VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPDrvGip.cpp@ 54376

Last change on this file since 54376 was 54376, checked in by vboxsync, 10 years ago

done.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 160.7 KB
Line 
1/* $Id: SUPDrvGip.cpp 54376 2015-02-23 10:44:03Z vboxsync $ */
2/** @file
3 * VBoxDrv - The VirtualBox Support Driver - Common code for GIP.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27/*******************************************************************************
28* Header Files *
29*******************************************************************************/
30#define LOG_GROUP LOG_GROUP_SUP_DRV
31#define SUPDRV_AGNOSTIC
32#include "SUPDrvInternal.h"
33#ifndef PAGE_SHIFT
34# include <iprt/param.h>
35#endif
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/asm-math.h>
39#include <iprt/cpuset.h>
40#include <iprt/handletable.h>
41#include <iprt/mem.h>
42#include <iprt/mp.h>
43#include <iprt/power.h>
44#include <iprt/process.h>
45#include <iprt/semaphore.h>
46#include <iprt/spinlock.h>
47#include <iprt/thread.h>
48#include <iprt/uuid.h>
49#include <iprt/net.h>
50#include <iprt/crc.h>
51#include <iprt/string.h>
52#include <iprt/timer.h>
53#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
54# include <iprt/rand.h>
55# include <iprt/path.h>
56#endif
57#include <iprt/uint128.h>
58#include <iprt/x86.h>
59
60#include <VBox/param.h>
61#include <VBox/log.h>
62#include <VBox/err.h>
63
64#if defined(RT_OS_SOLARIS) || defined(RT_OS_DARWIN)
65# include "dtrace/SUPDrv.h"
66#else
67/* ... */
68#endif
69
70
71/*******************************************************************************
72* Defined Constants And Macros *
73*******************************************************************************/
74/** The frequency by which we recalculate the u32UpdateHz and
75 * u32UpdateIntervalNS GIP members. The value must be a power of 2.
76 *
77 * Warning: Bumping this too high might overflow u32UpdateIntervalNS.
78 */
79#define GIP_UPDATEHZ_RECALC_FREQ 0x800
80
81/** A reserved TSC value used for synchronization as well as measurement of
82 * TSC deltas. */
83#define GIP_TSC_DELTA_RSVD UINT64_MAX
84/** The number of TSC delta measurement loops in total (includes primer and
85 * read-time loops). */
86#define GIP_TSC_DELTA_LOOPS 96
87/** The number of cache primer loops. */
88#define GIP_TSC_DELTA_PRIMER_LOOPS 4
89/** The number of loops until we keep computing the minumum read time. */
90#define GIP_TSC_DELTA_READ_TIME_LOOPS 24
91
92/** @name Master / worker synchronization values.
93 * @{ */
94/** Stop measurement of TSC delta. */
95#define GIP_TSC_DELTA_SYNC_STOP UINT32_C(0)
96/** Start measurement of TSC delta. */
97#define GIP_TSC_DELTA_SYNC_START UINT32_C(1)
98/** Worker thread is ready for reading the TSC. */
99#define GIP_TSC_DELTA_SYNC_WORKER_READY UINT32_C(2)
100/** Worker thread is done updating TSC delta info. */
101#define GIP_TSC_DELTA_SYNC_WORKER_DONE UINT32_C(3)
102/** When IPRT is isn't concurrent safe: Master is ready and will wait for worker
103 * with a timeout. */
104#define GIP_TSC_DELTA_SYNC_PRESTART_MASTER UINT32_C(4)
105/** @} */
106
107/** When IPRT is isn't concurrent safe: Worker is ready after waiting for
108 * master with a timeout. */
109#define GIP_TSC_DELTA_SYNC_PRESTART_WORKER 5
110/** The TSC-refinement interval in seconds. */
111#define GIP_TSC_REFINE_PREIOD_IN_SECS 5
112/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_PRACTICALLY_ZERO rating */
113#define GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO 32
114/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_ROUGHLY_ZERO rating */
115#define GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO 448
116/** The TSC delta value for the initial GIP master - 0 in regular builds.
117 * To test the delta code this can be set to a non-zero value. */
118#if 0
119# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(170139095182512) /* 0x00009abd9854acb0 */
120#else
121# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(0)
122#endif
123
124AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS < GIP_TSC_DELTA_READ_TIME_LOOPS);
125AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS < GIP_TSC_DELTA_LOOPS);
126
127/** @def VBOX_SVN_REV
128 * The makefile should define this if it can. */
129#ifndef VBOX_SVN_REV
130# define VBOX_SVN_REV 0
131#endif
132
133#if 0 /* Don't start the GIP timers. Useful when debugging the IPRT timer code. */
134# define DO_NOT_START_GIP
135#endif
136
137
138/*******************************************************************************
139* Internal Functions *
140*******************************************************************************/
141static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
142static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
143static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz);
144#ifdef SUPDRV_USE_TSC_DELTA_THREAD
145static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt);
146static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt);
147static int supdrvTscDeltaThreadWaitForOnlineCpus(PSUPDRVDEVEXT pDevExt);
148#endif
149
150
151/*******************************************************************************
152* Global Variables *
153*******************************************************************************/
154DECLEXPORT(PSUPGLOBALINFOPAGE) g_pSUPGlobalInfoPage = NULL;
155
156
157
158/*
159 *
160 * Misc Common GIP Code
161 * Misc Common GIP Code
162 * Misc Common GIP Code
163 *
164 *
165 */
166
167
168/**
169 * Finds the GIP CPU index corresponding to @a idCpu.
170 *
171 * @returns GIP CPU array index, UINT32_MAX if not found.
172 * @param pGip The GIP.
173 * @param idCpu The CPU ID.
174 */
175static uint32_t supdrvGipFindCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
176{
177 uint32_t i;
178 for (i = 0; i < pGip->cCpus; i++)
179 if (pGip->aCPUs[i].idCpu == idCpu)
180 return i;
181 return UINT32_MAX;
182}
183
184
185/**
186 * Applies the TSC delta to the supplied raw TSC value.
187 *
188 * @returns VBox status code. (Ignored by all users, just FYI.)
189 * @param pGip Pointer to the GIP.
190 * @param puTsc Pointer to a valid TSC value before the TSC delta has been applied.
191 * @param idApic The APIC ID of the CPU @c puTsc corresponds to.
192 * @param fDeltaApplied Where to store whether the TSC delta was succesfully
193 * applied or not (optional, can be NULL).
194 *
195 * @remarks Maybe called with interrupts disabled in ring-0!
196 *
197 * @note Don't you dare change the delta calculation. If you really do, make
198 * sure you update all places where it's used (IPRT, SUPLibAll.cpp,
199 * SUPDrv.c, supdrvGipMpEvent, and more).
200 */
201DECLINLINE(int) supdrvTscDeltaApply(PSUPGLOBALINFOPAGE pGip, uint64_t *puTsc, uint16_t idApic, bool *pfDeltaApplied)
202{
203 int rc;
204
205 /*
206 * Validate input.
207 */
208 AssertPtr(puTsc);
209 AssertPtr(pGip);
210 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
211
212 /*
213 * Carefully convert the idApic into a GIPCPU entry.
214 */
215 if (RT_LIKELY(idApic < RT_ELEMENTS(pGip->aiCpuFromApicId)))
216 {
217 uint16_t iCpu = pGip->aiCpuFromApicId[idApic];
218 if (RT_LIKELY(iCpu < pGip->cCpus))
219 {
220 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
221
222 /*
223 * Apply the delta if valid.
224 */
225 if (RT_LIKELY(pGipCpu->i64TSCDelta != INT64_MAX))
226 {
227 *puTsc -= pGipCpu->i64TSCDelta;
228 if (pfDeltaApplied)
229 *pfDeltaApplied = true;
230 return VINF_SUCCESS;
231 }
232
233 rc = VINF_SUCCESS;
234 }
235 else
236 {
237 AssertMsgFailed(("iCpu=%u cCpus=%u\n", iCpu, pGip->cCpus));
238 rc = VERR_INVALID_CPU_INDEX;
239 }
240 }
241 else
242 {
243 AssertMsgFailed(("idApic=%u\n", idApic));
244 rc = VERR_INVALID_CPU_ID;
245 }
246 if (pfDeltaApplied)
247 *pfDeltaApplied = false;
248 return rc;
249}
250
251
252/*
253 *
254 * GIP Mapping and Unmapping Related Code.
255 * GIP Mapping and Unmapping Related Code.
256 * GIP Mapping and Unmapping Related Code.
257 *
258 *
259 */
260
261
262/**
263 * (Re-)initializes the per-cpu structure prior to starting or resuming the GIP
264 * updating.
265 *
266 * @param pGip Pointer to the GIP.
267 * @param pGipCpu The per CPU structure for this CPU.
268 * @param u64NanoTS The current time.
269 */
270static void supdrvGipReInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS)
271{
272 /*
273 * Here we don't really care about applying the TSC delta. The re-initialization of this
274 * value is not relevant especially while (re)starting the GIP as the first few ones will
275 * be ignored anyway, see supdrvGipDoUpdateCpu().
276 */
277 pGipCpu->u64TSC = ASMReadTSC() - pGipCpu->u32UpdateIntervalTSC;
278 pGipCpu->u64NanoTS = u64NanoTS;
279}
280
281
282/**
283 * Set the current TSC and NanoTS value for the CPU.
284 *
285 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
286 * @param pvUser1 Pointer to the ring-0 GIP mapping.
287 * @param pvUser2 Pointer to the variable holding the current time.
288 */
289static DECLCALLBACK(void) supdrvGipReInitCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
290{
291 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser1;
292 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
293
294 if (RT_LIKELY(iCpu < pGip->cCpus && pGip->aCPUs[iCpu].idCpu == idCpu))
295 supdrvGipReInitCpu(pGip, &pGip->aCPUs[iCpu], *(uint64_t *)pvUser2);
296
297 NOREF(pvUser2);
298 NOREF(idCpu);
299}
300
301
302/**
303 * State structure for supdrvGipDetectGetGipCpuCallback.
304 */
305typedef struct SUPDRVGIPDETECTGETCPU
306{
307 /** Bitmap of APIC IDs that has been seen (initialized to zero).
308 * Used to detect duplicate APIC IDs (paranoia). */
309 uint8_t volatile bmApicId[256 / 8];
310 /** Mask of supported GIP CPU getter methods (SUPGIPGETCPU_XXX) (all bits set
311 * initially). The callback clears the methods not detected. */
312 uint32_t volatile fSupported;
313 /** The first callback detecting any kind of range issues (initialized to
314 * NIL_RTCPUID). */
315 RTCPUID volatile idCpuProblem;
316} SUPDRVGIPDETECTGETCPU;
317/** Pointer to state structure for supdrvGipDetectGetGipCpuCallback. */
318typedef SUPDRVGIPDETECTGETCPU *PSUPDRVGIPDETECTGETCPU;
319
320
321/**
322 * Checks for alternative ways of getting the CPU ID.
323 *
324 * This also checks the APIC ID, CPU ID and CPU set index values against the
325 * GIP tables.
326 *
327 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
328 * @param pvUser1 Pointer to the state structure.
329 * @param pvUser2 Pointer to the GIP.
330 */
331static DECLCALLBACK(void) supdrvGipDetectGetGipCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
332{
333 PSUPDRVGIPDETECTGETCPU pState = (PSUPDRVGIPDETECTGETCPU)pvUser1;
334 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser2;
335 uint32_t fSupported = 0;
336 uint16_t idApic;
337 int iCpuSet;
338
339 AssertMsg(idCpu == RTMpCpuId(), ("idCpu=%#x RTMpCpuId()=%#x\n", idCpu, RTMpCpuId())); /* paranoia^3 */
340
341 /*
342 * Check that the CPU ID and CPU set index are interchangable.
343 */
344 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
345 if ((RTCPUID)iCpuSet == idCpu)
346 {
347 AssertCompile(RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS));
348 if ( iCpuSet >= 0
349 && iCpuSet < RTCPUSET_MAX_CPUS
350 && RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS))
351 {
352 /*
353 * Check whether the IDTR.LIMIT contains a CPU number.
354 */
355#ifdef RT_ARCH_X86
356 uint16_t const cbIdt = sizeof(X86DESC64SYSTEM) * 256;
357#else
358 uint16_t const cbIdt = sizeof(X86DESCGATE) * 256;
359#endif
360 RTIDTR Idtr;
361 ASMGetIDTR(&Idtr);
362 if (Idtr.cbIdt >= cbIdt)
363 {
364 uint32_t uTmp = Idtr.cbIdt - cbIdt;
365 uTmp &= RTCPUSET_MAX_CPUS - 1;
366 if (uTmp == idCpu)
367 {
368 RTIDTR Idtr2;
369 ASMGetIDTR(&Idtr2);
370 if (Idtr2.cbIdt == Idtr.cbIdt)
371 fSupported |= SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS;
372 }
373 }
374
375 /*
376 * Check whether RDTSCP is an option.
377 */
378 if (ASMHasCpuId())
379 {
380 if ( ASMIsValidExtRange(ASMCpuId_EAX(UINT32_C(0x80000000)))
381 && (ASMCpuId_EDX(UINT32_C(0x80000001)) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) )
382 {
383 uint32_t uAux;
384 ASMReadTscWithAux(&uAux);
385 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
386 {
387 ASMNopPause();
388 ASMReadTscWithAux(&uAux);
389 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
390 fSupported |= SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS;
391 }
392 }
393 }
394 }
395 }
396
397 /*
398 * Check that the APIC ID is unique.
399 */
400 idApic = ASMGetApicId();
401 if (RT_LIKELY( idApic < RT_ELEMENTS(pGip->aiCpuFromApicId)
402 && !ASMAtomicBitTestAndSet(pState->bmApicId, idApic)))
403 fSupported |= SUPGIPGETCPU_APIC_ID;
404 else
405 {
406 AssertCompile(sizeof(pState->bmApicId) * 8 == RT_ELEMENTS(pGip->aiCpuFromApicId));
407 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
408 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - duplicate APIC ID.\n",
409 idCpu, iCpuSet, idApic));
410 }
411
412 /*
413 * Check that the iCpuSet is within the expected range.
414 */
415 if (RT_UNLIKELY( iCpuSet < 0
416 || (unsigned)iCpuSet >= RTCPUSET_MAX_CPUS
417 || (unsigned)iCpuSet >= RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)))
418 {
419 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
420 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU set index is out of range.\n",
421 idCpu, iCpuSet, idApic));
422 }
423 else
424 {
425 RTCPUID idCpu2 = RTMpCpuIdFromSetIndex(iCpuSet);
426 if (RT_UNLIKELY(idCpu2 != idCpu))
427 {
428 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
429 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU id/index roundtrip problem: %#x\n",
430 idCpu, iCpuSet, idApic, idCpu2));
431 }
432 }
433
434 /*
435 * Update the supported feature mask before we return.
436 */
437 ASMAtomicAndU32(&pState->fSupported, fSupported);
438
439 NOREF(pvUser2);
440}
441
442
443/**
444 * Increase the timer freqency on hosts where this is possible (NT).
445 *
446 * The idea is that more interrupts is better for us... Also, it's better than
447 * we increase the timer frequence, because we might end up getting inaccurate
448 * callbacks if someone else does it.
449 *
450 * @param pDevExt Sets u32SystemTimerGranularityGrant if increased.
451 */
452static void supdrvGipRequestHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
453{
454 if (pDevExt->u32SystemTimerGranularityGrant == 0)
455 {
456 uint32_t u32SystemResolution;
457 if ( RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
458 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
459 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution))
460 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution))
461 )
462 {
463 Assert(RTTimerGetSystemGranularity() <= u32SystemResolution);
464 pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
465 }
466 }
467}
468
469
470/**
471 * Undoes supdrvGipRequestHigherTimerFrequencyFromSystem.
472 *
473 * @param pDevExt Clears u32SystemTimerGranularityGrant.
474 */
475static void supdrvGipReleaseHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
476{
477 if (pDevExt->u32SystemTimerGranularityGrant)
478 {
479 int rc2 = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant);
480 AssertRC(rc2);
481 pDevExt->u32SystemTimerGranularityGrant = 0;
482 }
483}
484
485
486/**
487 * Maps the GIP into userspace and/or get the physical address of the GIP.
488 *
489 * @returns IPRT status code.
490 * @param pSession Session to which the GIP mapping should belong.
491 * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional)
492 * @param pHCPhysGip Where to store the physical address. (optional)
493 *
494 * @remark There is no reference counting on the mapping, so one call to this function
495 * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
496 * and remove the session as a GIP user.
497 */
498SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip)
499{
500 int rc;
501 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
502 RTR3PTR pGipR3 = NIL_RTR3PTR;
503 RTHCPHYS HCPhys = NIL_RTHCPHYS;
504 LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip));
505
506 /*
507 * Validate
508 */
509 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
510 AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER);
511 AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER);
512
513#ifdef SUPDRV_USE_MUTEX_FOR_GIP
514 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
515#else
516 RTSemFastMutexRequest(pDevExt->mtxGip);
517#endif
518 if (pDevExt->pGip)
519 {
520 /*
521 * Map it?
522 */
523 rc = VINF_SUCCESS;
524 if (ppGipR3)
525 {
526 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
527 rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0,
528 RTMEM_PROT_READ, RTR0ProcHandleSelf());
529 if (RT_SUCCESS(rc))
530 pGipR3 = RTR0MemObjAddressR3(pSession->GipMapObjR3);
531 }
532
533 /*
534 * Get physical address.
535 */
536 if (pHCPhysGip && RT_SUCCESS(rc))
537 HCPhys = pDevExt->HCPhysGip;
538
539 /*
540 * Reference globally.
541 */
542 if (!pSession->fGipReferenced && RT_SUCCESS(rc))
543 {
544 pSession->fGipReferenced = 1;
545 pDevExt->cGipUsers++;
546 if (pDevExt->cGipUsers == 1)
547 {
548 PSUPGLOBALINFOPAGE pGipR0 = pDevExt->pGip;
549 uint64_t u64NanoTS;
550
551 /*
552 * GIP starts/resumes updating again. On windows we bump the
553 * host timer frequency to make sure we don't get stuck in guest
554 * mode and to get better timer (and possibly clock) accuracy.
555 */
556 LogFlow(("SUPR0GipMap: Resumes GIP updating\n"));
557
558 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
559
560 /*
561 * document me
562 */
563 if (pGipR0->aCPUs[0].u32TransactionId != 2 /* not the first time */)
564 {
565 unsigned i;
566 for (i = 0; i < pGipR0->cCpus; i++)
567 ASMAtomicUoWriteU32(&pGipR0->aCPUs[i].u32TransactionId,
568 (pGipR0->aCPUs[i].u32TransactionId + GIP_UPDATEHZ_RECALC_FREQ * 2)
569 & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
570 ASMAtomicWriteU64(&pGipR0->u64NanoTSLastUpdateHz, 0);
571 }
572
573 /*
574 * document me
575 */
576 u64NanoTS = RTTimeSystemNanoTS() - pGipR0->u32UpdateIntervalNS;
577 if ( pGipR0->u32Mode == SUPGIPMODE_INVARIANT_TSC
578 || pGipR0->u32Mode == SUPGIPMODE_SYNC_TSC
579 || RTMpGetOnlineCount() == 1)
580 supdrvGipReInitCpu(pGipR0, &pGipR0->aCPUs[0], u64NanoTS);
581 else
582 RTMpOnAll(supdrvGipReInitCpuCallback, pGipR0, &u64NanoTS);
583
584 /*
585 * Detect alternative ways to figure the CPU ID in ring-3 and
586 * raw-mode context. Check the sanity of the APIC IDs, CPU IDs,
587 * and CPU set indexes while we're at it.
588 */
589 if (RT_SUCCESS(rc))
590 {
591 SUPDRVGIPDETECTGETCPU DetectState;
592 RT_BZERO((void *)&DetectState.bmApicId, sizeof(DetectState.bmApicId));
593 DetectState.fSupported = UINT32_MAX;
594 DetectState.idCpuProblem = NIL_RTCPUID;
595 rc = RTMpOnAll(supdrvGipDetectGetGipCpuCallback, &DetectState, pGipR0);
596 if (DetectState.idCpuProblem == NIL_RTCPUID)
597 {
598 if ( DetectState.fSupported != UINT32_MAX
599 && DetectState.fSupported != 0)
600 {
601 if (pGipR0->fGetGipCpu != DetectState.fSupported)
602 {
603 pGipR0->fGetGipCpu = DetectState.fSupported;
604 LogRel(("SUPR0GipMap: fGetGipCpu=%#x\n", DetectState.fSupported));
605 }
606 }
607 else
608 {
609 LogRel(("SUPR0GipMap: No supported ways of getting the APIC ID or CPU number in ring-3! (%#x)\n",
610 DetectState.fSupported));
611 rc = VERR_UNSUPPORTED_CPU;
612 }
613 }
614 else
615 {
616 LogRel(("SUPR0GipMap: APIC ID, CPU ID or CPU set index problem detected on CPU #%u (%#x)!\n",
617 DetectState.idCpuProblem, DetectState.idCpuProblem));
618 rc = VERR_INVALID_CPU_ID;
619 }
620 }
621
622 /*
623 * Start the GIP timer if all is well..
624 */
625 if (RT_SUCCESS(rc))
626 {
627#ifndef DO_NOT_START_GIP
628 rc = RTTimerStart(pDevExt->pGipTimer, 0 /* fire ASAP */); AssertRC(rc);
629#endif
630 rc = VINF_SUCCESS;
631 }
632
633 /*
634 * Bail out on error.
635 */
636 if (RT_FAILURE(rc))
637 {
638 LogRel(("SUPR0GipMap: failed rc=%Rrc\n", rc));
639 pDevExt->cGipUsers = 0;
640 pSession->fGipReferenced = 0;
641 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
642 {
643 int rc2 = RTR0MemObjFree(pSession->GipMapObjR3, false); AssertRC(rc2);
644 if (RT_SUCCESS(rc2))
645 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
646 }
647 HCPhys = NIL_RTHCPHYS;
648 pGipR3 = NIL_RTR3PTR;
649 }
650 }
651 }
652 }
653 else
654 {
655 rc = VERR_GENERAL_FAILURE;
656 Log(("SUPR0GipMap: GIP is not available!\n"));
657 }
658#ifdef SUPDRV_USE_MUTEX_FOR_GIP
659 RTSemMutexRelease(pDevExt->mtxGip);
660#else
661 RTSemFastMutexRelease(pDevExt->mtxGip);
662#endif
663
664 /*
665 * Write returns.
666 */
667 if (pHCPhysGip)
668 *pHCPhysGip = HCPhys;
669 if (ppGipR3)
670 *ppGipR3 = pGipR3;
671
672#ifdef DEBUG_DARWIN_GIP
673 OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
674#else
675 LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
676#endif
677 return rc;
678}
679
680
681/**
682 * Unmaps any user mapping of the GIP and terminates all GIP access
683 * from this session.
684 *
685 * @returns IPRT status code.
686 * @param pSession Session to which the GIP mapping should belong.
687 */
688SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
689{
690 int rc = VINF_SUCCESS;
691 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
692#ifdef DEBUG_DARWIN_GIP
693 OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n",
694 pSession,
695 pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL,
696 pSession->GipMapObjR3));
697#else
698 LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession));
699#endif
700 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
701
702#ifdef SUPDRV_USE_MUTEX_FOR_GIP
703 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
704#else
705 RTSemFastMutexRequest(pDevExt->mtxGip);
706#endif
707
708 /*
709 * Unmap anything?
710 */
711 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
712 {
713 rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
714 AssertRC(rc);
715 if (RT_SUCCESS(rc))
716 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
717 }
718
719 /*
720 * Dereference global GIP.
721 */
722 if (pSession->fGipReferenced && !rc)
723 {
724 pSession->fGipReferenced = 0;
725 if ( pDevExt->cGipUsers > 0
726 && !--pDevExt->cGipUsers)
727 {
728 LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n"));
729#ifndef DO_NOT_START_GIP
730 rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS;
731#endif
732 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
733 }
734 }
735
736#ifdef SUPDRV_USE_MUTEX_FOR_GIP
737 RTSemMutexRelease(pDevExt->mtxGip);
738#else
739 RTSemFastMutexRelease(pDevExt->mtxGip);
740#endif
741
742 return rc;
743}
744
745
746/**
747 * Gets the GIP pointer.
748 *
749 * @returns Pointer to the GIP or NULL.
750 */
751SUPDECL(PSUPGLOBALINFOPAGE) SUPGetGIP(void)
752{
753 return g_pSUPGlobalInfoPage;
754}
755
756
757
758
759
760/*
761 *
762 *
763 * GIP Initialization, Termination and CPU Offline / Online Related Code.
764 * GIP Initialization, Termination and CPU Offline / Online Related Code.
765 * GIP Initialization, Termination and CPU Offline / Online Related Code.
766 *
767 *
768 */
769
770/**
771 * Used by supdrvInitRefineInvariantTscFreqTimer and supdrvGipInitMeasureTscFreq
772 * to update the TSC frequency related GIP variables.
773 *
774 * @param pGip The GIP.
775 * @param nsElapsed The number of nano seconds elapsed.
776 * @param cElapsedTscTicks The corresponding number of TSC ticks.
777 */
778static void supdrvGipInitSetCpuFreq(PSUPGLOBALINFOPAGE pGip, uint64_t nsElapsed, uint64_t cElapsedTscTicks)
779{
780 /*
781 * Calculate the frequency.
782 */
783 uint64_t uCpuHz;
784 if ( cElapsedTscTicks < UINT64_MAX / RT_NS_1SEC
785 && nsElapsed < UINT32_MAX)
786 uCpuHz = ASMMultU64ByU32DivByU32(cElapsedTscTicks, RT_NS_1SEC, (uint32_t)nsElapsed);
787 else
788 {
789 RTUINT128U CpuHz, Tmp, Divisor;
790 CpuHz.s.Lo = CpuHz.s.Hi = 0;
791 RTUInt128MulU64ByU64(&Tmp, cElapsedTscTicks, RT_NS_1SEC_64);
792 RTUInt128Div(&CpuHz, &Tmp, RTUInt128AssignU64(&Divisor, nsElapsed));
793 uCpuHz = CpuHz.s.Lo;
794 }
795
796 /*
797 * Update the GIP.
798 */
799 ASMAtomicWriteU64(&pGip->u64CpuHz, uCpuHz);
800 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
801 ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, uCpuHz);
802}
803
804
805/**
806 * Timer callback function for TSC frequency refinement in invariant GIP mode.
807 *
808 * This is started during driver init and fires once
809 * GIP_TSC_REFINE_PREIOD_IN_SECS seconds later.
810 *
811 * @param pTimer The timer.
812 * @param pvUser Opaque pointer to the device instance data.
813 * @param iTick The timer tick.
814 */
815static DECLCALLBACK(void) supdrvInitRefineInvariantTscFreqTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
816{
817 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
818 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
819 RTCPUID idCpu;
820 uint64_t cNsElapsed;
821 uint64_t cTscTicksElapsed;
822 uint64_t nsNow;
823 uint64_t uTsc;
824 RTCCUINTREG uFlags;
825
826 /* Paranoia. */
827 AssertReturnVoid(pGip);
828 AssertReturnVoid(pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC);
829
830 /*
831 * Try get close to the next clock tick as usual.
832 *
833 * PORTME: If timers are called from the clock interrupt handler, or
834 * an interrupt handler with higher priority than the clock
835 * interrupt, or spinning for ages in timer handlers is frowned
836 * upon, this look must be disabled!
837 *
838 * Darwin, FreeBSD, Linux, Solaris, Windows 8.1+:
839 * High RTTimeSystemNanoTS resolution should prevent any noticable
840 * spinning her.
841 *
842 * Windows 8.0 and earlier:
843 * We're running in a DPC here, so we may trigger the DPC watchdog?
844 *
845 * OS/2:
846 * Timer callbacks are done in the clock interrupt, so skip it.
847 */
848#if !defined(RT_OS_OS2)
849 nsNow = RTTimeSystemNanoTS();
850 while (RTTimeSystemNanoTS() == nsNow)
851 ASMNopPause();
852#endif
853
854 uFlags = ASMIntDisableFlags();
855 uTsc = ASMReadTSC();
856 nsNow = RTTimeSystemNanoTS();
857 idCpu = RTMpCpuId();
858 ASMSetFlags(uFlags);
859
860 cNsElapsed = nsNow - pDevExt->nsStartInvarTscRefine;
861 cTscTicksElapsed = uTsc - pDevExt->uTscStartInvarTscRefine;
862
863 /*
864 * If the above measurement was taken on a different CPU than the one we
865 * started the rprocess on, cTscTicksElapsed will need to be adjusted with
866 * the TSC deltas of both the CPUs.
867 *
868 * We ASSUME that the delta calculation process takes less time than the
869 * TSC frequency refinement timer. If it doesn't, we'll complain and
870 * drop the frequency refinement.
871 *
872 * Note! We cannot entirely trust enmUseTscDelta here because it's
873 * downgraded after each delta calculation.
874 */
875 if ( idCpu != pDevExt->idCpuInvarTscRefine
876 && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
877 {
878 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine);
879 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpu);
880 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
881 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
882 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
883 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
884 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
885 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
886 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopGipCpu != INT64_MAX))
887 {
888 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
889 {
890 /* cTscTicksElapsed = (uTsc - iStopTscDelta) - (pDevExt->uTscStartInvarTscRefine - iStartTscDelta); */
891 cTscTicksElapsed += iStartTscDelta - iStopTscDelta;
892 }
893 }
894 /*
895 * Allow 5 times the refinement period to elapse before we give up on the TSC delta
896 * calculations.
897 */
898 else if (cNsElapsed <= GIP_TSC_REFINE_PREIOD_IN_SECS * 5 * RT_NS_1SEC_64)
899 {
900 int rc = RTTimerStart(pTimer, RT_NS_1SEC);
901 AssertRC(rc);
902 return;
903 }
904 else
905 {
906 SUPR0Printf("vboxdrv: Failed to refine invariant TSC frequency because deltas are unavailable after %u (%u) seconds\n",
907 (uint32_t)(cNsElapsed / RT_NS_1SEC), GIP_TSC_REFINE_PREIOD_IN_SECS);
908 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
909 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
910 return;
911 }
912 }
913
914 /*
915 * Calculate and update the CPU frequency variables in GIP.
916 *
917 * If there is a GIP user already and we've already refined the frequency
918 * a couple of times, don't update it as we want a stable frequency value
919 * for all VMs.
920 */
921 if ( pDevExt->cGipUsers == 0
922 || cNsElapsed < RT_NS_1SEC * 2)
923 {
924 supdrvGipInitSetCpuFreq(pGip, cNsElapsed, cTscTicksElapsed);
925
926 /*
927 * Reschedule the timer if we haven't yet reached the defined refinement period.
928 */
929 if (cNsElapsed < GIP_TSC_REFINE_PREIOD_IN_SECS * RT_NS_1SEC_64)
930 {
931 int rc = RTTimerStart(pTimer, RT_NS_1SEC);
932 AssertRC(rc);
933 }
934 }
935}
936
937
938/**
939 * Start the TSC-frequency refinment timer for the invariant TSC GIP mode.
940 *
941 * We cannot use this in the synchronous and asynchronous tsc GIP modes because
942 * the CPU may change the TSC frequence between now and when the timer fires
943 * (supdrvInitAsyncRefineTscTimer).
944 *
945 * @param pDevExt Pointer to the device instance data.
946 * @param pGip Pointer to the GIP.
947 */
948static void supdrvGipInitStartTimerForRefiningInvariantTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip)
949{
950 uint64_t u64NanoTS;
951 RTCCUINTREG uFlags;
952 int rc;
953
954 /*
955 * Record the TSC and NanoTS as the starting anchor point for refinement
956 * of the TSC. We try get as close to a clock tick as possible on systems
957 * which does not provide high resolution time.
958 */
959 u64NanoTS = RTTimeSystemNanoTS();
960 while (RTTimeSystemNanoTS() == u64NanoTS)
961 ASMNopPause();
962
963 uFlags = ASMIntDisableFlags();
964 pDevExt->uTscStartInvarTscRefine = ASMReadTSC();
965 pDevExt->nsStartInvarTscRefine = RTTimeSystemNanoTS();
966 pDevExt->idCpuInvarTscRefine = RTMpCpuId();
967 ASMSetFlags(uFlags);
968
969 /*
970 * Create a timer that runs on the same CPU so we won't have a depencency
971 * on the TSC-delta and can run in parallel to it. On systems that does not
972 * implement CPU specific timers we'll apply deltas in the timer callback,
973 * just like we do for CPUs going offline.
974 *
975 * The longer the refinement interval the better the accuracy, at least in
976 * theory. If it's too long though, ring-3 may already be starting its
977 * first VMs before we're done. On most systems we will be loading the
978 * support driver during boot and VMs won't be started for a while yet,
979 * it is really only a problem during development (especiall with
980 * on-demand driver starting on windows).
981 *
982 * To avoid wasting time doing a long supdrvGipInitMeasureTscFreq call
983 * to calculate the frequencey during driver loading, the timer is set
984 * to fire after 200 ms the first time. It will then reschedule itself
985 * to fire every second until GIP_TSC_REFINE_PREIOD_IN_SECS has been
986 * reached or it notices that there is a user land client with GIP
987 * mapped (we want a stable frequency for all VMs).
988 */
989 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, 0 /* one-shot */,
990 RTTIMER_FLAGS_CPU(RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine)),
991 supdrvInitRefineInvariantTscFreqTimer, pDevExt);
992 if (RT_SUCCESS(rc))
993 {
994 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
995 if (RT_SUCCESS(rc))
996 return;
997 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
998 }
999
1000 if (rc == VERR_CPU_OFFLINE || rc == VERR_NOT_SUPPORTED)
1001 {
1002 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, 0 /* one-shot */, RTTIMER_FLAGS_CPU_ANY,
1003 supdrvInitRefineInvariantTscFreqTimer, pDevExt);
1004 if (RT_SUCCESS(rc))
1005 {
1006 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
1007 if (RT_SUCCESS(rc))
1008 return;
1009 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
1010 }
1011 }
1012
1013 pDevExt->pInvarTscRefineTimer = NULL;
1014 OSDBGPRINT(("vboxdrv: Failed to create or start TSC frequency refinement timer: rc=%Rrc\n", rc));
1015}
1016
1017
1018/**
1019 * @callback_method_impl{PFNRTMPWORKER,
1020 * RTMpOnSpecific callback for reading TSC and time on the CPU we started
1021 * the measurements on.}
1022 */
1023DECLCALLBACK(void) supdrvGipInitReadTscAndNanoTsOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1024{
1025 RTCCUINTREG uFlags = ASMIntDisableFlags();
1026 uint64_t *puTscStop = (uint64_t *)pvUser1;
1027 uint64_t *pnsStop = (uint64_t *)pvUser2;
1028
1029 *puTscStop = ASMReadTSC();
1030 *pnsStop = RTTimeSystemNanoTS();
1031
1032 ASMSetFlags(uFlags);
1033}
1034
1035
1036/**
1037 * Measures the TSC frequency of the system.
1038 *
1039 * The TSC frequency can vary on systems which are not reported as invariant.
1040 * On such systems the object of this function is to find out what the nominal,
1041 * maximum TSC frequency under 'normal' CPU operation.
1042 *
1043 * @returns VBox status code.
1044 * @param pDevExt Pointer to the device instance.
1045 * @param pGip Pointer to the GIP.
1046 * @param fRough Set if we're doing the rough calculation that the
1047 * TSC measuring code needs, where accuracy isn't all
1048 * that important (too high is better than to low).
1049 * When clear we try for best accuracy that we can
1050 * achieve in reasonably short time.
1051 */
1052static int supdrvGipInitMeasureTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, bool fRough)
1053{
1054 uint32_t nsTimerIncr = RTTimerGetSystemGranularity();
1055 int cTriesLeft = fRough ? 4 : 2;
1056 while (cTriesLeft-- > 0)
1057 {
1058 RTCCUINTREG uFlags;
1059 uint64_t nsStart;
1060 uint64_t nsStop;
1061 uint64_t uTscStart;
1062 uint64_t uTscStop;
1063 RTCPUID idCpuStart;
1064 RTCPUID idCpuStop;
1065
1066 /*
1067 * Synchronize with the host OS clock tick on systems without high
1068 * resolution time API (older Windows version for example).
1069 */
1070 nsStart = RTTimeSystemNanoTS();
1071 while (RTTimeSystemNanoTS() == nsStart)
1072 ASMNopPause();
1073
1074 /*
1075 * Read the TSC and current time, noting which CPU we're on.
1076 */
1077 uFlags = ASMIntDisableFlags();
1078 uTscStart = ASMReadTSC();
1079 nsStart = RTTimeSystemNanoTS();
1080 idCpuStart = RTMpCpuId();
1081 ASMSetFlags(uFlags);
1082
1083 /*
1084 * Delay for a while.
1085 */
1086 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1087 {
1088 /*
1089 * Sleep-wait since the TSC frequency is constant, it eases host load.
1090 * Shorter interval produces more variance in the frequency (esp. Windows).
1091 */
1092 uint64_t msElapsed = 0;
1093 uint64_t msDelay = ( ((fRough ? 16 : 200) * RT_NS_1MS + nsTimerIncr - 1) / nsTimerIncr * nsTimerIncr - RT_NS_100US )
1094 / RT_NS_1MS;
1095 do
1096 {
1097 RTThreadSleep((RTMSINTERVAL)(msDelay - msElapsed));
1098 nsStop = RTTimeSystemNanoTS();
1099 msElapsed = (nsStop - nsStart) / RT_NS_1MS;
1100 } while (msElapsed < msDelay);
1101
1102 while (RTTimeSystemNanoTS() == nsStop)
1103 ASMNopPause();
1104 }
1105 else
1106 {
1107 /*
1108 * Busy-wait keeping the frequency up.
1109 */
1110 do
1111 {
1112 ASMNopPause();
1113 nsStop = RTTimeSystemNanoTS();
1114 } while (nsStop - nsStart < RT_NS_100MS);
1115 }
1116
1117 /*
1118 * Read the TSC and time again.
1119 */
1120 uFlags = ASMIntDisableFlags();
1121 uTscStop = ASMReadTSC();
1122 nsStop = RTTimeSystemNanoTS();
1123 idCpuStop = RTMpCpuId();
1124 ASMSetFlags(uFlags);
1125
1126 /*
1127 * If the CPU changes things get a bit complicated and what we
1128 * can get away with depends on the GIP mode / TSC reliablity.
1129 */
1130 if (idCpuStop != idCpuStart)
1131 {
1132 bool fDoXCall = false;
1133
1134 /*
1135 * Synchronous TSC mode: we're probably fine as it's unlikely
1136 * that we were rescheduled because of TSC throttling or power
1137 * management reasons, so just go ahead.
1138 */
1139 if (pGip->u32Mode == SUPGIPMODE_SYNC_TSC)
1140 {
1141 /* Probably ok, maybe we should retry once?. */
1142 Assert(pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_NOT_APPLICABLE);
1143 }
1144 /*
1145 * If we're just doing the rough measurement, do the cross call and
1146 * get on with things (we don't have deltas!).
1147 */
1148 else if (fRough)
1149 fDoXCall = true;
1150 /*
1151 * Invariant TSC mode: It doesn't matter if we have delta available
1152 * for both CPUs. That is not something we can assume at this point.
1153 *
1154 * Note! We cannot necessarily trust enmUseTscDelta here because it's
1155 * downgraded after each delta calculation and the delta
1156 * calculations may not be complete yet.
1157 */
1158 else if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1159 {
1160/** @todo This section of code is never reached atm, consider dropping it later on... */
1161 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1162 {
1163 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(idCpuStart);
1164 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpuStop);
1165 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1166 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
1167 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1168 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
1169 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
1170 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
1171 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopGipCpu != INT64_MAX))
1172 {
1173 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
1174 {
1175 uTscStart -= iStartTscDelta;
1176 uTscStop -= iStopTscDelta;
1177 }
1178 }
1179 /*
1180 * Invalid CPU indexes are not caused by online/offline races, so
1181 * we have to trigger driver load failure if that happens as GIP
1182 * and IPRT assumptions are busted on this system.
1183 */
1184 else if (iStopGipCpu >= pGip->cCpus || iStartGipCpu >= pGip->cCpus)
1185 {
1186 SUPR0Printf("vboxdrv: Unexpected CPU index in supdrvGipInitMeasureTscFreq.\n");
1187 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
1188 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
1189 return VERR_INVALID_CPU_INDEX;
1190 }
1191 /*
1192 * No valid deltas. We retry, if we're on our last retry
1193 * we do the cross call instead just to get a result. The
1194 * frequency will be refined in a few seconds anyways.
1195 */
1196 else if (cTriesLeft > 0)
1197 continue;
1198 else
1199 fDoXCall = true;
1200 }
1201 }
1202 /*
1203 * Asynchronous TSC mode: This is bad as the reason we usually
1204 * use this mode is to deal with variable TSC frequencies and
1205 * deltas. So, we need to get the TSC from the same CPU as
1206 * started it, we also need to keep that CPU busy. So, retry
1207 * and fall back to the cross call on the last attempt.
1208 */
1209 else
1210 {
1211 Assert(pGip->u32Mode == SUPGIPMODE_ASYNC_TSC);
1212 if (cTriesLeft > 0)
1213 continue;
1214 fDoXCall = true;
1215 }
1216
1217 if (fDoXCall)
1218 {
1219 /*
1220 * Try read the TSC and timestamp on the start CPU.
1221 */
1222 int rc = RTMpOnSpecific(idCpuStart, supdrvGipInitReadTscAndNanoTsOnCpu, &uTscStop, &nsStop);
1223 if (RT_FAILURE(rc) && (!fRough || cTriesLeft > 0))
1224 continue;
1225 }
1226 }
1227
1228 /*
1229 * Calculate the TSC frequency and update it (shared with the refinement timer).
1230 */
1231 supdrvGipInitSetCpuFreq(pGip, nsStop - nsStart, uTscStop - uTscStart);
1232 return VINF_SUCCESS;
1233 }
1234
1235 Assert(!fRough);
1236 return VERR_SUPDRV_TSC_FREQ_MEASUREMENT_FAILED;
1237}
1238
1239
1240/**
1241 * Finds our (@a idCpu) entry, or allocates a new one if not found.
1242 *
1243 * @returns Index of the CPU in the cache set.
1244 * @param pGip The GIP.
1245 * @param idCpu The CPU ID.
1246 */
1247static uint32_t supdrvGipFindOrAllocCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
1248{
1249 uint32_t i, cTries;
1250
1251 /*
1252 * ASSUMES that CPU IDs are constant.
1253 */
1254 for (i = 0; i < pGip->cCpus; i++)
1255 if (pGip->aCPUs[i].idCpu == idCpu)
1256 return i;
1257
1258 cTries = 0;
1259 do
1260 {
1261 for (i = 0; i < pGip->cCpus; i++)
1262 {
1263 bool fRc;
1264 ASMAtomicCmpXchgSize(&pGip->aCPUs[i].idCpu, idCpu, NIL_RTCPUID, fRc);
1265 if (fRc)
1266 return i;
1267 }
1268 } while (cTries++ < 32);
1269 AssertReleaseFailed();
1270 return i - 1;
1271}
1272
1273
1274/**
1275 * The calling CPU should be accounted as online, update GIP accordingly.
1276 *
1277 * This is used by supdrvGipCreate() as well as supdrvGipMpEvent().
1278 *
1279 * @param pDevExt The device extension.
1280 * @param idCpu The CPU ID.
1281 */
1282static void supdrvGipMpEventOnlineOrInitOnCpu(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1283{
1284 int iCpuSet = 0;
1285 uint16_t idApic = UINT16_MAX;
1286 uint32_t i = 0;
1287 uint64_t u64NanoTS = 0;
1288 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1289
1290 AssertPtrReturnVoid(pGip);
1291 AssertRelease(idCpu == RTMpCpuId());
1292 Assert(pGip->cPossibleCpus == RTMpGetCount());
1293
1294 /*
1295 * Do this behind a spinlock with interrupts disabled as this can fire
1296 * on all CPUs simultaneously, see @bugref{6110}.
1297 */
1298 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1299
1300 /*
1301 * Update the globals.
1302 */
1303 ASMAtomicWriteU16(&pGip->cPresentCpus, RTMpGetPresentCount());
1304 ASMAtomicWriteU16(&pGip->cOnlineCpus, RTMpGetOnlineCount());
1305 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1306 if (iCpuSet >= 0)
1307 {
1308 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1309 RTCpuSetAddByIndex(&pGip->OnlineCpuSet, iCpuSet);
1310 RTCpuSetAddByIndex(&pGip->PresentCpuSet, iCpuSet);
1311 }
1312
1313 /*
1314 * Update the entry.
1315 */
1316 u64NanoTS = RTTimeSystemNanoTS() - pGip->u32UpdateIntervalNS;
1317 i = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
1318
1319 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, pGip->u64CpuHz);
1320
1321 idApic = ASMGetApicId();
1322 ASMAtomicWriteU16(&pGip->aCPUs[i].idApic, idApic);
1323 ASMAtomicWriteS16(&pGip->aCPUs[i].iCpuSet, (int16_t)iCpuSet);
1324 ASMAtomicWriteSize(&pGip->aCPUs[i].idCpu, idCpu);
1325
1326 /*
1327 * Update the APIC ID and CPU set index mappings.
1328 */
1329 ASMAtomicWriteU16(&pGip->aiCpuFromApicId[idApic], i);
1330 ASMAtomicWriteU16(&pGip->aiCpuFromCpuSetIdx[iCpuSet], i);
1331
1332 /* Update the Mp online/offline counter. */
1333 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1334
1335 /* Add this CPU to the set of CPUs for which we need to calculate their TSC-deltas. */
1336 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1337 {
1338 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, iCpuSet);
1339#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1340 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
1341 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
1342 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
1343 {
1344 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
1345 }
1346 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
1347#endif
1348 }
1349
1350 /* commit it */
1351 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_ONLINE);
1352
1353 RTSpinlockRelease(pDevExt->hGipSpinlock);
1354}
1355
1356
1357/**
1358 * The CPU should be accounted as offline, update the GIP accordingly.
1359 *
1360 * This is used by supdrvGipMpEvent.
1361 *
1362 * @param pDevExt The device extension.
1363 * @param idCpu The CPU ID.
1364 */
1365static void supdrvGipMpEventOffline(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1366{
1367 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1368 int iCpuSet;
1369 unsigned i;
1370
1371 AssertPtrReturnVoid(pGip);
1372 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1373
1374 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1375 AssertReturnVoid(iCpuSet >= 0);
1376
1377 i = pGip->aiCpuFromCpuSetIdx[iCpuSet];
1378 AssertReturnVoid(i < pGip->cCpus);
1379 AssertReturnVoid(pGip->aCPUs[i].idCpu == idCpu);
1380
1381 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1382 RTCpuSetDelByIndex(&pGip->OnlineCpuSet, iCpuSet);
1383
1384 /* Update the Mp online/offline counter. */
1385 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1386
1387 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1388 {
1389 /* Reset the TSC delta, we will recalculate it lazily. */
1390 ASMAtomicWriteS64(&pGip->aCPUs[i].i64TSCDelta, INT64_MAX);
1391 /* Remove this CPU from the set of CPUs that we have obtained the TSC deltas. */
1392 RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, iCpuSet);
1393 }
1394
1395 /* commit it */
1396 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_OFFLINE);
1397
1398 RTSpinlockRelease(pDevExt->hGipSpinlock);
1399}
1400
1401
1402/**
1403 * Multiprocessor event notification callback.
1404 *
1405 * This is used to make sure that the GIP master gets passed on to
1406 * another CPU. It also updates the associated CPU data.
1407 *
1408 * @param enmEvent The event.
1409 * @param idCpu The cpu it applies to.
1410 * @param pvUser Pointer to the device extension.
1411 *
1412 * @remarks This function -must- fire on the newly online'd CPU for the
1413 * RTMPEVENT_ONLINE case and can fire on any CPU for the
1414 * RTMPEVENT_OFFLINE case.
1415 */
1416static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
1417{
1418 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
1419 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1420
1421 AssertRelease(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1422
1423 /*
1424 * Update the GIP CPU data.
1425 */
1426 if (pGip)
1427 {
1428 switch (enmEvent)
1429 {
1430 case RTMPEVENT_ONLINE:
1431 AssertRelease(idCpu == RTMpCpuId());
1432 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
1433 break;
1434 case RTMPEVENT_OFFLINE:
1435 supdrvGipMpEventOffline(pDevExt, idCpu);
1436 break;
1437 }
1438 }
1439
1440 /*
1441 * Make sure there is a master GIP.
1442 */
1443 if (enmEvent == RTMPEVENT_OFFLINE)
1444 {
1445 RTCPUID idGipMaster = ASMAtomicReadU32(&pDevExt->idGipMaster);
1446 if (idGipMaster == idCpu)
1447 {
1448 /*
1449 * The GIP master is going offline, find a new one.
1450 */
1451 bool fIgnored;
1452 unsigned i;
1453 RTCPUID idNewGipMaster = NIL_RTCPUID;
1454 RTCPUSET OnlineCpus;
1455 RTMpGetOnlineSet(&OnlineCpus);
1456
1457 for (i = 0; i < RTCPUSET_MAX_CPUS; i++)
1458 if (RTCpuSetIsMemberByIndex(&OnlineCpus, i))
1459 {
1460 RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i);
1461 if (idCurCpu != idGipMaster)
1462 {
1463 idNewGipMaster = idCurCpu;
1464 break;
1465 }
1466 }
1467
1468 Log(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster));
1469 ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored);
1470 NOREF(fIgnored);
1471 }
1472 }
1473}
1474
1475
1476/**
1477 * On CPU initialization callback for RTMpOnAll.
1478 *
1479 * @param idCpu The CPU ID.
1480 * @param pvUser1 The device extension.
1481 * @param pvUser2 The GIP.
1482 */
1483static DECLCALLBACK(void) supdrvGipInitOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1484{
1485 /* This is good enough, even though it will update some of the globals a
1486 bit to much. */
1487 supdrvGipMpEventOnlineOrInitOnCpu((PSUPDRVDEVEXT)pvUser1, idCpu);
1488}
1489
1490
1491/**
1492 * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU.
1493 *
1494 * @param idCpu Ignored.
1495 * @param pvUser1 Where to put the TSC.
1496 * @param pvUser2 Ignored.
1497 */
1498static DECLCALLBACK(void) supdrvGipInitDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1499{
1500 ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC());
1501}
1502
1503
1504/**
1505 * Determine if Async GIP mode is required because of TSC drift.
1506 *
1507 * When using the default/normal timer code it is essential that the time stamp counter
1508 * (TSC) runs never backwards, that is, a read operation to the counter should return
1509 * a bigger value than any previous read operation. This is guaranteed by the latest
1510 * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other
1511 * case we have to choose the asynchronous timer mode.
1512 *
1513 * @param poffMin Pointer to the determined difference between different
1514 * cores (optional, can be NULL).
1515 * @return false if the time stamp counters appear to be synchronized, true otherwise.
1516 */
1517static bool supdrvGipInitDetermineAsyncTsc(uint64_t *poffMin)
1518{
1519 /*
1520 * Just iterate all the cpus 8 times and make sure that the TSC is
1521 * ever increasing. We don't bother taking TSC rollover into account.
1522 */
1523 int iEndCpu = RTMpGetArraySize();
1524 int iCpu;
1525 int cLoops = 8;
1526 bool fAsync = false;
1527 int rc = VINF_SUCCESS;
1528 uint64_t offMax = 0;
1529 uint64_t offMin = ~(uint64_t)0;
1530 uint64_t PrevTsc = ASMReadTSC();
1531
1532 while (cLoops-- > 0)
1533 {
1534 for (iCpu = 0; iCpu < iEndCpu; iCpu++)
1535 {
1536 uint64_t CurTsc;
1537 rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvGipInitDetermineAsyncTscWorker, &CurTsc, NULL);
1538 if (RT_SUCCESS(rc))
1539 {
1540 if (CurTsc <= PrevTsc)
1541 {
1542 fAsync = true;
1543 offMin = offMax = PrevTsc - CurTsc;
1544 Log(("supdrvGipInitDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n",
1545 iCpu, cLoops, CurTsc, PrevTsc));
1546 break;
1547 }
1548
1549 /* Gather statistics (except the first time). */
1550 if (iCpu != 0 || cLoops != 7)
1551 {
1552 uint64_t off = CurTsc - PrevTsc;
1553 if (off < offMin)
1554 offMin = off;
1555 if (off > offMax)
1556 offMax = off;
1557 Log2(("%d/%d: off=%llx\n", cLoops, iCpu, off));
1558 }
1559
1560 /* Next */
1561 PrevTsc = CurTsc;
1562 }
1563 else if (rc == VERR_NOT_SUPPORTED)
1564 break;
1565 else
1566 AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc));
1567 }
1568
1569 /* broke out of the loop. */
1570 if (iCpu < iEndCpu)
1571 break;
1572 }
1573
1574 if (poffMin)
1575 *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */
1576 Log(("supdrvGipInitDetermineAsyncTsc: returns %d; iEndCpu=%d rc=%d offMin=%llx offMax=%llx\n",
1577 fAsync, iEndCpu, rc, offMin, offMax));
1578#if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS)
1579 OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax));
1580#endif
1581 return fAsync;
1582}
1583
1584
1585/**
1586 * supdrvGipInit() worker that determines the GIP TSC mode.
1587 *
1588 * @returns The most suitable TSC mode.
1589 * @param pDevExt Pointer to the device instance data.
1590 */
1591static SUPGIPMODE supdrvGipInitDetermineTscMode(PSUPDRVDEVEXT pDevExt)
1592{
1593 uint64_t u64DiffCoresIgnored;
1594 uint32_t uEAX, uEBX, uECX, uEDX;
1595
1596 /*
1597 * Establish whether the CPU advertises TSC as invariant, we need that in
1598 * a couple of places below.
1599 */
1600 bool fInvariantTsc = false;
1601 if (ASMHasCpuId())
1602 {
1603 uEAX = ASMCpuId_EAX(0x80000000);
1604 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1605 {
1606 uEDX = ASMCpuId_EDX(0x80000007);
1607 if (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR)
1608 fInvariantTsc = true;
1609 }
1610 }
1611
1612 /*
1613 * On single CPU systems, we don't need to consider ASYNC mode.
1614 */
1615 if (RTMpGetCount() <= 1)
1616 return fInvariantTsc ? SUPGIPMODE_INVARIANT_TSC : SUPGIPMODE_SYNC_TSC;
1617
1618 /*
1619 * Allow the user and/or OS specific bits to force async mode.
1620 */
1621 if (supdrvOSGetForcedAsyncTscMode(pDevExt))
1622 return SUPGIPMODE_ASYNC_TSC;
1623
1624 /*
1625 * Use invariant mode if the CPU says TSC is invariant.
1626 */
1627 if (fInvariantTsc)
1628 return SUPGIPMODE_INVARIANT_TSC;
1629
1630 /*
1631 * TSC is not invariant and we're on SMP, this presents two problems:
1632 *
1633 * (1) There might be a skew between the CPU, so that cpu0
1634 * returns a TSC that is slightly different from cpu1.
1635 * This screw may be due to (2), bad TSC initialization
1636 * or slightly different TSC rates.
1637 *
1638 * (2) Power management (and other things) may cause the TSC
1639 * to run at a non-constant speed, and cause the speed
1640 * to be different on the cpus. This will result in (1).
1641 *
1642 * If any of the above is detected, we will have to use ASYNC mode.
1643 */
1644 /* (1). Try check for current differences between the cpus. */
1645 if (supdrvGipInitDetermineAsyncTsc(&u64DiffCoresIgnored))
1646 return SUPGIPMODE_ASYNC_TSC;
1647
1648 /* (2) If it's an AMD CPU with power management, we won't trust its TSC. */
1649 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
1650 if ( ASMIsValidStdRange(uEAX)
1651 && ASMIsAmdCpuEx(uEBX, uECX, uEDX))
1652 {
1653 /* Check for APM support. */
1654 uEAX = ASMCpuId_EAX(0x80000000);
1655 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1656 {
1657 uEDX = ASMCpuId_EDX(0x80000007);
1658 if (uEDX & 0x3e) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */
1659 return SUPGIPMODE_ASYNC_TSC;
1660 }
1661 }
1662
1663 return SUPGIPMODE_SYNC_TSC;
1664}
1665
1666
1667/**
1668 * Initializes per-CPU GIP information.
1669 *
1670 * @param pGip Pointer to the GIP.
1671 * @param pCpu Pointer to which GIP CPU to initalize.
1672 * @param u64NanoTS The current nanosecond timestamp.
1673 * @param uCpuHz The CPU frequency to set, 0 if the caller doesn't know.
1674 */
1675static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz)
1676{
1677 pCpu->u32TransactionId = 2;
1678 pCpu->u64NanoTS = u64NanoTS;
1679 pCpu->u64TSC = ASMReadTSC();
1680 pCpu->u64TSCSample = GIP_TSC_DELTA_RSVD;
1681 pCpu->i64TSCDelta = pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED ? INT64_MAX : 0;
1682
1683 ASMAtomicWriteSize(&pCpu->enmState, SUPGIPCPUSTATE_INVALID);
1684 ASMAtomicWriteSize(&pCpu->idCpu, NIL_RTCPUID);
1685 ASMAtomicWriteS16(&pCpu->iCpuSet, -1);
1686 ASMAtomicWriteU16(&pCpu->idApic, UINT16_MAX);
1687
1688 /*
1689 * The first time we're called, we don't have a CPU frequency handy,
1690 * so pretend it's a 4 GHz CPU. On CPUs that are online, we'll get
1691 * called again and at that point we have a more plausible CPU frequency
1692 * value handy. The frequency history will also be adjusted again on
1693 * the 2nd timer callout (maybe we can skip that now?).
1694 */
1695 if (!uCpuHz)
1696 {
1697 pCpu->u64CpuHz = _4G - 1;
1698 pCpu->u32UpdateIntervalTSC = (uint32_t)((_4G - 1) / pGip->u32UpdateHz);
1699 }
1700 else
1701 {
1702 pCpu->u64CpuHz = uCpuHz;
1703 pCpu->u32UpdateIntervalTSC = (uint32_t)(uCpuHz / pGip->u32UpdateHz);
1704 }
1705 pCpu->au32TSCHistory[0]
1706 = pCpu->au32TSCHistory[1]
1707 = pCpu->au32TSCHistory[2]
1708 = pCpu->au32TSCHistory[3]
1709 = pCpu->au32TSCHistory[4]
1710 = pCpu->au32TSCHistory[5]
1711 = pCpu->au32TSCHistory[6]
1712 = pCpu->au32TSCHistory[7]
1713 = pCpu->u32UpdateIntervalTSC;
1714}
1715
1716
1717/**
1718 * Initializes the GIP data.
1719 *
1720 * @param pDevExt Pointer to the device instance data.
1721 * @param pGip Pointer to the read-write kernel mapping of the GIP.
1722 * @param HCPhys The physical address of the GIP.
1723 * @param u64NanoTS The current nanosecond timestamp.
1724 * @param uUpdateHz The update frequency.
1725 * @param uUpdateIntervalNS The update interval in nanoseconds.
1726 * @param cCpus The CPU count.
1727 */
1728static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys,
1729 uint64_t u64NanoTS, unsigned uUpdateHz, unsigned uUpdateIntervalNS, unsigned cCpus)
1730{
1731 size_t const cbGip = RT_ALIGN_Z(RT_OFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), PAGE_SIZE);
1732 unsigned i;
1733#ifdef DEBUG_DARWIN_GIP
1734 OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1735#else
1736 LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1737#endif
1738
1739 /*
1740 * Initialize the structure.
1741 */
1742 memset(pGip, 0, cbGip);
1743
1744 pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
1745 pGip->u32Version = SUPGLOBALINFOPAGE_VERSION;
1746 pGip->u32Mode = supdrvGipInitDetermineTscMode(pDevExt);
1747 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
1748 /*|| pGip->u32Mode == SUPGIPMODE_SYNC_TSC */)
1749 pGip->enmUseTscDelta = supdrvOSAreTscDeltasInSync() /* Allow OS override (windows). */
1750 ? SUPGIPUSETSCDELTA_ZERO_CLAIMED : SUPGIPUSETSCDELTA_PRACTICALLY_ZERO /* downgrade later */;
1751 else
1752 pGip->enmUseTscDelta = SUPGIPUSETSCDELTA_NOT_APPLICABLE;
1753 pGip->cCpus = (uint16_t)cCpus;
1754 pGip->cPages = (uint16_t)(cbGip / PAGE_SIZE);
1755 pGip->u32UpdateHz = uUpdateHz;
1756 pGip->u32UpdateIntervalNS = uUpdateIntervalNS;
1757 pGip->fGetGipCpu = SUPGIPGETCPU_APIC_ID;
1758 RTCpuSetEmpty(&pGip->OnlineCpuSet);
1759 RTCpuSetEmpty(&pGip->PresentCpuSet);
1760 RTMpGetSet(&pGip->PossibleCpuSet);
1761 pGip->cOnlineCpus = RTMpGetOnlineCount();
1762 pGip->cPresentCpus = RTMpGetPresentCount();
1763 pGip->cPossibleCpus = RTMpGetCount();
1764 pGip->idCpuMax = RTMpGetMaxCpuId();
1765 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromApicId); i++)
1766 pGip->aiCpuFromApicId[i] = UINT16_MAX;
1767 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); i++)
1768 pGip->aiCpuFromCpuSetIdx[i] = UINT16_MAX;
1769 for (i = 0; i < cCpus; i++)
1770 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, 0 /*uCpuHz*/);
1771
1772 /*
1773 * Link it to the device extension.
1774 */
1775 pDevExt->pGip = pGip;
1776 pDevExt->HCPhysGip = HCPhys;
1777 pDevExt->cGipUsers = 0;
1778}
1779
1780
1781/**
1782 * Creates the GIP.
1783 *
1784 * @returns VBox status code.
1785 * @param pDevExt Instance data. GIP stuff may be updated.
1786 */
1787int VBOXCALL supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
1788{
1789 PSUPGLOBALINFOPAGE pGip;
1790 RTHCPHYS HCPhysGip;
1791 uint32_t u32SystemResolution;
1792 uint32_t u32Interval;
1793 uint32_t u32MinInterval;
1794 uint32_t uMod;
1795 unsigned cCpus;
1796 int rc;
1797
1798 LogFlow(("supdrvGipCreate:\n"));
1799
1800 /*
1801 * Assert order.
1802 */
1803 Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
1804 Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
1805 Assert(!pDevExt->pGipTimer);
1806#ifdef SUPDRV_USE_MUTEX_FOR_GIP
1807 Assert(pDevExt->mtxGip != NIL_RTSEMMUTEX);
1808 Assert(pDevExt->mtxTscDelta != NIL_RTSEMMUTEX);
1809#else
1810 Assert(pDevExt->mtxGip != NIL_RTSEMFASTMUTEX);
1811 Assert(pDevExt->mtxTscDelta != NIL_RTSEMFASTMUTEX);
1812#endif
1813
1814 /*
1815 * Check the CPU count.
1816 */
1817 cCpus = RTMpGetArraySize();
1818 if ( cCpus > RTCPUSET_MAX_CPUS
1819 || cCpus > 256 /* ApicId is used for the mappings */)
1820 {
1821 SUPR0Printf("VBoxDrv: Too many CPUs (%u) for the GIP (max %u)\n", cCpus, RT_MIN(RTCPUSET_MAX_CPUS, 256));
1822 return VERR_TOO_MANY_CPUS;
1823 }
1824
1825 /*
1826 * Allocate a contiguous set of pages with a default kernel mapping.
1827 */
1828 rc = RTR0MemObjAllocCont(&pDevExt->GipMemObj, RT_UOFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), false /*fExecutable*/);
1829 if (RT_FAILURE(rc))
1830 {
1831 OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
1832 return rc;
1833 }
1834 pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
1835 HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
1836
1837 /*
1838 * Find a reasonable update interval and initialize the structure.
1839 */
1840 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
1841 /** @todo figure out why using a 100Ms interval upsets timekeeping in VMs.
1842 * See @bugref{6710}. */
1843 u32MinInterval = RT_NS_10MS;
1844 u32SystemResolution = RTTimerGetSystemGranularity();
1845 u32Interval = u32MinInterval;
1846 uMod = u32MinInterval % u32SystemResolution;
1847 if (uMod)
1848 u32Interval += u32SystemResolution - uMod;
1849
1850 supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), RT_NS_1SEC / u32Interval /*=Hz*/, u32Interval, cCpus);
1851
1852 /*
1853 * Important sanity check...
1854 */
1855 if (RT_UNLIKELY( pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_ZERO_CLAIMED
1856 && pGip->u32Mode == SUPGIPMODE_ASYNC_TSC
1857 && !supdrvOSGetForcedAsyncTscMode(pDevExt)))
1858 {
1859 /* Basically, invariant Windows boxes, should never be detected as async (i.e. TSC-deltas should be 0). */
1860 OSDBGPRINT(("supdrvGipCreate: The TSC-deltas should be normalized by the host OS, but verifying shows it's not!\n"));
1861 return VERR_INTERNAL_ERROR_2;
1862 }
1863
1864 /*
1865 * Do the TSC frequency measurements.
1866 *
1867 * If we're in invariant TSC mode, just to a quick preliminary measurement
1868 * that the TSC-delta measurement code can use to yield cross calls.
1869 *
1870 * If we're in any of the other two modes, neither which require MP init,
1871 * notifications or deltas for the job, do the full measurement now so
1872 * that supdrvGipInitOnCpu can populate the TSC interval and history
1873 * array with more reasonable values.
1874 */
1875 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1876 {
1877 rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, true /*fRough*/); /* cannot fail */
1878 supdrvGipInitStartTimerForRefiningInvariantTscFreq(pDevExt, pGip);
1879 }
1880 else
1881 rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, false /*fRough*/);
1882 if (RT_SUCCESS(rc))
1883 {
1884 /*
1885 * Start TSC-delta measurement thread before we start getting MP
1886 * events that will try kick it into action (includes the
1887 * RTMpOnAll/supdrvGipInitOnCpu call below).
1888 */
1889 RTCpuSetEmpty(&pDevExt->TscDeltaCpuSet);
1890 RTCpuSetEmpty(&pDevExt->TscDeltaObtainedCpuSet);
1891#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1892 if ( pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED
1893 && pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1894 rc = supdrvTscDeltaThreadInit(pDevExt);
1895#endif
1896 if (RT_SUCCESS(rc))
1897 {
1898 rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt);
1899 if (RT_SUCCESS(rc))
1900 {
1901 /*
1902 * Do GIP initialization on all online CPUs. Wake up the
1903 * TSC-delta thread afterwards.
1904 */
1905 rc = RTMpOnAll(supdrvGipInitOnCpu, pDevExt, pGip);
1906 if (RT_SUCCESS(rc))
1907 {
1908#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1909 if (pDevExt->hTscDeltaThread != NIL_RTTHREAD)
1910 RTThreadUserSignal(pDevExt->hTscDeltaThread);
1911#else
1912 uint16_t iCpu;
1913 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1914 {
1915 /*
1916 * Measure the TSC deltas now that we have MP notifications.
1917 */
1918 int cTries = 5;
1919 do
1920 {
1921 rc = supdrvMeasureInitialTscDeltas(pDevExt);
1922 if ( rc != VERR_TRY_AGAIN
1923 && rc != VERR_CPU_OFFLINE)
1924 break;
1925 } while (--cTries > 0);
1926 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1927 Log(("supdrvTscDeltaInit: cpu[%u] delta %lld\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta));
1928 }
1929 else
1930 {
1931 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1932 AssertMsg(!pGip->aCPUs[iCpu].i64TSCDelta, ("iCpu=%u %lld mode=%d\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta, pGip->u32Mode));
1933 }
1934 if (RT_SUCCESS(rc))
1935#endif
1936 {
1937 /*
1938 * Create the timer.
1939 * If CPU_ALL isn't supported we'll have to fall back to synchronous mode.
1940 */
1941 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
1942 {
1943 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL,
1944 supdrvGipAsyncTimer, pDevExt);
1945 if (rc == VERR_NOT_SUPPORTED)
1946 {
1947 OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n"));
1948 pGip->u32Mode = SUPGIPMODE_SYNC_TSC;
1949 }
1950 }
1951 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
1952 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0 /* fFlags */,
1953 supdrvGipSyncAndInvariantTimer, pDevExt);
1954 if (RT_SUCCESS(rc))
1955 {
1956 /*
1957 * We're good.
1958 */
1959 Log(("supdrvGipCreate: %u ns interval.\n", u32Interval));
1960 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
1961
1962 g_pSUPGlobalInfoPage = pGip;
1963 return VINF_SUCCESS;
1964 }
1965
1966 OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %u ns interval. rc=%Rrc\n", u32Interval, rc));
1967 Assert(!pDevExt->pGipTimer);
1968 }
1969 }
1970 else
1971 OSDBGPRINT(("supdrvGipCreate: RTMpOnAll failed. rc=%Rrc\n", rc));
1972 }
1973 else
1974 OSDBGPRINT(("supdrvGipCreate: failed to register MP event notfication. rc=%Rrc\n", rc));
1975 }
1976 else
1977 OSDBGPRINT(("supdrvGipCreate: supdrvTscDeltaInit failed. rc=%Rrc\n", rc));
1978 }
1979 else
1980 OSDBGPRINT(("supdrvGipCreate: supdrvMeasureInitialTscDeltas failed. rc=%Rrc\n", rc));
1981
1982 /* Releases timer frequency increase too. */
1983 supdrvGipDestroy(pDevExt);
1984 return rc;
1985}
1986
1987
1988/**
1989 * Invalidates the GIP data upon termination.
1990 *
1991 * @param pGip Pointer to the read-write kernel mapping of the GIP.
1992 */
1993static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
1994{
1995 unsigned i;
1996 pGip->u32Magic = 0;
1997 for (i = 0; i < pGip->cCpus; i++)
1998 {
1999 pGip->aCPUs[i].u64NanoTS = 0;
2000 pGip->aCPUs[i].u64TSC = 0;
2001 pGip->aCPUs[i].iTSCHistoryHead = 0;
2002 pGip->aCPUs[i].u64TSCSample = 0;
2003 pGip->aCPUs[i].i64TSCDelta = INT64_MAX;
2004 }
2005}
2006
2007
2008/**
2009 * Terminates the GIP.
2010 *
2011 * @param pDevExt Instance data. GIP stuff may be updated.
2012 */
2013void VBOXCALL supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
2014{
2015 int rc;
2016#ifdef DEBUG_DARWIN_GIP
2017 OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt,
2018 pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL,
2019 pDevExt->pGipTimer, pDevExt->GipMemObj));
2020#endif
2021
2022 /*
2023 * Stop receiving MP notifications before tearing anything else down.
2024 */
2025 RTMpNotificationDeregister(supdrvGipMpEvent, pDevExt);
2026
2027#ifdef SUPDRV_USE_TSC_DELTA_THREAD
2028 /*
2029 * Terminate the TSC-delta measurement thread and resources.
2030 */
2031 supdrvTscDeltaTerm(pDevExt);
2032#endif
2033
2034 /*
2035 * Destroy the TSC-refinement timer.
2036 */
2037 if (pDevExt->pInvarTscRefineTimer)
2038 {
2039 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
2040 pDevExt->pInvarTscRefineTimer = NULL;
2041 }
2042
2043 /*
2044 * Invalid the GIP data.
2045 */
2046 if (pDevExt->pGip)
2047 {
2048 supdrvGipTerm(pDevExt->pGip);
2049 pDevExt->pGip = NULL;
2050 }
2051 g_pSUPGlobalInfoPage = NULL;
2052
2053 /*
2054 * Destroy the timer and free the GIP memory object.
2055 */
2056 if (pDevExt->pGipTimer)
2057 {
2058 rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
2059 pDevExt->pGipTimer = NULL;
2060 }
2061
2062 if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
2063 {
2064 rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
2065 pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
2066 }
2067
2068 /*
2069 * Finally, make sure we've release the system timer resolution request
2070 * if one actually succeeded and is still pending.
2071 */
2072 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
2073}
2074
2075
2076
2077
2078/*
2079 *
2080 *
2081 * GIP Update Timer Related Code
2082 * GIP Update Timer Related Code
2083 * GIP Update Timer Related Code
2084 *
2085 *
2086 */
2087
2088
2089/**
2090 * Worker routine for supdrvGipUpdate() and supdrvGipUpdatePerCpu() that
2091 * updates all the per cpu data except the transaction id.
2092 *
2093 * @param pDevExt The device extension.
2094 * @param pGipCpu Pointer to the per cpu data.
2095 * @param u64NanoTS The current time stamp.
2096 * @param u64TSC The current TSC.
2097 * @param iTick The current timer tick.
2098 *
2099 * @remarks Can be called with interrupts disabled!
2100 */
2101static void supdrvGipDoUpdateCpu(PSUPDRVDEVEXT pDevExt, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
2102{
2103 uint64_t u64TSCDelta;
2104 uint32_t u32UpdateIntervalTSC;
2105 uint32_t u32UpdateIntervalTSCSlack;
2106 unsigned iTSCHistoryHead;
2107 uint64_t u64CpuHz;
2108 uint32_t u32TransactionId;
2109
2110 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2111 AssertPtrReturnVoid(pGip);
2112
2113 /* Delta between this and the previous update. */
2114 ASMAtomicUoWriteU32(&pGipCpu->u32PrevUpdateIntervalNS, (uint32_t)(u64NanoTS - pGipCpu->u64NanoTS));
2115
2116 /*
2117 * Update the NanoTS.
2118 */
2119 ASMAtomicWriteU64(&pGipCpu->u64NanoTS, u64NanoTS);
2120
2121 /*
2122 * Calc TSC delta.
2123 */
2124 u64TSCDelta = u64TSC - pGipCpu->u64TSC;
2125 ASMAtomicWriteU64(&pGipCpu->u64TSC, u64TSC);
2126
2127 /*
2128 * We don't need to keep realculating the frequency when it's invariant, so
2129 * the remainder of this function is only for the sync and async TSC modes.
2130 */
2131 if (pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC)
2132 {
2133 if (u64TSCDelta >> 32)
2134 {
2135 u64TSCDelta = pGipCpu->u32UpdateIntervalTSC;
2136 pGipCpu->cErrors++;
2137 }
2138
2139 /*
2140 * On the 2nd and 3rd callout, reset the history with the current TSC
2141 * interval since the values entered by supdrvGipInit are totally off.
2142 * The interval on the 1st callout completely unreliable, the 2nd is a bit
2143 * better, while the 3rd should be most reliable.
2144 */
2145 /** @todo Could we drop this now that we initializes the history
2146 * with nominal TSC frequency values? */
2147 u32TransactionId = pGipCpu->u32TransactionId;
2148 if (RT_UNLIKELY( ( u32TransactionId == 5
2149 || u32TransactionId == 7)
2150 && ( iTick == 2
2151 || iTick == 3) ))
2152 {
2153 unsigned i;
2154 for (i = 0; i < RT_ELEMENTS(pGipCpu->au32TSCHistory); i++)
2155 ASMAtomicUoWriteU32(&pGipCpu->au32TSCHistory[i], (uint32_t)u64TSCDelta);
2156 }
2157
2158 /*
2159 * Validate the NanoTS deltas between timer fires with an arbitrary threshold of 0.5%.
2160 * Wait until we have at least one full history since the above history reset. The
2161 * assumption is that the majority of the previous history values will be tolerable.
2162 * See @bugref{6710} comment #67.
2163 */
2164 /** @todo Could we drop the fuding there now that we initializes the history
2165 * with nominal TSC frequency values? */
2166 if ( u32TransactionId > 23 /* 7 + (8 * 2) */
2167 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2168 {
2169 uint32_t uNanoTsThreshold = pGip->u32UpdateIntervalNS / 200;
2170 if ( pGipCpu->u32PrevUpdateIntervalNS > pGip->u32UpdateIntervalNS + uNanoTsThreshold
2171 || pGipCpu->u32PrevUpdateIntervalNS < pGip->u32UpdateIntervalNS - uNanoTsThreshold)
2172 {
2173 uint32_t u32;
2174 u32 = pGipCpu->au32TSCHistory[0];
2175 u32 += pGipCpu->au32TSCHistory[1];
2176 u32 += pGipCpu->au32TSCHistory[2];
2177 u32 += pGipCpu->au32TSCHistory[3];
2178 u32 >>= 2;
2179 u64TSCDelta = pGipCpu->au32TSCHistory[4];
2180 u64TSCDelta += pGipCpu->au32TSCHistory[5];
2181 u64TSCDelta += pGipCpu->au32TSCHistory[6];
2182 u64TSCDelta += pGipCpu->au32TSCHistory[7];
2183 u64TSCDelta >>= 2;
2184 u64TSCDelta += u32;
2185 u64TSCDelta >>= 1;
2186 }
2187 }
2188
2189 /*
2190 * TSC History.
2191 */
2192 Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8);
2193 iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7;
2194 ASMAtomicWriteU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead);
2195 ASMAtomicWriteU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
2196
2197 /*
2198 * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
2199 *
2200 * On Windows, we have an occasional (but recurring) sour value that messed up
2201 * the history but taking only 1 interval reduces the precision overall.
2202 */
2203 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
2204 || pGip->u32UpdateHz >= 1000)
2205 {
2206 uint32_t u32;
2207 u32 = pGipCpu->au32TSCHistory[0];
2208 u32 += pGipCpu->au32TSCHistory[1];
2209 u32 += pGipCpu->au32TSCHistory[2];
2210 u32 += pGipCpu->au32TSCHistory[3];
2211 u32 >>= 2;
2212 u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4];
2213 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5];
2214 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6];
2215 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7];
2216 u32UpdateIntervalTSC >>= 2;
2217 u32UpdateIntervalTSC += u32;
2218 u32UpdateIntervalTSC >>= 1;
2219
2220 /* Value chosen for a 2GHz Athlon64 running linux 2.6.10/11. */
2221 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
2222 }
2223 else if (pGip->u32UpdateHz >= 90)
2224 {
2225 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2226 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
2227 u32UpdateIntervalTSC >>= 1;
2228
2229 /* value chosen on a 2GHz thinkpad running windows */
2230 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
2231 }
2232 else
2233 {
2234 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2235
2236 /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
2237 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
2238 }
2239 ASMAtomicWriteU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
2240
2241 /*
2242 * CpuHz.
2243 */
2244 u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, RT_NS_1SEC);
2245 u64CpuHz /= pGip->u32UpdateIntervalNS;
2246 ASMAtomicWriteU64(&pGipCpu->u64CpuHz, u64CpuHz);
2247 }
2248}
2249
2250
2251/**
2252 * Updates the GIP.
2253 *
2254 * @param pDevExt The device extension.
2255 * @param u64NanoTS The current nanosecond timesamp.
2256 * @param u64TSC The current TSC timesamp.
2257 * @param idCpu The CPU ID.
2258 * @param iTick The current timer tick.
2259 *
2260 * @remarks Can be called with interrupts disabled!
2261 */
2262static void supdrvGipUpdate(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC, RTCPUID idCpu, uint64_t iTick)
2263{
2264 /*
2265 * Determine the relevant CPU data.
2266 */
2267 PSUPGIPCPU pGipCpu;
2268 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2269 AssertPtrReturnVoid(pGip);
2270
2271 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2272 pGipCpu = &pGip->aCPUs[0];
2273 else
2274 {
2275 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
2276 if (RT_UNLIKELY(iCpu >= pGip->cCpus))
2277 return;
2278 pGipCpu = &pGip->aCPUs[iCpu];
2279 if (RT_UNLIKELY(pGipCpu->idCpu != idCpu))
2280 return;
2281 }
2282
2283 /*
2284 * Start update transaction.
2285 */
2286 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2287 {
2288 /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
2289 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2290 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2291 pGipCpu->cErrors++;
2292 return;
2293 }
2294
2295 /*
2296 * Recalc the update frequency every 0x800th time.
2297 */
2298 if ( pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC /* cuz we're not recalculating the frequency on invariants hosts. */
2299 && !(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
2300 {
2301 if (pGip->u64NanoTSLastUpdateHz)
2302 {
2303#ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */
2304 uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
2305 uint32_t u32UpdateHz = (uint32_t)((RT_NS_1SEC_64 * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
2306 if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
2307 {
2308 /** @todo r=ramshankar: Changing u32UpdateHz might screw up TSC frequency
2309 * calculation on non-invariant hosts if it changes the history decision
2310 * taken in supdrvGipDoUpdateCpu(). */
2311 uint64_t u64Interval = u64Delta / GIP_UPDATEHZ_RECALC_FREQ;
2312 ASMAtomicWriteU32(&pGip->u32UpdateHz, u32UpdateHz);
2313 ASMAtomicWriteU32(&pGip->u32UpdateIntervalNS, (uint32_t)u64Interval);
2314 }
2315#endif
2316 }
2317 ASMAtomicWriteU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS | 1);
2318 }
2319
2320 /*
2321 * Update the data.
2322 */
2323 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2324
2325 /*
2326 * Complete transaction.
2327 */
2328 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2329}
2330
2331
2332/**
2333 * Updates the per cpu GIP data for the calling cpu.
2334 *
2335 * @param pDevExt The device extension.
2336 * @param u64NanoTS The current nanosecond timesamp.
2337 * @param u64TSC The current TSC timesamp.
2338 * @param idCpu The CPU ID.
2339 * @param idApic The APIC id for the CPU index.
2340 * @param iTick The current timer tick.
2341 *
2342 * @remarks Can be called with interrupts disabled!
2343 */
2344static void supdrvGipUpdatePerCpu(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC,
2345 RTCPUID idCpu, uint8_t idApic, uint64_t iTick)
2346{
2347 uint32_t iCpu;
2348 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2349
2350 /*
2351 * Avoid a potential race when a CPU online notification doesn't fire on
2352 * the onlined CPU but the tick creeps in before the event notification is
2353 * run.
2354 */
2355 if (RT_UNLIKELY(iTick == 1))
2356 {
2357 iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
2358 if (pGip->aCPUs[iCpu].enmState == SUPGIPCPUSTATE_OFFLINE)
2359 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
2360 }
2361
2362 iCpu = pGip->aiCpuFromApicId[idApic];
2363 if (RT_LIKELY(iCpu < pGip->cCpus))
2364 {
2365 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
2366 if (pGipCpu->idCpu == idCpu)
2367 {
2368 /*
2369 * Start update transaction.
2370 */
2371 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2372 {
2373 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2374 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2375 pGipCpu->cErrors++;
2376 return;
2377 }
2378
2379 /*
2380 * Update the data.
2381 */
2382 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2383
2384 /*
2385 * Complete transaction.
2386 */
2387 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2388 }
2389 }
2390}
2391
2392
2393/**
2394 * Timer callback function for the sync and invariant GIP modes.
2395 *
2396 * @param pTimer The timer.
2397 * @param pvUser Opaque pointer to the device extension.
2398 * @param iTick The timer tick.
2399 */
2400static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2401{
2402 RTCCUINTREG uFlags;
2403 uint64_t u64TSC;
2404 uint64_t u64NanoTS;
2405 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2406 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2407
2408 uFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2409 u64TSC = ASMReadTSC();
2410 u64NanoTS = RTTimeSystemNanoTS();
2411
2412 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
2413 {
2414 /*
2415 * The calculations in supdrvGipUpdate() is very timing sensitive and doesn't handle
2416 * missed timer ticks. So for now it is better to use a delta of 0 and have the TSC rate
2417 * affected a bit until we get proper TSC deltas than implementing options like
2418 * rescheduling the tick to be delivered on the right CPU or missing the tick entirely.
2419 *
2420 * The likely hood of this happening is really low. On Windows, Linux, and Solaris
2421 * timers fire on the CPU they were registered/started on. Darwin timers doesn't
2422 * necessarily (they are high priority threads waiting).
2423 */
2424 Assert(!ASMIntAreEnabled());
2425 supdrvTscDeltaApply(pGip, &u64TSC, ASMGetApicId(), NULL /* pfDeltaApplied */);
2426 }
2427
2428 supdrvGipUpdate(pDevExt, u64NanoTS, u64TSC, NIL_RTCPUID, iTick);
2429
2430 ASMSetFlags(uFlags);
2431
2432#ifdef SUPDRV_USE_TSC_DELTA_THREAD
2433 if ( pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED
2434 && !RTCpuSetIsEmpty(&pDevExt->TscDeltaCpuSet))
2435 {
2436 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
2437 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
2438 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
2439 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
2440 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
2441 /** @todo Do the actual poking using -- RTThreadUserSignal() */
2442 }
2443#endif
2444}
2445
2446
2447/**
2448 * Timer callback function for async GIP mode.
2449 * @param pTimer The timer.
2450 * @param pvUser Opaque pointer to the device extension.
2451 * @param iTick The timer tick.
2452 */
2453static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2454{
2455 RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2456 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2457 RTCPUID idCpu = RTMpCpuId();
2458 uint64_t u64TSC = ASMReadTSC();
2459 uint64_t NanoTS = RTTimeSystemNanoTS();
2460
2461 /** @todo reset the transaction number and whatnot when iTick == 1. */
2462 if (pDevExt->idGipMaster == idCpu)
2463 supdrvGipUpdate(pDevExt, NanoTS, u64TSC, idCpu, iTick);
2464 else
2465 supdrvGipUpdatePerCpu(pDevExt, NanoTS, u64TSC, idCpu, ASMGetApicId(), iTick);
2466
2467 ASMSetFlags(fOldFlags);
2468}
2469
2470
2471
2472
2473/*
2474 *
2475 *
2476 * TSC Delta Measurements And Related Code
2477 * TSC Delta Measurements And Related Code
2478 * TSC Delta Measurements And Related Code
2479 *
2480 *
2481 */
2482
2483
2484/*
2485 * Select TSC delta measurement algorithm.
2486 */
2487#if 1
2488# define GIP_TSC_DELTA_METHOD_1
2489#else
2490# define GIP_TSC_DELTA_METHOD_2
2491#endif
2492
2493/** For padding variables to keep them away from other cache lines. Better too
2494 * large than too small!
2495 * @remarks Current AMD64 and x86 CPUs seems to use 64 bytes. There are claims
2496 * that NetBurst had 128 byte cache lines while the 486 thru Pentium
2497 * III had 32 bytes cache lines. */
2498#define GIP_TSC_DELTA_CACHE_LINE_SIZE 128
2499
2500
2501/**
2502 * TSC delta measurment algorithm \#2 result entry.
2503 */
2504typedef struct SUPDRVTSCDELTAMETHOD2ENTRY
2505{
2506 uint32_t iSeqMine;
2507 uint32_t iSeqOther;
2508 uint64_t uTsc;
2509} SUPDRVTSCDELTAMETHOD2ENTRY;
2510
2511/**
2512 * TSC delta measurment algorithm \#2 Data.
2513 */
2514typedef struct SUPDRVTSCDELTAMETHOD2
2515{
2516 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2517 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 1];
2518 /** The current sequence number of this worker. */
2519 uint32_t volatile iCurSeqNo;
2520 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2521 uint32_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint32_t) - 1];
2522 /** Result table. */
2523 SUPDRVTSCDELTAMETHOD2ENTRY aResults[96];
2524} SUPDRVTSCDELTAMETHOD2;
2525/** Pointer to the data for TSC delta mesurment algorithm \#2 .*/
2526typedef SUPDRVTSCDELTAMETHOD2 *PSUPDRVTSCDELTAMETHOD2;
2527
2528
2529/**
2530 * The TSC delta synchronization struct, version 2.
2531 *
2532 * The syncrhonization variable is completely isolated in its own cache line
2533 * (provided our max cache line size estimate is correct).
2534 */
2535typedef struct SUPTSCDELTASYNC2
2536{
2537 /** Padding to make sure the uVar1 is in its own cache line. */
2538 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2539
2540 /** The synchronization variable, holds values GIP_TSC_DELTA_SYNC_*. */
2541 volatile uint32_t uSyncVar;
2542 /** Sequence synchronizing variable used for post 'GO' synchronization. */
2543 volatile uint32_t uSyncSeq;
2544
2545 /** Padding to make sure the uVar1 is in its own cache line. */
2546 uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 2];
2547
2548 /** Start RDTSC value. Put here mainly to save stack space. */
2549 uint64_t uTscStart;
2550 /** Copy of SUPDRVGIPTSCDELTARGS::cMaxTscTicks. */
2551 uint64_t cMaxTscTicks;
2552} SUPTSCDELTASYNC2;
2553AssertCompileSize(SUPTSCDELTASYNC2, GIP_TSC_DELTA_CACHE_LINE_SIZE * 2 + sizeof(uint64_t));
2554typedef SUPTSCDELTASYNC2 *PSUPTSCDELTASYNC2;
2555
2556/** Prestart wait. */
2557#define GIP_TSC_DELTA_SYNC2_PRESTART_WAIT UINT32_C(0x0ffe)
2558/** Prestart aborted. */
2559#define GIP_TSC_DELTA_SYNC2_PRESTART_ABORT UINT32_C(0x0fff)
2560/** Ready (on your mark). */
2561#define GIP_TSC_DELTA_SYNC2_READY UINT32_C(0x1000)
2562/** Steady (get set). */
2563#define GIP_TSC_DELTA_SYNC2_STEADY UINT32_C(0x1001)
2564/** Go! */
2565#define GIP_TSC_DELTA_SYNC2_GO UINT32_C(0x1002)
2566
2567/** We reached the time limit. */
2568#define GIP_TSC_DELTA_SYNC2_TIMEOUT UINT32_C(0x1ffe)
2569/** The other party won't touch the sync struct ever again. */
2570#define GIP_TSC_DELTA_SYNC2_FINAL UINT32_C(0x1fff)
2571
2572
2573/**
2574 * Argument package/state passed by supdrvMeasureTscDeltaOne to the RTMpOn
2575 * callback worker.
2576 */
2577typedef struct SUPDRVGIPTSCDELTARGS
2578{
2579 /** The device extension. */
2580 PSUPDRVDEVEXT pDevExt;
2581 /** Pointer to the GIP CPU array entry for the worker. */
2582 PSUPGIPCPU pWorker;
2583 /** Pointer to the GIP CPU array entry for the master. */
2584 PSUPGIPCPU pMaster;
2585 /** Pointer to the master's synchronization struct (on stack). */
2586 PSUPTSCDELTASYNC2 volatile pSyncMaster;
2587 /** Pointer to the worker's synchronization struct (on stack). */
2588 PSUPTSCDELTASYNC2 volatile pSyncWorker;
2589 /** The maximum number of ticks to spend in supdrvMeasureTscDeltaCallback.
2590 * (This is what we need a rough TSC frequency for.) */
2591 uint64_t cMaxTscTicks;
2592 /** Used to abort synchronization setup. */
2593 bool volatile fAbortSetup;
2594
2595#if 0
2596 /** Method 1 data. */
2597 struct
2598 {
2599 } M1;
2600#endif
2601
2602#ifdef GIP_TSC_DELTA_METHOD_2
2603 struct
2604 {
2605 PSUPDRVTSCDELTAMETHOD2 pMasterData;
2606 PSUPDRVTSCDELTAMETHOD2 pWorkerData;
2607 uint32_t cHits;
2608 bool fLagMaster;
2609 bool fLagWorker;
2610 bool volatile fQuitEarly;
2611 } M2;
2612#endif
2613} SUPDRVGIPTSCDELTARGS;
2614typedef SUPDRVGIPTSCDELTARGS *PSUPDRVGIPTSCDELTARGS;
2615
2616
2617/** @name Macros that implements the basic synchronization steps common to
2618 * the algorithms.
2619 *
2620 * Must be used from loop as the timeouts are implemented via 'break' statements
2621 * at the moment.
2622 *
2623 * @{
2624 */
2625#if defined(DEBUG_bird) && defined(RT_OS_WINDOWS)
2626# define TSCDELTA_DBG_VARS() uint32_t iDbgCounter
2627# define TSCDELTA_DBG_START_LOOP() do { iDbgCounter = 0; } while (0)
2628# define TSCDELTA_DBG_CHECK_LOOP() do { if (++iDbgCounter == 0) RT_BREAKPOINT(); } while (0)
2629#else
2630# define TSCDELTA_DBG_VARS() ((void)0)
2631# define TSCDELTA_DBG_START_LOOP() ((void)0)
2632# define TSCDELTA_DBG_CHECK_LOOP() ((void)0)
2633#endif
2634
2635
2636static bool supdrvTscDeltaSync2_Before(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
2637 bool fIsMaster, PRTCCUINTREG pfEFlags)
2638{
2639 uint32_t iMySeq = fIsMaster ? 0 : 256;
2640 uint32_t const iMaxSeq = iMySeq + 16; /* For the last loop, darn linux/freebsd C-ishness. */
2641 uint32_t u32Tmp;
2642 uint32_t iSync2Loops = 0;
2643 RTCCUINTREG fEFlags;
2644 TSCDELTA_DBG_VARS();
2645
2646 *pfEFlags = X86_EFL_IF | X86_EFL_1; /* should shut up most nagging compilers. */
2647
2648 /*
2649 * The master tells the worker to get on it's mark.
2650 */
2651 if (fIsMaster)
2652 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
2653 { /* likely*/ }
2654 else
2655 return false;
2656
2657 /*
2658 * Wait for the on your mark signal (ack in the master case). We process timeouts here.
2659 */
2660 ASMAtomicWriteU32(&(pMySync)->uSyncSeq, 0);
2661 for (;;)
2662 {
2663 fEFlags = ASMIntDisableFlags();
2664 u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2665 if (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY)
2666 break;
2667
2668 ASMSetFlags(fEFlags);
2669 ASMNopPause();
2670
2671 /* Abort? */
2672 if (u32Tmp != GIP_TSC_DELTA_SYNC2_READY)
2673 break;
2674
2675 /* Check for timeouts every so often (not every loop in case RDTSC is
2676 trapping or something). Must check the first time around. */
2677#if 0 /* For debugging the timeout paths. */
2678 static uint32_t volatile xxx;
2679#endif
2680 if ( ( (iSync2Loops & 0x3ff) == 0
2681 && ASMReadTSC() - pMySync->uTscStart > pMySync->cMaxTscTicks)
2682#if 0 /* This is crazy, I know, but enable this code and the results are markedly better when enabled on the 1.4GHz AMD (debug). */
2683 || (!fIsMaster && (++xxx & 0xf) == 0)
2684#endif
2685 )
2686 {
2687 /* Try switch our own state into timeout mode so the master cannot tell us to 'GO',
2688 ignore the timeout if we've got the go ahead already (simpler). */
2689 if (ASMAtomicCmpXchgU32(&pMySync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_READY))
2690 {
2691 ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_STEADY);
2692 return false;
2693 }
2694 }
2695 iSync2Loops++;
2696 }
2697
2698 /*
2699 * Interrupts are now disabled and will remain disabled until we do
2700 * TSCDELTA_MASTER_SYNC_AFTER / TSCDELTA_OTHER_SYNC_AFTER.
2701 */
2702 *pfEFlags = fEFlags;
2703
2704 /*
2705 * The worker tells the master that it is on its mark and that the master
2706 * need to get into position as well.
2707 */
2708 if (!fIsMaster)
2709 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
2710 { /* likely */ }
2711 else
2712 {
2713 ASMSetFlags(fEFlags);
2714 return false;
2715 }
2716
2717 /*
2718 * The master sends the 'go' to the worker and wait for ACK.
2719 */
2720 if (fIsMaster)
2721 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
2722 { /* likely */ }
2723 else
2724 {
2725 ASMSetFlags(fEFlags);
2726 return false;
2727 }
2728
2729 /*
2730 * Wait for the 'go' signal (ack in the master case).
2731 */
2732 TSCDELTA_DBG_START_LOOP();
2733 for (;;)
2734 {
2735 u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2736 if (u32Tmp == GIP_TSC_DELTA_SYNC2_GO)
2737 break;
2738 if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY))
2739 { /* likely */ }
2740 else
2741 {
2742 ASMSetFlags(fEFlags);
2743 return false;
2744 }
2745
2746 TSCDELTA_DBG_CHECK_LOOP();
2747 ASMNopPause();
2748 }
2749
2750 /*
2751 * The worker acks the 'go' (shouldn't fail).
2752 */
2753 if (!fIsMaster)
2754 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
2755 { /* likely */ }
2756 else
2757 {
2758 ASMSetFlags(fEFlags);
2759 return false;
2760 }
2761
2762 /*
2763 * Try enter mostly lockstep execution with it.
2764 */
2765 for (;;)
2766 {
2767 uint32_t iOtherSeq1, iOtherSeq2;
2768 ASMCompilerBarrier();
2769 ASMSerializeInstruction();
2770
2771 ASMAtomicWriteU32(&pMySync->uSyncSeq, iMySeq);
2772 ASMNopPause();
2773 iOtherSeq1 = ASMAtomicXchgU32(&pOtherSync->uSyncSeq, iMySeq);
2774 ASMNopPause();
2775 iOtherSeq2 = ASMAtomicReadU32(&pMySync->uSyncSeq);
2776
2777 ASMCompilerBarrier();
2778 if (iOtherSeq1 == iOtherSeq2)
2779 return true;
2780
2781 /* Did the other guy give up? Should we give up? */
2782 if ( iOtherSeq1 == UINT32_MAX
2783 || iOtherSeq2 == UINT32_MAX)
2784 return true;
2785 if (++iMySeq >= iMaxSeq)
2786 {
2787 ASMAtomicWriteU32(&pMySync->uSyncSeq, UINT32_MAX);
2788 return true;
2789 }
2790 ASMNopPause();
2791 }
2792}
2793
2794#define TSCDELTA_MASTER_SYNC_BEFORE(a_pMySync, a_pOtherSync) \
2795 do { \
2796 if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, true /*fMaster*/, &uFlags))) \
2797 { /*likely*/ } \
2798 else break; \
2799 } while (0)
2800#define TSCDELTA_OTHER_SYNC_BEFORE(a_pMySync, a_pOtherSync) \
2801 do { \
2802 if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, false /*fMaster*/, &uFlags))) \
2803 { /*likely*/ } \
2804 else break; \
2805 } while (0)
2806
2807
2808static bool supdrvTscDeltaSync2_After(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync, RTCCUINTREG fEFlags)
2809{
2810 TSCDELTA_DBG_VARS();
2811
2812 /*
2813 * Wait for the 'ready' signal. In the master's case, this means the
2814 * worker has completed its data collection, while in the worker's case it
2815 * means the master is done processing the data and it's time for the next
2816 * loop iteration (or whatever).
2817 */
2818 ASMSetFlags(fEFlags);
2819 TSCDELTA_DBG_START_LOOP();
2820 for (;;)
2821 {
2822 uint32_t u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2823 if (u32Tmp == GIP_TSC_DELTA_SYNC2_READY)
2824 return true;
2825 ASMNopPause();
2826 if (u32Tmp != GIP_TSC_DELTA_SYNC2_GO)
2827 return false; /* shouldn't ever happen! */
2828 TSCDELTA_DBG_CHECK_LOOP();
2829 ASMNopPause();
2830 }
2831}
2832
2833#define TSCDELTA_MASTER_SYNC_AFTER(a_pMySync, a_pOtherSync) \
2834 do { \
2835 if (supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, uFlags)) \
2836 { /* likely */ } \
2837 else break; \
2838 } while (0)
2839
2840#define TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(a_pMySync, a_pOtherSync) \
2841 do {\
2842 /* \
2843 * Tell the woker that we're done processing the data and ready for the next round. \
2844 */ \
2845 if (!ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO)) \
2846 { \
2847 ASMSetFlags(uFlags); \
2848 break; \
2849 } \
2850 } while (0)
2851
2852#define TSCDELTA_OTHER_SYNC_AFTER(a_pMySync, a_pOtherSync) \
2853 do { \
2854 /* \
2855 * Tell the master that we're done collecting data and wait for the next round to start. \
2856 */ \
2857 if (!ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO)) \
2858 { \
2859 ASMSetFlags(uFlags); \
2860 break; \
2861 } \
2862 if (supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, uFlags)) \
2863 { /* likely */ } \
2864 else break; \
2865 } while (0)
2866/** @} */
2867
2868#ifdef GIP_TSC_DELTA_METHOD_1
2869
2870/**
2871 * TSC delta measurment algorithm \#1 (GIP_TSC_DELTA_METHOD_1).
2872 *
2873 *
2874 * We ignore the first few runs of the loop in order to prime the
2875 * cache. Also, we need to be careful about using 'pause' instruction
2876 * in critical busy-wait loops in this code - it can cause undesired
2877 * behaviour with hyperthreading.
2878 *
2879 * We try to minimize the measurement error by computing the minimum
2880 * read time of the compare statement in the worker by taking TSC
2881 * measurements across it.
2882 *
2883 * It must be noted that the computed minimum read time is mostly to
2884 * eliminate huge deltas when the worker is too early and doesn't by
2885 * itself help produce more accurate deltas. We allow two times the
2886 * computed minimum as an arbibtrary acceptable threshold. Therefore,
2887 * it is still possible to get negative deltas where there are none
2888 * when the worker is earlier. As long as these occasional negative
2889 * deltas are lower than the time it takes to exit guest-context and
2890 * the OS to reschedule EMT on a different CPU we won't expose a TSC
2891 * that jumped backwards. It is because of the existence of the
2892 * negative deltas we don't recompute the delta with the master and
2893 * worker interchanged to eliminate the remaining measurement error.
2894 *
2895 *
2896 * @param pArgs The argument/state data.
2897 * @param pMySync My synchronization structure.
2898 * @param pOtherSync My partner's synchronization structure.
2899 * @param fIsMaster Set if master, clear if worker.
2900 * @param iTry The attempt number.
2901 */
2902static void supdrvTscDeltaMethod1Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
2903 bool fIsMaster, uint32_t iTry)
2904{
2905 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
2906 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
2907 uint64_t uMinCmpReadTime = UINT64_MAX;
2908 unsigned iLoop;
2909 NOREF(iTry);
2910
2911 for (iLoop = 0; iLoop < GIP_TSC_DELTA_LOOPS; iLoop++)
2912 {
2913 RTCCUINTREG uFlags;
2914 if (fIsMaster)
2915 {
2916 /*
2917 * The master.
2918 */
2919 AssertMsg(pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD,
2920 ("%#llx idMaster=%#x idWorker=%#x (idGipMaster=%#x)\n",
2921 pGipCpuMaster->u64TSCSample, pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, pArgs->pDevExt->idGipMaster));
2922 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync);
2923
2924 do
2925 {
2926 ASMSerializeInstruction();
2927 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, ASMReadTSC());
2928 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
2929
2930 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync);
2931
2932 /* Process the data. */
2933 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
2934 {
2935 if (pGipCpuWorker->u64TSCSample != GIP_TSC_DELTA_RSVD)
2936 {
2937 int64_t iDelta = pGipCpuWorker->u64TSCSample
2938 - (pGipCpuMaster->u64TSCSample - pGipCpuMaster->i64TSCDelta);
2939 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
2940 ? iDelta < pGipCpuWorker->i64TSCDelta
2941 : iDelta > pGipCpuWorker->i64TSCDelta || pGipCpuWorker->i64TSCDelta == INT64_MAX)
2942 pGipCpuWorker->i64TSCDelta = iDelta;
2943 }
2944 }
2945
2946 /* Reset our TSC sample and tell the worker to move on. */
2947 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, GIP_TSC_DELTA_RSVD);
2948 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
2949 }
2950 else
2951 {
2952 /*
2953 * The worker.
2954 */
2955 uint64_t uTscWorker;
2956 uint64_t uTscWorkerFlushed;
2957 uint64_t uCmpReadTime;
2958
2959 ASMAtomicReadU64(&pGipCpuMaster->u64TSCSample); /* Warm the cache line. */
2960 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync);
2961
2962 /*
2963 * Keep reading the TSC until we notice that the master has read his. Reading
2964 * the TSC -after- the master has updated the memory is way too late. We thus
2965 * compensate by trying to measure how long it took for the worker to notice
2966 * the memory flushed from the master.
2967 */
2968 do
2969 {
2970 ASMSerializeInstruction();
2971 uTscWorker = ASMReadTSC();
2972 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
2973 ASMSerializeInstruction();
2974 uTscWorkerFlushed = ASMReadTSC();
2975
2976 uCmpReadTime = uTscWorkerFlushed - uTscWorker;
2977 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
2978 {
2979 /* This is totally arbitrary a.k.a I don't like it but I have no better ideas for now. */
2980 if (uCmpReadTime < (uMinCmpReadTime << 1))
2981 {
2982 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, uTscWorker);
2983 if (uCmpReadTime < uMinCmpReadTime)
2984 uMinCmpReadTime = uCmpReadTime;
2985 }
2986 else
2987 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
2988 }
2989 else if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS)
2990 {
2991 if (uCmpReadTime < uMinCmpReadTime)
2992 uMinCmpReadTime = uCmpReadTime;
2993 }
2994
2995 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync);
2996 }
2997 }
2998
2999 /*
3000 * We must reset the worker TSC sample value in case it gets picked as a
3001 * GIP master later on (it's trashed above, naturally).
3002 */
3003 if (!fIsMaster)
3004 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
3005}
3006
3007
3008/**
3009 * Initializes the argument/state data belonging to algorithm \#1.
3010 *
3011 * @returns VBox status code.
3012 * @param pArgs The argument/state data.
3013 */
3014static int supdrvTscDeltaMethod1Init(PSUPDRVGIPTSCDELTARGS pArgs)
3015{
3016 NOREF(pArgs);
3017 return VINF_SUCCESS;
3018}
3019
3020
3021/**
3022 * Undoes what supdrvTscDeltaMethod1Init() did.
3023 *
3024 * @param pArgs The argument/state data.
3025 */
3026static void supdrvTscDeltaMethod1Delete(PSUPDRVGIPTSCDELTARGS pArgs)
3027{
3028 NOREF(pArgs);
3029}
3030
3031#endif /* GIP_TSC_DELTA_METHOD_1 */
3032
3033
3034#ifdef GIP_TSC_DELTA_METHOD_2
3035/*
3036 * TSC delta measurement algorithm \#2 configuration and code - Experimental!!
3037 */
3038
3039# define GIP_TSC_DELTA_M2_LOOPS (12 + GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3040# define GIP_TSC_DELTA_M2_PRIMER_LOOPS 1
3041
3042
3043static void supdrvTscDeltaMethod2ProcessDataOnMaster(PSUPDRVGIPTSCDELTARGS pArgs, uint32_t iLoop)
3044{
3045 PSUPDRVTSCDELTAMETHOD2 pMasterData = pArgs->M2.pMasterData;
3046 PSUPDRVTSCDELTAMETHOD2 pOtherData = pArgs->M2.pWorkerData;
3047 int64_t iMasterTscDelta = pArgs->pMaster->i64TSCDelta;
3048 int64_t iBestDelta = pArgs->pWorker->i64TSCDelta;
3049 uint32_t idxResult;
3050 uint32_t cHits = 0;
3051
3052 /*
3053 * Look for matching entries in the master and worker tables.
3054 */
3055 for (idxResult = 0; idxResult < RT_ELEMENTS(pMasterData->aResults); idxResult++)
3056 {
3057 uint32_t idxOther = pMasterData->aResults[idxResult].iSeqOther;
3058 if (idxOther & 1)
3059 {
3060 idxOther >>= 1;
3061 if (idxOther < RT_ELEMENTS(pOtherData->aResults))
3062 {
3063 if (pOtherData->aResults[idxOther].iSeqOther == pMasterData->aResults[idxResult].iSeqMine)
3064 {
3065 int64_t iDelta;
3066 iDelta = pOtherData->aResults[idxOther].uTsc
3067 - (pMasterData->aResults[idxResult].uTsc - iMasterTscDelta);
3068 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3069 ? iDelta < iBestDelta
3070 : iDelta > iBestDelta || iBestDelta == INT64_MAX)
3071 iBestDelta = iDelta;
3072 cHits++;
3073 }
3074 }
3075 }
3076 }
3077
3078 /*
3079 * Save the results.
3080 */
3081 if (cHits > 2)
3082 pArgs->pWorker->i64TSCDelta = iBestDelta;
3083 pArgs->M2.cHits += cHits;
3084
3085 /*
3086 * Check and see if we can quit a little early. If the result is already
3087 * extremely good (+/-16 ticks seems reasonable), just stop.
3088 */
3089 if ( iBestDelta >= 0 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3090 ? iBestDelta <= 16 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3091 : iBestDelta >= -16 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE)
3092 {
3093 /*SUPR0Printf("quitting early #1: hits=%#x iLoop=%d iBestDelta=%lld\n", cHits, iLoop, iBestDelta);*/
3094 ASMAtomicWriteBool(&pArgs->M2.fQuitEarly, true);
3095 }
3096 /*
3097 * After a while, just stop if we get sufficent hits.
3098 */
3099 else if ( iLoop >= GIP_TSC_DELTA_M2_LOOPS / 3
3100 && cHits > 8)
3101 {
3102 uint32_t const cHitsNeeded = GIP_TSC_DELTA_M2_LOOPS * RT_ELEMENTS(pArgs->M2.pMasterData->aResults) / 4; /* 25% */
3103 if ( pArgs->M2.cHits >= cHitsNeeded
3104 && ( iBestDelta >= 0 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3105 ? iBestDelta <= GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3106 : iBestDelta >= -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO + GIP_TSC_DELTA_INITIAL_MASTER_VALUE) )
3107 {
3108 /*SUPR0Printf("quitting early hits=%#x (%#x) needed=%#x iLoop=%d iBestDelta=%lld\n",
3109 pArgs->M2.cHits, cHits, cHitsNeeded, iLoop, iBestDelta);*/
3110 ASMAtomicWriteBool(&pArgs->M2.fQuitEarly, true);
3111 }
3112 }
3113}
3114
3115
3116/**
3117 * The core function of the 2nd TSC delta mesurment algorithm.
3118 *
3119 * The idea here is that we have the two CPUs execute the exact same code
3120 * collecting a largish set of TSC samples. The code has one data dependency on
3121 * the other CPU which intention it is to synchronize the execution as well as
3122 * help cross references the two sets of TSC samples (the sequence numbers).
3123 *
3124 * The @a fLag parameter is used to modify the execution a tiny bit on one or
3125 * both of the CPUs. When @a fLag differs between the CPUs, it is thought that
3126 * it will help with making the CPUs enter lock step execution occationally.
3127 *
3128 */
3129static void supdrvTscDeltaMethod2CollectData(PSUPDRVTSCDELTAMETHOD2 pMyData, uint32_t volatile *piOtherSeqNo, bool fLag)
3130{
3131 SUPDRVTSCDELTAMETHOD2ENTRY *pEntry = &pMyData->aResults[0];
3132 uint32_t cLeft = RT_ELEMENTS(pMyData->aResults);
3133
3134 ASMAtomicWriteU32(&pMyData->iCurSeqNo, 0);
3135 ASMSerializeInstruction();
3136 while (cLeft-- > 0)
3137 {
3138 uint64_t uTsc;
3139 uint32_t iSeqMine = ASMAtomicIncU32(&pMyData->iCurSeqNo);
3140 uint32_t iSeqOther = ASMAtomicReadU32(piOtherSeqNo);
3141 ASMCompilerBarrier();
3142 ASMSerializeInstruction(); /* Way better result than with ASMMemoryFenceSSE2() in this position! */
3143 uTsc = ASMReadTSC();
3144 ASMAtomicIncU32(&pMyData->iCurSeqNo);
3145 ASMCompilerBarrier();
3146 ASMSerializeInstruction();
3147 pEntry->iSeqMine = iSeqMine;
3148 pEntry->iSeqOther = iSeqOther;
3149 pEntry->uTsc = uTsc;
3150 pEntry++;
3151 ASMSerializeInstruction();
3152 if (fLag)
3153 ASMNopPause();
3154 }
3155}
3156
3157
3158/**
3159 * TSC delta measurment algorithm \#2 (GIP_TSC_DELTA_METHOD_2).
3160 *
3161 * See supdrvTscDeltaMethod2CollectData for algorithm details.
3162 *
3163 * @param pArgs The argument/state data.
3164 * @param pMySync My synchronization structure.
3165 * @param pOtherSync My partner's synchronization structure.
3166 * @param fIsMaster Set if master, clear if worker.
3167 * @param iTry The attempt number.
3168 */
3169static void supdrvTscDeltaMethod2Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
3170 bool fIsMaster, uint32_t iTry)
3171{
3172 unsigned iLoop;
3173
3174 if (fIsMaster)
3175 ASMAtomicWriteBool(&pArgs->M2.fQuitEarly, false);
3176
3177 for (iLoop = 0; iLoop < GIP_TSC_DELTA_M2_LOOPS; iLoop++)
3178 {
3179 RTCCUINTREG uFlags;
3180 if (fIsMaster)
3181 {
3182 /*
3183 * Adjust the loop lag fudge.
3184 */
3185# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
3186 if (iLoop < GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3187 {
3188 /* Lag during the priming to be nice to everyone.. */
3189 pArgs->M2.fLagMaster = true;
3190 pArgs->M2.fLagWorker = true;
3191 }
3192 else
3193# endif
3194 if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4)
3195 {
3196 /* 25 % of the body without lagging. */
3197 pArgs->M2.fLagMaster = false;
3198 pArgs->M2.fLagWorker = false;
3199 }
3200 else if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4 * 2)
3201 {
3202 /* 25 % of the body with both lagging. */
3203 pArgs->M2.fLagMaster = true;
3204 pArgs->M2.fLagWorker = true;
3205 }
3206 else
3207 {
3208 /* 50% of the body with alternating lag. */
3209 pArgs->M2.fLagMaster = (iLoop & 1) == 0;
3210 pArgs->M2.fLagWorker = (iLoop & 1) == 1;
3211 }
3212
3213 /*
3214 * Sync up with the worker and collect data.
3215 */
3216 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync);
3217 supdrvTscDeltaMethod2CollectData(pArgs->M2.pMasterData, &pArgs->M2.pWorkerData->iCurSeqNo, pArgs->M2.fLagMaster);
3218 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync);
3219
3220 /*
3221 * Process the data.
3222 */
3223# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
3224 if (iLoop >= GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3225# endif
3226 supdrvTscDeltaMethod2ProcessDataOnMaster(pArgs, iLoop);
3227
3228 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
3229 }
3230 else
3231 {
3232 /*
3233 * The worker.
3234 */
3235 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync);
3236 supdrvTscDeltaMethod2CollectData(pArgs->M2.pWorkerData, &pArgs->M2.pMasterData->iCurSeqNo, pArgs->M2.fLagWorker);
3237 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync);
3238 }
3239
3240 if (ASMAtomicReadBool(&pArgs->M2.fQuitEarly))
3241 break;
3242
3243 }
3244}
3245
3246
3247/**
3248 * Initializes the argument/state data belonging to algorithm \#2.
3249 *
3250 * @returns VBox status code.
3251 * @param pArgs The argument/state data.
3252 */
3253static int supdrvTscDeltaMethod2Init(PSUPDRVGIPTSCDELTARGS pArgs)
3254{
3255 pArgs->M2.pMasterData = NULL;
3256 pArgs->M2.pWorkerData = NULL;
3257
3258 uint32_t const fFlags = /*RTMEMALLOCEX_FLAGS_ANY_CTX |*/ RTMEMALLOCEX_FLAGS_ZEROED;
3259 int rc = RTMemAllocEx(sizeof(*pArgs->M2.pWorkerData), 0, fFlags, (void **)&pArgs->M2.pWorkerData);
3260 if (RT_SUCCESS(rc))
3261 rc = RTMemAllocEx(sizeof(*pArgs->M2.pMasterData), 0, fFlags, (void **)&pArgs->M2.pMasterData);
3262 return rc;
3263}
3264
3265
3266/**
3267 * Undoes what supdrvTscDeltaMethod2Init() did.
3268 *
3269 * @param pArgs The argument/state data.
3270 */
3271static void supdrvTscDeltaMethod2Delete(PSUPDRVGIPTSCDELTARGS pArgs)
3272{
3273 RTMemFreeEx(pArgs->M2.pMasterData, sizeof(*pArgs->M2.pMasterData));
3274 RTMemFreeEx(pArgs->M2.pWorkerData, sizeof(*pArgs->M2.pWorkerData));
3275# if 0
3276 SUPR0Printf("cHits=%d m=%d w=%d\n", pArgs->M2.cHits, pArgs->pMaster->idApic, pArgs->pWorker->idApic);
3277# endif
3278}
3279
3280
3281#endif /* GIP_TSC_DELTA_METHOD_2 */
3282
3283
3284
3285static int supdrvMeasureTscDeltaCallbackAbortSyncSetup(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync,
3286 bool fIsMaster, bool fTimeout)
3287{
3288 PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
3289 PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
3290 TSCDELTA_DBG_VARS();
3291
3292 /*
3293 * Clear our sync pointer and make sure the abort flag is set.
3294 */
3295 ASMAtomicWriteNullPtr(ppMySync);
3296 ASMAtomicWriteBool(&pArgs->fAbortSetup, true);
3297
3298 /*
3299 * Make sure the other party is out of there and won't be touching our
3300 * sync state again (would cause stack corruption).
3301 */
3302 TSCDELTA_DBG_START_LOOP();
3303 while (ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2) != NULL)
3304 {
3305 ASMNopPause();
3306 ASMNopPause();
3307 ASMNopPause();
3308 TSCDELTA_DBG_CHECK_LOOP();
3309 }
3310
3311 return 0;
3312}
3313
3314
3315/**
3316 * This is used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs
3317 * and compute the delta between them.
3318 *
3319 * To reduce code size a good when timeout handling was added, a dummy return
3320 * value had to be added (saves 1-3 lines per timeout case), thus this
3321 * 'Unwrapped' function and the dummy 0 return value.
3322 *
3323 * @returns 0 (dummy, ignored)
3324 * @param idCpu The CPU we are current scheduled on.
3325 * @param pArgs Pointer to a parameter package.
3326 *
3327 * @remarks Measuring TSC deltas between the CPUs is tricky because we need to
3328 * read the TSC at exactly the same time on both the master and the
3329 * worker CPUs. Due to DMA, bus arbitration, cache locality,
3330 * contention, SMI, pipelining etc. there is no guaranteed way of
3331 * doing this on x86 CPUs.
3332 */
3333static int supdrvMeasureTscDeltaCallbackUnwrapped(RTCPUID idCpu, PSUPDRVGIPTSCDELTARGS pArgs)
3334{
3335 PSUPDRVDEVEXT pDevExt = pArgs->pDevExt;
3336 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
3337 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3338 bool const fIsMaster = idCpu == pGipCpuMaster->idCpu;
3339 uint32_t iTry;
3340 PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
3341 PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
3342 SUPTSCDELTASYNC2 MySync;
3343 PSUPTSCDELTASYNC2 pOtherSync;
3344 TSCDELTA_DBG_VARS();
3345
3346 /* A bit of paranoia first. */
3347 if (!pGipCpuMaster || !pGipCpuWorker)
3348 return 0;
3349
3350 /*
3351 * If the CPU isn't part of the measurement, return immediately.
3352 */
3353 if ( !fIsMaster
3354 && idCpu != pGipCpuWorker->idCpu)
3355 return 0;
3356
3357 /*
3358 * Set up my synchronization stuff and wait for the other party to show up.
3359 *
3360 * We don't wait forever since the other party may be off fishing (offline,
3361 * spinning with ints disables, whatever), we must play nice to the rest of
3362 * the system as this context generally isn't one in which we will get
3363 * preempted and we may hold up a number of lower priority interrupts.
3364 */
3365 ASMAtomicWriteU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT);
3366 ASMAtomicWritePtr(ppMySync, &MySync);
3367 MySync.uTscStart = ASMReadTSC();
3368 MySync.cMaxTscTicks = pArgs->cMaxTscTicks;
3369
3370 /* Look for the partner, might not be here yet... Special abort considerations. */
3371 iTry = 0;
3372 TSCDELTA_DBG_START_LOOP();
3373 while ((pOtherSync = ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2)) == NULL)
3374 {
3375 ASMNopPause();
3376 if ( ASMAtomicReadBool(&pArgs->fAbortSetup)
3377 || !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu) )
3378 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3379 if ( (iTry++ & 0xff) == 0
3380 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
3381 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
3382 TSCDELTA_DBG_CHECK_LOOP();
3383 ASMNopPause();
3384 }
3385
3386 /* I found my partner, waiting to be found... Special abort considerations. */
3387 if (fIsMaster)
3388 if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* parnaoia */
3389 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3390
3391 iTry = 0;
3392 TSCDELTA_DBG_START_LOOP();
3393 while (ASMAtomicReadU32(&MySync.uSyncVar) == GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)
3394 {
3395 ASMNopPause();
3396 if (ASMAtomicReadBool(&pArgs->fAbortSetup))
3397 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3398 if ( (iTry++ & 0xff) == 0
3399 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
3400 {
3401 if ( fIsMaster
3402 && !ASMAtomicCmpXchgU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_ABORT, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT))
3403 break; /* race #1: slave has moved on, handle timeout in loop instead. */
3404 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
3405 }
3406 TSCDELTA_DBG_CHECK_LOOP();
3407 }
3408
3409 if (!fIsMaster)
3410 if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* race #1 */
3411 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3412
3413 /*
3414 * Retry loop.
3415 */
3416 Assert(pGipCpuWorker->i64TSCDelta == INT64_MAX);
3417 for (iTry = 0; iTry < 12; iTry++)
3418 {
3419 if (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_READY)
3420 break;
3421
3422 /*
3423 * Do the measurements.
3424 */
3425#ifdef GIP_TSC_DELTA_METHOD_1
3426 supdrvTscDeltaMethod1Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
3427#elif defined(GIP_TSC_DELTA_METHOD_2)
3428 supdrvTscDeltaMethod2Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
3429#else
3430# error "huh??"
3431#endif
3432 if (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_READY)
3433 break;
3434
3435 /*
3436 * Success? If so, stop trying.
3437 */
3438 if (pGipCpuWorker->i64TSCDelta != INT64_MAX)
3439 {
3440 if (fIsMaster)
3441 {
3442 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuMaster->iCpuSet);
3443 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuMaster->iCpuSet);
3444 }
3445 else
3446 {
3447 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
3448 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
3449 }
3450 break;
3451 }
3452 }
3453
3454 /*
3455 * End the synchroniziation dance. We tell the other that we're done,
3456 * then wait for the same kind of reply.
3457 */
3458 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_FINAL);
3459 ASMAtomicWriteNullPtr(ppMySync);
3460 iTry = 0;
3461 TSCDELTA_DBG_START_LOOP();
3462 while (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_FINAL)
3463 {
3464 iTry++;
3465 if ( iTry == 0
3466 && !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu))
3467 break; /* this really shouldn't happen. */
3468 TSCDELTA_DBG_CHECK_LOOP();
3469 ASMNopPause();
3470 }
3471
3472 return 0;
3473}
3474
3475/**
3476 * Callback used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs
3477 * and compute the delta between them.
3478 *
3479 * @param idCpu The CPU we are current scheduled on.
3480 * @param pvUser1 Pointer to a parameter package (SUPDRVGIPTSCDELTARGS).
3481 * @param pvUser2 Unused.
3482 */
3483static DECLCALLBACK(void) supdrvMeasureTscDeltaCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
3484{
3485 supdrvMeasureTscDeltaCallbackUnwrapped(idCpu, (PSUPDRVGIPTSCDELTARGS)pvUser1);
3486}
3487
3488
3489/**
3490 * Measures the TSC delta between the master GIP CPU and one specified worker
3491 * CPU.
3492 *
3493 * @returns VBox status code.
3494 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED on pure measurement
3495 * failure.
3496 * @param pDevExt Pointer to the device instance data.
3497 * @param idxWorker The index of the worker CPU from the GIP's array of
3498 * CPUs.
3499 *
3500 * @remarks This must be called with preemption enabled!
3501 */
3502static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker)
3503{
3504 int rc;
3505 int rc2;
3506 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3507 RTCPUID idMaster = pDevExt->idGipMaster;
3508 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[idxWorker];
3509 PSUPGIPCPU pGipCpuMaster;
3510 uint32_t iGipCpuMaster;
3511
3512 /* Validate input a bit. */
3513 AssertReturn(pGip, VERR_INVALID_PARAMETER);
3514 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
3515 Assert(RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3516
3517 /*
3518 * Don't attempt measuring the delta for the GIP master.
3519 */
3520 if (pGipCpuWorker->idCpu == idMaster)
3521 {
3522 if (pGipCpuWorker->i64TSCDelta == INT64_MAX) /* This shouldn't happen, but just in case. */
3523 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3524 return VINF_SUCCESS;
3525 }
3526
3527 /*
3528 * One measurement at at time, at least for now. We might be using
3529 * broadcast IPIs so, so be nice to the rest of the system.
3530 */
3531#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3532 rc = RTSemMutexRequest(pDevExt->mtxTscDelta, RT_INDEFINITE_WAIT);
3533#else
3534 rc = RTSemFastMutexRequest(pDevExt->mtxTscDelta, RT_INDEFINITE_WAIT);
3535#endif
3536 if (RT_FAILURE(rc))
3537 return rc;
3538
3539 /*
3540 * If the CPU has hyper-threading and the APIC IDs of the master and worker are adjacent,
3541 * try pick a different master. (This fudge only works with multi core systems.)
3542 * ASSUMES related threads have adjacent APIC IDs. ASSUMES two threads per core.
3543 *
3544 * We skip this on AMDs for now as their HTT is different from intel's and
3545 * it doesn't seem to have any favorable effect on the results.
3546 *
3547 * If the master is offline, we need a new master too, so share the code.
3548 */
3549 iGipCpuMaster = supdrvGipFindCpuIndexForCpuId(pGip, idMaster);
3550 AssertReturn(iGipCpuMaster < pGip->cCpus, VERR_INVALID_CPU_ID);
3551 pGipCpuMaster = &pGip->aCPUs[iGipCpuMaster];
3552 if ( ( (pGipCpuMaster->idApic & ~1) == (pGipCpuWorker->idApic & ~1)
3553 && ASMHasCpuId()
3554 && ASMIsValidStdRange(ASMCpuId_EAX(0))
3555 && (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_HTT)
3556 && !ASMIsAmdCpu()
3557 && pGip->cOnlineCpus > 2)
3558 || !RTMpIsCpuOnline(idMaster) )
3559 {
3560 uint32_t i;
3561 for (i = 0; i < pGip->cCpus; i++)
3562 if ( i != iGipCpuMaster
3563 && i != idxWorker
3564 && pGip->aCPUs[i].enmState == SUPGIPCPUSTATE_ONLINE
3565 && pGip->aCPUs[i].i64TSCDelta != INT64_MAX
3566 && pGip->aCPUs[i].idCpu != NIL_RTCPUID
3567 && pGip->aCPUs[i].idCpu != idMaster /* paranoia starts here... */
3568 && pGip->aCPUs[i].idCpu != pGipCpuWorker->idCpu
3569 && pGip->aCPUs[i].idApic != pGipCpuWorker->idApic
3570 && pGip->aCPUs[i].idApic != pGipCpuMaster->idApic
3571 && RTMpIsCpuOnline(pGip->aCPUs[i].idCpu))
3572 {
3573 iGipCpuMaster = i;
3574 pGipCpuMaster = &pGip->aCPUs[i];
3575 idMaster = pGipCpuMaster->idCpu;
3576 break;
3577 }
3578 }
3579
3580 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpuWorker->iCpuSet))
3581 {
3582 /*
3583 * Initialize data package for the RTMpOnAll callback.
3584 */
3585 PSUPDRVGIPTSCDELTARGS pArgs = (PSUPDRVGIPTSCDELTARGS)RTMemAllocZ(sizeof(*pArgs));
3586 if (pArgs)
3587 {
3588 pArgs->pWorker = pGipCpuWorker;
3589 pArgs->pMaster = pGipCpuMaster;
3590 pArgs->pDevExt = pDevExt;
3591 pArgs->pSyncMaster = NULL;
3592 pArgs->pSyncWorker = NULL;
3593#if 0 /* later */
3594 pArgs->cMaxTscTicks = ASMAtomicReadU64(&pGip->u64CpuHz) / 2048; /* 488 us */
3595#else
3596 pArgs->cMaxTscTicks = ASMAtomicReadU64(&pGip->u64CpuHz) / 1024; /* 976 us */
3597#endif
3598
3599#ifdef GIP_TSC_DELTA_METHOD_1
3600 rc = supdrvTscDeltaMethod1Init(pArgs);
3601#elif defined(GIP_TSC_DELTA_METHOD_2)
3602 rc = supdrvTscDeltaMethod2Init(pArgs);
3603#else
3604# error "huh?"
3605#endif
3606 if (RT_SUCCESS(rc))
3607 {
3608 /*
3609 * Fire TSC-read workers on all CPUs but only synchronize between master
3610 * and one worker to ease memory contention.
3611 */
3612 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, INT64_MAX);
3613
3614 /** @todo Add RTMpOnPair and replace this ineffecient broadcast IPI. */
3615 rc = RTMpOnAll(supdrvMeasureTscDeltaCallback, pArgs, NULL);
3616 if (RT_SUCCESS(rc))
3617 {
3618 if (RT_LIKELY(pGipCpuWorker->i64TSCDelta != INT64_MAX))
3619 {
3620 /*
3621 * Work the TSC delta applicability rating. It starts
3622 * optimistic in supdrvGipInit, we downgrade it here.
3623 */
3624 SUPGIPUSETSCDELTA enmRating;
3625 if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO
3626 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO)
3627 enmRating = SUPGIPUSETSCDELTA_NOT_ZERO;
3628 else if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO
3629 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO)
3630 enmRating = SUPGIPUSETSCDELTA_ROUGHLY_ZERO;
3631 else
3632 enmRating = SUPGIPUSETSCDELTA_PRACTICALLY_ZERO;
3633 if (pGip->enmUseTscDelta < enmRating)
3634 {
3635 AssertCompile(sizeof(pGip->enmUseTscDelta) == sizeof(uint32_t));
3636 ASMAtomicWriteU32((uint32_t volatile *)&pGip->enmUseTscDelta, enmRating);
3637 }
3638 }
3639 else
3640 rc = VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
3641 }
3642 /** @todo return try-again if we get an offline CPU error. */
3643 }
3644
3645#ifdef GIP_TSC_DELTA_METHOD_1
3646 supdrvTscDeltaMethod1Delete(pArgs);
3647#elif defined(GIP_TSC_DELTA_METHOD_2)
3648 supdrvTscDeltaMethod2Delete(pArgs);
3649#else
3650# error "huh?"
3651#endif
3652 RTMemFree(pArgs);
3653 }
3654 else
3655 rc = VERR_NO_MEMORY;
3656 }
3657 else
3658 rc = VERR_CPU_OFFLINE;
3659
3660 /*
3661 * We're done now.
3662 */
3663#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3664 rc2 = RTSemMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
3665#else
3666 rc2 = RTSemFastMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
3667#endif
3668 return rc;
3669}
3670
3671
3672/**
3673 * Clears TSC delta related variables.
3674 *
3675 * Clears all TSC samples as well as the delta synchronization variable on the
3676 * all the per-CPU structs. Optionally also clears the per-cpu deltas too.
3677 *
3678 * @param pDevExt Pointer to the device instance data.
3679 * @param fClearDeltas Whether the deltas are also to be cleared.
3680 */
3681static void supdrvClearTscSamples(PSUPDRVDEVEXT pDevExt, bool fClearDeltas)
3682{
3683 unsigned iCpu;
3684 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3685 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
3686 {
3687 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
3688 ASMAtomicWriteU64(&pGipCpu->u64TSCSample, GIP_TSC_DELTA_RSVD);
3689 if (fClearDeltas)
3690 ASMAtomicWriteS64(&pGipCpu->i64TSCDelta, INT64_MAX);
3691 }
3692}
3693
3694
3695/**
3696 * Performs the initial measurements of the TSC deltas between CPUs.
3697 *
3698 * This is called by supdrvGipCreate or triggered by it if threaded.
3699 *
3700 * @returns VBox status code.
3701 * @param pDevExt Pointer to the device instance data.
3702 *
3703 * @remarks Must be called only after supdrvGipInitOnCpu() as this function uses
3704 * idCpu, GIP's online CPU set which are populated in
3705 * supdrvGipInitOnCpu().
3706 */
3707static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt)
3708{
3709 PSUPGIPCPU pGipCpuMaster;
3710 unsigned iCpu;
3711 unsigned iOddEven;
3712 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3713 uint32_t idxMaster = UINT32_MAX;
3714 int rc = VINF_SUCCESS;
3715 uint32_t cMpOnOffEvents = ASMAtomicReadU32(&pDevExt->cMpOnOffEvents);
3716
3717 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
3718
3719 /*
3720 * Pick the first CPU online as the master TSC and make it the new GIP master based
3721 * on the APIC ID.
3722 *
3723 * Technically we can simply use "idGipMaster" but doing this gives us master as CPU 0
3724 * in most cases making it nicer/easier for comparisons. It is safe to update the GIP
3725 * master as this point since the sync/async timer isn't created yet.
3726 */
3727 supdrvClearTscSamples(pDevExt, true /* fClearDeltas */);
3728 for (iCpu = 0; iCpu < RT_ELEMENTS(pGip->aiCpuFromApicId); iCpu++)
3729 {
3730 uint16_t idxCpu = pGip->aiCpuFromApicId[iCpu];
3731 if (idxCpu != UINT16_MAX)
3732 {
3733 PSUPGIPCPU pGipCpu = &pGip->aCPUs[idxCpu];
3734 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpu->iCpuSet))
3735 {
3736 idxMaster = idxCpu;
3737 pGipCpu->i64TSCDelta = GIP_TSC_DELTA_INITIAL_MASTER_VALUE;
3738 break;
3739 }
3740 }
3741 }
3742 AssertReturn(idxMaster != UINT32_MAX, VERR_CPU_NOT_FOUND);
3743 pGipCpuMaster = &pGip->aCPUs[idxMaster];
3744 ASMAtomicWriteSize(&pDevExt->idGipMaster, pGipCpuMaster->idCpu);
3745
3746 /*
3747 * If there is only a single CPU online we have nothing to do.
3748 */
3749 if (pGip->cOnlineCpus <= 1)
3750 {
3751 AssertReturn(pGip->cOnlineCpus > 0, VERR_INTERNAL_ERROR_5);
3752 return VINF_SUCCESS;
3753 }
3754
3755 /*
3756 * Loop thru the GIP CPU array and get deltas for each CPU (except the
3757 * master). We do the CPUs with the even numbered APIC IDs first so that
3758 * we've got alternative master CPUs to pick from on hyper-threaded systems.
3759 */
3760 for (iOddEven = 0; iOddEven < 2; iOddEven++)
3761 {
3762 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
3763 {
3764 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
3765 if ( iCpu != idxMaster
3766 && (iOddEven > 0 || (pGipCpuWorker->idApic & 1) == 0)
3767 && RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
3768 {
3769 rc = supdrvMeasureTscDeltaOne(pDevExt, iCpu);
3770 if (RT_FAILURE(rc))
3771 {
3772 SUPR0Printf("supdrvMeasureTscDeltaOne failed. rc=%d CPU[%u].idCpu=%u Master[%u].idCpu=%u\n", rc, iCpu,
3773 pGipCpuWorker->idCpu, idxMaster, pDevExt->idGipMaster, pGipCpuMaster->idCpu);
3774 break;
3775 }
3776
3777 if (ASMAtomicReadU32(&pDevExt->cMpOnOffEvents) != cMpOnOffEvents)
3778 {
3779 SUPR0Printf("One or more CPUs transitioned between online & offline states. I'm confused, retry...\n");
3780 rc = VERR_TRY_AGAIN;
3781 break;
3782 }
3783 }
3784 }
3785 }
3786
3787 return rc;
3788}
3789
3790
3791#ifdef SUPDRV_USE_TSC_DELTA_THREAD
3792
3793/**
3794 * Switches the TSC-delta measurement thread into the butchered state.
3795 *
3796 * @returns VBox status code.
3797 * @param pDevExt Pointer to the device instance data.
3798 * @param fSpinlockHeld Whether the TSC-delta spinlock is held or not.
3799 * @param pszFailed An error message to log.
3800 * @param rcFailed The error code to exit the thread with.
3801 */
3802static int supdrvTscDeltaThreadButchered(PSUPDRVDEVEXT pDevExt, bool fSpinlockHeld, const char *pszFailed, int rcFailed)
3803{
3804 if (!fSpinlockHeld)
3805 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3806
3807 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Butchered;
3808 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3809 OSDBGPRINT(("supdrvTscDeltaThreadButchered: %s. rc=%Rrc\n", rcFailed));
3810 return rcFailed;
3811}
3812
3813
3814/**
3815 * The TSC-delta measurement thread.
3816 *
3817 * @returns VBox status code.
3818 * @param hThread The thread handle.
3819 * @param pvUser Opaque pointer to the device instance data.
3820 */
3821static DECLCALLBACK(int) supdrvTscDeltaThread(RTTHREAD hThread, void *pvUser)
3822{
3823 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
3824 bool fInitialMeasurement = true;
3825 uint32_t cConsecutiveTimeouts = 0;
3826 int rc = VERR_INTERNAL_ERROR_2;
3827 for (;;)
3828 {
3829 /*
3830 * Switch on the current state.
3831 */
3832 SUPDRVTSCDELTATHREADSTATE enmState;
3833 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3834 enmState = pDevExt->enmTscDeltaThreadState;
3835 switch (enmState)
3836 {
3837 case kTscDeltaThreadState_Creating:
3838 {
3839 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
3840 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent);
3841 if (RT_FAILURE(rc))
3842 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
3843 /* fall thru */
3844 }
3845
3846 case kTscDeltaThreadState_Listening:
3847 {
3848 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3849
3850 /* Simple adaptive timeout. */
3851 if (cConsecutiveTimeouts++ == 10)
3852 {
3853 if (pDevExt->cMsTscDeltaTimeout == 1) /* 10 ms */
3854 pDevExt->cMsTscDeltaTimeout = 10;
3855 else if (pDevExt->cMsTscDeltaTimeout == 10) /* +100 ms */
3856 pDevExt->cMsTscDeltaTimeout = 100;
3857 else if (pDevExt->cMsTscDeltaTimeout == 100) /* +1000 ms */
3858 pDevExt->cMsTscDeltaTimeout = 500;
3859 cConsecutiveTimeouts = 0;
3860 }
3861 rc = RTThreadUserWait(pDevExt->hTscDeltaThread, pDevExt->cMsTscDeltaTimeout);
3862 if ( RT_FAILURE(rc)
3863 && rc != VERR_TIMEOUT)
3864 return supdrvTscDeltaThreadButchered(pDevExt, false /* fSpinlockHeld */, "RTThreadUserWait", rc);
3865 RTThreadUserReset(pDevExt->hTscDeltaThread);
3866 break;
3867 }
3868
3869 case kTscDeltaThreadState_WaitAndMeasure:
3870 {
3871 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Measuring;
3872 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent); /* (Safe on windows as long as spinlock isn't IRQ safe.) */
3873 if (RT_FAILURE(rc))
3874 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
3875 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3876 pDevExt->cMsTscDeltaTimeout = 1;
3877 RTThreadSleep(10);
3878 /* fall thru */
3879 }
3880
3881 case kTscDeltaThreadState_Measuring:
3882 {
3883 cConsecutiveTimeouts = 0;
3884 if (fInitialMeasurement)
3885 {
3886 int cTries = 8;
3887 int cMsWaitPerTry = 10;
3888 fInitialMeasurement = false;
3889 do
3890 {
3891 rc = supdrvMeasureInitialTscDeltas(pDevExt);
3892 if ( RT_SUCCESS(rc)
3893 || ( RT_FAILURE(rc)
3894 && rc != VERR_TRY_AGAIN
3895 && rc != VERR_CPU_OFFLINE))
3896 {
3897 break;
3898 }
3899 RTThreadSleep(cMsWaitPerTry);
3900 } while (cTries-- > 0);
3901 }
3902 else
3903 {
3904 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3905 unsigned iCpu;
3906
3907 /* Measure TSC-deltas only for the CPUs that are in the set. */
3908 rc = VINF_SUCCESS;
3909 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
3910 {
3911 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
3912 if (RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
3913 {
3914 if (pGipCpuWorker->i64TSCDelta == INT64_MAX)
3915 {
3916 int rc2 = supdrvMeasureTscDeltaOne(pDevExt, iCpu);
3917 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3918 rc = rc2;
3919 }
3920 else
3921 {
3922 /*
3923 * The thread/someone must've called SUPR0TscDeltaMeasureBySetIndex,
3924 * mark the delta as fine to get the timer thread off our back.
3925 */
3926 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
3927 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
3928 }
3929 }
3930 }
3931 }
3932 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3933 if (pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
3934 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
3935 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3936 Assert(rc != VERR_NOT_AVAILABLE); /* VERR_NOT_AVAILABLE is used as the initial value. */
3937 ASMAtomicWriteS32(&pDevExt->rcTscDelta, rc);
3938 break;
3939 }
3940
3941 case kTscDeltaThreadState_Terminating:
3942 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Destroyed;
3943 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3944 return VINF_SUCCESS;
3945
3946 case kTscDeltaThreadState_Butchered:
3947 default:
3948 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "Invalid state", VERR_INVALID_STATE);
3949 }
3950 }
3951
3952 return rc;
3953}
3954
3955
3956/**
3957 * Waits for the TSC-delta measurement thread to respond to a state change.
3958 *
3959 * @returns VINF_SUCCESS on success, VERR_TIMEOUT if it doesn't respond in time,
3960 * other error code on internal error.
3961 *
3962 * @param pThis Pointer to the grant service instance data.
3963 * @param enmCurState The current state.
3964 * @param enmNewState The new state we're waiting for it to enter.
3965 */
3966static int supdrvTscDeltaThreadWait(PSUPDRVDEVEXT pDevExt, SUPDRVTSCDELTATHREADSTATE enmCurState,
3967 SUPDRVTSCDELTATHREADSTATE enmNewState)
3968{
3969 /*
3970 * Wait a short while for the expected state transition.
3971 */
3972 int rc;
3973 RTSemEventWait(pDevExt->hTscDeltaEvent, RT_MS_1SEC);
3974 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3975 if (pDevExt->enmTscDeltaThreadState == enmNewState)
3976 {
3977 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3978 rc = VINF_SUCCESS;
3979 }
3980 else if (pDevExt->enmTscDeltaThreadState == enmCurState)
3981 {
3982 /*
3983 * Wait longer if the state has not yet transitioned to the one we want.
3984 */
3985 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3986 rc = RTSemEventWait(pDevExt->hTscDeltaEvent, 50 * RT_MS_1SEC);
3987 if ( RT_SUCCESS(rc)
3988 || rc == VERR_TIMEOUT)
3989 {
3990 /*
3991 * Check the state whether we've succeeded.
3992 */
3993 SUPDRVTSCDELTATHREADSTATE enmState;
3994 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3995 enmState = pDevExt->enmTscDeltaThreadState;
3996 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3997 if (enmState == enmNewState)
3998 rc = VINF_SUCCESS;
3999 else if (enmState == enmCurState)
4000 {
4001 rc = VERR_TIMEOUT;
4002 OSDBGPRINT(("supdrvTscDeltaThreadWait: timed out state transition. enmState=%d enmNewState=%d\n", enmState,
4003 enmNewState));
4004 }
4005 else
4006 {
4007 rc = VERR_INTERNAL_ERROR;
4008 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d, expected %d\n", enmCurState,
4009 enmState, enmNewState));
4010 }
4011 }
4012 else
4013 OSDBGPRINT(("supdrvTscDeltaThreadWait: RTSemEventWait failed. rc=%Rrc\n", rc));
4014 }
4015 else
4016 {
4017 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4018 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d\n", enmCurState, enmNewState));
4019 rc = VERR_INTERNAL_ERROR;
4020 }
4021
4022 return rc;
4023}
4024
4025
4026/**
4027 * Waits for TSC-delta measurements to be completed for all online CPUs.
4028 *
4029 * @returns VBox status code.
4030 * @param pDevExt Pointer to the device instance data.
4031 */
4032static int supdrvTscDeltaThreadWaitForOnlineCpus(PSUPDRVDEVEXT pDevExt)
4033{
4034 int cTriesLeft = 5;
4035 int cMsTotalWait;
4036 int cMsWaited = 0;
4037 int cMsWaitGranularity = 1;
4038
4039 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4040 AssertReturn(pGip, VERR_INVALID_POINTER);
4041
4042 if (RT_UNLIKELY(pDevExt->hTscDeltaThread == NIL_RTTHREAD))
4043 return VERR_THREAD_NOT_WAITABLE;
4044
4045 cMsTotalWait = RT_MIN(pGip->cPresentCpus + 10, 200);
4046 while (cTriesLeft-- > 0)
4047 {
4048 if (RTCpuSetIsEqual(&pDevExt->TscDeltaObtainedCpuSet, &pGip->OnlineCpuSet))
4049 return VINF_SUCCESS;
4050 RTThreadSleep(cMsWaitGranularity);
4051 cMsWaited += cMsWaitGranularity;
4052 if (cMsWaited >= cMsTotalWait)
4053 break;
4054 }
4055
4056 return VERR_TIMEOUT;
4057}
4058
4059
4060/**
4061 * Terminates the actual thread running supdrvTscDeltaThread().
4062 *
4063 * This is an internal worker function for supdrvTscDeltaThreadInit() and
4064 * supdrvTscDeltaTerm().
4065 *
4066 * @param pDevExt Pointer to the device instance data.
4067 */
4068static void supdrvTscDeltaThreadTerminate(PSUPDRVDEVEXT pDevExt)
4069{
4070 int rc;
4071 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4072 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Terminating;
4073 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4074 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4075 rc = RTThreadWait(pDevExt->hTscDeltaThread, 50 * RT_MS_1SEC, NULL /* prc */);
4076 if (RT_FAILURE(rc))
4077 {
4078 /* Signal a few more times before giving up. */
4079 int cTriesLeft = 5;
4080 while (--cTriesLeft > 0)
4081 {
4082 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4083 rc = RTThreadWait(pDevExt->hTscDeltaThread, 2 * RT_MS_1SEC, NULL /* prc */);
4084 if (rc != VERR_TIMEOUT)
4085 break;
4086 }
4087 }
4088}
4089
4090
4091/**
4092 * Initializes and spawns the TSC-delta measurement thread.
4093 *
4094 * A thread is required for servicing re-measurement requests from events like
4095 * CPUs coming online, suspend/resume etc. as it cannot be done synchronously
4096 * under all contexts on all OSs.
4097 *
4098 * @returns VBox status code.
4099 * @param pDevExt Pointer to the device instance data.
4100 *
4101 * @remarks Must only be called -after- initializing GIP and setting up MP
4102 * notifications!
4103 */
4104static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt)
4105{
4106 int rc;
4107 Assert(pDevExt->pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
4108 rc = RTSpinlockCreate(&pDevExt->hTscDeltaSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_UNSAFE, "VBoxTscSpnLck");
4109 if (RT_SUCCESS(rc))
4110 {
4111 rc = RTSemEventCreate(&pDevExt->hTscDeltaEvent);
4112 if (RT_SUCCESS(rc))
4113 {
4114 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Creating;
4115 pDevExt->cMsTscDeltaTimeout = 1;
4116 rc = RTThreadCreate(&pDevExt->hTscDeltaThread, supdrvTscDeltaThread, pDevExt, 0 /* cbStack */,
4117 RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "VBoxTscThread");
4118 if (RT_SUCCESS(rc))
4119 {
4120 rc = supdrvTscDeltaThreadWait(pDevExt, kTscDeltaThreadState_Creating, kTscDeltaThreadState_Listening);
4121 if (RT_SUCCESS(rc))
4122 {
4123 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
4124 return rc;
4125 }
4126
4127 OSDBGPRINT(("supdrvTscDeltaInit: supdrvTscDeltaThreadWait failed. rc=%Rrc\n", rc));
4128 supdrvTscDeltaThreadTerminate(pDevExt);
4129 }
4130 else
4131 OSDBGPRINT(("supdrvTscDeltaInit: RTThreadCreate failed. rc=%Rrc\n", rc));
4132 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
4133 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
4134 }
4135 else
4136 OSDBGPRINT(("supdrvTscDeltaInit: RTSemEventCreate failed. rc=%Rrc\n", rc));
4137 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
4138 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
4139 }
4140 else
4141 OSDBGPRINT(("supdrvTscDeltaInit: RTSpinlockCreate failed. rc=%Rrc\n", rc));
4142
4143 return rc;
4144}
4145
4146
4147/**
4148 * Terminates the TSC-delta measurement thread and cleanup.
4149 *
4150 * @param pDevExt Pointer to the device instance data.
4151 */
4152static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt)
4153{
4154 if ( pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK
4155 && pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
4156 {
4157 supdrvTscDeltaThreadTerminate(pDevExt);
4158 }
4159
4160 if (pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK)
4161 {
4162 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
4163 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
4164 }
4165
4166 if (pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
4167 {
4168 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
4169 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
4170 }
4171
4172 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
4173}
4174
4175#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
4176
4177/**
4178 * Measure the TSC delta for the CPU given by its CPU set index.
4179 *
4180 * @returns VBox status code.
4181 * @retval VERR_INTERRUPTED if interrupted while waiting.
4182 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED if we were unable to get a
4183 * measurment.
4184 * @retval VERR_CPU_OFFLINE if the specified CPU is offline.
4185 * @retval VERR_CPU_OFFLINE if the specified CPU is offline.
4186 *
4187 * @param pSession The caller's session. GIP must've been mapped.
4188 * @param iCpuSet The CPU set index of the CPU to measure.
4189 * @param fFlags Flags, SUP_TSCDELTA_MEASURE_F_XXX.
4190 * @param cMsWaitRetry Number of milliseconds to wait between each retry.
4191 * @param cMsWaitThread Number of milliseconds to wait for the thread to get
4192 * ready.
4193 * @param cTries Number of times to try, pass 0 for the default.
4194 */
4195SUPR0DECL(int) SUPR0TscDeltaMeasureBySetIndex(PSUPDRVSESSION pSession, uint32_t iCpuSet, uint32_t fFlags,
4196 RTMSINTERVAL cMsWaitRetry, RTMSINTERVAL cMsWaitThread, uint32_t cTries)
4197{
4198 PSUPDRVDEVEXT pDevExt;
4199 PSUPGLOBALINFOPAGE pGip;
4200 uint16_t iGipCpu;
4201 int rc;
4202#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4203 uint64_t msTsStartWait;
4204 uint32_t iWaitLoop;
4205#endif
4206
4207 /*
4208 * Validate and adjust the input.
4209 */
4210 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
4211 if (!pSession->fGipReferenced)
4212 return VERR_WRONG_ORDER;
4213
4214 pDevExt = pSession->pDevExt;
4215 AssertReturn(SUP_IS_DEVEXT_VALID(pDevExt), VERR_INVALID_PARAMETER);
4216
4217 pGip = pDevExt->pGip;
4218 AssertPtrReturn(pGip, VERR_INTERNAL_ERROR_2);
4219
4220 AssertReturn(iCpuSet < RTCPUSET_MAX_CPUS, VERR_INVALID_CPU_INDEX);
4221 AssertReturn(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx), VERR_INVALID_CPU_INDEX);
4222 iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
4223 AssertReturn(iGipCpu < pGip->cCpus, VERR_INVALID_CPU_INDEX);
4224
4225 if (fFlags & ~SUP_TSCDELTA_MEASURE_F_VALID_MASK)
4226 return VERR_INVALID_FLAGS;
4227
4228 if (cTries == 0)
4229 cTries = 12;
4230 else if (cTries > 256)
4231 cTries = 256;
4232
4233 if (cMsWaitRetry == 0)
4234 cMsWaitRetry = 2;
4235 else if (cMsWaitRetry > 1000)
4236 cMsWaitRetry = 1000;
4237
4238 /*
4239 * The request is a noop if the TSC delta isn't being used.
4240 */
4241 if (pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED)
4242 return VINF_SUCCESS;
4243
4244#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4245 /*
4246 * Has the TSC already been measured and we're not forced to redo it?
4247 */
4248 if ( pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX
4249 && !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE))
4250 return VINF_SUCCESS;
4251
4252 /*
4253 * Asynchronous request? Forward it to the thread, no waiting.
4254 */
4255 if (fFlags & SUP_TSCDELTA_MEASURE_F_ASYNC)
4256 {
4257 /** @todo Async. doesn't implement options like retries, waiting. We'll need
4258 * to pass those options to the thread somehow and implement it in the
4259 * thread. Check if anyone uses/needs fAsync before implementing this. */
4260 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4261 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, iCpuSet);
4262 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
4263 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4264 {
4265 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
4266 rc = VINF_SUCCESS;
4267 }
4268 else
4269 rc = VERR_THREAD_IS_DEAD;
4270 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4271 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4272 return VINF_SUCCESS;
4273 }
4274
4275 /*
4276 * If a TSC-delta measurement request is already being serviced by the thread,
4277 * wait 'cTries' times if a retry-timeout is provided, otherwise bail as busy.
4278 */
4279 msTsStartWait = RTTimeSystemMilliTS();
4280 for (iWaitLoop = 0;; iWaitLoop++)
4281 {
4282 uint64_t cMsElapsed;
4283 SUPDRVTSCDELTATHREADSTATE enmState;
4284 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4285 enmState = pDevExt->enmTscDeltaThreadState;
4286 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4287
4288 if (enmState == kTscDeltaThreadState_Measuring)
4289 { /* Must wait, the thread is busy. */ }
4290 else if (enmState == kTscDeltaThreadState_WaitAndMeasure)
4291 { /* Must wait, this state only says what will happen next. */ }
4292 else if (enmState == kTscDeltaThreadState_Terminating)
4293 { /* Must wait, this state only says what should happen next. */ }
4294 else
4295 break; /* All other states, the thread is either idly listening or dead. */
4296
4297 /* Wait or fail. */
4298 if (cMsWaitThread == 0)
4299 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4300 cMsElapsed = RTTimeSystemMilliTS() - msTsStartWait;
4301 if (cMsElapsed >= cMsWaitThread)
4302 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4303
4304 rc = RTThreadSleep(RT_MIN((RTMSINTERVAL)(cMsWaitThread - cMsElapsed), RT_MIN(iWaitLoop + 1, 10)));
4305 if (rc == VERR_INTERRUPTED)
4306 return rc;
4307 }
4308#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
4309
4310 /*
4311 * Try measure the TSC delta the given number of times.
4312 */
4313 for (;;)
4314 {
4315 /* Unless we're forced to measure the delta, check whether it's done already. */
4316 if ( !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE)
4317 && pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX)
4318 {
4319 rc = VINF_SUCCESS;
4320 break;
4321 }
4322
4323 /* Measure it. */
4324 rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
4325 if (rc != VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED)
4326 {
4327 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4328 break;
4329 }
4330
4331 /* Retry? */
4332 if (cTries <= 1)
4333 break;
4334 cTries--;
4335
4336 /* Always delay between retries (be nice to the rest of the system
4337 and avoid the BSOD hounds). */
4338 rc = RTThreadSleep(cMsWaitRetry);
4339 if (rc == VERR_INTERRUPTED)
4340 break;
4341 }
4342
4343 return rc;
4344}
4345
4346
4347/**
4348 * Service a TSC-delta measurement request.
4349 *
4350 * @returns VBox status code.
4351 * @param pDevExt Pointer to the device instance data.
4352 * @param pSession The support driver session.
4353 * @param pReq Pointer to the TSC-delta measurement request.
4354 */
4355int VBOXCALL supdrvIOCtl_TscDeltaMeasure(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCDELTAMEASURE pReq)
4356{
4357 uint32_t cTries;
4358 uint32_t iCpuSet;
4359 uint32_t fFlags;
4360 RTMSINTERVAL cMsWaitRetry;
4361
4362 /*
4363 * Validate and adjust/resolve the input so they can be passed onto SUPR0TscDeltaMeasureBySetIndex.
4364 */
4365 AssertPtr(pDevExt); AssertPtr(pSession); AssertPtr(pReq); /* paranoia^2 */
4366
4367 if (pReq->u.In.idCpu == NIL_RTCPUID)
4368 return VERR_INVALID_CPU_ID;
4369 iCpuSet = RTMpCpuIdToSetIndex(pReq->u.In.idCpu);
4370 if (iCpuSet >= RTCPUSET_MAX_CPUS)
4371 return VERR_INVALID_CPU_ID;
4372
4373 cTries = pReq->u.In.cRetries == 0 ? 0 : (uint32_t)pReq->u.In.cRetries + 1;
4374
4375 cMsWaitRetry = RT_MAX(pReq->u.In.cMsWaitRetry, 5);
4376
4377 fFlags = 0;
4378 if (pReq->u.In.fAsync)
4379 fFlags |= SUP_TSCDELTA_MEASURE_F_ASYNC;
4380 if (pReq->u.In.fForce)
4381 fFlags |= SUP_TSCDELTA_MEASURE_F_FORCE;
4382
4383 return SUPR0TscDeltaMeasureBySetIndex(pSession, iCpuSet, fFlags, cMsWaitRetry,
4384 cTries == 0 ? 5*RT_MS_1SEC : cMsWaitRetry * cTries /*cMsWaitThread*/,
4385 cTries);
4386}
4387
4388
4389/**
4390 * Reads TSC with delta applied.
4391 *
4392 * Will try to resolve delta value INT64_MAX before applying it. This is the
4393 * main purpose of this function, to handle the case where the delta needs to be
4394 * determined.
4395 *
4396 * @returns VBox status code.
4397 * @param pDevExt Pointer to the device instance data.
4398 * @param pSession The support driver session.
4399 * @param pReq Pointer to the TSC-read request.
4400 */
4401int VBOXCALL supdrvIOCtl_TscRead(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCREAD pReq)
4402{
4403 PSUPGLOBALINFOPAGE pGip;
4404 int rc;
4405
4406 /*
4407 * Validate. We require the client to have mapped GIP (no asserting on
4408 * ring-3 preconditions).
4409 */
4410 AssertPtr(pDevExt); AssertPtr(pReq); AssertPtr(pSession); /* paranoia^2 */
4411 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
4412 return VERR_WRONG_ORDER;
4413 pGip = pDevExt->pGip;
4414 AssertReturn(pGip, VERR_INTERNAL_ERROR_2);
4415
4416 /*
4417 * We're usually here because we need to apply delta, but we shouldn't be
4418 * upset if the GIP is some different mode.
4419 */
4420 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
4421 {
4422 uint32_t cTries = 0;
4423 for (;;)
4424 {
4425 /*
4426 * Start by gathering the data, using CLI for disabling preemption
4427 * while we do that.
4428 */
4429 RTCCUINTREG uFlags = ASMIntDisableFlags();
4430 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4431 int iGipCpu;
4432 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4433 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4434 {
4435 int64_t i64Delta = pGip->aCPUs[iGipCpu].i64TSCDelta;
4436 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4437 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4438 ASMSetFlags(uFlags);
4439
4440 /*
4441 * If we're lucky we've got a delta, but no predicitions here
4442 * as this I/O control is normally only used when the TSC delta
4443 * is set to INT64_MAX.
4444 */
4445 if (i64Delta != INT64_MAX)
4446 {
4447 pReq->u.Out.u64AdjustedTsc -= i64Delta;
4448 rc = VINF_SUCCESS;
4449 break;
4450 }
4451
4452 /* Give up after a few times. */
4453 if (cTries >= 4)
4454 {
4455 rc = VWRN_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
4456 break;
4457 }
4458
4459 /* Need to measure the delta an try again. */
4460 rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
4461 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4462 /** @todo should probably delay on failure... dpc watchdogs */
4463 }
4464 else
4465 {
4466 /* This really shouldn't happen. */
4467 AssertMsgFailed(("idCpu=%#x iCpuSet=%#x (%d)\n", RTMpCpuId(), iCpuSet, iCpuSet));
4468 pReq->u.Out.idApic = ASMGetApicId();
4469 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4470 ASMSetFlags(uFlags);
4471 rc = VERR_INTERNAL_ERROR_5; /** @todo change to warning. */
4472 break;
4473 }
4474 }
4475 }
4476 else
4477 {
4478 /*
4479 * No delta to apply. Easy. Deal with preemption the lazy way.
4480 */
4481 RTCCUINTREG uFlags = ASMIntDisableFlags();
4482 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4483 int iGipCpu;
4484 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4485 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4486 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4487 else
4488 pReq->u.Out.idApic = ASMGetApicId();
4489 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4490 ASMSetFlags(uFlags);
4491 rc = VINF_SUCCESS;
4492 }
4493
4494 return rc;
4495}
4496
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette