session data.
3780 * @param pReq The open request.
3781 */
3782static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN pReq)
3783{
3784 PSUPDRVLDRIMAGE pImage;
3785 unsigned cb;
3786 void *pv;
3787 size_t cchName = strlen(pReq->u.In.szName); /* (caller checked < 32). */
3788 LogFlow(("supdrvIOCtl_LdrOpen: szName=%s cbImage=%d\n", pReq->u.In.szName, pReq->u.In.cbImage));
3789
3790 /*
3791 * Check if we got an instance of the image already.
3792 */
3793 RTSemFastMutexRequest(pDevExt->mtxLdr);
3794 for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
3795 {
3796 if ( pImage->szName[cchName] == '\0'
3797 && !memcmp(pImage->szName, pReq->u.In.szName, cchName))
3798 {
3799 pImage->cUsage++;
3800 pReq->u.Out.pvImageBase = pImage->pvImage;
3801 pReq->u.Out.fNeedsLoading = pImage->uState == SUP_IOCTL_LDR_OPEN;
3802 supdrvLdrAddUsage(pSession, pImage);
3803 RTSemFastMutexRelease(pDevExt->mtxLdr);
3804 return VINF_SUCCESS;
3805 }
3806 }
3807 /* (not found - add it!) */
3808
3809 /*
3810 * Allocate memory.
3811 */
3812 cb = pReq->u.In.cbImage + sizeof(SUPDRVLDRIMAGE) + 31;
3813 pv = RTMemExecAlloc(cb);
3814 if (!pv)
3815 {
3816 RTSemFastMutexRelease(pDevExt->mtxLdr);
3817 Log(("supdrvIOCtl_LdrOpen: RTMemExecAlloc(%u) failed\n", cb));
3818 return VERR_NO_MEMORY;
3819 }
3820
3821 /*
3822 * Setup and link in the LDR stuff.
3823 */
3824 pImage = (PSUPDRVLDRIMAGE)pv;
3825 pImage->pvImage = RT_ALIGN_P(pImage + 1, 32);
3826 pImage->cbImage = pReq->u.In.cbImage;
3827 pImage->pfnModuleInit = NULL;
3828 pImage->pfnModuleTerm = NULL;
3829 pImage->pfnServiceReqHandler = NULL;
3830 pImage->uState = SUP_IOCTL_LDR_OPEN;
3831 pImage->cUsage = 1;
3832 memcpy(pImage->szName, pReq->u.In.szName, cchName + 1);
3833
3834 pImage->pNext = pDevExt->pLdrImages;
3835 pDevExt->pLdrImages = pImage;
3836
3837 supdrvLdrAddUsage(pSession, pImage);
3838
3839 pReq->u.Out.pvImageBase = pImage->pvImage;
3840 pReq->u.Out.fNeedsLoading = true;
3841 RTSemFastMutexRelease(pDevExt->mtxLdr);
3842
3843#if defined(RT_OS_WINDOWS) && defined(DEBUG)
3844 SUPR0Printf("VBoxDrv: windbg> .reload /f %s=%#p\n", pImage->szName, pImage->pvImage);
3845#endif
3846 return VINF_SUCCESS;
3847}
3848
3849
3850/**
3851 * Loads the image bits.
3852 *
3853 * This is the 2nd step of the loading.
3854 *
3855 * @returns IPRT status code.
3856 * @param pDevExt Device globals.
3857 * @param pSession Session data.
3858 * @param pReq The request.
3859 */
3860static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD pReq)
3861{
3862 PSUPDRVLDRUSAGE pUsage;
3863 PSUPDRVLDRIMAGE pImage;
3864 int rc;
3865 LogFlow(("supdrvIOCtl_LdrLoad: pvImageBase=%p cbImage=%d\n", pReq->u.In.pvImageBase, pReq->u.In.cbImage));
3866
3867 /*
3868 * Find the ldr image.
3869 */
3870 RTSemFastMutexRequest(pDevExt->mtxLdr);
3871 pUsage = pSession->pLdrUsage;
3872 while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
3873 pUsage = pUsage->pNext;
3874 if (!pUsage)
3875 {
3876 RTSemFastMutexRelease(pDevExt->mtxLdr);
3877 Log(("SUP_IOCTL_LDR_LOAD: couldn't find image!\n"));
3878 return VERR_INVALID_HANDLE;
3879 }
3880 pImage = pUsage->pImage;
3881 if (pImage->cbImage != pReq->u.In.cbImage)
3882 {
3883 RTSemFastMutexRelease(pDevExt->mtxLdr);
3884 Log(("SUP_IOCTL_LDR_LOAD: image size mismatch!! %d(prep) != %d(load)\n", pImage->cbImage, pReq->u.In.cbImage));
3885 return VERR_INVALID_HANDLE;
3886 }
3887 if (pImage->uState != SUP_IOCTL_LDR_OPEN)
3888 {
3889 unsigned uState = pImage->uState;
3890 RTSemFastMutexRelease(pDevExt->mtxLdr);
3891 if (uState != SUP_IOCTL_LDR_LOAD)
3892 AssertMsgFailed(("SUP_IOCTL_LDR_LOAD: invalid image state %d (%#x)!\n", uState, uState));
3893 return SUPDRV_ERR_ALREADY_LOADED;
3894 }
3895 switch (pReq->u.In.eEPType)
3896 {
3897 case SUPLDRLOADEP_NOTHING:
3898 break;
3899
3900 case SUPLDRLOADEP_VMMR0:
3901 if ( !pReq->u.In.EP.VMMR0.pvVMMR0
3902 || !pReq->u.In.EP.VMMR0.pvVMMR0EntryInt
3903 || !pReq->u.In.EP.VMMR0.pvVMMR0EntryFast
3904 || !pReq->u.In.EP.VMMR0.pvVMMR0EntryEx)
3905 {
3906 RTSemFastMutexRelease(pDevExt->mtxLdr);
3907 Log(("NULL pointer: pvVMMR0=%p pvVMMR0EntryInt=%p pvVMMR0EntryFast=%p pvVMMR0EntryEx=%p!\n",
3908 pReq->u.In.EP.VMMR0.pvVMMR0, pReq->u.In.EP.VMMR0.pvVMMR0EntryInt,
3909 pReq->u.In.EP.VMMR0.pvVMMR0EntryFast, pReq->u.In.EP.VMMR0.pvVMMR0EntryEx));
3910 return VERR_INVALID_PARAMETER;
3911 }
3912 /** @todo validate pReq->u.In.EP.VMMR0.pvVMMR0 against pvImage! */
3913 if ( (uintptr_t)pReq->u.In.EP.VMMR0.pvVMMR0EntryInt - (uintptr_t)pImage->pvImage >= pReq->u.In.cbImage
3914 || (uintptr_t)pReq->u.In.EP.VMMR0.pvVMMR0EntryFast - (uintptr_t)pImage->pvImage >= pReq->u.In.cbImage
3915 || (uintptr_t)pReq->u.In.EP.VMMR0.pvVMMR0EntryEx - (uintptr_t)pImage->pvImage >= pReq->u.In.cbImage)
3916 {
3917 RTSemFastMutexRelease(pDevExt->mtxLdr);
3918 Log(("Out of range (%p LB %#x): pvVMMR0EntryInt=%p, pvVMMR0EntryFast=%p or pvVMMR0EntryEx=%p is NULL!\n",
3919 pImage->pvImage, pReq->u.In.cbImage, pReq->u.In.EP.VMMR0.pvVMMR0EntryInt,
3920 pReq->u.In.EP.VMMR0.pvVMMR0EntryFast, pReq->u.In.EP.VMMR0.pvVMMR0EntryEx));
3921 return VERR_INVALID_PARAMETER;
3922 }
3923 break;
3924
3925 case SUPLDRLOADEP_SERVICE:
3926 if (!pReq->u.In.EP.Service.pfnServiceReq)
3927 {
3928 RTSemFastMutexRelease(pDevExt->mtxLdr);
3929 Log(("NULL pointer: pfnServiceReq=%p!\n", pReq->u.In.EP.Service.pfnServiceReq));
3930 return VERR_INVALID_PARAMETER;
3931 }
3932 if ((uintptr_t)pReq->u.In.EP.Service.pfnServiceReq - (uintptr_t)pImage->pvImage >= pReq->u.In.cbImage)
3933 {
3934 RTSemFastMutexRelease(pDevExt->mtxLdr);
3935 Log(("Out of range (%p LB %#x): pfnServiceReq=%p, pvVMMR0EntryFast=%p or pvVMMR0EntryEx=%p is NULL!\n",
3936 pImage->pvImage, pReq->u.In.cbImage, pReq->u.In.EP.Service.pfnServiceReq));
3937 return VERR_INVALID_PARAMETER;
3938 }
3939 if ( pReq->u.In.EP.Service.apvReserved[0] != NIL_RTR0PTR
3940 || pReq->u.In.EP.Service.apvReserved[1] != NIL_RTR0PTR
3941 || pReq->u.In.EP.Service.apvReserved[2] != NIL_RTR0PTR)
3942 {
3943 RTSemFastMutexRelease(pDevExt->mtxLdr);
3944 Log(("Out of range (%p LB %#x): apvReserved={%p,%p,%p} MBZ!\n",
3945 pImage->pvImage, pReq->u.In.cbImage,
3946 pReq->u.In.EP.Service.apvReserved[0],
3947 pReq->u.In.EP.Service.apvReserved[1],
3948 pReq->u.In.EP.Service.apvReserved[2]));
3949 return VERR_INVALID_PARAMETER;
3950 }
3951 break;
3952
3953 default:
3954 RTSemFastMutexRelease(pDevExt->mtxLdr);
3955 Log(("Invalid eEPType=%d\n", pReq->u.In.eEPType));
3956 return VERR_INVALID_PARAMETER;
3957 }
3958 if ( pReq->u.In.pfnModuleInit
3959 && (uintptr_t)pReq->u.In.pfnModuleInit - (uintptr_t)pImage->pvImage >= pReq->u.In.cbImage)
3960 {
3961 RTSemFastMutexRelease(pDevExt->mtxLdr);
3962 Log(("SUP_IOCTL_LDR_LOAD: pfnModuleInit=%p is outside the image (%p %d bytes)\n",
3963 pReq->u.In.pfnModuleInit, pImage->pvImage, pReq->u.In.cbImage));
3964 return VERR_INVALID_PARAMETER;
3965 }
3966 if ( pReq->u.In.pfnModuleTerm
3967 && (uintptr_t)pReq->u.In.pfnModuleTerm - (uintptr_t)pImage->pvImage >= pReq->u.In.cbImage)
3968 {
3969 RTSemFastMutexRelease(pDevExt->mtxLdr);
3970 Log(("SUP_IOCTL_LDR_LOAD: pfnModuleTerm=%p is outside the image (%p %d bytes)\n",
3971 pReq->u.In.pfnModuleTerm, pImage->pvImage, pReq->u.In.cbImage));
3972 return VERR_INVALID_PARAMETER;
3973 }
3974
3975 /*
3976 * Copy the memory.
3977 */
3978 /* no need to do try/except as this is a buffered request. */
3979 memcpy(pImage->pvImage, &pReq->u.In.achImage[0], pImage->cbImage);
3980 pImage->uState = SUP_IOCTL_LDR_LOAD;
3981 pImage->pfnModuleInit = pReq->u.In.pfnModuleInit;
3982 pImage->pfnModuleTerm = pReq->u.In.pfnModuleTerm;
3983 pImage->offSymbols = pReq->u.In.offSymbols;
3984 pImage->cSymbols = pReq->u.In.cSymbols;
3985 pImage->offStrTab = pReq->u.In.offStrTab;
3986 pImage->cbStrTab = pReq->u.In.cbStrTab;
3987
3988 /*
3989 * Update any entry points.
3990 */
3991 switch (pReq->u.In.eEPType)
3992 {
3993 default:
3994 case SUPLDRLOADEP_NOTHING:
3995 rc = VINF_SUCCESS;
3996 break;
3997 case SUPLDRLOADEP_VMMR0:
3998 rc = supdrvLdrSetVMMR0EPs(pDevExt, pReq->u.In.EP.VMMR0.pvVMMR0, pReq->u.In.EP.VMMR0.pvVMMR0EntryInt,
3999 pReq->u.In.EP.VMMR0.pvVMMR0EntryFast, pReq->u.In.EP.VMMR0.pvVMMR0EntryEx);
4000 break;
4001 case SUPLDRLOADEP_SERVICE:
4002 pImage->pfnServiceReqHandler = pReq->u.In.EP.Service.pfnServiceReq;
4003 rc = VINF_SUCCESS;
4004 break;
4005 }
4006
4007 /*
4008 * On success call the module initialization.
4009 */
4010 LogFlow(("supdrvIOCtl_LdrLoad: pfnModuleInit=%p\n", pImage->pfnModuleInit));
4011 if (RT_SUCCESS(rc) && pImage->pfnModuleInit)
4012 {
4013 Log(("supdrvIOCtl_LdrLoad: calling pfnModuleInit=%p\n", pImage->pfnModuleInit));
4014#ifdef RT_WITH_W64_UNWIND_HACK
4015 rc = supdrvNtWrapModuleInit((PFNRT)pImage->pfnModuleInit);
4016#else
4017 rc = pImage->pfnModuleInit();
4018#endif
4019 if (rc && pDevExt->pvVMMR0 == pImage->pvImage)
4020 supdrvLdrUnsetVMMR0EPs(pDevExt);
4021 }
4022
4023 if (rc)
4024 pImage->uState = SUP_IOCTL_LDR_OPEN;
4025
4026 RTSemFastMutexRelease(pDevExt->mtxLdr);
4027 return rc;
4028}
4029
4030
4031/**
4032 * Frees a previously loaded (prep'ed) image.
4033 *
4034 * @returns IPRT status code.
4035 * @param pDevExt Device globals.
4036 * @param pSession Session data.
4037 * @param pReq The request.
4038 */
4039static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE pReq)
4040{
4041 int rc;
4042 PSUPDRVLDRUSAGE pUsagePrev;
4043 PSUPDRVLDRUSAGE pUsage;
4044 PSUPDRVLDRIMAGE pImage;
4045 LogFlow(("supdrvIOCtl_LdrFree: pvImageBase=%p\n", pReq->u.In.pvImageBase));
4046
4047 /*
4048 * Find the ldr image.
4049 */
4050 RTSemFastMutexRequest(pDevExt->mtxLdr);
4051 pUsagePrev = NULL;
4052 pUsage = pSession->pLdrUsage;
4053 while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
4054 {
4055 pUsagePrev = pUsage;
4056 pUsage = pUsage->pNext;
4057 }
4058 if (!pUsage)
4059 {
4060 RTSemFastMutexRelease(pDevExt->mtxLdr);
4061 Log(("SUP_IOCTL_LDR_FREE: couldn't find image!\n"));
4062 return VERR_INVALID_HANDLE;
4063 }
4064
4065 /*
4066 * Check if we can remove anything.
4067 */
4068 rc = VINF_SUCCESS;
4069 pImage = pUsage->pImage;
4070 if (pImage->cUsage <= 1 || pUsage->cUsage <= 1)
4071 {
4072 /*
4073 * Check if there are any objects with destructors in the image, if
4074 * so leave it for the session cleanup routine so we get a chance to
4075 * clean things up in the right order and not leave them all dangling.
4076 */
4077 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
4078 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
4079 if (pImage->cUsage <= 1)
4080 {
4081 PSUPDRVOBJ pObj;
4082 for (pObj = pDevExt->pObjs; pObj; pObj = pObj->pNext)
4083 if (RT_UNLIKELY((uintptr_t)pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImage))
4084 {
4085 rc = VERR_DANGLING_OBJECTS;
4086 break;
4087 }
4088 }
4089 else
4090 {
4091 PSUPDRVUSAGE pGenUsage;
4092 for (pGenUsage = pSession->pUsage; pGenUsage; pGenUsage = pGenUsage->pNext)
4093 if (RT_UNLIKELY((uintptr_t)pGenUsage->pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImage))
4094 {
4095 rc = VERR_DANGLING_OBJECTS;
4096 break;
4097 }
4098 }
4099 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
4100 if (rc == VINF_SUCCESS)
4101 {
4102 /* unlink it */
4103 if (pUsagePrev)
4104 pUsagePrev->pNext = pUsage->pNext;
4105 else
4106 pSession->pLdrUsage = pUsage->pNext;
4107
4108 /* free it */
4109 pUsage->pImage = NULL;
4110 pUsage->pNext = NULL;
4111 RTMemFree(pUsage);
4112
4113 /*
4114 * Derefrence the image.
4115 */
4116 if (pImage->cUsage <= 1)
4117 supdrvLdrFree(pDevExt, pImage);
4118 else
4119 pImage->cUsage--;
4120 }
4121 else
4122 {
4123 Log(("supdrvIOCtl_LdrFree: Dangling objects in %p/%s!\n", pImage->pvImage, pImage->szName));
4124 rc = VINF_SUCCESS; /** @todo BRANCH-2.1: remove this after branching. */
4125 }
4126 }
4127 else
4128 {
4129 /*
4130 * Dereference both image and usage.
4131 */
4132 pImage->cUsage--;
4133 pUsage->cUsage--;
4134 }
4135
4136 RTSemFastMutexRelease(pDevExt->mtxLdr);
4137 return rc;
4138}
4139
4140
4141/**
4142 * Gets the address of a symbol in an open image.
4143 *
4144 * @returns 0 on success.
4145 * @returns SUPDRV_ERR_* on failure.
4146 * @param pDevExt Device globals.
4147 * @param pSession Session data.
4148 * @param pReq The request buffer.
4149 */
4150static int supdrvIOCtl_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL pReq)
4151{
4152 PSUPDRVLDRIMAGE pImage;
4153 PSUPDRVLDRUSAGE pUsage;
4154 uint32_t i;
4155 PSUPLDRSYM paSyms;
4156 const char *pchStrings;
4157 const size_t cbSymbol = strlen(pReq->u.In.szSymbol) + 1;
4158 void *pvSymbol = NULL;
4159 int rc = VERR_GENERAL_FAILURE;
4160 Log3(("supdrvIOCtl_LdrGetSymbol: pvImageBase=%p szSymbol=\"%s\"\n", pReq->u.In.pvImageBase, pReq->u.In.szSymbol));
4161
4162 /*
4163 * Find the ldr image.
4164 */
4165 RTSemFastMutexRequest(pDevExt->mtxLdr);
4166 pUsage = pSession->pLdrUsage;
4167 while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
4168 pUsage = pUsage->pNext;
4169 if (!pUsage)
4170 {
4171 RTSemFastMutexRelease(pDevExt->mtxLdr);
4172 Log(("SUP_IOCTL_LDR_GET_SYMBOL: couldn't find image!\n"));
4173 return VERR_INVALID_HANDLE;
4174 }
4175 pImage = pUsage->pImage;
4176 if (pImage->uState != SUP_IOCTL_LDR_LOAD)
4177 {
4178 unsigned uState = pImage->uState;
4179 RTSemFastMutexRelease(pDevExt->mtxLdr);
4180 Log(("SUP_IOCTL_LDR_GET_SYMBOL: invalid image state %d (%#x)!\n", uState, uState)); NOREF(uState);
4181 return VERR_ALREADY_LOADED;
4182 }
4183
4184 /*
4185 * Search the symbol strings.
4186 */
4187 pchStrings = (const char *)((uint8_t *)pImage->pvImage + pImage->offStrTab);
4188 paSyms = (PSUPLDRSYM)((uint8_t *)pImage->pvImage + pImage->offSymbols);
4189 for (i = 0; i < pImage->cSymbols; i++)
4190 {
4191 if ( paSyms[i].offSymbol < pImage->cbImage /* paranoia */
4192 && paSyms[i].offName + cbSymbol <= pImage->cbStrTab
4193 && !memcmp(pchStrings + paSyms[i].offName, pReq->u.In.szSymbol, cbSymbol))
4194 {
4195 pvSymbol = (uint8_t *)pImage->pvImage + paSyms[i].offSymbol;
4196 rc = VINF_SUCCESS;
4197 break;
4198 }
4199 }
4200 RTSemFastMutexRelease(pDevExt->mtxLdr);
4201 pReq->u.Out.pvSymbol = pvSymbol;
4202 return rc;
4203}
4204
4205
4206/**
4207 * Gets the address of a symbol in an open image or the support driver.
4208 *
4209 * @returns VINF_SUCCESS on success.
4210 * @returns
4211 * @param pDevExt Device globals.
4212 * @param pSession Session data.
4213 * @param pReq The request buffer.
4214 */
4215static int supdrvIDC_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQGETSYM pReq)
4216{
4217 int rc = VINF_SUCCESS;
4218 const char *pszSymbol = pReq->u.In.pszSymbol;
4219 const char *pszModule = pReq->u.In.pszModule;
4220 size_t cbSymbol;
4221 char const *pszEnd;
4222 uint32_t i;
4223
4224 /*
4225 * Input validation.
4226 */
4227 AssertPtrReturn(pszSymbol, VERR_INVALID_POINTER);
4228 pszEnd = (char *)memchr(pszSymbol, '\0', 512);
4229 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
4230 cbSymbol = pszEnd - pszSymbol + 1;
4231
4232 if (pszModule)
4233 {
4234 AssertPtrReturn(pszModule, VERR_INVALID_POINTER);
4235 pszEnd = (char *)memchr(pszModule, '\0', 64);
4236 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
4237 }
4238 Log3(("supdrvIDC_LdrGetSymbol: pszModule=%p:{%s} pszSymbol=%p:{%s}\n", pszModule, pszModule, pszSymbol, pszSymbol));
4239
4240
4241 if ( !pszModule
4242 || !strcmp(pszModule, "SupDrv"))
4243 {
4244 /*
4245 * Search the support driver export table.
4246 */
4247 for (i = 0; i < RT_ELEMENTS(g_aFunctions); i++)
4248 if (!strcmp(g_aFunctions[i].szName, pszSymbol))
4249 {
4250 pReq->u.Out.pfnSymbol = g_aFunctions[i].pfn;
4251 break;
4252 }
4253 }
4254 else
4255 {
4256 /*
4257 * Find the loader image.
4258 */
4259 PSUPDRVLDRIMAGE pImage;
4260
4261 RTSemFastMutexRequest(pDevExt->mtxLdr);
4262
4263 for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
4264 if (!strcmp(pImage->szName, pszModule))
4265 break;
4266 if (pImage && pImage->uState == SUP_IOCTL_LDR_LOAD)
4267 {
4268 /*
4269 * Search the symbol strings.
4270 */
4271 const char *pchStrings = (const char *)((uint8_t *)pImage->pvImage + pImage->offStrTab);
4272 PCSUPLDRSYM paSyms = (PCSUPLDRSYM)((uint8_t *)pImage->pvImage + pImage->offSymbols);
4273 for (i = 0; i < pImage->cSymbols; i++)
4274 {
4275 if ( paSyms[i].offSymbol < pImage->cbImage /* paranoia */
4276 && paSyms[i].offName + cbSymbol <= pImage->cbStrTab
4277 && !memcmp(pchStrings + paSyms[i].offName, pszSymbol, cbSymbol))
4278 {
4279 /*
4280 * Found it! Calc the symbol address and add a reference to the module.
4281 */
4282 pReq->u.Out.pfnSymbol = (PFNRT)((uint8_t *)pImage->pvImage + paSyms[i].offSymbol);
4283 rc = supdrvLdrAddUsage(pSession, pImage);
4284 break;
4285 }
4286 }
4287 }
4288 else
4289 rc = pImage ? VERR_WRONG_ORDER : VERR_MODULE_NOT_FOUND;
4290
4291 RTSemFastMutexRelease(pDevExt->mtxLdr);
4292 }
4293 return rc;
4294}
4295
4296
4297/**
4298 * Updates the VMMR0 entry point pointers.
4299 *
4300 * @returns IPRT status code.
4301 * @param pDevExt Device globals.
4302 * @param pSession Session data.
4303 * @param pVMMR0 VMMR0 image handle.
4304 * @param pvVMMR0EntryInt VMMR0EntryInt address.
4305 * @param pvVMMR0EntryFast VMMR0EntryFast address.
4306 * @param pvVMMR0EntryEx VMMR0EntryEx address.
4307 * @remark Caller must own the loader mutex.
4308 */
4309static int supdrvLdrSetVMMR0EPs(PSUPDRVDEVEXT pDevExt, void *pvVMMR0, void *pvVMMR0EntryInt, void *pvVMMR0EntryFast, void *pvVMMR0EntryEx)
4310{
4311 int rc = VINF_SUCCESS;
4312 LogFlow(("supdrvLdrSetR0EP pvVMMR0=%p pvVMMR0EntryInt=%p\n", pvVMMR0, pvVMMR0EntryInt));
4313
4314
4315 /*
4316 * Check if not yet set.
4317 */
4318 if (!pDevExt->pvVMMR0)
4319 {
4320 pDevExt->pvVMMR0 = pvVMMR0;
4321 pDevExt->pfnVMMR0EntryInt = pvVMMR0EntryInt;
4322 pDevExt->pfnVMMR0EntryFast = pvVMMR0EntryFast;
4323 pDevExt->pfnVMMR0EntryEx = pvVMMR0EntryEx;
4324 }
4325 else
4326 {
4327 /*
4328 * Return failure or success depending on whether the values match or not.
4329 */
4330 if ( pDevExt->pvVMMR0 != pvVMMR0
4331 || (void *)pDevExt->pfnVMMR0EntryInt != pvVMMR0EntryInt
4332 || (void *)pDevExt->pfnVMMR0EntryFast != pvVMMR0EntryFast
4333 || (void *)pDevExt->pfnVMMR0EntryEx != pvVMMR0EntryEx)
4334 {
4335 AssertMsgFailed(("SUP_IOCTL_LDR_SETR0EP: Already set pointing to a different module!\n"));
4336 rc = VERR_INVALID_PARAMETER;
4337 }
4338 }
4339 return rc;
4340}
4341
4342
4343/**
4344 * Unsets the VMMR0 entry point installed by supdrvLdrSetR0EP.
4345 *
4346 * @param pDevExt Device globals.
4347 */
4348static void supdrvLdrUnsetVMMR0EPs(PSUPDRVDEVEXT pDevExt)
4349{
4350 pDevExt->pvVMMR0 = NULL;
4351 pDevExt->pfnVMMR0EntryInt = NULL;
4352 pDevExt->pfnVMMR0EntryFast = NULL;
4353 pDevExt->pfnVMMR0EntryEx = NULL;
4354}
4355
4356
4357/**
4358 * Adds a usage reference in the specified session of an image.
4359 *
4360 * Called while owning the loader semaphore.
4361 *
4362 * @returns VINF_SUCCESS on success and VERR_NO_MEMORY on failure.
4363 * @param pSession Session in question.
4364 * @param pImage Image which the session is using.
4365 */
4366static int supdrvLdrAddUsage(PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage)
4367{
4368 PSUPDRVLDRUSAGE pUsage;
4369 LogFlow(("supdrvLdrAddUsage: pImage=%p\n", pImage));
4370
4371 /*
4372 * Referenced it already?
4373 */
4374 pUsage = pSession->pLdrUsage;
4375 while (pUsage)
4376 {
4377 if (pUsage->pImage == pImage)
4378 {
4379 pUsage->cUsage++;
4380 return VINF_SUCCESS;
4381 }
4382 pUsage = pUsage->pNext;
4383 }
4384
4385 /*
4386 * Allocate new usage record.
4387 */
4388 pUsage = (PSUPDRVLDRUSAGE)RTMemAlloc(sizeof(*pUsage));
4389 AssertReturn(pUsage, VERR_NO_MEMORY);
4390 pUsage->cUsage = 1;
4391 pUsage->pImage = pImage;
4392 pUsage->pNext = pSession->pLdrUsage;
4393 pSession->pLdrUsage = pUsage;
4394 return VINF_SUCCESS;
4395}
4396
4397
4398/**
4399 * Frees a load image.
4400 *
4401 * @param pDevExt Pointer to device extension.
4402 * @param pImage Pointer to the image we're gonna free.
4403 * This image must exit!
4404 * @remark The caller MUST own SUPDRVDEVEXT::mtxLdr!
4405 */
4406static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage)
4407{
4408 PSUPDRVLDRIMAGE pImagePrev;
4409 LogFlow(("supdrvLdrFree: pImage=%p\n", pImage));
4410
4411 /* find it - arg. should've used doubly linked list. */
4412 Assert(pDevExt->pLdrImages);
4413 pImagePrev = NULL;
4414 if (pDevExt->pLdrImages != pImage)
4415 {
4416 pImagePrev = pDevExt->pLdrImages;
4417 while (pImagePrev->pNext != pImage)
4418 pImagePrev = pImagePrev->pNext;
4419 Assert(pImagePrev->pNext == pImage);
4420 }
4421
4422 /* unlink */
4423 if (pImagePrev)
4424 pImagePrev->pNext = pImage->pNext;
4425 else
4426 pDevExt->pLdrImages = pImage->pNext;
4427
4428 /* check if this is VMMR0.r0 unset its entry point pointers. */
4429 if (pDevExt->pvVMMR0 == pImage->pvImage)
4430 supdrvLdrUnsetVMMR0EPs(pDevExt);
4431
4432 /* check for objects with destructors in this image. (Shouldn't happen.) */
4433 if (pDevExt->pObjs)
4434 {
4435 unsigned cObjs = 0;
4436 PSUPDRVOBJ pObj;
4437 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
4438 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
4439 for (pObj = pDevExt->pObjs; pObj; pObj = pObj->pNext)
4440 if (RT_UNLIKELY((uintptr_t)pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImage))
4441 {
4442 pObj->pfnDestructor = NULL;
4443 cObjs++;
4444 }
4445 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
4446 if (cObjs)
4447 OSDBGPRINT(("supdrvLdrFree: Image '%s' has %d dangling objects!\n", pImage->szName, cObjs));
4448 }
4449
4450 /* call termination function if fully loaded. */
4451 if ( pImage->pfnModuleTerm
4452 && pImage->uState == SUP_IOCTL_LDR_LOAD)
4453 {
4454 LogFlow(("supdrvIOCtl_LdrLoad: calling pfnModuleTerm=%p\n", pImage->pfnModuleTerm));
4455#ifdef RT_WITH_W64_UNWIND_HACK
4456 supdrvNtWrapModuleTerm(pImage->pfnModuleTerm);
4457#else
4458 pImage->pfnModuleTerm();
4459#endif
4460 }
4461
4462 /* free the image */
4463 pImage->cUsage = 0;
4464 pImage->pNext = 0;
4465 pImage->uState = SUP_IOCTL_LDR_FREE;
4466 RTMemExecFree(pImage);
4467}
4468
4469
4470/**
4471 * Implements the service call request.
4472 *
4473 * @returns VBox status code.
4474 * @param pDevExt The device extension.
4475 * @param pSession The calling session.
4476 * @param pReq The request packet, valid.
4477 */
4478static int supdrvIOCtl_CallServiceModule(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPCALLSERVICE pReq)
4479{
4480#if !defined(RT_OS_WINDOWS) || defined(DEBUG)
4481 int rc;
4482
4483 /*
4484 * Find the module first in the module referenced by the calling session.
4485 */
4486 rc = RTSemFastMutexRequest(pDevExt->mtxLdr);
4487 if (RT_SUCCESS(rc))
4488 {
4489 PFNSUPR0SERVICEREQHANDLER pfnServiceReqHandler = NULL;
4490 PSUPDRVLDRUSAGE pUsage;
4491
4492 for (pUsage = pSession->pLdrUsage; pUsage; pUsage = pUsage->pNext)
4493 if ( pUsage->pImage->pfnServiceReqHandler
4494 && !strcmp(pUsage->pImage->szName, pReq->u.In.szName))
4495 {
4496 pfnServiceReqHandler = pUsage->pImage->pfnServiceReqHandler;
4497 break;
4498 }
4499 RTSemFastMutexRelease(pDevExt->mtxLdr);
4500
4501 if (pfnServiceReqHandler)
4502 {
4503 /*
4504 * Call it.
4505 */
4506 if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_SERVICE_SIZE(0))
4507#ifdef RT_WITH_W64_UNWIND_HACK
4508 rc = supdrvNtWrapServiceReqHandler((PFNRT)pfnServiceReqHandler, pSession, pReq->u.In.uOperation, pReq->u.In.u64Arg, NULL);
4509#else
4510 rc = pfnServiceReqHandler(pSession, pReq->u.In.uOperation, pReq->u.In.u64Arg, NULL);
4511#endif
4512 else
4513#ifdef RT_WITH_W64_UNWIND_HACK
4514 rc = supdrvNtWrapServiceReqHandler((PFNRT)pfnServiceReqHandler, pSession, pReq->u.In.uOperation,
4515 pReq->u.In.u64Arg, (PSUPR0SERVICEREQHDR)&pReq->abReqPkt[0]);
4516#else
4517 rc = pfnServiceReqHandler(pSession, pReq->u.In.uOperation, pReq->u.In.u64Arg, (PSUPR0SERVICEREQHDR)&pReq->abReqPkt[0]);
4518#endif
4519 }
4520 else
4521 rc = VERR_SUPDRV_SERVICE_NOT_FOUND;
4522 }
4523
4524 /* log it */
4525 if ( RT_FAILURE(rc)
4526 && rc != VERR_INTERRUPTED
4527 && rc != VERR_TIMEOUT)
4528 Log(("SUP_IOCTL_CALL_SERVICE: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
4529 rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
4530 else
4531 Log4(("SUP_IOCTL_CALL_SERVICE: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
4532 rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
4533 return rc;
4534#else /* RT_OS_WINDOWS && !DEBUG */
4535 return VERR_NOT_IMPLEMENTED;
4536#endif /* RT_OS_WINDOWS && !DEBUG */
4537}
4538
4539
4540/**
4541 * Implements the logger settings request.
4542 *
4543 * @returns VBox status code.
4544 * @param pDevExt The device extension.
4545 * @param pSession The caller's session.
4546 * @param pReq The request.
4547 */
4548static int supdrvIOCtl_LoggerSettings(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLOGGERSETTINGS pReq)
4549{
4550 const char *pszGroup = &pReq->u.In.szStrings[pReq->u.In.offGroups];
4551 const char *pszFlags = &pReq->u.In.szStrings[pReq->u.In.offFlags];
4552 const char *pszDest = &pReq->u.In.szStrings[pReq->u.In.offDestination];
4553 PRTLOGGER pLogger = NULL;
4554 int rc;
4555
4556 /*
4557 * Some further validation.
4558 */
4559 switch (pReq->u.In.fWhat)
4560 {
4561 case SUPLOGGERSETTINGS_WHAT_SETTINGS:
4562 case SUPLOGGERSETTINGS_WHAT_CREATE:
4563 break;
4564
4565 case SUPLOGGERSETTINGS_WHAT_DESTROY:
4566 if (*pszGroup || *pszFlags || *pszDest)
4567 return VERR_INVALID_PARAMETER;
4568 if (pReq->u.In.fWhich == SUPLOGGERSETTINGS_WHICH_RELEASE)
4569 return VERR_ACCESS_DENIED;
4570 break;
4571
4572 default:
4573 return VERR_INTERNAL_ERROR;
4574 }
4575
4576 /*
4577 * Get the logger.
4578 */
4579 switch (pReq->u.In.fWhich)
4580 {
4581 case SUPLOGGERSETTINGS_WHICH_DEBUG:
4582 pLogger = RTLogGetDefaultInstance();
4583 break;
4584
4585 case SUPLOGGERSETTINGS_WHICH_RELEASE:
4586 pLogger = RTLogRelDefaultInstance();
4587 break;
4588
4589 default:
4590 return VERR_INTERNAL_ERROR;
4591 }
4592
4593 /*
4594 * Do the job.
4595 */
4596 switch (pReq->u.In.fWhat)
4597 {
4598 case SUPLOGGERSETTINGS_WHAT_SETTINGS:
4599 if (pLogger)
4600 {
4601 rc = RTLogFlags(pLogger, pszFlags);
4602 if (RT_SUCCESS(rc))
4603 rc = RTLogGroupSettings(pLogger, pszGroup);
4604 NOREF(pszDest);
4605 }
4606 else
4607 rc = VERR_NOT_FOUND;
4608 break;
4609
4610 case SUPLOGGERSETTINGS_WHAT_CREATE:
4611 {
4612 if (pLogger)
4613 rc = VERR_ALREADY_EXISTS;
4614 else
4615 {
4616 static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES;
4617
4618 rc = RTLogCreate(&pLogger,
4619 0 /* fFlags */,
4620 pszGroup,
4621 pReq->u.In.fWhich == SUPLOGGERSETTINGS_WHICH_DEBUG
4622 ? "VBOX_LOG"
4623 : "VBOX_RELEASE_LOG",
4624 RT_ELEMENTS(s_apszGroups),
4625 s_apszGroups,
4626 RTLOGDEST_STDOUT | RTLOGDEST_DEBUGGER,
4627 NULL);
4628 if (RT_SUCCESS(rc))
4629 {
4630 rc = RTLogFlags(pLogger, pszFlags);
4631 NOREF(pszDest);
4632 if (RT_SUCCESS(rc))
4633 {
4634 switch (pReq->u.In.fWhich)
4635 {
4636 case SUPLOGGERSETTINGS_WHICH_DEBUG:
4637 pLogger = RTLogSetDefaultInstance(pLogger);
4638 break;
4639 case SUPLOGGERSETTINGS_WHICH_RELEASE:
4640 pLogger = RTLogRelSetDefaultInstance(pLogger);
4641 break;
4642 }
4643 }
4644 RTLogDestroy(pLogger);
4645 }
4646 }
4647 break;
4648 }
4649
4650 case SUPLOGGERSETTINGS_WHAT_DESTROY:
4651 switch (pReq->u.In.fWhich)
4652 {
4653 case SUPLOGGERSETTINGS_WHICH_DEBUG:
4654 pLogger = RTLogSetDefaultInstance(NULL);
4655 break;
4656 case SUPLOGGERSETTINGS_WHICH_RELEASE:
4657 pLogger = RTLogRelSetDefaultInstance(NULL);
4658 break;
4659 }
4660 rc = RTLogDestroy(pLogger);
4661 break;
4662
4663 default:
4664 {
4665 rc = VERR_INTERNAL_ERROR;
4666 break;
4667 }
4668 }
4669
4670 return rc;
4671}
4672
4673
4674/**
4675 * Gets the paging mode of the current CPU.
4676 *
4677 * @returns Paging mode, SUPPAGEINGMODE_INVALID on error.
4678 */
4679SUPR0DECL(SUPPAGINGMODE) SUPR0GetPagingMode(void)
4680{
4681 SUPPAGINGMODE enmMode;
4682
4683 RTR0UINTREG cr0 = ASMGetCR0();
4684 if ((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
4685 enmMode = SUPPAGINGMODE_INVALID;
4686 else
4687 {
4688 RTR0UINTREG cr4 = ASMGetCR4();
4689 uint32_t fNXEPlusLMA = 0;
4690 if (cr4 & X86_CR4_PAE)
4691 {
4692 uint32_t fAmdFeatures = ASMCpuId_EDX(0x80000001);
4693 if (fAmdFeatures & (X86_CPUID_AMD_FEATURE_EDX_NX | X86_CPUID_AMD_FEATURE_EDX_LONG_MODE))
4694 {
4695 uint64_t efer = ASMRdMsr(MSR_K6_EFER);
4696 if ((fAmdFeatures & X86_CPUID_AMD_FEATURE_EDX_NX) && (efer & MSR_K6_EFER_NXE))
4697 fNXEPlusLMA |= RT_BIT(0);
4698 if ((fAmdFeatures & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE) && (efer & MSR_K6_EFER_LMA))
4699 fNXEPlusLMA |= RT_BIT(1);
4700 }
4701 }
4702
4703 switch ((cr4 & (X86_CR4_PAE | X86_CR4_PGE)) | fNXEPlusLMA)
4704 {
4705 case 0:
4706 enmMode = SUPPAGINGMODE_32_BIT;
4707 break;
4708
4709 case X86_CR4_PGE:
4710 enmMode = SUPPAGINGMODE_32_BIT_GLOBAL;
4711 break;
4712
4713 case X86_CR4_PAE:
4714 enmMode = SUPPAGINGMODE_PAE;
4715 break;
4716
4717 case X86_CR4_PAE | RT_BIT(0):
4718 enmMode = SUPPAGINGMODE_PAE_NX;
4719 break;
4720
4721 case X86_CR4_PAE | X86_CR4_PGE:
4722 enmMode = SUPPAGINGMODE_PAE_GLOBAL;
4723 break;
4724
4725 case X86_CR4_PAE | X86_CR4_PGE | RT_BIT(0):
4726 enmMode = SUPPAGINGMODE_PAE_GLOBAL;
4727 break;
4728
4729 case RT_BIT(1) | X86_CR4_PAE:
4730 enmMode = SUPPAGINGMODE_AMD64;
4731 break;
4732
4733 case RT_BIT(1) | X86_CR4_PAE | RT_BIT(0):
4734 enmMode = SUPPAGINGMODE_AMD64_NX;
4735 break;
4736
4737 case RT_BIT(1) | X86_CR4_PAE | X86_CR4_PGE:
4738 enmMode = SUPPAGINGMODE_AMD64_GLOBAL;
4739 break;
4740
4741 case RT_BIT(1) | X86_CR4_PAE | X86_CR4_PGE | RT_BIT(0):
4742 enmMode = SUPPAGINGMODE_AMD64_GLOBAL_NX;
4743 break;
4744
4745 default:
4746 AssertMsgFailed(("Cannot happen! cr4=%#x fNXEPlusLMA=%d\n", cr4, fNXEPlusLMA));
4747 enmMode = SUPPAGINGMODE_INVALID;
4748 break;
4749 }
4750 }
4751 return enmMode;
4752}
4753
4754
4755/**
4756 * Enables or disabled hardware virtualization extensions using native OS APIs.
4757 *
4758 * @returns VBox status code.
4759 * @retval VINF_SUCCESS on success.
4760 * @retval VERR_NOT_SUPPORTED if not supported by the native OS.
4761 *
4762 * @param fEnable Whether to enable or disable.
4763 */
4764SUPR0DECL(int) SUPR0EnableVTx(bool fEnable)
4765{
4766#ifdef RT_OS_DARWIN
4767 return supdrvOSEnableVTx(fEnable);
4768#else
4769 return VERR_NOT_SUPPORTED;
4770#endif
4771}
4772
4773
4774/**
4775 * Creates the GIP.
4776 *
4777 * @returns VBox status code.
4778 * @param pDevExt Instance data. GIP stuff may be updated.
4779 */
4780static int supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
4781{
4782 PSUPGLOBALINFOPAGE pGip;
4783 RTHCPHYS HCPhysGip;
4784 uint32_t u32SystemResolution;
4785 uint32_t u32Interval;
4786 int rc;
4787
4788 LogFlow(("supdrvGipCreate:\n"));
4789
4790 /* assert order */
4791 Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
4792 Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
4793 Assert(!pDevExt->pGipTimer);
4794
4795 /*
4796 * Allocate a suitable page with a default kernel mapping.
4797 */
4798 rc = RTR0MemObjAllocLow(&pDevExt->GipMemObj, PAGE_SIZE, false);
4799 if (RT_FAILURE(rc))
4800 {
4801 OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
4802 return rc;
4803 }
4804 pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
4805 HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
4806
4807#if 0 /** @todo Disabled this as we didn't used to do it before and causes unnecessary stress on laptops.
4808 * It only applies to Windows and should probably revisited later, if possible made part of the
4809 * timer code (return min granularity in RTTimerGetSystemGranularity and set it in RTTimerStart). */
4810 /*
4811 * Try bump up the system timer resolution.
4812 * The more interrupts the better...
4813 */
4814 if ( RT_SUCCESS(RTTimerRequestSystemGranularity( 488281 /* 2048 HZ */, &u32SystemResolution))
4815 || RT_SUCCESS(RTTimerRequestSystemGranularity( 500000 /* 2000 HZ */, &u32SystemResolution))
4816 || RT_SUCCESS(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
4817 || RT_SUCCESS(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
4818 || RT_SUCCESS(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution))
4819 || RT_SUCCESS(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution))
4820 || RT_SUCCESS(RTTimerRequestSystemGranularity( 3906250 /* 256 HZ */, &u32SystemResolution))
4821 || RT_SUCCESS(RTTimerRequestSystemGranularity( 4000000 /* 250 HZ */, &u32SystemResolution))
4822 || RT_SUCCESS(RTTimerRequestSystemGranularity( 7812500 /* 128 HZ */, &u32SystemResolution))
4823 || RT_SUCCESS(RTTimerRequestSystemGranularity(10000000 /* 100 HZ */, &u32SystemResolution))
4824 || RT_SUCCESS(RTTimerRequestSystemGranularity(15625000 /* 64 HZ */, &u32SystemResolution))
4825 || RT_SUCCESS(RTTimerRequestSystemGranularity(31250000 /* 32 HZ */, &u32SystemResolution))
4826 )
4827 {
4828 Assert(RTTimerGetSystemGranularity() <= u32SystemResolution);
4829 pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
4830 }
4831#endif
4832
4833 /*
4834 * Find a reasonable update interval and initialize the structure.
4835 */
4836 u32Interval = u32SystemResolution = RTTimerGetSystemGranularity();
4837 while (u32Interval < 10000000 /* 10 ms */)
4838 u32Interval += u32SystemResolution;
4839
4840 supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), 1000000000 / u32Interval /*=Hz*/);
4841
4842 /*
4843 * Create the timer.
4844 * If CPU_ALL isn't supported we'll have to fall back to synchronous mode.
4845 */
4846 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
4847 {
4848 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL, supdrvGipAsyncTimer, pDevExt);
4849 if (rc == VERR_NOT_SUPPORTED)
4850 {
4851 OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n"));
4852 pGip->u32Mode = SUPGIPMODE_SYNC_TSC;
4853 }
4854 }
4855 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
4856 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0, supdrvGipSyncTimer, pDevExt);
4857 if (RT_SUCCESS(rc))
4858 {
4859 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
4860 rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt);
4861 if (RT_SUCCESS(rc))
4862 {
4863 /*
4864 * We're good.
4865 */
4866 dprintf(("supdrvGipCreate: %ld ns interval.\n", (long)u32Interval));
4867 return VINF_SUCCESS;
4868 }
4869
4870 OSDBGPRINT(("supdrvGipCreate: failed register MP event notfication. rc=%d\n", rc));
4871 }
4872 else
4873 {
4874 OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %ld ns interval. rc=%d\n", (long)u32Interval, rc));
4875 Assert(!pDevExt->pGipTimer);
4876 }
4877 supdrvGipDestroy(pDevExt);
4878 return rc;
4879}
4880
4881
4882/**
4883 * Terminates the GIP.
4884 *
4885 * @param pDevExt Instance data. GIP stuff may be updated.
4886 */
4887static void supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
4888{
4889 int rc;
4890#ifdef DEBUG_DARWIN_GIP
4891 OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt,
4892 pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL,
4893 pDevExt->pGipTimer, pDevExt->GipMemObj));
4894#endif
4895
4896 /*
4897 * Invalid the GIP data.
4898 */
4899 if (pDevExt->pGip)
4900 {
4901 supdrvGipTerm(pDevExt->pGip);
4902 pDevExt->pGip = NULL;
4903 }
4904
4905 /*
4906 * Destroy the timer and free the GIP memory object.
4907 */
4908 if (pDevExt->pGipTimer)
4909 {
4910 rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
4911 pDevExt->pGipTimer = NULL;
4912 }
4913
4914 if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
4915 {
4916 rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
4917 pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
4918 }
4919
4920 /*
4921 * Finally, release the system timer resolution request if one succeeded.
4922 */
4923 if (pDevExt->u32SystemTimerGranularityGrant)
4924 {
4925 rc = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant); AssertRC(rc);
4926 pDevExt->u32SystemTimerGranularityGrant = 0;
4927 }
4928}
4929
4930
4931/**
4932 * Timer callback function sync GIP mode.
4933 * @param pTimer The timer.
4934 * @param pvUser The device extension.
4935 */
4936static DECLCALLBACK(void) supdrvGipSyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
4937{
4938 RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
4939 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4940
4941 supdrvGipUpdate(pDevExt->pGip, RTTimeSystemNanoTS());
4942
4943 ASMSetFlags(fOldFlags);
4944}
4945
4946
4947/**
4948 * Timer callback function for async GIP mode.
4949 * @param pTimer The timer.
4950 * @param pvUser The device extension.
4951 */
4952static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
4953{
4954 RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
4955 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4956 RTCPUID idCpu = RTMpCpuId();
4957 uint64_t NanoTS = RTTimeSystemNanoTS();
4958
4959 /** @todo reset the transaction number and whatnot when iTick == 1. */
4960 if (pDevExt->idGipMaster == idCpu)
4961 supdrvGipUpdate(pDevExt->pGip, NanoTS);
4962 else
4963 supdrvGipUpdatePerCpu(pDevExt->pGip, NanoTS, ASMGetApicId());
4964
4965 ASMSetFlags(fOldFlags);
4966}
4967
4968
4969/**
4970 * Multiprocessor event notification callback.
4971 *
4972 * This is used to make sue that the GIP master gets passed on to
4973 * another CPU.
4974 *
4975 * @param enmEvent The event.
4976 * @param idCpu The cpu it applies to.
4977 * @param pvUser Pointer to the device extension.
4978 */
4979static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
4980{
4981 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4982 if (enmEvent == RTMPEVENT_OFFLINE)
4983 {
4984 RTCPUID idGipMaster;
4985 ASMAtomicReadSize(&pDevExt->idGipMaster, &idGipMaster);
4986 if (idGipMaster == idCpu)
4987 {
4988 /*
4989 * Find a new GIP master.
4990 */
4991 bool fIgnored;
4992 unsigned i;
4993 RTCPUID idNewGipMaster = NIL_RTCPUID;
4994 RTCPUSET OnlineCpus;
4995 RTMpGetOnlineSet(&OnlineCpus);
4996
4997 for (i = 0; i < RTCPUSET_MAX_CPUS; i++)
4998 {
4999 RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i);
5000 if ( RTCpuSetIsMember(&OnlineCpus, idCurCpu)
5001 && idCurCpu != idGipMaster)
5002 {
5003 idNewGipMaster = idCurCpu;
5004 break;
5005 }
5006 }
5007
5008 dprintf(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster));
5009 ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored);
5010 NOREF(fIgnored);
5011 }
5012 }
5013}
5014
5015
5016/**
5017 * Initializes the GIP data.
5018 *
5019 * @returns IPRT status code.
5020 * @param pDevExt Pointer to the device instance data.
5021 * @param pGip Pointer to the read-write kernel mapping of the GIP.
5022 * @param HCPhys The physical address of the GIP.
5023 * @param u64NanoTS The current nanosecond timestamp.
5024 * @param uUpdateHz The update freqence.
5025 */
5026int VBOXCALL supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys, uint64_t u64NanoTS, unsigned uUpdateHz)
5027{
5028 unsigned i;
5029#ifdef DEBUG_DARWIN_GIP
5030 OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz));
5031#else
5032 LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz));
5033#endif
5034
5035 /*
5036 * Initialize the structure.
5037 */
5038 memset(pGip, 0, PAGE_SIZE);
5039 pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
5040 pGip->u32Version = SUPGLOBALINFOPAGE_VERSION;
5041 pGip->u32Mode = supdrvGipDeterminTscMode(pDevExt);
5042 pGip->u32UpdateHz = uUpdateHz;
5043 pGip->u32UpdateIntervalNS = 1000000000 / uUpdateHz;
5044 pGip->u64NanoTSLastUpdateHz = u64NanoTS;
5045
5046 for (i = 0; i < RT_ELEMENTS(pGip->aCPUs); i++)
5047 {
5048 pGip->aCPUs[i].u32TransactionId = 2;
5049 pGip->aCPUs[i].u64NanoTS = u64NanoTS;
5050 pGip->aCPUs[i].u64TSC = ASMReadTSC();
5051
5052 /*
5053 * We don't know the following values until we've executed updates.
5054 * So, we'll just insert very high values.
5055 */
5056 pGip->aCPUs[i].u64CpuHz = _4G + 1;
5057 pGip->aCPUs[i].u32UpdateIntervalTSC = _2G / 4;
5058 pGip->aCPUs[i].au32TSCHistory[0] = _2G / 4;
5059 pGip->aCPUs[i].au32TSCHistory[1] = _2G / 4;
5060 pGip->aCPUs[i].au32TSCHistory[2] = _2G / 4;
5061 pGip->aCPUs[i].au32TSCHistory[3] = _2G / 4;
5062 pGip->aCPUs[i].au32TSCHistory[4] = _2G / 4;
5063 pGip->aCPUs[i].au32TSCHistory[5] = _2G / 4;
5064 pGip->aCPUs[i].au32TSCHistory[6] = _2G / 4;
5065 pGip->aCPUs[i].au32TSCHistory[7] = _2G / 4;
5066 }
5067
5068 /*
5069 * Link it to the device extension.
5070 */
5071 pDevExt->pGip = pGip;
5072 pDevExt->HCPhysGip = HCPhys;
5073 pDevExt->cGipUsers = 0;
5074
5075 return VINF_SUCCESS;
5076}
5077
5078
5079/**
5080 * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU.
5081 *
5082 * @param idCpu Ignored.
5083 * @param pvUser1 Where to put the TSC.
5084 * @param pvUser2 Ignored.
5085 */
5086static DECLCALLBACK(void) supdrvDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
5087{
5088#if 1
5089 ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC());
5090#else
5091 *(uint64_t *)pvUser1 = ASMReadTSC();
5092#endif
5093}
5094
5095
5096/**
5097 * Determine if Async GIP mode is required because of TSC drift.
5098 *
5099 * When using the default/normal timer code it is essential that the time stamp counter
5100 * (TSC) runs never backwards, that is, a read operation to the counter should return
5101 * a bigger value than any previous read operation. This is guaranteed by the latest
5102 * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other
5103 * case we have to choose the asynchronous timer mode.
5104 *
5105 * @param poffMin Pointer to the determined difference between different cores.
5106 * @return false if the time stamp counters appear to be synchron, true otherwise.
5107 */
5108bool VBOXCALL supdrvDetermineAsyncTsc(uint64_t *poffMin)
5109{
5110 /*
5111 * Just iterate all the cpus 8 times and make sure that the TSC is
5112 * ever increasing. We don't bother taking TSC rollover into account.
5113 */
5114 RTCPUSET CpuSet;
5115 int iLastCpu = RTCpuLastIndex(RTMpGetSet(&CpuSet));
5116 int iCpu;
5117 int cLoops = 8;
5118 bool fAsync = false;
5119 int rc = VINF_SUCCESS;
5120 uint64_t offMax = 0;
5121 uint64_t offMin = ~(uint64_t)0;
5122 uint64_t PrevTsc = ASMReadTSC();
5123
5124 while (cLoops-- > 0)
5125 {
5126 for (iCpu = 0; iCpu <= iLastCpu; iCpu++)
5127 {
5128 uint64_t CurTsc;
5129 rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvDetermineAsyncTscWorker, &CurTsc, NULL);
5130 if (RT_SUCCESS(rc))
5131 {
5132 if (CurTsc <= PrevTsc)
5133 {
5134 fAsync = true;
5135 offMin = offMax = PrevTsc - CurTsc;
5136 dprintf(("supdrvDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n",
5137 iCpu, cLoops, CurTsc, PrevTsc));
5138 break;
5139 }
5140
5141 /* Gather statistics (except the first time). */
5142 if (iCpu != 0 || cLoops != 7)
5143 {
5144 uint64_t off = CurTsc - PrevTsc;
5145 if (off < offMin)
5146 offMin = off;
5147 if (off > offMax)
5148 offMax = off;
5149 dprintf2(("%d/%d: off=%llx\n", cLoops, iCpu, off));
5150 }
5151
5152 /* Next */
5153 PrevTsc = CurTsc;
5154 }
5155 else if (rc == VERR_NOT_SUPPORTED)
5156 break;
5157 else
5158 AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc));
5159 }
5160
5161 /* broke out of the loop. */
5162 if (iCpu <= iLastCpu)
5163 break;
5164 }
5165
5166 *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */
5167 dprintf(("supdrvDetermineAsyncTsc: returns %d; iLastCpu=%d rc=%d offMin=%llx offMax=%llx\n",
5168 fAsync, iLastCpu, rc, offMin, offMax));
5169#if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS)
5170 OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax));
5171#endif
5172 return fAsync;
5173}
5174
5175
5176/**
5177 * Determin the GIP TSC mode.
5178 *
5179 * @returns The most suitable TSC mode.
5180 * @param pDevExt Pointer to the device instance data.
5181 */
5182static SUPGIPMODE supdrvGipDeterminTscMode(PSUPDRVDEVEXT pDevExt)
5183{
5184 /*
5185 * On SMP we're faced with two problems:
5186 * (1) There might be a skew between the CPU, so that cpu0
5187 * returns a TSC that is sligtly different from cpu1.
5188 * (2) Power management (and other things) may cause the TSC
5189 * to run at a non-constant speed, and cause the speed
5190 * to be different on the cpus. This will result in (1).
5191 *
5192 * So, on SMP systems we'll have to select the ASYNC update method
5193 * if there are symphoms of these problems.
5194 */
5195 if (RTMpGetCount() > 1)
5196 {
5197 uint32_t uEAX, uEBX, uECX, uEDX;
5198 uint64_t u64DiffCoresIgnored;
5199
5200 /* Permit the user and/or the OS specfic bits to force async mode. */
5201 if (supdrvOSGetForcedAsyncTscMode(pDevExt))
5202 return SUPGIPMODE_ASYNC_TSC;
5203
5204 /* Try check for current differences between the cpus. */
5205 if (supdrvDetermineAsyncTsc(&u64DiffCoresIgnored))
5206 return SUPGIPMODE_ASYNC_TSC;
5207
5208 /*
5209 * If the CPU supports power management and is an AMD one we
5210 * won't trust it unless it has the TscInvariant bit is set.
5211 */
5212 /* Check for "AuthenticAMD" */
5213 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
5214 if ( uEAX >= 1
5215 && uEBX == X86_CPUID_VENDOR_AMD_EBX
5216 && uECX == X86_CPUID_VENDOR_AMD_ECX
5217 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
5218 {
5219 /* Check for APM support and that TscInvariant is cleared. */
5220 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
5221 if (uEAX >= 0x80000007)
5222 {
5223 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
5224 if ( !(uEDX & RT_BIT(8))/* TscInvariant */
5225 && (uEDX & 0x3e)) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */
5226 return SUPGIPMODE_ASYNC_TSC;
5227 }
5228 }
5229 }
5230 return SUPGIPMODE_SYNC_TSC;
5231}
5232
5233
5234/**
5235 * Invalidates the GIP data upon termination.
5236 *
5237 * @param pGip Pointer to the read-write kernel mapping of the GIP.
5238 */
5239void VBOXCALL supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
5240{
5241 unsigned i;
5242 pGip->u32Magic = 0;
5243 for (i = 0; i < RT_ELEMENTS(pGip->aCPUs); i++)
5244 {
5245 pGip->aCPUs[i].u64NanoTS = 0;
5246 pGip->aCPUs[i].u64TSC = 0;
5247 pGip->aCPUs[i].iTSCHistoryHead = 0;
5248 }
5249}
5250
5251
5252/**
5253 * Worker routine for supdrvGipUpdate and supdrvGipUpdatePerCpu that
5254 * updates all the per cpu data except the transaction id.
5255 *
5256 * @param pGip The GIP.
5257 * @param pGipCpu Pointer to the per cpu data.
5258 * @param u64NanoTS The current time stamp.
5259 */
5260static void supdrvGipDoUpdateCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS)
5261{
5262 uint64_t u64TSC;
5263 uint64_t u64TSCDelta;
5264 uint32_t u32UpdateIntervalTSC;
5265 uint32_t u32UpdateIntervalTSCSlack;
5266 unsigned iTSCHistoryHead;
5267 uint64_t u64CpuHz;
5268
5269 /*
5270 * Update the NanoTS.
5271 */
5272 ASMAtomicXchgU64(&pGipCpu->u64NanoTS, u64NanoTS);
5273
5274 /*
5275 * Calc TSC delta.
5276 */
5277 /** @todo validate the NanoTS delta, don't trust the OS to call us when it should... */
5278 u64TSC = ASMReadTSC();
5279 u64TSCDelta = u64TSC - pGipCpu->u64TSC;
5280 ASMAtomicXchgU64(&pGipCpu->u64TSC, u64TSC);
5281
5282 if (u64TSCDelta >> 32)
5283 {
5284 u64TSCDelta = pGipCpu->u32UpdateIntervalTSC;
5285 pGipCpu->cErrors++;
5286 }
5287
5288 /*
5289 * TSC History.
5290 */
5291 Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8);
5292
5293 iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7;
5294 ASMAtomicXchgU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead);
5295 ASMAtomicXchgU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
5296
5297 /*
5298 * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
5299 */
5300 if (pGip->u32UpdateHz >= 1000)
5301 {
5302 uint32_t u32;
5303 u32 = pGipCpu->au32TSCHistory[0];
5304 u32 += pGipCpu->au32TSCHistory[1];
5305 u32 += pGipCpu->au32TSCHistory[2];
5306 u32 += pGipCpu->au32TSCHistory[3];
5307 u32 >>= 2;
5308 u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4];
5309 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5];
5310 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6];
5311 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7];
5312 u32UpdateIntervalTSC >>= 2;
5313 u32UpdateIntervalTSC += u32;
5314 u32UpdateIntervalTSC >>= 1;
5315
5316 /* Value choosen for a 2GHz Athlon64 running linux 2.6.10/11, . */
5317 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
5318 }
5319 else if (pGip->u32UpdateHz >= 90)
5320 {
5321 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
5322 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
5323 u32UpdateIntervalTSC >>= 1;
5324
5325 /* value choosen on a 2GHz thinkpad running windows */
5326 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
5327 }
5328 else
5329 {
5330 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
5331
5332 /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
5333 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
5334 }
5335 ASMAtomicXchgU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
5336
5337 /*
5338 * CpuHz.
5339 */
5340 u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, pGip->u32UpdateHz);
5341 ASMAtomicXchgU64(&pGipCpu->u64CpuHz, u64CpuHz);
5342}
5343
5344
5345/**
5346 * Updates the GIP.
5347 *
5348 * @param pGip Pointer to the GIP.
5349 * @param u64NanoTS The current nanosecond timesamp.
5350 */
5351void VBOXCALL supdrvGipUpdate(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS)
5352{
5353 /*
5354 * Determin the relevant CPU data.
5355 */
5356 PSUPGIPCPU pGipCpu;
5357 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
5358 pGipCpu = &pGip->aCPUs[0];
5359 else
5360 {
5361 unsigned iCpu = ASMGetApicId();
5362 if (RT_LIKELY(iCpu >= RT_ELEMENTS(pGip->aCPUs)))
5363 return;
5364 pGipCpu = &pGip->aCPUs[iCpu];
5365 }
5366
5367 /*
5368 * Start update transaction.
5369 */
5370 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
5371 {
5372 /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
5373 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
5374 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5375 pGipCpu->cErrors++;
5376 return;
5377 }
5378
5379 /*
5380 * Recalc the update frequency every 0x800th time.
5381 */
5382 if (!(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
5383 {
5384 if (pGip->u64NanoTSLastUpdateHz)
5385 {
5386#ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */
5387 uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
5388 uint32_t u32UpdateHz = (uint32_t)((UINT64_C(1000000000) * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
5389 if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
5390 {
5391 ASMAtomicXchgU32(&pGip->u32UpdateHz, u32UpdateHz);
5392 ASMAtomicXchgU32(&pGip->u32UpdateIntervalNS, 1000000000 / u32UpdateHz);
5393 }
5394#endif
5395 }
5396 ASMAtomicXchgU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS);
5397 }
5398
5399 /*
5400 * Update the data.
5401 */
5402 supdrvGipDoUpdateCpu(pGip, pGipCpu, u64NanoTS);
5403
5404 /*
5405 * Complete transaction.
5406 */
5407 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5408}
5409
5410
5411/**
5412 * Updates the per cpu GIP data for the calling cpu.
5413 *
5414 * @param pGip Pointer to the GIP.
5415 * @param u64NanoTS The current nanosecond timesamp.
5416 * @param iCpu The CPU index.
5417 */
5418void VBOXCALL supdrvGipUpdatePerCpu(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS, unsigned iCpu)
5419{
5420 PSUPGIPCPU pGipCpu;
5421
5422 if (RT_LIKELY(iCpu < RT_ELEMENTS(pGip->aCPUs)))
5423 {
5424 pGipCpu = &pGip->aCPUs[iCpu];
5425
5426 /*
5427 * Start update transaction.
5428 */
5429 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
5430 {
5431 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
5432 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5433 pGipCpu->cErrors++;
5434 return;
5435 }
5436
5437 /*
5438 * Update the data.
5439 */
5440 supdrvGipDoUpdateCpu(pGip, pGipCpu, u64NanoTS);
5441
5442 /*
5443 * Complete transaction.
5444 */
5445 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5446 }
5447}
5448
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette