VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPDrv.c@ 29853

Last change on this file since 29853 was 29250, checked in by vboxsync, 15 years ago

iprt/asm*.h: split out asm-math.h, don't include asm-*.h from asm.h, don't include asm.h from sup.h. Fixed a couple file headers.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 196.5 KB
Line 
1/* $Revision: 29250 $ */
2/** @file
3 * VBoxDrv - The VirtualBox Support Driver - Common code.
4 */
5
6/*
7 * Copyright (C) 2006-2009 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27/*******************************************************************************
28* Header Files *
29*******************************************************************************/
30#define LOG_GROUP LOG_GROUP_SUP_DRV
31#define SUPDRV_AGNOSTIC
32#include "SUPDrvInternal.h"
33#ifndef PAGE_SHIFT
34# include <iprt/param.h>
35#endif
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/asm-math.h>
39#include <iprt/cpuset.h>
40#include <iprt/handletable.h>
41#include <iprt/mem.h>
42#include <iprt/mp.h>
43#include <iprt/power.h>
44#include <iprt/process.h>
45#include <iprt/semaphore.h>
46#include <iprt/spinlock.h>
47#include <iprt/thread.h>
48#include <iprt/uuid.h>
49#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD) || defined(RT_OS_WINDOWS)
50# include <iprt/net.h>
51# include <iprt/crc32.h>
52# include <iprt/string.h>
53# include <iprt/rand.h>
54# include <iprt/path.h>
55#endif
56
57#include <VBox/param.h>
58#include <VBox/log.h>
59#include <VBox/err.h>
60#include <VBox/hwacc_svm.h>
61#include <VBox/hwacc_vmx.h>
62#include <VBox/x86.h>
63
64/*
65 * Logging assignments:
66 * Log - useful stuff, like failures.
67 * LogFlow - program flow, except the really noisy bits.
68 * Log2 - Cleanup.
69 * Log3 - Loader flow noise.
70 * Log4 - Call VMMR0 flow noise.
71 * Log5 - Native yet-to-be-defined noise.
72 * Log6 - Native ioctl flow noise.
73 *
74 * Logging requires BUILD_TYPE=debug and possibly changes to the logger
75 * instanciation in log-vbox.c(pp).
76 */
77
78
79/*******************************************************************************
80* Defined Constants And Macros *
81*******************************************************************************/
82/** The frequency by which we recalculate the u32UpdateHz and
83 * u32UpdateIntervalNS GIP members. The value must be a power of 2. */
84#define GIP_UPDATEHZ_RECALC_FREQ 0x800
85
86/** @def VBOX_SVN_REV
87 * The makefile should define this if it can. */
88#ifndef VBOX_SVN_REV
89# define VBOX_SVN_REV 0
90#endif
91
92
93/*******************************************************************************
94* Internal Functions *
95*******************************************************************************/
96static DECLCALLBACK(int) supdrvSessionObjHandleRetain(RTHANDLETABLE hHandleTable, void *pvObj, void *pvCtx, void *pvUser);
97static DECLCALLBACK(void) supdrvSessionObjHandleDelete(RTHANDLETABLE hHandleTable, uint32_t h, void *pvObj, void *pvCtx, void *pvUser);
98static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession);
99static int supdrvMemRelease(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, SUPDRVMEMREFTYPE eType);
100static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN pReq);
101static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD pReq);
102static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE pReq);
103static int supdrvIOCtl_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL pReq);
104static int supdrvIDC_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQGETSYM pReq);
105static int supdrvLdrSetVMMR0EPs(PSUPDRVDEVEXT pDevExt, void *pvVMMR0, void *pvVMMR0EntryInt, void *pvVMMR0EntryFast, void *pvVMMR0EntryEx);
106static void supdrvLdrUnsetVMMR0EPs(PSUPDRVDEVEXT pDevExt);
107static int supdrvLdrAddUsage(PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage);
108static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage);
109DECLINLINE(int) supdrvLdrLock(PSUPDRVDEVEXT pDevExt);
110DECLINLINE(int) supdrvLdrUnlock(PSUPDRVDEVEXT pDevExt);
111static int supdrvIOCtl_CallServiceModule(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPCALLSERVICE pReq);
112static int supdrvIOCtl_LoggerSettings(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLOGGERSETTINGS pReq);
113static int supdrvGipCreate(PSUPDRVDEVEXT pDevExt);
114static void supdrvGipDestroy(PSUPDRVDEVEXT pDevExt);
115static DECLCALLBACK(void) supdrvGipSyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
116static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
117static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser);
118static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys, uint64_t u64NanoTS, unsigned uUpdateHz);
119static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip);
120static void supdrvGipUpdate(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick);
121static void supdrvGipUpdatePerCpu(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS, uint64_t u64TSC, unsigned iCpu, uint64_t iTick);
122
123
124/*******************************************************************************
125* Global Variables *
126*******************************************************************************/
127DECLEXPORT(PSUPGLOBALINFOPAGE) g_pSUPGlobalInfoPage = NULL;
128
129/**
130 * Array of the R0 SUP API.
131 */
132static SUPFUNC g_aFunctions[] =
133{
134 /* name function */
135 /* Entries with absolute addresses determined at runtime, fixup
136 code makes ugly ASSUMPTIONS about the order here: */
137 { "SUPR0AbsIs64bit", (void *)0 },
138 { "SUPR0Abs64bitKernelCS", (void *)0 },
139 { "SUPR0Abs64bitKernelSS", (void *)0 },
140 { "SUPR0Abs64bitKernelDS", (void *)0 },
141 { "SUPR0AbsKernelCS", (void *)0 },
142 { "SUPR0AbsKernelSS", (void *)0 },
143 { "SUPR0AbsKernelDS", (void *)0 },
144 { "SUPR0AbsKernelES", (void *)0 },
145 { "SUPR0AbsKernelFS", (void *)0 },
146 { "SUPR0AbsKernelGS", (void *)0 },
147 /* Normal function pointers: */
148 { "SUPR0ComponentRegisterFactory", (void *)SUPR0ComponentRegisterFactory },
149 { "SUPR0ComponentDeregisterFactory", (void *)SUPR0ComponentDeregisterFactory },
150 { "SUPR0ComponentQueryFactory", (void *)SUPR0ComponentQueryFactory },
151 { "SUPR0ObjRegister", (void *)SUPR0ObjRegister },
152 { "SUPR0ObjAddRef", (void *)SUPR0ObjAddRef },
153 { "SUPR0ObjAddRefEx", (void *)SUPR0ObjAddRefEx },
154 { "SUPR0ObjRelease", (void *)SUPR0ObjRelease },
155 { "SUPR0ObjVerifyAccess", (void *)SUPR0ObjVerifyAccess },
156 { "SUPR0LockMem", (void *)SUPR0LockMem },
157 { "SUPR0UnlockMem", (void *)SUPR0UnlockMem },
158 { "SUPR0ContAlloc", (void *)SUPR0ContAlloc },
159 { "SUPR0ContFree", (void *)SUPR0ContFree },
160 { "SUPR0LowAlloc", (void *)SUPR0LowAlloc },
161 { "SUPR0LowFree", (void *)SUPR0LowFree },
162 { "SUPR0MemAlloc", (void *)SUPR0MemAlloc },
163 { "SUPR0MemGetPhys", (void *)SUPR0MemGetPhys },
164 { "SUPR0MemFree", (void *)SUPR0MemFree },
165 { "SUPR0PageAllocEx", (void *)SUPR0PageAllocEx },
166 { "SUPR0PageFree", (void *)SUPR0PageFree },
167 { "SUPR0Printf", (void *)SUPR0Printf }, /** @todo needs wrapping? */
168 { "SUPSemEventCreate", (void *)SUPSemEventCreate },
169 { "SUPSemEventClose", (void *)SUPSemEventClose },
170 { "SUPSemEventSignal", (void *)SUPSemEventSignal },
171 { "SUPSemEventWait", (void *)SUPSemEventWait },
172 { "SUPSemEventWaitNoResume", (void *)SUPSemEventWaitNoResume },
173 { "SUPSemEventMultiCreate", (void *)SUPSemEventMultiCreate },
174 { "SUPSemEventMultiClose", (void *)SUPSemEventMultiClose },
175 { "SUPSemEventMultiSignal", (void *)SUPSemEventMultiSignal },
176 { "SUPSemEventMultiReset", (void *)SUPSemEventMultiReset },
177 { "SUPSemEventMultiWait", (void *)SUPSemEventMultiWait },
178 { "SUPSemEventMultiWaitNoResume", (void *)SUPSemEventMultiWaitNoResume },
179 { "SUPR0GetPagingMode", (void *)SUPR0GetPagingMode },
180 { "SUPR0EnableVTx", (void *)SUPR0EnableVTx },
181 { "SUPGetGIP", (void *)SUPGetGIP },
182 { "g_pSUPGlobalInfoPage", (void *)&g_pSUPGlobalInfoPage },
183 { "RTMemAlloc", (void *)RTMemAlloc },
184 { "RTMemAllocZ", (void *)RTMemAllocZ },
185 { "RTMemFree", (void *)RTMemFree },
186 /*{ "RTMemDup", (void *)RTMemDup },
187 { "RTMemDupEx", (void *)RTMemDupEx },*/
188 { "RTMemRealloc", (void *)RTMemRealloc },
189 { "RTR0MemObjAllocLow", (void *)RTR0MemObjAllocLow },
190 { "RTR0MemObjAllocPage", (void *)RTR0MemObjAllocPage },
191 { "RTR0MemObjAllocPhys", (void *)RTR0MemObjAllocPhys },
192 { "RTR0MemObjAllocPhysEx", (void *)RTR0MemObjAllocPhysEx },
193 { "RTR0MemObjAllocPhysNC", (void *)RTR0MemObjAllocPhysNC },
194 { "RTR0MemObjAllocCont", (void *)RTR0MemObjAllocCont },
195 { "RTR0MemObjEnterPhys", (void *)RTR0MemObjEnterPhys },
196 { "RTR0MemObjLockUser", (void *)RTR0MemObjLockUser },
197 { "RTR0MemObjMapKernel", (void *)RTR0MemObjMapKernel },
198 { "RTR0MemObjMapKernelEx", (void *)RTR0MemObjMapKernelEx },
199 { "RTR0MemObjMapUser", (void *)RTR0MemObjMapUser },
200 { "RTR0MemObjProtect", (void *)RTR0MemObjProtect },
201 { "RTR0MemObjAddress", (void *)RTR0MemObjAddress },
202 { "RTR0MemObjAddressR3", (void *)RTR0MemObjAddressR3 },
203 { "RTR0MemObjSize", (void *)RTR0MemObjSize },
204 { "RTR0MemObjIsMapping", (void *)RTR0MemObjIsMapping },
205 { "RTR0MemObjGetPagePhysAddr", (void *)RTR0MemObjGetPagePhysAddr },
206 { "RTR0MemObjFree", (void *)RTR0MemObjFree },
207 { "RTR0MemUserCopyFrom", (void *)RTR0MemUserCopyFrom },
208 { "RTR0MemUserCopyTo", (void *)RTR0MemUserCopyTo },
209 { "RTR0MemUserIsValidAddr", (void *)RTR0MemUserIsValidAddr },
210 { "RTR0MemKernelIsValidAddr", (void *)RTR0MemKernelIsValidAddr },
211 { "RTR0MemAreKrnlAndUsrDifferent", (void *)RTR0MemAreKrnlAndUsrDifferent },
212 { "RTSemMutexCreate", (void *)RTSemMutexCreate },
213 { "RTSemMutexRequest", (void *)RTSemMutexRequest },
214 { "RTSemMutexRequestDebug", (void *)RTSemMutexRequestDebug },
215 { "RTSemMutexRequestNoResume", (void *)RTSemMutexRequestNoResume },
216 { "RTSemMutexRequestNoResumeDebug", (void *)RTSemMutexRequestNoResumeDebug },
217 { "RTSemMutexRelease", (void *)RTSemMutexRelease },
218 { "RTSemMutexDestroy", (void *)RTSemMutexDestroy },
219 { "RTProcSelf", (void *)RTProcSelf },
220 { "RTR0ProcHandleSelf", (void *)RTR0ProcHandleSelf },
221 { "RTSemFastMutexCreate", (void *)RTSemFastMutexCreate },
222 { "RTSemFastMutexDestroy", (void *)RTSemFastMutexDestroy },
223 { "RTSemFastMutexRequest", (void *)RTSemFastMutexRequest },
224 { "RTSemFastMutexRelease", (void *)RTSemFastMutexRelease },
225 { "RTSemEventCreate", (void *)RTSemEventCreate },
226 { "RTSemEventSignal", (void *)RTSemEventSignal },
227 { "RTSemEventWait", (void *)RTSemEventWait },
228 { "RTSemEventWaitNoResume", (void *)RTSemEventWaitNoResume },
229 { "RTSemEventDestroy", (void *)RTSemEventDestroy },
230 { "RTSemEventMultiCreate", (void *)RTSemEventMultiCreate },
231 { "RTSemEventMultiSignal", (void *)RTSemEventMultiSignal },
232 { "RTSemEventMultiReset", (void *)RTSemEventMultiReset },
233 { "RTSemEventMultiWait", (void *)RTSemEventMultiWait },
234 { "RTSemEventMultiWaitNoResume", (void *)RTSemEventMultiWaitNoResume },
235 { "RTSemEventMultiDestroy", (void *)RTSemEventMultiDestroy },
236 { "RTSpinlockCreate", (void *)RTSpinlockCreate },
237 { "RTSpinlockDestroy", (void *)RTSpinlockDestroy },
238 { "RTSpinlockAcquire", (void *)RTSpinlockAcquire },
239 { "RTSpinlockRelease", (void *)RTSpinlockRelease },
240 { "RTSpinlockAcquireNoInts", (void *)RTSpinlockAcquireNoInts },
241 { "RTSpinlockReleaseNoInts", (void *)RTSpinlockReleaseNoInts },
242 { "RTTimeNanoTS", (void *)RTTimeNanoTS },
243 { "RTTimeMilliTS", (void *)RTTimeMilliTS },
244 { "RTTimeSystemNanoTS", (void *)RTTimeSystemNanoTS },
245 { "RTTimeSystemMilliTS", (void *)RTTimeSystemMilliTS },
246 { "RTThreadNativeSelf", (void *)RTThreadNativeSelf },
247 { "RTThreadSleep", (void *)RTThreadSleep },
248 { "RTThreadYield", (void *)RTThreadYield },
249#if 0 /* Thread APIs, Part 2. */
250 { "RTThreadSelf", (void *)RTThreadSelf },
251 { "RTThreadCreate", (void *)RTThreadCreate },
252 { "RTThreadGetNative", (void *)RTThreadGetNative },
253 { "RTThreadWait", (void *)RTThreadWait },
254 { "RTThreadWaitNoResume", (void *)RTThreadWaitNoResume },
255 { "RTThreadGetName", (void *)RTThreadGetName },
256 { "RTThreadSelfName", (void *)RTThreadSelfName },
257 { "RTThreadGetType", (void *)RTThreadGetType },
258 { "RTThreadUserSignal", (void *)RTThreadUserSignal },
259 { "RTThreadUserReset", (void *)RTThreadUserReset },
260 { "RTThreadUserWait", (void *)RTThreadUserWait },
261 { "RTThreadUserWaitNoResume", (void *)RTThreadUserWaitNoResume },
262#endif
263 { "RTThreadPreemptIsEnabled", (void *)RTThreadPreemptIsEnabled },
264 { "RTThreadPreemptIsPending", (void *)RTThreadPreemptIsPending },
265 { "RTThreadPreemptIsPendingTrusty", (void *)RTThreadPreemptIsPendingTrusty },
266 { "RTThreadPreemptIsPossible", (void *)RTThreadPreemptIsPossible },
267 { "RTThreadPreemptDisable", (void *)RTThreadPreemptDisable },
268 { "RTThreadPreemptRestore", (void *)RTThreadPreemptRestore },
269 { "RTThreadIsInInterrupt", (void *)RTThreadIsInInterrupt },
270
271 { "RTLogDefaultInstance", (void *)RTLogDefaultInstance },
272 { "RTMpCpuId", (void *)RTMpCpuId },
273 { "RTMpCpuIdFromSetIndex", (void *)RTMpCpuIdFromSetIndex },
274 { "RTMpCpuIdToSetIndex", (void *)RTMpCpuIdToSetIndex },
275 { "RTMpIsCpuPossible", (void *)RTMpIsCpuPossible },
276 { "RTMpGetCount", (void *)RTMpGetCount },
277 { "RTMpGetMaxCpuId", (void *)RTMpGetMaxCpuId },
278 { "RTMpGetOnlineCount", (void *)RTMpGetOnlineCount },
279 { "RTMpGetOnlineSet", (void *)RTMpGetOnlineSet },
280 { "RTMpGetSet", (void *)RTMpGetSet },
281 { "RTMpIsCpuOnline", (void *)RTMpIsCpuOnline },
282 { "RTMpIsCpuWorkPending", (void *)RTMpIsCpuWorkPending },
283 { "RTMpOnAll", (void *)RTMpOnAll },
284 { "RTMpOnOthers", (void *)RTMpOnOthers },
285 { "RTMpOnSpecific", (void *)RTMpOnSpecific },
286 { "RTMpPokeCpu", (void *)RTMpPokeCpu },
287 { "RTPowerNotificationRegister", (void *)RTPowerNotificationRegister },
288 { "RTPowerNotificationDeregister", (void *)RTPowerNotificationDeregister },
289 { "RTLogRelDefaultInstance", (void *)RTLogRelDefaultInstance },
290 { "RTLogSetDefaultInstanceThread", (void *)RTLogSetDefaultInstanceThread },
291 { "RTLogLoggerExV", (void *)RTLogLoggerExV },
292 { "RTLogPrintfV", (void *)RTLogPrintfV },
293 { "RTR0AssertPanicSystem", (void *)RTR0AssertPanicSystem },
294 { "RTAssertMsg1", (void *)RTAssertMsg1 },
295 { "RTAssertMsg2V", (void *)RTAssertMsg2V },
296 { "RTAssertSetQuiet", (void *)RTAssertSetQuiet },
297 { "RTAssertMayPanic", (void *)RTAssertMayPanic },
298 { "RTAssertSetMayPanic", (void *)RTAssertSetMayPanic },
299 { "RTAssertAreQuiet", (void *)RTAssertAreQuiet },
300#ifdef RT_OS_WINDOWS
301 /* We need to include more of our runtime to prevent the dynamically linked R0 modules to get too large. */
302 { "RTNetIPv4AddDataChecksum", (void *)RTNetIPv4AddDataChecksum },
303 { "RTNetIPv4AddTCPChecksum", (void *)RTNetIPv4AddTCPChecksum },
304 { "RTNetIPv4AddUDPChecksum", (void *)RTNetIPv4AddUDPChecksum },
305 { "RTNetIPv4FinalizeChecksum", (void *)RTNetIPv4FinalizeChecksum },
306 { "RTNetIPv4HdrChecksum", (void *)RTNetIPv4HdrChecksum },
307 { "RTNetIPv4IsDHCPValid", (void *)RTNetIPv4IsDHCPValid },
308 { "RTNetIPv4IsHdrValid", (void *)RTNetIPv4IsHdrValid },
309 { "RTNetIPv4IsTCPSizeValid", (void *)RTNetIPv4IsTCPSizeValid },
310 { "RTNetIPv4IsTCPValid", (void *)RTNetIPv4IsTCPValid },
311 { "RTNetIPv4IsUDPSizeValid", (void *)RTNetIPv4IsUDPSizeValid },
312 { "RTNetIPv4IsUDPValid", (void *)RTNetIPv4IsUDPValid },
313 { "RTNetIPv4PseudoChecksum", (void *)RTNetIPv4PseudoChecksum },
314 { "RTNetIPv4PseudoChecksumBits", (void *)RTNetIPv4PseudoChecksumBits },
315 { "RTNetIPv4TCPChecksum", (void *)RTNetIPv4TCPChecksum },
316 { "RTNetIPv4UDPChecksum", (void *)RTNetIPv4UDPChecksum },
317 { "RTNetIPv6PseudoChecksum", (void *)RTNetIPv6PseudoChecksum },
318 { "RTNetIPv6PseudoChecksumBits", (void *)RTNetIPv6PseudoChecksumBits },
319 { "RTNetIPv6PseudoChecksumEx", (void *)RTNetIPv6PseudoChecksumEx },
320 { "RTNetTCPChecksum", (void *)RTNetTCPChecksum },
321 { "RTNetUDPChecksum", (void *)RTNetUDPChecksum },
322 { "RTStrFormat", (void *)RTStrFormat },
323 { "RTStrFormatNumber", (void *)RTStrFormatNumber },
324 { "RTStrFormatTypeDeregister", (void *)RTStrFormatTypeDeregister },
325 { "RTStrFormatTypeRegister", (void *)RTStrFormatTypeRegister },
326 { "RTStrFormatTypeSetUser", (void *)RTStrFormatTypeSetUser },
327 { "RTStrFormatV", (void *)RTStrFormatV },
328 { "RTStrPrintf", (void *)RTStrPrintf },
329 { "RTStrPrintfEx", (void *)RTStrPrintfEx },
330 { "RTStrPrintfExV", (void *)RTStrPrintfExV },
331 { "RTStrPrintfV", (void *)RTStrPrintfV },
332 { "RTCrc32", (void *)RTCrc32 },
333 { "RTCrc32Finish", (void *)RTCrc32Finish },
334 { "RTCrc32Process", (void *)RTCrc32Process },
335 { "RTCrc32Start", (void *)RTCrc32Start },
336 { "RTHandleTableAllocWithCtx", (void *)RTHandleTableAllocWithCtx },
337 { "RTHandleTableCreate", (void *)RTHandleTableCreate },
338 { "RTHandleTableCreateEx", (void *)RTHandleTableCreateEx },
339 { "RTHandleTableDestroy", (void *)RTHandleTableDestroy },
340 { "RTHandleTableFreeWithCtx", (void *)RTHandleTableFreeWithCtx },
341 { "RTHandleTableLookupWithCtx", (void *)RTHandleTableLookupWithCtx },
342#endif
343};
344
345#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
346/**
347 * Drag in the rest of IRPT since we share it with the
348 * rest of the kernel modules on darwin.
349 */
350PFNRT g_apfnVBoxDrvIPRTDeps[] =
351{
352 /* VBoxNetFlt */
353 (PFNRT)RTCrc32,
354 (PFNRT)RTErrConvertFromErrno,
355 (PFNRT)RTNetIPv4IsHdrValid,
356 (PFNRT)RTNetIPv4TCPChecksum,
357 (PFNRT)RTNetIPv4UDPChecksum,
358 (PFNRT)RTUuidCompare,
359 (PFNRT)RTUuidCompareStr,
360 (PFNRT)RTUuidFromStr,
361 (PFNRT)RTStrDup,
362 (PFNRT)RTStrFree,
363 /* VBoxNetAdp */
364 (PFNRT)RTRandBytes,
365 /* VBoxUSB */
366 (PFNRT)RTPathStripFilename,
367 NULL
368};
369#endif /* RT_OS_DARWIN || RT_OS_SOLARIS || RT_OS_SOLARIS */
370
371
372/**
373 * Initializes the device extentsion structure.
374 *
375 * @returns IPRT status code.
376 * @param pDevExt The device extension to initialize.
377 * @param cbSession The size of the session structure. The size of
378 * SUPDRVSESSION may be smaller when SUPDRV_AGNOSTIC is
379 * defined because we're skipping the OS specific members
380 * then.
381 */
382int VBOXCALL supdrvInitDevExt(PSUPDRVDEVEXT pDevExt, size_t cbSession)
383{
384 int rc;
385
386#ifdef SUPDRV_WITH_RELEASE_LOGGER
387 /*
388 * Create the release log.
389 */
390 static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES;
391 PRTLOGGER pRelLogger;
392 rc = RTLogCreate(&pRelLogger, 0 /* fFlags */, "all",
393 "VBOX_RELEASE_LOG", RT_ELEMENTS(s_apszGroups), s_apszGroups,
394 RTLOGDEST_STDOUT | RTLOGDEST_DEBUGGER, NULL);
395 if (RT_SUCCESS(rc))
396 RTLogRelSetDefaultInstance(pRelLogger);
397 /** @todo Add native hook for getting logger config parameters and setting
398 * them. On linux we should use the module parameter stuff... */
399#endif
400
401 /*
402 * Initialize it.
403 */
404 memset(pDevExt, 0, sizeof(*pDevExt));
405 rc = RTSpinlockCreate(&pDevExt->Spinlock);
406 if (RT_SUCCESS(rc))
407 {
408#ifdef SUPDRV_USE_MUTEX_FOR_LDR
409 rc = RTSemMutexCreate(&pDevExt->mtxLdr);
410#else
411 rc = RTSemFastMutexCreate(&pDevExt->mtxLdr);
412#endif
413 if (RT_SUCCESS(rc))
414 {
415 rc = RTSemFastMutexCreate(&pDevExt->mtxComponentFactory);
416 if (RT_SUCCESS(rc))
417 {
418#ifdef SUPDRV_USE_MUTEX_FOR_LDR
419 rc = RTSemMutexCreate(&pDevExt->mtxGip);
420#else
421 rc = RTSemFastMutexCreate(&pDevExt->mtxGip);
422#endif
423 if (RT_SUCCESS(rc))
424 {
425 rc = supdrvGipCreate(pDevExt);
426 if (RT_SUCCESS(rc))
427 {
428 pDevExt->u32Cookie = BIRD; /** @todo make this random? */
429 pDevExt->cbSession = cbSession;
430
431 /*
432 * Fixup the absolute symbols.
433 *
434 * Because of the table indexing assumptions we'll have a little #ifdef orgy
435 * here rather than distributing this to OS specific files. At least for now.
436 */
437#ifdef RT_OS_DARWIN
438# if ARCH_BITS == 32
439 if (SUPR0GetPagingMode() >= SUPPAGINGMODE_AMD64)
440 {
441 g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
442 g_aFunctions[1].pfn = (void *)0x80; /* SUPR0Abs64bitKernelCS - KERNEL64_CS, seg.h */
443 g_aFunctions[2].pfn = (void *)0x88; /* SUPR0Abs64bitKernelSS - KERNEL64_SS, seg.h */
444 g_aFunctions[3].pfn = (void *)0x88; /* SUPR0Abs64bitKernelDS - KERNEL64_SS, seg.h */
445 }
446 else
447 g_aFunctions[0].pfn = g_aFunctions[1].pfn = g_aFunctions[2].pfn = g_aFunctions[4].pfn = (void *)0;
448 g_aFunctions[4].pfn = (void *)0x08; /* SUPR0AbsKernelCS - KERNEL_CS, seg.h */
449 g_aFunctions[5].pfn = (void *)0x10; /* SUPR0AbsKernelSS - KERNEL_DS, seg.h */
450 g_aFunctions[6].pfn = (void *)0x10; /* SUPR0AbsKernelDS - KERNEL_DS, seg.h */
451 g_aFunctions[7].pfn = (void *)0x10; /* SUPR0AbsKernelES - KERNEL_DS, seg.h */
452 g_aFunctions[8].pfn = (void *)0x10; /* SUPR0AbsKernelFS - KERNEL_DS, seg.h */
453 g_aFunctions[9].pfn = (void *)0x48; /* SUPR0AbsKernelGS - CPU_DATA_GS, seg.h */
454# else /* 64-bit darwin: */
455 g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
456 g_aFunctions[1].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0Abs64bitKernelCS */
457 g_aFunctions[2].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0Abs64bitKernelSS */
458 g_aFunctions[3].pfn = (void *)0; /* SUPR0Abs64bitKernelDS */
459 g_aFunctions[4].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0AbsKernelCS */
460 g_aFunctions[5].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0AbsKernelSS */
461 g_aFunctions[6].pfn = (void *)0; /* SUPR0AbsKernelDS */
462 g_aFunctions[7].pfn = (void *)0; /* SUPR0AbsKernelES */
463 g_aFunctions[8].pfn = (void *)0; /* SUPR0AbsKernelFS */
464 g_aFunctions[9].pfn = (void *)0; /* SUPR0AbsKernelGS */
465
466# endif
467#else /* !RT_OS_DARWIN */
468# if ARCH_BITS == 64
469 g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
470 g_aFunctions[1].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0Abs64bitKernelCS */
471 g_aFunctions[2].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0Abs64bitKernelSS */
472 g_aFunctions[3].pfn = (void *)(uintptr_t)ASMGetDS(); /* SUPR0Abs64bitKernelDS */
473# else
474 g_aFunctions[0].pfn = g_aFunctions[1].pfn = g_aFunctions[2].pfn = g_aFunctions[4].pfn = (void *)0;
475# endif
476 g_aFunctions[4].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0AbsKernelCS */
477 g_aFunctions[5].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0AbsKernelSS */
478 g_aFunctions[6].pfn = (void *)(uintptr_t)ASMGetDS(); /* SUPR0AbsKernelDS */
479 g_aFunctions[7].pfn = (void *)(uintptr_t)ASMGetES(); /* SUPR0AbsKernelES */
480 g_aFunctions[8].pfn = (void *)(uintptr_t)ASMGetFS(); /* SUPR0AbsKernelFS */
481 g_aFunctions[9].pfn = (void *)(uintptr_t)ASMGetGS(); /* SUPR0AbsKernelGS */
482#endif /* !RT_OS_DARWIN */
483 return VINF_SUCCESS;
484 }
485
486#ifdef SUPDRV_USE_MUTEX_FOR_GIP
487 RTSemMutexDestroy(pDevExt->mtxGip);
488 pDevExt->mtxGip = NIL_RTSEMMUTEX;
489#else
490 RTSemFastMutexDestroy(pDevExt->mtxGip);
491 pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
492#endif
493 }
494 RTSemFastMutexDestroy(pDevExt->mtxComponentFactory);
495 pDevExt->mtxComponentFactory = NIL_RTSEMFASTMUTEX;
496 }
497#ifdef SUPDRV_USE_MUTEX_FOR_LDR
498 RTSemMutexDestroy(pDevExt->mtxLdr);
499 pDevExt->mtxLdr = NIL_RTSEMMUTEX;
500#else
501 RTSemFastMutexDestroy(pDevExt->mtxLdr);
502 pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
503#endif
504 }
505 RTSpinlockDestroy(pDevExt->Spinlock);
506 pDevExt->Spinlock = NIL_RTSPINLOCK;
507 }
508#ifdef SUPDRV_WITH_RELEASE_LOGGER
509 RTLogDestroy(RTLogRelSetDefaultInstance(NULL));
510 RTLogDestroy(RTLogSetDefaultInstance(NULL));
511#endif
512
513 return rc;
514}
515
516
517/**
518 * Delete the device extension (e.g. cleanup members).
519 *
520 * @param pDevExt The device extension to delete.
521 */
522void VBOXCALL supdrvDeleteDevExt(PSUPDRVDEVEXT pDevExt)
523{
524 PSUPDRVOBJ pObj;
525 PSUPDRVUSAGE pUsage;
526
527 /*
528 * Kill mutexes and spinlocks.
529 */
530#ifdef SUPDRV_USE_MUTEX_FOR_GIP
531 RTSemMutexDestroy(pDevExt->mtxGip);
532 pDevExt->mtxGip = NIL_RTSEMMUTEX;
533#else
534 RTSemFastMutexDestroy(pDevExt->mtxGip);
535 pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
536#endif
537#ifdef SUPDRV_USE_MUTEX_FOR_LDR
538 RTSemMutexDestroy(pDevExt->mtxLdr);
539 pDevExt->mtxLdr = NIL_RTSEMMUTEX;
540#else
541 RTSemFastMutexDestroy(pDevExt->mtxLdr);
542 pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
543#endif
544 RTSpinlockDestroy(pDevExt->Spinlock);
545 pDevExt->Spinlock = NIL_RTSPINLOCK;
546 RTSemFastMutexDestroy(pDevExt->mtxComponentFactory);
547 pDevExt->mtxComponentFactory = NIL_RTSEMFASTMUTEX;
548
549 /*
550 * Free lists.
551 */
552 /* objects. */
553 pObj = pDevExt->pObjs;
554 Assert(!pObj); /* (can trigger on forced unloads) */
555 pDevExt->pObjs = NULL;
556 while (pObj)
557 {
558 void *pvFree = pObj;
559 pObj = pObj->pNext;
560 RTMemFree(pvFree);
561 }
562
563 /* usage records. */
564 pUsage = pDevExt->pUsageFree;
565 pDevExt->pUsageFree = NULL;
566 while (pUsage)
567 {
568 void *pvFree = pUsage;
569 pUsage = pUsage->pNext;
570 RTMemFree(pvFree);
571 }
572
573 /* kill the GIP. */
574 supdrvGipDestroy(pDevExt);
575
576#ifdef SUPDRV_WITH_RELEASE_LOGGER
577 /* destroy the loggers. */
578 RTLogDestroy(RTLogRelSetDefaultInstance(NULL));
579 RTLogDestroy(RTLogSetDefaultInstance(NULL));
580#endif
581}
582
583
584/**
585 * Create session.
586 *
587 * @returns IPRT status code.
588 * @param pDevExt Device extension.
589 * @param fUser Flag indicating whether this is a user or kernel session.
590 * @param ppSession Where to store the pointer to the session data.
591 */
592int VBOXCALL supdrvCreateSession(PSUPDRVDEVEXT pDevExt, bool fUser, PSUPDRVSESSION *ppSession)
593{
594 /*
595 * Allocate memory for the session data.
596 */
597 int rc;
598 PSUPDRVSESSION pSession = *ppSession = (PSUPDRVSESSION)RTMemAllocZ(pDevExt->cbSession);
599 if (pSession)
600 {
601 /* Initialize session data. */
602 rc = RTSpinlockCreate(&pSession->Spinlock);
603 if (!rc)
604 {
605 rc = RTHandleTableCreateEx(&pSession->hHandleTable,
606 RTHANDLETABLE_FLAGS_LOCKED | RTHANDLETABLE_FLAGS_CONTEXT,
607 1 /*uBase*/, 32768 /*cMax*/, supdrvSessionObjHandleRetain, pSession);
608 if (RT_SUCCESS(rc))
609 {
610 Assert(pSession->Spinlock != NIL_RTSPINLOCK);
611 pSession->pDevExt = pDevExt;
612 pSession->u32Cookie = BIRD_INV;
613 /*pSession->pLdrUsage = NULL;
614 pSession->pVM = NULL;
615 pSession->pUsage = NULL;
616 pSession->pGip = NULL;
617 pSession->fGipReferenced = false;
618 pSession->Bundle.cUsed = 0; */
619 pSession->Uid = NIL_RTUID;
620 pSession->Gid = NIL_RTGID;
621 if (fUser)
622 {
623 pSession->Process = RTProcSelf();
624 pSession->R0Process = RTR0ProcHandleSelf();
625 }
626 else
627 {
628 pSession->Process = NIL_RTPROCESS;
629 pSession->R0Process = NIL_RTR0PROCESS;
630 }
631
632 LogFlow(("Created session %p initial cookie=%#x\n", pSession, pSession->u32Cookie));
633 return VINF_SUCCESS;
634 }
635
636 RTSpinlockDestroy(pSession->Spinlock);
637 }
638 RTMemFree(pSession);
639 *ppSession = NULL;
640 Log(("Failed to create spinlock, rc=%d!\n", rc));
641 }
642 else
643 rc = VERR_NO_MEMORY;
644
645 return rc;
646}
647
648
649/**
650 * Shared code for cleaning up a session.
651 *
652 * @param pDevExt Device extension.
653 * @param pSession Session data.
654 * This data will be freed by this routine.
655 */
656void VBOXCALL supdrvCloseSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
657{
658 /*
659 * Cleanup the session first.
660 */
661 supdrvCleanupSession(pDevExt, pSession);
662
663 /*
664 * Free the rest of the session stuff.
665 */
666 RTSpinlockDestroy(pSession->Spinlock);
667 pSession->Spinlock = NIL_RTSPINLOCK;
668 pSession->pDevExt = NULL;
669 RTMemFree(pSession);
670 LogFlow(("supdrvCloseSession: returns\n"));
671}
672
673
674/**
675 * Shared code for cleaning up a session (but not quite freeing it).
676 *
677 * This is primarily intended for MAC OS X where we have to clean up the memory
678 * stuff before the file handle is closed.
679 *
680 * @param pDevExt Device extension.
681 * @param pSession Session data.
682 * This data will be freed by this routine.
683 */
684void VBOXCALL supdrvCleanupSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
685{
686 int rc;
687 PSUPDRVBUNDLE pBundle;
688 LogFlow(("supdrvCleanupSession: pSession=%p\n", pSession));
689
690 /*
691 * Remove logger instances related to this session.
692 */
693 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pSession);
694
695 /*
696 * Destroy the handle table.
697 */
698 rc = RTHandleTableDestroy(pSession->hHandleTable, supdrvSessionObjHandleDelete, pSession);
699 AssertRC(rc);
700 pSession->hHandleTable = NIL_RTHANDLETABLE;
701
702 /*
703 * Release object references made in this session.
704 * In theory there should be noone racing us in this session.
705 */
706 Log2(("release objects - start\n"));
707 if (pSession->pUsage)
708 {
709 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
710 PSUPDRVUSAGE pUsage;
711 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
712
713 while ((pUsage = pSession->pUsage) != NULL)
714 {
715 PSUPDRVOBJ pObj = pUsage->pObj;
716 pSession->pUsage = pUsage->pNext;
717
718 AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
719 if (pUsage->cUsage < pObj->cUsage)
720 {
721 pObj->cUsage -= pUsage->cUsage;
722 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
723 }
724 else
725 {
726 /* Destroy the object and free the record. */
727 if (pDevExt->pObjs == pObj)
728 pDevExt->pObjs = pObj->pNext;
729 else
730 {
731 PSUPDRVOBJ pObjPrev;
732 for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
733 if (pObjPrev->pNext == pObj)
734 {
735 pObjPrev->pNext = pObj->pNext;
736 break;
737 }
738 Assert(pObjPrev);
739 }
740 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
741
742 Log(("supdrvCleanupSession: destroying %p/%d (%p/%p) cpid=%RTproc pid=%RTproc dtor=%p\n",
743 pObj, pObj->enmType, pObj->pvUser1, pObj->pvUser2, pObj->CreatorProcess, RTProcSelf(), pObj->pfnDestructor));
744 if (pObj->pfnDestructor)
745 pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
746 RTMemFree(pObj);
747 }
748
749 /* free it and continue. */
750 RTMemFree(pUsage);
751
752 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
753 }
754
755 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
756 AssertMsg(!pSession->pUsage, ("Some buster reregistered an object during desturction!\n"));
757 }
758 Log2(("release objects - done\n"));
759
760 /*
761 * Release memory allocated in the session.
762 *
763 * We do not serialize this as we assume that the application will
764 * not allocated memory while closing the file handle object.
765 */
766 Log2(("freeing memory:\n"));
767 pBundle = &pSession->Bundle;
768 while (pBundle)
769 {
770 PSUPDRVBUNDLE pToFree;
771 unsigned i;
772
773 /*
774 * Check and unlock all entries in the bundle.
775 */
776 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
777 {
778 if (pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ)
779 {
780 Log2(("eType=%d pvR0=%p pvR3=%p cb=%ld\n", pBundle->aMem[i].eType, RTR0MemObjAddress(pBundle->aMem[i].MemObj),
781 (void *)RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3), (long)RTR0MemObjSize(pBundle->aMem[i].MemObj)));
782 if (pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ)
783 {
784 rc = RTR0MemObjFree(pBundle->aMem[i].MapObjR3, false);
785 AssertRC(rc); /** @todo figure out how to handle this. */
786 pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
787 }
788 rc = RTR0MemObjFree(pBundle->aMem[i].MemObj, true /* fFreeMappings */);
789 AssertRC(rc); /** @todo figure out how to handle this. */
790 pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
791 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
792 }
793 }
794
795 /*
796 * Advance and free previous bundle.
797 */
798 pToFree = pBundle;
799 pBundle = pBundle->pNext;
800
801 pToFree->pNext = NULL;
802 pToFree->cUsed = 0;
803 if (pToFree != &pSession->Bundle)
804 RTMemFree(pToFree);
805 }
806 Log2(("freeing memory - done\n"));
807
808 /*
809 * Deregister component factories.
810 */
811 RTSemFastMutexRequest(pDevExt->mtxComponentFactory);
812 Log2(("deregistering component factories:\n"));
813 if (pDevExt->pComponentFactoryHead)
814 {
815 PSUPDRVFACTORYREG pPrev = NULL;
816 PSUPDRVFACTORYREG pCur = pDevExt->pComponentFactoryHead;
817 while (pCur)
818 {
819 if (pCur->pSession == pSession)
820 {
821 /* unlink it */
822 PSUPDRVFACTORYREG pNext = pCur->pNext;
823 if (pPrev)
824 pPrev->pNext = pNext;
825 else
826 pDevExt->pComponentFactoryHead = pNext;
827
828 /* free it */
829 pCur->pNext = NULL;
830 pCur->pSession = NULL;
831 pCur->pFactory = NULL;
832 RTMemFree(pCur);
833
834 /* next */
835 pCur = pNext;
836 }
837 else
838 {
839 /* next */
840 pPrev = pCur;
841 pCur = pCur->pNext;
842 }
843 }
844 }
845 RTSemFastMutexRelease(pDevExt->mtxComponentFactory);
846 Log2(("deregistering component factories - done\n"));
847
848 /*
849 * Loaded images needs to be dereferenced and possibly freed up.
850 */
851 supdrvLdrLock(pDevExt);
852 Log2(("freeing images:\n"));
853 if (pSession->pLdrUsage)
854 {
855 PSUPDRVLDRUSAGE pUsage = pSession->pLdrUsage;
856 pSession->pLdrUsage = NULL;
857 while (pUsage)
858 {
859 void *pvFree = pUsage;
860 PSUPDRVLDRIMAGE pImage = pUsage->pImage;
861 if (pImage->cUsage > pUsage->cUsage)
862 pImage->cUsage -= pUsage->cUsage;
863 else
864 supdrvLdrFree(pDevExt, pImage);
865 pUsage->pImage = NULL;
866 pUsage = pUsage->pNext;
867 RTMemFree(pvFree);
868 }
869 }
870 supdrvLdrUnlock(pDevExt);
871 Log2(("freeing images - done\n"));
872
873 /*
874 * Unmap the GIP.
875 */
876 Log2(("umapping GIP:\n"));
877 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
878 {
879 SUPR0GipUnmap(pSession);
880 pSession->fGipReferenced = 0;
881 }
882 Log2(("umapping GIP - done\n"));
883}
884
885
886/**
887 * RTHandleTableDestroy callback used by supdrvCleanupSession.
888 *
889 * @returns IPRT status code, see SUPR0ObjAddRef.
890 * @param hHandleTable The handle table handle. Ignored.
891 * @param pvObj The object pointer.
892 * @param pvCtx Context, the handle type. Ignored.
893 * @param pvUser Session pointer.
894 */
895static DECLCALLBACK(int) supdrvSessionObjHandleRetain(RTHANDLETABLE hHandleTable, void *pvObj, void *pvCtx, void *pvUser)
896{
897 NOREF(pvCtx);
898 NOREF(hHandleTable);
899 return SUPR0ObjAddRefEx(pvObj, (PSUPDRVSESSION)pvUser, true /*fNoBlocking*/);
900}
901
902
903/**
904 * RTHandleTableDestroy callback used by supdrvCleanupSession.
905 *
906 * @param hHandleTable The handle table handle. Ignored.
907 * @param h The handle value. Ignored.
908 * @param pvObj The object pointer.
909 * @param pvCtx Context, the handle type. Ignored.
910 * @param pvUser Session pointer.
911 */
912static DECLCALLBACK(void) supdrvSessionObjHandleDelete(RTHANDLETABLE hHandleTable, uint32_t h, void *pvObj, void *pvCtx, void *pvUser)
913{
914 NOREF(pvCtx);
915 NOREF(h);
916 NOREF(hHandleTable);
917 SUPR0ObjRelease(pvObj, (PSUPDRVSESSION)pvUser);
918}
919
920
921/**
922 * Fast path I/O Control worker.
923 *
924 * @returns VBox status code that should be passed down to ring-3 unchanged.
925 * @param uIOCtl Function number.
926 * @param idCpu VMCPU id.
927 * @param pDevExt Device extention.
928 * @param pSession Session data.
929 */
930int VBOXCALL supdrvIOCtlFast(uintptr_t uIOCtl, VMCPUID idCpu, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
931{
932 /*
933 * We check the two prereqs after doing this only to allow the compiler to optimize things better.
934 */
935 if (RT_LIKELY(pSession->pVM && pDevExt->pfnVMMR0EntryFast))
936 {
937 switch (uIOCtl)
938 {
939 case SUP_IOCTL_FAST_DO_RAW_RUN:
940 pDevExt->pfnVMMR0EntryFast(pSession->pVM, idCpu, SUP_VMMR0_DO_RAW_RUN);
941 break;
942 case SUP_IOCTL_FAST_DO_HWACC_RUN:
943 pDevExt->pfnVMMR0EntryFast(pSession->pVM, idCpu, SUP_VMMR0_DO_HWACC_RUN);
944 break;
945 case SUP_IOCTL_FAST_DO_NOP:
946 pDevExt->pfnVMMR0EntryFast(pSession->pVM, idCpu, SUP_VMMR0_DO_NOP);
947 break;
948 default:
949 return VERR_INTERNAL_ERROR;
950 }
951 return VINF_SUCCESS;
952 }
953 return VERR_INTERNAL_ERROR;
954}
955
956
957/**
958 * Helper for supdrvIOCtl. Check if pszStr contains any character of pszChars.
959 * We would use strpbrk here if this function would be contained in the RedHat kABI white
960 * list, see http://www.kerneldrivers.org/RHEL5.
961 *
962 * @returns 1 if pszStr does contain any character of pszChars, 0 otherwise.
963 * @param pszStr String to check
964 * @param pszChars Character set
965 */
966static int supdrvCheckInvalidChar(const char *pszStr, const char *pszChars)
967{
968 int chCur;
969 while ((chCur = *pszStr++) != '\0')
970 {
971 int ch;
972 const char *psz = pszChars;
973 while ((ch = *psz++) != '\0')
974 if (ch == chCur)
975 return 1;
976
977 }
978 return 0;
979}
980
981
982/**
983 * I/O Control worker.
984 *
985 * @returns IPRT status code.
986 * @retval VERR_INVALID_PARAMETER if the request is invalid.
987 *
988 * @param uIOCtl Function number.
989 * @param pDevExt Device extention.
990 * @param pSession Session data.
991 * @param pReqHdr The request header.
992 */
993int VBOXCALL supdrvIOCtl(uintptr_t uIOCtl, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPREQHDR pReqHdr)
994{
995 /*
996 * Validate the request.
997 */
998 /* this first check could probably be omitted as its also done by the OS specific code... */
999 if (RT_UNLIKELY( (pReqHdr->fFlags & SUPREQHDR_FLAGS_MAGIC_MASK) != SUPREQHDR_FLAGS_MAGIC
1000 || pReqHdr->cbIn < sizeof(*pReqHdr)
1001 || pReqHdr->cbOut < sizeof(*pReqHdr)))
1002 {
1003 OSDBGPRINT(("vboxdrv: Bad ioctl request header; cbIn=%#lx cbOut=%#lx fFlags=%#lx\n",
1004 (long)pReqHdr->cbIn, (long)pReqHdr->cbOut, (long)pReqHdr->fFlags));
1005 return VERR_INVALID_PARAMETER;
1006 }
1007 if (RT_UNLIKELY(uIOCtl == SUP_IOCTL_COOKIE))
1008 {
1009 if (pReqHdr->u32Cookie != SUPCOOKIE_INITIAL_COOKIE)
1010 {
1011 OSDBGPRINT(("SUP_IOCTL_COOKIE: bad cookie %#lx\n", (long)pReqHdr->u32Cookie));
1012 return VERR_INVALID_PARAMETER;
1013 }
1014 }
1015 else if (RT_UNLIKELY( pReqHdr->u32Cookie != pDevExt->u32Cookie
1016 || pReqHdr->u32SessionCookie != pSession->u32Cookie))
1017 {
1018 OSDBGPRINT(("vboxdrv: bad cookie %#lx / %#lx.\n", (long)pReqHdr->u32Cookie, (long)pReqHdr->u32SessionCookie));
1019 return VERR_INVALID_PARAMETER;
1020 }
1021
1022/*
1023 * Validation macros
1024 */
1025#define REQ_CHECK_SIZES_EX(Name, cbInExpect, cbOutExpect) \
1026 do { \
1027 if (RT_UNLIKELY(pReqHdr->cbIn != (cbInExpect) || pReqHdr->cbOut != (cbOutExpect))) \
1028 { \
1029 OSDBGPRINT(( #Name ": Invalid input/output sizes. cbIn=%ld expected %ld. cbOut=%ld expected %ld.\n", \
1030 (long)pReq->Hdr.cbIn, (long)(cbInExpect), (long)pReq->Hdr.cbOut, (long)(cbOutExpect))); \
1031 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1032 } \
1033 } while (0)
1034
1035#define REQ_CHECK_SIZES(Name) REQ_CHECK_SIZES_EX(Name, Name ## _SIZE_IN, Name ## _SIZE_OUT)
1036
1037#define REQ_CHECK_SIZE_IN(Name, cbInExpect) \
1038 do { \
1039 if (RT_UNLIKELY(pReqHdr->cbIn != (cbInExpect))) \
1040 { \
1041 OSDBGPRINT(( #Name ": Invalid input/output sizes. cbIn=%ld expected %ld.\n", \
1042 (long)pReq->Hdr.cbIn, (long)(cbInExpect))); \
1043 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1044 } \
1045 } while (0)
1046
1047#define REQ_CHECK_SIZE_OUT(Name, cbOutExpect) \
1048 do { \
1049 if (RT_UNLIKELY(pReqHdr->cbOut != (cbOutExpect))) \
1050 { \
1051 OSDBGPRINT(( #Name ": Invalid input/output sizes. cbOut=%ld expected %ld.\n", \
1052 (long)pReq->Hdr.cbOut, (long)(cbOutExpect))); \
1053 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1054 } \
1055 } while (0)
1056
1057#define REQ_CHECK_EXPR(Name, expr) \
1058 do { \
1059 if (RT_UNLIKELY(!(expr))) \
1060 { \
1061 OSDBGPRINT(( #Name ": %s\n", #expr)); \
1062 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1063 } \
1064 } while (0)
1065
1066#define REQ_CHECK_EXPR_FMT(expr, fmt) \
1067 do { \
1068 if (RT_UNLIKELY(!(expr))) \
1069 { \
1070 OSDBGPRINT( fmt ); \
1071 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1072 } \
1073 } while (0)
1074
1075
1076 /*
1077 * The switch.
1078 */
1079 switch (SUP_CTL_CODE_NO_SIZE(uIOCtl))
1080 {
1081 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_COOKIE):
1082 {
1083 PSUPCOOKIE pReq = (PSUPCOOKIE)pReqHdr;
1084 REQ_CHECK_SIZES(SUP_IOCTL_COOKIE);
1085 if (strncmp(pReq->u.In.szMagic, SUPCOOKIE_MAGIC, sizeof(pReq->u.In.szMagic)))
1086 {
1087 OSDBGPRINT(("SUP_IOCTL_COOKIE: invalid magic %.16s\n", pReq->u.In.szMagic));
1088 pReq->Hdr.rc = VERR_INVALID_MAGIC;
1089 return 0;
1090 }
1091
1092#if 0
1093 /*
1094 * Call out to the OS specific code and let it do permission checks on the
1095 * client process.
1096 */
1097 if (!supdrvOSValidateClientProcess(pDevExt, pSession))
1098 {
1099 pReq->u.Out.u32Cookie = 0xffffffff;
1100 pReq->u.Out.u32SessionCookie = 0xffffffff;
1101 pReq->u.Out.u32SessionVersion = 0xffffffff;
1102 pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
1103 pReq->u.Out.pSession = NULL;
1104 pReq->u.Out.cFunctions = 0;
1105 pReq->Hdr.rc = VERR_PERMISSION_DENIED;
1106 return 0;
1107 }
1108#endif
1109
1110 /*
1111 * Match the version.
1112 * The current logic is very simple, match the major interface version.
1113 */
1114 if ( pReq->u.In.u32MinVersion > SUPDRV_IOC_VERSION
1115 || (pReq->u.In.u32MinVersion & 0xffff0000) != (SUPDRV_IOC_VERSION & 0xffff0000))
1116 {
1117 OSDBGPRINT(("SUP_IOCTL_COOKIE: Version mismatch. Requested: %#x Min: %#x Current: %#x\n",
1118 pReq->u.In.u32ReqVersion, pReq->u.In.u32MinVersion, SUPDRV_IOC_VERSION));
1119 pReq->u.Out.u32Cookie = 0xffffffff;
1120 pReq->u.Out.u32SessionCookie = 0xffffffff;
1121 pReq->u.Out.u32SessionVersion = 0xffffffff;
1122 pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
1123 pReq->u.Out.pSession = NULL;
1124 pReq->u.Out.cFunctions = 0;
1125 pReq->Hdr.rc = VERR_VERSION_MISMATCH;
1126 return 0;
1127 }
1128
1129 /*
1130 * Fill in return data and be gone.
1131 * N.B. The first one to change SUPDRV_IOC_VERSION shall makes sure that
1132 * u32SessionVersion <= u32ReqVersion!
1133 */
1134 /** @todo Somehow validate the client and negotiate a secure cookie... */
1135 pReq->u.Out.u32Cookie = pDevExt->u32Cookie;
1136 pReq->u.Out.u32SessionCookie = pSession->u32Cookie;
1137 pReq->u.Out.u32SessionVersion = SUPDRV_IOC_VERSION;
1138 pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
1139 pReq->u.Out.pSession = pSession;
1140 pReq->u.Out.cFunctions = sizeof(g_aFunctions) / sizeof(g_aFunctions[0]);
1141 pReq->Hdr.rc = VINF_SUCCESS;
1142 return 0;
1143 }
1144
1145 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_QUERY_FUNCS(0)):
1146 {
1147 /* validate */
1148 PSUPQUERYFUNCS pReq = (PSUPQUERYFUNCS)pReqHdr;
1149 REQ_CHECK_SIZES_EX(SUP_IOCTL_QUERY_FUNCS, SUP_IOCTL_QUERY_FUNCS_SIZE_IN, SUP_IOCTL_QUERY_FUNCS_SIZE_OUT(RT_ELEMENTS(g_aFunctions)));
1150
1151 /* execute */
1152 pReq->u.Out.cFunctions = RT_ELEMENTS(g_aFunctions);
1153 memcpy(&pReq->u.Out.aFunctions[0], g_aFunctions, sizeof(g_aFunctions));
1154 pReq->Hdr.rc = VINF_SUCCESS;
1155 return 0;
1156 }
1157
1158 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_LOCK):
1159 {
1160 /* validate */
1161 PSUPPAGELOCK pReq = (PSUPPAGELOCK)pReqHdr;
1162 REQ_CHECK_SIZE_IN(SUP_IOCTL_PAGE_LOCK, SUP_IOCTL_PAGE_LOCK_SIZE_IN);
1163 REQ_CHECK_SIZE_OUT(SUP_IOCTL_PAGE_LOCK, SUP_IOCTL_PAGE_LOCK_SIZE_OUT(pReq->u.In.cPages));
1164 REQ_CHECK_EXPR(SUP_IOCTL_PAGE_LOCK, pReq->u.In.cPages > 0);
1165 REQ_CHECK_EXPR(SUP_IOCTL_PAGE_LOCK, pReq->u.In.pvR3 >= PAGE_SIZE);
1166
1167 /* execute */
1168 pReq->Hdr.rc = SUPR0LockMem(pSession, pReq->u.In.pvR3, pReq->u.In.cPages, &pReq->u.Out.aPages[0]);
1169 if (RT_FAILURE(pReq->Hdr.rc))
1170 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1171 return 0;
1172 }
1173
1174 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_UNLOCK):
1175 {
1176 /* validate */
1177 PSUPPAGEUNLOCK pReq = (PSUPPAGEUNLOCK)pReqHdr;
1178 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_UNLOCK);
1179
1180 /* execute */
1181 pReq->Hdr.rc = SUPR0UnlockMem(pSession, pReq->u.In.pvR3);
1182 return 0;
1183 }
1184
1185 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CONT_ALLOC):
1186 {
1187 /* validate */
1188 PSUPCONTALLOC pReq = (PSUPCONTALLOC)pReqHdr;
1189 REQ_CHECK_SIZES(SUP_IOCTL_CONT_ALLOC);
1190
1191 /* execute */
1192 pReq->Hdr.rc = SUPR0ContAlloc(pSession, pReq->u.In.cPages, &pReq->u.Out.pvR0, &pReq->u.Out.pvR3, &pReq->u.Out.HCPhys);
1193 if (RT_FAILURE(pReq->Hdr.rc))
1194 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1195 return 0;
1196 }
1197
1198 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CONT_FREE):
1199 {
1200 /* validate */
1201 PSUPCONTFREE pReq = (PSUPCONTFREE)pReqHdr;
1202 REQ_CHECK_SIZES(SUP_IOCTL_CONT_FREE);
1203
1204 /* execute */
1205 pReq->Hdr.rc = SUPR0ContFree(pSession, (RTHCUINTPTR)pReq->u.In.pvR3);
1206 return 0;
1207 }
1208
1209 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_OPEN):
1210 {
1211 /* validate */
1212 PSUPLDROPEN pReq = (PSUPLDROPEN)pReqHdr;
1213 REQ_CHECK_SIZES(SUP_IOCTL_LDR_OPEN);
1214 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageWithTabs > 0);
1215 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageWithTabs < 16*_1M);
1216 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageBits > 0);
1217 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageBits > 0);
1218 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageBits < pReq->u.In.cbImageWithTabs);
1219 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.szName[0]);
1220 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, memchr(pReq->u.In.szName, '\0', sizeof(pReq->u.In.szName)));
1221 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, !supdrvCheckInvalidChar(pReq->u.In.szName, ";:()[]{}/\\|&*%#@!~`\"'"));
1222 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, memchr(pReq->u.In.szFilename, '\0', sizeof(pReq->u.In.szFilename)));
1223
1224 /* execute */
1225 pReq->Hdr.rc = supdrvIOCtl_LdrOpen(pDevExt, pSession, pReq);
1226 return 0;
1227 }
1228
1229 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_LOAD):
1230 {
1231 /* validate */
1232 PSUPLDRLOAD pReq = (PSUPLDRLOAD)pReqHdr;
1233 REQ_CHECK_EXPR(Name, pReq->Hdr.cbIn >= sizeof(*pReq));
1234 REQ_CHECK_SIZES_EX(SUP_IOCTL_LDR_LOAD, SUP_IOCTL_LDR_LOAD_SIZE_IN(pReq->u.In.cbImageWithTabs), SUP_IOCTL_LDR_LOAD_SIZE_OUT);
1235 REQ_CHECK_EXPR(SUP_IOCTL_LDR_LOAD, pReq->u.In.cSymbols <= 16384);
1236 REQ_CHECK_EXPR_FMT( !pReq->u.In.cSymbols
1237 || ( pReq->u.In.offSymbols < pReq->u.In.cbImageWithTabs
1238 && pReq->u.In.offSymbols + pReq->u.In.cSymbols * sizeof(SUPLDRSYM) <= pReq->u.In.cbImageWithTabs),
1239 ("SUP_IOCTL_LDR_LOAD: offSymbols=%#lx cSymbols=%#lx cbImageWithTabs=%#lx\n", (long)pReq->u.In.offSymbols,
1240 (long)pReq->u.In.cSymbols, (long)pReq->u.In.cbImageWithTabs));
1241 REQ_CHECK_EXPR_FMT( !pReq->u.In.cbStrTab
1242 || ( pReq->u.In.offStrTab < pReq->u.In.cbImageWithTabs
1243 && pReq->u.In.offStrTab + pReq->u.In.cbStrTab <= pReq->u.In.cbImageWithTabs
1244 && pReq->u.In.cbStrTab <= pReq->u.In.cbImageWithTabs),
1245 ("SUP_IOCTL_LDR_LOAD: offStrTab=%#lx cbStrTab=%#lx cbImageWithTabs=%#lx\n", (long)pReq->u.In.offStrTab,
1246 (long)pReq->u.In.cbStrTab, (long)pReq->u.In.cbImageWithTabs));
1247
1248 if (pReq->u.In.cSymbols)
1249 {
1250 uint32_t i;
1251 PSUPLDRSYM paSyms = (PSUPLDRSYM)&pReq->u.In.abImage[pReq->u.In.offSymbols];
1252 for (i = 0; i < pReq->u.In.cSymbols; i++)
1253 {
1254 REQ_CHECK_EXPR_FMT(paSyms[i].offSymbol < pReq->u.In.cbImageWithTabs,
1255 ("SUP_IOCTL_LDR_LOAD: sym #%ld: symb off %#lx (max=%#lx)\n", (long)i, (long)paSyms[i].offSymbol, (long)pReq->u.In.cbImageWithTabs));
1256 REQ_CHECK_EXPR_FMT(paSyms[i].offName < pReq->u.In.cbStrTab,
1257 ("SUP_IOCTL_LDR_LOAD: sym #%ld: name off %#lx (max=%#lx)\n", (long)i, (long)paSyms[i].offName, (long)pReq->u.In.cbImageWithTabs));
1258 REQ_CHECK_EXPR_FMT(memchr(&pReq->u.In.abImage[pReq->u.In.offStrTab + paSyms[i].offName], '\0', pReq->u.In.cbStrTab - paSyms[i].offName),
1259 ("SUP_IOCTL_LDR_LOAD: sym #%ld: unterminated name! (%#lx / %#lx)\n", (long)i, (long)paSyms[i].offName, (long)pReq->u.In.cbImageWithTabs));
1260 }
1261 }
1262
1263 /* execute */
1264 pReq->Hdr.rc = supdrvIOCtl_LdrLoad(pDevExt, pSession, pReq);
1265 return 0;
1266 }
1267
1268 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_FREE):
1269 {
1270 /* validate */
1271 PSUPLDRFREE pReq = (PSUPLDRFREE)pReqHdr;
1272 REQ_CHECK_SIZES(SUP_IOCTL_LDR_FREE);
1273
1274 /* execute */
1275 pReq->Hdr.rc = supdrvIOCtl_LdrFree(pDevExt, pSession, pReq);
1276 return 0;
1277 }
1278
1279 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_GET_SYMBOL):
1280 {
1281 /* validate */
1282 PSUPLDRGETSYMBOL pReq = (PSUPLDRGETSYMBOL)pReqHdr;
1283 REQ_CHECK_SIZES(SUP_IOCTL_LDR_GET_SYMBOL);
1284 REQ_CHECK_EXPR(SUP_IOCTL_LDR_GET_SYMBOL, memchr(pReq->u.In.szSymbol, '\0', sizeof(pReq->u.In.szSymbol)));
1285
1286 /* execute */
1287 pReq->Hdr.rc = supdrvIOCtl_LdrGetSymbol(pDevExt, pSession, pReq);
1288 return 0;
1289 }
1290
1291 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CALL_VMMR0(0)):
1292 {
1293 /* validate */
1294 PSUPCALLVMMR0 pReq = (PSUPCALLVMMR0)pReqHdr;
1295 Log4(("SUP_IOCTL_CALL_VMMR0: op=%u in=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1296 pReq->u.In.uOperation, pReq->Hdr.cbIn, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1297
1298 if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_VMMR0_SIZE(0))
1299 {
1300 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_VMMR0, SUP_IOCTL_CALL_VMMR0_SIZE_IN(0), SUP_IOCTL_CALL_VMMR0_SIZE_OUT(0));
1301
1302 /* execute */
1303 if (RT_LIKELY(pDevExt->pfnVMMR0EntryEx))
1304 pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(pReq->u.In.pVMR0, pReq->u.In.idCpu, pReq->u.In.uOperation, NULL, pReq->u.In.u64Arg, pSession);
1305 else
1306 pReq->Hdr.rc = VERR_WRONG_ORDER;
1307 }
1308 else
1309 {
1310 PSUPVMMR0REQHDR pVMMReq = (PSUPVMMR0REQHDR)&pReq->abReqPkt[0];
1311 REQ_CHECK_EXPR_FMT(pReq->Hdr.cbIn >= SUP_IOCTL_CALL_VMMR0_SIZE(sizeof(SUPVMMR0REQHDR)),
1312 ("SUP_IOCTL_CALL_VMMR0: cbIn=%#x < %#lx\n", pReq->Hdr.cbIn, SUP_IOCTL_CALL_VMMR0_SIZE(sizeof(SUPVMMR0REQHDR))));
1313 REQ_CHECK_EXPR(SUP_IOCTL_CALL_VMMR0, pVMMReq->u32Magic == SUPVMMR0REQHDR_MAGIC);
1314 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_VMMR0, SUP_IOCTL_CALL_VMMR0_SIZE_IN(pVMMReq->cbReq), SUP_IOCTL_CALL_VMMR0_SIZE_OUT(pVMMReq->cbReq));
1315
1316 /* execute */
1317 if (RT_LIKELY(pDevExt->pfnVMMR0EntryEx))
1318 pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(pReq->u.In.pVMR0, pReq->u.In.idCpu, pReq->u.In.uOperation, pVMMReq, pReq->u.In.u64Arg, pSession);
1319 else
1320 pReq->Hdr.rc = VERR_WRONG_ORDER;
1321 }
1322
1323 if ( RT_FAILURE(pReq->Hdr.rc)
1324 && pReq->Hdr.rc != VERR_INTERRUPTED
1325 && pReq->Hdr.rc != VERR_TIMEOUT)
1326 Log(("SUP_IOCTL_CALL_VMMR0: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1327 pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1328 else
1329 Log4(("SUP_IOCTL_CALL_VMMR0: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1330 pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1331 return 0;
1332 }
1333
1334 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GET_PAGING_MODE):
1335 {
1336 /* validate */
1337 PSUPGETPAGINGMODE pReq = (PSUPGETPAGINGMODE)pReqHdr;
1338 REQ_CHECK_SIZES(SUP_IOCTL_GET_PAGING_MODE);
1339
1340 /* execute */
1341 pReq->Hdr.rc = VINF_SUCCESS;
1342 pReq->u.Out.enmMode = SUPR0GetPagingMode();
1343 return 0;
1344 }
1345
1346 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOW_ALLOC):
1347 {
1348 /* validate */
1349 PSUPLOWALLOC pReq = (PSUPLOWALLOC)pReqHdr;
1350 REQ_CHECK_EXPR(SUP_IOCTL_LOW_ALLOC, pReq->Hdr.cbIn <= SUP_IOCTL_LOW_ALLOC_SIZE_IN);
1351 REQ_CHECK_SIZES_EX(SUP_IOCTL_LOW_ALLOC, SUP_IOCTL_LOW_ALLOC_SIZE_IN, SUP_IOCTL_LOW_ALLOC_SIZE_OUT(pReq->u.In.cPages));
1352
1353 /* execute */
1354 pReq->Hdr.rc = SUPR0LowAlloc(pSession, pReq->u.In.cPages, &pReq->u.Out.pvR0, &pReq->u.Out.pvR3, &pReq->u.Out.aPages[0]);
1355 if (RT_FAILURE(pReq->Hdr.rc))
1356 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1357 return 0;
1358 }
1359
1360 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOW_FREE):
1361 {
1362 /* validate */
1363 PSUPLOWFREE pReq = (PSUPLOWFREE)pReqHdr;
1364 REQ_CHECK_SIZES(SUP_IOCTL_LOW_FREE);
1365
1366 /* execute */
1367 pReq->Hdr.rc = SUPR0LowFree(pSession, (RTHCUINTPTR)pReq->u.In.pvR3);
1368 return 0;
1369 }
1370
1371 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GIP_MAP):
1372 {
1373 /* validate */
1374 PSUPGIPMAP pReq = (PSUPGIPMAP)pReqHdr;
1375 REQ_CHECK_SIZES(SUP_IOCTL_GIP_MAP);
1376
1377 /* execute */
1378 pReq->Hdr.rc = SUPR0GipMap(pSession, &pReq->u.Out.pGipR3, &pReq->u.Out.HCPhysGip);
1379 if (RT_SUCCESS(pReq->Hdr.rc))
1380 pReq->u.Out.pGipR0 = pDevExt->pGip;
1381 return 0;
1382 }
1383
1384 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GIP_UNMAP):
1385 {
1386 /* validate */
1387 PSUPGIPUNMAP pReq = (PSUPGIPUNMAP)pReqHdr;
1388 REQ_CHECK_SIZES(SUP_IOCTL_GIP_UNMAP);
1389
1390 /* execute */
1391 pReq->Hdr.rc = SUPR0GipUnmap(pSession);
1392 return 0;
1393 }
1394
1395 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SET_VM_FOR_FAST):
1396 {
1397 /* validate */
1398 PSUPSETVMFORFAST pReq = (PSUPSETVMFORFAST)pReqHdr;
1399 REQ_CHECK_SIZES(SUP_IOCTL_SET_VM_FOR_FAST);
1400 REQ_CHECK_EXPR_FMT( !pReq->u.In.pVMR0
1401 || ( VALID_PTR(pReq->u.In.pVMR0)
1402 && !((uintptr_t)pReq->u.In.pVMR0 & (PAGE_SIZE - 1))),
1403 ("SUP_IOCTL_SET_VM_FOR_FAST: pVMR0=%p!\n", pReq->u.In.pVMR0));
1404 /* execute */
1405 pSession->pVM = pReq->u.In.pVMR0;
1406 pReq->Hdr.rc = VINF_SUCCESS;
1407 return 0;
1408 }
1409
1410 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_ALLOC_EX):
1411 {
1412 /* validate */
1413 PSUPPAGEALLOCEX pReq = (PSUPPAGEALLOCEX)pReqHdr;
1414 REQ_CHECK_EXPR(SUP_IOCTL_PAGE_ALLOC_EX, pReq->Hdr.cbIn <= SUP_IOCTL_PAGE_ALLOC_EX_SIZE_IN);
1415 REQ_CHECK_SIZES_EX(SUP_IOCTL_PAGE_ALLOC_EX, SUP_IOCTL_PAGE_ALLOC_EX_SIZE_IN, SUP_IOCTL_PAGE_ALLOC_EX_SIZE_OUT(pReq->u.In.cPages));
1416 REQ_CHECK_EXPR_FMT(pReq->u.In.fKernelMapping || pReq->u.In.fUserMapping,
1417 ("SUP_IOCTL_PAGE_ALLOC_EX: No mapping requested!\n"));
1418 REQ_CHECK_EXPR_FMT(pReq->u.In.fUserMapping,
1419 ("SUP_IOCTL_PAGE_ALLOC_EX: Must have user mapping!\n"));
1420 REQ_CHECK_EXPR_FMT(!pReq->u.In.fReserved0 && !pReq->u.In.fReserved1,
1421 ("SUP_IOCTL_PAGE_ALLOC_EX: fReserved0=%d fReserved1=%d\n", pReq->u.In.fReserved0, pReq->u.In.fReserved1));
1422
1423 /* execute */
1424 pReq->Hdr.rc = SUPR0PageAllocEx(pSession, pReq->u.In.cPages, 0 /* fFlags */,
1425 pReq->u.In.fUserMapping ? &pReq->u.Out.pvR3 : NULL,
1426 pReq->u.In.fKernelMapping ? &pReq->u.Out.pvR0 : NULL,
1427 &pReq->u.Out.aPages[0]);
1428 if (RT_FAILURE(pReq->Hdr.rc))
1429 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1430 return 0;
1431 }
1432
1433 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_MAP_KERNEL):
1434 {
1435 /* validate */
1436 PSUPPAGEMAPKERNEL pReq = (PSUPPAGEMAPKERNEL)pReqHdr;
1437 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_MAP_KERNEL);
1438 REQ_CHECK_EXPR_FMT(!pReq->u.In.fFlags, ("SUP_IOCTL_PAGE_MAP_KERNEL: fFlags=%#x! MBZ\n", pReq->u.In.fFlags));
1439 REQ_CHECK_EXPR_FMT(!(pReq->u.In.offSub & PAGE_OFFSET_MASK), ("SUP_IOCTL_PAGE_MAP_KERNEL: offSub=%#x\n", pReq->u.In.offSub));
1440 REQ_CHECK_EXPR_FMT(pReq->u.In.cbSub && !(pReq->u.In.cbSub & PAGE_OFFSET_MASK),
1441 ("SUP_IOCTL_PAGE_MAP_KERNEL: cbSub=%#x\n", pReq->u.In.cbSub));
1442
1443 /* execute */
1444 pReq->Hdr.rc = SUPR0PageMapKernel(pSession, pReq->u.In.pvR3, pReq->u.In.offSub, pReq->u.In.cbSub,
1445 pReq->u.In.fFlags, &pReq->u.Out.pvR0);
1446 if (RT_FAILURE(pReq->Hdr.rc))
1447 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1448 return 0;
1449 }
1450
1451 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_PROTECT):
1452 {
1453 /* validate */
1454 PSUPPAGEPROTECT pReq = (PSUPPAGEPROTECT)pReqHdr;
1455 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_PROTECT);
1456 REQ_CHECK_EXPR_FMT(!(pReq->u.In.fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_NONE)),
1457 ("SUP_IOCTL_PAGE_PROTECT: fProt=%#x!\n", pReq->u.In.fProt));
1458 REQ_CHECK_EXPR_FMT(!(pReq->u.In.offSub & PAGE_OFFSET_MASK), ("SUP_IOCTL_PAGE_PROTECT: offSub=%#x\n", pReq->u.In.offSub));
1459 REQ_CHECK_EXPR_FMT(pReq->u.In.cbSub && !(pReq->u.In.cbSub & PAGE_OFFSET_MASK),
1460 ("SUP_IOCTL_PAGE_PROTECT: cbSub=%#x\n", pReq->u.In.cbSub));
1461
1462 /* execute */
1463 pReq->Hdr.rc = SUPR0PageProtect(pSession, pReq->u.In.pvR3, pReq->u.In.pvR0, pReq->u.In.offSub, pReq->u.In.cbSub, pReq->u.In.fProt);
1464 return 0;
1465 }
1466
1467 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_FREE):
1468 {
1469 /* validate */
1470 PSUPPAGEFREE pReq = (PSUPPAGEFREE)pReqHdr;
1471 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_FREE);
1472
1473 /* execute */
1474 pReq->Hdr.rc = SUPR0PageFree(pSession, pReq->u.In.pvR3);
1475 return 0;
1476 }
1477
1478 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CALL_SERVICE(0)):
1479 {
1480 /* validate */
1481 PSUPCALLSERVICE pReq = (PSUPCALLSERVICE)pReqHdr;
1482 Log4(("SUP_IOCTL_CALL_SERVICE: op=%u in=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1483 pReq->u.In.uOperation, pReq->Hdr.cbIn, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1484
1485 if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_SERVICE_SIZE(0))
1486 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_SERVICE, SUP_IOCTL_CALL_SERVICE_SIZE_IN(0), SUP_IOCTL_CALL_SERVICE_SIZE_OUT(0));
1487 else
1488 {
1489 PSUPR0SERVICEREQHDR pSrvReq = (PSUPR0SERVICEREQHDR)&pReq->abReqPkt[0];
1490 REQ_CHECK_EXPR_FMT(pReq->Hdr.cbIn >= SUP_IOCTL_CALL_SERVICE_SIZE(sizeof(SUPR0SERVICEREQHDR)),
1491 ("SUP_IOCTL_CALL_SERVICE: cbIn=%#x < %#lx\n", pReq->Hdr.cbIn, SUP_IOCTL_CALL_SERVICE_SIZE(sizeof(SUPR0SERVICEREQHDR))));
1492 REQ_CHECK_EXPR(SUP_IOCTL_CALL_SERVICE, pSrvReq->u32Magic == SUPR0SERVICEREQHDR_MAGIC);
1493 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_SERVICE, SUP_IOCTL_CALL_SERVICE_SIZE_IN(pSrvReq->cbReq), SUP_IOCTL_CALL_SERVICE_SIZE_OUT(pSrvReq->cbReq));
1494 }
1495 REQ_CHECK_EXPR(SUP_IOCTL_CALL_SERVICE, memchr(pReq->u.In.szName, '\0', sizeof(pReq->u.In.szName)));
1496
1497 /* execute */
1498 pReq->Hdr.rc = supdrvIOCtl_CallServiceModule(pDevExt, pSession, pReq);
1499 return 0;
1500 }
1501
1502 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOGGER_SETTINGS(0)):
1503 {
1504 /* validate */
1505 PSUPLOGGERSETTINGS pReq = (PSUPLOGGERSETTINGS)pReqHdr;
1506 size_t cbStrTab;
1507 REQ_CHECK_SIZE_OUT(SUP_IOCTL_LOGGER_SETTINGS, SUP_IOCTL_LOGGER_SETTINGS_SIZE_OUT);
1508 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->Hdr.cbIn >= SUP_IOCTL_LOGGER_SETTINGS_SIZE_IN(1));
1509 cbStrTab = pReq->Hdr.cbIn - SUP_IOCTL_LOGGER_SETTINGS_SIZE_IN(0);
1510 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offGroups < cbStrTab);
1511 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offFlags < cbStrTab);
1512 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offDestination < cbStrTab);
1513 REQ_CHECK_EXPR_FMT(pReq->u.In.szStrings[cbStrTab - 1] == '\0',
1514 ("SUP_IOCTL_LOGGER_SETTINGS: cbIn=%#x cbStrTab=%#zx LastChar=%d\n",
1515 pReq->Hdr.cbIn, cbStrTab, pReq->u.In.szStrings[cbStrTab - 1]));
1516 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.fWhich <= SUPLOGGERSETTINGS_WHICH_RELEASE);
1517 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.fWhat <= SUPLOGGERSETTINGS_WHAT_DESTROY);
1518
1519 /* execute */
1520 pReq->Hdr.rc = supdrvIOCtl_LoggerSettings(pDevExt, pSession, pReq);
1521 return 0;
1522 }
1523
1524 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SEM_CREATE):
1525 {
1526 /* validate */
1527 PSUPSEMCREATE pReq = (PSUPSEMCREATE)pReqHdr;
1528 REQ_CHECK_SIZES_EX(SUP_IOCTL_SEM_CREATE, SUP_IOCTL_SEM_CREATE_SIZE_IN, SUP_IOCTL_SEM_CREATE_SIZE_OUT);
1529
1530 /* execute */
1531 switch (pReq->u.In.uType)
1532 {
1533 case SUP_SEM_TYPE_EVENT:
1534 {
1535 SUPSEMEVENT hEvent;
1536 pReq->Hdr.rc = SUPSemEventCreate(pSession, &hEvent);
1537 pReq->u.Out.hSem = (uint32_t)(uintptr_t)hEvent;
1538 break;
1539 }
1540
1541 case SUP_SEM_TYPE_EVENT_MULTI:
1542 {
1543 SUPSEMEVENTMULTI hEventMulti;
1544 pReq->Hdr.rc = SUPSemEventMultiCreate(pSession, &hEventMulti);
1545 pReq->u.Out.hSem = (uint32_t)(uintptr_t)hEventMulti;
1546 break;
1547 }
1548
1549 default:
1550 pReq->Hdr.rc = VERR_INVALID_PARAMETER;
1551 break;
1552 }
1553 return 0;
1554 }
1555
1556 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SEM_OP):
1557 {
1558 /* validate */
1559 PSUPSEMOP pReq = (PSUPSEMOP)pReqHdr;
1560 REQ_CHECK_SIZES_EX(SUP_IOCTL_SEM_OP, SUP_IOCTL_SEM_OP_SIZE_IN, SUP_IOCTL_SEM_OP_SIZE_OUT);
1561
1562 /* execute */
1563 switch (pReq->u.In.uType)
1564 {
1565 case SUP_SEM_TYPE_EVENT:
1566 {
1567 SUPSEMEVENT hEvent = (SUPSEMEVENT)(uintptr_t)pReq->u.In.hSem;
1568 switch (pReq->u.In.uOp)
1569 {
1570 case SUPSEMOP_WAIT:
1571 pReq->Hdr.rc = SUPSemEventWaitNoResume(pSession, hEvent, pReq->u.In.cMillies);
1572 break;
1573 case SUPSEMOP_SIGNAL:
1574 pReq->Hdr.rc = SUPSemEventSignal(pSession, hEvent);
1575 break;
1576 case SUPSEMOP_CLOSE:
1577 pReq->Hdr.rc = SUPSemEventClose(pSession, hEvent);
1578 break;
1579 case SUPSEMOP_RESET:
1580 default:
1581 pReq->Hdr.rc = VERR_INVALID_FUNCTION;
1582 break;
1583 }
1584 break;
1585 }
1586
1587 case SUP_SEM_TYPE_EVENT_MULTI:
1588 {
1589 SUPSEMEVENTMULTI hEventMulti = (SUPSEMEVENTMULTI)(uintptr_t)pReq->u.In.hSem;
1590 switch (pReq->u.In.uOp)
1591 {
1592 case SUPSEMOP_WAIT:
1593 pReq->Hdr.rc = SUPSemEventMultiWaitNoResume(pSession, hEventMulti, pReq->u.In.cMillies);
1594 break;
1595 case SUPSEMOP_SIGNAL:
1596 pReq->Hdr.rc = SUPSemEventMultiSignal(pSession, hEventMulti);
1597 break;
1598 case SUPSEMOP_CLOSE:
1599 pReq->Hdr.rc = SUPSemEventMultiClose(pSession, hEventMulti);
1600 break;
1601 case SUPSEMOP_RESET:
1602 pReq->Hdr.rc = SUPSemEventMultiReset(pSession, hEventMulti);
1603 break;
1604 default:
1605 pReq->Hdr.rc = VERR_INVALID_FUNCTION;
1606 break;
1607 }
1608 break;
1609 }
1610
1611 default:
1612 pReq->Hdr.rc = VERR_INVALID_PARAMETER;
1613 break;
1614 }
1615 return 0;
1616 }
1617
1618 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_VT_CAPS):
1619 {
1620 /* validate */
1621 PSUPVTCAPS pReq = (PSUPVTCAPS)pReqHdr;
1622 REQ_CHECK_SIZES(SUP_IOCTL_VT_CAPS);
1623 REQ_CHECK_EXPR(SUP_IOCTL_VT_CAPS, pReq->Hdr.cbIn <= SUP_IOCTL_VT_CAPS_SIZE_IN);
1624
1625 /* execute */
1626 pReq->Hdr.rc = SUPR0QueryVTCaps(pSession, &pReq->u.Out.Caps);
1627 if (RT_FAILURE(pReq->Hdr.rc))
1628 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1629 return 0;
1630 }
1631
1632 default:
1633 Log(("Unknown IOCTL %#lx\n", (long)uIOCtl));
1634 break;
1635 }
1636 return VERR_GENERAL_FAILURE;
1637}
1638
1639
1640/**
1641 * Inter-Driver Communcation (IDC) worker.
1642 *
1643 * @returns VBox status code.
1644 * @retval VINF_SUCCESS on success.
1645 * @retval VERR_INVALID_PARAMETER if the request is invalid.
1646 * @retval VERR_NOT_SUPPORTED if the request isn't supported.
1647 *
1648 * @param uReq The request (function) code.
1649 * @param pDevExt Device extention.
1650 * @param pSession Session data.
1651 * @param pReqHdr The request header.
1652 */
1653int VBOXCALL supdrvIDC(uintptr_t uReq, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQHDR pReqHdr)
1654{
1655 /*
1656 * The OS specific code has already validated the pSession
1657 * pointer, and the request size being greater or equal to
1658 * size of the header.
1659 *
1660 * So, just check that pSession is a kernel context session.
1661 */
1662 if (RT_UNLIKELY( pSession
1663 && pSession->R0Process != NIL_RTR0PROCESS))
1664 return VERR_INVALID_PARAMETER;
1665
1666/*
1667 * Validation macro.
1668 */
1669#define REQ_CHECK_IDC_SIZE(Name, cbExpect) \
1670 do { \
1671 if (RT_UNLIKELY(pReqHdr->cb != (cbExpect))) \
1672 { \
1673 OSDBGPRINT(( #Name ": Invalid input/output sizes. cb=%ld expected %ld.\n", \
1674 (long)pReqHdr->cb, (long)(cbExpect))); \
1675 return pReqHdr->rc = VERR_INVALID_PARAMETER; \
1676 } \
1677 } while (0)
1678
1679 switch (uReq)
1680 {
1681 case SUPDRV_IDC_REQ_CONNECT:
1682 {
1683 PSUPDRVIDCREQCONNECT pReq = (PSUPDRVIDCREQCONNECT)pReqHdr;
1684 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_CONNECT, sizeof(*pReq));
1685
1686 /*
1687 * Validate the cookie and other input.
1688 */
1689 if (pReq->Hdr.pSession != NULL)
1690 {
1691 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: pSession=%p expected NULL!\n", pReq->Hdr.pSession));
1692 return pReqHdr->rc = VERR_INVALID_PARAMETER;
1693 }
1694 if (pReq->u.In.u32MagicCookie != SUPDRVIDCREQ_CONNECT_MAGIC_COOKIE)
1695 {
1696 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: u32MagicCookie=%#x expected %#x!\n",
1697 (unsigned)pReq->u.In.u32MagicCookie, (unsigned)SUPDRVIDCREQ_CONNECT_MAGIC_COOKIE));
1698 return pReqHdr->rc = VERR_INVALID_PARAMETER;
1699 }
1700 if ( pReq->u.In.uMinVersion > pReq->u.In.uReqVersion
1701 || (pReq->u.In.uMinVersion & UINT32_C(0xffff0000)) != (pReq->u.In.uReqVersion & UINT32_C(0xffff0000)))
1702 {
1703 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: uMinVersion=%#x uMaxVersion=%#x doesn't match!\n",
1704 pReq->u.In.uMinVersion, pReq->u.In.uReqVersion));
1705 return pReqHdr->rc = VERR_INVALID_PARAMETER;
1706 }
1707
1708 /*
1709 * Match the version.
1710 * The current logic is very simple, match the major interface version.
1711 */
1712 if ( pReq->u.In.uMinVersion > SUPDRV_IDC_VERSION
1713 || (pReq->u.In.uMinVersion & 0xffff0000) != (SUPDRV_IDC_VERSION & 0xffff0000))
1714 {
1715 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: Version mismatch. Requested: %#x Min: %#x Current: %#x\n",
1716 pReq->u.In.uReqVersion, pReq->u.In.uMinVersion, (unsigned)SUPDRV_IDC_VERSION));
1717 pReq->u.Out.pSession = NULL;
1718 pReq->u.Out.uSessionVersion = 0xffffffff;
1719 pReq->u.Out.uDriverVersion = SUPDRV_IDC_VERSION;
1720 pReq->u.Out.uDriverRevision = VBOX_SVN_REV;
1721 pReq->Hdr.rc = VERR_VERSION_MISMATCH;
1722 return VINF_SUCCESS;
1723 }
1724
1725 pReq->u.Out.pSession = NULL;
1726 pReq->u.Out.uSessionVersion = SUPDRV_IDC_VERSION;
1727 pReq->u.Out.uDriverVersion = SUPDRV_IDC_VERSION;
1728 pReq->u.Out.uDriverRevision = VBOX_SVN_REV;
1729
1730 /*
1731 * On NT we will already have a session associated with the
1732 * client, just like with the SUP_IOCTL_COOKIE request, while
1733 * the other doesn't.
1734 */
1735#ifdef RT_OS_WINDOWS
1736 pReq->Hdr.rc = VINF_SUCCESS;
1737#else
1738 AssertReturn(!pSession, VERR_INTERNAL_ERROR);
1739 pReq->Hdr.rc = supdrvCreateSession(pDevExt, false /* fUser */, &pSession);
1740 if (RT_FAILURE(pReq->Hdr.rc))
1741 {
1742 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: failed to create session, rc=%d\n", pReq->Hdr.rc));
1743 return VINF_SUCCESS;
1744 }
1745#endif
1746
1747 pReq->u.Out.pSession = pSession;
1748 pReq->Hdr.pSession = pSession;
1749
1750 return VINF_SUCCESS;
1751 }
1752
1753 case SUPDRV_IDC_REQ_DISCONNECT:
1754 {
1755 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_DISCONNECT, sizeof(*pReqHdr));
1756
1757#ifdef RT_OS_WINDOWS
1758 /* Windows will destroy the session when the file object is destroyed. */
1759#else
1760 supdrvCloseSession(pDevExt, pSession);
1761#endif
1762 return pReqHdr->rc = VINF_SUCCESS;
1763 }
1764
1765 case SUPDRV_IDC_REQ_GET_SYMBOL:
1766 {
1767 PSUPDRVIDCREQGETSYM pReq = (PSUPDRVIDCREQGETSYM)pReqHdr;
1768 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_GET_SYMBOL, sizeof(*pReq));
1769
1770 pReq->Hdr.rc = supdrvIDC_LdrGetSymbol(pDevExt, pSession, pReq);
1771 return VINF_SUCCESS;
1772 }
1773
1774 case SUPDRV_IDC_REQ_COMPONENT_REGISTER_FACTORY:
1775 {
1776 PSUPDRVIDCREQCOMPREGFACTORY pReq = (PSUPDRVIDCREQCOMPREGFACTORY)pReqHdr;
1777 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_COMPONENT_REGISTER_FACTORY, sizeof(*pReq));
1778
1779 pReq->Hdr.rc = SUPR0ComponentRegisterFactory(pSession, pReq->u.In.pFactory);
1780 return VINF_SUCCESS;
1781 }
1782
1783 case SUPDRV_IDC_REQ_COMPONENT_DEREGISTER_FACTORY:
1784 {
1785 PSUPDRVIDCREQCOMPDEREGFACTORY pReq = (PSUPDRVIDCREQCOMPDEREGFACTORY)pReqHdr;
1786 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_COMPONENT_DEREGISTER_FACTORY, sizeof(*pReq));
1787
1788 pReq->Hdr.rc = SUPR0ComponentDeregisterFactory(pSession, pReq->u.In.pFactory);
1789 return VINF_SUCCESS;
1790 }
1791
1792 default:
1793 Log(("Unknown IDC %#lx\n", (long)uReq));
1794 break;
1795 }
1796
1797#undef REQ_CHECK_IDC_SIZE
1798 return VERR_NOT_SUPPORTED;
1799}
1800
1801
1802/**
1803 * Register a object for reference counting.
1804 * The object is registered with one reference in the specified session.
1805 *
1806 * @returns Unique identifier on success (pointer).
1807 * All future reference must use this identifier.
1808 * @returns NULL on failure.
1809 * @param pfnDestructor The destructore function which will be called when the reference count reaches 0.
1810 * @param pvUser1 The first user argument.
1811 * @param pvUser2 The second user argument.
1812 */
1813SUPR0DECL(void *) SUPR0ObjRegister(PSUPDRVSESSION pSession, SUPDRVOBJTYPE enmType, PFNSUPDRVDESTRUCTOR pfnDestructor, void *pvUser1, void *pvUser2)
1814{
1815 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
1816 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
1817 PSUPDRVOBJ pObj;
1818 PSUPDRVUSAGE pUsage;
1819
1820 /*
1821 * Validate the input.
1822 */
1823 AssertReturn(SUP_IS_SESSION_VALID(pSession), NULL);
1824 AssertReturn(enmType > SUPDRVOBJTYPE_INVALID && enmType < SUPDRVOBJTYPE_END, NULL);
1825 AssertPtrReturn(pfnDestructor, NULL);
1826
1827 /*
1828 * Allocate and initialize the object.
1829 */
1830 pObj = (PSUPDRVOBJ)RTMemAlloc(sizeof(*pObj));
1831 if (!pObj)
1832 return NULL;
1833 pObj->u32Magic = SUPDRVOBJ_MAGIC;
1834 pObj->enmType = enmType;
1835 pObj->pNext = NULL;
1836 pObj->cUsage = 1;
1837 pObj->pfnDestructor = pfnDestructor;
1838 pObj->pvUser1 = pvUser1;
1839 pObj->pvUser2 = pvUser2;
1840 pObj->CreatorUid = pSession->Uid;
1841 pObj->CreatorGid = pSession->Gid;
1842 pObj->CreatorProcess= pSession->Process;
1843 supdrvOSObjInitCreator(pObj, pSession);
1844
1845 /*
1846 * Allocate the usage record.
1847 * (We keep freed usage records around to simplify SUPR0ObjAddRefEx().)
1848 */
1849 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1850
1851 pUsage = pDevExt->pUsageFree;
1852 if (pUsage)
1853 pDevExt->pUsageFree = pUsage->pNext;
1854 else
1855 {
1856 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1857 pUsage = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsage));
1858 if (!pUsage)
1859 {
1860 RTMemFree(pObj);
1861 return NULL;
1862 }
1863 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1864 }
1865
1866 /*
1867 * Insert the object and create the session usage record.
1868 */
1869 /* The object. */
1870 pObj->pNext = pDevExt->pObjs;
1871 pDevExt->pObjs = pObj;
1872
1873 /* The session record. */
1874 pUsage->cUsage = 1;
1875 pUsage->pObj = pObj;
1876 pUsage->pNext = pSession->pUsage;
1877 /* Log2(("SUPR0ObjRegister: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext)); */
1878 pSession->pUsage = pUsage;
1879
1880 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1881
1882 Log(("SUPR0ObjRegister: returns %p (pvUser1=%p, pvUser=%p)\n", pObj, pvUser1, pvUser2));
1883 return pObj;
1884}
1885
1886
1887/**
1888 * Increment the reference counter for the object associating the reference
1889 * with the specified session.
1890 *
1891 * @returns IPRT status code.
1892 * @param pvObj The identifier returned by SUPR0ObjRegister().
1893 * @param pSession The session which is referencing the object.
1894 *
1895 * @remarks The caller should not own any spinlocks and must carefully protect
1896 * itself against potential race with the destructor so freed memory
1897 * isn't accessed here.
1898 */
1899SUPR0DECL(int) SUPR0ObjAddRef(void *pvObj, PSUPDRVSESSION pSession)
1900{
1901 return SUPR0ObjAddRefEx(pvObj, pSession, false /* fNoBlocking */);
1902}
1903
1904
1905/**
1906 * Increment the reference counter for the object associating the reference
1907 * with the specified session.
1908 *
1909 * @returns IPRT status code.
1910 * @retval VERR_TRY_AGAIN if fNoBlocking was set and a new usage record
1911 * couldn't be allocated. (If you see this you're not doing the right
1912 * thing and it won't ever work reliably.)
1913 *
1914 * @param pvObj The identifier returned by SUPR0ObjRegister().
1915 * @param pSession The session which is referencing the object.
1916 * @param fNoBlocking Set if it's not OK to block. Never try to make the
1917 * first reference to an object in a session with this
1918 * argument set.
1919 *
1920 * @remarks The caller should not own any spinlocks and must carefully protect
1921 * itself against potential race with the destructor so freed memory
1922 * isn't accessed here.
1923 */
1924SUPR0DECL(int) SUPR0ObjAddRefEx(void *pvObj, PSUPDRVSESSION pSession, bool fNoBlocking)
1925{
1926 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
1927 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
1928 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
1929 int rc = VINF_SUCCESS;
1930 PSUPDRVUSAGE pUsagePre;
1931 PSUPDRVUSAGE pUsage;
1932
1933 /*
1934 * Validate the input.
1935 * Be ready for the destruction race (someone might be stuck in the
1936 * destructor waiting a lock we own).
1937 */
1938 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
1939 AssertPtrReturn(pObj, VERR_INVALID_POINTER);
1940 AssertMsgReturn(pObj->u32Magic == SUPDRVOBJ_MAGIC || pObj->u32Magic == SUPDRVOBJ_MAGIC_DEAD,
1941 ("Invalid pvObj=%p magic=%#x (expected %#x or %#x)\n", pvObj, pObj->u32Magic, SUPDRVOBJ_MAGIC, SUPDRVOBJ_MAGIC_DEAD),
1942 VERR_INVALID_PARAMETER);
1943
1944 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1945
1946 if (RT_UNLIKELY(pObj->u32Magic != SUPDRVOBJ_MAGIC))
1947 {
1948 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1949
1950 AssertMsgFailed(("pvObj=%p magic=%#x\n", pvObj, pObj->u32Magic));
1951 return VERR_WRONG_ORDER;
1952 }
1953
1954 /*
1955 * Preallocate the usage record if we can.
1956 */
1957 pUsagePre = pDevExt->pUsageFree;
1958 if (pUsagePre)
1959 pDevExt->pUsageFree = pUsagePre->pNext;
1960 else if (!fNoBlocking)
1961 {
1962 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1963 pUsagePre = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsagePre));
1964 if (!pUsagePre)
1965 return VERR_NO_MEMORY;
1966
1967 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1968 if (RT_UNLIKELY(pObj->u32Magic != SUPDRVOBJ_MAGIC))
1969 {
1970 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1971
1972 AssertMsgFailed(("pvObj=%p magic=%#x\n", pvObj, pObj->u32Magic));
1973 return VERR_WRONG_ORDER;
1974 }
1975 }
1976
1977 /*
1978 * Reference the object.
1979 */
1980 pObj->cUsage++;
1981
1982 /*
1983 * Look for the session record.
1984 */
1985 for (pUsage = pSession->pUsage; pUsage; pUsage = pUsage->pNext)
1986 {
1987 /*Log(("SUPR0AddRef: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));*/
1988 if (pUsage->pObj == pObj)
1989 break;
1990 }
1991 if (pUsage)
1992 pUsage->cUsage++;
1993 else if (pUsagePre)
1994 {
1995 /* create a new session record. */
1996 pUsagePre->cUsage = 1;
1997 pUsagePre->pObj = pObj;
1998 pUsagePre->pNext = pSession->pUsage;
1999 pSession->pUsage = pUsagePre;
2000 /*Log(("SUPR0AddRef: pUsagePre=%p:{.pObj=%p, .pNext=%p}\n", pUsagePre, pUsagePre->pObj, pUsagePre->pNext));*/
2001
2002 pUsagePre = NULL;
2003 }
2004 else
2005 {
2006 pObj->cUsage--;
2007 rc = VERR_TRY_AGAIN;
2008 }
2009
2010 /*
2011 * Put any unused usage record into the free list..
2012 */
2013 if (pUsagePre)
2014 {
2015 pUsagePre->pNext = pDevExt->pUsageFree;
2016 pDevExt->pUsageFree = pUsagePre;
2017 }
2018
2019 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2020
2021 return rc;
2022}
2023
2024
2025/**
2026 * Decrement / destroy a reference counter record for an object.
2027 *
2028 * The object is uniquely identified by pfnDestructor+pvUser1+pvUser2.
2029 *
2030 * @returns IPRT status code.
2031 * @retval VINF_SUCCESS if not destroyed.
2032 * @retval VINF_OBJECT_DESTROYED if it's destroyed by this release call.
2033 * @retval VERR_INVALID_PARAMETER if the object isn't valid. Will assert in
2034 * string builds.
2035 *
2036 * @param pvObj The identifier returned by SUPR0ObjRegister().
2037 * @param pSession The session which is referencing the object.
2038 */
2039SUPR0DECL(int) SUPR0ObjRelease(void *pvObj, PSUPDRVSESSION pSession)
2040{
2041 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2042 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
2043 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
2044 int rc = VERR_INVALID_PARAMETER;
2045 PSUPDRVUSAGE pUsage;
2046 PSUPDRVUSAGE pUsagePrev;
2047
2048 /*
2049 * Validate the input.
2050 */
2051 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2052 AssertMsgReturn(VALID_PTR(pObj) && pObj->u32Magic == SUPDRVOBJ_MAGIC,
2053 ("Invalid pvObj=%p magic=%#x (exepcted %#x)\n", pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC),
2054 VERR_INVALID_PARAMETER);
2055
2056 /*
2057 * Acquire the spinlock and look for the usage record.
2058 */
2059 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
2060
2061 for (pUsagePrev = NULL, pUsage = pSession->pUsage;
2062 pUsage;
2063 pUsagePrev = pUsage, pUsage = pUsage->pNext)
2064 {
2065 /*Log2(("SUPR0ObjRelease: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));*/
2066 if (pUsage->pObj == pObj)
2067 {
2068 rc = VINF_SUCCESS;
2069 AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
2070 if (pUsage->cUsage > 1)
2071 {
2072 pObj->cUsage--;
2073 pUsage->cUsage--;
2074 }
2075 else
2076 {
2077 /*
2078 * Free the session record.
2079 */
2080 if (pUsagePrev)
2081 pUsagePrev->pNext = pUsage->pNext;
2082 else
2083 pSession->pUsage = pUsage->pNext;
2084 pUsage->pNext = pDevExt->pUsageFree;
2085 pDevExt->pUsageFree = pUsage;
2086
2087 /* What about the object? */
2088 if (pObj->cUsage > 1)
2089 pObj->cUsage--;
2090 else
2091 {
2092 /*
2093 * Object is to be destroyed, unlink it.
2094 */
2095 pObj->u32Magic = SUPDRVOBJ_MAGIC_DEAD;
2096 rc = VINF_OBJECT_DESTROYED;
2097 if (pDevExt->pObjs == pObj)
2098 pDevExt->pObjs = pObj->pNext;
2099 else
2100 {
2101 PSUPDRVOBJ pObjPrev;
2102 for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
2103 if (pObjPrev->pNext == pObj)
2104 {
2105 pObjPrev->pNext = pObj->pNext;
2106 break;
2107 }
2108 Assert(pObjPrev);
2109 }
2110 }
2111 }
2112 break;
2113 }
2114 }
2115
2116 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2117
2118 /*
2119 * Call the destructor and free the object if required.
2120 */
2121 if (rc == VINF_OBJECT_DESTROYED)
2122 {
2123 Log(("SUPR0ObjRelease: destroying %p/%d (%p/%p) cpid=%RTproc pid=%RTproc dtor=%p\n",
2124 pObj, pObj->enmType, pObj->pvUser1, pObj->pvUser2, pObj->CreatorProcess, RTProcSelf(), pObj->pfnDestructor));
2125 if (pObj->pfnDestructor)
2126 pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
2127 RTMemFree(pObj);
2128 }
2129
2130 AssertMsg(pUsage, ("pvObj=%p\n", pvObj));
2131 return rc;
2132}
2133
2134
2135/**
2136 * Verifies that the current process can access the specified object.
2137 *
2138 * @returns The following IPRT status code:
2139 * @retval VINF_SUCCESS if access was granted.
2140 * @retval VERR_PERMISSION_DENIED if denied access.
2141 * @retval VERR_INVALID_PARAMETER if invalid parameter.
2142 *
2143 * @param pvObj The identifier returned by SUPR0ObjRegister().
2144 * @param pSession The session which wishes to access the object.
2145 * @param pszObjName Object string name. This is optional and depends on the object type.
2146 *
2147 * @remark The caller is responsible for making sure the object isn't removed while
2148 * we're inside this function. If uncertain about this, just call AddRef before calling us.
2149 */
2150SUPR0DECL(int) SUPR0ObjVerifyAccess(void *pvObj, PSUPDRVSESSION pSession, const char *pszObjName)
2151{
2152 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
2153 int rc;
2154
2155 /*
2156 * Validate the input.
2157 */
2158 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2159 AssertMsgReturn(VALID_PTR(pObj) && pObj->u32Magic == SUPDRVOBJ_MAGIC,
2160 ("Invalid pvObj=%p magic=%#x (exepcted %#x)\n", pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC),
2161 VERR_INVALID_PARAMETER);
2162
2163 /*
2164 * Check access. (returns true if a decision has been made.)
2165 */
2166 rc = VERR_INTERNAL_ERROR;
2167 if (supdrvOSObjCanAccess(pObj, pSession, pszObjName, &rc))
2168 return rc;
2169
2170 /*
2171 * Default policy is to allow the user to access his own
2172 * stuff but nothing else.
2173 */
2174 if (pObj->CreatorUid == pSession->Uid)
2175 return VINF_SUCCESS;
2176 return VERR_PERMISSION_DENIED;
2177}
2178
2179
2180/**
2181 * Lock pages.
2182 *
2183 * @returns IPRT status code.
2184 * @param pSession Session to which the locked memory should be associated.
2185 * @param pvR3 Start of the memory range to lock.
2186 * This must be page aligned.
2187 * @param cPages Number of pages to lock.
2188 * @param paPages Where to put the physical addresses of locked memory.
2189 */
2190SUPR0DECL(int) SUPR0LockMem(PSUPDRVSESSION pSession, RTR3PTR pvR3, uint32_t cPages, PRTHCPHYS paPages)
2191{
2192 int rc;
2193 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2194 const size_t cb = (size_t)cPages << PAGE_SHIFT;
2195 LogFlow(("SUPR0LockMem: pSession=%p pvR3=%p cPages=%d paPages=%p\n", pSession, (void *)pvR3, cPages, paPages));
2196
2197 /*
2198 * Verify input.
2199 */
2200 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2201 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
2202 if ( RT_ALIGN_R3PT(pvR3, PAGE_SIZE, RTR3PTR) != pvR3
2203 || !pvR3)
2204 {
2205 Log(("pvR3 (%p) must be page aligned and not NULL!\n", (void *)pvR3));
2206 return VERR_INVALID_PARAMETER;
2207 }
2208
2209 /*
2210 * Let IPRT do the job.
2211 */
2212 Mem.eType = MEMREF_TYPE_LOCKED;
2213 rc = RTR0MemObjLockUser(&Mem.MemObj, pvR3, cb, RTMEM_PROT_READ | RTMEM_PROT_WRITE, RTR0ProcHandleSelf());
2214 if (RT_SUCCESS(rc))
2215 {
2216 uint32_t iPage = cPages;
2217 AssertMsg(RTR0MemObjAddressR3(Mem.MemObj) == pvR3, ("%p == %p\n", RTR0MemObjAddressR3(Mem.MemObj), pvR3));
2218 AssertMsg(RTR0MemObjSize(Mem.MemObj) == cb, ("%x == %x\n", RTR0MemObjSize(Mem.MemObj), cb));
2219
2220 while (iPage-- > 0)
2221 {
2222 paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
2223 if (RT_UNLIKELY(paPages[iPage] == NIL_RTCCPHYS))
2224 {
2225 AssertMsgFailed(("iPage=%d\n", iPage));
2226 rc = VERR_INTERNAL_ERROR;
2227 break;
2228 }
2229 }
2230 if (RT_SUCCESS(rc))
2231 rc = supdrvMemAdd(&Mem, pSession);
2232 if (RT_FAILURE(rc))
2233 {
2234 int rc2 = RTR0MemObjFree(Mem.MemObj, false);
2235 AssertRC(rc2);
2236 }
2237 }
2238
2239 return rc;
2240}
2241
2242
2243/**
2244 * Unlocks the memory pointed to by pv.
2245 *
2246 * @returns IPRT status code.
2247 * @param pSession Session to which the memory was locked.
2248 * @param pvR3 Memory to unlock.
2249 */
2250SUPR0DECL(int) SUPR0UnlockMem(PSUPDRVSESSION pSession, RTR3PTR pvR3)
2251{
2252 LogFlow(("SUPR0UnlockMem: pSession=%p pvR3=%p\n", pSession, (void *)pvR3));
2253 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2254 return supdrvMemRelease(pSession, (RTHCUINTPTR)pvR3, MEMREF_TYPE_LOCKED);
2255}
2256
2257
2258/**
2259 * Allocates a chunk of page aligned memory with contiguous and fixed physical
2260 * backing.
2261 *
2262 * @returns IPRT status code.
2263 * @param pSession Session data.
2264 * @param cPages Number of pages to allocate.
2265 * @param ppvR0 Where to put the address of Ring-0 mapping the allocated memory.
2266 * @param ppvR3 Where to put the address of Ring-3 mapping the allocated memory.
2267 * @param pHCPhys Where to put the physical address of allocated memory.
2268 */
2269SUPR0DECL(int) SUPR0ContAlloc(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS pHCPhys)
2270{
2271 int rc;
2272 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2273 LogFlow(("SUPR0ContAlloc: pSession=%p cPages=%d ppvR0=%p ppvR3=%p pHCPhys=%p\n", pSession, cPages, ppvR0, ppvR3, pHCPhys));
2274
2275 /*
2276 * Validate input.
2277 */
2278 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2279 if (!ppvR3 || !ppvR0 || !pHCPhys)
2280 {
2281 Log(("Null pointer. All of these should be set: pSession=%p ppvR0=%p ppvR3=%p pHCPhys=%p\n",
2282 pSession, ppvR0, ppvR3, pHCPhys));
2283 return VERR_INVALID_PARAMETER;
2284
2285 }
2286 if (cPages < 1 || cPages >= 256)
2287 {
2288 Log(("Illegal request cPages=%d, must be greater than 0 and smaller than 256.\n", cPages));
2289 return VERR_PAGE_COUNT_OUT_OF_RANGE;
2290 }
2291
2292 /*
2293 * Let IPRT do the job.
2294 */
2295 rc = RTR0MemObjAllocCont(&Mem.MemObj, cPages << PAGE_SHIFT, true /* executable R0 mapping */);
2296 if (RT_SUCCESS(rc))
2297 {
2298 int rc2;
2299 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2300 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2301 if (RT_SUCCESS(rc))
2302 {
2303 Mem.eType = MEMREF_TYPE_CONT;
2304 rc = supdrvMemAdd(&Mem, pSession);
2305 if (!rc)
2306 {
2307 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2308 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2309 *pHCPhys = RTR0MemObjGetPagePhysAddr(Mem.MemObj, 0);
2310 return 0;
2311 }
2312
2313 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2314 AssertRC(rc2);
2315 }
2316 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2317 AssertRC(rc2);
2318 }
2319
2320 return rc;
2321}
2322
2323
2324/**
2325 * Frees memory allocated using SUPR0ContAlloc().
2326 *
2327 * @returns IPRT status code.
2328 * @param pSession The session to which the memory was allocated.
2329 * @param uPtr Pointer to the memory (ring-3 or ring-0).
2330 */
2331SUPR0DECL(int) SUPR0ContFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
2332{
2333 LogFlow(("SUPR0ContFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
2334 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2335 return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_CONT);
2336}
2337
2338
2339/**
2340 * Allocates a chunk of page aligned memory with fixed physical backing below 4GB.
2341 *
2342 * The memory isn't zeroed.
2343 *
2344 * @returns IPRT status code.
2345 * @param pSession Session data.
2346 * @param cPages Number of pages to allocate.
2347 * @param ppvR0 Where to put the address of Ring-0 mapping of the allocated memory.
2348 * @param ppvR3 Where to put the address of Ring-3 mapping of the allocated memory.
2349 * @param paPages Where to put the physical addresses of allocated memory.
2350 */
2351SUPR0DECL(int) SUPR0LowAlloc(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS paPages)
2352{
2353 unsigned iPage;
2354 int rc;
2355 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2356 LogFlow(("SUPR0LowAlloc: pSession=%p cPages=%d ppvR3=%p ppvR0=%p paPages=%p\n", pSession, cPages, ppvR3, ppvR0, paPages));
2357
2358 /*
2359 * Validate input.
2360 */
2361 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2362 if (!ppvR3 || !ppvR0 || !paPages)
2363 {
2364 Log(("Null pointer. All of these should be set: pSession=%p ppvR3=%p ppvR0=%p paPages=%p\n",
2365 pSession, ppvR3, ppvR0, paPages));
2366 return VERR_INVALID_PARAMETER;
2367
2368 }
2369 if (cPages < 1 || cPages >= 256)
2370 {
2371 Log(("Illegal request cPages=%d, must be greater than 0 and smaller than 256.\n", cPages));
2372 return VERR_PAGE_COUNT_OUT_OF_RANGE;
2373 }
2374
2375 /*
2376 * Let IPRT do the work.
2377 */
2378 rc = RTR0MemObjAllocLow(&Mem.MemObj, cPages << PAGE_SHIFT, true /* executable ring-0 mapping */);
2379 if (RT_SUCCESS(rc))
2380 {
2381 int rc2;
2382 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2383 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2384 if (RT_SUCCESS(rc))
2385 {
2386 Mem.eType = MEMREF_TYPE_LOW;
2387 rc = supdrvMemAdd(&Mem, pSession);
2388 if (!rc)
2389 {
2390 for (iPage = 0; iPage < cPages; iPage++)
2391 {
2392 paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
2393 AssertMsg(!(paPages[iPage] & (PAGE_SIZE - 1)), ("iPage=%d Phys=%RHp\n", paPages[iPage]));
2394 }
2395 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2396 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2397 return 0;
2398 }
2399
2400 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2401 AssertRC(rc2);
2402 }
2403
2404 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2405 AssertRC(rc2);
2406 }
2407
2408 return rc;
2409}
2410
2411
2412/**
2413 * Frees memory allocated using SUPR0LowAlloc().
2414 *
2415 * @returns IPRT status code.
2416 * @param pSession The session to which the memory was allocated.
2417 * @param uPtr Pointer to the memory (ring-3 or ring-0).
2418 */
2419SUPR0DECL(int) SUPR0LowFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
2420{
2421 LogFlow(("SUPR0LowFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
2422 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2423 return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_LOW);
2424}
2425
2426
2427
2428/**
2429 * Allocates a chunk of memory with both R0 and R3 mappings.
2430 * The memory is fixed and it's possible to query the physical addresses using SUPR0MemGetPhys().
2431 *
2432 * @returns IPRT status code.
2433 * @param pSession The session to associated the allocation with.
2434 * @param cb Number of bytes to allocate.
2435 * @param ppvR0 Where to store the address of the Ring-0 mapping.
2436 * @param ppvR3 Where to store the address of the Ring-3 mapping.
2437 */
2438SUPR0DECL(int) SUPR0MemAlloc(PSUPDRVSESSION pSession, uint32_t cb, PRTR0PTR ppvR0, PRTR3PTR ppvR3)
2439{
2440 int rc;
2441 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2442 LogFlow(("SUPR0MemAlloc: pSession=%p cb=%d ppvR0=%p ppvR3=%p\n", pSession, cb, ppvR0, ppvR3));
2443
2444 /*
2445 * Validate input.
2446 */
2447 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2448 AssertPtrReturn(ppvR0, VERR_INVALID_POINTER);
2449 AssertPtrReturn(ppvR3, VERR_INVALID_POINTER);
2450 if (cb < 1 || cb >= _4M)
2451 {
2452 Log(("Illegal request cb=%u; must be greater than 0 and smaller than 4MB.\n", cb));
2453 return VERR_INVALID_PARAMETER;
2454 }
2455
2456 /*
2457 * Let IPRT do the work.
2458 */
2459 rc = RTR0MemObjAllocPage(&Mem.MemObj, cb, true /* executable ring-0 mapping */);
2460 if (RT_SUCCESS(rc))
2461 {
2462 int rc2;
2463 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2464 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2465 if (RT_SUCCESS(rc))
2466 {
2467 Mem.eType = MEMREF_TYPE_MEM;
2468 rc = supdrvMemAdd(&Mem, pSession);
2469 if (!rc)
2470 {
2471 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2472 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2473 return VINF_SUCCESS;
2474 }
2475
2476 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2477 AssertRC(rc2);
2478 }
2479
2480 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2481 AssertRC(rc2);
2482 }
2483
2484 return rc;
2485}
2486
2487
2488/**
2489 * Get the physical addresses of memory allocated using SUPR0MemAlloc().
2490 *
2491 * @returns IPRT status code.
2492 * @param pSession The session to which the memory was allocated.
2493 * @param uPtr The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
2494 * @param paPages Where to store the physical addresses.
2495 */
2496SUPR0DECL(int) SUPR0MemGetPhys(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, PSUPPAGE paPages) /** @todo switch this bugger to RTHCPHYS */
2497{
2498 PSUPDRVBUNDLE pBundle;
2499 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2500 LogFlow(("SUPR0MemGetPhys: pSession=%p uPtr=%p paPages=%p\n", pSession, (void *)uPtr, paPages));
2501
2502 /*
2503 * Validate input.
2504 */
2505 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2506 AssertPtrReturn(paPages, VERR_INVALID_POINTER);
2507 AssertReturn(uPtr, VERR_INVALID_PARAMETER);
2508
2509 /*
2510 * Search for the address.
2511 */
2512 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2513 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2514 {
2515 if (pBundle->cUsed > 0)
2516 {
2517 unsigned i;
2518 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
2519 {
2520 if ( pBundle->aMem[i].eType == MEMREF_TYPE_MEM
2521 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2522 && ( (RTHCUINTPTR)RTR0MemObjAddress(pBundle->aMem[i].MemObj) == uPtr
2523 || ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2524 && RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == uPtr)
2525 )
2526 )
2527 {
2528 const size_t cPages = RTR0MemObjSize(pBundle->aMem[i].MemObj) >> PAGE_SHIFT;
2529 size_t iPage;
2530 for (iPage = 0; iPage < cPages; iPage++)
2531 {
2532 paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(pBundle->aMem[i].MemObj, iPage);
2533 paPages[iPage].uReserved = 0;
2534 }
2535 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2536 return VINF_SUCCESS;
2537 }
2538 }
2539 }
2540 }
2541 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2542 Log(("Failed to find %p!!!\n", (void *)uPtr));
2543 return VERR_INVALID_PARAMETER;
2544}
2545
2546
2547/**
2548 * Free memory allocated by SUPR0MemAlloc().
2549 *
2550 * @returns IPRT status code.
2551 * @param pSession The session owning the allocation.
2552 * @param uPtr The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
2553 */
2554SUPR0DECL(int) SUPR0MemFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
2555{
2556 LogFlow(("SUPR0MemFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
2557 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2558 return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_MEM);
2559}
2560
2561
2562/**
2563 * Allocates a chunk of memory with a kernel or/and a user mode mapping.
2564 *
2565 * The memory is fixed and it's possible to query the physical addresses using
2566 * SUPR0MemGetPhys().
2567 *
2568 * @returns IPRT status code.
2569 * @param pSession The session to associated the allocation with.
2570 * @param cPages The number of pages to allocate.
2571 * @param fFlags Flags, reserved for the future. Must be zero.
2572 * @param ppvR3 Where to store the address of the Ring-3 mapping.
2573 * NULL if no ring-3 mapping.
2574 * @param ppvR3 Where to store the address of the Ring-0 mapping.
2575 * NULL if no ring-0 mapping.
2576 * @param paPages Where to store the addresses of the pages. Optional.
2577 */
2578SUPR0DECL(int) SUPR0PageAllocEx(PSUPDRVSESSION pSession, uint32_t cPages, uint32_t fFlags, PRTR3PTR ppvR3, PRTR0PTR ppvR0, PRTHCPHYS paPages)
2579{
2580 int rc;
2581 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2582 LogFlow(("SUPR0PageAlloc: pSession=%p cb=%d ppvR3=%p\n", pSession, cPages, ppvR3));
2583
2584 /*
2585 * Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
2586 */
2587 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2588 AssertPtrNullReturn(ppvR3, VERR_INVALID_POINTER);
2589 AssertPtrNullReturn(ppvR0, VERR_INVALID_POINTER);
2590 AssertReturn(ppvR3 || ppvR0, VERR_INVALID_PARAMETER);
2591 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2592 if (cPages < 1 || cPages > VBOX_MAX_ALLOC_PAGE_COUNT)
2593 {
2594 Log(("SUPR0PageAlloc: Illegal request cb=%u; must be greater than 0 and smaller than %uMB (VBOX_MAX_ALLOC_PAGE_COUNT pages).\n", cPages, VBOX_MAX_ALLOC_PAGE_COUNT * (_1M / _4K)));
2595 return VERR_PAGE_COUNT_OUT_OF_RANGE;
2596 }
2597
2598 /*
2599 * Let IPRT do the work.
2600 */
2601 if (ppvR0)
2602 rc = RTR0MemObjAllocPage(&Mem.MemObj, (size_t)cPages * PAGE_SIZE, true /* fExecutable */);
2603 else
2604 rc = RTR0MemObjAllocPhysNC(&Mem.MemObj, (size_t)cPages * PAGE_SIZE, NIL_RTHCPHYS);
2605 if (RT_SUCCESS(rc))
2606 {
2607 int rc2;
2608 if (ppvR3)
2609 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2610 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2611 else
2612 Mem.MapObjR3 = NIL_RTR0MEMOBJ;
2613 if (RT_SUCCESS(rc))
2614 {
2615 Mem.eType = MEMREF_TYPE_PAGE;
2616 rc = supdrvMemAdd(&Mem, pSession);
2617 if (!rc)
2618 {
2619 if (ppvR3)
2620 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2621 if (ppvR0)
2622 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2623 if (paPages)
2624 {
2625 uint32_t iPage = cPages;
2626 while (iPage-- > 0)
2627 {
2628 paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MapObjR3, iPage);
2629 Assert(paPages[iPage] != NIL_RTHCPHYS);
2630 }
2631 }
2632 return VINF_SUCCESS;
2633 }
2634
2635 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2636 AssertRC(rc2);
2637 }
2638
2639 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2640 AssertRC(rc2);
2641 }
2642 return rc;
2643}
2644
2645
2646/**
2647 * Maps a chunk of memory previously allocated by SUPR0PageAllocEx into kernel
2648 * space.
2649 *
2650 * @returns IPRT status code.
2651 * @param pSession The session to associated the allocation with.
2652 * @param pvR3 The ring-3 address returned by SUPR0PageAllocEx.
2653 * @param offSub Where to start mapping. Must be page aligned.
2654 * @param cbSub How much to map. Must be page aligned.
2655 * @param fFlags Flags, MBZ.
2656 * @param ppvR0 Where to reutrn the address of the ring-0 mapping on
2657 * success.
2658 */
2659SUPR0DECL(int) SUPR0PageMapKernel(PSUPDRVSESSION pSession, RTR3PTR pvR3, uint32_t offSub, uint32_t cbSub,
2660 uint32_t fFlags, PRTR0PTR ppvR0)
2661{
2662 int rc;
2663 PSUPDRVBUNDLE pBundle;
2664 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2665 RTR0MEMOBJ hMemObj = NIL_RTR0MEMOBJ;
2666 LogFlow(("SUPR0PageMapKernel: pSession=%p pvR3=%p offSub=%#x cbSub=%#x\n", pSession, pvR3, offSub, cbSub));
2667
2668 /*
2669 * Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
2670 */
2671 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2672 AssertPtrNullReturn(ppvR0, VERR_INVALID_POINTER);
2673 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2674 AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2675 AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2676 AssertReturn(cbSub, VERR_INVALID_PARAMETER);
2677
2678 /*
2679 * Find the memory object.
2680 */
2681 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2682 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2683 {
2684 if (pBundle->cUsed > 0)
2685 {
2686 unsigned i;
2687 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
2688 {
2689 if ( ( pBundle->aMem[i].eType == MEMREF_TYPE_PAGE
2690 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2691 && pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2692 && RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == pvR3)
2693 || ( pBundle->aMem[i].eType == MEMREF_TYPE_LOCKED
2694 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2695 && pBundle->aMem[i].MapObjR3 == NIL_RTR0MEMOBJ
2696 && RTR0MemObjAddressR3(pBundle->aMem[i].MemObj) == pvR3))
2697 {
2698 hMemObj = pBundle->aMem[i].MemObj;
2699 break;
2700 }
2701 }
2702 }
2703 }
2704 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2705
2706 rc = VERR_INVALID_PARAMETER;
2707 if (hMemObj != NIL_RTR0MEMOBJ)
2708 {
2709 /*
2710 * Do some furter input validations before calling IPRT.
2711 * (Cleanup is done indirectly by telling RTR0MemObjFree to include mappings.)
2712 */
2713 size_t cbMemObj = RTR0MemObjSize(hMemObj);
2714 if ( offSub < cbMemObj
2715 && cbSub <= cbMemObj
2716 && offSub + cbSub <= cbMemObj)
2717 {
2718 RTR0MEMOBJ hMapObj;
2719 rc = RTR0MemObjMapKernelEx(&hMapObj, hMemObj, (void *)-1, 0,
2720 RTMEM_PROT_READ | RTMEM_PROT_WRITE, offSub, cbSub);
2721 if (RT_SUCCESS(rc))
2722 *ppvR0 = RTR0MemObjAddress(hMapObj);
2723 }
2724 else
2725 SUPR0Printf("SUPR0PageMapKernel: cbMemObj=%#x offSub=%#x cbSub=%#x\n", cbMemObj, offSub, cbSub);
2726
2727 }
2728 return rc;
2729}
2730
2731
2732/**
2733 * Changes the page level protection of one or more pages previously allocated
2734 * by SUPR0PageAllocEx.
2735 *
2736 * @returns IPRT status code.
2737 * @param pSession The session to associated the allocation with.
2738 * @param pvR3 The ring-3 address returned by SUPR0PageAllocEx.
2739 * NIL_RTR3PTR if the ring-3 mapping should be unaffected.
2740 * @param pvR0 The ring-0 address returned by SUPR0PageAllocEx.
2741 * NIL_RTR0PTR if the ring-0 mapping should be unaffected.
2742 * @param offSub Where to start changing. Must be page aligned.
2743 * @param cbSub How much to change. Must be page aligned.
2744 * @param fProt The new page level protection, see RTMEM_PROT_*.
2745 */
2746SUPR0DECL(int) SUPR0PageProtect(PSUPDRVSESSION pSession, RTR3PTR pvR3, RTR0PTR pvR0, uint32_t offSub, uint32_t cbSub, uint32_t fProt)
2747{
2748 int rc;
2749 PSUPDRVBUNDLE pBundle;
2750 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2751 RTR0MEMOBJ hMemObjR0 = NIL_RTR0MEMOBJ;
2752 RTR0MEMOBJ hMemObjR3 = NIL_RTR0MEMOBJ;
2753 LogFlow(("SUPR0PageProtect: pSession=%p pvR3=%p pvR0=%p offSub=%#x cbSub=%#x fProt-%#x\n", pSession, pvR3, pvR0, offSub, cbSub, fProt));
2754
2755 /*
2756 * Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
2757 */
2758 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2759 AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_NONE)), VERR_INVALID_PARAMETER);
2760 AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2761 AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2762 AssertReturn(cbSub, VERR_INVALID_PARAMETER);
2763
2764 /*
2765 * Find the memory object.
2766 */
2767 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2768 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2769 {
2770 if (pBundle->cUsed > 0)
2771 {
2772 unsigned i;
2773 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
2774 {
2775 if ( pBundle->aMem[i].eType == MEMREF_TYPE_PAGE
2776 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2777 && ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2778 || pvR3 == NIL_RTR3PTR)
2779 && ( pvR0 == NIL_RTR0PTR
2780 || RTR0MemObjAddress(pBundle->aMem[i].MemObj) == pvR0)
2781 && ( pvR3 == NIL_RTR3PTR
2782 || RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == pvR3))
2783 {
2784 if (pvR0 != NIL_RTR0PTR)
2785 hMemObjR0 = pBundle->aMem[i].MemObj;
2786 if (pvR3 != NIL_RTR3PTR)
2787 hMemObjR3 = pBundle->aMem[i].MapObjR3;
2788 break;
2789 }
2790 }
2791 }
2792 }
2793 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2794
2795 rc = VERR_INVALID_PARAMETER;
2796 if ( hMemObjR0 != NIL_RTR0MEMOBJ
2797 || hMemObjR3 != NIL_RTR0MEMOBJ)
2798 {
2799 /*
2800 * Do some furter input validations before calling IPRT.
2801 */
2802 size_t cbMemObj = hMemObjR0 != NIL_RTR0PTR ? RTR0MemObjSize(hMemObjR0) : RTR0MemObjSize(hMemObjR3);
2803 if ( offSub < cbMemObj
2804 && cbSub <= cbMemObj
2805 && offSub + cbSub <= cbMemObj)
2806 {
2807 rc = VINF_SUCCESS;
2808 if (hMemObjR3 != NIL_RTR0PTR)
2809 rc = RTR0MemObjProtect(hMemObjR3, offSub, cbSub, fProt);
2810 if (hMemObjR0 != NIL_RTR0PTR && RT_SUCCESS(rc))
2811 rc = RTR0MemObjProtect(hMemObjR0, offSub, cbSub, fProt);
2812 }
2813 else
2814 SUPR0Printf("SUPR0PageMapKernel: cbMemObj=%#x offSub=%#x cbSub=%#x\n", cbMemObj, offSub, cbSub);
2815
2816 }
2817 return rc;
2818
2819}
2820
2821
2822/**
2823 * Free memory allocated by SUPR0PageAlloc() and SUPR0PageAllocEx().
2824 *
2825 * @returns IPRT status code.
2826 * @param pSession The session owning the allocation.
2827 * @param pvR3 The Ring-3 address returned by SUPR0PageAlloc() or
2828 * SUPR0PageAllocEx().
2829 */
2830SUPR0DECL(int) SUPR0PageFree(PSUPDRVSESSION pSession, RTR3PTR pvR3)
2831{
2832 LogFlow(("SUPR0PageFree: pSession=%p pvR3=%p\n", pSession, (void *)pvR3));
2833 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2834 return supdrvMemRelease(pSession, (RTHCUINTPTR)pvR3, MEMREF_TYPE_PAGE);
2835}
2836
2837
2838/**
2839 * Gets the paging mode of the current CPU.
2840 *
2841 * @returns Paging mode, SUPPAGEINGMODE_INVALID on error.
2842 */
2843SUPR0DECL(SUPPAGINGMODE) SUPR0GetPagingMode(void)
2844{
2845 SUPPAGINGMODE enmMode;
2846
2847 RTR0UINTREG cr0 = ASMGetCR0();
2848 if ((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
2849 enmMode = SUPPAGINGMODE_INVALID;
2850 else
2851 {
2852 RTR0UINTREG cr4 = ASMGetCR4();
2853 uint32_t fNXEPlusLMA = 0;
2854 if (cr4 & X86_CR4_PAE)
2855 {
2856 uint32_t fAmdFeatures = ASMCpuId_EDX(0x80000001);
2857 if (fAmdFeatures & (X86_CPUID_AMD_FEATURE_EDX_NX | X86_CPUID_AMD_FEATURE_EDX_LONG_MODE))
2858 {
2859 uint64_t efer = ASMRdMsr(MSR_K6_EFER);
2860 if ((fAmdFeatures & X86_CPUID_AMD_FEATURE_EDX_NX) && (efer & MSR_K6_EFER_NXE))
2861 fNXEPlusLMA |= RT_BIT(0);
2862 if ((fAmdFeatures & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE) && (efer & MSR_K6_EFER_LMA))
2863 fNXEPlusLMA |= RT_BIT(1);
2864 }
2865 }
2866
2867 switch ((cr4 & (X86_CR4_PAE | X86_CR4_PGE)) | fNXEPlusLMA)
2868 {
2869 case 0:
2870 enmMode = SUPPAGINGMODE_32_BIT;
2871 break;
2872
2873 case X86_CR4_PGE:
2874 enmMode = SUPPAGINGMODE_32_BIT_GLOBAL;
2875 break;
2876
2877 case X86_CR4_PAE:
2878 enmMode = SUPPAGINGMODE_PAE;
2879 break;
2880
2881 case X86_CR4_PAE | RT_BIT(0):
2882 enmMode = SUPPAGINGMODE_PAE_NX;
2883 break;
2884
2885 case X86_CR4_PAE | X86_CR4_PGE:
2886 enmMode = SUPPAGINGMODE_PAE_GLOBAL;
2887 break;
2888
2889 case X86_CR4_PAE | X86_CR4_PGE | RT_BIT(0):
2890 enmMode = SUPPAGINGMODE_PAE_GLOBAL;
2891 break;
2892
2893 case RT_BIT(1) | X86_CR4_PAE:
2894 enmMode = SUPPAGINGMODE_AMD64;
2895 break;
2896
2897 case RT_BIT(1) | X86_CR4_PAE | RT_BIT(0):
2898 enmMode = SUPPAGINGMODE_AMD64_NX;
2899 break;
2900
2901 case RT_BIT(1) | X86_CR4_PAE | X86_CR4_PGE:
2902 enmMode = SUPPAGINGMODE_AMD64_GLOBAL;
2903 break;
2904
2905 case RT_BIT(1) | X86_CR4_PAE | X86_CR4_PGE | RT_BIT(0):
2906 enmMode = SUPPAGINGMODE_AMD64_GLOBAL_NX;
2907 break;
2908
2909 default:
2910 AssertMsgFailed(("Cannot happen! cr4=%#x fNXEPlusLMA=%d\n", cr4, fNXEPlusLMA));
2911 enmMode = SUPPAGINGMODE_INVALID;
2912 break;
2913 }
2914 }
2915 return enmMode;
2916}
2917
2918
2919/**
2920 * Enables or disabled hardware virtualization extensions using native OS APIs.
2921 *
2922 * @returns VBox status code.
2923 * @retval VINF_SUCCESS on success.
2924 * @retval VERR_NOT_SUPPORTED if not supported by the native OS.
2925 *
2926 * @param fEnable Whether to enable or disable.
2927 */
2928SUPR0DECL(int) SUPR0EnableVTx(bool fEnable)
2929{
2930#ifdef RT_OS_DARWIN
2931 return supdrvOSEnableVTx(fEnable);
2932#else
2933 return VERR_NOT_SUPPORTED;
2934#endif
2935}
2936
2937
2938/** @todo document me */
2939SUPR0DECL(int) SUPR0QueryVTCaps(PSUPDRVSESSION pSession, uint32_t *pfCaps)
2940{
2941 /*
2942 * Input validation.
2943 */
2944 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2945 AssertPtrReturn(pfCaps, VERR_INVALID_POINTER);
2946
2947 *pfCaps = 0;
2948
2949 if (ASMHasCpuId())
2950 {
2951 uint32_t u32FeaturesECX;
2952 uint32_t u32Dummy;
2953 uint32_t u32FeaturesEDX;
2954 uint32_t u32VendorEBX, u32VendorECX, u32VendorEDX, u32AMDFeatureEDX, u32AMDFeatureECX;
2955 uint64_t val;
2956
2957 ASMCpuId(0, &u32Dummy, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
2958 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
2959 /* Query AMD features. */
2960 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy, &u32AMDFeatureECX, &u32AMDFeatureEDX);
2961
2962 if ( u32VendorEBX == X86_CPUID_VENDOR_INTEL_EBX
2963 && u32VendorECX == X86_CPUID_VENDOR_INTEL_ECX
2964 && u32VendorEDX == X86_CPUID_VENDOR_INTEL_EDX
2965 )
2966 {
2967 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
2968 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
2969 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
2970 )
2971 {
2972 val = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
2973 /*
2974 * Both the LOCK and VMXON bit must be set; otherwise VMXON will generate a #GP.
2975 * Once the lock bit is set, this MSR can no longer be modified.
2976 */
2977 if ( (val & (MSR_IA32_FEATURE_CONTROL_VMXON|MSR_IA32_FEATURE_CONTROL_LOCK))
2978 == (MSR_IA32_FEATURE_CONTROL_VMXON|MSR_IA32_FEATURE_CONTROL_LOCK) /* enabled and locked */
2979 || !(val & MSR_IA32_FEATURE_CONTROL_LOCK) /* not enabled, but not locked either */
2980 )
2981 {
2982 VMX_CAPABILITY vtCaps;
2983
2984 *pfCaps |= SUPVTCAPS_VT_X;
2985
2986 vtCaps.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
2987 if (vtCaps.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2988 {
2989 vtCaps.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
2990 if (vtCaps.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_EPT)
2991 *pfCaps |= SUPVTCAPS_NESTED_PAGING;
2992 }
2993 return VINF_SUCCESS;
2994 }
2995 return VERR_VMX_MSR_LOCKED_OR_DISABLED;
2996 }
2997 return VERR_VMX_NO_VMX;
2998 }
2999
3000 if ( u32VendorEBX == X86_CPUID_VENDOR_AMD_EBX
3001 && u32VendorECX == X86_CPUID_VENDOR_AMD_ECX
3002 && u32VendorEDX == X86_CPUID_VENDOR_AMD_EDX
3003 )
3004 {
3005 if ( (u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
3006 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
3007 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
3008 )
3009 {
3010 /* Check if SVM is disabled */
3011 val = ASMRdMsr(MSR_K8_VM_CR);
3012 if (!(val & MSR_K8_VM_CR_SVM_DISABLE))
3013 {
3014 *pfCaps |= SUPVTCAPS_AMD_V;
3015
3016 /* Query AMD features. */
3017 ASMCpuId(0x8000000A, &u32Dummy, &u32Dummy, &u32Dummy, &u32FeaturesEDX);
3018
3019 if (u32FeaturesEDX & AMD_CPUID_SVM_FEATURE_EDX_NESTED_PAGING)
3020 *pfCaps |= SUPVTCAPS_NESTED_PAGING;
3021
3022 return VINF_SUCCESS;
3023 }
3024 return VERR_SVM_DISABLED;
3025 }
3026 return VERR_SVM_NO_SVM;
3027 }
3028 }
3029
3030 return VERR_UNSUPPORTED_CPU;
3031}
3032
3033
3034/**
3035 * (Re-)initializes the per-cpu structure prior to starting or resuming the GIP
3036 * updating.
3037 *
3038 * @param pGipCpu The per CPU structure for this CPU.
3039 * @param u64NanoTS The current time.
3040 */
3041static void supdrvGipReInitCpu(PSUPGIPCPU pGipCpu, uint64_t u64NanoTS)
3042{
3043 pGipCpu->u64TSC = ASMReadTSC() - pGipCpu->u32UpdateIntervalTSC;
3044 pGipCpu->u64NanoTS = u64NanoTS;
3045}
3046
3047
3048/**
3049 * Set the current TSC and NanoTS value for the CPU.
3050 *
3051 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
3052 * @param pvUser1 Pointer to the ring-0 GIP mapping.
3053 * @param pvUser2 Pointer to the variable holding the current time.
3054 */
3055static DECLCALLBACK(void) supdrvGipReInitCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
3056{
3057 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser1;
3058 unsigned iCpu = ASMGetApicId();
3059
3060 if (RT_LIKELY(iCpu < RT_ELEMENTS(pGip->aCPUs)))
3061 supdrvGipReInitCpu(&pGip->aCPUs[iCpu], *(uint64_t *)pvUser2);
3062
3063 NOREF(pvUser2);
3064 NOREF(idCpu);
3065}
3066
3067
3068/**
3069 * Maps the GIP into userspace and/or get the physical address of the GIP.
3070 *
3071 * @returns IPRT status code.
3072 * @param pSession Session to which the GIP mapping should belong.
3073 * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional)
3074 * @param pHCPhysGip Where to store the physical address. (optional)
3075 *
3076 * @remark There is no reference counting on the mapping, so one call to this function
3077 * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
3078 * and remove the session as a GIP user.
3079 */
3080SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip)
3081{
3082 int rc;
3083 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
3084 RTR3PTR pGipR3 = NIL_RTR3PTR;
3085 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3086 LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip));
3087
3088 /*
3089 * Validate
3090 */
3091 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3092 AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER);
3093 AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER);
3094
3095#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3096 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
3097#else
3098 RTSemFastMutexRequest(pDevExt->mtxGip);
3099#endif
3100 if (pDevExt->pGip)
3101 {
3102 /*
3103 * Map it?
3104 */
3105 rc = VINF_SUCCESS;
3106 if (ppGipR3)
3107 {
3108 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
3109 rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0,
3110 RTMEM_PROT_READ, RTR0ProcHandleSelf());
3111 if (RT_SUCCESS(rc))
3112 pGipR3 = RTR0MemObjAddressR3(pSession->GipMapObjR3);
3113 }
3114
3115 /*
3116 * Get physical address.
3117 */
3118 if (pHCPhysGip && RT_SUCCESS(rc))
3119 HCPhys = pDevExt->HCPhysGip;
3120
3121 /*
3122 * Reference globally.
3123 */
3124 if (!pSession->fGipReferenced && RT_SUCCESS(rc))
3125 {
3126 pSession->fGipReferenced = 1;
3127 pDevExt->cGipUsers++;
3128 if (pDevExt->cGipUsers == 1)
3129 {
3130 PSUPGLOBALINFOPAGE pGipR0 = pDevExt->pGip;
3131 uint64_t u64NanoTS;
3132 unsigned i;
3133
3134 LogFlow(("SUPR0GipMap: Resumes GIP updating\n"));
3135
3136 if (pGipR0->aCPUs[0].u32TransactionId != 2 /* not the first time */)
3137 {
3138 for (i = 0; i < RT_ELEMENTS(pGipR0->aCPUs); i++)
3139 ASMAtomicUoWriteU32(&pGipR0->aCPUs[i].u32TransactionId,
3140 (pGipR0->aCPUs[i].u32TransactionId + GIP_UPDATEHZ_RECALC_FREQ * 2)
3141 & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
3142 ASMAtomicWriteU64(&pGipR0->u64NanoTSLastUpdateHz, 0);
3143 }
3144
3145 u64NanoTS = RTTimeSystemNanoTS() - pGipR0->u32UpdateIntervalNS;
3146 if ( pGipR0->u32Mode == SUPGIPMODE_SYNC_TSC
3147 || RTMpGetOnlineCount() == 1)
3148 supdrvGipReInitCpu(&pGipR0->aCPUs[0], u64NanoTS);
3149 else
3150 RTMpOnAll(supdrvGipReInitCpuCallback, pGipR0, &u64NanoTS);
3151
3152 rc = RTTimerStart(pDevExt->pGipTimer, 0);
3153 AssertRC(rc); rc = VINF_SUCCESS;
3154 }
3155 }
3156 }
3157 else
3158 {
3159 rc = VERR_GENERAL_FAILURE;
3160 Log(("SUPR0GipMap: GIP is not available!\n"));
3161 }
3162#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3163 RTSemMutexRelease(pDevExt->mtxGip);
3164#else
3165 RTSemFastMutexRelease(pDevExt->mtxGip);
3166#endif
3167
3168 /*
3169 * Write returns.
3170 */
3171 if (pHCPhysGip)
3172 *pHCPhysGip = HCPhys;
3173 if (ppGipR3)
3174 *ppGipR3 = pGipR3;
3175
3176#ifdef DEBUG_DARWIN_GIP
3177 OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
3178#else
3179 LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
3180#endif
3181 return rc;
3182}
3183
3184
3185/**
3186 * Unmaps any user mapping of the GIP and terminates all GIP access
3187 * from this session.
3188 *
3189 * @returns IPRT status code.
3190 * @param pSession Session to which the GIP mapping should belong.
3191 */
3192SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
3193{
3194 int rc = VINF_SUCCESS;
3195 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
3196#ifdef DEBUG_DARWIN_GIP
3197 OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n",
3198 pSession,
3199 pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL,
3200 pSession->GipMapObjR3));
3201#else
3202 LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession));
3203#endif
3204 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3205
3206#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3207 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
3208#else
3209 RTSemFastMutexRequest(pDevExt->mtxGip);
3210#endif
3211
3212 /*
3213 * Unmap anything?
3214 */
3215 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
3216 {
3217 rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
3218 AssertRC(rc);
3219 if (RT_SUCCESS(rc))
3220 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
3221 }
3222
3223 /*
3224 * Dereference global GIP.
3225 */
3226 if (pSession->fGipReferenced && !rc)
3227 {
3228 pSession->fGipReferenced = 0;
3229 if ( pDevExt->cGipUsers > 0
3230 && !--pDevExt->cGipUsers)
3231 {
3232 LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n"));
3233 rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS;
3234 }
3235 }
3236
3237#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3238 RTSemMutexRelease(pDevExt->mtxGip);
3239#else
3240 RTSemFastMutexRelease(pDevExt->mtxGip);
3241#endif
3242
3243 return rc;
3244}
3245
3246
3247/**
3248 * Gets the GIP pointer.
3249 *
3250 * @returns Pointer to the GIP or NULL.
3251 */
3252SUPDECL(PSUPGLOBALINFOPAGE) SUPGetGIP(void)
3253{
3254 return g_pSUPGlobalInfoPage;
3255}
3256
3257
3258/**
3259 * Register a component factory with the support driver.
3260 *
3261 * This is currently restricted to kernel sessions only.
3262 *
3263 * @returns VBox status code.
3264 * @retval VINF_SUCCESS on success.
3265 * @retval VERR_NO_MEMORY if we're out of memory.
3266 * @retval VERR_ALREADY_EXISTS if the factory has already been registered.
3267 * @retval VERR_ACCESS_DENIED if it isn't a kernel session.
3268 * @retval VERR_INVALID_PARAMETER on invalid parameter.
3269 * @retval VERR_INVALID_POINTER on invalid pointer parameter.
3270 *
3271 * @param pSession The SUPDRV session (must be a ring-0 session).
3272 * @param pFactory Pointer to the component factory registration structure.
3273 *
3274 * @remarks This interface is also available via SUPR0IdcComponentRegisterFactory.
3275 */
3276SUPR0DECL(int) SUPR0ComponentRegisterFactory(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory)
3277{
3278 PSUPDRVFACTORYREG pNewReg;
3279 const char *psz;
3280 int rc;
3281
3282 /*
3283 * Validate parameters.
3284 */
3285 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3286 AssertReturn(pSession->R0Process == NIL_RTR0PROCESS, VERR_ACCESS_DENIED);
3287 AssertPtrReturn(pFactory, VERR_INVALID_POINTER);
3288 AssertPtrReturn(pFactory->pfnQueryFactoryInterface, VERR_INVALID_POINTER);
3289 psz = (const char *)memchr(pFactory->szName, '\0', sizeof(pFactory->szName));
3290 AssertReturn(psz, VERR_INVALID_PARAMETER);
3291
3292 /*
3293 * Allocate and initialize a new registration structure.
3294 */
3295 pNewReg = (PSUPDRVFACTORYREG)RTMemAlloc(sizeof(SUPDRVFACTORYREG));
3296 if (pNewReg)
3297 {
3298 pNewReg->pNext = NULL;
3299 pNewReg->pFactory = pFactory;
3300 pNewReg->pSession = pSession;
3301 pNewReg->cchName = psz - &pFactory->szName[0];
3302
3303 /*
3304 * Add it to the tail of the list after checking for prior registration.
3305 */
3306 rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
3307 if (RT_SUCCESS(rc))
3308 {
3309 PSUPDRVFACTORYREG pPrev = NULL;
3310 PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
3311 while (pCur && pCur->pFactory != pFactory)
3312 {
3313 pPrev = pCur;
3314 pCur = pCur->pNext;
3315 }
3316 if (!pCur)
3317 {
3318 if (pPrev)
3319 pPrev->pNext = pNewReg;
3320 else
3321 pSession->pDevExt->pComponentFactoryHead = pNewReg;
3322 rc = VINF_SUCCESS;
3323 }
3324 else
3325 rc = VERR_ALREADY_EXISTS;
3326
3327 RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
3328 }
3329
3330 if (RT_FAILURE(rc))
3331 RTMemFree(pNewReg);
3332 }
3333 else
3334 rc = VERR_NO_MEMORY;
3335 return rc;
3336}
3337
3338
3339/**
3340 * Deregister a component factory.
3341 *
3342 * @returns VBox status code.
3343 * @retval VINF_SUCCESS on success.
3344 * @retval VERR_NOT_FOUND if the factory wasn't registered.
3345 * @retval VERR_ACCESS_DENIED if it isn't a kernel session.
3346 * @retval VERR_INVALID_PARAMETER on invalid parameter.
3347 * @retval VERR_INVALID_POINTER on invalid pointer parameter.
3348 *
3349 * @param pSession The SUPDRV session (must be a ring-0 session).
3350 * @param pFactory Pointer to the component factory registration structure
3351 * previously passed SUPR0ComponentRegisterFactory().
3352 *
3353 * @remarks This interface is also available via SUPR0IdcComponentDeregisterFactory.
3354 */
3355SUPR0DECL(int) SUPR0ComponentDeregisterFactory(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory)
3356{
3357 int rc;
3358
3359 /*
3360 * Validate parameters.
3361 */
3362 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3363 AssertReturn(pSession->R0Process == NIL_RTR0PROCESS, VERR_ACCESS_DENIED);
3364 AssertPtrReturn(pFactory, VERR_INVALID_POINTER);
3365
3366 /*
3367 * Take the lock and look for the registration record.
3368 */
3369 rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
3370 if (RT_SUCCESS(rc))
3371 {
3372 PSUPDRVFACTORYREG pPrev = NULL;
3373 PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
3374 while (pCur && pCur->pFactory != pFactory)
3375 {
3376 pPrev = pCur;
3377 pCur = pCur->pNext;
3378 }
3379 if (pCur)
3380 {
3381 if (!pPrev)
3382 pSession->pDevExt->pComponentFactoryHead = pCur->pNext;
3383 else
3384 pPrev->pNext = pCur->pNext;
3385
3386 pCur->pNext = NULL;
3387 pCur->pFactory = NULL;
3388 pCur->pSession = NULL;
3389 rc = VINF_SUCCESS;
3390 }
3391 else
3392 rc = VERR_NOT_FOUND;
3393
3394 RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
3395
3396 RTMemFree(pCur);
3397 }
3398 return rc;
3399}
3400
3401
3402/**
3403 * Queries a component factory.
3404 *
3405 * @returns VBox status code.
3406 * @retval VERR_INVALID_PARAMETER on invalid parameter.
3407 * @retval VERR_INVALID_POINTER on invalid pointer parameter.
3408 * @retval VERR_SUPDRV_COMPONENT_NOT_FOUND if the component factory wasn't found.
3409 * @retval VERR_SUPDRV_INTERFACE_NOT_SUPPORTED if the interface wasn't supported.
3410 *
3411 * @param pSession The SUPDRV session.
3412 * @param pszName The name of the component factory.
3413 * @param pszInterfaceUuid The UUID of the factory interface (stringified).
3414 * @param ppvFactoryIf Where to store the factory interface.
3415 */
3416SUPR0DECL(int) SUPR0ComponentQueryFactory(PSUPDRVSESSION pSession, const char *pszName, const char *pszInterfaceUuid, void **ppvFactoryIf)
3417{
3418 const char *pszEnd;
3419 size_t cchName;
3420 int rc;
3421
3422 /*
3423 * Validate parameters.
3424 */
3425 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3426
3427 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
3428 pszEnd = memchr(pszName, '\0', RT_SIZEOFMEMB(SUPDRVFACTORY, szName));
3429 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
3430 cchName = pszEnd - pszName;
3431
3432 AssertPtrReturn(pszInterfaceUuid, VERR_INVALID_POINTER);
3433 pszEnd = memchr(pszInterfaceUuid, '\0', RTUUID_STR_LENGTH);
3434 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
3435
3436 AssertPtrReturn(ppvFactoryIf, VERR_INVALID_POINTER);
3437 *ppvFactoryIf = NULL;
3438
3439 /*
3440 * Take the lock and try all factories by this name.
3441 */
3442 rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
3443 if (RT_SUCCESS(rc))
3444 {
3445 PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
3446 rc = VERR_SUPDRV_COMPONENT_NOT_FOUND;
3447 while (pCur)
3448 {
3449 if ( pCur->cchName == cchName
3450 && !memcmp(pCur->pFactory->szName, pszName, cchName))
3451 {
3452 void *pvFactory = pCur->pFactory->pfnQueryFactoryInterface(pCur->pFactory, pSession, pszInterfaceUuid);
3453 if (pvFactory)
3454 {
3455 *ppvFactoryIf = pvFactory;
3456 rc = VINF_SUCCESS;
3457 break;
3458 }
3459 rc = VERR_SUPDRV_INTERFACE_NOT_SUPPORTED;
3460 }
3461
3462 /* next */
3463 pCur = pCur->pNext;
3464 }
3465
3466 RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
3467 }
3468 return rc;
3469}
3470
3471
3472/**
3473 * Adds a memory object to the session.
3474 *
3475 * @returns IPRT status code.
3476 * @param pMem Memory tracking structure containing the
3477 * information to track.
3478 * @param pSession The session.
3479 */
3480static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession)
3481{
3482 PSUPDRVBUNDLE pBundle;
3483 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
3484
3485 /*
3486 * Find free entry and record the allocation.
3487 */
3488 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
3489 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
3490 {
3491 if (pBundle->cUsed < RT_ELEMENTS(pBundle->aMem))
3492 {
3493 unsigned i;
3494 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
3495 {
3496 if (pBundle->aMem[i].MemObj == NIL_RTR0MEMOBJ)
3497 {
3498 pBundle->cUsed++;
3499 pBundle->aMem[i] = *pMem;
3500 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3501 return VINF_SUCCESS;
3502 }
3503 }
3504 AssertFailed(); /* !!this can't be happening!!! */
3505 }
3506 }
3507 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3508
3509 /*
3510 * Need to allocate a new bundle.
3511 * Insert into the last entry in the bundle.
3512 */
3513 pBundle = (PSUPDRVBUNDLE)RTMemAllocZ(sizeof(*pBundle));
3514 if (!pBundle)
3515 return VERR_NO_MEMORY;
3516
3517 /* take last entry. */
3518 pBundle->cUsed++;
3519 pBundle->aMem[RT_ELEMENTS(pBundle->aMem) - 1] = *pMem;
3520
3521 /* insert into list. */
3522 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
3523 pBundle->pNext = pSession->Bundle.pNext;
3524 pSession->Bundle.pNext = pBundle;
3525 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3526
3527 return VINF_SUCCESS;
3528}
3529
3530
3531/**
3532 * Releases a memory object referenced by pointer and type.
3533 *
3534 * @returns IPRT status code.
3535 * @param pSession Session data.
3536 * @param uPtr Pointer to memory. This is matched against both the R0 and R3 addresses.
3537 * @param eType Memory type.
3538 */
3539static int supdrvMemRelease(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, SUPDRVMEMREFTYPE eType)
3540{
3541 PSUPDRVBUNDLE pBundle;
3542 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
3543
3544 /*
3545 * Validate input.
3546 */
3547 if (!uPtr)
3548 {
3549 Log(("Illegal address %p\n", (void *)uPtr));
3550 return VERR_INVALID_PARAMETER;
3551 }
3552
3553 /*
3554 * Search for the address.
3555 */
3556 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
3557 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
3558 {
3559 if (pBundle->cUsed > 0)
3560 {
3561 unsigned i;
3562 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
3563 {
3564 if ( pBundle->aMem[i].eType == eType
3565 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
3566 && ( (RTHCUINTPTR)RTR0MemObjAddress(pBundle->aMem[i].MemObj) == uPtr
3567 || ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
3568 && RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == uPtr))
3569 )
3570 {
3571 /* Make a copy of it and release it outside the spinlock. */
3572 SUPDRVMEMREF Mem = pBundle->aMem[i];
3573 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
3574 pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
3575 pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
3576 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3577
3578 if (Mem.MapObjR3 != NIL_RTR0MEMOBJ)
3579 {
3580 int rc = RTR0MemObjFree(Mem.MapObjR3, false);
3581 AssertRC(rc); /** @todo figure out how to handle this. */
3582 }
3583 if (Mem.MemObj != NIL_RTR0MEMOBJ)
3584 {
3585 int rc = RTR0MemObjFree(Mem.MemObj, true /* fFreeMappings */);
3586 AssertRC(rc); /** @todo figure out how to handle this. */
3587 }
3588 return VINF_SUCCESS;
3589 }
3590 }
3591 }
3592 }
3593 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3594 Log(("Failed to find %p!!! (eType=%d)\n", (void *)uPtr, eType));
3595 return VERR_INVALID_PARAMETER;
3596}
3597
3598
3599/**
3600 * Opens an image. If it's the first time it's opened the call must upload
3601 * the bits using the supdrvIOCtl_LdrLoad() / SUPDRV_IOCTL_LDR_LOAD function.
3602 *
3603 * This is the 1st step of the loading.
3604 *
3605 * @returns IPRT status code.
3606 * @param pDevExt Device globals.
3607 * @param pSession Session data.
3608 * @param pReq The open request.
3609 */
3610static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN pReq)
3611{
3612 int rc;
3613 PSUPDRVLDRIMAGE pImage;
3614 void *pv;
3615 size_t cchName = strlen(pReq->u.In.szName); /* (caller checked < 32). */
3616 LogFlow(("supdrvIOCtl_LdrOpen: szName=%s cbImageWithTabs=%d\n", pReq->u.In.szName, pReq->u.In.cbImageWithTabs));
3617
3618 /*
3619 * Check if we got an instance of the image already.
3620 */
3621 supdrvLdrLock(pDevExt);
3622 for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
3623 {
3624 if ( pImage->szName[cchName] == '\0'
3625 && !memcmp(pImage->szName, pReq->u.In.szName, cchName))
3626 {
3627 /** @todo check cbImageBits and cbImageWithTabs here, if they differs that indicates that the images are different. */
3628 pImage->cUsage++;
3629 pReq->u.Out.pvImageBase = pImage->pvImage;
3630 pReq->u.Out.fNeedsLoading = pImage->uState == SUP_IOCTL_LDR_OPEN;
3631 pReq->u.Out.fNativeLoader = pImage->fNative;
3632 supdrvLdrAddUsage(pSession, pImage);
3633 supdrvLdrUnlock(pDevExt);
3634 return VINF_SUCCESS;
3635 }
3636 }
3637 /* (not found - add it!) */
3638
3639 /*
3640 * Allocate memory.
3641 */
3642 pv = RTMemAlloc(RT_OFFSETOF(SUPDRVLDRIMAGE, szName[cchName + 1]));
3643 if (!pv)
3644 {
3645 supdrvLdrUnlock(pDevExt);
3646 Log(("supdrvIOCtl_LdrOpen: RTMemAlloc() failed\n"));
3647 return VERR_NO_MEMORY;
3648 }
3649
3650 /*
3651 * Setup and link in the LDR stuff.
3652 */
3653 pImage = (PSUPDRVLDRIMAGE)pv;
3654 pImage->pvImage = NULL;
3655 pImage->pvImageAlloc = NULL;
3656 pImage->cbImageWithTabs = pReq->u.In.cbImageWithTabs;
3657 pImage->cbImageBits = pReq->u.In.cbImageBits;
3658 pImage->cSymbols = 0;
3659 pImage->paSymbols = NULL;
3660 pImage->pachStrTab = NULL;
3661 pImage->cbStrTab = 0;
3662 pImage->pfnModuleInit = NULL;
3663 pImage->pfnModuleTerm = NULL;
3664 pImage->pfnServiceReqHandler = NULL;
3665 pImage->uState = SUP_IOCTL_LDR_OPEN;
3666 pImage->cUsage = 1;
3667 memcpy(pImage->szName, pReq->u.In.szName, cchName + 1);
3668
3669 /*
3670 * Try load it using the native loader, if that isn't supported, fall back
3671 * on the older method.
3672 */
3673 pImage->fNative = true;
3674 rc = supdrvOSLdrOpen(pDevExt, pImage, pReq->u.In.szFilename);
3675 if (rc == VERR_NOT_SUPPORTED)
3676 {
3677 pImage->pvImageAlloc = RTMemExecAlloc(pImage->cbImageBits + 31);
3678 pImage->pvImage = RT_ALIGN_P(pImage->pvImageAlloc, 32);
3679 pImage->fNative = false;
3680 rc = pImage->pvImageAlloc ? VINF_SUCCESS : VERR_NO_MEMORY;
3681 }
3682 if (RT_FAILURE(rc))
3683 {
3684 supdrvLdrUnlock(pDevExt);
3685 RTMemFree(pImage);
3686 Log(("supdrvIOCtl_LdrOpen(%s): failed - %Rrc\n", pReq->u.In.szName, rc));
3687 return rc;
3688 }
3689 Assert(VALID_PTR(pImage->pvImage) || RT_FAILURE(rc));
3690
3691 /*
3692 * Link it.
3693 */
3694 pImage->pNext = pDevExt->pLdrImages;
3695 pDevExt->pLdrImages = pImage;
3696
3697 supdrvLdrAddUsage(pSession, pImage);
3698
3699 pReq->u.Out.pvImageBase = pImage->pvImage;
3700 pReq->u.Out.fNeedsLoading = true;
3701 pReq->u.Out.fNativeLoader = pImage->fNative;
3702 supdrvLdrUnlock(pDevExt);
3703
3704#if defined(RT_OS_WINDOWS) && defined(DEBUG)
3705 SUPR0Printf("VBoxDrv: windbg> .reload /f %s=%#p\n", pImage->szName, pImage->pvImage);
3706#endif
3707 return VINF_SUCCESS;
3708}
3709
3710
3711/**
3712 * Worker that validates a pointer to an image entrypoint.
3713 *
3714 * @returns IPRT status code.
3715 * @param pDevExt The device globals.
3716 * @param pImage The loader image.
3717 * @param pv The pointer into the image.
3718 * @param fMayBeNull Whether it may be NULL.
3719 * @param pszWhat What is this entrypoint? (for logging)
3720 * @param pbImageBits The image bits prepared by ring-3.
3721 *
3722 * @remarks Will leave the lock on failure.
3723 */
3724static int supdrvLdrValidatePointer(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage, void *pv,
3725 bool fMayBeNull, const uint8_t *pbImageBits, const char *pszWhat)
3726{
3727 if (!fMayBeNull || pv)
3728 {
3729 if ((uintptr_t)pv - (uintptr_t)pImage->pvImage >= pImage->cbImageBits)
3730 {
3731 supdrvLdrUnlock(pDevExt);
3732 Log(("Out of range (%p LB %#x): %s=%p\n", pImage->pvImage, pImage->cbImageBits, pszWhat, pv));
3733 return VERR_INVALID_PARAMETER;
3734 }
3735
3736 if (pImage->fNative)
3737 {
3738 int rc = supdrvOSLdrValidatePointer(pDevExt, pImage, pv, pbImageBits);
3739 if (RT_FAILURE(rc))
3740 {
3741 supdrvLdrUnlock(pDevExt);
3742 Log(("Bad entry point address: %s=%p (rc=%Rrc)\n", pszWhat, pv, rc));
3743 return rc;
3744 }
3745 }
3746 }
3747 return VINF_SUCCESS;
3748}
3749
3750
3751/**
3752 * Loads the image bits.
3753 *
3754 * This is the 2nd step of the loading.
3755 *
3756 * @returns IPRT status code.
3757 * @param pDevExt Device globals.
3758 * @param pSession Session data.
3759 * @param pReq The request.
3760 */
3761static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD pReq)
3762{
3763 PSUPDRVLDRUSAGE pUsage;
3764 PSUPDRVLDRIMAGE pImage;
3765 int rc;
3766 LogFlow(("supdrvIOCtl_LdrLoad: pvImageBase=%p cbImageWithBits=%d\n", pReq->u.In.pvImageBase, pReq->u.In.cbImageWithTabs));
3767
3768 /*
3769 * Find the ldr image.
3770 */
3771 supdrvLdrLock(pDevExt);
3772 pUsage = pSession->pLdrUsage;
3773 while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
3774 pUsage = pUsage->pNext;
3775 if (!pUsage)
3776 {
3777 supdrvLdrUnlock(pDevExt);
3778 Log(("SUP_IOCTL_LDR_LOAD: couldn't find image!\n"));
3779 return VERR_INVALID_HANDLE;
3780 }
3781 pImage = pUsage->pImage;
3782
3783 /*
3784 * Validate input.
3785 */
3786 if ( pImage->cbImageWithTabs != pReq->u.In.cbImageWithTabs
3787 || pImage->cbImageBits != pReq->u.In.cbImageBits)
3788 {
3789 supdrvLdrUnlock(pDevExt);
3790 Log(("SUP_IOCTL_LDR_LOAD: image size mismatch!! %d(prep) != %d(load) or %d != %d\n",
3791 pImage->cbImageWithTabs, pReq->u.In.cbImageWithTabs, pImage->cbImageBits, pReq->u.In.cbImageBits));
3792 return VERR_INVALID_HANDLE;
3793 }
3794
3795 if (pImage->uState != SUP_IOCTL_LDR_OPEN)
3796 {
3797 unsigned uState = pImage->uState;
3798 supdrvLdrUnlock(pDevExt);
3799 if (uState != SUP_IOCTL_LDR_LOAD)
3800 AssertMsgFailed(("SUP_IOCTL_LDR_LOAD: invalid image state %d (%#x)!\n", uState, uState));
3801 return VERR_ALREADY_LOADED;
3802 }
3803
3804 switch (pReq->u.In.eEPType)
3805 {
3806 case SUPLDRLOADEP_NOTHING:
3807 break;
3808
3809 case SUPLDRLOADEP_VMMR0:
3810 rc = supdrvLdrValidatePointer( pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0, false, pReq->u.In.abImage, "pvVMMR0");
3811 if (RT_SUCCESS(rc))
3812 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0EntryInt, false, pReq->u.In.abImage, "pvVMMR0EntryInt");
3813 if (RT_SUCCESS(rc))
3814 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0EntryFast, false, pReq->u.In.abImage, "pvVMMR0EntryFast");
3815 if (RT_SUCCESS(rc))
3816 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0EntryEx, false, pReq->u.In.abImage, "pvVMMR0EntryEx");
3817 if (RT_FAILURE(rc))
3818 return rc;
3819 break;
3820
3821 case SUPLDRLOADEP_SERVICE:
3822 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.Service.pfnServiceReq, false, pReq->u.In.abImage, "pfnServiceReq");
3823 if (RT_FAILURE(rc))
3824 return rc;
3825 if ( pReq->u.In.EP.Service.apvReserved[0] != NIL_RTR0PTR
3826 || pReq->u.In.EP.Service.apvReserved[1] != NIL_RTR0PTR
3827 || pReq->u.In.EP.Service.apvReserved[2] != NIL_RTR0PTR)
3828 {
3829 supdrvLdrUnlock(pDevExt);
3830 Log(("Out of range (%p LB %#x): apvReserved={%p,%p,%p} MBZ!\n",
3831 pImage->pvImage, pReq->u.In.cbImageWithTabs,
3832 pReq->u.In.EP.Service.apvReserved[0],
3833 pReq->u.In.EP.Service.apvReserved[1],
3834 pReq->u.In.EP.Service.apvReserved[2]));
3835 return VERR_INVALID_PARAMETER;
3836 }
3837 break;
3838
3839 default:
3840 supdrvLdrUnlock(pDevExt);
3841 Log(("Invalid eEPType=%d\n", pReq->u.In.eEPType));
3842 return VERR_INVALID_PARAMETER;
3843 }
3844
3845 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.pfnModuleInit, true, pReq->u.In.abImage, "pfnModuleInit");
3846 if (RT_FAILURE(rc))
3847 return rc;
3848 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.pfnModuleTerm, true, pReq->u.In.abImage, "pfnModuleTerm");
3849 if (RT_FAILURE(rc))
3850 return rc;
3851
3852 /*
3853 * Allocate and copy the tables.
3854 * (No need to do try/except as this is a buffered request.)
3855 */
3856 pImage->cbStrTab = pReq->u.In.cbStrTab;
3857 if (pImage->cbStrTab)
3858 {
3859 pImage->pachStrTab = (char *)RTMemAlloc(pImage->cbStrTab);
3860 if (pImage->pachStrTab)
3861 memcpy(pImage->pachStrTab, &pReq->u.In.abImage[pReq->u.In.offStrTab], pImage->cbStrTab);
3862 else
3863 rc = VERR_NO_MEMORY;
3864 }
3865
3866 pImage->cSymbols = pReq->u.In.cSymbols;
3867 if (RT_SUCCESS(rc) && pImage->cSymbols)
3868 {
3869 size_t cbSymbols = pImage->cSymbols * sizeof(SUPLDRSYM);
3870 pImage->paSymbols = (PSUPLDRSYM)RTMemAlloc(cbSymbols);
3871 if (pImage->paSymbols)
3872 memcpy(pImage->paSymbols, &pReq->u.In.abImage[pReq->u.In.offSymbols], cbSymbols);
3873 else
3874 rc = VERR_NO_MEMORY;
3875 }
3876
3877 /*
3878 * Copy the bits / complete native loading.
3879 */
3880 if (RT_SUCCESS(rc))
3881 {
3882 pImage->uState = SUP_IOCTL_LDR_LOAD;
3883 pImage->pfnModuleInit = pReq->u.In.pfnModuleInit;
3884 pImage->pfnModuleTerm = pReq->u.In.pfnModuleTerm;
3885
3886 if (pImage->fNative)
3887 rc = supdrvOSLdrLoad(pDevExt, pImage, pReq->u.In.abImage);
3888 else
3889 memcpy(pImage->pvImage, &pReq->u.In.abImage[0], pImage->cbImageBits);
3890 }
3891
3892 /*
3893 * Update any entry points.
3894 */
3895 if (RT_SUCCESS(rc))
3896 {
3897 switch (pReq->u.In.eEPType)
3898 {
3899 default:
3900 case SUPLDRLOADEP_NOTHING:
3901 rc = VINF_SUCCESS;
3902 break;
3903 case SUPLDRLOADEP_VMMR0:
3904 rc = supdrvLdrSetVMMR0EPs(pDevExt, pReq->u.In.EP.VMMR0.pvVMMR0, pReq->u.In.EP.VMMR0.pvVMMR0EntryInt,
3905 pReq->u.In.EP.VMMR0.pvVMMR0EntryFast, pReq->u.In.EP.VMMR0.pvVMMR0EntryEx);
3906 break;
3907 case SUPLDRLOADEP_SERVICE:
3908 pImage->pfnServiceReqHandler = pReq->u.In.EP.Service.pfnServiceReq;
3909 rc = VINF_SUCCESS;
3910 break;
3911 }
3912 }
3913
3914 /*
3915 * On success call the module initialization.
3916 */
3917 LogFlow(("supdrvIOCtl_LdrLoad: pfnModuleInit=%p\n", pImage->pfnModuleInit));
3918 if (RT_SUCCESS(rc) && pImage->pfnModuleInit)
3919 {
3920 Log(("supdrvIOCtl_LdrLoad: calling pfnModuleInit=%p\n", pImage->pfnModuleInit));
3921 rc = pImage->pfnModuleInit();
3922 if (rc && pDevExt->pvVMMR0 == pImage->pvImage)
3923 supdrvLdrUnsetVMMR0EPs(pDevExt);
3924 }
3925
3926 if (RT_FAILURE(rc))
3927 {
3928 pImage->uState = SUP_IOCTL_LDR_OPEN;
3929 pImage->pfnModuleInit = NULL;
3930 pImage->pfnModuleTerm = NULL;
3931 pImage->pfnServiceReqHandler= NULL;
3932 pImage->cbStrTab = 0;
3933 RTMemFree(pImage->pachStrTab);
3934 pImage->pachStrTab = NULL;
3935 RTMemFree(pImage->paSymbols);
3936 pImage->paSymbols = NULL;
3937 pImage->cSymbols = 0;
3938 }
3939
3940 supdrvLdrUnlock(pDevExt);
3941 return rc;
3942}
3943
3944
3945/**
3946 * Frees a previously loaded (prep'ed) image.
3947 *
3948 * @returns IPRT status code.
3949 * @param pDevExt Device globals.
3950 * @param pSession Session data.
3951 * @param pReq The request.
3952 */
3953static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE pReq)
3954{
3955 int rc;
3956 PSUPDRVLDRUSAGE pUsagePrev;
3957 PSUPDRVLDRUSAGE pUsage;
3958 PSUPDRVLDRIMAGE pImage;
3959 LogFlow(("supdrvIOCtl_LdrFree: pvImageBase=%p\n", pReq->u.In.pvImageBase));
3960
3961 /*
3962 * Find the ldr image.
3963 */
3964 supdrvLdrLock(pDevExt);
3965 pUsagePrev = NULL;
3966 pUsage = pSession->pLdrUsage;
3967 while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
3968 {
3969 pUsagePrev = pUsage;
3970 pUsage = pUsage->pNext;
3971 }
3972 if (!pUsage)
3973 {
3974 supdrvLdrUnlock(pDevExt);
3975 Log(("SUP_IOCTL_LDR_FREE: couldn't find image!\n"));
3976 return VERR_INVALID_HANDLE;
3977 }
3978
3979 /*
3980 * Check if we can remove anything.
3981 */
3982 rc = VINF_SUCCESS;
3983 pImage = pUsage->pImage;
3984 if (pImage->cUsage <= 1 || pUsage->cUsage <= 1)
3985 {
3986 /*
3987 * Check if there are any objects with destructors in the image, if
3988 * so leave it for the session cleanup routine so we get a chance to
3989 * clean things up in the right order and not leave them all dangling.
3990 */
3991 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
3992 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
3993 if (pImage->cUsage <= 1)
3994 {
3995 PSUPDRVOBJ pObj;
3996 for (pObj = pDevExt->pObjs; pObj; pObj = pObj->pNext)
3997 if (RT_UNLIKELY((uintptr_t)pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImageBits))
3998 {
3999 rc = VERR_DANGLING_OBJECTS;
4000 break;
4001 }
4002 }
4003 else
4004 {
4005 PSUPDRVUSAGE pGenUsage;
4006 for (pGenUsage = pSession->pUsage; pGenUsage; pGenUsage = pGenUsage->pNext)
4007 if (RT_UNLIKELY((uintptr_t)pGenUsage->pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImageBits))
4008 {
4009 rc = VERR_DANGLING_OBJECTS;
4010 break;
4011 }
4012 }
4013 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
4014 if (rc == VINF_SUCCESS)
4015 {
4016 /* unlink it */
4017 if (pUsagePrev)
4018 pUsagePrev->pNext = pUsage->pNext;
4019 else
4020 pSession->pLdrUsage = pUsage->pNext;
4021
4022 /* free it */
4023 pUsage->pImage = NULL;
4024 pUsage->pNext = NULL;
4025 RTMemFree(pUsage);
4026
4027 /*
4028 * Dereference the image.
4029 */
4030 if (pImage->cUsage <= 1)
4031 supdrvLdrFree(pDevExt, pImage);
4032 else
4033 pImage->cUsage--;
4034 }
4035 else
4036 {
4037 Log(("supdrvIOCtl_LdrFree: Dangling objects in %p/%s!\n", pImage->pvImage, pImage->szName));
4038 rc = VINF_SUCCESS; /** @todo BRANCH-2.1: remove this after branching. */
4039 }
4040 }
4041 else
4042 {
4043 /*
4044 * Dereference both image and usage.
4045 */
4046 pImage->cUsage--;
4047 pUsage->cUsage--;
4048 }
4049
4050 supdrvLdrUnlock(pDevExt);
4051 return rc;
4052}
4053
4054
4055/**
4056 * Gets the address of a symbol in an open image.
4057 *
4058 * @returns IPRT status code.
4059 * @param pDevExt Device globals.
4060 * @param pSession Session data.
4061 * @param pReq The request buffer.
4062 */
4063static int supdrvIOCtl_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL pReq)
4064{
4065 PSUPDRVLDRIMAGE pImage;
4066 PSUPDRVLDRUSAGE pUsage;
4067 uint32_t i;
4068 PSUPLDRSYM paSyms;
4069 const char *pchStrings;
4070 const size_t cbSymbol = strlen(pReq->u.In.szSymbol) + 1;
4071 void *pvSymbol = NULL;
4072 int rc = VERR_GENERAL_FAILURE;
4073 Log3(("supdrvIOCtl_LdrGetSymbol: pvImageBase=%p szSymbol=\"%s\"\n", pReq->u.In.pvImageBase, pReq->u.In.szSymbol));
4074
4075 /*
4076 * Find the ldr image.
4077 */
4078 supdrvLdrLock(pDevExt);
4079 pUsage = pSession->pLdrUsage;
4080 while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
4081 pUsage = pUsage->pNext;
4082 if (!pUsage)
4083 {
4084 supdrvLdrUnlock(pDevExt);
4085 Log(("SUP_IOCTL_LDR_GET_SYMBOL: couldn't find image!\n"));
4086 return VERR_INVALID_HANDLE;
4087 }
4088 pImage = pUsage->pImage;
4089 if (pImage->uState != SUP_IOCTL_LDR_LOAD)
4090 {
4091 unsigned uState = pImage->uState;
4092 supdrvLdrUnlock(pDevExt);
4093 Log(("SUP_IOCTL_LDR_GET_SYMBOL: invalid image state %d (%#x)!\n", uState, uState)); NOREF(uState);
4094 return VERR_ALREADY_LOADED;
4095 }
4096
4097 /*
4098 * Search the symbol strings.
4099 */
4100 pchStrings = pImage->pachStrTab;
4101 paSyms = pImage->paSymbols;
4102 for (i = 0; i < pImage->cSymbols; i++)
4103 {
4104 if ( paSyms[i].offSymbol < pImage->cbImageBits /* paranoia */
4105 && paSyms[i].offName + cbSymbol <= pImage->cbStrTab
4106 && !memcmp(pchStrings + paSyms[i].offName, pReq->u.In.szSymbol, cbSymbol))
4107 {
4108 pvSymbol = (uint8_t *)pImage->pvImage + paSyms[i].offSymbol;
4109 rc = VINF_SUCCESS;
4110 break;
4111 }
4112 }
4113 supdrvLdrUnlock(pDevExt);
4114 pReq->u.Out.pvSymbol = pvSymbol;
4115 return rc;
4116}
4117
4118
4119/**
4120 * Gets the address of a symbol in an open image or the support driver.
4121 *
4122 * @returns VINF_SUCCESS on success.
4123 * @returns
4124 * @param pDevExt Device globals.
4125 * @param pSession Session data.
4126 * @param pReq The request buffer.
4127 */
4128static int supdrvIDC_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQGETSYM pReq)
4129{
4130 int rc = VINF_SUCCESS;
4131 const char *pszSymbol = pReq->u.In.pszSymbol;
4132 const char *pszModule = pReq->u.In.pszModule;
4133 size_t cbSymbol;
4134 char const *pszEnd;
4135 uint32_t i;
4136
4137 /*
4138 * Input validation.
4139 */
4140 AssertPtrReturn(pszSymbol, VERR_INVALID_POINTER);
4141 pszEnd = (char *)memchr(pszSymbol, '\0', 512);
4142 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
4143 cbSymbol = pszEnd - pszSymbol + 1;
4144
4145 if (pszModule)
4146 {
4147 AssertPtrReturn(pszModule, VERR_INVALID_POINTER);
4148 pszEnd = (char *)memchr(pszModule, '\0', 64);
4149 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
4150 }
4151 Log3(("supdrvIDC_LdrGetSymbol: pszModule=%p:{%s} pszSymbol=%p:{%s}\n", pszModule, pszModule, pszSymbol, pszSymbol));
4152
4153
4154 if ( !pszModule
4155 || !strcmp(pszModule, "SupDrv"))
4156 {
4157 /*
4158 * Search the support driver export table.
4159 */
4160 for (i = 0; i < RT_ELEMENTS(g_aFunctions); i++)
4161 if (!strcmp(g_aFunctions[i].szName, pszSymbol))
4162 {
4163 pReq->u.Out.pfnSymbol = g_aFunctions[i].pfn;
4164 break;
4165 }
4166 }
4167 else
4168 {
4169 /*
4170 * Find the loader image.
4171 */
4172 PSUPDRVLDRIMAGE pImage;
4173
4174 supdrvLdrLock(pDevExt);
4175
4176 for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
4177 if (!strcmp(pImage->szName, pszModule))
4178 break;
4179 if (pImage && pImage->uState == SUP_IOCTL_LDR_LOAD)
4180 {
4181 /*
4182 * Search the symbol strings.
4183 */
4184 const char *pchStrings = pImage->pachStrTab;
4185 PCSUPLDRSYM paSyms = pImage->paSymbols;
4186 for (i = 0; i < pImage->cSymbols; i++)
4187 {
4188 if ( paSyms[i].offSymbol < pImage->cbImageBits /* paranoia */
4189 && paSyms[i].offName + cbSymbol <= pImage->cbStrTab
4190 && !memcmp(pchStrings + paSyms[i].offName, pszSymbol, cbSymbol))
4191 {
4192 /*
4193 * Found it! Calc the symbol address and add a reference to the module.
4194 */
4195 pReq->u.Out.pfnSymbol = (PFNRT)((uint8_t *)pImage->pvImage + paSyms[i].offSymbol);
4196 rc = supdrvLdrAddUsage(pSession, pImage);
4197 break;
4198 }
4199 }
4200 }
4201 else
4202 rc = pImage ? VERR_WRONG_ORDER : VERR_MODULE_NOT_FOUND;
4203
4204 supdrvLdrUnlock(pDevExt);
4205 }
4206 return rc;
4207}
4208
4209
4210/**
4211 * Updates the VMMR0 entry point pointers.
4212 *
4213 * @returns IPRT status code.
4214 * @param pDevExt Device globals.
4215 * @param pSession Session data.
4216 * @param pVMMR0 VMMR0 image handle.
4217 * @param pvVMMR0EntryInt VMMR0EntryInt address.
4218 * @param pvVMMR0EntryFast VMMR0EntryFast address.
4219 * @param pvVMMR0EntryEx VMMR0EntryEx address.
4220 * @remark Caller must own the loader mutex.
4221 */
4222static int supdrvLdrSetVMMR0EPs(PSUPDRVDEVEXT pDevExt, void *pvVMMR0, void *pvVMMR0EntryInt, void *pvVMMR0EntryFast, void *pvVMMR0EntryEx)
4223{
4224 int rc = VINF_SUCCESS;
4225 LogFlow(("supdrvLdrSetR0EP pvVMMR0=%p pvVMMR0EntryInt=%p\n", pvVMMR0, pvVMMR0EntryInt));
4226
4227
4228 /*
4229 * Check if not yet set.
4230 */
4231 if (!pDevExt->pvVMMR0)
4232 {
4233 pDevExt->pvVMMR0 = pvVMMR0;
4234 pDevExt->pfnVMMR0EntryInt = pvVMMR0EntryInt;
4235 pDevExt->pfnVMMR0EntryFast = pvVMMR0EntryFast;
4236 pDevExt->pfnVMMR0EntryEx = pvVMMR0EntryEx;
4237 }
4238 else
4239 {
4240 /*
4241 * Return failure or success depending on whether the values match or not.
4242 */
4243 if ( pDevExt->pvVMMR0 != pvVMMR0
4244 || (void *)pDevExt->pfnVMMR0EntryInt != pvVMMR0EntryInt
4245 || (void *)pDevExt->pfnVMMR0EntryFast != pvVMMR0EntryFast
4246 || (void *)pDevExt->pfnVMMR0EntryEx != pvVMMR0EntryEx)
4247 {
4248 AssertMsgFailed(("SUP_IOCTL_LDR_SETR0EP: Already set pointing to a different module!\n"));
4249 rc = VERR_INVALID_PARAMETER;
4250 }
4251 }
4252 return rc;
4253}
4254
4255
4256/**
4257 * Unsets the VMMR0 entry point installed by supdrvLdrSetR0EP.
4258 *
4259 * @param pDevExt Device globals.
4260 */
4261static void supdrvLdrUnsetVMMR0EPs(PSUPDRVDEVEXT pDevExt)
4262{
4263 pDevExt->pvVMMR0 = NULL;
4264 pDevExt->pfnVMMR0EntryInt = NULL;
4265 pDevExt->pfnVMMR0EntryFast = NULL;
4266 pDevExt->pfnVMMR0EntryEx = NULL;
4267}
4268
4269
4270/**
4271 * Adds a usage reference in the specified session of an image.
4272 *
4273 * Called while owning the loader semaphore.
4274 *
4275 * @returns VINF_SUCCESS on success and VERR_NO_MEMORY on failure.
4276 * @param pSession Session in question.
4277 * @param pImage Image which the session is using.
4278 */
4279static int supdrvLdrAddUsage(PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage)
4280{
4281 PSUPDRVLDRUSAGE pUsage;
4282 LogFlow(("supdrvLdrAddUsage: pImage=%p\n", pImage));
4283
4284 /*
4285 * Referenced it already?
4286 */
4287 pUsage = pSession->pLdrUsage;
4288 while (pUsage)
4289 {
4290 if (pUsage->pImage == pImage)
4291 {
4292 pUsage->cUsage++;
4293 return VINF_SUCCESS;
4294 }
4295 pUsage = pUsage->pNext;
4296 }
4297
4298 /*
4299 * Allocate new usage record.
4300 */
4301 pUsage = (PSUPDRVLDRUSAGE)RTMemAlloc(sizeof(*pUsage));
4302 AssertReturn(pUsage, VERR_NO_MEMORY);
4303 pUsage->cUsage = 1;
4304 pUsage->pImage = pImage;
4305 pUsage->pNext = pSession->pLdrUsage;
4306 pSession->pLdrUsage = pUsage;
4307 return VINF_SUCCESS;
4308}
4309
4310
4311/**
4312 * Frees a load image.
4313 *
4314 * @param pDevExt Pointer to device extension.
4315 * @param pImage Pointer to the image we're gonna free.
4316 * This image must exit!
4317 * @remark The caller MUST own SUPDRVDEVEXT::mtxLdr!
4318 */
4319static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage)
4320{
4321 PSUPDRVLDRIMAGE pImagePrev;
4322 LogFlow(("supdrvLdrFree: pImage=%p\n", pImage));
4323
4324 /* find it - arg. should've used doubly linked list. */
4325 Assert(pDevExt->pLdrImages);
4326 pImagePrev = NULL;
4327 if (pDevExt->pLdrImages != pImage)
4328 {
4329 pImagePrev = pDevExt->pLdrImages;
4330 while (pImagePrev->pNext != pImage)
4331 pImagePrev = pImagePrev->pNext;
4332 Assert(pImagePrev->pNext == pImage);
4333 }
4334
4335 /* unlink */
4336 if (pImagePrev)
4337 pImagePrev->pNext = pImage->pNext;
4338 else
4339 pDevExt->pLdrImages = pImage->pNext;
4340
4341 /* check if this is VMMR0.r0 unset its entry point pointers. */
4342 if (pDevExt->pvVMMR0 == pImage->pvImage)
4343 supdrvLdrUnsetVMMR0EPs(pDevExt);
4344
4345 /* check for objects with destructors in this image. (Shouldn't happen.) */
4346 if (pDevExt->pObjs)
4347 {
4348 unsigned cObjs = 0;
4349 PSUPDRVOBJ pObj;
4350 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
4351 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
4352 for (pObj = pDevExt->pObjs; pObj; pObj = pObj->pNext)
4353 if (RT_UNLIKELY((uintptr_t)pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImageBits))
4354 {
4355 pObj->pfnDestructor = NULL;
4356 cObjs++;
4357 }
4358 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
4359 if (cObjs)
4360 OSDBGPRINT(("supdrvLdrFree: Image '%s' has %d dangling objects!\n", pImage->szName, cObjs));
4361 }
4362
4363 /* call termination function if fully loaded. */
4364 if ( pImage->pfnModuleTerm
4365 && pImage->uState == SUP_IOCTL_LDR_LOAD)
4366 {
4367 LogFlow(("supdrvIOCtl_LdrLoad: calling pfnModuleTerm=%p\n", pImage->pfnModuleTerm));
4368 pImage->pfnModuleTerm();
4369 }
4370
4371 /* do native unload if appropriate. */
4372 if (pImage->fNative)
4373 supdrvOSLdrUnload(pDevExt, pImage);
4374
4375 /* free the image */
4376 pImage->cUsage = 0;
4377 pImage->pNext = 0;
4378 pImage->uState = SUP_IOCTL_LDR_FREE;
4379 RTMemExecFree(pImage->pvImageAlloc);
4380 pImage->pvImageAlloc = NULL;
4381 RTMemFree(pImage->pachStrTab);
4382 pImage->pachStrTab = NULL;
4383 RTMemFree(pImage->paSymbols);
4384 pImage->paSymbols = NULL;
4385 RTMemFree(pImage);
4386}
4387
4388
4389/**
4390 * Acquires the loader lock.
4391 *
4392 * @returns IPRT status code.
4393 * @param pDevExt The device extension.
4394 */
4395DECLINLINE(int) supdrvLdrLock(PSUPDRVDEVEXT pDevExt)
4396{
4397#ifdef SUPDRV_USE_MUTEX_FOR_LDR
4398 int rc = RTSemMutexRequest(pDevExt->mtxLdr, RT_INDEFINITE_WAIT);
4399#else
4400 int rc = RTSemFastMutexRequest(pDevExt->mtxLdr);
4401#endif
4402 AssertRC(rc);
4403 return rc;
4404}
4405
4406
4407/**
4408 * Releases the loader lock.
4409 *
4410 * @returns IPRT status code.
4411 * @param pDevExt The device extension.
4412 */
4413DECLINLINE(int) supdrvLdrUnlock(PSUPDRVDEVEXT pDevExt)
4414{
4415#ifdef SUPDRV_USE_MUTEX_FOR_LDR
4416 return RTSemMutexRelease(pDevExt->mtxLdr);
4417#else
4418 return RTSemFastMutexRelease(pDevExt->mtxLdr);
4419#endif
4420}
4421
4422
4423/**
4424 * Implements the service call request.
4425 *
4426 * @returns VBox status code.
4427 * @param pDevExt The device extension.
4428 * @param pSession The calling session.
4429 * @param pReq The request packet, valid.
4430 */
4431static int supdrvIOCtl_CallServiceModule(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPCALLSERVICE pReq)
4432{
4433#if !defined(RT_OS_WINDOWS) || defined(DEBUG)
4434 int rc;
4435
4436 /*
4437 * Find the module first in the module referenced by the calling session.
4438 */
4439 rc = supdrvLdrLock(pDevExt);
4440 if (RT_SUCCESS(rc))
4441 {
4442 PFNSUPR0SERVICEREQHANDLER pfnServiceReqHandler = NULL;
4443 PSUPDRVLDRUSAGE pUsage;
4444
4445 for (pUsage = pSession->pLdrUsage; pUsage; pUsage = pUsage->pNext)
4446 if ( pUsage->pImage->pfnServiceReqHandler
4447 && !strcmp(pUsage->pImage->szName, pReq->u.In.szName))
4448 {
4449 pfnServiceReqHandler = pUsage->pImage->pfnServiceReqHandler;
4450 break;
4451 }
4452 supdrvLdrUnlock(pDevExt);
4453
4454 if (pfnServiceReqHandler)
4455 {
4456 /*
4457 * Call it.
4458 */
4459 if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_SERVICE_SIZE(0))
4460 rc = pfnServiceReqHandler(pSession, pReq->u.In.uOperation, pReq->u.In.u64Arg, NULL);
4461 else
4462 rc = pfnServiceReqHandler(pSession, pReq->u.In.uOperation, pReq->u.In.u64Arg, (PSUPR0SERVICEREQHDR)&pReq->abReqPkt[0]);
4463 }
4464 else
4465 rc = VERR_SUPDRV_SERVICE_NOT_FOUND;
4466 }
4467
4468 /* log it */
4469 if ( RT_FAILURE(rc)
4470 && rc != VERR_INTERRUPTED
4471 && rc != VERR_TIMEOUT)
4472 Log(("SUP_IOCTL_CALL_SERVICE: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
4473 rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
4474 else
4475 Log4(("SUP_IOCTL_CALL_SERVICE: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
4476 rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
4477 return rc;
4478#else /* RT_OS_WINDOWS && !DEBUG */
4479 return VERR_NOT_IMPLEMENTED;
4480#endif /* RT_OS_WINDOWS && !DEBUG */
4481}
4482
4483
4484/**
4485 * Implements the logger settings request.
4486 *
4487 * @returns VBox status code.
4488 * @param pDevExt The device extension.
4489 * @param pSession The caller's session.
4490 * @param pReq The request.
4491 */
4492static int supdrvIOCtl_LoggerSettings(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLOGGERSETTINGS pReq)
4493{
4494 const char *pszGroup = &pReq->u.In.szStrings[pReq->u.In.offGroups];
4495 const char *pszFlags = &pReq->u.In.szStrings[pReq->u.In.offFlags];
4496 const char *pszDest = &pReq->u.In.szStrings[pReq->u.In.offDestination];
4497 PRTLOGGER pLogger = NULL;
4498 int rc;
4499
4500 /*
4501 * Some further validation.
4502 */
4503 switch (pReq->u.In.fWhat)
4504 {
4505 case SUPLOGGERSETTINGS_WHAT_SETTINGS:
4506 case SUPLOGGERSETTINGS_WHAT_CREATE:
4507 break;
4508
4509 case SUPLOGGERSETTINGS_WHAT_DESTROY:
4510 if (*pszGroup || *pszFlags || *pszDest)
4511 return VERR_INVALID_PARAMETER;
4512 if (pReq->u.In.fWhich == SUPLOGGERSETTINGS_WHICH_RELEASE)
4513 return VERR_ACCESS_DENIED;
4514 break;
4515
4516 default:
4517 return VERR_INTERNAL_ERROR;
4518 }
4519
4520 /*
4521 * Get the logger.
4522 */
4523 switch (pReq->u.In.fWhich)
4524 {
4525 case SUPLOGGERSETTINGS_WHICH_DEBUG:
4526 pLogger = RTLogGetDefaultInstance();
4527 break;
4528
4529 case SUPLOGGERSETTINGS_WHICH_RELEASE:
4530 pLogger = RTLogRelDefaultInstance();
4531 break;
4532
4533 default:
4534 return VERR_INTERNAL_ERROR;
4535 }
4536
4537 /*
4538 * Do the job.
4539 */
4540 switch (pReq->u.In.fWhat)
4541 {
4542 case SUPLOGGERSETTINGS_WHAT_SETTINGS:
4543 if (pLogger)
4544 {
4545 rc = RTLogFlags(pLogger, pszFlags);
4546 if (RT_SUCCESS(rc))
4547 rc = RTLogGroupSettings(pLogger, pszGroup);
4548 NOREF(pszDest);
4549 }
4550 else
4551 rc = VERR_NOT_FOUND;
4552 break;
4553
4554 case SUPLOGGERSETTINGS_WHAT_CREATE:
4555 {
4556 if (pLogger)
4557 rc = VERR_ALREADY_EXISTS;
4558 else
4559 {
4560 static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES;
4561
4562 rc = RTLogCreate(&pLogger,
4563 0 /* fFlags */,
4564 pszGroup,
4565 pReq->u.In.fWhich == SUPLOGGERSETTINGS_WHICH_DEBUG
4566 ? "VBOX_LOG"
4567 : "VBOX_RELEASE_LOG",
4568 RT_ELEMENTS(s_apszGroups),
4569 s_apszGroups,
4570 RTLOGDEST_STDOUT | RTLOGDEST_DEBUGGER,
4571 NULL);
4572 if (RT_SUCCESS(rc))
4573 {
4574 rc = RTLogFlags(pLogger, pszFlags);
4575 NOREF(pszDest);
4576 if (RT_SUCCESS(rc))
4577 {
4578 switch (pReq->u.In.fWhich)
4579 {
4580 case SUPLOGGERSETTINGS_WHICH_DEBUG:
4581 pLogger = RTLogSetDefaultInstance(pLogger);
4582 break;
4583 case SUPLOGGERSETTINGS_WHICH_RELEASE:
4584 pLogger = RTLogRelSetDefaultInstance(pLogger);
4585 break;
4586 }
4587 }
4588 RTLogDestroy(pLogger);
4589 }
4590 }
4591 break;
4592 }
4593
4594 case SUPLOGGERSETTINGS_WHAT_DESTROY:
4595 switch (pReq->u.In.fWhich)
4596 {
4597 case SUPLOGGERSETTINGS_WHICH_DEBUG:
4598 pLogger = RTLogSetDefaultInstance(NULL);
4599 break;
4600 case SUPLOGGERSETTINGS_WHICH_RELEASE:
4601 pLogger = RTLogRelSetDefaultInstance(NULL);
4602 break;
4603 }
4604 rc = RTLogDestroy(pLogger);
4605 break;
4606
4607 default:
4608 {
4609 rc = VERR_INTERNAL_ERROR;
4610 break;
4611 }
4612 }
4613
4614 return rc;
4615}
4616
4617
4618/**
4619 * Creates the GIP.
4620 *
4621 * @returns VBox status code.
4622 * @param pDevExt Instance data. GIP stuff may be updated.
4623 */
4624static int supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
4625{
4626 PSUPGLOBALINFOPAGE pGip;
4627 RTHCPHYS HCPhysGip;
4628 uint32_t u32SystemResolution;
4629 uint32_t u32Interval;
4630 int rc;
4631
4632 LogFlow(("supdrvGipCreate:\n"));
4633
4634 /* assert order */
4635 Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
4636 Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
4637 Assert(!pDevExt->pGipTimer);
4638
4639 /*
4640 * Allocate a suitable page with a default kernel mapping.
4641 */
4642 rc = RTR0MemObjAllocLow(&pDevExt->GipMemObj, PAGE_SIZE, false);
4643 if (RT_FAILURE(rc))
4644 {
4645 OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
4646 return rc;
4647 }
4648 pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
4649 HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
4650
4651#if 0 /** @todo Disabled this as we didn't used to do it before and causes unnecessary stress on laptops.
4652 * It only applies to Windows and should probably revisited later, if possible made part of the
4653 * timer code (return min granularity in RTTimerGetSystemGranularity and set it in RTTimerStart). */
4654 /*
4655 * Try bump up the system timer resolution.
4656 * The more interrupts the better...
4657 */
4658 if ( RT_SUCCESS(RTTimerRequestSystemGranularity( 488281 /* 2048 HZ */, &u32SystemResolution))
4659 || RT_SUCCESS(RTTimerRequestSystemGranularity( 500000 /* 2000 HZ */, &u32SystemResolution))
4660 || RT_SUCCESS(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
4661 || RT_SUCCESS(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
4662 || RT_SUCCESS(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution))
4663 || RT_SUCCESS(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution))
4664 || RT_SUCCESS(RTTimerRequestSystemGranularity( 3906250 /* 256 HZ */, &u32SystemResolution))
4665 || RT_SUCCESS(RTTimerRequestSystemGranularity( 4000000 /* 250 HZ */, &u32SystemResolution))
4666 || RT_SUCCESS(RTTimerRequestSystemGranularity( 7812500 /* 128 HZ */, &u32SystemResolution))
4667 || RT_SUCCESS(RTTimerRequestSystemGranularity(10000000 /* 100 HZ */, &u32SystemResolution))
4668 || RT_SUCCESS(RTTimerRequestSystemGranularity(15625000 /* 64 HZ */, &u32SystemResolution))
4669 || RT_SUCCESS(RTTimerRequestSystemGranularity(31250000 /* 32 HZ */, &u32SystemResolution))
4670 )
4671 {
4672 Assert(RTTimerGetSystemGranularity() <= u32SystemResolution);
4673 pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
4674 }
4675#endif
4676
4677 /*
4678 * Find a reasonable update interval and initialize the structure.
4679 */
4680 u32Interval = u32SystemResolution = RTTimerGetSystemGranularity();
4681 while (u32Interval < 10000000 /* 10 ms */)
4682 u32Interval += u32SystemResolution;
4683
4684 supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), 1000000000 / u32Interval /*=Hz*/);
4685
4686 /*
4687 * Create the timer.
4688 * If CPU_ALL isn't supported we'll have to fall back to synchronous mode.
4689 */
4690 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
4691 {
4692 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL, supdrvGipAsyncTimer, pDevExt);
4693 if (rc == VERR_NOT_SUPPORTED)
4694 {
4695 OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n"));
4696 pGip->u32Mode = SUPGIPMODE_SYNC_TSC;
4697 }
4698 }
4699 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
4700 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0, supdrvGipSyncTimer, pDevExt);
4701 if (RT_SUCCESS(rc))
4702 {
4703 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
4704 rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt);
4705 if (RT_SUCCESS(rc))
4706 {
4707 /*
4708 * We're good.
4709 */
4710 Log(("supdrvGipCreate: %ld ns interval.\n", (long)u32Interval));
4711 g_pSUPGlobalInfoPage = pGip;
4712 return VINF_SUCCESS;
4713 }
4714
4715 OSDBGPRINT(("supdrvGipCreate: failed register MP event notfication. rc=%d\n", rc));
4716 }
4717 else
4718 {
4719 OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %ld ns interval. rc=%d\n", (long)u32Interval, rc));
4720 Assert(!pDevExt->pGipTimer);
4721 }
4722 supdrvGipDestroy(pDevExt);
4723 return rc;
4724}
4725
4726
4727/**
4728 * Terminates the GIP.
4729 *
4730 * @param pDevExt Instance data. GIP stuff may be updated.
4731 */
4732static void supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
4733{
4734 int rc;
4735#ifdef DEBUG_DARWIN_GIP
4736 OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt,
4737 pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL,
4738 pDevExt->pGipTimer, pDevExt->GipMemObj));
4739#endif
4740
4741 /*
4742 * Invalid the GIP data.
4743 */
4744 if (pDevExt->pGip)
4745 {
4746 supdrvGipTerm(pDevExt->pGip);
4747 pDevExt->pGip = NULL;
4748 }
4749 g_pSUPGlobalInfoPage = NULL;
4750
4751 /*
4752 * Destroy the timer and free the GIP memory object.
4753 */
4754 if (pDevExt->pGipTimer)
4755 {
4756 rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
4757 pDevExt->pGipTimer = NULL;
4758 }
4759
4760 if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
4761 {
4762 rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
4763 pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
4764 }
4765
4766 /*
4767 * Finally, release the system timer resolution request if one succeeded.
4768 */
4769 if (pDevExt->u32SystemTimerGranularityGrant)
4770 {
4771 rc = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant); AssertRC(rc);
4772 pDevExt->u32SystemTimerGranularityGrant = 0;
4773 }
4774}
4775
4776
4777/**
4778 * Timer callback function sync GIP mode.
4779 * @param pTimer The timer.
4780 * @param pvUser The device extension.
4781 */
4782static DECLCALLBACK(void) supdrvGipSyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
4783{
4784 RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
4785 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4786 uint64_t u64TSC = ASMReadTSC();
4787 uint64_t NanoTS = RTTimeSystemNanoTS();
4788
4789 supdrvGipUpdate(pDevExt->pGip, NanoTS, u64TSC, iTick);
4790
4791 ASMSetFlags(fOldFlags);
4792}
4793
4794
4795/**
4796 * Timer callback function for async GIP mode.
4797 * @param pTimer The timer.
4798 * @param pvUser The device extension.
4799 */
4800static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
4801{
4802 RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
4803 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4804 RTCPUID idCpu = RTMpCpuId();
4805 uint64_t u64TSC = ASMReadTSC();
4806 uint64_t NanoTS = RTTimeSystemNanoTS();
4807
4808 /** @todo reset the transaction number and whatnot when iTick == 1. */
4809 if (pDevExt->idGipMaster == idCpu)
4810 supdrvGipUpdate(pDevExt->pGip, NanoTS, u64TSC, iTick);
4811 else
4812 supdrvGipUpdatePerCpu(pDevExt->pGip, NanoTS, u64TSC, ASMGetApicId(), iTick);
4813
4814 ASMSetFlags(fOldFlags);
4815}
4816
4817
4818/**
4819 * Multiprocessor event notification callback.
4820 *
4821 * This is used to make sue that the GIP master gets passed on to
4822 * another CPU.
4823 *
4824 * @param enmEvent The event.
4825 * @param idCpu The cpu it applies to.
4826 * @param pvUser Pointer to the device extension.
4827 */
4828static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
4829{
4830 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4831 if (enmEvent == RTMPEVENT_OFFLINE)
4832 {
4833 RTCPUID idGipMaster;
4834 ASMAtomicReadSize(&pDevExt->idGipMaster, &idGipMaster);
4835 if (idGipMaster == idCpu)
4836 {
4837 /*
4838 * Find a new GIP master.
4839 */
4840 bool fIgnored;
4841 unsigned i;
4842 RTCPUID idNewGipMaster = NIL_RTCPUID;
4843 RTCPUSET OnlineCpus;
4844 RTMpGetOnlineSet(&OnlineCpus);
4845
4846 for (i = 0; i < RTCPUSET_MAX_CPUS; i++)
4847 {
4848 RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i);
4849 if ( RTCpuSetIsMember(&OnlineCpus, idCurCpu)
4850 && idCurCpu != idGipMaster)
4851 {
4852 idNewGipMaster = idCurCpu;
4853 break;
4854 }
4855 }
4856
4857 Log(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster));
4858 ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored);
4859 NOREF(fIgnored);
4860 }
4861 }
4862}
4863
4864
4865/**
4866 * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU.
4867 *
4868 * @param idCpu Ignored.
4869 * @param pvUser1 Where to put the TSC.
4870 * @param pvUser2 Ignored.
4871 */
4872static DECLCALLBACK(void) supdrvDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
4873{
4874#if 1
4875 ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC());
4876#else
4877 *(uint64_t *)pvUser1 = ASMReadTSC();
4878#endif
4879}
4880
4881
4882/**
4883 * Determine if Async GIP mode is required because of TSC drift.
4884 *
4885 * When using the default/normal timer code it is essential that the time stamp counter
4886 * (TSC) runs never backwards, that is, a read operation to the counter should return
4887 * a bigger value than any previous read operation. This is guaranteed by the latest
4888 * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other
4889 * case we have to choose the asynchronous timer mode.
4890 *
4891 * @param poffMin Pointer to the determined difference between different cores.
4892 * @return false if the time stamp counters appear to be synchron, true otherwise.
4893 */
4894static bool supdrvDetermineAsyncTsc(uint64_t *poffMin)
4895{
4896 /*
4897 * Just iterate all the cpus 8 times and make sure that the TSC is
4898 * ever increasing. We don't bother taking TSC rollover into account.
4899 */
4900 RTCPUSET CpuSet;
4901 int iLastCpu = RTCpuLastIndex(RTMpGetSet(&CpuSet));
4902 int iCpu;
4903 int cLoops = 8;
4904 bool fAsync = false;
4905 int rc = VINF_SUCCESS;
4906 uint64_t offMax = 0;
4907 uint64_t offMin = ~(uint64_t)0;
4908 uint64_t PrevTsc = ASMReadTSC();
4909
4910 while (cLoops-- > 0)
4911 {
4912 for (iCpu = 0; iCpu <= iLastCpu; iCpu++)
4913 {
4914 uint64_t CurTsc;
4915 rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvDetermineAsyncTscWorker, &CurTsc, NULL);
4916 if (RT_SUCCESS(rc))
4917 {
4918 if (CurTsc <= PrevTsc)
4919 {
4920 fAsync = true;
4921 offMin = offMax = PrevTsc - CurTsc;
4922 Log(("supdrvDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n",
4923 iCpu, cLoops, CurTsc, PrevTsc));
4924 break;
4925 }
4926
4927 /* Gather statistics (except the first time). */
4928 if (iCpu != 0 || cLoops != 7)
4929 {
4930 uint64_t off = CurTsc - PrevTsc;
4931 if (off < offMin)
4932 offMin = off;
4933 if (off > offMax)
4934 offMax = off;
4935 Log2(("%d/%d: off=%llx\n", cLoops, iCpu, off));
4936 }
4937
4938 /* Next */
4939 PrevTsc = CurTsc;
4940 }
4941 else if (rc == VERR_NOT_SUPPORTED)
4942 break;
4943 else
4944 AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc));
4945 }
4946
4947 /* broke out of the loop. */
4948 if (iCpu <= iLastCpu)
4949 break;
4950 }
4951
4952 *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */
4953 Log(("supdrvDetermineAsyncTsc: returns %d; iLastCpu=%d rc=%d offMin=%llx offMax=%llx\n",
4954 fAsync, iLastCpu, rc, offMin, offMax));
4955#if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS)
4956 OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax));
4957#endif
4958 return fAsync;
4959}
4960
4961
4962/**
4963 * Determin the GIP TSC mode.
4964 *
4965 * @returns The most suitable TSC mode.
4966 * @param pDevExt Pointer to the device instance data.
4967 */
4968static SUPGIPMODE supdrvGipDeterminTscMode(PSUPDRVDEVEXT pDevExt)
4969{
4970 /*
4971 * On SMP we're faced with two problems:
4972 * (1) There might be a skew between the CPU, so that cpu0
4973 * returns a TSC that is sligtly different from cpu1.
4974 * (2) Power management (and other things) may cause the TSC
4975 * to run at a non-constant speed, and cause the speed
4976 * to be different on the cpus. This will result in (1).
4977 *
4978 * So, on SMP systems we'll have to select the ASYNC update method
4979 * if there are symphoms of these problems.
4980 */
4981 if (RTMpGetCount() > 1)
4982 {
4983 uint32_t uEAX, uEBX, uECX, uEDX;
4984 uint64_t u64DiffCoresIgnored;
4985
4986 /* Permit the user and/or the OS specfic bits to force async mode. */
4987 if (supdrvOSGetForcedAsyncTscMode(pDevExt))
4988 return SUPGIPMODE_ASYNC_TSC;
4989
4990 /* Try check for current differences between the cpus. */
4991 if (supdrvDetermineAsyncTsc(&u64DiffCoresIgnored))
4992 return SUPGIPMODE_ASYNC_TSC;
4993
4994 /*
4995 * If the CPU supports power management and is an AMD one we
4996 * won't trust it unless it has the TscInvariant bit is set.
4997 */
4998 /* Check for "AuthenticAMD" */
4999 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
5000 if ( uEAX >= 1
5001 && uEBX == X86_CPUID_VENDOR_AMD_EBX
5002 && uECX == X86_CPUID_VENDOR_AMD_ECX
5003 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
5004 {
5005 /* Check for APM support and that TscInvariant is cleared. */
5006 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
5007 if (uEAX >= 0x80000007)
5008 {
5009 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
5010 if ( !(uEDX & RT_BIT(8))/* TscInvariant */
5011 && (uEDX & 0x3e)) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */
5012 return SUPGIPMODE_ASYNC_TSC;
5013 }
5014 }
5015 }
5016 return SUPGIPMODE_SYNC_TSC;
5017}
5018
5019
5020
5021/**
5022 * Initializes the GIP data.
5023 *
5024 * @param pDevExt Pointer to the device instance data.
5025 * @param pGip Pointer to the read-write kernel mapping of the GIP.
5026 * @param HCPhys The physical address of the GIP.
5027 * @param u64NanoTS The current nanosecond timestamp.
5028 * @param uUpdateHz The update freqence.
5029 */
5030static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys, uint64_t u64NanoTS, unsigned uUpdateHz)
5031{
5032 unsigned i;
5033#ifdef DEBUG_DARWIN_GIP
5034 OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz));
5035#else
5036 LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz));
5037#endif
5038
5039 /*
5040 * Initialize the structure.
5041 */
5042 memset(pGip, 0, PAGE_SIZE);
5043 pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
5044 pGip->u32Version = SUPGLOBALINFOPAGE_VERSION;
5045 pGip->u32Mode = supdrvGipDeterminTscMode(pDevExt);
5046 pGip->u32UpdateHz = uUpdateHz;
5047 pGip->u32UpdateIntervalNS = 1000000000 / uUpdateHz;
5048 pGip->u64NanoTSLastUpdateHz = u64NanoTS;
5049
5050 for (i = 0; i < RT_ELEMENTS(pGip->aCPUs); i++)
5051 {
5052 pGip->aCPUs[i].u32TransactionId = 2;
5053 pGip->aCPUs[i].u64NanoTS = u64NanoTS;
5054 pGip->aCPUs[i].u64TSC = ASMReadTSC();
5055
5056 /*
5057 * We don't know the following values until we've executed updates.
5058 * So, we'll just pretend it's a 4 GHz CPU and adjust the history it on
5059 * the 2nd timer callout.
5060 */
5061 pGip->aCPUs[i].u64CpuHz = _4G + 1; /* tstGIP-2 depends on this. */
5062 pGip->aCPUs[i].u32UpdateIntervalTSC
5063 = pGip->aCPUs[i].au32TSCHistory[0]
5064 = pGip->aCPUs[i].au32TSCHistory[1]
5065 = pGip->aCPUs[i].au32TSCHistory[2]
5066 = pGip->aCPUs[i].au32TSCHistory[3]
5067 = pGip->aCPUs[i].au32TSCHistory[4]
5068 = pGip->aCPUs[i].au32TSCHistory[5]
5069 = pGip->aCPUs[i].au32TSCHistory[6]
5070 = pGip->aCPUs[i].au32TSCHistory[7]
5071 = /*pGip->aCPUs[i].u64CpuHz*/ _4G / uUpdateHz;
5072 }
5073
5074 /*
5075 * Link it to the device extension.
5076 */
5077 pDevExt->pGip = pGip;
5078 pDevExt->HCPhysGip = HCPhys;
5079 pDevExt->cGipUsers = 0;
5080}
5081
5082
5083/**
5084 * Invalidates the GIP data upon termination.
5085 *
5086 * @param pGip Pointer to the read-write kernel mapping of the GIP.
5087 */
5088static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
5089{
5090 unsigned i;
5091 pGip->u32Magic = 0;
5092 for (i = 0; i < RT_ELEMENTS(pGip->aCPUs); i++)
5093 {
5094 pGip->aCPUs[i].u64NanoTS = 0;
5095 pGip->aCPUs[i].u64TSC = 0;
5096 pGip->aCPUs[i].iTSCHistoryHead = 0;
5097 }
5098}
5099
5100
5101/**
5102 * Worker routine for supdrvGipUpdate and supdrvGipUpdatePerCpu that
5103 * updates all the per cpu data except the transaction id.
5104 *
5105 * @param pGip The GIP.
5106 * @param pGipCpu Pointer to the per cpu data.
5107 * @param u64NanoTS The current time stamp.
5108 * @param u64TSC The current TSC.
5109 * @param iTick The current timer tick.
5110 */
5111static void supdrvGipDoUpdateCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
5112{
5113 uint64_t u64TSCDelta;
5114 uint32_t u32UpdateIntervalTSC;
5115 uint32_t u32UpdateIntervalTSCSlack;
5116 unsigned iTSCHistoryHead;
5117 uint64_t u64CpuHz;
5118 uint32_t u32TransactionId;
5119
5120 /* Delta between this and the previous update. */
5121 ASMAtomicUoWriteU32(&pGipCpu->u32PrevUpdateIntervalNS, (uint32_t)(u64NanoTS - pGipCpu->u64NanoTS));
5122
5123 /*
5124 * Update the NanoTS.
5125 */
5126 ASMAtomicXchgU64(&pGipCpu->u64NanoTS, u64NanoTS);
5127
5128 /*
5129 * Calc TSC delta.
5130 */
5131 /** @todo validate the NanoTS delta, don't trust the OS to call us when it should... */
5132 u64TSCDelta = u64TSC - pGipCpu->u64TSC;
5133 ASMAtomicXchgU64(&pGipCpu->u64TSC, u64TSC);
5134
5135 if (u64TSCDelta >> 32)
5136 {
5137 u64TSCDelta = pGipCpu->u32UpdateIntervalTSC;
5138 pGipCpu->cErrors++;
5139 }
5140
5141 /*
5142 * On the 2nd and 3rd callout, reset the history with the current TSC
5143 * interval since the values entered by supdrvGipInit are totally off.
5144 * The interval on the 1st callout completely unreliable, the 2nd is a bit
5145 * better, while the 3rd should be most reliable.
5146 */
5147 u32TransactionId = pGipCpu->u32TransactionId;
5148 if (RT_UNLIKELY( ( u32TransactionId == 5
5149 || u32TransactionId == 7)
5150 && ( iTick == 2
5151 || iTick == 3) ))
5152 {
5153 unsigned i;
5154 for (i = 0; i < RT_ELEMENTS(pGipCpu->au32TSCHistory); i++)
5155 ASMAtomicUoWriteU32(&pGipCpu->au32TSCHistory[i], (uint32_t)u64TSCDelta);
5156 }
5157
5158 /*
5159 * TSC History.
5160 */
5161 Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8);
5162 iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7;
5163 ASMAtomicXchgU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead);
5164 ASMAtomicXchgU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
5165
5166 /*
5167 * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
5168 */
5169 if (pGip->u32UpdateHz >= 1000)
5170 {
5171 uint32_t u32;
5172 u32 = pGipCpu->au32TSCHistory[0];
5173 u32 += pGipCpu->au32TSCHistory[1];
5174 u32 += pGipCpu->au32TSCHistory[2];
5175 u32 += pGipCpu->au32TSCHistory[3];
5176 u32 >>= 2;
5177 u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4];
5178 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5];
5179 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6];
5180 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7];
5181 u32UpdateIntervalTSC >>= 2;
5182 u32UpdateIntervalTSC += u32;
5183 u32UpdateIntervalTSC >>= 1;
5184
5185 /* Value choosen for a 2GHz Athlon64 running linux 2.6.10/11, . */
5186 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
5187 }
5188 else if (pGip->u32UpdateHz >= 90)
5189 {
5190 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
5191 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
5192 u32UpdateIntervalTSC >>= 1;
5193
5194 /* value choosen on a 2GHz thinkpad running windows */
5195 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
5196 }
5197 else
5198 {
5199 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
5200
5201 /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
5202 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
5203 }
5204 ASMAtomicXchgU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
5205
5206 /*
5207 * CpuHz.
5208 */
5209 u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, pGip->u32UpdateHz);
5210 ASMAtomicXchgU64(&pGipCpu->u64CpuHz, u64CpuHz);
5211}
5212
5213
5214/**
5215 * Updates the GIP.
5216 *
5217 * @param pGip Pointer to the GIP.
5218 * @param u64NanoTS The current nanosecond timesamp.
5219 * @param u64TSC The current TSC timesamp.
5220 * @param iTick The current timer tick.
5221 */
5222static void supdrvGipUpdate(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
5223{
5224 /*
5225 * Determin the relevant CPU data.
5226 */
5227 PSUPGIPCPU pGipCpu;
5228 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
5229 pGipCpu = &pGip->aCPUs[0];
5230 else
5231 {
5232 unsigned iCpu = ASMGetApicId();
5233 if (RT_UNLIKELY(iCpu >= RT_ELEMENTS(pGip->aCPUs)))
5234 return;
5235 pGipCpu = &pGip->aCPUs[iCpu];
5236 }
5237
5238 /*
5239 * Start update transaction.
5240 */
5241 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
5242 {
5243 /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
5244 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
5245 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5246 pGipCpu->cErrors++;
5247 return;
5248 }
5249
5250 /*
5251 * Recalc the update frequency every 0x800th time.
5252 */
5253 if (!(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
5254 {
5255 if (pGip->u64NanoTSLastUpdateHz)
5256 {
5257#ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */
5258 uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
5259 uint32_t u32UpdateHz = (uint32_t)((UINT64_C(1000000000) * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
5260 if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
5261 {
5262 ASMAtomicXchgU32(&pGip->u32UpdateHz, u32UpdateHz);
5263 ASMAtomicXchgU32(&pGip->u32UpdateIntervalNS, 1000000000 / u32UpdateHz);
5264 }
5265#endif
5266 }
5267 ASMAtomicXchgU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS);
5268 }
5269
5270 /*
5271 * Update the data.
5272 */
5273 supdrvGipDoUpdateCpu(pGip, pGipCpu, u64NanoTS, u64TSC, iTick);
5274
5275 /*
5276 * Complete transaction.
5277 */
5278 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5279}
5280
5281
5282/**
5283 * Updates the per cpu GIP data for the calling cpu.
5284 *
5285 * @param pGip Pointer to the GIP.
5286 * @param u64NanoTS The current nanosecond timesamp.
5287 * @param u64TSC The current TSC timesamp.
5288 * @param iCpu The CPU index.
5289 * @param iTick The current timer tick.
5290 */
5291static void supdrvGipUpdatePerCpu(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS, uint64_t u64TSC, unsigned iCpu, uint64_t iTick)
5292{
5293 PSUPGIPCPU pGipCpu;
5294
5295 if (RT_LIKELY(iCpu < RT_ELEMENTS(pGip->aCPUs)))
5296 {
5297 pGipCpu = &pGip->aCPUs[iCpu];
5298
5299 /*
5300 * Start update transaction.
5301 */
5302 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
5303 {
5304 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
5305 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5306 pGipCpu->cErrors++;
5307 return;
5308 }
5309
5310 /*
5311 * Update the data.
5312 */
5313 supdrvGipDoUpdateCpu(pGip, pGipCpu, u64NanoTS, u64TSC, iTick);
5314
5315 /*
5316 * Complete transaction.
5317 */
5318 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5319 }
5320}
5321
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette