VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPDrv.c@ 35191

Last change on this file since 35191 was 35051, checked in by vboxsync, 14 years ago

warnings

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 204.8 KB
Line 
1/* $Revision: 35051 $ */
2/** @file
3 * VBoxDrv - The VirtualBox Support Driver - Common code.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27/*******************************************************************************
28* Header Files *
29*******************************************************************************/
30#define LOG_GROUP LOG_GROUP_SUP_DRV
31#define SUPDRV_AGNOSTIC
32#include "SUPDrvInternal.h"
33#ifndef PAGE_SHIFT
34# include <iprt/param.h>
35#endif
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/asm-math.h>
39#include <iprt/cpuset.h>
40#include <iprt/handletable.h>
41#include <iprt/mem.h>
42#include <iprt/mp.h>
43#include <iprt/power.h>
44#include <iprt/process.h>
45#include <iprt/semaphore.h>
46#include <iprt/spinlock.h>
47#include <iprt/thread.h>
48#include <iprt/uuid.h>
49#include <iprt/net.h>
50#include <iprt/crc.h>
51#include <iprt/string.h>
52#include <iprt/timer.h>
53#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
54# include <iprt/rand.h>
55# include <iprt/path.h>
56#endif
57
58#include <VBox/param.h>
59#include <VBox/log.h>
60#include <VBox/err.h>
61#include <VBox/hwacc_svm.h>
62#include <VBox/hwacc_vmx.h>
63#include <VBox/x86.h>
64
65#ifdef VBOX_WITH_DTRACE
66# include "SUPDrv-dtrace.h"
67#else
68# define VBOXDRV_SUPDRV_SESSION_CREATE(pvSession, fUser) do { } while (0)
69# define VBOXDRV_SUPDRV_SESSION_CLOSE(pvSession) do { } while (0)
70# define VBOXDRV_SUPDRV_IOCCLOSE(pvSession) do { } while (0)
71# define VBOXDRV_SUPDRV_IOCTL_ENTRY(pvSession, uIOCtl, pvReqHdr) do { } while (0)
72# define VBOXDRV_SUPDRV_IOCTL_RETURN(pvSession, uIOCtl, pvReqHdr, rcRet, rcReq) do { } while (0)
73#endif
74
75/*
76 * Logging assignments:
77 * Log - useful stuff, like failures.
78 * LogFlow - program flow, except the really noisy bits.
79 * Log2 - Cleanup.
80 * Log3 - Loader flow noise.
81 * Log4 - Call VMMR0 flow noise.
82 * Log5 - Native yet-to-be-defined noise.
83 * Log6 - Native ioctl flow noise.
84 *
85 * Logging requires BUILD_TYPE=debug and possibly changes to the logger
86 * instantiation in log-vbox.c(pp).
87 */
88
89
90/*******************************************************************************
91* Defined Constants And Macros *
92*******************************************************************************/
93/** The frequency by which we recalculate the u32UpdateHz and
94 * u32UpdateIntervalNS GIP members. The value must be a power of 2. */
95#define GIP_UPDATEHZ_RECALC_FREQ 0x800
96
97/** @def VBOX_SVN_REV
98 * The makefile should define this if it can. */
99#ifndef VBOX_SVN_REV
100# define VBOX_SVN_REV 0
101#endif
102
103#if 0 /* Don't start the GIP timers. Useful when debugging the IPRT timer code. */
104# define DO_NOT_START_GIP
105#endif
106
107
108/*******************************************************************************
109* Internal Functions *
110*******************************************************************************/
111static DECLCALLBACK(int) supdrvSessionObjHandleRetain(RTHANDLETABLE hHandleTable, void *pvObj, void *pvCtx, void *pvUser);
112static DECLCALLBACK(void) supdrvSessionObjHandleDelete(RTHANDLETABLE hHandleTable, uint32_t h, void *pvObj, void *pvCtx, void *pvUser);
113static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession);
114static int supdrvMemRelease(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, SUPDRVMEMREFTYPE eType);
115static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN pReq);
116static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD pReq);
117static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE pReq);
118static int supdrvIOCtl_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL pReq);
119static int supdrvIDC_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQGETSYM pReq);
120static int supdrvLdrSetVMMR0EPs(PSUPDRVDEVEXT pDevExt, void *pvVMMR0, void *pvVMMR0EntryInt, void *pvVMMR0EntryFast, void *pvVMMR0EntryEx);
121static void supdrvLdrUnsetVMMR0EPs(PSUPDRVDEVEXT pDevExt);
122static int supdrvLdrAddUsage(PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage);
123static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage);
124DECLINLINE(int) supdrvLdrLock(PSUPDRVDEVEXT pDevExt);
125DECLINLINE(int) supdrvLdrUnlock(PSUPDRVDEVEXT pDevExt);
126static int supdrvIOCtl_CallServiceModule(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPCALLSERVICE pReq);
127static int supdrvIOCtl_LoggerSettings(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLOGGERSETTINGS pReq);
128static int supdrvGipCreate(PSUPDRVDEVEXT pDevExt);
129static void supdrvGipDestroy(PSUPDRVDEVEXT pDevExt);
130static DECLCALLBACK(void) supdrvGipSyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
131static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
132static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser);
133static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys, uint64_t u64NanoTS, unsigned uUpdateHz);
134static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip);
135static void supdrvGipUpdate(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick);
136static void supdrvGipUpdatePerCpu(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS, uint64_t u64TSC, unsigned iCpu, uint64_t iTick);
137
138
139/*******************************************************************************
140* Global Variables *
141*******************************************************************************/
142DECLEXPORT(PSUPGLOBALINFOPAGE) g_pSUPGlobalInfoPage = NULL;
143
144/**
145 * Array of the R0 SUP API.
146 */
147static SUPFUNC g_aFunctions[] =
148{
149 /* name function */
150 /* Entries with absolute addresses determined at runtime, fixup
151 code makes ugly ASSUMPTIONS about the order here: */
152 { "SUPR0AbsIs64bit", (void *)0 },
153 { "SUPR0Abs64bitKernelCS", (void *)0 },
154 { "SUPR0Abs64bitKernelSS", (void *)0 },
155 { "SUPR0Abs64bitKernelDS", (void *)0 },
156 { "SUPR0AbsKernelCS", (void *)0 },
157 { "SUPR0AbsKernelSS", (void *)0 },
158 { "SUPR0AbsKernelDS", (void *)0 },
159 { "SUPR0AbsKernelES", (void *)0 },
160 { "SUPR0AbsKernelFS", (void *)0 },
161 { "SUPR0AbsKernelGS", (void *)0 },
162 /* Normal function pointers: */
163 { "SUPR0ComponentRegisterFactory", (void *)SUPR0ComponentRegisterFactory },
164 { "SUPR0ComponentDeregisterFactory", (void *)SUPR0ComponentDeregisterFactory },
165 { "SUPR0ComponentQueryFactory", (void *)SUPR0ComponentQueryFactory },
166 { "SUPR0ObjRegister", (void *)SUPR0ObjRegister },
167 { "SUPR0ObjAddRef", (void *)SUPR0ObjAddRef },
168 { "SUPR0ObjAddRefEx", (void *)SUPR0ObjAddRefEx },
169 { "SUPR0ObjRelease", (void *)SUPR0ObjRelease },
170 { "SUPR0ObjVerifyAccess", (void *)SUPR0ObjVerifyAccess },
171 { "SUPR0LockMem", (void *)SUPR0LockMem },
172 { "SUPR0UnlockMem", (void *)SUPR0UnlockMem },
173 { "SUPR0ContAlloc", (void *)SUPR0ContAlloc },
174 { "SUPR0ContFree", (void *)SUPR0ContFree },
175 { "SUPR0LowAlloc", (void *)SUPR0LowAlloc },
176 { "SUPR0LowFree", (void *)SUPR0LowFree },
177 { "SUPR0MemAlloc", (void *)SUPR0MemAlloc },
178 { "SUPR0MemGetPhys", (void *)SUPR0MemGetPhys },
179 { "SUPR0MemFree", (void *)SUPR0MemFree },
180 { "SUPR0PageAllocEx", (void *)SUPR0PageAllocEx },
181 { "SUPR0PageFree", (void *)SUPR0PageFree },
182 { "SUPR0Printf", (void *)SUPR0Printf }, /** @todo needs wrapping? */
183 { "SUPSemEventCreate", (void *)SUPSemEventCreate },
184 { "SUPSemEventClose", (void *)SUPSemEventClose },
185 { "SUPSemEventSignal", (void *)SUPSemEventSignal },
186 { "SUPSemEventWait", (void *)SUPSemEventWait },
187 { "SUPSemEventWaitNoResume", (void *)SUPSemEventWaitNoResume },
188 { "SUPSemEventWaitNsAbsIntr", (void *)SUPSemEventWaitNsAbsIntr },
189 { "SUPSemEventWaitNsRelIntr", (void *)SUPSemEventWaitNsRelIntr },
190 { "SUPSemEventGetResolution", (void *)SUPSemEventGetResolution },
191 { "SUPSemEventMultiCreate", (void *)SUPSemEventMultiCreate },
192 { "SUPSemEventMultiClose", (void *)SUPSemEventMultiClose },
193 { "SUPSemEventMultiSignal", (void *)SUPSemEventMultiSignal },
194 { "SUPSemEventMultiReset", (void *)SUPSemEventMultiReset },
195 { "SUPSemEventMultiWait", (void *)SUPSemEventMultiWait },
196 { "SUPSemEventMultiWaitNoResume", (void *)SUPSemEventMultiWaitNoResume },
197 { "SUPSemEventMultiWaitNsAbsIntr", (void *)SUPSemEventMultiWaitNsAbsIntr },
198 { "SUPSemEventMultiWaitNsRelIntr", (void *)SUPSemEventMultiWaitNsRelIntr },
199 { "SUPSemEventMultiGetResolution", (void *)SUPSemEventMultiGetResolution },
200 { "SUPR0GetPagingMode", (void *)SUPR0GetPagingMode },
201 { "SUPR0EnableVTx", (void *)SUPR0EnableVTx },
202 { "SUPGetGIP", (void *)SUPGetGIP },
203 { "g_pSUPGlobalInfoPage", (void *)&g_pSUPGlobalInfoPage },
204 { "RTMemAllocTag", (void *)RTMemAllocTag },
205 { "RTMemAllocZTag", (void *)RTMemAllocZTag },
206 { "RTMemAllocVarTag", (void *)RTMemAllocVarTag },
207 { "RTMemAllocZVarTag", (void *)RTMemAllocZVarTag },
208 { "RTMemFree", (void *)RTMemFree },
209 { "RTMemDupTag", (void *)RTMemDupTag },
210 { "RTMemDupExTag", (void *)RTMemDupExTag },
211 { "RTMemReallocTag", (void *)RTMemReallocTag },
212 { "RTR0MemObjAllocLowTag", (void *)RTR0MemObjAllocLowTag },
213 { "RTR0MemObjAllocPageTag", (void *)RTR0MemObjAllocPageTag },
214 { "RTR0MemObjAllocPhysTag", (void *)RTR0MemObjAllocPhysTag },
215 { "RTR0MemObjAllocPhysExTag", (void *)RTR0MemObjAllocPhysExTag },
216 { "RTR0MemObjAllocPhysNCTag", (void *)RTR0MemObjAllocPhysNCTag },
217 { "RTR0MemObjAllocContTag", (void *)RTR0MemObjAllocContTag },
218 { "RTR0MemObjEnterPhysTag", (void *)RTR0MemObjEnterPhysTag },
219 { "RTR0MemObjLockUserTag", (void *)RTR0MemObjLockUserTag },
220 { "RTR0MemObjMapKernelTag", (void *)RTR0MemObjMapKernelTag },
221 { "RTR0MemObjMapKernelExTag", (void *)RTR0MemObjMapKernelExTag },
222 { "RTR0MemObjMapUserTag", (void *)RTR0MemObjMapUserTag },
223 { "RTR0MemObjProtect", (void *)RTR0MemObjProtect },
224 { "RTR0MemObjAddress", (void *)RTR0MemObjAddress },
225 { "RTR0MemObjAddressR3", (void *)RTR0MemObjAddressR3 },
226 { "RTR0MemObjSize", (void *)RTR0MemObjSize },
227 { "RTR0MemObjIsMapping", (void *)RTR0MemObjIsMapping },
228 { "RTR0MemObjGetPagePhysAddr", (void *)RTR0MemObjGetPagePhysAddr },
229 { "RTR0MemObjFree", (void *)RTR0MemObjFree },
230 { "RTR0MemUserCopyFrom", (void *)RTR0MemUserCopyFrom },
231 { "RTR0MemUserCopyTo", (void *)RTR0MemUserCopyTo },
232 { "RTR0MemUserIsValidAddr", (void *)RTR0MemUserIsValidAddr },
233 { "RTR0MemKernelIsValidAddr", (void *)RTR0MemKernelIsValidAddr },
234 { "RTR0MemAreKrnlAndUsrDifferent", (void *)RTR0MemAreKrnlAndUsrDifferent },
235 { "RTSemMutexCreate", (void *)RTSemMutexCreate },
236 { "RTSemMutexRequest", (void *)RTSemMutexRequest },
237 { "RTSemMutexRequestDebug", (void *)RTSemMutexRequestDebug },
238 { "RTSemMutexRequestNoResume", (void *)RTSemMutexRequestNoResume },
239 { "RTSemMutexRequestNoResumeDebug", (void *)RTSemMutexRequestNoResumeDebug },
240 { "RTSemMutexRelease", (void *)RTSemMutexRelease },
241 { "RTSemMutexDestroy", (void *)RTSemMutexDestroy },
242 { "RTProcSelf", (void *)RTProcSelf },
243 { "RTR0ProcHandleSelf", (void *)RTR0ProcHandleSelf },
244 { "RTSemFastMutexCreate", (void *)RTSemFastMutexCreate },
245 { "RTSemFastMutexDestroy", (void *)RTSemFastMutexDestroy },
246 { "RTSemFastMutexRequest", (void *)RTSemFastMutexRequest },
247 { "RTSemFastMutexRelease", (void *)RTSemFastMutexRelease },
248 { "RTSemEventCreate", (void *)RTSemEventCreate },
249 { "RTSemEventSignal", (void *)RTSemEventSignal },
250 { "RTSemEventWait", (void *)RTSemEventWait },
251 { "RTSemEventWaitNoResume", (void *)RTSemEventWaitNoResume },
252 { "RTSemEventWaitEx", (void *)RTSemEventWaitEx },
253 { "RTSemEventWaitExDebug", (void *)RTSemEventWaitExDebug },
254 { "RTSemEventGetResolution", (void *)RTSemEventGetResolution },
255 { "RTSemEventDestroy", (void *)RTSemEventDestroy },
256 { "RTSemEventMultiCreate", (void *)RTSemEventMultiCreate },
257 { "RTSemEventMultiSignal", (void *)RTSemEventMultiSignal },
258 { "RTSemEventMultiReset", (void *)RTSemEventMultiReset },
259 { "RTSemEventMultiWait", (void *)RTSemEventMultiWait },
260 { "RTSemEventMultiWaitNoResume", (void *)RTSemEventMultiWaitNoResume },
261 { "RTSemEventMultiWaitEx", (void *)RTSemEventMultiWaitEx },
262 { "RTSemEventMultiWaitExDebug", (void *)RTSemEventMultiWaitExDebug },
263 { "RTSemEventMultiGetResolution", (void *)RTSemEventMultiGetResolution },
264 { "RTSemEventMultiDestroy", (void *)RTSemEventMultiDestroy },
265 { "RTSpinlockCreate", (void *)RTSpinlockCreate },
266 { "RTSpinlockDestroy", (void *)RTSpinlockDestroy },
267 { "RTSpinlockAcquire", (void *)RTSpinlockAcquire },
268 { "RTSpinlockRelease", (void *)RTSpinlockRelease },
269 { "RTSpinlockAcquireNoInts", (void *)RTSpinlockAcquireNoInts },
270 { "RTSpinlockReleaseNoInts", (void *)RTSpinlockReleaseNoInts },
271 { "RTTimeNanoTS", (void *)RTTimeNanoTS },
272 { "RTTimeMilliTS", (void *)RTTimeMilliTS },
273 { "RTTimeSystemNanoTS", (void *)RTTimeSystemNanoTS },
274 { "RTTimeSystemMilliTS", (void *)RTTimeSystemMilliTS },
275 { "RTThreadNativeSelf", (void *)RTThreadNativeSelf },
276 { "RTThreadSleep", (void *)RTThreadSleep },
277 { "RTThreadYield", (void *)RTThreadYield },
278#if 0 /* Thread APIs, Part 2. */
279 { "RTThreadSelf", (void *)RTThreadSelf },
280 { "RTThreadCreate", (void *)RTThreadCreate },
281 { "RTThreadGetNative", (void *)RTThreadGetNative },
282 { "RTThreadWait", (void *)RTThreadWait },
283 { "RTThreadWaitNoResume", (void *)RTThreadWaitNoResume },
284 { "RTThreadGetName", (void *)RTThreadGetName },
285 { "RTThreadSelfName", (void *)RTThreadSelfName },
286 { "RTThreadGetType", (void *)RTThreadGetType },
287 { "RTThreadUserSignal", (void *)RTThreadUserSignal },
288 { "RTThreadUserReset", (void *)RTThreadUserReset },
289 { "RTThreadUserWait", (void *)RTThreadUserWait },
290 { "RTThreadUserWaitNoResume", (void *)RTThreadUserWaitNoResume },
291#endif
292 { "RTThreadPreemptIsEnabled", (void *)RTThreadPreemptIsEnabled },
293 { "RTThreadPreemptIsPending", (void *)RTThreadPreemptIsPending },
294 { "RTThreadPreemptIsPendingTrusty", (void *)RTThreadPreemptIsPendingTrusty },
295 { "RTThreadPreemptIsPossible", (void *)RTThreadPreemptIsPossible },
296 { "RTThreadPreemptDisable", (void *)RTThreadPreemptDisable },
297 { "RTThreadPreemptRestore", (void *)RTThreadPreemptRestore },
298 { "RTThreadIsInInterrupt", (void *)RTThreadIsInInterrupt },
299 { "RTTimerCreate", (void *)RTTimerCreate },
300 { "RTTimerCreateEx", (void *)RTTimerCreateEx },
301 { "RTTimerDestroy", (void *)RTTimerDestroy },
302 { "RTTimerStart", (void *)RTTimerStart },
303 { "RTTimerStop", (void *)RTTimerStop },
304 { "RTTimerChangeInterval", (void *)RTTimerChangeInterval },
305 { "RTTimerGetSystemGranularity", (void *)RTTimerGetSystemGranularity },
306 { "RTTimerRequestSystemGranularity", (void *)RTTimerRequestSystemGranularity },
307 { "RTTimerReleaseSystemGranularity", (void *)RTTimerReleaseSystemGranularity },
308 { "RTTimerCanDoHighResolution", (void *)RTTimerCanDoHighResolution },
309
310 { "RTLogDefaultInstance", (void *)RTLogDefaultInstance },
311 { "RTMpCpuId", (void *)RTMpCpuId },
312 { "RTMpCpuIdFromSetIndex", (void *)RTMpCpuIdFromSetIndex },
313 { "RTMpCpuIdToSetIndex", (void *)RTMpCpuIdToSetIndex },
314 { "RTMpGetArraySize", (void *)RTMpGetArraySize },
315 { "RTMpIsCpuPossible", (void *)RTMpIsCpuPossible },
316 { "RTMpGetCount", (void *)RTMpGetCount },
317 { "RTMpGetMaxCpuId", (void *)RTMpGetMaxCpuId },
318 { "RTMpGetOnlineCount", (void *)RTMpGetOnlineCount },
319 { "RTMpGetOnlineSet", (void *)RTMpGetOnlineSet },
320 { "RTMpGetSet", (void *)RTMpGetSet },
321 { "RTMpIsCpuOnline", (void *)RTMpIsCpuOnline },
322 { "RTMpIsCpuWorkPending", (void *)RTMpIsCpuWorkPending },
323 { "RTMpOnAll", (void *)RTMpOnAll },
324 { "RTMpOnOthers", (void *)RTMpOnOthers },
325 { "RTMpOnSpecific", (void *)RTMpOnSpecific },
326 { "RTMpPokeCpu", (void *)RTMpPokeCpu },
327 { "RTPowerNotificationRegister", (void *)RTPowerNotificationRegister },
328 { "RTPowerNotificationDeregister", (void *)RTPowerNotificationDeregister },
329 { "RTLogRelDefaultInstance", (void *)RTLogRelDefaultInstance },
330 { "RTLogSetDefaultInstanceThread", (void *)RTLogSetDefaultInstanceThread },
331 { "RTLogLoggerExV", (void *)RTLogLoggerExV },
332 { "RTLogPrintfV", (void *)RTLogPrintfV },
333 { "RTR0AssertPanicSystem", (void *)RTR0AssertPanicSystem },
334 { "RTAssertMsg1", (void *)RTAssertMsg1 },
335 { "RTAssertMsg2V", (void *)RTAssertMsg2V },
336 { "RTAssertSetQuiet", (void *)RTAssertSetQuiet },
337 { "RTAssertMayPanic", (void *)RTAssertMayPanic },
338 { "RTAssertSetMayPanic", (void *)RTAssertSetMayPanic },
339 { "RTAssertAreQuiet", (void *)RTAssertAreQuiet },
340 { "RTStrFormat", (void *)RTStrFormat },
341 { "RTStrFormatNumber", (void *)RTStrFormatNumber },
342 { "RTStrFormatTypeDeregister", (void *)RTStrFormatTypeDeregister },
343 { "RTStrFormatTypeRegister", (void *)RTStrFormatTypeRegister },
344 { "RTStrFormatTypeSetUser", (void *)RTStrFormatTypeSetUser },
345 { "RTStrFormatV", (void *)RTStrFormatV },
346 { "RTStrPrintf", (void *)RTStrPrintf },
347 { "RTStrPrintfEx", (void *)RTStrPrintfEx },
348 { "RTStrPrintfExV", (void *)RTStrPrintfExV },
349 { "RTStrPrintfV", (void *)RTStrPrintfV },
350 { "RTHandleTableAllocWithCtx", (void *)RTHandleTableAllocWithCtx },
351 { "RTHandleTableCreate", (void *)RTHandleTableCreate },
352 { "RTHandleTableCreateEx", (void *)RTHandleTableCreateEx },
353 { "RTHandleTableDestroy", (void *)RTHandleTableDestroy },
354 { "RTHandleTableFreeWithCtx", (void *)RTHandleTableFreeWithCtx },
355 { "RTHandleTableLookupWithCtx", (void *)RTHandleTableLookupWithCtx },
356 { "RTNetIPv4AddDataChecksum", (void *)RTNetIPv4AddDataChecksum },
357 { "RTNetIPv4AddTCPChecksum", (void *)RTNetIPv4AddTCPChecksum },
358 { "RTNetIPv4AddUDPChecksum", (void *)RTNetIPv4AddUDPChecksum },
359 { "RTNetIPv4FinalizeChecksum", (void *)RTNetIPv4FinalizeChecksum },
360 { "RTNetIPv4HdrChecksum", (void *)RTNetIPv4HdrChecksum },
361 { "RTNetIPv4IsDHCPValid", (void *)RTNetIPv4IsDHCPValid },
362 { "RTNetIPv4IsHdrValid", (void *)RTNetIPv4IsHdrValid },
363 { "RTNetIPv4IsTCPSizeValid", (void *)RTNetIPv4IsTCPSizeValid },
364 { "RTNetIPv4IsTCPValid", (void *)RTNetIPv4IsTCPValid },
365 { "RTNetIPv4IsUDPSizeValid", (void *)RTNetIPv4IsUDPSizeValid },
366 { "RTNetIPv4IsUDPValid", (void *)RTNetIPv4IsUDPValid },
367 { "RTNetIPv4PseudoChecksum", (void *)RTNetIPv4PseudoChecksum },
368 { "RTNetIPv4PseudoChecksumBits", (void *)RTNetIPv4PseudoChecksumBits },
369 { "RTNetIPv4TCPChecksum", (void *)RTNetIPv4TCPChecksum },
370 { "RTNetIPv4UDPChecksum", (void *)RTNetIPv4UDPChecksum },
371 { "RTNetIPv6PseudoChecksum", (void *)RTNetIPv6PseudoChecksum },
372 { "RTNetIPv6PseudoChecksumBits", (void *)RTNetIPv6PseudoChecksumBits },
373 { "RTNetIPv6PseudoChecksumEx", (void *)RTNetIPv6PseudoChecksumEx },
374 { "RTNetTCPChecksum", (void *)RTNetTCPChecksum },
375 { "RTNetUDPChecksum", (void *)RTNetUDPChecksum },
376 { "RTCrc32", (void *)RTCrc32 },
377 { "RTCrc32Finish", (void *)RTCrc32Finish },
378 { "RTCrc32Process", (void *)RTCrc32Process },
379 { "RTCrc32Start", (void *)RTCrc32Start },
380};
381
382#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
383/**
384 * Drag in the rest of IRPT since we share it with the
385 * rest of the kernel modules on darwin.
386 */
387PFNRT g_apfnVBoxDrvIPRTDeps[] =
388{
389 /* VBoxNetFlt */
390 (PFNRT)RTErrConvertFromErrno,
391 (PFNRT)RTUuidCompare,
392 (PFNRT)RTUuidCompareStr,
393 (PFNRT)RTUuidFromStr,
394 (PFNRT)RTStrDupTag,
395 (PFNRT)RTStrFree,
396 /* VBoxNetAdp */
397 (PFNRT)RTRandBytes,
398 /* VBoxUSB */
399 (PFNRT)RTPathStripFilename,
400 NULL
401};
402#endif /* RT_OS_DARWIN || RT_OS_SOLARIS || RT_OS_SOLARIS */
403
404
405/**
406 * Initializes the device extentsion structure.
407 *
408 * @returns IPRT status code.
409 * @param pDevExt The device extension to initialize.
410 * @param cbSession The size of the session structure. The size of
411 * SUPDRVSESSION may be smaller when SUPDRV_AGNOSTIC is
412 * defined because we're skipping the OS specific members
413 * then.
414 */
415int VBOXCALL supdrvInitDevExt(PSUPDRVDEVEXT pDevExt, size_t cbSession)
416{
417 int rc;
418
419#ifdef SUPDRV_WITH_RELEASE_LOGGER
420 /*
421 * Create the release log.
422 */
423 static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES;
424 PRTLOGGER pRelLogger;
425 rc = RTLogCreate(&pRelLogger, 0 /* fFlags */, "all",
426 "VBOX_RELEASE_LOG", RT_ELEMENTS(s_apszGroups), s_apszGroups,
427 RTLOGDEST_STDOUT | RTLOGDEST_DEBUGGER, NULL);
428 if (RT_SUCCESS(rc))
429 RTLogRelSetDefaultInstance(pRelLogger);
430 /** @todo Add native hook for getting logger config parameters and setting
431 * them. On linux we should use the module parameter stuff... */
432#endif
433
434 /*
435 * Initialize it.
436 */
437 memset(pDevExt, 0, sizeof(*pDevExt));
438 rc = RTSpinlockCreate(&pDevExt->Spinlock);
439 if (RT_SUCCESS(rc))
440 {
441#ifdef SUPDRV_USE_MUTEX_FOR_LDR
442 rc = RTSemMutexCreate(&pDevExt->mtxLdr);
443#else
444 rc = RTSemFastMutexCreate(&pDevExt->mtxLdr);
445#endif
446 if (RT_SUCCESS(rc))
447 {
448 rc = RTSemFastMutexCreate(&pDevExt->mtxComponentFactory);
449 if (RT_SUCCESS(rc))
450 {
451#ifdef SUPDRV_USE_MUTEX_FOR_LDR
452 rc = RTSemMutexCreate(&pDevExt->mtxGip);
453#else
454 rc = RTSemFastMutexCreate(&pDevExt->mtxGip);
455#endif
456 if (RT_SUCCESS(rc))
457 {
458 rc = supdrvGipCreate(pDevExt);
459 if (RT_SUCCESS(rc))
460 {
461 pDevExt->u32Cookie = BIRD; /** @todo make this random? */
462 pDevExt->cbSession = (uint32_t)cbSession;
463
464 /*
465 * Fixup the absolute symbols.
466 *
467 * Because of the table indexing assumptions we'll have a little #ifdef orgy
468 * here rather than distributing this to OS specific files. At least for now.
469 */
470#ifdef RT_OS_DARWIN
471# if ARCH_BITS == 32
472 if (SUPR0GetPagingMode() >= SUPPAGINGMODE_AMD64)
473 {
474 g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
475 g_aFunctions[1].pfn = (void *)0x80; /* SUPR0Abs64bitKernelCS - KERNEL64_CS, seg.h */
476 g_aFunctions[2].pfn = (void *)0x88; /* SUPR0Abs64bitKernelSS - KERNEL64_SS, seg.h */
477 g_aFunctions[3].pfn = (void *)0x88; /* SUPR0Abs64bitKernelDS - KERNEL64_SS, seg.h */
478 }
479 else
480 g_aFunctions[0].pfn = g_aFunctions[1].pfn = g_aFunctions[2].pfn = g_aFunctions[4].pfn = (void *)0;
481 g_aFunctions[4].pfn = (void *)0x08; /* SUPR0AbsKernelCS - KERNEL_CS, seg.h */
482 g_aFunctions[5].pfn = (void *)0x10; /* SUPR0AbsKernelSS - KERNEL_DS, seg.h */
483 g_aFunctions[6].pfn = (void *)0x10; /* SUPR0AbsKernelDS - KERNEL_DS, seg.h */
484 g_aFunctions[7].pfn = (void *)0x10; /* SUPR0AbsKernelES - KERNEL_DS, seg.h */
485 g_aFunctions[8].pfn = (void *)0x10; /* SUPR0AbsKernelFS - KERNEL_DS, seg.h */
486 g_aFunctions[9].pfn = (void *)0x48; /* SUPR0AbsKernelGS - CPU_DATA_GS, seg.h */
487# else /* 64-bit darwin: */
488 g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
489 g_aFunctions[1].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0Abs64bitKernelCS */
490 g_aFunctions[2].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0Abs64bitKernelSS */
491 g_aFunctions[3].pfn = (void *)0; /* SUPR0Abs64bitKernelDS */
492 g_aFunctions[4].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0AbsKernelCS */
493 g_aFunctions[5].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0AbsKernelSS */
494 g_aFunctions[6].pfn = (void *)0; /* SUPR0AbsKernelDS */
495 g_aFunctions[7].pfn = (void *)0; /* SUPR0AbsKernelES */
496 g_aFunctions[8].pfn = (void *)0; /* SUPR0AbsKernelFS */
497 g_aFunctions[9].pfn = (void *)0; /* SUPR0AbsKernelGS */
498
499# endif
500#else /* !RT_OS_DARWIN */
501# if ARCH_BITS == 64
502 g_aFunctions[0].pfn = (void *)1; /* SUPR0AbsIs64bit */
503 g_aFunctions[1].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0Abs64bitKernelCS */
504 g_aFunctions[2].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0Abs64bitKernelSS */
505 g_aFunctions[3].pfn = (void *)(uintptr_t)ASMGetDS(); /* SUPR0Abs64bitKernelDS */
506# else
507 g_aFunctions[0].pfn = g_aFunctions[1].pfn = g_aFunctions[2].pfn = g_aFunctions[4].pfn = (void *)0;
508# endif
509 g_aFunctions[4].pfn = (void *)(uintptr_t)ASMGetCS(); /* SUPR0AbsKernelCS */
510 g_aFunctions[5].pfn = (void *)(uintptr_t)ASMGetSS(); /* SUPR0AbsKernelSS */
511 g_aFunctions[6].pfn = (void *)(uintptr_t)ASMGetDS(); /* SUPR0AbsKernelDS */
512 g_aFunctions[7].pfn = (void *)(uintptr_t)ASMGetES(); /* SUPR0AbsKernelES */
513 g_aFunctions[8].pfn = (void *)(uintptr_t)ASMGetFS(); /* SUPR0AbsKernelFS */
514 g_aFunctions[9].pfn = (void *)(uintptr_t)ASMGetGS(); /* SUPR0AbsKernelGS */
515#endif /* !RT_OS_DARWIN */
516 return VINF_SUCCESS;
517 }
518
519#ifdef SUPDRV_USE_MUTEX_FOR_GIP
520 RTSemMutexDestroy(pDevExt->mtxGip);
521 pDevExt->mtxGip = NIL_RTSEMMUTEX;
522#else
523 RTSemFastMutexDestroy(pDevExt->mtxGip);
524 pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
525#endif
526 }
527 RTSemFastMutexDestroy(pDevExt->mtxComponentFactory);
528 pDevExt->mtxComponentFactory = NIL_RTSEMFASTMUTEX;
529 }
530#ifdef SUPDRV_USE_MUTEX_FOR_LDR
531 RTSemMutexDestroy(pDevExt->mtxLdr);
532 pDevExt->mtxLdr = NIL_RTSEMMUTEX;
533#else
534 RTSemFastMutexDestroy(pDevExt->mtxLdr);
535 pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
536#endif
537 }
538 RTSpinlockDestroy(pDevExt->Spinlock);
539 pDevExt->Spinlock = NIL_RTSPINLOCK;
540 }
541#ifdef SUPDRV_WITH_RELEASE_LOGGER
542 RTLogDestroy(RTLogRelSetDefaultInstance(NULL));
543 RTLogDestroy(RTLogSetDefaultInstance(NULL));
544#endif
545
546 return rc;
547}
548
549
550/**
551 * Delete the device extension (e.g. cleanup members).
552 *
553 * @param pDevExt The device extension to delete.
554 */
555void VBOXCALL supdrvDeleteDevExt(PSUPDRVDEVEXT pDevExt)
556{
557 PSUPDRVOBJ pObj;
558 PSUPDRVUSAGE pUsage;
559
560 /*
561 * Kill mutexes and spinlocks.
562 */
563#ifdef SUPDRV_USE_MUTEX_FOR_GIP
564 RTSemMutexDestroy(pDevExt->mtxGip);
565 pDevExt->mtxGip = NIL_RTSEMMUTEX;
566#else
567 RTSemFastMutexDestroy(pDevExt->mtxGip);
568 pDevExt->mtxGip = NIL_RTSEMFASTMUTEX;
569#endif
570#ifdef SUPDRV_USE_MUTEX_FOR_LDR
571 RTSemMutexDestroy(pDevExt->mtxLdr);
572 pDevExt->mtxLdr = NIL_RTSEMMUTEX;
573#else
574 RTSemFastMutexDestroy(pDevExt->mtxLdr);
575 pDevExt->mtxLdr = NIL_RTSEMFASTMUTEX;
576#endif
577 RTSpinlockDestroy(pDevExt->Spinlock);
578 pDevExt->Spinlock = NIL_RTSPINLOCK;
579 RTSemFastMutexDestroy(pDevExt->mtxComponentFactory);
580 pDevExt->mtxComponentFactory = NIL_RTSEMFASTMUTEX;
581
582 /*
583 * Free lists.
584 */
585 /* objects. */
586 pObj = pDevExt->pObjs;
587 Assert(!pObj); /* (can trigger on forced unloads) */
588 pDevExt->pObjs = NULL;
589 while (pObj)
590 {
591 void *pvFree = pObj;
592 pObj = pObj->pNext;
593 RTMemFree(pvFree);
594 }
595
596 /* usage records. */
597 pUsage = pDevExt->pUsageFree;
598 pDevExt->pUsageFree = NULL;
599 while (pUsage)
600 {
601 void *pvFree = pUsage;
602 pUsage = pUsage->pNext;
603 RTMemFree(pvFree);
604 }
605
606 /* kill the GIP. */
607 supdrvGipDestroy(pDevExt);
608
609#ifdef SUPDRV_WITH_RELEASE_LOGGER
610 /* destroy the loggers. */
611 RTLogDestroy(RTLogRelSetDefaultInstance(NULL));
612 RTLogDestroy(RTLogSetDefaultInstance(NULL));
613#endif
614}
615
616
617/**
618 * Create session.
619 *
620 * @returns IPRT status code.
621 * @param pDevExt Device extension.
622 * @param fUser Flag indicating whether this is a user or kernel session.
623 * @param ppSession Where to store the pointer to the session data.
624 */
625int VBOXCALL supdrvCreateSession(PSUPDRVDEVEXT pDevExt, bool fUser, PSUPDRVSESSION *ppSession)
626{
627 /*
628 * Allocate memory for the session data.
629 */
630 int rc;
631 PSUPDRVSESSION pSession = *ppSession = (PSUPDRVSESSION)RTMemAllocZ(pDevExt->cbSession);
632 if (pSession)
633 {
634 /* Initialize session data. */
635 rc = RTSpinlockCreate(&pSession->Spinlock);
636 if (!rc)
637 {
638 rc = RTHandleTableCreateEx(&pSession->hHandleTable,
639 RTHANDLETABLE_FLAGS_LOCKED | RTHANDLETABLE_FLAGS_CONTEXT,
640 1 /*uBase*/, 32768 /*cMax*/, supdrvSessionObjHandleRetain, pSession);
641 if (RT_SUCCESS(rc))
642 {
643 Assert(pSession->Spinlock != NIL_RTSPINLOCK);
644 pSession->pDevExt = pDevExt;
645 pSession->u32Cookie = BIRD_INV;
646 /*pSession->pLdrUsage = NULL;
647 pSession->pVM = NULL;
648 pSession->pUsage = NULL;
649 pSession->pGip = NULL;
650 pSession->fGipReferenced = false;
651 pSession->Bundle.cUsed = 0; */
652 pSession->Uid = NIL_RTUID;
653 pSession->Gid = NIL_RTGID;
654 if (fUser)
655 {
656 pSession->Process = RTProcSelf();
657 pSession->R0Process = RTR0ProcHandleSelf();
658 }
659 else
660 {
661 pSession->Process = NIL_RTPROCESS;
662 pSession->R0Process = NIL_RTR0PROCESS;
663 }
664
665 VBOXDRV_SUPDRV_SESSION_CREATE(pSession, fUser);
666 LogFlow(("Created session %p initial cookie=%#x\n", pSession, pSession->u32Cookie));
667 return VINF_SUCCESS;
668 }
669
670 RTSpinlockDestroy(pSession->Spinlock);
671 }
672 RTMemFree(pSession);
673 *ppSession = NULL;
674 Log(("Failed to create spinlock, rc=%d!\n", rc));
675 }
676 else
677 rc = VERR_NO_MEMORY;
678
679 return rc;
680}
681
682
683/**
684 * Shared code for cleaning up a session.
685 *
686 * @param pDevExt Device extension.
687 * @param pSession Session data.
688 * This data will be freed by this routine.
689 */
690void VBOXCALL supdrvCloseSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
691{
692 VBOXDRV_SUPDRV_SESSION_CLOSE(pSession);
693
694 /*
695 * Cleanup the session first.
696 */
697 supdrvCleanupSession(pDevExt, pSession);
698
699 /*
700 * Free the rest of the session stuff.
701 */
702 RTSpinlockDestroy(pSession->Spinlock);
703 pSession->Spinlock = NIL_RTSPINLOCK;
704 pSession->pDevExt = NULL;
705 RTMemFree(pSession);
706 LogFlow(("supdrvCloseSession: returns\n"));
707}
708
709
710/**
711 * Shared code for cleaning up a session (but not quite freeing it).
712 *
713 * This is primarily intended for MAC OS X where we have to clean up the memory
714 * stuff before the file handle is closed.
715 *
716 * @param pDevExt Device extension.
717 * @param pSession Session data.
718 * This data will be freed by this routine.
719 */
720void VBOXCALL supdrvCleanupSession(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
721{
722 int rc;
723 PSUPDRVBUNDLE pBundle;
724 LogFlow(("supdrvCleanupSession: pSession=%p\n", pSession));
725
726 /*
727 * Remove logger instances related to this session.
728 */
729 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pSession);
730
731 /*
732 * Destroy the handle table.
733 */
734 rc = RTHandleTableDestroy(pSession->hHandleTable, supdrvSessionObjHandleDelete, pSession);
735 AssertRC(rc);
736 pSession->hHandleTable = NIL_RTHANDLETABLE;
737
738 /*
739 * Release object references made in this session.
740 * In theory there should be noone racing us in this session.
741 */
742 Log2(("release objects - start\n"));
743 if (pSession->pUsage)
744 {
745 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
746 PSUPDRVUSAGE pUsage;
747 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
748
749 while ((pUsage = pSession->pUsage) != NULL)
750 {
751 PSUPDRVOBJ pObj = pUsage->pObj;
752 pSession->pUsage = pUsage->pNext;
753
754 AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
755 if (pUsage->cUsage < pObj->cUsage)
756 {
757 pObj->cUsage -= pUsage->cUsage;
758 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
759 }
760 else
761 {
762 /* Destroy the object and free the record. */
763 if (pDevExt->pObjs == pObj)
764 pDevExt->pObjs = pObj->pNext;
765 else
766 {
767 PSUPDRVOBJ pObjPrev;
768 for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
769 if (pObjPrev->pNext == pObj)
770 {
771 pObjPrev->pNext = pObj->pNext;
772 break;
773 }
774 Assert(pObjPrev);
775 }
776 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
777
778 Log(("supdrvCleanupSession: destroying %p/%d (%p/%p) cpid=%RTproc pid=%RTproc dtor=%p\n",
779 pObj, pObj->enmType, pObj->pvUser1, pObj->pvUser2, pObj->CreatorProcess, RTProcSelf(), pObj->pfnDestructor));
780 if (pObj->pfnDestructor)
781 pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
782 RTMemFree(pObj);
783 }
784
785 /* free it and continue. */
786 RTMemFree(pUsage);
787
788 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
789 }
790
791 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
792 AssertMsg(!pSession->pUsage, ("Some buster reregistered an object during desturction!\n"));
793 }
794 Log2(("release objects - done\n"));
795
796 /*
797 * Release memory allocated in the session.
798 *
799 * We do not serialize this as we assume that the application will
800 * not allocated memory while closing the file handle object.
801 */
802 Log2(("freeing memory:\n"));
803 pBundle = &pSession->Bundle;
804 while (pBundle)
805 {
806 PSUPDRVBUNDLE pToFree;
807 unsigned i;
808
809 /*
810 * Check and unlock all entries in the bundle.
811 */
812 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
813 {
814 if (pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ)
815 {
816 Log2(("eType=%d pvR0=%p pvR3=%p cb=%ld\n", pBundle->aMem[i].eType, RTR0MemObjAddress(pBundle->aMem[i].MemObj),
817 (void *)RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3), (long)RTR0MemObjSize(pBundle->aMem[i].MemObj)));
818 if (pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ)
819 {
820 rc = RTR0MemObjFree(pBundle->aMem[i].MapObjR3, false);
821 AssertRC(rc); /** @todo figure out how to handle this. */
822 pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
823 }
824 rc = RTR0MemObjFree(pBundle->aMem[i].MemObj, true /* fFreeMappings */);
825 AssertRC(rc); /** @todo figure out how to handle this. */
826 pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
827 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
828 }
829 }
830
831 /*
832 * Advance and free previous bundle.
833 */
834 pToFree = pBundle;
835 pBundle = pBundle->pNext;
836
837 pToFree->pNext = NULL;
838 pToFree->cUsed = 0;
839 if (pToFree != &pSession->Bundle)
840 RTMemFree(pToFree);
841 }
842 Log2(("freeing memory - done\n"));
843
844 /*
845 * Deregister component factories.
846 */
847 RTSemFastMutexRequest(pDevExt->mtxComponentFactory);
848 Log2(("deregistering component factories:\n"));
849 if (pDevExt->pComponentFactoryHead)
850 {
851 PSUPDRVFACTORYREG pPrev = NULL;
852 PSUPDRVFACTORYREG pCur = pDevExt->pComponentFactoryHead;
853 while (pCur)
854 {
855 if (pCur->pSession == pSession)
856 {
857 /* unlink it */
858 PSUPDRVFACTORYREG pNext = pCur->pNext;
859 if (pPrev)
860 pPrev->pNext = pNext;
861 else
862 pDevExt->pComponentFactoryHead = pNext;
863
864 /* free it */
865 pCur->pNext = NULL;
866 pCur->pSession = NULL;
867 pCur->pFactory = NULL;
868 RTMemFree(pCur);
869
870 /* next */
871 pCur = pNext;
872 }
873 else
874 {
875 /* next */
876 pPrev = pCur;
877 pCur = pCur->pNext;
878 }
879 }
880 }
881 RTSemFastMutexRelease(pDevExt->mtxComponentFactory);
882 Log2(("deregistering component factories - done\n"));
883
884 /*
885 * Loaded images needs to be dereferenced and possibly freed up.
886 */
887 supdrvLdrLock(pDevExt);
888 Log2(("freeing images:\n"));
889 if (pSession->pLdrUsage)
890 {
891 PSUPDRVLDRUSAGE pUsage = pSession->pLdrUsage;
892 pSession->pLdrUsage = NULL;
893 while (pUsage)
894 {
895 void *pvFree = pUsage;
896 PSUPDRVLDRIMAGE pImage = pUsage->pImage;
897 if (pImage->cUsage > pUsage->cUsage)
898 pImage->cUsage -= pUsage->cUsage;
899 else
900 supdrvLdrFree(pDevExt, pImage);
901 pUsage->pImage = NULL;
902 pUsage = pUsage->pNext;
903 RTMemFree(pvFree);
904 }
905 }
906 supdrvLdrUnlock(pDevExt);
907 Log2(("freeing images - done\n"));
908
909 /*
910 * Unmap the GIP.
911 */
912 Log2(("umapping GIP:\n"));
913 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
914 {
915 SUPR0GipUnmap(pSession);
916 pSession->fGipReferenced = 0;
917 }
918 Log2(("umapping GIP - done\n"));
919}
920
921
922/**
923 * RTHandleTableDestroy callback used by supdrvCleanupSession.
924 *
925 * @returns IPRT status code, see SUPR0ObjAddRef.
926 * @param hHandleTable The handle table handle. Ignored.
927 * @param pvObj The object pointer.
928 * @param pvCtx Context, the handle type. Ignored.
929 * @param pvUser Session pointer.
930 */
931static DECLCALLBACK(int) supdrvSessionObjHandleRetain(RTHANDLETABLE hHandleTable, void *pvObj, void *pvCtx, void *pvUser)
932{
933 NOREF(pvCtx);
934 NOREF(hHandleTable);
935 return SUPR0ObjAddRefEx(pvObj, (PSUPDRVSESSION)pvUser, true /*fNoBlocking*/);
936}
937
938
939/**
940 * RTHandleTableDestroy callback used by supdrvCleanupSession.
941 *
942 * @param hHandleTable The handle table handle. Ignored.
943 * @param h The handle value. Ignored.
944 * @param pvObj The object pointer.
945 * @param pvCtx Context, the handle type. Ignored.
946 * @param pvUser Session pointer.
947 */
948static DECLCALLBACK(void) supdrvSessionObjHandleDelete(RTHANDLETABLE hHandleTable, uint32_t h, void *pvObj, void *pvCtx, void *pvUser)
949{
950 NOREF(pvCtx);
951 NOREF(h);
952 NOREF(hHandleTable);
953 SUPR0ObjRelease(pvObj, (PSUPDRVSESSION)pvUser);
954}
955
956
957/**
958 * Fast path I/O Control worker.
959 *
960 * @returns VBox status code that should be passed down to ring-3 unchanged.
961 * @param uIOCtl Function number.
962 * @param idCpu VMCPU id.
963 * @param pDevExt Device extention.
964 * @param pSession Session data.
965 */
966int VBOXCALL supdrvIOCtlFast(uintptr_t uIOCtl, VMCPUID idCpu, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession)
967{
968 /*
969 * We check the two prereqs after doing this only to allow the compiler to optimize things better.
970 */
971 if (RT_LIKELY(pSession->pVM && pDevExt->pfnVMMR0EntryFast))
972 {
973 switch (uIOCtl)
974 {
975 case SUP_IOCTL_FAST_DO_RAW_RUN:
976 pDevExt->pfnVMMR0EntryFast(pSession->pVM, idCpu, SUP_VMMR0_DO_RAW_RUN);
977 break;
978 case SUP_IOCTL_FAST_DO_HWACC_RUN:
979 pDevExt->pfnVMMR0EntryFast(pSession->pVM, idCpu, SUP_VMMR0_DO_HWACC_RUN);
980 break;
981 case SUP_IOCTL_FAST_DO_NOP:
982 pDevExt->pfnVMMR0EntryFast(pSession->pVM, idCpu, SUP_VMMR0_DO_NOP);
983 break;
984 default:
985 return VERR_INTERNAL_ERROR;
986 }
987 return VINF_SUCCESS;
988 }
989 return VERR_INTERNAL_ERROR;
990}
991
992
993/**
994 * Helper for supdrvIOCtl. Check if pszStr contains any character of pszChars.
995 * We would use strpbrk here if this function would be contained in the RedHat kABI white
996 * list, see http://www.kerneldrivers.org/RHEL5.
997 *
998 * @returns 1 if pszStr does contain any character of pszChars, 0 otherwise.
999 * @param pszStr String to check
1000 * @param pszChars Character set
1001 */
1002static int supdrvCheckInvalidChar(const char *pszStr, const char *pszChars)
1003{
1004 int chCur;
1005 while ((chCur = *pszStr++) != '\0')
1006 {
1007 int ch;
1008 const char *psz = pszChars;
1009 while ((ch = *psz++) != '\0')
1010 if (ch == chCur)
1011 return 1;
1012
1013 }
1014 return 0;
1015}
1016
1017
1018/**
1019 * I/O Control worker.
1020 *
1021 * @returns IPRT status code.
1022 * @retval VERR_INVALID_PARAMETER if the request is invalid.
1023 *
1024 * @param uIOCtl Function number.
1025 * @param pDevExt Device extention.
1026 * @param pSession Session data.
1027 * @param pReqHdr The request header.
1028 */
1029int VBOXCALL supdrvIOCtl(uintptr_t uIOCtl, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPREQHDR pReqHdr)
1030{
1031 VBOXDRV_SUPDRV_IOCTL_ENTRY(pSession, uIOCtl, pReqHdr);
1032
1033 /*
1034 * Validate the request.
1035 */
1036 /* this first check could probably be omitted as its also done by the OS specific code... */
1037 if (RT_UNLIKELY( (pReqHdr->fFlags & SUPREQHDR_FLAGS_MAGIC_MASK) != SUPREQHDR_FLAGS_MAGIC
1038 || pReqHdr->cbIn < sizeof(*pReqHdr)
1039 || pReqHdr->cbOut < sizeof(*pReqHdr)))
1040 {
1041 OSDBGPRINT(("vboxdrv: Bad ioctl request header; cbIn=%#lx cbOut=%#lx fFlags=%#lx\n",
1042 (long)pReqHdr->cbIn, (long)pReqHdr->cbOut, (long)pReqHdr->fFlags));
1043 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VINF_SUCCESS);
1044 return VERR_INVALID_PARAMETER;
1045 }
1046 if (RT_UNLIKELY(uIOCtl == SUP_IOCTL_COOKIE))
1047 {
1048 if (pReqHdr->u32Cookie != SUPCOOKIE_INITIAL_COOKIE)
1049 {
1050 OSDBGPRINT(("SUP_IOCTL_COOKIE: bad cookie %#lx\n", (long)pReqHdr->u32Cookie));
1051 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VINF_SUCCESS);
1052 return VERR_INVALID_PARAMETER;
1053 }
1054 }
1055 else if (RT_UNLIKELY( pReqHdr->u32Cookie != pDevExt->u32Cookie
1056 || pReqHdr->u32SessionCookie != pSession->u32Cookie))
1057 {
1058 OSDBGPRINT(("vboxdrv: bad cookie %#lx / %#lx.\n", (long)pReqHdr->u32Cookie, (long)pReqHdr->u32SessionCookie));
1059 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VINF_SUCCESS);
1060 return VERR_INVALID_PARAMETER;
1061 }
1062
1063/*
1064 * Validation macros
1065 */
1066#define REQ_CHECK_SIZES_EX(Name, cbInExpect, cbOutExpect) \
1067 do { \
1068 if (RT_UNLIKELY(pReqHdr->cbIn != (cbInExpect) || pReqHdr->cbOut != (cbOutExpect))) \
1069 { \
1070 OSDBGPRINT(( #Name ": Invalid input/output sizes. cbIn=%ld expected %ld. cbOut=%ld expected %ld.\n", \
1071 (long)pReq->Hdr.cbIn, (long)(cbInExpect), (long)pReq->Hdr.cbOut, (long)(cbOutExpect))); \
1072 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VERR_INVALID_PARAMETER); \
1073 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1074 } \
1075 } while (0)
1076
1077#define REQ_CHECK_SIZES(Name) REQ_CHECK_SIZES_EX(Name, Name ## _SIZE_IN, Name ## _SIZE_OUT)
1078
1079#define REQ_CHECK_SIZE_IN(Name, cbInExpect) \
1080 do { \
1081 if (RT_UNLIKELY(pReqHdr->cbIn != (cbInExpect))) \
1082 { \
1083 OSDBGPRINT(( #Name ": Invalid input/output sizes. cbIn=%ld expected %ld.\n", \
1084 (long)pReq->Hdr.cbIn, (long)(cbInExpect))); \
1085 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VERR_INVALID_PARAMETER); \
1086 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1087 } \
1088 } while (0)
1089
1090#define REQ_CHECK_SIZE_OUT(Name, cbOutExpect) \
1091 do { \
1092 if (RT_UNLIKELY(pReqHdr->cbOut != (cbOutExpect))) \
1093 { \
1094 OSDBGPRINT(( #Name ": Invalid input/output sizes. cbOut=%ld expected %ld.\n", \
1095 (long)pReq->Hdr.cbOut, (long)(cbOutExpect))); \
1096 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VERR_INVALID_PARAMETER); \
1097 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1098 } \
1099 } while (0)
1100
1101#define REQ_CHECK_EXPR(Name, expr) \
1102 do { \
1103 if (RT_UNLIKELY(!(expr))) \
1104 { \
1105 OSDBGPRINT(( #Name ": %s\n", #expr)); \
1106 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VERR_INVALID_PARAMETER); \
1107 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1108 } \
1109 } while (0)
1110
1111#define REQ_CHECK_EXPR_FMT(expr, fmt) \
1112 do { \
1113 if (RT_UNLIKELY(!(expr))) \
1114 { \
1115 OSDBGPRINT( fmt ); \
1116 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_INVALID_PARAMETER, VERR_INVALID_PARAMETER); \
1117 return pReq->Hdr.rc = VERR_INVALID_PARAMETER; \
1118 } \
1119 } while (0)
1120
1121
1122 /*
1123 * The switch.
1124 */
1125 switch (SUP_CTL_CODE_NO_SIZE(uIOCtl))
1126 {
1127 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_COOKIE):
1128 {
1129 PSUPCOOKIE pReq = (PSUPCOOKIE)pReqHdr;
1130 REQ_CHECK_SIZES(SUP_IOCTL_COOKIE);
1131 if (strncmp(pReq->u.In.szMagic, SUPCOOKIE_MAGIC, sizeof(pReq->u.In.szMagic)))
1132 {
1133 OSDBGPRINT(("SUP_IOCTL_COOKIE: invalid magic %.16s\n", pReq->u.In.szMagic));
1134 pReq->Hdr.rc = VERR_INVALID_MAGIC;
1135 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, VERR_INVALID_MAGIC);
1136 return 0;
1137 }
1138
1139#if 0
1140 /*
1141 * Call out to the OS specific code and let it do permission checks on the
1142 * client process.
1143 */
1144 if (!supdrvOSValidateClientProcess(pDevExt, pSession))
1145 {
1146 pReq->u.Out.u32Cookie = 0xffffffff;
1147 pReq->u.Out.u32SessionCookie = 0xffffffff;
1148 pReq->u.Out.u32SessionVersion = 0xffffffff;
1149 pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
1150 pReq->u.Out.pSession = NULL;
1151 pReq->u.Out.cFunctions = 0;
1152 pReq->Hdr.rc = VERR_PERMISSION_DENIED;
1153 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, VERR_PERMISSION_DENIED);
1154 return 0;
1155 }
1156#endif
1157
1158 /*
1159 * Match the version.
1160 * The current logic is very simple, match the major interface version.
1161 */
1162 if ( pReq->u.In.u32MinVersion > SUPDRV_IOC_VERSION
1163 || (pReq->u.In.u32MinVersion & 0xffff0000) != (SUPDRV_IOC_VERSION & 0xffff0000))
1164 {
1165 OSDBGPRINT(("SUP_IOCTL_COOKIE: Version mismatch. Requested: %#x Min: %#x Current: %#x\n",
1166 pReq->u.In.u32ReqVersion, pReq->u.In.u32MinVersion, SUPDRV_IOC_VERSION));
1167 pReq->u.Out.u32Cookie = 0xffffffff;
1168 pReq->u.Out.u32SessionCookie = 0xffffffff;
1169 pReq->u.Out.u32SessionVersion = 0xffffffff;
1170 pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
1171 pReq->u.Out.pSession = NULL;
1172 pReq->u.Out.cFunctions = 0;
1173 pReq->Hdr.rc = VERR_VERSION_MISMATCH;
1174 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1175 return 0;
1176 }
1177
1178 /*
1179 * Fill in return data and be gone.
1180 * N.B. The first one to change SUPDRV_IOC_VERSION shall makes sure that
1181 * u32SessionVersion <= u32ReqVersion!
1182 */
1183 /** @todo Somehow validate the client and negotiate a secure cookie... */
1184 pReq->u.Out.u32Cookie = pDevExt->u32Cookie;
1185 pReq->u.Out.u32SessionCookie = pSession->u32Cookie;
1186 pReq->u.Out.u32SessionVersion = SUPDRV_IOC_VERSION;
1187 pReq->u.Out.u32DriverVersion = SUPDRV_IOC_VERSION;
1188 pReq->u.Out.pSession = pSession;
1189 pReq->u.Out.cFunctions = sizeof(g_aFunctions) / sizeof(g_aFunctions[0]);
1190 pReq->Hdr.rc = VINF_SUCCESS;
1191 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1192 return 0;
1193 }
1194
1195 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_QUERY_FUNCS(0)):
1196 {
1197 /* validate */
1198 PSUPQUERYFUNCS pReq = (PSUPQUERYFUNCS)pReqHdr;
1199 REQ_CHECK_SIZES_EX(SUP_IOCTL_QUERY_FUNCS, SUP_IOCTL_QUERY_FUNCS_SIZE_IN, SUP_IOCTL_QUERY_FUNCS_SIZE_OUT(RT_ELEMENTS(g_aFunctions)));
1200
1201 /* execute */
1202 pReq->u.Out.cFunctions = RT_ELEMENTS(g_aFunctions);
1203 memcpy(&pReq->u.Out.aFunctions[0], g_aFunctions, sizeof(g_aFunctions));
1204 pReq->Hdr.rc = VINF_SUCCESS;
1205 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1206 return 0;
1207 }
1208
1209 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_LOCK):
1210 {
1211 /* validate */
1212 PSUPPAGELOCK pReq = (PSUPPAGELOCK)pReqHdr;
1213 REQ_CHECK_SIZE_IN(SUP_IOCTL_PAGE_LOCK, SUP_IOCTL_PAGE_LOCK_SIZE_IN);
1214 REQ_CHECK_SIZE_OUT(SUP_IOCTL_PAGE_LOCK, SUP_IOCTL_PAGE_LOCK_SIZE_OUT(pReq->u.In.cPages));
1215 REQ_CHECK_EXPR(SUP_IOCTL_PAGE_LOCK, pReq->u.In.cPages > 0);
1216 REQ_CHECK_EXPR(SUP_IOCTL_PAGE_LOCK, pReq->u.In.pvR3 >= PAGE_SIZE);
1217
1218 /* execute */
1219 pReq->Hdr.rc = SUPR0LockMem(pSession, pReq->u.In.pvR3, pReq->u.In.cPages, &pReq->u.Out.aPages[0]);
1220 if (RT_FAILURE(pReq->Hdr.rc))
1221 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1222 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1223 return 0;
1224 }
1225
1226 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_UNLOCK):
1227 {
1228 /* validate */
1229 PSUPPAGEUNLOCK pReq = (PSUPPAGEUNLOCK)pReqHdr;
1230 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_UNLOCK);
1231
1232 /* execute */
1233 pReq->Hdr.rc = SUPR0UnlockMem(pSession, pReq->u.In.pvR3);
1234 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1235 return 0;
1236 }
1237
1238 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CONT_ALLOC):
1239 {
1240 /* validate */
1241 PSUPCONTALLOC pReq = (PSUPCONTALLOC)pReqHdr;
1242 REQ_CHECK_SIZES(SUP_IOCTL_CONT_ALLOC);
1243
1244 /* execute */
1245 pReq->Hdr.rc = SUPR0ContAlloc(pSession, pReq->u.In.cPages, &pReq->u.Out.pvR0, &pReq->u.Out.pvR3, &pReq->u.Out.HCPhys);
1246 if (RT_FAILURE(pReq->Hdr.rc))
1247 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1248 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1249 return 0;
1250 }
1251
1252 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CONT_FREE):
1253 {
1254 /* validate */
1255 PSUPCONTFREE pReq = (PSUPCONTFREE)pReqHdr;
1256 REQ_CHECK_SIZES(SUP_IOCTL_CONT_FREE);
1257
1258 /* execute */
1259 pReq->Hdr.rc = SUPR0ContFree(pSession, (RTHCUINTPTR)pReq->u.In.pvR3);
1260 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1261 return 0;
1262 }
1263
1264 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_OPEN):
1265 {
1266 /* validate */
1267 PSUPLDROPEN pReq = (PSUPLDROPEN)pReqHdr;
1268 REQ_CHECK_SIZES(SUP_IOCTL_LDR_OPEN);
1269 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageWithTabs > 0);
1270 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageWithTabs < 16*_1M);
1271 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageBits > 0);
1272 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageBits > 0);
1273 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.cbImageBits < pReq->u.In.cbImageWithTabs);
1274 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, pReq->u.In.szName[0]);
1275 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, RTStrEnd(pReq->u.In.szName, sizeof(pReq->u.In.szName)));
1276 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, !supdrvCheckInvalidChar(pReq->u.In.szName, ";:()[]{}/\\|&*%#@!~`\"'"));
1277 REQ_CHECK_EXPR(SUP_IOCTL_LDR_OPEN, RTStrEnd(pReq->u.In.szFilename, sizeof(pReq->u.In.szFilename)));
1278
1279 /* execute */
1280 pReq->Hdr.rc = supdrvIOCtl_LdrOpen(pDevExt, pSession, pReq);
1281 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1282 return 0;
1283 }
1284
1285 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_LOAD):
1286 {
1287 /* validate */
1288 PSUPLDRLOAD pReq = (PSUPLDRLOAD)pReqHdr;
1289 REQ_CHECK_EXPR(Name, pReq->Hdr.cbIn >= sizeof(*pReq));
1290 REQ_CHECK_SIZES_EX(SUP_IOCTL_LDR_LOAD, SUP_IOCTL_LDR_LOAD_SIZE_IN(pReq->u.In.cbImageWithTabs), SUP_IOCTL_LDR_LOAD_SIZE_OUT);
1291 REQ_CHECK_EXPR(SUP_IOCTL_LDR_LOAD, pReq->u.In.cSymbols <= 16384);
1292 REQ_CHECK_EXPR_FMT( !pReq->u.In.cSymbols
1293 || ( pReq->u.In.offSymbols < pReq->u.In.cbImageWithTabs
1294 && pReq->u.In.offSymbols + pReq->u.In.cSymbols * sizeof(SUPLDRSYM) <= pReq->u.In.cbImageWithTabs),
1295 ("SUP_IOCTL_LDR_LOAD: offSymbols=%#lx cSymbols=%#lx cbImageWithTabs=%#lx\n", (long)pReq->u.In.offSymbols,
1296 (long)pReq->u.In.cSymbols, (long)pReq->u.In.cbImageWithTabs));
1297 REQ_CHECK_EXPR_FMT( !pReq->u.In.cbStrTab
1298 || ( pReq->u.In.offStrTab < pReq->u.In.cbImageWithTabs
1299 && pReq->u.In.offStrTab + pReq->u.In.cbStrTab <= pReq->u.In.cbImageWithTabs
1300 && pReq->u.In.cbStrTab <= pReq->u.In.cbImageWithTabs),
1301 ("SUP_IOCTL_LDR_LOAD: offStrTab=%#lx cbStrTab=%#lx cbImageWithTabs=%#lx\n", (long)pReq->u.In.offStrTab,
1302 (long)pReq->u.In.cbStrTab, (long)pReq->u.In.cbImageWithTabs));
1303
1304 if (pReq->u.In.cSymbols)
1305 {
1306 uint32_t i;
1307 PSUPLDRSYM paSyms = (PSUPLDRSYM)&pReq->u.In.abImage[pReq->u.In.offSymbols];
1308 for (i = 0; i < pReq->u.In.cSymbols; i++)
1309 {
1310 REQ_CHECK_EXPR_FMT(paSyms[i].offSymbol < pReq->u.In.cbImageWithTabs,
1311 ("SUP_IOCTL_LDR_LOAD: sym #%ld: symb off %#lx (max=%#lx)\n", (long)i, (long)paSyms[i].offSymbol, (long)pReq->u.In.cbImageWithTabs));
1312 REQ_CHECK_EXPR_FMT(paSyms[i].offName < pReq->u.In.cbStrTab,
1313 ("SUP_IOCTL_LDR_LOAD: sym #%ld: name off %#lx (max=%#lx)\n", (long)i, (long)paSyms[i].offName, (long)pReq->u.In.cbImageWithTabs));
1314 REQ_CHECK_EXPR_FMT(RTStrEnd((char const *)&pReq->u.In.abImage[pReq->u.In.offStrTab + paSyms[i].offName],
1315 pReq->u.In.cbStrTab - paSyms[i].offName),
1316 ("SUP_IOCTL_LDR_LOAD: sym #%ld: unterminated name! (%#lx / %#lx)\n", (long)i, (long)paSyms[i].offName, (long)pReq->u.In.cbImageWithTabs));
1317 }
1318 }
1319
1320 /* execute */
1321 pReq->Hdr.rc = supdrvIOCtl_LdrLoad(pDevExt, pSession, pReq);
1322 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1323 return 0;
1324 }
1325
1326 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_FREE):
1327 {
1328 /* validate */
1329 PSUPLDRFREE pReq = (PSUPLDRFREE)pReqHdr;
1330 REQ_CHECK_SIZES(SUP_IOCTL_LDR_FREE);
1331
1332 /* execute */
1333 pReq->Hdr.rc = supdrvIOCtl_LdrFree(pDevExt, pSession, pReq);
1334 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1335 return 0;
1336 }
1337
1338 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LDR_GET_SYMBOL):
1339 {
1340 /* validate */
1341 PSUPLDRGETSYMBOL pReq = (PSUPLDRGETSYMBOL)pReqHdr;
1342 REQ_CHECK_SIZES(SUP_IOCTL_LDR_GET_SYMBOL);
1343 REQ_CHECK_EXPR(SUP_IOCTL_LDR_GET_SYMBOL, RTStrEnd(pReq->u.In.szSymbol, sizeof(pReq->u.In.szSymbol)));
1344
1345 /* execute */
1346 pReq->Hdr.rc = supdrvIOCtl_LdrGetSymbol(pDevExt, pSession, pReq);
1347 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1348 return 0;
1349 }
1350
1351 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CALL_VMMR0(0)):
1352 {
1353 /* validate */
1354 PSUPCALLVMMR0 pReq = (PSUPCALLVMMR0)pReqHdr;
1355 Log4(("SUP_IOCTL_CALL_VMMR0: op=%u in=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1356 pReq->u.In.uOperation, pReq->Hdr.cbIn, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1357
1358 if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_VMMR0_SIZE(0))
1359 {
1360 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_VMMR0, SUP_IOCTL_CALL_VMMR0_SIZE_IN(0), SUP_IOCTL_CALL_VMMR0_SIZE_OUT(0));
1361
1362 /* execute */
1363 if (RT_LIKELY(pDevExt->pfnVMMR0EntryEx))
1364 pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(pReq->u.In.pVMR0, pReq->u.In.idCpu, pReq->u.In.uOperation, NULL, pReq->u.In.u64Arg, pSession);
1365 else
1366 pReq->Hdr.rc = VERR_WRONG_ORDER;
1367 }
1368 else
1369 {
1370 PSUPVMMR0REQHDR pVMMReq = (PSUPVMMR0REQHDR)&pReq->abReqPkt[0];
1371 REQ_CHECK_EXPR_FMT(pReq->Hdr.cbIn >= SUP_IOCTL_CALL_VMMR0_SIZE(sizeof(SUPVMMR0REQHDR)),
1372 ("SUP_IOCTL_CALL_VMMR0: cbIn=%#x < %#lx\n", pReq->Hdr.cbIn, SUP_IOCTL_CALL_VMMR0_SIZE(sizeof(SUPVMMR0REQHDR))));
1373 REQ_CHECK_EXPR(SUP_IOCTL_CALL_VMMR0, pVMMReq->u32Magic == SUPVMMR0REQHDR_MAGIC);
1374 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_VMMR0, SUP_IOCTL_CALL_VMMR0_SIZE_IN(pVMMReq->cbReq), SUP_IOCTL_CALL_VMMR0_SIZE_OUT(pVMMReq->cbReq));
1375
1376 /* execute */
1377 if (RT_LIKELY(pDevExt->pfnVMMR0EntryEx))
1378 pReq->Hdr.rc = pDevExt->pfnVMMR0EntryEx(pReq->u.In.pVMR0, pReq->u.In.idCpu, pReq->u.In.uOperation, pVMMReq, pReq->u.In.u64Arg, pSession);
1379 else
1380 pReq->Hdr.rc = VERR_WRONG_ORDER;
1381 }
1382
1383 if ( RT_FAILURE(pReq->Hdr.rc)
1384 && pReq->Hdr.rc != VERR_INTERRUPTED
1385 && pReq->Hdr.rc != VERR_TIMEOUT)
1386 Log(("SUP_IOCTL_CALL_VMMR0: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1387 pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1388 else
1389 Log4(("SUP_IOCTL_CALL_VMMR0: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1390 pReq->Hdr.rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1391 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1392 return 0;
1393 }
1394
1395 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GET_PAGING_MODE):
1396 {
1397 /* validate */
1398 PSUPGETPAGINGMODE pReq = (PSUPGETPAGINGMODE)pReqHdr;
1399 REQ_CHECK_SIZES(SUP_IOCTL_GET_PAGING_MODE);
1400
1401 /* execute */
1402 pReq->Hdr.rc = VINF_SUCCESS;
1403 pReq->u.Out.enmMode = SUPR0GetPagingMode();
1404 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1405 return 0;
1406 }
1407
1408 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOW_ALLOC):
1409 {
1410 /* validate */
1411 PSUPLOWALLOC pReq = (PSUPLOWALLOC)pReqHdr;
1412 REQ_CHECK_EXPR(SUP_IOCTL_LOW_ALLOC, pReq->Hdr.cbIn <= SUP_IOCTL_LOW_ALLOC_SIZE_IN);
1413 REQ_CHECK_SIZES_EX(SUP_IOCTL_LOW_ALLOC, SUP_IOCTL_LOW_ALLOC_SIZE_IN, SUP_IOCTL_LOW_ALLOC_SIZE_OUT(pReq->u.In.cPages));
1414
1415 /* execute */
1416 pReq->Hdr.rc = SUPR0LowAlloc(pSession, pReq->u.In.cPages, &pReq->u.Out.pvR0, &pReq->u.Out.pvR3, &pReq->u.Out.aPages[0]);
1417 if (RT_FAILURE(pReq->Hdr.rc))
1418 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1419 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1420 return 0;
1421 }
1422
1423 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOW_FREE):
1424 {
1425 /* validate */
1426 PSUPLOWFREE pReq = (PSUPLOWFREE)pReqHdr;
1427 REQ_CHECK_SIZES(SUP_IOCTL_LOW_FREE);
1428
1429 /* execute */
1430 pReq->Hdr.rc = SUPR0LowFree(pSession, (RTHCUINTPTR)pReq->u.In.pvR3);
1431 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1432 return 0;
1433 }
1434
1435 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GIP_MAP):
1436 {
1437 /* validate */
1438 PSUPGIPMAP pReq = (PSUPGIPMAP)pReqHdr;
1439 REQ_CHECK_SIZES(SUP_IOCTL_GIP_MAP);
1440
1441 /* execute */
1442 pReq->Hdr.rc = SUPR0GipMap(pSession, &pReq->u.Out.pGipR3, &pReq->u.Out.HCPhysGip);
1443 if (RT_SUCCESS(pReq->Hdr.rc))
1444 pReq->u.Out.pGipR0 = pDevExt->pGip;
1445 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1446 return 0;
1447 }
1448
1449 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_GIP_UNMAP):
1450 {
1451 /* validate */
1452 PSUPGIPUNMAP pReq = (PSUPGIPUNMAP)pReqHdr;
1453 REQ_CHECK_SIZES(SUP_IOCTL_GIP_UNMAP);
1454
1455 /* execute */
1456 pReq->Hdr.rc = SUPR0GipUnmap(pSession);
1457 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1458 return 0;
1459 }
1460
1461 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SET_VM_FOR_FAST):
1462 {
1463 /* validate */
1464 PSUPSETVMFORFAST pReq = (PSUPSETVMFORFAST)pReqHdr;
1465 REQ_CHECK_SIZES(SUP_IOCTL_SET_VM_FOR_FAST);
1466 REQ_CHECK_EXPR_FMT( !pReq->u.In.pVMR0
1467 || ( VALID_PTR(pReq->u.In.pVMR0)
1468 && !((uintptr_t)pReq->u.In.pVMR0 & (PAGE_SIZE - 1))),
1469 ("SUP_IOCTL_SET_VM_FOR_FAST: pVMR0=%p!\n", pReq->u.In.pVMR0));
1470 /* execute */
1471 pSession->pVM = pReq->u.In.pVMR0;
1472 pReq->Hdr.rc = VINF_SUCCESS;
1473 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1474 return 0;
1475 }
1476
1477 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_ALLOC_EX):
1478 {
1479 /* validate */
1480 PSUPPAGEALLOCEX pReq = (PSUPPAGEALLOCEX)pReqHdr;
1481 REQ_CHECK_EXPR(SUP_IOCTL_PAGE_ALLOC_EX, pReq->Hdr.cbIn <= SUP_IOCTL_PAGE_ALLOC_EX_SIZE_IN);
1482 REQ_CHECK_SIZES_EX(SUP_IOCTL_PAGE_ALLOC_EX, SUP_IOCTL_PAGE_ALLOC_EX_SIZE_IN, SUP_IOCTL_PAGE_ALLOC_EX_SIZE_OUT(pReq->u.In.cPages));
1483 REQ_CHECK_EXPR_FMT(pReq->u.In.fKernelMapping || pReq->u.In.fUserMapping,
1484 ("SUP_IOCTL_PAGE_ALLOC_EX: No mapping requested!\n"));
1485 REQ_CHECK_EXPR_FMT(pReq->u.In.fUserMapping,
1486 ("SUP_IOCTL_PAGE_ALLOC_EX: Must have user mapping!\n"));
1487 REQ_CHECK_EXPR_FMT(!pReq->u.In.fReserved0 && !pReq->u.In.fReserved1,
1488 ("SUP_IOCTL_PAGE_ALLOC_EX: fReserved0=%d fReserved1=%d\n", pReq->u.In.fReserved0, pReq->u.In.fReserved1));
1489
1490 /* execute */
1491 pReq->Hdr.rc = SUPR0PageAllocEx(pSession, pReq->u.In.cPages, 0 /* fFlags */,
1492 pReq->u.In.fUserMapping ? &pReq->u.Out.pvR3 : NULL,
1493 pReq->u.In.fKernelMapping ? &pReq->u.Out.pvR0 : NULL,
1494 &pReq->u.Out.aPages[0]);
1495 if (RT_FAILURE(pReq->Hdr.rc))
1496 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1497 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1498 return 0;
1499 }
1500
1501 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_MAP_KERNEL):
1502 {
1503 /* validate */
1504 PSUPPAGEMAPKERNEL pReq = (PSUPPAGEMAPKERNEL)pReqHdr;
1505 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_MAP_KERNEL);
1506 REQ_CHECK_EXPR_FMT(!pReq->u.In.fFlags, ("SUP_IOCTL_PAGE_MAP_KERNEL: fFlags=%#x! MBZ\n", pReq->u.In.fFlags));
1507 REQ_CHECK_EXPR_FMT(!(pReq->u.In.offSub & PAGE_OFFSET_MASK), ("SUP_IOCTL_PAGE_MAP_KERNEL: offSub=%#x\n", pReq->u.In.offSub));
1508 REQ_CHECK_EXPR_FMT(pReq->u.In.cbSub && !(pReq->u.In.cbSub & PAGE_OFFSET_MASK),
1509 ("SUP_IOCTL_PAGE_MAP_KERNEL: cbSub=%#x\n", pReq->u.In.cbSub));
1510
1511 /* execute */
1512 pReq->Hdr.rc = SUPR0PageMapKernel(pSession, pReq->u.In.pvR3, pReq->u.In.offSub, pReq->u.In.cbSub,
1513 pReq->u.In.fFlags, &pReq->u.Out.pvR0);
1514 if (RT_FAILURE(pReq->Hdr.rc))
1515 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1516 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1517 return 0;
1518 }
1519
1520 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_PROTECT):
1521 {
1522 /* validate */
1523 PSUPPAGEPROTECT pReq = (PSUPPAGEPROTECT)pReqHdr;
1524 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_PROTECT);
1525 REQ_CHECK_EXPR_FMT(!(pReq->u.In.fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_NONE)),
1526 ("SUP_IOCTL_PAGE_PROTECT: fProt=%#x!\n", pReq->u.In.fProt));
1527 REQ_CHECK_EXPR_FMT(!(pReq->u.In.offSub & PAGE_OFFSET_MASK), ("SUP_IOCTL_PAGE_PROTECT: offSub=%#x\n", pReq->u.In.offSub));
1528 REQ_CHECK_EXPR_FMT(pReq->u.In.cbSub && !(pReq->u.In.cbSub & PAGE_OFFSET_MASK),
1529 ("SUP_IOCTL_PAGE_PROTECT: cbSub=%#x\n", pReq->u.In.cbSub));
1530
1531 /* execute */
1532 pReq->Hdr.rc = SUPR0PageProtect(pSession, pReq->u.In.pvR3, pReq->u.In.pvR0, pReq->u.In.offSub, pReq->u.In.cbSub, pReq->u.In.fProt);
1533 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1534 return 0;
1535 }
1536
1537 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_PAGE_FREE):
1538 {
1539 /* validate */
1540 PSUPPAGEFREE pReq = (PSUPPAGEFREE)pReqHdr;
1541 REQ_CHECK_SIZES(SUP_IOCTL_PAGE_FREE);
1542
1543 /* execute */
1544 pReq->Hdr.rc = SUPR0PageFree(pSession, pReq->u.In.pvR3);
1545 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1546 return 0;
1547 }
1548
1549 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_CALL_SERVICE(0)):
1550 {
1551 /* validate */
1552 PSUPCALLSERVICE pReq = (PSUPCALLSERVICE)pReqHdr;
1553 Log4(("SUP_IOCTL_CALL_SERVICE: op=%u in=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
1554 pReq->u.In.uOperation, pReq->Hdr.cbIn, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
1555
1556 if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_SERVICE_SIZE(0))
1557 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_SERVICE, SUP_IOCTL_CALL_SERVICE_SIZE_IN(0), SUP_IOCTL_CALL_SERVICE_SIZE_OUT(0));
1558 else
1559 {
1560 PSUPR0SERVICEREQHDR pSrvReq = (PSUPR0SERVICEREQHDR)&pReq->abReqPkt[0];
1561 REQ_CHECK_EXPR_FMT(pReq->Hdr.cbIn >= SUP_IOCTL_CALL_SERVICE_SIZE(sizeof(SUPR0SERVICEREQHDR)),
1562 ("SUP_IOCTL_CALL_SERVICE: cbIn=%#x < %#lx\n", pReq->Hdr.cbIn, SUP_IOCTL_CALL_SERVICE_SIZE(sizeof(SUPR0SERVICEREQHDR))));
1563 REQ_CHECK_EXPR(SUP_IOCTL_CALL_SERVICE, pSrvReq->u32Magic == SUPR0SERVICEREQHDR_MAGIC);
1564 REQ_CHECK_SIZES_EX(SUP_IOCTL_CALL_SERVICE, SUP_IOCTL_CALL_SERVICE_SIZE_IN(pSrvReq->cbReq), SUP_IOCTL_CALL_SERVICE_SIZE_OUT(pSrvReq->cbReq));
1565 }
1566 REQ_CHECK_EXPR(SUP_IOCTL_CALL_SERVICE, RTStrEnd(pReq->u.In.szName, sizeof(pReq->u.In.szName)));
1567
1568 /* execute */
1569 pReq->Hdr.rc = supdrvIOCtl_CallServiceModule(pDevExt, pSession, pReq);
1570 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1571 return 0;
1572 }
1573
1574 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_LOGGER_SETTINGS(0)):
1575 {
1576 /* validate */
1577 PSUPLOGGERSETTINGS pReq = (PSUPLOGGERSETTINGS)pReqHdr;
1578 size_t cbStrTab;
1579 REQ_CHECK_SIZE_OUT(SUP_IOCTL_LOGGER_SETTINGS, SUP_IOCTL_LOGGER_SETTINGS_SIZE_OUT);
1580 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->Hdr.cbIn >= SUP_IOCTL_LOGGER_SETTINGS_SIZE_IN(1));
1581 cbStrTab = pReq->Hdr.cbIn - SUP_IOCTL_LOGGER_SETTINGS_SIZE_IN(0);
1582 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offGroups < cbStrTab);
1583 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offFlags < cbStrTab);
1584 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.offDestination < cbStrTab);
1585 REQ_CHECK_EXPR_FMT(pReq->u.In.szStrings[cbStrTab - 1] == '\0',
1586 ("SUP_IOCTL_LOGGER_SETTINGS: cbIn=%#x cbStrTab=%#zx LastChar=%d\n",
1587 pReq->Hdr.cbIn, cbStrTab, pReq->u.In.szStrings[cbStrTab - 1]));
1588 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.fWhich <= SUPLOGGERSETTINGS_WHICH_RELEASE);
1589 REQ_CHECK_EXPR(SUP_IOCTL_LOGGER_SETTINGS, pReq->u.In.fWhat <= SUPLOGGERSETTINGS_WHAT_DESTROY);
1590
1591 /* execute */
1592 pReq->Hdr.rc = supdrvIOCtl_LoggerSettings(pDevExt, pSession, pReq);
1593 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1594 return 0;
1595 }
1596
1597 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SEM_OP2):
1598 {
1599 /* validate */
1600 PSUPSEMOP2 pReq = (PSUPSEMOP2)pReqHdr;
1601 REQ_CHECK_SIZES_EX(SUP_IOCTL_SEM_OP2, SUP_IOCTL_SEM_OP2_SIZE_IN, SUP_IOCTL_SEM_OP2_SIZE_OUT);
1602 REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP2, pReq->u.In.uReserved == 0);
1603
1604 /* execute */
1605 switch (pReq->u.In.uType)
1606 {
1607 case SUP_SEM_TYPE_EVENT:
1608 {
1609 SUPSEMEVENT hEvent = (SUPSEMEVENT)(uintptr_t)pReq->u.In.hSem;
1610 switch (pReq->u.In.uOp)
1611 {
1612 case SUPSEMOP2_WAIT_MS_REL:
1613 pReq->Hdr.rc = SUPSemEventWaitNoResume(pSession, hEvent, pReq->u.In.uArg.cRelMsTimeout);
1614 break;
1615 case SUPSEMOP2_WAIT_NS_ABS:
1616 pReq->Hdr.rc = SUPSemEventWaitNsAbsIntr(pSession, hEvent, pReq->u.In.uArg.uAbsNsTimeout);
1617 break;
1618 case SUPSEMOP2_WAIT_NS_REL:
1619 pReq->Hdr.rc = SUPSemEventWaitNsRelIntr(pSession, hEvent, pReq->u.In.uArg.cRelNsTimeout);
1620 break;
1621 case SUPSEMOP2_SIGNAL:
1622 pReq->Hdr.rc = SUPSemEventSignal(pSession, hEvent);
1623 break;
1624 case SUPSEMOP2_CLOSE:
1625 pReq->Hdr.rc = SUPSemEventClose(pSession, hEvent);
1626 break;
1627 case SUPSEMOP2_RESET:
1628 default:
1629 pReq->Hdr.rc = VERR_INVALID_FUNCTION;
1630 break;
1631 }
1632 break;
1633 }
1634
1635 case SUP_SEM_TYPE_EVENT_MULTI:
1636 {
1637 SUPSEMEVENTMULTI hEventMulti = (SUPSEMEVENTMULTI)(uintptr_t)pReq->u.In.hSem;
1638 switch (pReq->u.In.uOp)
1639 {
1640 case SUPSEMOP2_WAIT_MS_REL:
1641 pReq->Hdr.rc = SUPSemEventMultiWaitNoResume(pSession, hEventMulti, pReq->u.In.uArg.cRelMsTimeout);
1642 break;
1643 case SUPSEMOP2_WAIT_NS_ABS:
1644 pReq->Hdr.rc = SUPSemEventMultiWaitNsAbsIntr(pSession, hEventMulti, pReq->u.In.uArg.uAbsNsTimeout);
1645 break;
1646 case SUPSEMOP2_WAIT_NS_REL:
1647 pReq->Hdr.rc = SUPSemEventMultiWaitNsRelIntr(pSession, hEventMulti, pReq->u.In.uArg.cRelNsTimeout);
1648 break;
1649 case SUPSEMOP2_SIGNAL:
1650 pReq->Hdr.rc = SUPSemEventMultiSignal(pSession, hEventMulti);
1651 break;
1652 case SUPSEMOP2_CLOSE:
1653 pReq->Hdr.rc = SUPSemEventMultiClose(pSession, hEventMulti);
1654 break;
1655 case SUPSEMOP2_RESET:
1656 pReq->Hdr.rc = SUPSemEventMultiReset(pSession, hEventMulti);
1657 break;
1658 default:
1659 pReq->Hdr.rc = VERR_INVALID_FUNCTION;
1660 break;
1661 }
1662 break;
1663 }
1664
1665 default:
1666 pReq->Hdr.rc = VERR_INVALID_PARAMETER;
1667 break;
1668 }
1669 return 0;
1670 }
1671
1672 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_SEM_OP3):
1673 {
1674 /* validate */
1675 PSUPSEMOP3 pReq = (PSUPSEMOP3)pReqHdr;
1676 REQ_CHECK_SIZES_EX(SUP_IOCTL_SEM_OP3, SUP_IOCTL_SEM_OP3_SIZE_IN, SUP_IOCTL_SEM_OP3_SIZE_OUT);
1677 REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, pReq->u.In.u32Reserved == 0 && pReq->u.In.u64Reserved == 0);
1678
1679 /* execute */
1680 switch (pReq->u.In.uType)
1681 {
1682 case SUP_SEM_TYPE_EVENT:
1683 {
1684 SUPSEMEVENT hEvent = (SUPSEMEVENT)(uintptr_t)pReq->u.In.hSem;
1685 switch (pReq->u.In.uOp)
1686 {
1687 case SUPSEMOP3_CREATE:
1688 REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, hEvent == NIL_SUPSEMEVENT);
1689 pReq->Hdr.rc = SUPSemEventCreate(pSession, &hEvent);
1690 pReq->u.Out.hSem = (uint32_t)(uintptr_t)hEvent;
1691 break;
1692 case SUPSEMOP3_GET_RESOLUTION:
1693 REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, hEvent == NIL_SUPSEMEVENT);
1694 pReq->Hdr.rc = VINF_SUCCESS;
1695 pReq->Hdr.cbOut = sizeof(*pReq);
1696 pReq->u.Out.cNsResolution = SUPSemEventGetResolution(pSession);
1697 break;
1698 default:
1699 pReq->Hdr.rc = VERR_INVALID_FUNCTION;
1700 break;
1701 }
1702 break;
1703 }
1704
1705 case SUP_SEM_TYPE_EVENT_MULTI:
1706 {
1707 SUPSEMEVENTMULTI hEventMulti = (SUPSEMEVENTMULTI)(uintptr_t)pReq->u.In.hSem;
1708 switch (pReq->u.In.uOp)
1709 {
1710 case SUPSEMOP3_CREATE:
1711 REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, hEventMulti == NIL_SUPSEMEVENTMULTI);
1712 pReq->Hdr.rc = SUPSemEventMultiCreate(pSession, &hEventMulti);
1713 pReq->u.Out.hSem = (uint32_t)(uintptr_t)hEventMulti;
1714 break;
1715 case SUPSEMOP3_GET_RESOLUTION:
1716 REQ_CHECK_EXPR(SUP_IOCTL_SEM_OP3, hEventMulti == NIL_SUPSEMEVENTMULTI);
1717 pReq->Hdr.rc = VINF_SUCCESS;
1718 pReq->u.Out.cNsResolution = SUPSemEventMultiGetResolution(pSession);
1719 break;
1720 default:
1721 pReq->Hdr.rc = VERR_INVALID_FUNCTION;
1722 break;
1723 }
1724 break;
1725 }
1726
1727 default:
1728 pReq->Hdr.rc = VERR_INVALID_PARAMETER;
1729 break;
1730 }
1731 return 0;
1732 }
1733
1734 case SUP_CTL_CODE_NO_SIZE(SUP_IOCTL_VT_CAPS):
1735 {
1736 /* validate */
1737 PSUPVTCAPS pReq = (PSUPVTCAPS)pReqHdr;
1738 REQ_CHECK_SIZES(SUP_IOCTL_VT_CAPS);
1739 REQ_CHECK_EXPR(SUP_IOCTL_VT_CAPS, pReq->Hdr.cbIn <= SUP_IOCTL_VT_CAPS_SIZE_IN);
1740
1741 /* execute */
1742 pReq->Hdr.rc = SUPR0QueryVTCaps(pSession, &pReq->u.Out.Caps);
1743 if (RT_FAILURE(pReq->Hdr.rc))
1744 pReq->Hdr.cbOut = sizeof(pReq->Hdr);
1745 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VINF_SUCCESS, pReq->Hdr.rc);
1746 return 0;
1747 }
1748
1749 default:
1750 Log(("Unknown IOCTL %#lx\n", (long)uIOCtl));
1751 break;
1752 }
1753 VBOXDRV_SUPDRV_IOCTL_RETURN(pSession, uIOCtl, pReqHdr, VERR_GENERAL_FAILURE, VERR_GENERAL_FAILURE);
1754 return VERR_GENERAL_FAILURE;
1755}
1756
1757
1758/**
1759 * Inter-Driver Communication (IDC) worker.
1760 *
1761 * @returns VBox status code.
1762 * @retval VINF_SUCCESS on success.
1763 * @retval VERR_INVALID_PARAMETER if the request is invalid.
1764 * @retval VERR_NOT_SUPPORTED if the request isn't supported.
1765 *
1766 * @param uReq The request (function) code.
1767 * @param pDevExt Device extention.
1768 * @param pSession Session data.
1769 * @param pReqHdr The request header.
1770 */
1771int VBOXCALL supdrvIDC(uintptr_t uReq, PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQHDR pReqHdr)
1772{
1773 /*
1774 * The OS specific code has already validated the pSession
1775 * pointer, and the request size being greater or equal to
1776 * size of the header.
1777 *
1778 * So, just check that pSession is a kernel context session.
1779 */
1780 if (RT_UNLIKELY( pSession
1781 && pSession->R0Process != NIL_RTR0PROCESS))
1782 return VERR_INVALID_PARAMETER;
1783
1784/*
1785 * Validation macro.
1786 */
1787#define REQ_CHECK_IDC_SIZE(Name, cbExpect) \
1788 do { \
1789 if (RT_UNLIKELY(pReqHdr->cb != (cbExpect))) \
1790 { \
1791 OSDBGPRINT(( #Name ": Invalid input/output sizes. cb=%ld expected %ld.\n", \
1792 (long)pReqHdr->cb, (long)(cbExpect))); \
1793 return pReqHdr->rc = VERR_INVALID_PARAMETER; \
1794 } \
1795 } while (0)
1796
1797 switch (uReq)
1798 {
1799 case SUPDRV_IDC_REQ_CONNECT:
1800 {
1801 PSUPDRVIDCREQCONNECT pReq = (PSUPDRVIDCREQCONNECT)pReqHdr;
1802 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_CONNECT, sizeof(*pReq));
1803
1804 /*
1805 * Validate the cookie and other input.
1806 */
1807 if (pReq->Hdr.pSession != NULL)
1808 {
1809 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: pSession=%p expected NULL!\n", pReq->Hdr.pSession));
1810 return pReqHdr->rc = VERR_INVALID_PARAMETER;
1811 }
1812 if (pReq->u.In.u32MagicCookie != SUPDRVIDCREQ_CONNECT_MAGIC_COOKIE)
1813 {
1814 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: u32MagicCookie=%#x expected %#x!\n",
1815 (unsigned)pReq->u.In.u32MagicCookie, (unsigned)SUPDRVIDCREQ_CONNECT_MAGIC_COOKIE));
1816 return pReqHdr->rc = VERR_INVALID_PARAMETER;
1817 }
1818 if ( pReq->u.In.uMinVersion > pReq->u.In.uReqVersion
1819 || (pReq->u.In.uMinVersion & UINT32_C(0xffff0000)) != (pReq->u.In.uReqVersion & UINT32_C(0xffff0000)))
1820 {
1821 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: uMinVersion=%#x uMaxVersion=%#x doesn't match!\n",
1822 pReq->u.In.uMinVersion, pReq->u.In.uReqVersion));
1823 return pReqHdr->rc = VERR_INVALID_PARAMETER;
1824 }
1825
1826 /*
1827 * Match the version.
1828 * The current logic is very simple, match the major interface version.
1829 */
1830 if ( pReq->u.In.uMinVersion > SUPDRV_IDC_VERSION
1831 || (pReq->u.In.uMinVersion & 0xffff0000) != (SUPDRV_IDC_VERSION & 0xffff0000))
1832 {
1833 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: Version mismatch. Requested: %#x Min: %#x Current: %#x\n",
1834 pReq->u.In.uReqVersion, pReq->u.In.uMinVersion, (unsigned)SUPDRV_IDC_VERSION));
1835 pReq->u.Out.pSession = NULL;
1836 pReq->u.Out.uSessionVersion = 0xffffffff;
1837 pReq->u.Out.uDriverVersion = SUPDRV_IDC_VERSION;
1838 pReq->u.Out.uDriverRevision = VBOX_SVN_REV;
1839 pReq->Hdr.rc = VERR_VERSION_MISMATCH;
1840 return VINF_SUCCESS;
1841 }
1842
1843 pReq->u.Out.pSession = NULL;
1844 pReq->u.Out.uSessionVersion = SUPDRV_IDC_VERSION;
1845 pReq->u.Out.uDriverVersion = SUPDRV_IDC_VERSION;
1846 pReq->u.Out.uDriverRevision = VBOX_SVN_REV;
1847
1848 /*
1849 * On NT we will already have a session associated with the
1850 * client, just like with the SUP_IOCTL_COOKIE request, while
1851 * the other doesn't.
1852 */
1853#ifdef RT_OS_WINDOWS
1854 pReq->Hdr.rc = VINF_SUCCESS;
1855#else
1856 AssertReturn(!pSession, VERR_INTERNAL_ERROR);
1857 pReq->Hdr.rc = supdrvCreateSession(pDevExt, false /* fUser */, &pSession);
1858 if (RT_FAILURE(pReq->Hdr.rc))
1859 {
1860 OSDBGPRINT(("SUPDRV_IDC_REQ_CONNECT: failed to create session, rc=%d\n", pReq->Hdr.rc));
1861 return VINF_SUCCESS;
1862 }
1863#endif
1864
1865 pReq->u.Out.pSession = pSession;
1866 pReq->Hdr.pSession = pSession;
1867
1868 return VINF_SUCCESS;
1869 }
1870
1871 case SUPDRV_IDC_REQ_DISCONNECT:
1872 {
1873 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_DISCONNECT, sizeof(*pReqHdr));
1874
1875#ifdef RT_OS_WINDOWS
1876 /* Windows will destroy the session when the file object is destroyed. */
1877#else
1878 supdrvCloseSession(pDevExt, pSession);
1879#endif
1880 return pReqHdr->rc = VINF_SUCCESS;
1881 }
1882
1883 case SUPDRV_IDC_REQ_GET_SYMBOL:
1884 {
1885 PSUPDRVIDCREQGETSYM pReq = (PSUPDRVIDCREQGETSYM)pReqHdr;
1886 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_GET_SYMBOL, sizeof(*pReq));
1887
1888 pReq->Hdr.rc = supdrvIDC_LdrGetSymbol(pDevExt, pSession, pReq);
1889 return VINF_SUCCESS;
1890 }
1891
1892 case SUPDRV_IDC_REQ_COMPONENT_REGISTER_FACTORY:
1893 {
1894 PSUPDRVIDCREQCOMPREGFACTORY pReq = (PSUPDRVIDCREQCOMPREGFACTORY)pReqHdr;
1895 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_COMPONENT_REGISTER_FACTORY, sizeof(*pReq));
1896
1897 pReq->Hdr.rc = SUPR0ComponentRegisterFactory(pSession, pReq->u.In.pFactory);
1898 return VINF_SUCCESS;
1899 }
1900
1901 case SUPDRV_IDC_REQ_COMPONENT_DEREGISTER_FACTORY:
1902 {
1903 PSUPDRVIDCREQCOMPDEREGFACTORY pReq = (PSUPDRVIDCREQCOMPDEREGFACTORY)pReqHdr;
1904 REQ_CHECK_IDC_SIZE(SUPDRV_IDC_REQ_COMPONENT_DEREGISTER_FACTORY, sizeof(*pReq));
1905
1906 pReq->Hdr.rc = SUPR0ComponentDeregisterFactory(pSession, pReq->u.In.pFactory);
1907 return VINF_SUCCESS;
1908 }
1909
1910 default:
1911 Log(("Unknown IDC %#lx\n", (long)uReq));
1912 break;
1913 }
1914
1915#undef REQ_CHECK_IDC_SIZE
1916 return VERR_NOT_SUPPORTED;
1917}
1918
1919
1920/**
1921 * Register a object for reference counting.
1922 * The object is registered with one reference in the specified session.
1923 *
1924 * @returns Unique identifier on success (pointer).
1925 * All future reference must use this identifier.
1926 * @returns NULL on failure.
1927 * @param pfnDestructor The destructore function which will be called when the reference count reaches 0.
1928 * @param pvUser1 The first user argument.
1929 * @param pvUser2 The second user argument.
1930 */
1931SUPR0DECL(void *) SUPR0ObjRegister(PSUPDRVSESSION pSession, SUPDRVOBJTYPE enmType, PFNSUPDRVDESTRUCTOR pfnDestructor, void *pvUser1, void *pvUser2)
1932{
1933 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
1934 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
1935 PSUPDRVOBJ pObj;
1936 PSUPDRVUSAGE pUsage;
1937
1938 /*
1939 * Validate the input.
1940 */
1941 AssertReturn(SUP_IS_SESSION_VALID(pSession), NULL);
1942 AssertReturn(enmType > SUPDRVOBJTYPE_INVALID && enmType < SUPDRVOBJTYPE_END, NULL);
1943 AssertPtrReturn(pfnDestructor, NULL);
1944
1945 /*
1946 * Allocate and initialize the object.
1947 */
1948 pObj = (PSUPDRVOBJ)RTMemAlloc(sizeof(*pObj));
1949 if (!pObj)
1950 return NULL;
1951 pObj->u32Magic = SUPDRVOBJ_MAGIC;
1952 pObj->enmType = enmType;
1953 pObj->pNext = NULL;
1954 pObj->cUsage = 1;
1955 pObj->pfnDestructor = pfnDestructor;
1956 pObj->pvUser1 = pvUser1;
1957 pObj->pvUser2 = pvUser2;
1958 pObj->CreatorUid = pSession->Uid;
1959 pObj->CreatorGid = pSession->Gid;
1960 pObj->CreatorProcess= pSession->Process;
1961 supdrvOSObjInitCreator(pObj, pSession);
1962
1963 /*
1964 * Allocate the usage record.
1965 * (We keep freed usage records around to simplify SUPR0ObjAddRefEx().)
1966 */
1967 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1968
1969 pUsage = pDevExt->pUsageFree;
1970 if (pUsage)
1971 pDevExt->pUsageFree = pUsage->pNext;
1972 else
1973 {
1974 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1975 pUsage = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsage));
1976 if (!pUsage)
1977 {
1978 RTMemFree(pObj);
1979 return NULL;
1980 }
1981 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
1982 }
1983
1984 /*
1985 * Insert the object and create the session usage record.
1986 */
1987 /* The object. */
1988 pObj->pNext = pDevExt->pObjs;
1989 pDevExt->pObjs = pObj;
1990
1991 /* The session record. */
1992 pUsage->cUsage = 1;
1993 pUsage->pObj = pObj;
1994 pUsage->pNext = pSession->pUsage;
1995 /* Log2(("SUPR0ObjRegister: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext)); */
1996 pSession->pUsage = pUsage;
1997
1998 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
1999
2000 Log(("SUPR0ObjRegister: returns %p (pvUser1=%p, pvUser=%p)\n", pObj, pvUser1, pvUser2));
2001 return pObj;
2002}
2003
2004
2005/**
2006 * Increment the reference counter for the object associating the reference
2007 * with the specified session.
2008 *
2009 * @returns IPRT status code.
2010 * @param pvObj The identifier returned by SUPR0ObjRegister().
2011 * @param pSession The session which is referencing the object.
2012 *
2013 * @remarks The caller should not own any spinlocks and must carefully protect
2014 * itself against potential race with the destructor so freed memory
2015 * isn't accessed here.
2016 */
2017SUPR0DECL(int) SUPR0ObjAddRef(void *pvObj, PSUPDRVSESSION pSession)
2018{
2019 return SUPR0ObjAddRefEx(pvObj, pSession, false /* fNoBlocking */);
2020}
2021
2022
2023/**
2024 * Increment the reference counter for the object associating the reference
2025 * with the specified session.
2026 *
2027 * @returns IPRT status code.
2028 * @retval VERR_TRY_AGAIN if fNoBlocking was set and a new usage record
2029 * couldn't be allocated. (If you see this you're not doing the right
2030 * thing and it won't ever work reliably.)
2031 *
2032 * @param pvObj The identifier returned by SUPR0ObjRegister().
2033 * @param pSession The session which is referencing the object.
2034 * @param fNoBlocking Set if it's not OK to block. Never try to make the
2035 * first reference to an object in a session with this
2036 * argument set.
2037 *
2038 * @remarks The caller should not own any spinlocks and must carefully protect
2039 * itself against potential race with the destructor so freed memory
2040 * isn't accessed here.
2041 */
2042SUPR0DECL(int) SUPR0ObjAddRefEx(void *pvObj, PSUPDRVSESSION pSession, bool fNoBlocking)
2043{
2044 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2045 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
2046 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
2047 int rc = VINF_SUCCESS;
2048 PSUPDRVUSAGE pUsagePre;
2049 PSUPDRVUSAGE pUsage;
2050
2051 /*
2052 * Validate the input.
2053 * Be ready for the destruction race (someone might be stuck in the
2054 * destructor waiting a lock we own).
2055 */
2056 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2057 AssertPtrReturn(pObj, VERR_INVALID_POINTER);
2058 AssertMsgReturn(pObj->u32Magic == SUPDRVOBJ_MAGIC || pObj->u32Magic == SUPDRVOBJ_MAGIC_DEAD,
2059 ("Invalid pvObj=%p magic=%#x (expected %#x or %#x)\n", pvObj, pObj->u32Magic, SUPDRVOBJ_MAGIC, SUPDRVOBJ_MAGIC_DEAD),
2060 VERR_INVALID_PARAMETER);
2061
2062 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
2063
2064 if (RT_UNLIKELY(pObj->u32Magic != SUPDRVOBJ_MAGIC))
2065 {
2066 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2067
2068 AssertMsgFailed(("pvObj=%p magic=%#x\n", pvObj, pObj->u32Magic));
2069 return VERR_WRONG_ORDER;
2070 }
2071
2072 /*
2073 * Preallocate the usage record if we can.
2074 */
2075 pUsagePre = pDevExt->pUsageFree;
2076 if (pUsagePre)
2077 pDevExt->pUsageFree = pUsagePre->pNext;
2078 else if (!fNoBlocking)
2079 {
2080 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2081 pUsagePre = (PSUPDRVUSAGE)RTMemAlloc(sizeof(*pUsagePre));
2082 if (!pUsagePre)
2083 return VERR_NO_MEMORY;
2084
2085 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
2086 if (RT_UNLIKELY(pObj->u32Magic != SUPDRVOBJ_MAGIC))
2087 {
2088 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2089
2090 AssertMsgFailed(("pvObj=%p magic=%#x\n", pvObj, pObj->u32Magic));
2091 return VERR_WRONG_ORDER;
2092 }
2093 }
2094
2095 /*
2096 * Reference the object.
2097 */
2098 pObj->cUsage++;
2099
2100 /*
2101 * Look for the session record.
2102 */
2103 for (pUsage = pSession->pUsage; pUsage; pUsage = pUsage->pNext)
2104 {
2105 /*Log(("SUPR0AddRef: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));*/
2106 if (pUsage->pObj == pObj)
2107 break;
2108 }
2109 if (pUsage)
2110 pUsage->cUsage++;
2111 else if (pUsagePre)
2112 {
2113 /* create a new session record. */
2114 pUsagePre->cUsage = 1;
2115 pUsagePre->pObj = pObj;
2116 pUsagePre->pNext = pSession->pUsage;
2117 pSession->pUsage = pUsagePre;
2118 /*Log(("SUPR0AddRef: pUsagePre=%p:{.pObj=%p, .pNext=%p}\n", pUsagePre, pUsagePre->pObj, pUsagePre->pNext));*/
2119
2120 pUsagePre = NULL;
2121 }
2122 else
2123 {
2124 pObj->cUsage--;
2125 rc = VERR_TRY_AGAIN;
2126 }
2127
2128 /*
2129 * Put any unused usage record into the free list..
2130 */
2131 if (pUsagePre)
2132 {
2133 pUsagePre->pNext = pDevExt->pUsageFree;
2134 pDevExt->pUsageFree = pUsagePre;
2135 }
2136
2137 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2138
2139 return rc;
2140}
2141
2142
2143/**
2144 * Decrement / destroy a reference counter record for an object.
2145 *
2146 * The object is uniquely identified by pfnDestructor+pvUser1+pvUser2.
2147 *
2148 * @returns IPRT status code.
2149 * @retval VINF_SUCCESS if not destroyed.
2150 * @retval VINF_OBJECT_DESTROYED if it's destroyed by this release call.
2151 * @retval VERR_INVALID_PARAMETER if the object isn't valid. Will assert in
2152 * string builds.
2153 *
2154 * @param pvObj The identifier returned by SUPR0ObjRegister().
2155 * @param pSession The session which is referencing the object.
2156 */
2157SUPR0DECL(int) SUPR0ObjRelease(void *pvObj, PSUPDRVSESSION pSession)
2158{
2159 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2160 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
2161 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
2162 int rc = VERR_INVALID_PARAMETER;
2163 PSUPDRVUSAGE pUsage;
2164 PSUPDRVUSAGE pUsagePrev;
2165
2166 /*
2167 * Validate the input.
2168 */
2169 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2170 AssertMsgReturn(VALID_PTR(pObj) && pObj->u32Magic == SUPDRVOBJ_MAGIC,
2171 ("Invalid pvObj=%p magic=%#x (exepcted %#x)\n", pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC),
2172 VERR_INVALID_PARAMETER);
2173
2174 /*
2175 * Acquire the spinlock and look for the usage record.
2176 */
2177 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
2178
2179 for (pUsagePrev = NULL, pUsage = pSession->pUsage;
2180 pUsage;
2181 pUsagePrev = pUsage, pUsage = pUsage->pNext)
2182 {
2183 /*Log2(("SUPR0ObjRelease: pUsage=%p:{.pObj=%p, .pNext=%p}\n", pUsage, pUsage->pObj, pUsage->pNext));*/
2184 if (pUsage->pObj == pObj)
2185 {
2186 rc = VINF_SUCCESS;
2187 AssertMsg(pUsage->cUsage >= 1 && pObj->cUsage >= pUsage->cUsage, ("glob %d; sess %d\n", pObj->cUsage, pUsage->cUsage));
2188 if (pUsage->cUsage > 1)
2189 {
2190 pObj->cUsage--;
2191 pUsage->cUsage--;
2192 }
2193 else
2194 {
2195 /*
2196 * Free the session record.
2197 */
2198 if (pUsagePrev)
2199 pUsagePrev->pNext = pUsage->pNext;
2200 else
2201 pSession->pUsage = pUsage->pNext;
2202 pUsage->pNext = pDevExt->pUsageFree;
2203 pDevExt->pUsageFree = pUsage;
2204
2205 /* What about the object? */
2206 if (pObj->cUsage > 1)
2207 pObj->cUsage--;
2208 else
2209 {
2210 /*
2211 * Object is to be destroyed, unlink it.
2212 */
2213 pObj->u32Magic = SUPDRVOBJ_MAGIC_DEAD;
2214 rc = VINF_OBJECT_DESTROYED;
2215 if (pDevExt->pObjs == pObj)
2216 pDevExt->pObjs = pObj->pNext;
2217 else
2218 {
2219 PSUPDRVOBJ pObjPrev;
2220 for (pObjPrev = pDevExt->pObjs; pObjPrev; pObjPrev = pObjPrev->pNext)
2221 if (pObjPrev->pNext == pObj)
2222 {
2223 pObjPrev->pNext = pObj->pNext;
2224 break;
2225 }
2226 Assert(pObjPrev);
2227 }
2228 }
2229 }
2230 break;
2231 }
2232 }
2233
2234 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
2235
2236 /*
2237 * Call the destructor and free the object if required.
2238 */
2239 if (rc == VINF_OBJECT_DESTROYED)
2240 {
2241 Log(("SUPR0ObjRelease: destroying %p/%d (%p/%p) cpid=%RTproc pid=%RTproc dtor=%p\n",
2242 pObj, pObj->enmType, pObj->pvUser1, pObj->pvUser2, pObj->CreatorProcess, RTProcSelf(), pObj->pfnDestructor));
2243 if (pObj->pfnDestructor)
2244 pObj->pfnDestructor(pObj, pObj->pvUser1, pObj->pvUser2);
2245 RTMemFree(pObj);
2246 }
2247
2248 AssertMsg(pUsage, ("pvObj=%p\n", pvObj));
2249 return rc;
2250}
2251
2252
2253/**
2254 * Verifies that the current process can access the specified object.
2255 *
2256 * @returns The following IPRT status code:
2257 * @retval VINF_SUCCESS if access was granted.
2258 * @retval VERR_PERMISSION_DENIED if denied access.
2259 * @retval VERR_INVALID_PARAMETER if invalid parameter.
2260 *
2261 * @param pvObj The identifier returned by SUPR0ObjRegister().
2262 * @param pSession The session which wishes to access the object.
2263 * @param pszObjName Object string name. This is optional and depends on the object type.
2264 *
2265 * @remark The caller is responsible for making sure the object isn't removed while
2266 * we're inside this function. If uncertain about this, just call AddRef before calling us.
2267 */
2268SUPR0DECL(int) SUPR0ObjVerifyAccess(void *pvObj, PSUPDRVSESSION pSession, const char *pszObjName)
2269{
2270 PSUPDRVOBJ pObj = (PSUPDRVOBJ)pvObj;
2271 int rc;
2272
2273 /*
2274 * Validate the input.
2275 */
2276 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2277 AssertMsgReturn(VALID_PTR(pObj) && pObj->u32Magic == SUPDRVOBJ_MAGIC,
2278 ("Invalid pvObj=%p magic=%#x (exepcted %#x)\n", pvObj, pObj ? pObj->u32Magic : 0, SUPDRVOBJ_MAGIC),
2279 VERR_INVALID_PARAMETER);
2280
2281 /*
2282 * Check access. (returns true if a decision has been made.)
2283 */
2284 rc = VERR_INTERNAL_ERROR;
2285 if (supdrvOSObjCanAccess(pObj, pSession, pszObjName, &rc))
2286 return rc;
2287
2288 /*
2289 * Default policy is to allow the user to access his own
2290 * stuff but nothing else.
2291 */
2292 if (pObj->CreatorUid == pSession->Uid)
2293 return VINF_SUCCESS;
2294 return VERR_PERMISSION_DENIED;
2295}
2296
2297
2298/**
2299 * Lock pages.
2300 *
2301 * @returns IPRT status code.
2302 * @param pSession Session to which the locked memory should be associated.
2303 * @param pvR3 Start of the memory range to lock.
2304 * This must be page aligned.
2305 * @param cPages Number of pages to lock.
2306 * @param paPages Where to put the physical addresses of locked memory.
2307 */
2308SUPR0DECL(int) SUPR0LockMem(PSUPDRVSESSION pSession, RTR3PTR pvR3, uint32_t cPages, PRTHCPHYS paPages)
2309{
2310 int rc;
2311 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2312 const size_t cb = (size_t)cPages << PAGE_SHIFT;
2313 LogFlow(("SUPR0LockMem: pSession=%p pvR3=%p cPages=%d paPages=%p\n", pSession, (void *)pvR3, cPages, paPages));
2314
2315 /*
2316 * Verify input.
2317 */
2318 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2319 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
2320 if ( RT_ALIGN_R3PT(pvR3, PAGE_SIZE, RTR3PTR) != pvR3
2321 || !pvR3)
2322 {
2323 Log(("pvR3 (%p) must be page aligned and not NULL!\n", (void *)pvR3));
2324 return VERR_INVALID_PARAMETER;
2325 }
2326
2327 /*
2328 * Let IPRT do the job.
2329 */
2330 Mem.eType = MEMREF_TYPE_LOCKED;
2331 rc = RTR0MemObjLockUser(&Mem.MemObj, pvR3, cb, RTMEM_PROT_READ | RTMEM_PROT_WRITE, RTR0ProcHandleSelf());
2332 if (RT_SUCCESS(rc))
2333 {
2334 uint32_t iPage = cPages;
2335 AssertMsg(RTR0MemObjAddressR3(Mem.MemObj) == pvR3, ("%p == %p\n", RTR0MemObjAddressR3(Mem.MemObj), pvR3));
2336 AssertMsg(RTR0MemObjSize(Mem.MemObj) == cb, ("%x == %x\n", RTR0MemObjSize(Mem.MemObj), cb));
2337
2338 while (iPage-- > 0)
2339 {
2340 paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
2341 if (RT_UNLIKELY(paPages[iPage] == NIL_RTCCPHYS))
2342 {
2343 AssertMsgFailed(("iPage=%d\n", iPage));
2344 rc = VERR_INTERNAL_ERROR;
2345 break;
2346 }
2347 }
2348 if (RT_SUCCESS(rc))
2349 rc = supdrvMemAdd(&Mem, pSession);
2350 if (RT_FAILURE(rc))
2351 {
2352 int rc2 = RTR0MemObjFree(Mem.MemObj, false);
2353 AssertRC(rc2);
2354 }
2355 }
2356
2357 return rc;
2358}
2359
2360
2361/**
2362 * Unlocks the memory pointed to by pv.
2363 *
2364 * @returns IPRT status code.
2365 * @param pSession Session to which the memory was locked.
2366 * @param pvR3 Memory to unlock.
2367 */
2368SUPR0DECL(int) SUPR0UnlockMem(PSUPDRVSESSION pSession, RTR3PTR pvR3)
2369{
2370 LogFlow(("SUPR0UnlockMem: pSession=%p pvR3=%p\n", pSession, (void *)pvR3));
2371 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2372 return supdrvMemRelease(pSession, (RTHCUINTPTR)pvR3, MEMREF_TYPE_LOCKED);
2373}
2374
2375
2376/**
2377 * Allocates a chunk of page aligned memory with contiguous and fixed physical
2378 * backing.
2379 *
2380 * @returns IPRT status code.
2381 * @param pSession Session data.
2382 * @param cPages Number of pages to allocate.
2383 * @param ppvR0 Where to put the address of Ring-0 mapping the allocated memory.
2384 * @param ppvR3 Where to put the address of Ring-3 mapping the allocated memory.
2385 * @param pHCPhys Where to put the physical address of allocated memory.
2386 */
2387SUPR0DECL(int) SUPR0ContAlloc(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS pHCPhys)
2388{
2389 int rc;
2390 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2391 LogFlow(("SUPR0ContAlloc: pSession=%p cPages=%d ppvR0=%p ppvR3=%p pHCPhys=%p\n", pSession, cPages, ppvR0, ppvR3, pHCPhys));
2392
2393 /*
2394 * Validate input.
2395 */
2396 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2397 if (!ppvR3 || !ppvR0 || !pHCPhys)
2398 {
2399 Log(("Null pointer. All of these should be set: pSession=%p ppvR0=%p ppvR3=%p pHCPhys=%p\n",
2400 pSession, ppvR0, ppvR3, pHCPhys));
2401 return VERR_INVALID_PARAMETER;
2402
2403 }
2404 if (cPages < 1 || cPages >= 256)
2405 {
2406 Log(("Illegal request cPages=%d, must be greater than 0 and smaller than 256.\n", cPages));
2407 return VERR_PAGE_COUNT_OUT_OF_RANGE;
2408 }
2409
2410 /*
2411 * Let IPRT do the job.
2412 */
2413 rc = RTR0MemObjAllocCont(&Mem.MemObj, cPages << PAGE_SHIFT, true /* executable R0 mapping */);
2414 if (RT_SUCCESS(rc))
2415 {
2416 int rc2;
2417 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2418 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2419 if (RT_SUCCESS(rc))
2420 {
2421 Mem.eType = MEMREF_TYPE_CONT;
2422 rc = supdrvMemAdd(&Mem, pSession);
2423 if (!rc)
2424 {
2425 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2426 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2427 *pHCPhys = RTR0MemObjGetPagePhysAddr(Mem.MemObj, 0);
2428 return 0;
2429 }
2430
2431 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2432 AssertRC(rc2);
2433 }
2434 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2435 AssertRC(rc2);
2436 }
2437
2438 return rc;
2439}
2440
2441
2442/**
2443 * Frees memory allocated using SUPR0ContAlloc().
2444 *
2445 * @returns IPRT status code.
2446 * @param pSession The session to which the memory was allocated.
2447 * @param uPtr Pointer to the memory (ring-3 or ring-0).
2448 */
2449SUPR0DECL(int) SUPR0ContFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
2450{
2451 LogFlow(("SUPR0ContFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
2452 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2453 return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_CONT);
2454}
2455
2456
2457/**
2458 * Allocates a chunk of page aligned memory with fixed physical backing below 4GB.
2459 *
2460 * The memory isn't zeroed.
2461 *
2462 * @returns IPRT status code.
2463 * @param pSession Session data.
2464 * @param cPages Number of pages to allocate.
2465 * @param ppvR0 Where to put the address of Ring-0 mapping of the allocated memory.
2466 * @param ppvR3 Where to put the address of Ring-3 mapping of the allocated memory.
2467 * @param paPages Where to put the physical addresses of allocated memory.
2468 */
2469SUPR0DECL(int) SUPR0LowAlloc(PSUPDRVSESSION pSession, uint32_t cPages, PRTR0PTR ppvR0, PRTR3PTR ppvR3, PRTHCPHYS paPages)
2470{
2471 unsigned iPage;
2472 int rc;
2473 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2474 LogFlow(("SUPR0LowAlloc: pSession=%p cPages=%d ppvR3=%p ppvR0=%p paPages=%p\n", pSession, cPages, ppvR3, ppvR0, paPages));
2475
2476 /*
2477 * Validate input.
2478 */
2479 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2480 if (!ppvR3 || !ppvR0 || !paPages)
2481 {
2482 Log(("Null pointer. All of these should be set: pSession=%p ppvR3=%p ppvR0=%p paPages=%p\n",
2483 pSession, ppvR3, ppvR0, paPages));
2484 return VERR_INVALID_PARAMETER;
2485
2486 }
2487 if (cPages < 1 || cPages >= 256)
2488 {
2489 Log(("Illegal request cPages=%d, must be greater than 0 and smaller than 256.\n", cPages));
2490 return VERR_PAGE_COUNT_OUT_OF_RANGE;
2491 }
2492
2493 /*
2494 * Let IPRT do the work.
2495 */
2496 rc = RTR0MemObjAllocLow(&Mem.MemObj, cPages << PAGE_SHIFT, true /* executable ring-0 mapping */);
2497 if (RT_SUCCESS(rc))
2498 {
2499 int rc2;
2500 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2501 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2502 if (RT_SUCCESS(rc))
2503 {
2504 Mem.eType = MEMREF_TYPE_LOW;
2505 rc = supdrvMemAdd(&Mem, pSession);
2506 if (!rc)
2507 {
2508 for (iPage = 0; iPage < cPages; iPage++)
2509 {
2510 paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MemObj, iPage);
2511 AssertMsg(!(paPages[iPage] & (PAGE_SIZE - 1)), ("iPage=%d Phys=%RHp\n", paPages[iPage]));
2512 }
2513 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2514 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2515 return 0;
2516 }
2517
2518 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2519 AssertRC(rc2);
2520 }
2521
2522 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2523 AssertRC(rc2);
2524 }
2525
2526 return rc;
2527}
2528
2529
2530/**
2531 * Frees memory allocated using SUPR0LowAlloc().
2532 *
2533 * @returns IPRT status code.
2534 * @param pSession The session to which the memory was allocated.
2535 * @param uPtr Pointer to the memory (ring-3 or ring-0).
2536 */
2537SUPR0DECL(int) SUPR0LowFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
2538{
2539 LogFlow(("SUPR0LowFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
2540 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2541 return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_LOW);
2542}
2543
2544
2545
2546/**
2547 * Allocates a chunk of memory with both R0 and R3 mappings.
2548 * The memory is fixed and it's possible to query the physical addresses using SUPR0MemGetPhys().
2549 *
2550 * @returns IPRT status code.
2551 * @param pSession The session to associated the allocation with.
2552 * @param cb Number of bytes to allocate.
2553 * @param ppvR0 Where to store the address of the Ring-0 mapping.
2554 * @param ppvR3 Where to store the address of the Ring-3 mapping.
2555 */
2556SUPR0DECL(int) SUPR0MemAlloc(PSUPDRVSESSION pSession, uint32_t cb, PRTR0PTR ppvR0, PRTR3PTR ppvR3)
2557{
2558 int rc;
2559 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2560 LogFlow(("SUPR0MemAlloc: pSession=%p cb=%d ppvR0=%p ppvR3=%p\n", pSession, cb, ppvR0, ppvR3));
2561
2562 /*
2563 * Validate input.
2564 */
2565 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2566 AssertPtrReturn(ppvR0, VERR_INVALID_POINTER);
2567 AssertPtrReturn(ppvR3, VERR_INVALID_POINTER);
2568 if (cb < 1 || cb >= _4M)
2569 {
2570 Log(("Illegal request cb=%u; must be greater than 0 and smaller than 4MB.\n", cb));
2571 return VERR_INVALID_PARAMETER;
2572 }
2573
2574 /*
2575 * Let IPRT do the work.
2576 */
2577 rc = RTR0MemObjAllocPage(&Mem.MemObj, cb, true /* executable ring-0 mapping */);
2578 if (RT_SUCCESS(rc))
2579 {
2580 int rc2;
2581 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2582 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2583 if (RT_SUCCESS(rc))
2584 {
2585 Mem.eType = MEMREF_TYPE_MEM;
2586 rc = supdrvMemAdd(&Mem, pSession);
2587 if (!rc)
2588 {
2589 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2590 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2591 return VINF_SUCCESS;
2592 }
2593
2594 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2595 AssertRC(rc2);
2596 }
2597
2598 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2599 AssertRC(rc2);
2600 }
2601
2602 return rc;
2603}
2604
2605
2606/**
2607 * Get the physical addresses of memory allocated using SUPR0MemAlloc().
2608 *
2609 * @returns IPRT status code.
2610 * @param pSession The session to which the memory was allocated.
2611 * @param uPtr The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
2612 * @param paPages Where to store the physical addresses.
2613 */
2614SUPR0DECL(int) SUPR0MemGetPhys(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, PSUPPAGE paPages) /** @todo switch this bugger to RTHCPHYS */
2615{
2616 PSUPDRVBUNDLE pBundle;
2617 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2618 LogFlow(("SUPR0MemGetPhys: pSession=%p uPtr=%p paPages=%p\n", pSession, (void *)uPtr, paPages));
2619
2620 /*
2621 * Validate input.
2622 */
2623 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2624 AssertPtrReturn(paPages, VERR_INVALID_POINTER);
2625 AssertReturn(uPtr, VERR_INVALID_PARAMETER);
2626
2627 /*
2628 * Search for the address.
2629 */
2630 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2631 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2632 {
2633 if (pBundle->cUsed > 0)
2634 {
2635 unsigned i;
2636 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
2637 {
2638 if ( pBundle->aMem[i].eType == MEMREF_TYPE_MEM
2639 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2640 && ( (RTHCUINTPTR)RTR0MemObjAddress(pBundle->aMem[i].MemObj) == uPtr
2641 || ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2642 && RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == uPtr)
2643 )
2644 )
2645 {
2646 const size_t cPages = RTR0MemObjSize(pBundle->aMem[i].MemObj) >> PAGE_SHIFT;
2647 size_t iPage;
2648 for (iPage = 0; iPage < cPages; iPage++)
2649 {
2650 paPages[iPage].Phys = RTR0MemObjGetPagePhysAddr(pBundle->aMem[i].MemObj, iPage);
2651 paPages[iPage].uReserved = 0;
2652 }
2653 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2654 return VINF_SUCCESS;
2655 }
2656 }
2657 }
2658 }
2659 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2660 Log(("Failed to find %p!!!\n", (void *)uPtr));
2661 return VERR_INVALID_PARAMETER;
2662}
2663
2664
2665/**
2666 * Free memory allocated by SUPR0MemAlloc().
2667 *
2668 * @returns IPRT status code.
2669 * @param pSession The session owning the allocation.
2670 * @param uPtr The Ring-0 or Ring-3 address returned by SUPR0MemAlloc().
2671 */
2672SUPR0DECL(int) SUPR0MemFree(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr)
2673{
2674 LogFlow(("SUPR0MemFree: pSession=%p uPtr=%p\n", pSession, (void *)uPtr));
2675 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2676 return supdrvMemRelease(pSession, uPtr, MEMREF_TYPE_MEM);
2677}
2678
2679
2680/**
2681 * Allocates a chunk of memory with a kernel or/and a user mode mapping.
2682 *
2683 * The memory is fixed and it's possible to query the physical addresses using
2684 * SUPR0MemGetPhys().
2685 *
2686 * @returns IPRT status code.
2687 * @param pSession The session to associated the allocation with.
2688 * @param cPages The number of pages to allocate.
2689 * @param fFlags Flags, reserved for the future. Must be zero.
2690 * @param ppvR3 Where to store the address of the Ring-3 mapping.
2691 * NULL if no ring-3 mapping.
2692 * @param ppvR3 Where to store the address of the Ring-0 mapping.
2693 * NULL if no ring-0 mapping.
2694 * @param paPages Where to store the addresses of the pages. Optional.
2695 */
2696SUPR0DECL(int) SUPR0PageAllocEx(PSUPDRVSESSION pSession, uint32_t cPages, uint32_t fFlags, PRTR3PTR ppvR3, PRTR0PTR ppvR0, PRTHCPHYS paPages)
2697{
2698 int rc;
2699 SUPDRVMEMREF Mem = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, MEMREF_TYPE_UNUSED };
2700 LogFlow(("SUPR0PageAlloc: pSession=%p cb=%d ppvR3=%p\n", pSession, cPages, ppvR3));
2701
2702 /*
2703 * Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
2704 */
2705 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2706 AssertPtrNullReturn(ppvR3, VERR_INVALID_POINTER);
2707 AssertPtrNullReturn(ppvR0, VERR_INVALID_POINTER);
2708 AssertReturn(ppvR3 || ppvR0, VERR_INVALID_PARAMETER);
2709 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2710 if (cPages < 1 || cPages > VBOX_MAX_ALLOC_PAGE_COUNT)
2711 {
2712 Log(("SUPR0PageAlloc: Illegal request cb=%u; must be greater than 0 and smaller than %uMB (VBOX_MAX_ALLOC_PAGE_COUNT pages).\n", cPages, VBOX_MAX_ALLOC_PAGE_COUNT * (_1M / _4K)));
2713 return VERR_PAGE_COUNT_OUT_OF_RANGE;
2714 }
2715
2716 /*
2717 * Let IPRT do the work.
2718 */
2719 if (ppvR0)
2720 rc = RTR0MemObjAllocPage(&Mem.MemObj, (size_t)cPages * PAGE_SIZE, true /* fExecutable */);
2721 else
2722 rc = RTR0MemObjAllocPhysNC(&Mem.MemObj, (size_t)cPages * PAGE_SIZE, NIL_RTHCPHYS);
2723 if (RT_SUCCESS(rc))
2724 {
2725 int rc2;
2726 if (ppvR3)
2727 rc = RTR0MemObjMapUser(&Mem.MapObjR3, Mem.MemObj, (RTR3PTR)-1, 0,
2728 RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ, RTR0ProcHandleSelf());
2729 else
2730 Mem.MapObjR3 = NIL_RTR0MEMOBJ;
2731 if (RT_SUCCESS(rc))
2732 {
2733 Mem.eType = MEMREF_TYPE_PAGE;
2734 rc = supdrvMemAdd(&Mem, pSession);
2735 if (!rc)
2736 {
2737 if (ppvR3)
2738 *ppvR3 = RTR0MemObjAddressR3(Mem.MapObjR3);
2739 if (ppvR0)
2740 *ppvR0 = RTR0MemObjAddress(Mem.MemObj);
2741 if (paPages)
2742 {
2743 uint32_t iPage = cPages;
2744 while (iPage-- > 0)
2745 {
2746 paPages[iPage] = RTR0MemObjGetPagePhysAddr(Mem.MapObjR3, iPage);
2747 Assert(paPages[iPage] != NIL_RTHCPHYS);
2748 }
2749 }
2750 return VINF_SUCCESS;
2751 }
2752
2753 rc2 = RTR0MemObjFree(Mem.MapObjR3, false);
2754 AssertRC(rc2);
2755 }
2756
2757 rc2 = RTR0MemObjFree(Mem.MemObj, false);
2758 AssertRC(rc2);
2759 }
2760 return rc;
2761}
2762
2763
2764/**
2765 * Maps a chunk of memory previously allocated by SUPR0PageAllocEx into kernel
2766 * space.
2767 *
2768 * @returns IPRT status code.
2769 * @param pSession The session to associated the allocation with.
2770 * @param pvR3 The ring-3 address returned by SUPR0PageAllocEx.
2771 * @param offSub Where to start mapping. Must be page aligned.
2772 * @param cbSub How much to map. Must be page aligned.
2773 * @param fFlags Flags, MBZ.
2774 * @param ppvR0 Where to return the address of the ring-0 mapping on
2775 * success.
2776 */
2777SUPR0DECL(int) SUPR0PageMapKernel(PSUPDRVSESSION pSession, RTR3PTR pvR3, uint32_t offSub, uint32_t cbSub,
2778 uint32_t fFlags, PRTR0PTR ppvR0)
2779{
2780 int rc;
2781 PSUPDRVBUNDLE pBundle;
2782 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2783 RTR0MEMOBJ hMemObj = NIL_RTR0MEMOBJ;
2784 LogFlow(("SUPR0PageMapKernel: pSession=%p pvR3=%p offSub=%#x cbSub=%#x\n", pSession, pvR3, offSub, cbSub));
2785
2786 /*
2787 * Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
2788 */
2789 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2790 AssertPtrNullReturn(ppvR0, VERR_INVALID_POINTER);
2791 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2792 AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2793 AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2794 AssertReturn(cbSub, VERR_INVALID_PARAMETER);
2795
2796 /*
2797 * Find the memory object.
2798 */
2799 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2800 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2801 {
2802 if (pBundle->cUsed > 0)
2803 {
2804 unsigned i;
2805 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
2806 {
2807 if ( ( pBundle->aMem[i].eType == MEMREF_TYPE_PAGE
2808 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2809 && pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2810 && RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == pvR3)
2811 || ( pBundle->aMem[i].eType == MEMREF_TYPE_LOCKED
2812 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2813 && pBundle->aMem[i].MapObjR3 == NIL_RTR0MEMOBJ
2814 && RTR0MemObjAddressR3(pBundle->aMem[i].MemObj) == pvR3))
2815 {
2816 hMemObj = pBundle->aMem[i].MemObj;
2817 break;
2818 }
2819 }
2820 }
2821 }
2822 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2823
2824 rc = VERR_INVALID_PARAMETER;
2825 if (hMemObj != NIL_RTR0MEMOBJ)
2826 {
2827 /*
2828 * Do some further input validations before calling IPRT.
2829 * (Cleanup is done indirectly by telling RTR0MemObjFree to include mappings.)
2830 */
2831 size_t cbMemObj = RTR0MemObjSize(hMemObj);
2832 if ( offSub < cbMemObj
2833 && cbSub <= cbMemObj
2834 && offSub + cbSub <= cbMemObj)
2835 {
2836 RTR0MEMOBJ hMapObj;
2837 rc = RTR0MemObjMapKernelEx(&hMapObj, hMemObj, (void *)-1, 0,
2838 RTMEM_PROT_READ | RTMEM_PROT_WRITE, offSub, cbSub);
2839 if (RT_SUCCESS(rc))
2840 *ppvR0 = RTR0MemObjAddress(hMapObj);
2841 }
2842 else
2843 SUPR0Printf("SUPR0PageMapKernel: cbMemObj=%#x offSub=%#x cbSub=%#x\n", cbMemObj, offSub, cbSub);
2844
2845 }
2846 return rc;
2847}
2848
2849
2850/**
2851 * Changes the page level protection of one or more pages previously allocated
2852 * by SUPR0PageAllocEx.
2853 *
2854 * @returns IPRT status code.
2855 * @param pSession The session to associated the allocation with.
2856 * @param pvR3 The ring-3 address returned by SUPR0PageAllocEx.
2857 * NIL_RTR3PTR if the ring-3 mapping should be unaffected.
2858 * @param pvR0 The ring-0 address returned by SUPR0PageAllocEx.
2859 * NIL_RTR0PTR if the ring-0 mapping should be unaffected.
2860 * @param offSub Where to start changing. Must be page aligned.
2861 * @param cbSub How much to change. Must be page aligned.
2862 * @param fProt The new page level protection, see RTMEM_PROT_*.
2863 */
2864SUPR0DECL(int) SUPR0PageProtect(PSUPDRVSESSION pSession, RTR3PTR pvR3, RTR0PTR pvR0, uint32_t offSub, uint32_t cbSub, uint32_t fProt)
2865{
2866 int rc;
2867 PSUPDRVBUNDLE pBundle;
2868 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
2869 RTR0MEMOBJ hMemObjR0 = NIL_RTR0MEMOBJ;
2870 RTR0MEMOBJ hMemObjR3 = NIL_RTR0MEMOBJ;
2871 LogFlow(("SUPR0PageProtect: pSession=%p pvR3=%p pvR0=%p offSub=%#x cbSub=%#x fProt-%#x\n", pSession, pvR3, pvR0, offSub, cbSub, fProt));
2872
2873 /*
2874 * Validate input. The allowed allocation size must be at least equal to the maximum guest VRAM size.
2875 */
2876 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2877 AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_NONE)), VERR_INVALID_PARAMETER);
2878 AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2879 AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2880 AssertReturn(cbSub, VERR_INVALID_PARAMETER);
2881
2882 /*
2883 * Find the memory object.
2884 */
2885 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
2886 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
2887 {
2888 if (pBundle->cUsed > 0)
2889 {
2890 unsigned i;
2891 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
2892 {
2893 if ( pBundle->aMem[i].eType == MEMREF_TYPE_PAGE
2894 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
2895 && ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
2896 || pvR3 == NIL_RTR3PTR)
2897 && ( pvR0 == NIL_RTR0PTR
2898 || RTR0MemObjAddress(pBundle->aMem[i].MemObj) == pvR0)
2899 && ( pvR3 == NIL_RTR3PTR
2900 || RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == pvR3))
2901 {
2902 if (pvR0 != NIL_RTR0PTR)
2903 hMemObjR0 = pBundle->aMem[i].MemObj;
2904 if (pvR3 != NIL_RTR3PTR)
2905 hMemObjR3 = pBundle->aMem[i].MapObjR3;
2906 break;
2907 }
2908 }
2909 }
2910 }
2911 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
2912
2913 rc = VERR_INVALID_PARAMETER;
2914 if ( hMemObjR0 != NIL_RTR0MEMOBJ
2915 || hMemObjR3 != NIL_RTR0MEMOBJ)
2916 {
2917 /*
2918 * Do some further input validations before calling IPRT.
2919 */
2920 size_t cbMemObj = hMemObjR0 != NIL_RTR0PTR ? RTR0MemObjSize(hMemObjR0) : RTR0MemObjSize(hMemObjR3);
2921 if ( offSub < cbMemObj
2922 && cbSub <= cbMemObj
2923 && offSub + cbSub <= cbMemObj)
2924 {
2925 rc = VINF_SUCCESS;
2926 if (hMemObjR3 != NIL_RTR0PTR)
2927 rc = RTR0MemObjProtect(hMemObjR3, offSub, cbSub, fProt);
2928 if (hMemObjR0 != NIL_RTR0PTR && RT_SUCCESS(rc))
2929 rc = RTR0MemObjProtect(hMemObjR0, offSub, cbSub, fProt);
2930 }
2931 else
2932 SUPR0Printf("SUPR0PageMapKernel: cbMemObj=%#x offSub=%#x cbSub=%#x\n", cbMemObj, offSub, cbSub);
2933
2934 }
2935 return rc;
2936
2937}
2938
2939
2940/**
2941 * Free memory allocated by SUPR0PageAlloc() and SUPR0PageAllocEx().
2942 *
2943 * @returns IPRT status code.
2944 * @param pSession The session owning the allocation.
2945 * @param pvR3 The Ring-3 address returned by SUPR0PageAlloc() or
2946 * SUPR0PageAllocEx().
2947 */
2948SUPR0DECL(int) SUPR0PageFree(PSUPDRVSESSION pSession, RTR3PTR pvR3)
2949{
2950 LogFlow(("SUPR0PageFree: pSession=%p pvR3=%p\n", pSession, (void *)pvR3));
2951 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
2952 return supdrvMemRelease(pSession, (RTHCUINTPTR)pvR3, MEMREF_TYPE_PAGE);
2953}
2954
2955
2956/**
2957 * Gets the paging mode of the current CPU.
2958 *
2959 * @returns Paging mode, SUPPAGEINGMODE_INVALID on error.
2960 */
2961SUPR0DECL(SUPPAGINGMODE) SUPR0GetPagingMode(void)
2962{
2963 SUPPAGINGMODE enmMode;
2964
2965 RTR0UINTREG cr0 = ASMGetCR0();
2966 if ((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
2967 enmMode = SUPPAGINGMODE_INVALID;
2968 else
2969 {
2970 RTR0UINTREG cr4 = ASMGetCR4();
2971 uint32_t fNXEPlusLMA = 0;
2972 if (cr4 & X86_CR4_PAE)
2973 {
2974 uint32_t fAmdFeatures = ASMCpuId_EDX(0x80000001);
2975 if (fAmdFeatures & (X86_CPUID_AMD_FEATURE_EDX_NX | X86_CPUID_AMD_FEATURE_EDX_LONG_MODE))
2976 {
2977 uint64_t efer = ASMRdMsr(MSR_K6_EFER);
2978 if ((fAmdFeatures & X86_CPUID_AMD_FEATURE_EDX_NX) && (efer & MSR_K6_EFER_NXE))
2979 fNXEPlusLMA |= RT_BIT(0);
2980 if ((fAmdFeatures & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE) && (efer & MSR_K6_EFER_LMA))
2981 fNXEPlusLMA |= RT_BIT(1);
2982 }
2983 }
2984
2985 switch ((cr4 & (X86_CR4_PAE | X86_CR4_PGE)) | fNXEPlusLMA)
2986 {
2987 case 0:
2988 enmMode = SUPPAGINGMODE_32_BIT;
2989 break;
2990
2991 case X86_CR4_PGE:
2992 enmMode = SUPPAGINGMODE_32_BIT_GLOBAL;
2993 break;
2994
2995 case X86_CR4_PAE:
2996 enmMode = SUPPAGINGMODE_PAE;
2997 break;
2998
2999 case X86_CR4_PAE | RT_BIT(0):
3000 enmMode = SUPPAGINGMODE_PAE_NX;
3001 break;
3002
3003 case X86_CR4_PAE | X86_CR4_PGE:
3004 enmMode = SUPPAGINGMODE_PAE_GLOBAL;
3005 break;
3006
3007 case X86_CR4_PAE | X86_CR4_PGE | RT_BIT(0):
3008 enmMode = SUPPAGINGMODE_PAE_GLOBAL;
3009 break;
3010
3011 case RT_BIT(1) | X86_CR4_PAE:
3012 enmMode = SUPPAGINGMODE_AMD64;
3013 break;
3014
3015 case RT_BIT(1) | X86_CR4_PAE | RT_BIT(0):
3016 enmMode = SUPPAGINGMODE_AMD64_NX;
3017 break;
3018
3019 case RT_BIT(1) | X86_CR4_PAE | X86_CR4_PGE:
3020 enmMode = SUPPAGINGMODE_AMD64_GLOBAL;
3021 break;
3022
3023 case RT_BIT(1) | X86_CR4_PAE | X86_CR4_PGE | RT_BIT(0):
3024 enmMode = SUPPAGINGMODE_AMD64_GLOBAL_NX;
3025 break;
3026
3027 default:
3028 AssertMsgFailed(("Cannot happen! cr4=%#x fNXEPlusLMA=%d\n", cr4, fNXEPlusLMA));
3029 enmMode = SUPPAGINGMODE_INVALID;
3030 break;
3031 }
3032 }
3033 return enmMode;
3034}
3035
3036
3037/**
3038 * Enables or disabled hardware virtualization extensions using native OS APIs.
3039 *
3040 * @returns VBox status code.
3041 * @retval VINF_SUCCESS on success.
3042 * @retval VERR_NOT_SUPPORTED if not supported by the native OS.
3043 *
3044 * @param fEnable Whether to enable or disable.
3045 */
3046SUPR0DECL(int) SUPR0EnableVTx(bool fEnable)
3047{
3048#ifdef RT_OS_DARWIN
3049 return supdrvOSEnableVTx(fEnable);
3050#else
3051 return VERR_NOT_SUPPORTED;
3052#endif
3053}
3054
3055
3056/** @todo document me */
3057SUPR0DECL(int) SUPR0QueryVTCaps(PSUPDRVSESSION pSession, uint32_t *pfCaps)
3058{
3059 /*
3060 * Input validation.
3061 */
3062 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3063 AssertPtrReturn(pfCaps, VERR_INVALID_POINTER);
3064
3065 *pfCaps = 0;
3066
3067 if (ASMHasCpuId())
3068 {
3069 uint32_t u32FeaturesECX;
3070 uint32_t u32Dummy;
3071 uint32_t u32FeaturesEDX;
3072 uint32_t u32VendorEBX, u32VendorECX, u32VendorEDX, u32AMDFeatureEDX, u32AMDFeatureECX;
3073 uint64_t val;
3074
3075 ASMCpuId(0, &u32Dummy, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
3076 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
3077 /* Query AMD features. */
3078 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy, &u32AMDFeatureECX, &u32AMDFeatureEDX);
3079
3080 if ( u32VendorEBX == X86_CPUID_VENDOR_INTEL_EBX
3081 && u32VendorECX == X86_CPUID_VENDOR_INTEL_ECX
3082 && u32VendorEDX == X86_CPUID_VENDOR_INTEL_EDX
3083 )
3084 {
3085 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
3086 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
3087 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
3088 )
3089 {
3090 val = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
3091 /*
3092 * Both the LOCK and VMXON bit must be set; otherwise VMXON will generate a #GP.
3093 * Once the lock bit is set, this MSR can no longer be modified.
3094 */
3095 if ( (val & (MSR_IA32_FEATURE_CONTROL_VMXON|MSR_IA32_FEATURE_CONTROL_LOCK))
3096 == (MSR_IA32_FEATURE_CONTROL_VMXON|MSR_IA32_FEATURE_CONTROL_LOCK) /* enabled and locked */
3097 || !(val & MSR_IA32_FEATURE_CONTROL_LOCK) /* not enabled, but not locked either */
3098 )
3099 {
3100 VMX_CAPABILITY vtCaps;
3101
3102 *pfCaps |= SUPVTCAPS_VT_X;
3103
3104 vtCaps.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
3105 if (vtCaps.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
3106 {
3107 vtCaps.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
3108 if (vtCaps.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_EPT)
3109 *pfCaps |= SUPVTCAPS_NESTED_PAGING;
3110 }
3111 return VINF_SUCCESS;
3112 }
3113 return VERR_VMX_MSR_LOCKED_OR_DISABLED;
3114 }
3115 return VERR_VMX_NO_VMX;
3116 }
3117
3118 if ( u32VendorEBX == X86_CPUID_VENDOR_AMD_EBX
3119 && u32VendorECX == X86_CPUID_VENDOR_AMD_ECX
3120 && u32VendorEDX == X86_CPUID_VENDOR_AMD_EDX
3121 )
3122 {
3123 if ( (u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
3124 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
3125 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
3126 )
3127 {
3128 /* Check if SVM is disabled */
3129 val = ASMRdMsr(MSR_K8_VM_CR);
3130 if (!(val & MSR_K8_VM_CR_SVM_DISABLE))
3131 {
3132 *pfCaps |= SUPVTCAPS_AMD_V;
3133
3134 /* Query AMD features. */
3135 ASMCpuId(0x8000000A, &u32Dummy, &u32Dummy, &u32Dummy, &u32FeaturesEDX);
3136
3137 if (u32FeaturesEDX & AMD_CPUID_SVM_FEATURE_EDX_NESTED_PAGING)
3138 *pfCaps |= SUPVTCAPS_NESTED_PAGING;
3139
3140 return VINF_SUCCESS;
3141 }
3142 return VERR_SVM_DISABLED;
3143 }
3144 return VERR_SVM_NO_SVM;
3145 }
3146 }
3147
3148 return VERR_UNSUPPORTED_CPU;
3149}
3150
3151
3152/**
3153 * (Re-)initializes the per-cpu structure prior to starting or resuming the GIP
3154 * updating.
3155 *
3156 * @param pGipCpu The per CPU structure for this CPU.
3157 * @param u64NanoTS The current time.
3158 */
3159static void supdrvGipReInitCpu(PSUPGIPCPU pGipCpu, uint64_t u64NanoTS)
3160{
3161 pGipCpu->u64TSC = ASMReadTSC() - pGipCpu->u32UpdateIntervalTSC;
3162 pGipCpu->u64NanoTS = u64NanoTS;
3163}
3164
3165
3166/**
3167 * Set the current TSC and NanoTS value for the CPU.
3168 *
3169 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
3170 * @param pvUser1 Pointer to the ring-0 GIP mapping.
3171 * @param pvUser2 Pointer to the variable holding the current time.
3172 */
3173static DECLCALLBACK(void) supdrvGipReInitCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
3174{
3175 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser1;
3176 unsigned iCpu = ASMGetApicId();
3177
3178 if (RT_LIKELY(iCpu < RT_ELEMENTS(pGip->aCPUs)))
3179 supdrvGipReInitCpu(&pGip->aCPUs[iCpu], *(uint64_t *)pvUser2);
3180
3181 NOREF(pvUser2);
3182 NOREF(idCpu);
3183}
3184
3185
3186/**
3187 * Maps the GIP into userspace and/or get the physical address of the GIP.
3188 *
3189 * @returns IPRT status code.
3190 * @param pSession Session to which the GIP mapping should belong.
3191 * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional)
3192 * @param pHCPhysGip Where to store the physical address. (optional)
3193 *
3194 * @remark There is no reference counting on the mapping, so one call to this function
3195 * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
3196 * and remove the session as a GIP user.
3197 */
3198SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip)
3199{
3200 int rc;
3201 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
3202 RTR3PTR pGipR3 = NIL_RTR3PTR;
3203 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3204 LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip));
3205
3206 /*
3207 * Validate
3208 */
3209 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3210 AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER);
3211 AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER);
3212
3213#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3214 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
3215#else
3216 RTSemFastMutexRequest(pDevExt->mtxGip);
3217#endif
3218 if (pDevExt->pGip)
3219 {
3220 /*
3221 * Map it?
3222 */
3223 rc = VINF_SUCCESS;
3224 if (ppGipR3)
3225 {
3226 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
3227 rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0,
3228 RTMEM_PROT_READ, RTR0ProcHandleSelf());
3229 if (RT_SUCCESS(rc))
3230 pGipR3 = RTR0MemObjAddressR3(pSession->GipMapObjR3);
3231 }
3232
3233 /*
3234 * Get physical address.
3235 */
3236 if (pHCPhysGip && RT_SUCCESS(rc))
3237 HCPhys = pDevExt->HCPhysGip;
3238
3239 /*
3240 * Reference globally.
3241 */
3242 if (!pSession->fGipReferenced && RT_SUCCESS(rc))
3243 {
3244 pSession->fGipReferenced = 1;
3245 pDevExt->cGipUsers++;
3246 if (pDevExt->cGipUsers == 1)
3247 {
3248 PSUPGLOBALINFOPAGE pGipR0 = pDevExt->pGip;
3249 uint64_t u64NanoTS;
3250 uint32_t u32SystemResolution;
3251 unsigned i;
3252
3253 LogFlow(("SUPR0GipMap: Resumes GIP updating\n"));
3254
3255 /*
3256 * Try bump up the system timer resolution.
3257 * The more interrupts the better...
3258 */
3259 if ( RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
3260 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
3261 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution))
3262 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution))
3263 )
3264 {
3265 Assert(RTTimerGetSystemGranularity() <= u32SystemResolution);
3266 pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
3267 }
3268
3269 if (pGipR0->aCPUs[0].u32TransactionId != 2 /* not the first time */)
3270 {
3271 for (i = 0; i < RT_ELEMENTS(pGipR0->aCPUs); i++)
3272 ASMAtomicUoWriteU32(&pGipR0->aCPUs[i].u32TransactionId,
3273 (pGipR0->aCPUs[i].u32TransactionId + GIP_UPDATEHZ_RECALC_FREQ * 2)
3274 & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
3275 ASMAtomicWriteU64(&pGipR0->u64NanoTSLastUpdateHz, 0);
3276 }
3277
3278 u64NanoTS = RTTimeSystemNanoTS() - pGipR0->u32UpdateIntervalNS;
3279 if ( pGipR0->u32Mode == SUPGIPMODE_SYNC_TSC
3280 || RTMpGetOnlineCount() == 1)
3281 supdrvGipReInitCpu(&pGipR0->aCPUs[0], u64NanoTS);
3282 else
3283 RTMpOnAll(supdrvGipReInitCpuCallback, pGipR0, &u64NanoTS);
3284
3285#ifndef DO_NOT_START_GIP
3286 rc = RTTimerStart(pDevExt->pGipTimer, 0); AssertRC(rc);
3287#endif
3288 rc = VINF_SUCCESS;
3289 }
3290 }
3291 }
3292 else
3293 {
3294 rc = VERR_GENERAL_FAILURE;
3295 Log(("SUPR0GipMap: GIP is not available!\n"));
3296 }
3297#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3298 RTSemMutexRelease(pDevExt->mtxGip);
3299#else
3300 RTSemFastMutexRelease(pDevExt->mtxGip);
3301#endif
3302
3303 /*
3304 * Write returns.
3305 */
3306 if (pHCPhysGip)
3307 *pHCPhysGip = HCPhys;
3308 if (ppGipR3)
3309 *ppGipR3 = pGipR3;
3310
3311#ifdef DEBUG_DARWIN_GIP
3312 OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
3313#else
3314 LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
3315#endif
3316 return rc;
3317}
3318
3319
3320/**
3321 * Unmaps any user mapping of the GIP and terminates all GIP access
3322 * from this session.
3323 *
3324 * @returns IPRT status code.
3325 * @param pSession Session to which the GIP mapping should belong.
3326 */
3327SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
3328{
3329 int rc = VINF_SUCCESS;
3330 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
3331#ifdef DEBUG_DARWIN_GIP
3332 OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n",
3333 pSession,
3334 pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL,
3335 pSession->GipMapObjR3));
3336#else
3337 LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession));
3338#endif
3339 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3340
3341#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3342 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
3343#else
3344 RTSemFastMutexRequest(pDevExt->mtxGip);
3345#endif
3346
3347 /*
3348 * Unmap anything?
3349 */
3350 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
3351 {
3352 rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
3353 AssertRC(rc);
3354 if (RT_SUCCESS(rc))
3355 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
3356 }
3357
3358 /*
3359 * Dereference global GIP.
3360 */
3361 if (pSession->fGipReferenced && !rc)
3362 {
3363 pSession->fGipReferenced = 0;
3364 if ( pDevExt->cGipUsers > 0
3365 && !--pDevExt->cGipUsers)
3366 {
3367 LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n"));
3368#ifndef DO_NOT_START_GIP
3369 rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS;
3370#endif
3371
3372 if (pDevExt->u32SystemTimerGranularityGrant)
3373 {
3374 int rc2 = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant);
3375 AssertRC(rc2);
3376 pDevExt->u32SystemTimerGranularityGrant = 0;
3377 }
3378 }
3379 }
3380
3381#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3382 RTSemMutexRelease(pDevExt->mtxGip);
3383#else
3384 RTSemFastMutexRelease(pDevExt->mtxGip);
3385#endif
3386
3387 return rc;
3388}
3389
3390
3391/**
3392 * Gets the GIP pointer.
3393 *
3394 * @returns Pointer to the GIP or NULL.
3395 */
3396SUPDECL(PSUPGLOBALINFOPAGE) SUPGetGIP(void)
3397{
3398 return g_pSUPGlobalInfoPage;
3399}
3400
3401
3402/**
3403 * Register a component factory with the support driver.
3404 *
3405 * This is currently restricted to kernel sessions only.
3406 *
3407 * @returns VBox status code.
3408 * @retval VINF_SUCCESS on success.
3409 * @retval VERR_NO_MEMORY if we're out of memory.
3410 * @retval VERR_ALREADY_EXISTS if the factory has already been registered.
3411 * @retval VERR_ACCESS_DENIED if it isn't a kernel session.
3412 * @retval VERR_INVALID_PARAMETER on invalid parameter.
3413 * @retval VERR_INVALID_POINTER on invalid pointer parameter.
3414 *
3415 * @param pSession The SUPDRV session (must be a ring-0 session).
3416 * @param pFactory Pointer to the component factory registration structure.
3417 *
3418 * @remarks This interface is also available via SUPR0IdcComponentRegisterFactory.
3419 */
3420SUPR0DECL(int) SUPR0ComponentRegisterFactory(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory)
3421{
3422 PSUPDRVFACTORYREG pNewReg;
3423 const char *psz;
3424 int rc;
3425
3426 /*
3427 * Validate parameters.
3428 */
3429 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3430 AssertReturn(pSession->R0Process == NIL_RTR0PROCESS, VERR_ACCESS_DENIED);
3431 AssertPtrReturn(pFactory, VERR_INVALID_POINTER);
3432 AssertPtrReturn(pFactory->pfnQueryFactoryInterface, VERR_INVALID_POINTER);
3433 psz = RTStrEnd(pFactory->szName, sizeof(pFactory->szName));
3434 AssertReturn(psz, VERR_INVALID_PARAMETER);
3435
3436 /*
3437 * Allocate and initialize a new registration structure.
3438 */
3439 pNewReg = (PSUPDRVFACTORYREG)RTMemAlloc(sizeof(SUPDRVFACTORYREG));
3440 if (pNewReg)
3441 {
3442 pNewReg->pNext = NULL;
3443 pNewReg->pFactory = pFactory;
3444 pNewReg->pSession = pSession;
3445 pNewReg->cchName = psz - &pFactory->szName[0];
3446
3447 /*
3448 * Add it to the tail of the list after checking for prior registration.
3449 */
3450 rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
3451 if (RT_SUCCESS(rc))
3452 {
3453 PSUPDRVFACTORYREG pPrev = NULL;
3454 PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
3455 while (pCur && pCur->pFactory != pFactory)
3456 {
3457 pPrev = pCur;
3458 pCur = pCur->pNext;
3459 }
3460 if (!pCur)
3461 {
3462 if (pPrev)
3463 pPrev->pNext = pNewReg;
3464 else
3465 pSession->pDevExt->pComponentFactoryHead = pNewReg;
3466 rc = VINF_SUCCESS;
3467 }
3468 else
3469 rc = VERR_ALREADY_EXISTS;
3470
3471 RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
3472 }
3473
3474 if (RT_FAILURE(rc))
3475 RTMemFree(pNewReg);
3476 }
3477 else
3478 rc = VERR_NO_MEMORY;
3479 return rc;
3480}
3481
3482
3483/**
3484 * Deregister a component factory.
3485 *
3486 * @returns VBox status code.
3487 * @retval VINF_SUCCESS on success.
3488 * @retval VERR_NOT_FOUND if the factory wasn't registered.
3489 * @retval VERR_ACCESS_DENIED if it isn't a kernel session.
3490 * @retval VERR_INVALID_PARAMETER on invalid parameter.
3491 * @retval VERR_INVALID_POINTER on invalid pointer parameter.
3492 *
3493 * @param pSession The SUPDRV session (must be a ring-0 session).
3494 * @param pFactory Pointer to the component factory registration structure
3495 * previously passed SUPR0ComponentRegisterFactory().
3496 *
3497 * @remarks This interface is also available via SUPR0IdcComponentDeregisterFactory.
3498 */
3499SUPR0DECL(int) SUPR0ComponentDeregisterFactory(PSUPDRVSESSION pSession, PCSUPDRVFACTORY pFactory)
3500{
3501 int rc;
3502
3503 /*
3504 * Validate parameters.
3505 */
3506 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3507 AssertReturn(pSession->R0Process == NIL_RTR0PROCESS, VERR_ACCESS_DENIED);
3508 AssertPtrReturn(pFactory, VERR_INVALID_POINTER);
3509
3510 /*
3511 * Take the lock and look for the registration record.
3512 */
3513 rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
3514 if (RT_SUCCESS(rc))
3515 {
3516 PSUPDRVFACTORYREG pPrev = NULL;
3517 PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
3518 while (pCur && pCur->pFactory != pFactory)
3519 {
3520 pPrev = pCur;
3521 pCur = pCur->pNext;
3522 }
3523 if (pCur)
3524 {
3525 if (!pPrev)
3526 pSession->pDevExt->pComponentFactoryHead = pCur->pNext;
3527 else
3528 pPrev->pNext = pCur->pNext;
3529
3530 pCur->pNext = NULL;
3531 pCur->pFactory = NULL;
3532 pCur->pSession = NULL;
3533 rc = VINF_SUCCESS;
3534 }
3535 else
3536 rc = VERR_NOT_FOUND;
3537
3538 RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
3539
3540 RTMemFree(pCur);
3541 }
3542 return rc;
3543}
3544
3545
3546/**
3547 * Queries a component factory.
3548 *
3549 * @returns VBox status code.
3550 * @retval VERR_INVALID_PARAMETER on invalid parameter.
3551 * @retval VERR_INVALID_POINTER on invalid pointer parameter.
3552 * @retval VERR_SUPDRV_COMPONENT_NOT_FOUND if the component factory wasn't found.
3553 * @retval VERR_SUPDRV_INTERFACE_NOT_SUPPORTED if the interface wasn't supported.
3554 *
3555 * @param pSession The SUPDRV session.
3556 * @param pszName The name of the component factory.
3557 * @param pszInterfaceUuid The UUID of the factory interface (stringified).
3558 * @param ppvFactoryIf Where to store the factory interface.
3559 */
3560SUPR0DECL(int) SUPR0ComponentQueryFactory(PSUPDRVSESSION pSession, const char *pszName, const char *pszInterfaceUuid, void **ppvFactoryIf)
3561{
3562 const char *pszEnd;
3563 size_t cchName;
3564 int rc;
3565
3566 /*
3567 * Validate parameters.
3568 */
3569 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3570
3571 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
3572 pszEnd = RTStrEnd(pszName, RT_SIZEOFMEMB(SUPDRVFACTORY, szName));
3573 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
3574 cchName = pszEnd - pszName;
3575
3576 AssertPtrReturn(pszInterfaceUuid, VERR_INVALID_POINTER);
3577 pszEnd = RTStrEnd(pszInterfaceUuid, RTUUID_STR_LENGTH);
3578 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
3579
3580 AssertPtrReturn(ppvFactoryIf, VERR_INVALID_POINTER);
3581 *ppvFactoryIf = NULL;
3582
3583 /*
3584 * Take the lock and try all factories by this name.
3585 */
3586 rc = RTSemFastMutexRequest(pSession->pDevExt->mtxComponentFactory);
3587 if (RT_SUCCESS(rc))
3588 {
3589 PSUPDRVFACTORYREG pCur = pSession->pDevExt->pComponentFactoryHead;
3590 rc = VERR_SUPDRV_COMPONENT_NOT_FOUND;
3591 while (pCur)
3592 {
3593 if ( pCur->cchName == cchName
3594 && !memcmp(pCur->pFactory->szName, pszName, cchName))
3595 {
3596 void *pvFactory = pCur->pFactory->pfnQueryFactoryInterface(pCur->pFactory, pSession, pszInterfaceUuid);
3597 if (pvFactory)
3598 {
3599 *ppvFactoryIf = pvFactory;
3600 rc = VINF_SUCCESS;
3601 break;
3602 }
3603 rc = VERR_SUPDRV_INTERFACE_NOT_SUPPORTED;
3604 }
3605
3606 /* next */
3607 pCur = pCur->pNext;
3608 }
3609
3610 RTSemFastMutexRelease(pSession->pDevExt->mtxComponentFactory);
3611 }
3612 return rc;
3613}
3614
3615
3616/**
3617 * Adds a memory object to the session.
3618 *
3619 * @returns IPRT status code.
3620 * @param pMem Memory tracking structure containing the
3621 * information to track.
3622 * @param pSession The session.
3623 */
3624static int supdrvMemAdd(PSUPDRVMEMREF pMem, PSUPDRVSESSION pSession)
3625{
3626 PSUPDRVBUNDLE pBundle;
3627 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
3628
3629 /*
3630 * Find free entry and record the allocation.
3631 */
3632 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
3633 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
3634 {
3635 if (pBundle->cUsed < RT_ELEMENTS(pBundle->aMem))
3636 {
3637 unsigned i;
3638 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
3639 {
3640 if (pBundle->aMem[i].MemObj == NIL_RTR0MEMOBJ)
3641 {
3642 pBundle->cUsed++;
3643 pBundle->aMem[i] = *pMem;
3644 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3645 return VINF_SUCCESS;
3646 }
3647 }
3648 AssertFailed(); /* !!this can't be happening!!! */
3649 }
3650 }
3651 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3652
3653 /*
3654 * Need to allocate a new bundle.
3655 * Insert into the last entry in the bundle.
3656 */
3657 pBundle = (PSUPDRVBUNDLE)RTMemAllocZ(sizeof(*pBundle));
3658 if (!pBundle)
3659 return VERR_NO_MEMORY;
3660
3661 /* take last entry. */
3662 pBundle->cUsed++;
3663 pBundle->aMem[RT_ELEMENTS(pBundle->aMem) - 1] = *pMem;
3664
3665 /* insert into list. */
3666 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
3667 pBundle->pNext = pSession->Bundle.pNext;
3668 pSession->Bundle.pNext = pBundle;
3669 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3670
3671 return VINF_SUCCESS;
3672}
3673
3674
3675/**
3676 * Releases a memory object referenced by pointer and type.
3677 *
3678 * @returns IPRT status code.
3679 * @param pSession Session data.
3680 * @param uPtr Pointer to memory. This is matched against both the R0 and R3 addresses.
3681 * @param eType Memory type.
3682 */
3683static int supdrvMemRelease(PSUPDRVSESSION pSession, RTHCUINTPTR uPtr, SUPDRVMEMREFTYPE eType)
3684{
3685 PSUPDRVBUNDLE pBundle;
3686 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
3687
3688 /*
3689 * Validate input.
3690 */
3691 if (!uPtr)
3692 {
3693 Log(("Illegal address %p\n", (void *)uPtr));
3694 return VERR_INVALID_PARAMETER;
3695 }
3696
3697 /*
3698 * Search for the address.
3699 */
3700 RTSpinlockAcquire(pSession->Spinlock, &SpinlockTmp);
3701 for (pBundle = &pSession->Bundle; pBundle; pBundle = pBundle->pNext)
3702 {
3703 if (pBundle->cUsed > 0)
3704 {
3705 unsigned i;
3706 for (i = 0; i < RT_ELEMENTS(pBundle->aMem); i++)
3707 {
3708 if ( pBundle->aMem[i].eType == eType
3709 && pBundle->aMem[i].MemObj != NIL_RTR0MEMOBJ
3710 && ( (RTHCUINTPTR)RTR0MemObjAddress(pBundle->aMem[i].MemObj) == uPtr
3711 || ( pBundle->aMem[i].MapObjR3 != NIL_RTR0MEMOBJ
3712 && RTR0MemObjAddressR3(pBundle->aMem[i].MapObjR3) == uPtr))
3713 )
3714 {
3715 /* Make a copy of it and release it outside the spinlock. */
3716 SUPDRVMEMREF Mem = pBundle->aMem[i];
3717 pBundle->aMem[i].eType = MEMREF_TYPE_UNUSED;
3718 pBundle->aMem[i].MemObj = NIL_RTR0MEMOBJ;
3719 pBundle->aMem[i].MapObjR3 = NIL_RTR0MEMOBJ;
3720 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3721
3722 if (Mem.MapObjR3 != NIL_RTR0MEMOBJ)
3723 {
3724 int rc = RTR0MemObjFree(Mem.MapObjR3, false);
3725 AssertRC(rc); /** @todo figure out how to handle this. */
3726 }
3727 if (Mem.MemObj != NIL_RTR0MEMOBJ)
3728 {
3729 int rc = RTR0MemObjFree(Mem.MemObj, true /* fFreeMappings */);
3730 AssertRC(rc); /** @todo figure out how to handle this. */
3731 }
3732 return VINF_SUCCESS;
3733 }
3734 }
3735 }
3736 }
3737 RTSpinlockRelease(pSession->Spinlock, &SpinlockTmp);
3738 Log(("Failed to find %p!!! (eType=%d)\n", (void *)uPtr, eType));
3739 return VERR_INVALID_PARAMETER;
3740}
3741
3742
3743/**
3744 * Opens an image. If it's the first time it's opened the call must upload
3745 * the bits using the supdrvIOCtl_LdrLoad() / SUPDRV_IOCTL_LDR_LOAD function.
3746 *
3747 * This is the 1st step of the loading.
3748 *
3749 * @returns IPRT status code.
3750 * @param pDevExt Device globals.
3751 * @param pSession Session data.
3752 * @param pReq The open request.
3753 */
3754static int supdrvIOCtl_LdrOpen(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDROPEN pReq)
3755{
3756 int rc;
3757 PSUPDRVLDRIMAGE pImage;
3758 void *pv;
3759 size_t cchName = strlen(pReq->u.In.szName); /* (caller checked < 32). */
3760 LogFlow(("supdrvIOCtl_LdrOpen: szName=%s cbImageWithTabs=%d\n", pReq->u.In.szName, pReq->u.In.cbImageWithTabs));
3761
3762 /*
3763 * Check if we got an instance of the image already.
3764 */
3765 supdrvLdrLock(pDevExt);
3766 for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
3767 {
3768 if ( pImage->szName[cchName] == '\0'
3769 && !memcmp(pImage->szName, pReq->u.In.szName, cchName))
3770 {
3771 /** @todo check cbImageBits and cbImageWithTabs here, if they differs that indicates that the images are different. */
3772 pImage->cUsage++;
3773 pReq->u.Out.pvImageBase = pImage->pvImage;
3774 pReq->u.Out.fNeedsLoading = pImage->uState == SUP_IOCTL_LDR_OPEN;
3775 pReq->u.Out.fNativeLoader = pImage->fNative;
3776 supdrvLdrAddUsage(pSession, pImage);
3777 supdrvLdrUnlock(pDevExt);
3778 return VINF_SUCCESS;
3779 }
3780 }
3781 /* (not found - add it!) */
3782
3783 /*
3784 * Allocate memory.
3785 */
3786 pv = RTMemAlloc(RT_OFFSETOF(SUPDRVLDRIMAGE, szName[cchName + 1]));
3787 if (!pv)
3788 {
3789 supdrvLdrUnlock(pDevExt);
3790 Log(("supdrvIOCtl_LdrOpen: RTMemAlloc() failed\n"));
3791 return /*VERR_NO_MEMORY*/ VERR_INTERNAL_ERROR_2;
3792 }
3793
3794 /*
3795 * Setup and link in the LDR stuff.
3796 */
3797 pImage = (PSUPDRVLDRIMAGE)pv;
3798 pImage->pvImage = NULL;
3799 pImage->pvImageAlloc = NULL;
3800 pImage->cbImageWithTabs = pReq->u.In.cbImageWithTabs;
3801 pImage->cbImageBits = pReq->u.In.cbImageBits;
3802 pImage->cSymbols = 0;
3803 pImage->paSymbols = NULL;
3804 pImage->pachStrTab = NULL;
3805 pImage->cbStrTab = 0;
3806 pImage->pfnModuleInit = NULL;
3807 pImage->pfnModuleTerm = NULL;
3808 pImage->pfnServiceReqHandler = NULL;
3809 pImage->uState = SUP_IOCTL_LDR_OPEN;
3810 pImage->cUsage = 1;
3811 memcpy(pImage->szName, pReq->u.In.szName, cchName + 1);
3812
3813 /*
3814 * Try load it using the native loader, if that isn't supported, fall back
3815 * on the older method.
3816 */
3817 pImage->fNative = true;
3818 rc = supdrvOSLdrOpen(pDevExt, pImage, pReq->u.In.szFilename);
3819 if (rc == VERR_NOT_SUPPORTED)
3820 {
3821 pImage->pvImageAlloc = RTMemExecAlloc(pImage->cbImageBits + 31);
3822 pImage->pvImage = RT_ALIGN_P(pImage->pvImageAlloc, 32);
3823 pImage->fNative = false;
3824 rc = pImage->pvImageAlloc ? VINF_SUCCESS : VERR_NO_EXEC_MEMORY;
3825 }
3826 if (RT_FAILURE(rc))
3827 {
3828 supdrvLdrUnlock(pDevExt);
3829 RTMemFree(pImage);
3830 Log(("supdrvIOCtl_LdrOpen(%s): failed - %Rrc\n", pReq->u.In.szName, rc));
3831 return rc;
3832 }
3833 Assert(VALID_PTR(pImage->pvImage) || RT_FAILURE(rc));
3834
3835 /*
3836 * Link it.
3837 */
3838 pImage->pNext = pDevExt->pLdrImages;
3839 pDevExt->pLdrImages = pImage;
3840
3841 supdrvLdrAddUsage(pSession, pImage);
3842
3843 pReq->u.Out.pvImageBase = pImage->pvImage;
3844 pReq->u.Out.fNeedsLoading = true;
3845 pReq->u.Out.fNativeLoader = pImage->fNative;
3846 supdrvLdrUnlock(pDevExt);
3847
3848#if defined(RT_OS_WINDOWS) && defined(DEBUG)
3849 SUPR0Printf("VBoxDrv: windbg> .reload /f %s=%#p\n", pImage->szName, pImage->pvImage);
3850#endif
3851 return VINF_SUCCESS;
3852}
3853
3854
3855/**
3856 * Worker that validates a pointer to an image entrypoint.
3857 *
3858 * @returns IPRT status code.
3859 * @param pDevExt The device globals.
3860 * @param pImage The loader image.
3861 * @param pv The pointer into the image.
3862 * @param fMayBeNull Whether it may be NULL.
3863 * @param pszWhat What is this entrypoint? (for logging)
3864 * @param pbImageBits The image bits prepared by ring-3.
3865 *
3866 * @remarks Will leave the lock on failure.
3867 */
3868static int supdrvLdrValidatePointer(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage, void *pv,
3869 bool fMayBeNull, const uint8_t *pbImageBits, const char *pszWhat)
3870{
3871 if (!fMayBeNull || pv)
3872 {
3873 if ((uintptr_t)pv - (uintptr_t)pImage->pvImage >= pImage->cbImageBits)
3874 {
3875 supdrvLdrUnlock(pDevExt);
3876 Log(("Out of range (%p LB %#x): %s=%p\n", pImage->pvImage, pImage->cbImageBits, pszWhat, pv));
3877 return VERR_INVALID_PARAMETER;
3878 }
3879
3880 if (pImage->fNative)
3881 {
3882 int rc = supdrvOSLdrValidatePointer(pDevExt, pImage, pv, pbImageBits);
3883 if (RT_FAILURE(rc))
3884 {
3885 supdrvLdrUnlock(pDevExt);
3886 Log(("Bad entry point address: %s=%p (rc=%Rrc)\n", pszWhat, pv, rc));
3887 return rc;
3888 }
3889 }
3890 }
3891 return VINF_SUCCESS;
3892}
3893
3894
3895/**
3896 * Loads the image bits.
3897 *
3898 * This is the 2nd step of the loading.
3899 *
3900 * @returns IPRT status code.
3901 * @param pDevExt Device globals.
3902 * @param pSession Session data.
3903 * @param pReq The request.
3904 */
3905static int supdrvIOCtl_LdrLoad(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRLOAD pReq)
3906{
3907 PSUPDRVLDRUSAGE pUsage;
3908 PSUPDRVLDRIMAGE pImage;
3909 int rc;
3910 LogFlow(("supdrvIOCtl_LdrLoad: pvImageBase=%p cbImageWithBits=%d\n", pReq->u.In.pvImageBase, pReq->u.In.cbImageWithTabs));
3911
3912 /*
3913 * Find the ldr image.
3914 */
3915 supdrvLdrLock(pDevExt);
3916 pUsage = pSession->pLdrUsage;
3917 while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
3918 pUsage = pUsage->pNext;
3919 if (!pUsage)
3920 {
3921 supdrvLdrUnlock(pDevExt);
3922 Log(("SUP_IOCTL_LDR_LOAD: couldn't find image!\n"));
3923 return VERR_INVALID_HANDLE;
3924 }
3925 pImage = pUsage->pImage;
3926
3927 /*
3928 * Validate input.
3929 */
3930 if ( pImage->cbImageWithTabs != pReq->u.In.cbImageWithTabs
3931 || pImage->cbImageBits != pReq->u.In.cbImageBits)
3932 {
3933 supdrvLdrUnlock(pDevExt);
3934 Log(("SUP_IOCTL_LDR_LOAD: image size mismatch!! %d(prep) != %d(load) or %d != %d\n",
3935 pImage->cbImageWithTabs, pReq->u.In.cbImageWithTabs, pImage->cbImageBits, pReq->u.In.cbImageBits));
3936 return VERR_INVALID_HANDLE;
3937 }
3938
3939 if (pImage->uState != SUP_IOCTL_LDR_OPEN)
3940 {
3941 unsigned uState = pImage->uState;
3942 supdrvLdrUnlock(pDevExt);
3943 if (uState != SUP_IOCTL_LDR_LOAD)
3944 AssertMsgFailed(("SUP_IOCTL_LDR_LOAD: invalid image state %d (%#x)!\n", uState, uState));
3945 return VERR_ALREADY_LOADED;
3946 }
3947
3948 switch (pReq->u.In.eEPType)
3949 {
3950 case SUPLDRLOADEP_NOTHING:
3951 break;
3952
3953 case SUPLDRLOADEP_VMMR0:
3954 rc = supdrvLdrValidatePointer( pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0, false, pReq->u.In.abImage, "pvVMMR0");
3955 if (RT_SUCCESS(rc))
3956 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0EntryInt, false, pReq->u.In.abImage, "pvVMMR0EntryInt");
3957 if (RT_SUCCESS(rc))
3958 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0EntryFast, false, pReq->u.In.abImage, "pvVMMR0EntryFast");
3959 if (RT_SUCCESS(rc))
3960 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.VMMR0.pvVMMR0EntryEx, false, pReq->u.In.abImage, "pvVMMR0EntryEx");
3961 if (RT_FAILURE(rc))
3962 return rc;
3963 break;
3964
3965 case SUPLDRLOADEP_SERVICE:
3966 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.EP.Service.pfnServiceReq, false, pReq->u.In.abImage, "pfnServiceReq");
3967 if (RT_FAILURE(rc))
3968 return rc;
3969 if ( pReq->u.In.EP.Service.apvReserved[0] != NIL_RTR0PTR
3970 || pReq->u.In.EP.Service.apvReserved[1] != NIL_RTR0PTR
3971 || pReq->u.In.EP.Service.apvReserved[2] != NIL_RTR0PTR)
3972 {
3973 supdrvLdrUnlock(pDevExt);
3974 Log(("Out of range (%p LB %#x): apvReserved={%p,%p,%p} MBZ!\n",
3975 pImage->pvImage, pReq->u.In.cbImageWithTabs,
3976 pReq->u.In.EP.Service.apvReserved[0],
3977 pReq->u.In.EP.Service.apvReserved[1],
3978 pReq->u.In.EP.Service.apvReserved[2]));
3979 return VERR_INVALID_PARAMETER;
3980 }
3981 break;
3982
3983 default:
3984 supdrvLdrUnlock(pDevExt);
3985 Log(("Invalid eEPType=%d\n", pReq->u.In.eEPType));
3986 return VERR_INVALID_PARAMETER;
3987 }
3988
3989 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.pfnModuleInit, true, pReq->u.In.abImage, "pfnModuleInit");
3990 if (RT_FAILURE(rc))
3991 return rc;
3992 rc = supdrvLdrValidatePointer(pDevExt, pImage, pReq->u.In.pfnModuleTerm, true, pReq->u.In.abImage, "pfnModuleTerm");
3993 if (RT_FAILURE(rc))
3994 return rc;
3995
3996 /*
3997 * Allocate and copy the tables.
3998 * (No need to do try/except as this is a buffered request.)
3999 */
4000 pImage->cbStrTab = pReq->u.In.cbStrTab;
4001 if (pImage->cbStrTab)
4002 {
4003 pImage->pachStrTab = (char *)RTMemAlloc(pImage->cbStrTab);
4004 if (pImage->pachStrTab)
4005 memcpy(pImage->pachStrTab, &pReq->u.In.abImage[pReq->u.In.offStrTab], pImage->cbStrTab);
4006 else
4007 rc = /*VERR_NO_MEMORY*/ VERR_INTERNAL_ERROR_3;
4008 }
4009
4010 pImage->cSymbols = pReq->u.In.cSymbols;
4011 if (RT_SUCCESS(rc) && pImage->cSymbols)
4012 {
4013 size_t cbSymbols = pImage->cSymbols * sizeof(SUPLDRSYM);
4014 pImage->paSymbols = (PSUPLDRSYM)RTMemAlloc(cbSymbols);
4015 if (pImage->paSymbols)
4016 memcpy(pImage->paSymbols, &pReq->u.In.abImage[pReq->u.In.offSymbols], cbSymbols);
4017 else
4018 rc = /*VERR_NO_MEMORY*/ VERR_INTERNAL_ERROR_4;
4019 }
4020
4021 /*
4022 * Copy the bits / complete native loading.
4023 */
4024 if (RT_SUCCESS(rc))
4025 {
4026 pImage->uState = SUP_IOCTL_LDR_LOAD;
4027 pImage->pfnModuleInit = pReq->u.In.pfnModuleInit;
4028 pImage->pfnModuleTerm = pReq->u.In.pfnModuleTerm;
4029
4030 if (pImage->fNative)
4031 rc = supdrvOSLdrLoad(pDevExt, pImage, pReq->u.In.abImage);
4032 else
4033 memcpy(pImage->pvImage, &pReq->u.In.abImage[0], pImage->cbImageBits);
4034 }
4035
4036 /*
4037 * Update any entry points.
4038 */
4039 if (RT_SUCCESS(rc))
4040 {
4041 switch (pReq->u.In.eEPType)
4042 {
4043 default:
4044 case SUPLDRLOADEP_NOTHING:
4045 rc = VINF_SUCCESS;
4046 break;
4047 case SUPLDRLOADEP_VMMR0:
4048 rc = supdrvLdrSetVMMR0EPs(pDevExt, pReq->u.In.EP.VMMR0.pvVMMR0, pReq->u.In.EP.VMMR0.pvVMMR0EntryInt,
4049 pReq->u.In.EP.VMMR0.pvVMMR0EntryFast, pReq->u.In.EP.VMMR0.pvVMMR0EntryEx);
4050 break;
4051 case SUPLDRLOADEP_SERVICE:
4052 pImage->pfnServiceReqHandler = pReq->u.In.EP.Service.pfnServiceReq;
4053 rc = VINF_SUCCESS;
4054 break;
4055 }
4056 }
4057
4058 /*
4059 * On success call the module initialization.
4060 */
4061 LogFlow(("supdrvIOCtl_LdrLoad: pfnModuleInit=%p\n", pImage->pfnModuleInit));
4062 if (RT_SUCCESS(rc) && pImage->pfnModuleInit)
4063 {
4064 Log(("supdrvIOCtl_LdrLoad: calling pfnModuleInit=%p\n", pImage->pfnModuleInit));
4065 rc = pImage->pfnModuleInit();
4066 if (rc && pDevExt->pvVMMR0 == pImage->pvImage)
4067 supdrvLdrUnsetVMMR0EPs(pDevExt);
4068 }
4069
4070 if (RT_FAILURE(rc))
4071 {
4072 pImage->uState = SUP_IOCTL_LDR_OPEN;
4073 pImage->pfnModuleInit = NULL;
4074 pImage->pfnModuleTerm = NULL;
4075 pImage->pfnServiceReqHandler= NULL;
4076 pImage->cbStrTab = 0;
4077 RTMemFree(pImage->pachStrTab);
4078 pImage->pachStrTab = NULL;
4079 RTMemFree(pImage->paSymbols);
4080 pImage->paSymbols = NULL;
4081 pImage->cSymbols = 0;
4082 }
4083
4084 supdrvLdrUnlock(pDevExt);
4085 return rc;
4086}
4087
4088
4089/**
4090 * Frees a previously loaded (prep'ed) image.
4091 *
4092 * @returns IPRT status code.
4093 * @param pDevExt Device globals.
4094 * @param pSession Session data.
4095 * @param pReq The request.
4096 */
4097static int supdrvIOCtl_LdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRFREE pReq)
4098{
4099 int rc;
4100 PSUPDRVLDRUSAGE pUsagePrev;
4101 PSUPDRVLDRUSAGE pUsage;
4102 PSUPDRVLDRIMAGE pImage;
4103 LogFlow(("supdrvIOCtl_LdrFree: pvImageBase=%p\n", pReq->u.In.pvImageBase));
4104
4105 /*
4106 * Find the ldr image.
4107 */
4108 supdrvLdrLock(pDevExt);
4109 pUsagePrev = NULL;
4110 pUsage = pSession->pLdrUsage;
4111 while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
4112 {
4113 pUsagePrev = pUsage;
4114 pUsage = pUsage->pNext;
4115 }
4116 if (!pUsage)
4117 {
4118 supdrvLdrUnlock(pDevExt);
4119 Log(("SUP_IOCTL_LDR_FREE: couldn't find image!\n"));
4120 return VERR_INVALID_HANDLE;
4121 }
4122
4123 /*
4124 * Check if we can remove anything.
4125 */
4126 rc = VINF_SUCCESS;
4127 pImage = pUsage->pImage;
4128 if (pImage->cUsage <= 1 || pUsage->cUsage <= 1)
4129 {
4130 /*
4131 * Check if there are any objects with destructors in the image, if
4132 * so leave it for the session cleanup routine so we get a chance to
4133 * clean things up in the right order and not leave them all dangling.
4134 */
4135 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
4136 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
4137 if (pImage->cUsage <= 1)
4138 {
4139 PSUPDRVOBJ pObj;
4140 for (pObj = pDevExt->pObjs; pObj; pObj = pObj->pNext)
4141 if (RT_UNLIKELY((uintptr_t)pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImageBits))
4142 {
4143 rc = VERR_DANGLING_OBJECTS;
4144 break;
4145 }
4146 }
4147 else
4148 {
4149 PSUPDRVUSAGE pGenUsage;
4150 for (pGenUsage = pSession->pUsage; pGenUsage; pGenUsage = pGenUsage->pNext)
4151 if (RT_UNLIKELY((uintptr_t)pGenUsage->pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImageBits))
4152 {
4153 rc = VERR_DANGLING_OBJECTS;
4154 break;
4155 }
4156 }
4157 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
4158 if (rc == VINF_SUCCESS)
4159 {
4160 /* unlink it */
4161 if (pUsagePrev)
4162 pUsagePrev->pNext = pUsage->pNext;
4163 else
4164 pSession->pLdrUsage = pUsage->pNext;
4165
4166 /* free it */
4167 pUsage->pImage = NULL;
4168 pUsage->pNext = NULL;
4169 RTMemFree(pUsage);
4170
4171 /*
4172 * Dereference the image.
4173 */
4174 if (pImage->cUsage <= 1)
4175 supdrvLdrFree(pDevExt, pImage);
4176 else
4177 pImage->cUsage--;
4178 }
4179 else
4180 {
4181 Log(("supdrvIOCtl_LdrFree: Dangling objects in %p/%s!\n", pImage->pvImage, pImage->szName));
4182 rc = VINF_SUCCESS; /** @todo BRANCH-2.1: remove this after branching. */
4183 }
4184 }
4185 else
4186 {
4187 /*
4188 * Dereference both image and usage.
4189 */
4190 pImage->cUsage--;
4191 pUsage->cUsage--;
4192 }
4193
4194 supdrvLdrUnlock(pDevExt);
4195 return rc;
4196}
4197
4198
4199/**
4200 * Gets the address of a symbol in an open image.
4201 *
4202 * @returns IPRT status code.
4203 * @param pDevExt Device globals.
4204 * @param pSession Session data.
4205 * @param pReq The request buffer.
4206 */
4207static int supdrvIOCtl_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLDRGETSYMBOL pReq)
4208{
4209 PSUPDRVLDRIMAGE pImage;
4210 PSUPDRVLDRUSAGE pUsage;
4211 uint32_t i;
4212 PSUPLDRSYM paSyms;
4213 const char *pchStrings;
4214 const size_t cbSymbol = strlen(pReq->u.In.szSymbol) + 1;
4215 void *pvSymbol = NULL;
4216 int rc = VERR_GENERAL_FAILURE;
4217 Log3(("supdrvIOCtl_LdrGetSymbol: pvImageBase=%p szSymbol=\"%s\"\n", pReq->u.In.pvImageBase, pReq->u.In.szSymbol));
4218
4219 /*
4220 * Find the ldr image.
4221 */
4222 supdrvLdrLock(pDevExt);
4223 pUsage = pSession->pLdrUsage;
4224 while (pUsage && pUsage->pImage->pvImage != pReq->u.In.pvImageBase)
4225 pUsage = pUsage->pNext;
4226 if (!pUsage)
4227 {
4228 supdrvLdrUnlock(pDevExt);
4229 Log(("SUP_IOCTL_LDR_GET_SYMBOL: couldn't find image!\n"));
4230 return VERR_INVALID_HANDLE;
4231 }
4232 pImage = pUsage->pImage;
4233 if (pImage->uState != SUP_IOCTL_LDR_LOAD)
4234 {
4235 unsigned uState = pImage->uState;
4236 supdrvLdrUnlock(pDevExt);
4237 Log(("SUP_IOCTL_LDR_GET_SYMBOL: invalid image state %d (%#x)!\n", uState, uState)); NOREF(uState);
4238 return VERR_ALREADY_LOADED;
4239 }
4240
4241 /*
4242 * Search the symbol strings.
4243 */
4244 pchStrings = pImage->pachStrTab;
4245 paSyms = pImage->paSymbols;
4246 for (i = 0; i < pImage->cSymbols; i++)
4247 {
4248 if ( paSyms[i].offSymbol < pImage->cbImageBits /* paranoia */
4249 && paSyms[i].offName + cbSymbol <= pImage->cbStrTab
4250 && !memcmp(pchStrings + paSyms[i].offName, pReq->u.In.szSymbol, cbSymbol))
4251 {
4252 pvSymbol = (uint8_t *)pImage->pvImage + paSyms[i].offSymbol;
4253 rc = VINF_SUCCESS;
4254 break;
4255 }
4256 }
4257 supdrvLdrUnlock(pDevExt);
4258 pReq->u.Out.pvSymbol = pvSymbol;
4259 return rc;
4260}
4261
4262
4263/**
4264 * Gets the address of a symbol in an open image or the support driver.
4265 *
4266 * @returns VINF_SUCCESS on success.
4267 * @returns
4268 * @param pDevExt Device globals.
4269 * @param pSession Session data.
4270 * @param pReq The request buffer.
4271 */
4272static int supdrvIDC_LdrGetSymbol(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPDRVIDCREQGETSYM pReq)
4273{
4274 int rc = VINF_SUCCESS;
4275 const char *pszSymbol = pReq->u.In.pszSymbol;
4276 const char *pszModule = pReq->u.In.pszModule;
4277 size_t cbSymbol;
4278 char const *pszEnd;
4279 uint32_t i;
4280
4281 /*
4282 * Input validation.
4283 */
4284 AssertPtrReturn(pszSymbol, VERR_INVALID_POINTER);
4285 pszEnd = RTStrEnd(pszSymbol, 512);
4286 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
4287 cbSymbol = pszEnd - pszSymbol + 1;
4288
4289 if (pszModule)
4290 {
4291 AssertPtrReturn(pszModule, VERR_INVALID_POINTER);
4292 pszEnd = RTStrEnd(pszModule, 64);
4293 AssertReturn(pszEnd, VERR_INVALID_PARAMETER);
4294 }
4295 Log3(("supdrvIDC_LdrGetSymbol: pszModule=%p:{%s} pszSymbol=%p:{%s}\n", pszModule, pszModule, pszSymbol, pszSymbol));
4296
4297
4298 if ( !pszModule
4299 || !strcmp(pszModule, "SupDrv"))
4300 {
4301 /*
4302 * Search the support driver export table.
4303 */
4304 for (i = 0; i < RT_ELEMENTS(g_aFunctions); i++)
4305 if (!strcmp(g_aFunctions[i].szName, pszSymbol))
4306 {
4307 pReq->u.Out.pfnSymbol = g_aFunctions[i].pfn;
4308 break;
4309 }
4310 }
4311 else
4312 {
4313 /*
4314 * Find the loader image.
4315 */
4316 PSUPDRVLDRIMAGE pImage;
4317
4318 supdrvLdrLock(pDevExt);
4319
4320 for (pImage = pDevExt->pLdrImages; pImage; pImage = pImage->pNext)
4321 if (!strcmp(pImage->szName, pszModule))
4322 break;
4323 if (pImage && pImage->uState == SUP_IOCTL_LDR_LOAD)
4324 {
4325 /*
4326 * Search the symbol strings.
4327 */
4328 const char *pchStrings = pImage->pachStrTab;
4329 PCSUPLDRSYM paSyms = pImage->paSymbols;
4330 for (i = 0; i < pImage->cSymbols; i++)
4331 {
4332 if ( paSyms[i].offSymbol < pImage->cbImageBits /* paranoia */
4333 && paSyms[i].offName + cbSymbol <= pImage->cbStrTab
4334 && !memcmp(pchStrings + paSyms[i].offName, pszSymbol, cbSymbol))
4335 {
4336 /*
4337 * Found it! Calc the symbol address and add a reference to the module.
4338 */
4339 pReq->u.Out.pfnSymbol = (PFNRT)((uint8_t *)pImage->pvImage + paSyms[i].offSymbol);
4340 rc = supdrvLdrAddUsage(pSession, pImage);
4341 break;
4342 }
4343 }
4344 }
4345 else
4346 rc = pImage ? VERR_WRONG_ORDER : VERR_MODULE_NOT_FOUND;
4347
4348 supdrvLdrUnlock(pDevExt);
4349 }
4350 return rc;
4351}
4352
4353
4354/**
4355 * Updates the VMMR0 entry point pointers.
4356 *
4357 * @returns IPRT status code.
4358 * @param pDevExt Device globals.
4359 * @param pSession Session data.
4360 * @param pVMMR0 VMMR0 image handle.
4361 * @param pvVMMR0EntryInt VMMR0EntryInt address.
4362 * @param pvVMMR0EntryFast VMMR0EntryFast address.
4363 * @param pvVMMR0EntryEx VMMR0EntryEx address.
4364 * @remark Caller must own the loader mutex.
4365 */
4366static int supdrvLdrSetVMMR0EPs(PSUPDRVDEVEXT pDevExt, void *pvVMMR0, void *pvVMMR0EntryInt, void *pvVMMR0EntryFast, void *pvVMMR0EntryEx)
4367{
4368 int rc = VINF_SUCCESS;
4369 LogFlow(("supdrvLdrSetR0EP pvVMMR0=%p pvVMMR0EntryInt=%p\n", pvVMMR0, pvVMMR0EntryInt));
4370
4371
4372 /*
4373 * Check if not yet set.
4374 */
4375 if (!pDevExt->pvVMMR0)
4376 {
4377 pDevExt->pvVMMR0 = pvVMMR0;
4378 pDevExt->pfnVMMR0EntryInt = pvVMMR0EntryInt;
4379 pDevExt->pfnVMMR0EntryFast = pvVMMR0EntryFast;
4380 pDevExt->pfnVMMR0EntryEx = pvVMMR0EntryEx;
4381 }
4382 else
4383 {
4384 /*
4385 * Return failure or success depending on whether the values match or not.
4386 */
4387 if ( pDevExt->pvVMMR0 != pvVMMR0
4388 || (void *)pDevExt->pfnVMMR0EntryInt != pvVMMR0EntryInt
4389 || (void *)pDevExt->pfnVMMR0EntryFast != pvVMMR0EntryFast
4390 || (void *)pDevExt->pfnVMMR0EntryEx != pvVMMR0EntryEx)
4391 {
4392 AssertMsgFailed(("SUP_IOCTL_LDR_SETR0EP: Already set pointing to a different module!\n"));
4393 rc = VERR_INVALID_PARAMETER;
4394 }
4395 }
4396 return rc;
4397}
4398
4399
4400/**
4401 * Unsets the VMMR0 entry point installed by supdrvLdrSetR0EP.
4402 *
4403 * @param pDevExt Device globals.
4404 */
4405static void supdrvLdrUnsetVMMR0EPs(PSUPDRVDEVEXT pDevExt)
4406{
4407 pDevExt->pvVMMR0 = NULL;
4408 pDevExt->pfnVMMR0EntryInt = NULL;
4409 pDevExt->pfnVMMR0EntryFast = NULL;
4410 pDevExt->pfnVMMR0EntryEx = NULL;
4411}
4412
4413
4414/**
4415 * Adds a usage reference in the specified session of an image.
4416 *
4417 * Called while owning the loader semaphore.
4418 *
4419 * @returns VINF_SUCCESS on success and VERR_NO_MEMORY on failure.
4420 * @param pSession Session in question.
4421 * @param pImage Image which the session is using.
4422 */
4423static int supdrvLdrAddUsage(PSUPDRVSESSION pSession, PSUPDRVLDRIMAGE pImage)
4424{
4425 PSUPDRVLDRUSAGE pUsage;
4426 LogFlow(("supdrvLdrAddUsage: pImage=%p\n", pImage));
4427
4428 /*
4429 * Referenced it already?
4430 */
4431 pUsage = pSession->pLdrUsage;
4432 while (pUsage)
4433 {
4434 if (pUsage->pImage == pImage)
4435 {
4436 pUsage->cUsage++;
4437 return VINF_SUCCESS;
4438 }
4439 pUsage = pUsage->pNext;
4440 }
4441
4442 /*
4443 * Allocate new usage record.
4444 */
4445 pUsage = (PSUPDRVLDRUSAGE)RTMemAlloc(sizeof(*pUsage));
4446 AssertReturn(pUsage, /*VERR_NO_MEMORY*/ VERR_INTERNAL_ERROR_5);
4447 pUsage->cUsage = 1;
4448 pUsage->pImage = pImage;
4449 pUsage->pNext = pSession->pLdrUsage;
4450 pSession->pLdrUsage = pUsage;
4451 return VINF_SUCCESS;
4452}
4453
4454
4455/**
4456 * Frees a load image.
4457 *
4458 * @param pDevExt Pointer to device extension.
4459 * @param pImage Pointer to the image we're gonna free.
4460 * This image must exit!
4461 * @remark The caller MUST own SUPDRVDEVEXT::mtxLdr!
4462 */
4463static void supdrvLdrFree(PSUPDRVDEVEXT pDevExt, PSUPDRVLDRIMAGE pImage)
4464{
4465 PSUPDRVLDRIMAGE pImagePrev;
4466 LogFlow(("supdrvLdrFree: pImage=%p\n", pImage));
4467
4468 /* find it - arg. should've used doubly linked list. */
4469 Assert(pDevExt->pLdrImages);
4470 pImagePrev = NULL;
4471 if (pDevExt->pLdrImages != pImage)
4472 {
4473 pImagePrev = pDevExt->pLdrImages;
4474 while (pImagePrev->pNext != pImage)
4475 pImagePrev = pImagePrev->pNext;
4476 Assert(pImagePrev->pNext == pImage);
4477 }
4478
4479 /* unlink */
4480 if (pImagePrev)
4481 pImagePrev->pNext = pImage->pNext;
4482 else
4483 pDevExt->pLdrImages = pImage->pNext;
4484
4485 /* check if this is VMMR0.r0 unset its entry point pointers. */
4486 if (pDevExt->pvVMMR0 == pImage->pvImage)
4487 supdrvLdrUnsetVMMR0EPs(pDevExt);
4488
4489 /* check for objects with destructors in this image. (Shouldn't happen.) */
4490 if (pDevExt->pObjs)
4491 {
4492 unsigned cObjs = 0;
4493 PSUPDRVOBJ pObj;
4494 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
4495 RTSpinlockAcquire(pDevExt->Spinlock, &SpinlockTmp);
4496 for (pObj = pDevExt->pObjs; pObj; pObj = pObj->pNext)
4497 if (RT_UNLIKELY((uintptr_t)pObj->pfnDestructor - (uintptr_t)pImage->pvImage < pImage->cbImageBits))
4498 {
4499 pObj->pfnDestructor = NULL;
4500 cObjs++;
4501 }
4502 RTSpinlockRelease(pDevExt->Spinlock, &SpinlockTmp);
4503 if (cObjs)
4504 OSDBGPRINT(("supdrvLdrFree: Image '%s' has %d dangling objects!\n", pImage->szName, cObjs));
4505 }
4506
4507 /* call termination function if fully loaded. */
4508 if ( pImage->pfnModuleTerm
4509 && pImage->uState == SUP_IOCTL_LDR_LOAD)
4510 {
4511 LogFlow(("supdrvIOCtl_LdrLoad: calling pfnModuleTerm=%p\n", pImage->pfnModuleTerm));
4512 pImage->pfnModuleTerm();
4513 }
4514
4515 /* do native unload if appropriate. */
4516 if (pImage->fNative)
4517 supdrvOSLdrUnload(pDevExt, pImage);
4518
4519 /* free the image */
4520 pImage->cUsage = 0;
4521 pImage->pNext = 0;
4522 pImage->uState = SUP_IOCTL_LDR_FREE;
4523 RTMemExecFree(pImage->pvImageAlloc, pImage->cbImageBits + 31);
4524 pImage->pvImageAlloc = NULL;
4525 RTMemFree(pImage->pachStrTab);
4526 pImage->pachStrTab = NULL;
4527 RTMemFree(pImage->paSymbols);
4528 pImage->paSymbols = NULL;
4529 RTMemFree(pImage);
4530}
4531
4532
4533/**
4534 * Acquires the loader lock.
4535 *
4536 * @returns IPRT status code.
4537 * @param pDevExt The device extension.
4538 */
4539DECLINLINE(int) supdrvLdrLock(PSUPDRVDEVEXT pDevExt)
4540{
4541#ifdef SUPDRV_USE_MUTEX_FOR_LDR
4542 int rc = RTSemMutexRequest(pDevExt->mtxLdr, RT_INDEFINITE_WAIT);
4543#else
4544 int rc = RTSemFastMutexRequest(pDevExt->mtxLdr);
4545#endif
4546 AssertRC(rc);
4547 return rc;
4548}
4549
4550
4551/**
4552 * Releases the loader lock.
4553 *
4554 * @returns IPRT status code.
4555 * @param pDevExt The device extension.
4556 */
4557DECLINLINE(int) supdrvLdrUnlock(PSUPDRVDEVEXT pDevExt)
4558{
4559#ifdef SUPDRV_USE_MUTEX_FOR_LDR
4560 return RTSemMutexRelease(pDevExt->mtxLdr);
4561#else
4562 return RTSemFastMutexRelease(pDevExt->mtxLdr);
4563#endif
4564}
4565
4566
4567/**
4568 * Implements the service call request.
4569 *
4570 * @returns VBox status code.
4571 * @param pDevExt The device extension.
4572 * @param pSession The calling session.
4573 * @param pReq The request packet, valid.
4574 */
4575static int supdrvIOCtl_CallServiceModule(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPCALLSERVICE pReq)
4576{
4577#if !defined(RT_OS_WINDOWS) || defined(DEBUG)
4578 int rc;
4579
4580 /*
4581 * Find the module first in the module referenced by the calling session.
4582 */
4583 rc = supdrvLdrLock(pDevExt);
4584 if (RT_SUCCESS(rc))
4585 {
4586 PFNSUPR0SERVICEREQHANDLER pfnServiceReqHandler = NULL;
4587 PSUPDRVLDRUSAGE pUsage;
4588
4589 for (pUsage = pSession->pLdrUsage; pUsage; pUsage = pUsage->pNext)
4590 if ( pUsage->pImage->pfnServiceReqHandler
4591 && !strcmp(pUsage->pImage->szName, pReq->u.In.szName))
4592 {
4593 pfnServiceReqHandler = pUsage->pImage->pfnServiceReqHandler;
4594 break;
4595 }
4596 supdrvLdrUnlock(pDevExt);
4597
4598 if (pfnServiceReqHandler)
4599 {
4600 /*
4601 * Call it.
4602 */
4603 if (pReq->Hdr.cbIn == SUP_IOCTL_CALL_SERVICE_SIZE(0))
4604 rc = pfnServiceReqHandler(pSession, pReq->u.In.uOperation, pReq->u.In.u64Arg, NULL);
4605 else
4606 rc = pfnServiceReqHandler(pSession, pReq->u.In.uOperation, pReq->u.In.u64Arg, (PSUPR0SERVICEREQHDR)&pReq->abReqPkt[0]);
4607 }
4608 else
4609 rc = VERR_SUPDRV_SERVICE_NOT_FOUND;
4610 }
4611
4612 /* log it */
4613 if ( RT_FAILURE(rc)
4614 && rc != VERR_INTERRUPTED
4615 && rc != VERR_TIMEOUT)
4616 Log(("SUP_IOCTL_CALL_SERVICE: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
4617 rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
4618 else
4619 Log4(("SUP_IOCTL_CALL_SERVICE: rc=%Rrc op=%u out=%u arg=%RX64 p/t=%RTproc/%RTthrd\n",
4620 rc, pReq->u.In.uOperation, pReq->Hdr.cbOut, pReq->u.In.u64Arg, RTProcSelf(), RTThreadNativeSelf()));
4621 return rc;
4622#else /* RT_OS_WINDOWS && !DEBUG */
4623 return VERR_NOT_IMPLEMENTED;
4624#endif /* RT_OS_WINDOWS && !DEBUG */
4625}
4626
4627
4628/**
4629 * Implements the logger settings request.
4630 *
4631 * @returns VBox status code.
4632 * @param pDevExt The device extension.
4633 * @param pSession The caller's session.
4634 * @param pReq The request.
4635 */
4636static int supdrvIOCtl_LoggerSettings(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPLOGGERSETTINGS pReq)
4637{
4638 const char *pszGroup = &pReq->u.In.szStrings[pReq->u.In.offGroups];
4639 const char *pszFlags = &pReq->u.In.szStrings[pReq->u.In.offFlags];
4640 const char *pszDest = &pReq->u.In.szStrings[pReq->u.In.offDestination];
4641 PRTLOGGER pLogger = NULL;
4642 int rc;
4643
4644 /*
4645 * Some further validation.
4646 */
4647 switch (pReq->u.In.fWhat)
4648 {
4649 case SUPLOGGERSETTINGS_WHAT_SETTINGS:
4650 case SUPLOGGERSETTINGS_WHAT_CREATE:
4651 break;
4652
4653 case SUPLOGGERSETTINGS_WHAT_DESTROY:
4654 if (*pszGroup || *pszFlags || *pszDest)
4655 return VERR_INVALID_PARAMETER;
4656 if (pReq->u.In.fWhich == SUPLOGGERSETTINGS_WHICH_RELEASE)
4657 return VERR_ACCESS_DENIED;
4658 break;
4659
4660 default:
4661 return VERR_INTERNAL_ERROR;
4662 }
4663
4664 /*
4665 * Get the logger.
4666 */
4667 switch (pReq->u.In.fWhich)
4668 {
4669 case SUPLOGGERSETTINGS_WHICH_DEBUG:
4670 pLogger = RTLogGetDefaultInstance();
4671 break;
4672
4673 case SUPLOGGERSETTINGS_WHICH_RELEASE:
4674 pLogger = RTLogRelDefaultInstance();
4675 break;
4676
4677 default:
4678 return VERR_INTERNAL_ERROR;
4679 }
4680
4681 /*
4682 * Do the job.
4683 */
4684 switch (pReq->u.In.fWhat)
4685 {
4686 case SUPLOGGERSETTINGS_WHAT_SETTINGS:
4687 if (pLogger)
4688 {
4689 rc = RTLogFlags(pLogger, pszFlags);
4690 if (RT_SUCCESS(rc))
4691 rc = RTLogGroupSettings(pLogger, pszGroup);
4692 NOREF(pszDest);
4693 }
4694 else
4695 rc = VERR_NOT_FOUND;
4696 break;
4697
4698 case SUPLOGGERSETTINGS_WHAT_CREATE:
4699 {
4700 if (pLogger)
4701 rc = VERR_ALREADY_EXISTS;
4702 else
4703 {
4704 static const char * const s_apszGroups[] = VBOX_LOGGROUP_NAMES;
4705
4706 rc = RTLogCreate(&pLogger,
4707 0 /* fFlags */,
4708 pszGroup,
4709 pReq->u.In.fWhich == SUPLOGGERSETTINGS_WHICH_DEBUG
4710 ? "VBOX_LOG"
4711 : "VBOX_RELEASE_LOG",
4712 RT_ELEMENTS(s_apszGroups),
4713 s_apszGroups,
4714 RTLOGDEST_STDOUT | RTLOGDEST_DEBUGGER,
4715 NULL);
4716 if (RT_SUCCESS(rc))
4717 {
4718 rc = RTLogFlags(pLogger, pszFlags);
4719 NOREF(pszDest);
4720 if (RT_SUCCESS(rc))
4721 {
4722 switch (pReq->u.In.fWhich)
4723 {
4724 case SUPLOGGERSETTINGS_WHICH_DEBUG:
4725 pLogger = RTLogSetDefaultInstance(pLogger);
4726 break;
4727 case SUPLOGGERSETTINGS_WHICH_RELEASE:
4728 pLogger = RTLogRelSetDefaultInstance(pLogger);
4729 break;
4730 }
4731 }
4732 RTLogDestroy(pLogger);
4733 }
4734 }
4735 break;
4736 }
4737
4738 case SUPLOGGERSETTINGS_WHAT_DESTROY:
4739 switch (pReq->u.In.fWhich)
4740 {
4741 case SUPLOGGERSETTINGS_WHICH_DEBUG:
4742 pLogger = RTLogSetDefaultInstance(NULL);
4743 break;
4744 case SUPLOGGERSETTINGS_WHICH_RELEASE:
4745 pLogger = RTLogRelSetDefaultInstance(NULL);
4746 break;
4747 }
4748 rc = RTLogDestroy(pLogger);
4749 break;
4750
4751 default:
4752 {
4753 rc = VERR_INTERNAL_ERROR;
4754 break;
4755 }
4756 }
4757
4758 return rc;
4759}
4760
4761
4762/**
4763 * Creates the GIP.
4764 *
4765 * @returns VBox status code.
4766 * @param pDevExt Instance data. GIP stuff may be updated.
4767 */
4768static int supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
4769{
4770 PSUPGLOBALINFOPAGE pGip;
4771 RTHCPHYS HCPhysGip;
4772 uint32_t u32SystemResolution;
4773 uint32_t u32Interval;
4774 int rc;
4775
4776 LogFlow(("supdrvGipCreate:\n"));
4777
4778 /* assert order */
4779 Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
4780 Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
4781 Assert(!pDevExt->pGipTimer);
4782
4783 /*
4784 * Allocate a suitable page with a default kernel mapping.
4785 */
4786 rc = RTR0MemObjAllocLow(&pDevExt->GipMemObj, PAGE_SIZE, false);
4787 if (RT_FAILURE(rc))
4788 {
4789 OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
4790 return rc;
4791 }
4792 pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
4793 HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
4794
4795 /*
4796 * Find a reasonable update interval and initialize the structure.
4797 */
4798 u32Interval = u32SystemResolution = RTTimerGetSystemGranularity();
4799 while (u32Interval < 10000000 /* 10 ms */)
4800 u32Interval += u32SystemResolution;
4801
4802 supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), 1000000000 / u32Interval /*=Hz*/);
4803
4804 /*
4805 * Create the timer.
4806 * If CPU_ALL isn't supported we'll have to fall back to synchronous mode.
4807 */
4808 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
4809 {
4810 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL, supdrvGipAsyncTimer, pDevExt);
4811 if (rc == VERR_NOT_SUPPORTED)
4812 {
4813 OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n"));
4814 pGip->u32Mode = SUPGIPMODE_SYNC_TSC;
4815 }
4816 }
4817 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
4818 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0, supdrvGipSyncTimer, pDevExt);
4819 if (RT_SUCCESS(rc))
4820 {
4821 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
4822 rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt);
4823 if (RT_SUCCESS(rc))
4824 {
4825 /*
4826 * We're good.
4827 */
4828 Log(("supdrvGipCreate: %ld ns interval.\n", (long)u32Interval));
4829 g_pSUPGlobalInfoPage = pGip;
4830 return VINF_SUCCESS;
4831 }
4832
4833 OSDBGPRINT(("supdrvGipCreate: failed register MP event notfication. rc=%d\n", rc));
4834 }
4835 else
4836 {
4837 OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %ld ns interval. rc=%d\n", (long)u32Interval, rc));
4838 Assert(!pDevExt->pGipTimer);
4839 }
4840 supdrvGipDestroy(pDevExt);
4841 return rc;
4842}
4843
4844
4845/**
4846 * Terminates the GIP.
4847 *
4848 * @param pDevExt Instance data. GIP stuff may be updated.
4849 */
4850static void supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
4851{
4852 int rc;
4853#ifdef DEBUG_DARWIN_GIP
4854 OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt,
4855 pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL,
4856 pDevExt->pGipTimer, pDevExt->GipMemObj));
4857#endif
4858
4859 /*
4860 * Invalid the GIP data.
4861 */
4862 if (pDevExt->pGip)
4863 {
4864 supdrvGipTerm(pDevExt->pGip);
4865 pDevExt->pGip = NULL;
4866 }
4867 g_pSUPGlobalInfoPage = NULL;
4868
4869 /*
4870 * Destroy the timer and free the GIP memory object.
4871 */
4872 if (pDevExt->pGipTimer)
4873 {
4874 rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
4875 pDevExt->pGipTimer = NULL;
4876 }
4877
4878 if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
4879 {
4880 rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
4881 pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
4882 }
4883
4884 /*
4885 * Finally, make sure we've release the system timer resolution request
4886 * if one actually succeeded and is still pending.
4887 */
4888 if (pDevExt->u32SystemTimerGranularityGrant)
4889 {
4890 rc = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant); AssertRC(rc);
4891 pDevExt->u32SystemTimerGranularityGrant = 0;
4892 }
4893}
4894
4895
4896/**
4897 * Timer callback function sync GIP mode.
4898 * @param pTimer The timer.
4899 * @param pvUser The device extension.
4900 */
4901static DECLCALLBACK(void) supdrvGipSyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
4902{
4903 RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
4904 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4905 uint64_t u64TSC = ASMReadTSC();
4906 uint64_t NanoTS = RTTimeSystemNanoTS();
4907
4908 supdrvGipUpdate(pDevExt->pGip, NanoTS, u64TSC, iTick);
4909
4910 ASMSetFlags(fOldFlags);
4911}
4912
4913
4914/**
4915 * Timer callback function for async GIP mode.
4916 * @param pTimer The timer.
4917 * @param pvUser The device extension.
4918 */
4919static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
4920{
4921 RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
4922 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4923 RTCPUID idCpu = RTMpCpuId();
4924 uint64_t u64TSC = ASMReadTSC();
4925 uint64_t NanoTS = RTTimeSystemNanoTS();
4926
4927 /** @todo reset the transaction number and whatnot when iTick == 1. */
4928 if (pDevExt->idGipMaster == idCpu)
4929 supdrvGipUpdate(pDevExt->pGip, NanoTS, u64TSC, iTick);
4930 else
4931 supdrvGipUpdatePerCpu(pDevExt->pGip, NanoTS, u64TSC, ASMGetApicId(), iTick);
4932
4933 ASMSetFlags(fOldFlags);
4934}
4935
4936
4937/**
4938 * Multiprocessor event notification callback.
4939 *
4940 * This is used to make sue that the GIP master gets passed on to
4941 * another CPU.
4942 *
4943 * @param enmEvent The event.
4944 * @param idCpu The cpu it applies to.
4945 * @param pvUser Pointer to the device extension.
4946 */
4947static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
4948{
4949 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4950 if (enmEvent == RTMPEVENT_OFFLINE)
4951 {
4952 RTCPUID idGipMaster;
4953 ASMAtomicReadSize(&pDevExt->idGipMaster, &idGipMaster);
4954 if (idGipMaster == idCpu)
4955 {
4956 /*
4957 * Find a new GIP master.
4958 */
4959 bool fIgnored;
4960 unsigned i;
4961 RTCPUID idNewGipMaster = NIL_RTCPUID;
4962 RTCPUSET OnlineCpus;
4963 RTMpGetOnlineSet(&OnlineCpus);
4964
4965 for (i = 0; i < RTCPUSET_MAX_CPUS; i++)
4966 {
4967 RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i);
4968 if ( RTCpuSetIsMember(&OnlineCpus, idCurCpu)
4969 && idCurCpu != idGipMaster)
4970 {
4971 idNewGipMaster = idCurCpu;
4972 break;
4973 }
4974 }
4975
4976 Log(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster));
4977 ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored);
4978 NOREF(fIgnored);
4979 }
4980 }
4981}
4982
4983
4984/**
4985 * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU.
4986 *
4987 * @param idCpu Ignored.
4988 * @param pvUser1 Where to put the TSC.
4989 * @param pvUser2 Ignored.
4990 */
4991static DECLCALLBACK(void) supdrvDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
4992{
4993#if 1
4994 ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC());
4995#else
4996 *(uint64_t *)pvUser1 = ASMReadTSC();
4997#endif
4998}
4999
5000
5001/**
5002 * Determine if Async GIP mode is required because of TSC drift.
5003 *
5004 * When using the default/normal timer code it is essential that the time stamp counter
5005 * (TSC) runs never backwards, that is, a read operation to the counter should return
5006 * a bigger value than any previous read operation. This is guaranteed by the latest
5007 * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other
5008 * case we have to choose the asynchronous timer mode.
5009 *
5010 * @param poffMin Pointer to the determined difference between different cores.
5011 * @return false if the time stamp counters appear to be synchronized, true otherwise.
5012 */
5013static bool supdrvDetermineAsyncTsc(uint64_t *poffMin)
5014{
5015 /*
5016 * Just iterate all the cpus 8 times and make sure that the TSC is
5017 * ever increasing. We don't bother taking TSC rollover into account.
5018 */
5019 int iEndCpu = RTMpGetArraySize();
5020 int iCpu;
5021 int cLoops = 8;
5022 bool fAsync = false;
5023 int rc = VINF_SUCCESS;
5024 uint64_t offMax = 0;
5025 uint64_t offMin = ~(uint64_t)0;
5026 uint64_t PrevTsc = ASMReadTSC();
5027
5028 while (cLoops-- > 0)
5029 {
5030 for (iCpu = 0; iCpu < iEndCpu; iCpu++)
5031 {
5032 uint64_t CurTsc;
5033 rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvDetermineAsyncTscWorker, &CurTsc, NULL);
5034 if (RT_SUCCESS(rc))
5035 {
5036 if (CurTsc <= PrevTsc)
5037 {
5038 fAsync = true;
5039 offMin = offMax = PrevTsc - CurTsc;
5040 Log(("supdrvDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n",
5041 iCpu, cLoops, CurTsc, PrevTsc));
5042 break;
5043 }
5044
5045 /* Gather statistics (except the first time). */
5046 if (iCpu != 0 || cLoops != 7)
5047 {
5048 uint64_t off = CurTsc - PrevTsc;
5049 if (off < offMin)
5050 offMin = off;
5051 if (off > offMax)
5052 offMax = off;
5053 Log2(("%d/%d: off=%llx\n", cLoops, iCpu, off));
5054 }
5055
5056 /* Next */
5057 PrevTsc = CurTsc;
5058 }
5059 else if (rc == VERR_NOT_SUPPORTED)
5060 break;
5061 else
5062 AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc));
5063 }
5064
5065 /* broke out of the loop. */
5066 if (iCpu < iEndCpu)
5067 break;
5068 }
5069
5070 *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */
5071 Log(("supdrvDetermineAsyncTsc: returns %d; iEndCpu=%d rc=%d offMin=%llx offMax=%llx\n",
5072 fAsync, iEndCpu, rc, offMin, offMax));
5073#if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS)
5074 OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax));
5075#endif
5076 return fAsync;
5077}
5078
5079
5080/**
5081 * Determine the GIP TSC mode.
5082 *
5083 * @returns The most suitable TSC mode.
5084 * @param pDevExt Pointer to the device instance data.
5085 */
5086static SUPGIPMODE supdrvGipDeterminTscMode(PSUPDRVDEVEXT pDevExt)
5087{
5088 /*
5089 * On SMP we're faced with two problems:
5090 * (1) There might be a skew between the CPU, so that cpu0
5091 * returns a TSC that is slightly different from cpu1.
5092 * (2) Power management (and other things) may cause the TSC
5093 * to run at a non-constant speed, and cause the speed
5094 * to be different on the cpus. This will result in (1).
5095 *
5096 * So, on SMP systems we'll have to select the ASYNC update method
5097 * if there are symptoms of these problems.
5098 */
5099 if (RTMpGetCount() > 1)
5100 {
5101 uint32_t uEAX, uEBX, uECX, uEDX;
5102 uint64_t u64DiffCoresIgnored;
5103
5104 /* Permit the user and/or the OS specific bits to force async mode. */
5105 if (supdrvOSGetForcedAsyncTscMode(pDevExt))
5106 return SUPGIPMODE_ASYNC_TSC;
5107
5108 /* Try check for current differences between the cpus. */
5109 if (supdrvDetermineAsyncTsc(&u64DiffCoresIgnored))
5110 return SUPGIPMODE_ASYNC_TSC;
5111
5112 /*
5113 * If the CPU supports power management and is an AMD one we
5114 * won't trust it unless it has the TscInvariant bit is set.
5115 */
5116 /* Check for "AuthenticAMD" */
5117 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
5118 if ( uEAX >= 1
5119 && uEBX == X86_CPUID_VENDOR_AMD_EBX
5120 && uECX == X86_CPUID_VENDOR_AMD_ECX
5121 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
5122 {
5123 /* Check for APM support and that TscInvariant is cleared. */
5124 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
5125 if (uEAX >= 0x80000007)
5126 {
5127 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
5128 if ( !(uEDX & RT_BIT(8))/* TscInvariant */
5129 && (uEDX & 0x3e)) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */
5130 return SUPGIPMODE_ASYNC_TSC;
5131 }
5132 }
5133 }
5134 return SUPGIPMODE_SYNC_TSC;
5135}
5136
5137
5138
5139/**
5140 * Initializes the GIP data.
5141 *
5142 * @param pDevExt Pointer to the device instance data.
5143 * @param pGip Pointer to the read-write kernel mapping of the GIP.
5144 * @param HCPhys The physical address of the GIP.
5145 * @param u64NanoTS The current nanosecond timestamp.
5146 * @param uUpdateHz The update frequency.
5147 */
5148static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys, uint64_t u64NanoTS, unsigned uUpdateHz)
5149{
5150 unsigned i;
5151#ifdef DEBUG_DARWIN_GIP
5152 OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz));
5153#else
5154 LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz));
5155#endif
5156
5157 /*
5158 * Initialize the structure.
5159 */
5160 memset(pGip, 0, PAGE_SIZE);
5161 pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
5162 pGip->u32Version = SUPGLOBALINFOPAGE_VERSION;
5163 pGip->u32Mode = supdrvGipDeterminTscMode(pDevExt);
5164 pGip->u32UpdateHz = uUpdateHz;
5165 pGip->u32UpdateIntervalNS = 1000000000 / uUpdateHz;
5166 pGip->u64NanoTSLastUpdateHz = u64NanoTS;
5167
5168 for (i = 0; i < RT_ELEMENTS(pGip->aCPUs); i++)
5169 {
5170 pGip->aCPUs[i].u32TransactionId = 2;
5171 pGip->aCPUs[i].u64NanoTS = u64NanoTS;
5172 pGip->aCPUs[i].u64TSC = ASMReadTSC();
5173
5174 /*
5175 * We don't know the following values until we've executed updates.
5176 * So, we'll just pretend it's a 4 GHz CPU and adjust the history it on
5177 * the 2nd timer callout.
5178 */
5179 pGip->aCPUs[i].u64CpuHz = _4G + 1; /* tstGIP-2 depends on this. */
5180 pGip->aCPUs[i].u32UpdateIntervalTSC
5181 = pGip->aCPUs[i].au32TSCHistory[0]
5182 = pGip->aCPUs[i].au32TSCHistory[1]
5183 = pGip->aCPUs[i].au32TSCHistory[2]
5184 = pGip->aCPUs[i].au32TSCHistory[3]
5185 = pGip->aCPUs[i].au32TSCHistory[4]
5186 = pGip->aCPUs[i].au32TSCHistory[5]
5187 = pGip->aCPUs[i].au32TSCHistory[6]
5188 = pGip->aCPUs[i].au32TSCHistory[7]
5189 = /*pGip->aCPUs[i].u64CpuHz*/ (uint32_t)(_4G / uUpdateHz);
5190 }
5191
5192 /*
5193 * Link it to the device extension.
5194 */
5195 pDevExt->pGip = pGip;
5196 pDevExt->HCPhysGip = HCPhys;
5197 pDevExt->cGipUsers = 0;
5198}
5199
5200
5201/**
5202 * Invalidates the GIP data upon termination.
5203 *
5204 * @param pGip Pointer to the read-write kernel mapping of the GIP.
5205 */
5206static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
5207{
5208 unsigned i;
5209 pGip->u32Magic = 0;
5210 for (i = 0; i < RT_ELEMENTS(pGip->aCPUs); i++)
5211 {
5212 pGip->aCPUs[i].u64NanoTS = 0;
5213 pGip->aCPUs[i].u64TSC = 0;
5214 pGip->aCPUs[i].iTSCHistoryHead = 0;
5215 }
5216}
5217
5218
5219/**
5220 * Worker routine for supdrvGipUpdate and supdrvGipUpdatePerCpu that
5221 * updates all the per cpu data except the transaction id.
5222 *
5223 * @param pGip The GIP.
5224 * @param pGipCpu Pointer to the per cpu data.
5225 * @param u64NanoTS The current time stamp.
5226 * @param u64TSC The current TSC.
5227 * @param iTick The current timer tick.
5228 */
5229static void supdrvGipDoUpdateCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
5230{
5231 uint64_t u64TSCDelta;
5232 uint32_t u32UpdateIntervalTSC;
5233 uint32_t u32UpdateIntervalTSCSlack;
5234 unsigned iTSCHistoryHead;
5235 uint64_t u64CpuHz;
5236 uint32_t u32TransactionId;
5237
5238 /* Delta between this and the previous update. */
5239 ASMAtomicUoWriteU32(&pGipCpu->u32PrevUpdateIntervalNS, (uint32_t)(u64NanoTS - pGipCpu->u64NanoTS));
5240
5241 /*
5242 * Update the NanoTS.
5243 */
5244 ASMAtomicXchgU64(&pGipCpu->u64NanoTS, u64NanoTS);
5245
5246 /*
5247 * Calc TSC delta.
5248 */
5249 /** @todo validate the NanoTS delta, don't trust the OS to call us when it should... */
5250 u64TSCDelta = u64TSC - pGipCpu->u64TSC;
5251 ASMAtomicXchgU64(&pGipCpu->u64TSC, u64TSC);
5252
5253 if (u64TSCDelta >> 32)
5254 {
5255 u64TSCDelta = pGipCpu->u32UpdateIntervalTSC;
5256 pGipCpu->cErrors++;
5257 }
5258
5259 /*
5260 * On the 2nd and 3rd callout, reset the history with the current TSC
5261 * interval since the values entered by supdrvGipInit are totally off.
5262 * The interval on the 1st callout completely unreliable, the 2nd is a bit
5263 * better, while the 3rd should be most reliable.
5264 */
5265 u32TransactionId = pGipCpu->u32TransactionId;
5266 if (RT_UNLIKELY( ( u32TransactionId == 5
5267 || u32TransactionId == 7)
5268 && ( iTick == 2
5269 || iTick == 3) ))
5270 {
5271 unsigned i;
5272 for (i = 0; i < RT_ELEMENTS(pGipCpu->au32TSCHistory); i++)
5273 ASMAtomicUoWriteU32(&pGipCpu->au32TSCHistory[i], (uint32_t)u64TSCDelta);
5274 }
5275
5276 /*
5277 * TSC History.
5278 */
5279 Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8);
5280 iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7;
5281 ASMAtomicXchgU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead);
5282 ASMAtomicXchgU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
5283
5284 /*
5285 * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
5286 */
5287 if (pGip->u32UpdateHz >= 1000)
5288 {
5289 uint32_t u32;
5290 u32 = pGipCpu->au32TSCHistory[0];
5291 u32 += pGipCpu->au32TSCHistory[1];
5292 u32 += pGipCpu->au32TSCHistory[2];
5293 u32 += pGipCpu->au32TSCHistory[3];
5294 u32 >>= 2;
5295 u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4];
5296 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5];
5297 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6];
5298 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7];
5299 u32UpdateIntervalTSC >>= 2;
5300 u32UpdateIntervalTSC += u32;
5301 u32UpdateIntervalTSC >>= 1;
5302
5303 /* Value chosen for a 2GHz Athlon64 running linux 2.6.10/11, . */
5304 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
5305 }
5306 else if (pGip->u32UpdateHz >= 90)
5307 {
5308 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
5309 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
5310 u32UpdateIntervalTSC >>= 1;
5311
5312 /* value chosen on a 2GHz thinkpad running windows */
5313 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
5314 }
5315 else
5316 {
5317 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
5318
5319 /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
5320 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
5321 }
5322 ASMAtomicXchgU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
5323
5324 /*
5325 * CpuHz.
5326 */
5327 u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, pGip->u32UpdateHz);
5328 ASMAtomicXchgU64(&pGipCpu->u64CpuHz, u64CpuHz);
5329}
5330
5331
5332/**
5333 * Updates the GIP.
5334 *
5335 * @param pGip Pointer to the GIP.
5336 * @param u64NanoTS The current nanosecond timesamp.
5337 * @param u64TSC The current TSC timesamp.
5338 * @param iTick The current timer tick.
5339 */
5340static void supdrvGipUpdate(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
5341{
5342 /*
5343 * Determine the relevant CPU data.
5344 */
5345 PSUPGIPCPU pGipCpu;
5346 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
5347 pGipCpu = &pGip->aCPUs[0];
5348 else
5349 {
5350 unsigned iCpu = ASMGetApicId();
5351 if (RT_UNLIKELY(iCpu >= RT_ELEMENTS(pGip->aCPUs)))
5352 return;
5353 pGipCpu = &pGip->aCPUs[iCpu];
5354 }
5355
5356 /*
5357 * Start update transaction.
5358 */
5359 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
5360 {
5361 /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
5362 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
5363 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5364 pGipCpu->cErrors++;
5365 return;
5366 }
5367
5368 /*
5369 * Recalc the update frequency every 0x800th time.
5370 */
5371 if (!(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
5372 {
5373 if (pGip->u64NanoTSLastUpdateHz)
5374 {
5375#ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */
5376 uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
5377 uint32_t u32UpdateHz = (uint32_t)((UINT64_C(1000000000) * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
5378 if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
5379 {
5380 ASMAtomicXchgU32(&pGip->u32UpdateHz, u32UpdateHz);
5381 ASMAtomicXchgU32(&pGip->u32UpdateIntervalNS, 1000000000 / u32UpdateHz);
5382 }
5383#endif
5384 }
5385 ASMAtomicXchgU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS);
5386 }
5387
5388 /*
5389 * Update the data.
5390 */
5391 supdrvGipDoUpdateCpu(pGip, pGipCpu, u64NanoTS, u64TSC, iTick);
5392
5393 /*
5394 * Complete transaction.
5395 */
5396 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5397}
5398
5399
5400/**
5401 * Updates the per cpu GIP data for the calling cpu.
5402 *
5403 * @param pGip Pointer to the GIP.
5404 * @param u64NanoTS The current nanosecond timesamp.
5405 * @param u64TSC The current TSC timesamp.
5406 * @param iCpu The CPU index.
5407 * @param iTick The current timer tick.
5408 */
5409static void supdrvGipUpdatePerCpu(PSUPGLOBALINFOPAGE pGip, uint64_t u64NanoTS, uint64_t u64TSC, unsigned iCpu, uint64_t iTick)
5410{
5411 PSUPGIPCPU pGipCpu;
5412
5413 if (RT_LIKELY(iCpu < RT_ELEMENTS(pGip->aCPUs)))
5414 {
5415 pGipCpu = &pGip->aCPUs[iCpu];
5416
5417 /*
5418 * Start update transaction.
5419 */
5420 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
5421 {
5422 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
5423 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5424 pGipCpu->cErrors++;
5425 return;
5426 }
5427
5428 /*
5429 * Update the data.
5430 */
5431 supdrvGipDoUpdateCpu(pGip, pGipCpu, u64NanoTS, u64TSC, iTick);
5432
5433 /*
5434 * Complete transaction.
5435 */
5436 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
5437 }
5438}
5439
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette