VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPDrvGip.cpp@ 54453

Last change on this file since 54453 was 54448, checked in by vboxsync, 10 years ago

SUPDrv: Register a power manage notification callback so we can cancel the invariant TSC frequency refinement timer.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 169.6 KB
Line 
1/* $Id: SUPDrvGip.cpp 54448 2015-02-24 14:06:20Z vboxsync $ */
2/** @file
3 * VBoxDrv - The VirtualBox Support Driver - Common code for GIP.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27/*******************************************************************************
28* Header Files *
29*******************************************************************************/
30#define LOG_GROUP LOG_GROUP_SUP_DRV
31#define SUPDRV_AGNOSTIC
32#include "SUPDrvInternal.h"
33#ifndef PAGE_SHIFT
34# include <iprt/param.h>
35#endif
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/asm-math.h>
39#include <iprt/cpuset.h>
40#include <iprt/handletable.h>
41#include <iprt/mem.h>
42#include <iprt/mp.h>
43#include <iprt/power.h>
44#include <iprt/process.h>
45#include <iprt/semaphore.h>
46#include <iprt/spinlock.h>
47#include <iprt/thread.h>
48#include <iprt/uuid.h>
49#include <iprt/net.h>
50#include <iprt/crc.h>
51#include <iprt/string.h>
52#include <iprt/timer.h>
53#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
54# include <iprt/rand.h>
55# include <iprt/path.h>
56#endif
57#include <iprt/uint128.h>
58#include <iprt/x86.h>
59
60#include <VBox/param.h>
61#include <VBox/log.h>
62#include <VBox/err.h>
63
64#if defined(RT_OS_SOLARIS) || defined(RT_OS_DARWIN)
65# include "dtrace/SUPDrv.h"
66#else
67/* ... */
68#endif
69
70
71/*******************************************************************************
72* Defined Constants And Macros *
73*******************************************************************************/
74/** The frequency by which we recalculate the u32UpdateHz and
75 * u32UpdateIntervalNS GIP members. The value must be a power of 2.
76 *
77 * Warning: Bumping this too high might overflow u32UpdateIntervalNS.
78 */
79#define GIP_UPDATEHZ_RECALC_FREQ 0x800
80
81/** A reserved TSC value used for synchronization as well as measurement of
82 * TSC deltas. */
83#define GIP_TSC_DELTA_RSVD UINT64_MAX
84/** The number of TSC delta measurement loops in total (includes primer and
85 * read-time loops). */
86#define GIP_TSC_DELTA_LOOPS 96
87/** The number of cache primer loops. */
88#define GIP_TSC_DELTA_PRIMER_LOOPS 4
89/** The number of loops until we keep computing the minumum read time. */
90#define GIP_TSC_DELTA_READ_TIME_LOOPS 24
91
92/** @name Master / worker synchronization values.
93 * @{ */
94/** Stop measurement of TSC delta. */
95#define GIP_TSC_DELTA_SYNC_STOP UINT32_C(0)
96/** Start measurement of TSC delta. */
97#define GIP_TSC_DELTA_SYNC_START UINT32_C(1)
98/** Worker thread is ready for reading the TSC. */
99#define GIP_TSC_DELTA_SYNC_WORKER_READY UINT32_C(2)
100/** Worker thread is done updating TSC delta info. */
101#define GIP_TSC_DELTA_SYNC_WORKER_DONE UINT32_C(3)
102/** When IPRT is isn't concurrent safe: Master is ready and will wait for worker
103 * with a timeout. */
104#define GIP_TSC_DELTA_SYNC_PRESTART_MASTER UINT32_C(4)
105/** @} */
106
107/** When IPRT is isn't concurrent safe: Worker is ready after waiting for
108 * master with a timeout. */
109#define GIP_TSC_DELTA_SYNC_PRESTART_WORKER 5
110/** The TSC-refinement interval in seconds. */
111#define GIP_TSC_REFINE_PERIOD_IN_SECS 5
112/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_PRACTICALLY_ZERO rating */
113#define GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO 32
114/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_ROUGHLY_ZERO rating */
115#define GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO 448
116/** The TSC delta value for the initial GIP master - 0 in regular builds.
117 * To test the delta code this can be set to a non-zero value. */
118#if 0
119# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(170139095182512) /* 0x00009abd9854acb0 */
120#else
121# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(0)
122#endif
123
124AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS < GIP_TSC_DELTA_READ_TIME_LOOPS);
125AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS < GIP_TSC_DELTA_LOOPS);
126
127/** @def VBOX_SVN_REV
128 * The makefile should define this if it can. */
129#ifndef VBOX_SVN_REV
130# define VBOX_SVN_REV 0
131#endif
132
133#if 0 /* Don't start the GIP timers. Useful when debugging the IPRT timer code. */
134# define DO_NOT_START_GIP
135#endif
136
137
138/*******************************************************************************
139* Internal Functions *
140*******************************************************************************/
141static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
142static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
143static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz);
144#ifdef SUPDRV_USE_TSC_DELTA_THREAD
145static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt);
146static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt);
147static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt);
148#else
149static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt);
150static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker);
151#endif
152
153
154/*******************************************************************************
155* Global Variables *
156*******************************************************************************/
157DECLEXPORT(PSUPGLOBALINFOPAGE) g_pSUPGlobalInfoPage = NULL;
158
159
160
161/*
162 *
163 * Misc Common GIP Code
164 * Misc Common GIP Code
165 * Misc Common GIP Code
166 *
167 *
168 */
169
170
171/**
172 * Finds the GIP CPU index corresponding to @a idCpu.
173 *
174 * @returns GIP CPU array index, UINT32_MAX if not found.
175 * @param pGip The GIP.
176 * @param idCpu The CPU ID.
177 */
178static uint32_t supdrvGipFindCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
179{
180 uint32_t i;
181 for (i = 0; i < pGip->cCpus; i++)
182 if (pGip->aCPUs[i].idCpu == idCpu)
183 return i;
184 return UINT32_MAX;
185}
186
187
188
189/*
190 *
191 * GIP Mapping and Unmapping Related Code.
192 * GIP Mapping and Unmapping Related Code.
193 * GIP Mapping and Unmapping Related Code.
194 *
195 *
196 */
197
198
199/**
200 * (Re-)initializes the per-cpu structure prior to starting or resuming the GIP
201 * updating.
202 *
203 * @param pGip Pointer to the GIP.
204 * @param pGipCpu The per CPU structure for this CPU.
205 * @param u64NanoTS The current time.
206 */
207static void supdrvGipReInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS)
208{
209 /*
210 * Here we don't really care about applying the TSC delta. The re-initialization of this
211 * value is not relevant especially while (re)starting the GIP as the first few ones will
212 * be ignored anyway, see supdrvGipDoUpdateCpu().
213 */
214 pGipCpu->u64TSC = ASMReadTSC() - pGipCpu->u32UpdateIntervalTSC;
215 pGipCpu->u64NanoTS = u64NanoTS;
216}
217
218
219/**
220 * Set the current TSC and NanoTS value for the CPU.
221 *
222 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
223 * @param pvUser1 Pointer to the ring-0 GIP mapping.
224 * @param pvUser2 Pointer to the variable holding the current time.
225 */
226static DECLCALLBACK(void) supdrvGipReInitCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
227{
228 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser1;
229 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
230
231 if (RT_LIKELY(iCpu < pGip->cCpus && pGip->aCPUs[iCpu].idCpu == idCpu))
232 supdrvGipReInitCpu(pGip, &pGip->aCPUs[iCpu], *(uint64_t *)pvUser2);
233
234 NOREF(pvUser2);
235 NOREF(idCpu);
236}
237
238
239/**
240 * State structure for supdrvGipDetectGetGipCpuCallback.
241 */
242typedef struct SUPDRVGIPDETECTGETCPU
243{
244 /** Bitmap of APIC IDs that has been seen (initialized to zero).
245 * Used to detect duplicate APIC IDs (paranoia). */
246 uint8_t volatile bmApicId[256 / 8];
247 /** Mask of supported GIP CPU getter methods (SUPGIPGETCPU_XXX) (all bits set
248 * initially). The callback clears the methods not detected. */
249 uint32_t volatile fSupported;
250 /** The first callback detecting any kind of range issues (initialized to
251 * NIL_RTCPUID). */
252 RTCPUID volatile idCpuProblem;
253} SUPDRVGIPDETECTGETCPU;
254/** Pointer to state structure for supdrvGipDetectGetGipCpuCallback. */
255typedef SUPDRVGIPDETECTGETCPU *PSUPDRVGIPDETECTGETCPU;
256
257
258/**
259 * Checks for alternative ways of getting the CPU ID.
260 *
261 * This also checks the APIC ID, CPU ID and CPU set index values against the
262 * GIP tables.
263 *
264 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
265 * @param pvUser1 Pointer to the state structure.
266 * @param pvUser2 Pointer to the GIP.
267 */
268static DECLCALLBACK(void) supdrvGipDetectGetGipCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
269{
270 PSUPDRVGIPDETECTGETCPU pState = (PSUPDRVGIPDETECTGETCPU)pvUser1;
271 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser2;
272 uint32_t fSupported = 0;
273 uint16_t idApic;
274 int iCpuSet;
275
276 AssertMsg(idCpu == RTMpCpuId(), ("idCpu=%#x RTMpCpuId()=%#x\n", idCpu, RTMpCpuId())); /* paranoia^3 */
277
278 /*
279 * Check that the CPU ID and CPU set index are interchangable.
280 */
281 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
282 if ((RTCPUID)iCpuSet == idCpu)
283 {
284 AssertCompile(RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS));
285 if ( iCpuSet >= 0
286 && iCpuSet < RTCPUSET_MAX_CPUS
287 && RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS))
288 {
289 /*
290 * Check whether the IDTR.LIMIT contains a CPU number.
291 */
292#ifdef RT_ARCH_X86
293 uint16_t const cbIdt = sizeof(X86DESC64SYSTEM) * 256;
294#else
295 uint16_t const cbIdt = sizeof(X86DESCGATE) * 256;
296#endif
297 RTIDTR Idtr;
298 ASMGetIDTR(&Idtr);
299 if (Idtr.cbIdt >= cbIdt)
300 {
301 uint32_t uTmp = Idtr.cbIdt - cbIdt;
302 uTmp &= RTCPUSET_MAX_CPUS - 1;
303 if (uTmp == idCpu)
304 {
305 RTIDTR Idtr2;
306 ASMGetIDTR(&Idtr2);
307 if (Idtr2.cbIdt == Idtr.cbIdt)
308 fSupported |= SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS;
309 }
310 }
311
312 /*
313 * Check whether RDTSCP is an option.
314 */
315 if (ASMHasCpuId())
316 {
317 if ( ASMIsValidExtRange(ASMCpuId_EAX(UINT32_C(0x80000000)))
318 && (ASMCpuId_EDX(UINT32_C(0x80000001)) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) )
319 {
320 uint32_t uAux;
321 ASMReadTscWithAux(&uAux);
322 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
323 {
324 ASMNopPause();
325 ASMReadTscWithAux(&uAux);
326 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
327 fSupported |= SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS;
328 }
329 }
330 }
331 }
332 }
333
334 /*
335 * Check that the APIC ID is unique.
336 */
337 idApic = ASMGetApicId();
338 if (RT_LIKELY( idApic < RT_ELEMENTS(pGip->aiCpuFromApicId)
339 && !ASMAtomicBitTestAndSet(pState->bmApicId, idApic)))
340 fSupported |= SUPGIPGETCPU_APIC_ID;
341 else
342 {
343 AssertCompile(sizeof(pState->bmApicId) * 8 == RT_ELEMENTS(pGip->aiCpuFromApicId));
344 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
345 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - duplicate APIC ID.\n",
346 idCpu, iCpuSet, idApic));
347 }
348
349 /*
350 * Check that the iCpuSet is within the expected range.
351 */
352 if (RT_UNLIKELY( iCpuSet < 0
353 || (unsigned)iCpuSet >= RTCPUSET_MAX_CPUS
354 || (unsigned)iCpuSet >= RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)))
355 {
356 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
357 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU set index is out of range.\n",
358 idCpu, iCpuSet, idApic));
359 }
360 else
361 {
362 RTCPUID idCpu2 = RTMpCpuIdFromSetIndex(iCpuSet);
363 if (RT_UNLIKELY(idCpu2 != idCpu))
364 {
365 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
366 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU id/index roundtrip problem: %#x\n",
367 idCpu, iCpuSet, idApic, idCpu2));
368 }
369 }
370
371 /*
372 * Update the supported feature mask before we return.
373 */
374 ASMAtomicAndU32(&pState->fSupported, fSupported);
375
376 NOREF(pvUser2);
377}
378
379
380/**
381 * Increase the timer freqency on hosts where this is possible (NT).
382 *
383 * The idea is that more interrupts is better for us... Also, it's better than
384 * we increase the timer frequence, because we might end up getting inaccurate
385 * callbacks if someone else does it.
386 *
387 * @param pDevExt Sets u32SystemTimerGranularityGrant if increased.
388 */
389static void supdrvGipRequestHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
390{
391 if (pDevExt->u32SystemTimerGranularityGrant == 0)
392 {
393 uint32_t u32SystemResolution;
394 if ( RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
395 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
396 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution))
397 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution))
398 )
399 {
400 Assert(RTTimerGetSystemGranularity() <= u32SystemResolution);
401 pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
402 }
403 }
404}
405
406
407/**
408 * Undoes supdrvGipRequestHigherTimerFrequencyFromSystem.
409 *
410 * @param pDevExt Clears u32SystemTimerGranularityGrant.
411 */
412static void supdrvGipReleaseHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
413{
414 if (pDevExt->u32SystemTimerGranularityGrant)
415 {
416 int rc2 = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant);
417 AssertRC(rc2);
418 pDevExt->u32SystemTimerGranularityGrant = 0;
419 }
420}
421
422
423/**
424 * Maps the GIP into userspace and/or get the physical address of the GIP.
425 *
426 * @returns IPRT status code.
427 * @param pSession Session to which the GIP mapping should belong.
428 * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional)
429 * @param pHCPhysGip Where to store the physical address. (optional)
430 *
431 * @remark There is no reference counting on the mapping, so one call to this function
432 * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
433 * and remove the session as a GIP user.
434 */
435SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip)
436{
437 int rc;
438 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
439 RTR3PTR pGipR3 = NIL_RTR3PTR;
440 RTHCPHYS HCPhys = NIL_RTHCPHYS;
441 LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip));
442
443 /*
444 * Validate
445 */
446 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
447 AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER);
448 AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER);
449
450#ifdef SUPDRV_USE_MUTEX_FOR_GIP
451 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
452#else
453 RTSemFastMutexRequest(pDevExt->mtxGip);
454#endif
455 if (pDevExt->pGip)
456 {
457 /*
458 * Map it?
459 */
460 rc = VINF_SUCCESS;
461 if (ppGipR3)
462 {
463 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
464 rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0,
465 RTMEM_PROT_READ, RTR0ProcHandleSelf());
466 if (RT_SUCCESS(rc))
467 pGipR3 = RTR0MemObjAddressR3(pSession->GipMapObjR3);
468 }
469
470 /*
471 * Get physical address.
472 */
473 if (pHCPhysGip && RT_SUCCESS(rc))
474 HCPhys = pDevExt->HCPhysGip;
475
476 /*
477 * Reference globally.
478 */
479 if (!pSession->fGipReferenced && RT_SUCCESS(rc))
480 {
481 pSession->fGipReferenced = 1;
482 pDevExt->cGipUsers++;
483 if (pDevExt->cGipUsers == 1)
484 {
485 PSUPGLOBALINFOPAGE pGipR0 = pDevExt->pGip;
486 uint64_t u64NanoTS;
487
488 /*
489 * GIP starts/resumes updating again. On windows we bump the
490 * host timer frequency to make sure we don't get stuck in guest
491 * mode and to get better timer (and possibly clock) accuracy.
492 */
493 LogFlow(("SUPR0GipMap: Resumes GIP updating\n"));
494
495 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
496
497 /*
498 * document me
499 */
500 if (pGipR0->aCPUs[0].u32TransactionId != 2 /* not the first time */)
501 {
502 unsigned i;
503 for (i = 0; i < pGipR0->cCpus; i++)
504 ASMAtomicUoWriteU32(&pGipR0->aCPUs[i].u32TransactionId,
505 (pGipR0->aCPUs[i].u32TransactionId + GIP_UPDATEHZ_RECALC_FREQ * 2)
506 & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
507 ASMAtomicWriteU64(&pGipR0->u64NanoTSLastUpdateHz, 0);
508 }
509
510 /*
511 * document me
512 */
513 u64NanoTS = RTTimeSystemNanoTS() - pGipR0->u32UpdateIntervalNS;
514 if ( pGipR0->u32Mode == SUPGIPMODE_INVARIANT_TSC
515 || pGipR0->u32Mode == SUPGIPMODE_SYNC_TSC
516 || RTMpGetOnlineCount() == 1)
517 supdrvGipReInitCpu(pGipR0, &pGipR0->aCPUs[0], u64NanoTS);
518 else
519 RTMpOnAll(supdrvGipReInitCpuCallback, pGipR0, &u64NanoTS);
520
521 /*
522 * Detect alternative ways to figure the CPU ID in ring-3 and
523 * raw-mode context. Check the sanity of the APIC IDs, CPU IDs,
524 * and CPU set indexes while we're at it.
525 */
526 if (RT_SUCCESS(rc))
527 {
528 SUPDRVGIPDETECTGETCPU DetectState;
529 RT_BZERO((void *)&DetectState.bmApicId, sizeof(DetectState.bmApicId));
530 DetectState.fSupported = UINT32_MAX;
531 DetectState.idCpuProblem = NIL_RTCPUID;
532 rc = RTMpOnAll(supdrvGipDetectGetGipCpuCallback, &DetectState, pGipR0);
533 if (DetectState.idCpuProblem == NIL_RTCPUID)
534 {
535 if ( DetectState.fSupported != UINT32_MAX
536 && DetectState.fSupported != 0)
537 {
538 if (pGipR0->fGetGipCpu != DetectState.fSupported)
539 {
540 pGipR0->fGetGipCpu = DetectState.fSupported;
541 LogRel(("SUPR0GipMap: fGetGipCpu=%#x\n", DetectState.fSupported));
542 }
543 }
544 else
545 {
546 LogRel(("SUPR0GipMap: No supported ways of getting the APIC ID or CPU number in ring-3! (%#x)\n",
547 DetectState.fSupported));
548 rc = VERR_UNSUPPORTED_CPU;
549 }
550 }
551 else
552 {
553 LogRel(("SUPR0GipMap: APIC ID, CPU ID or CPU set index problem detected on CPU #%u (%#x)!\n",
554 DetectState.idCpuProblem, DetectState.idCpuProblem));
555 rc = VERR_INVALID_CPU_ID;
556 }
557 }
558
559 /*
560 * Start the GIP timer if all is well..
561 */
562 if (RT_SUCCESS(rc))
563 {
564#ifndef DO_NOT_START_GIP
565 rc = RTTimerStart(pDevExt->pGipTimer, 0 /* fire ASAP */); AssertRC(rc);
566#endif
567 rc = VINF_SUCCESS;
568 }
569
570 /*
571 * Bail out on error.
572 */
573 if (RT_FAILURE(rc))
574 {
575 LogRel(("SUPR0GipMap: failed rc=%Rrc\n", rc));
576 pDevExt->cGipUsers = 0;
577 pSession->fGipReferenced = 0;
578 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
579 {
580 int rc2 = RTR0MemObjFree(pSession->GipMapObjR3, false); AssertRC(rc2);
581 if (RT_SUCCESS(rc2))
582 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
583 }
584 HCPhys = NIL_RTHCPHYS;
585 pGipR3 = NIL_RTR3PTR;
586 }
587 }
588 }
589 }
590 else
591 {
592 rc = VERR_GENERAL_FAILURE;
593 Log(("SUPR0GipMap: GIP is not available!\n"));
594 }
595#ifdef SUPDRV_USE_MUTEX_FOR_GIP
596 RTSemMutexRelease(pDevExt->mtxGip);
597#else
598 RTSemFastMutexRelease(pDevExt->mtxGip);
599#endif
600
601 /*
602 * Write returns.
603 */
604 if (pHCPhysGip)
605 *pHCPhysGip = HCPhys;
606 if (ppGipR3)
607 *ppGipR3 = pGipR3;
608
609#ifdef DEBUG_DARWIN_GIP
610 OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
611#else
612 LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
613#endif
614 return rc;
615}
616
617
618/**
619 * Unmaps any user mapping of the GIP and terminates all GIP access
620 * from this session.
621 *
622 * @returns IPRT status code.
623 * @param pSession Session to which the GIP mapping should belong.
624 */
625SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
626{
627 int rc = VINF_SUCCESS;
628 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
629#ifdef DEBUG_DARWIN_GIP
630 OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n",
631 pSession,
632 pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL,
633 pSession->GipMapObjR3));
634#else
635 LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession));
636#endif
637 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
638
639#ifdef SUPDRV_USE_MUTEX_FOR_GIP
640 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
641#else
642 RTSemFastMutexRequest(pDevExt->mtxGip);
643#endif
644
645 /*
646 * Unmap anything?
647 */
648 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
649 {
650 rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
651 AssertRC(rc);
652 if (RT_SUCCESS(rc))
653 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
654 }
655
656 /*
657 * Dereference global GIP.
658 */
659 if (pSession->fGipReferenced && !rc)
660 {
661 pSession->fGipReferenced = 0;
662 if ( pDevExt->cGipUsers > 0
663 && !--pDevExt->cGipUsers)
664 {
665 LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n"));
666#ifndef DO_NOT_START_GIP
667 rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS;
668#endif
669 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
670 }
671 }
672
673#ifdef SUPDRV_USE_MUTEX_FOR_GIP
674 RTSemMutexRelease(pDevExt->mtxGip);
675#else
676 RTSemFastMutexRelease(pDevExt->mtxGip);
677#endif
678
679 return rc;
680}
681
682
683/**
684 * Gets the GIP pointer.
685 *
686 * @returns Pointer to the GIP or NULL.
687 */
688SUPDECL(PSUPGLOBALINFOPAGE) SUPGetGIP(void)
689{
690 return g_pSUPGlobalInfoPage;
691}
692
693
694
695
696
697/*
698 *
699 *
700 * GIP Initialization, Termination and CPU Offline / Online Related Code.
701 * GIP Initialization, Termination and CPU Offline / Online Related Code.
702 * GIP Initialization, Termination and CPU Offline / Online Related Code.
703 *
704 *
705 */
706
707/**
708 * Used by supdrvInitRefineInvariantTscFreqTimer and supdrvGipInitMeasureTscFreq
709 * to update the TSC frequency related GIP variables.
710 *
711 * @param pGip The GIP.
712 * @param nsElapsed The number of nano seconds elapsed.
713 * @param cElapsedTscTicks The corresponding number of TSC ticks.
714 * @param iTick The tick number for debugging.
715 */
716static void supdrvGipInitSetCpuFreq(PSUPGLOBALINFOPAGE pGip, uint64_t nsElapsed, uint64_t cElapsedTscTicks, uint32_t iTick)
717{
718 /*
719 * Calculate the frequency.
720 */
721 uint64_t uCpuHz;
722 if ( cElapsedTscTicks < UINT64_MAX / RT_NS_1SEC
723 && nsElapsed < UINT32_MAX)
724 uCpuHz = ASMMultU64ByU32DivByU32(cElapsedTscTicks, RT_NS_1SEC, (uint32_t)nsElapsed);
725 else
726 {
727 RTUINT128U CpuHz, Tmp, Divisor;
728 CpuHz.s.Lo = CpuHz.s.Hi = 0;
729 RTUInt128MulU64ByU64(&Tmp, cElapsedTscTicks, RT_NS_1SEC_64);
730 RTUInt128Div(&CpuHz, &Tmp, RTUInt128AssignU64(&Divisor, nsElapsed));
731 uCpuHz = CpuHz.s.Lo;
732 }
733
734 /*
735 * Update the GIP.
736 */
737 ASMAtomicWriteU64(&pGip->u64CpuHz, uCpuHz);
738 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
739 {
740 ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, uCpuHz);
741
742 /* For inspecting the frequency calcs using tstGIP-2, debugger or similar. */
743 if (iTick + 1 < pGip->cCpus)
744 ASMAtomicWriteU64(&pGip->aCPUs[iTick + 1].u64CpuHz, uCpuHz);
745 }
746}
747
748
749/**
750 * Timer callback function for TSC frequency refinement in invariant GIP mode.
751 *
752 * This is started during driver init and fires once
753 * GIP_TSC_REFINE_PERIOD_IN_SECS seconds later.
754 *
755 * @param pTimer The timer.
756 * @param pvUser Opaque pointer to the device instance data.
757 * @param iTick The timer tick.
758 */
759static DECLCALLBACK(void) supdrvInitRefineInvariantTscFreqTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
760{
761 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
762 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
763 RTCPUID idCpu;
764 uint64_t cNsElapsed;
765 uint64_t cTscTicksElapsed;
766 uint64_t nsNow;
767 uint64_t uTsc;
768 RTCCUINTREG uFlags;
769
770 /* Paranoia. */
771 AssertReturnVoid(pGip);
772 AssertReturnVoid(pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC);
773
774 /*
775 * If we got a power event, stop the refinement process.
776 */
777 if (pDevExt->fInvTscRefinePowerEvent)
778 {
779 int rc = RTTimerStop(pTimer); AssertRC(rc);
780 return;
781 }
782
783 /*
784 * Try get close to the next clock tick as usual.
785 *
786 * PORTME: If timers are called from the clock interrupt handler, or
787 * an interrupt handler with higher priority than the clock
788 * interrupt, or spinning for ages in timer handlers is frowned
789 * upon, this loop must be disabled!
790 *
791 * Darwin, FreeBSD, Linux, Solaris, Windows 8.1+:
792 * High RTTimeSystemNanoTS resolution should prevent any noticable
793 * spinning her.
794 *
795 * Windows 8.0 and earlier:
796 * We're running in a DPC here, so we may trigger the DPC watchdog?
797 *
798 * OS/2:
799 * Timer callbacks are done in the clock interrupt, so skip it.
800 */
801#if !defined(RT_OS_OS2)
802 nsNow = RTTimeSystemNanoTS();
803 while (RTTimeSystemNanoTS() == nsNow)
804 ASMNopPause();
805#endif
806
807 uFlags = ASMIntDisableFlags();
808 uTsc = ASMReadTSC();
809 nsNow = RTTimeSystemNanoTS();
810 idCpu = RTMpCpuId();
811 ASMSetFlags(uFlags);
812
813 cNsElapsed = nsNow - pDevExt->nsStartInvarTscRefine;
814 cTscTicksElapsed = uTsc - pDevExt->uTscStartInvarTscRefine;
815
816 /*
817 * If the above measurement was taken on a different CPU than the one we
818 * started the process on, cTscTicksElapsed will need to be adjusted with
819 * the TSC deltas of both the CPUs.
820 *
821 * We ASSUME that the delta calculation process takes less time than the
822 * TSC frequency refinement timer. If it doesn't, we'll complain and
823 * drop the frequency refinement.
824 *
825 * Note! We cannot entirely trust enmUseTscDelta here because it's
826 * downgraded after each delta calculation.
827 */
828 if ( idCpu != pDevExt->idCpuInvarTscRefine
829 && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
830 {
831 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine);
832 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpu);
833 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
834 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
835 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
836 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
837 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
838 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
839 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX))
840 {
841 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
842 {
843 /* cTscTicksElapsed = (uTsc - iStopTscDelta) - (pDevExt->uTscStartInvarTscRefine - iStartTscDelta); */
844 cTscTicksElapsed += iStartTscDelta - iStopTscDelta;
845 }
846 }
847 /*
848 * Allow 5 times the refinement period to elapse before we give up on the TSC delta
849 * calculations.
850 */
851 else if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * 5 * RT_NS_1SEC_64)
852 {
853 SUPR0Printf("vboxdrv: Failed to refine invariant TSC frequency because deltas are unavailable after %u (%u) seconds\n",
854 (uint32_t)(cNsElapsed / RT_NS_1SEC), GIP_TSC_REFINE_PERIOD_IN_SECS);
855 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
856 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
857 int rc = RTTimerStop(pTimer); AssertRC(rc);
858 return;
859 }
860 }
861
862 /*
863 * Calculate and update the CPU frequency variables in GIP.
864 *
865 * If there is a GIP user already and we've already refined the frequency
866 * a couple of times, don't update it as we want a stable frequency value
867 * for all VMs.
868 */
869 if ( pDevExt->cGipUsers == 0
870 || cNsElapsed < RT_NS_1SEC * 2)
871 {
872 supdrvGipInitSetCpuFreq(pGip, cNsElapsed, cTscTicksElapsed, iTick);
873
874 /*
875 * Stop the timer once we've reached the defined refinement period.
876 */
877 if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * RT_NS_1SEC_64)
878 {
879 int rc = RTTimerStop(pTimer);
880 AssertRC(rc);
881 }
882 }
883 else
884 {
885 int rc = RTTimerStop(pTimer);
886 AssertRC(rc);
887 }
888}
889
890
891/**
892 * @callback_method_impl{FNRTPOWERNOTIFICATION}
893 */
894static DECLCALLBACK(void) supdrvGipPowerNotificationCallback(RTPOWEREVENT enmEvent, void *pvUser)
895{
896 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
897
898 /*
899 * If the TSC frequency refinement timer we need to cancel it so it doesn't screw
900 * up the frequency after a long suspend.
901 */
902 if ( enmEvent == RTPOWEREVENT_SUSPEND
903 || enmEvent == RTPOWEREVENT_RESUME)
904 ASMAtomicWriteBool(&pDevExt->fInvTscRefinePowerEvent, true);
905}
906
907
908/**
909 * Start the TSC-frequency refinment timer for the invariant TSC GIP mode.
910 *
911 * We cannot use this in the synchronous and asynchronous tsc GIP modes because
912 * the CPU may change the TSC frequence between now and when the timer fires
913 * (supdrvInitAsyncRefineTscTimer).
914 *
915 * @param pDevExt Pointer to the device instance data.
916 * @param pGip Pointer to the GIP.
917 */
918static void supdrvGipInitStartTimerForRefiningInvariantTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip)
919{
920 uint64_t u64NanoTS;
921 RTCCUINTREG uFlags;
922 int rc;
923
924 /*
925 * Register a power management callback.
926 */
927 pDevExt->fInvTscRefinePowerEvent = true;
928 rc = RTPowerNotificationRegister(supdrvGipPowerNotificationCallback, pDevExt);
929 AssertRC(rc); /* ignore */
930
931 /*
932 * Record the TSC and NanoTS as the starting anchor point for refinement
933 * of the TSC. We try get as close to a clock tick as possible on systems
934 * which does not provide high resolution time.
935 */
936 u64NanoTS = RTTimeSystemNanoTS();
937 while (RTTimeSystemNanoTS() == u64NanoTS)
938 ASMNopPause();
939
940 uFlags = ASMIntDisableFlags();
941 pDevExt->uTscStartInvarTscRefine = ASMReadTSC();
942 pDevExt->nsStartInvarTscRefine = RTTimeSystemNanoTS();
943 pDevExt->idCpuInvarTscRefine = RTMpCpuId();
944 ASMSetFlags(uFlags);
945
946/** @todo we need a power management callback that disables the timer if the
947 * system suspends/resumes. */
948
949 /*
950 * Create a timer that runs on the same CPU so we won't have a depencency
951 * on the TSC-delta and can run in parallel to it. On systems that does not
952 * implement CPU specific timers we'll apply deltas in the timer callback,
953 * just like we do for CPUs going offline.
954 *
955 * The longer the refinement interval the better the accuracy, at least in
956 * theory. If it's too long though, ring-3 may already be starting its
957 * first VMs before we're done. On most systems we will be loading the
958 * support driver during boot and VMs won't be started for a while yet,
959 * it is really only a problem during development (especially with
960 * on-demand driver starting on windows).
961 *
962 * To avoid wasting time doing a long supdrvGipInitMeasureTscFreq() call
963 * to calculate the frequency during driver loading, the timer is set
964 * to fire after 200 ms the first time. It will then reschedule itself
965 * to fire every second until GIP_TSC_REFINE_PERIOD_IN_SECS has been
966 * reached or it notices that there is a user land client with GIP
967 * mapped (we want a stable frequency for all VMs).
968 */
969 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC,
970 RTTIMER_FLAGS_CPU(RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine)),
971 supdrvInitRefineInvariantTscFreqTimer, pDevExt);
972 if (RT_SUCCESS(rc))
973 {
974 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
975 if (RT_SUCCESS(rc))
976 return;
977 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
978 }
979
980 if (rc == VERR_CPU_OFFLINE || rc == VERR_NOT_SUPPORTED)
981 {
982 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC, RTTIMER_FLAGS_CPU_ANY,
983 supdrvInitRefineInvariantTscFreqTimer, pDevExt);
984 if (RT_SUCCESS(rc))
985 {
986 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
987 if (RT_SUCCESS(rc))
988 return;
989 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
990 }
991 }
992
993 pDevExt->pInvarTscRefineTimer = NULL;
994 OSDBGPRINT(("vboxdrv: Failed to create or start TSC frequency refinement timer: rc=%Rrc\n", rc));
995}
996
997
998/**
999 * @callback_method_impl{PFNRTMPWORKER,
1000 * RTMpOnSpecific callback for reading TSC and time on the CPU we started
1001 * the measurements on.}
1002 */
1003DECLCALLBACK(void) supdrvGipInitReadTscAndNanoTsOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1004{
1005 RTCCUINTREG uFlags = ASMIntDisableFlags();
1006 uint64_t *puTscStop = (uint64_t *)pvUser1;
1007 uint64_t *pnsStop = (uint64_t *)pvUser2;
1008
1009 *puTscStop = ASMReadTSC();
1010 *pnsStop = RTTimeSystemNanoTS();
1011
1012 ASMSetFlags(uFlags);
1013}
1014
1015
1016/**
1017 * Measures the TSC frequency of the system.
1018 *
1019 * The TSC frequency can vary on systems which are not reported as invariant.
1020 * On such systems the object of this function is to find out what the nominal,
1021 * maximum TSC frequency under 'normal' CPU operation.
1022 *
1023 * @returns VBox status code.
1024 * @param pDevExt Pointer to the device instance.
1025 * @param pGip Pointer to the GIP.
1026 * @param fRough Set if we're doing the rough calculation that the
1027 * TSC measuring code needs, where accuracy isn't all
1028 * that important (too high is better than to low).
1029 * When clear we try for best accuracy that we can
1030 * achieve in reasonably short time.
1031 */
1032static int supdrvGipInitMeasureTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, bool fRough)
1033{
1034 uint32_t nsTimerIncr = RTTimerGetSystemGranularity();
1035 int cTriesLeft = fRough ? 4 : 2;
1036 while (cTriesLeft-- > 0)
1037 {
1038 RTCCUINTREG uFlags;
1039 uint64_t nsStart;
1040 uint64_t nsStop;
1041 uint64_t uTscStart;
1042 uint64_t uTscStop;
1043 RTCPUID idCpuStart;
1044 RTCPUID idCpuStop;
1045
1046 /*
1047 * Synchronize with the host OS clock tick on systems without high
1048 * resolution time API (older Windows version for example).
1049 */
1050 nsStart = RTTimeSystemNanoTS();
1051 while (RTTimeSystemNanoTS() == nsStart)
1052 ASMNopPause();
1053
1054 /*
1055 * Read the TSC and current time, noting which CPU we're on.
1056 */
1057 uFlags = ASMIntDisableFlags();
1058 uTscStart = ASMReadTSC();
1059 nsStart = RTTimeSystemNanoTS();
1060 idCpuStart = RTMpCpuId();
1061 ASMSetFlags(uFlags);
1062
1063 /*
1064 * Delay for a while.
1065 */
1066 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1067 {
1068 /*
1069 * Sleep-wait since the TSC frequency is constant, it eases host load.
1070 * Shorter interval produces more variance in the frequency (esp. Windows).
1071 */
1072 uint64_t msElapsed = 0;
1073 uint64_t msDelay = ( ((fRough ? 16 : 200) * RT_NS_1MS + nsTimerIncr - 1) / nsTimerIncr * nsTimerIncr - RT_NS_100US )
1074 / RT_NS_1MS;
1075 do
1076 {
1077 RTThreadSleep((RTMSINTERVAL)(msDelay - msElapsed));
1078 nsStop = RTTimeSystemNanoTS();
1079 msElapsed = (nsStop - nsStart) / RT_NS_1MS;
1080 } while (msElapsed < msDelay);
1081
1082 while (RTTimeSystemNanoTS() == nsStop)
1083 ASMNopPause();
1084 }
1085 else
1086 {
1087 /*
1088 * Busy-wait keeping the frequency up.
1089 */
1090 do
1091 {
1092 ASMNopPause();
1093 nsStop = RTTimeSystemNanoTS();
1094 } while (nsStop - nsStart < RT_NS_100MS);
1095 }
1096
1097 /*
1098 * Read the TSC and time again.
1099 */
1100 uFlags = ASMIntDisableFlags();
1101 uTscStop = ASMReadTSC();
1102 nsStop = RTTimeSystemNanoTS();
1103 idCpuStop = RTMpCpuId();
1104 ASMSetFlags(uFlags);
1105
1106 /*
1107 * If the CPU changes things get a bit complicated and what we
1108 * can get away with depends on the GIP mode / TSC reliablity.
1109 */
1110 if (idCpuStop != idCpuStart)
1111 {
1112 bool fDoXCall = false;
1113
1114 /*
1115 * Synchronous TSC mode: we're probably fine as it's unlikely
1116 * that we were rescheduled because of TSC throttling or power
1117 * management reasons, so just go ahead.
1118 */
1119 if (pGip->u32Mode == SUPGIPMODE_SYNC_TSC)
1120 {
1121 /* Probably ok, maybe we should retry once?. */
1122 Assert(pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_NOT_APPLICABLE);
1123 }
1124 /*
1125 * If we're just doing the rough measurement, do the cross call and
1126 * get on with things (we don't have deltas!).
1127 */
1128 else if (fRough)
1129 fDoXCall = true;
1130 /*
1131 * Invariant TSC mode: It doesn't matter if we have delta available
1132 * for both CPUs. That is not something we can assume at this point.
1133 *
1134 * Note! We cannot necessarily trust enmUseTscDelta here because it's
1135 * downgraded after each delta calculation and the delta
1136 * calculations may not be complete yet.
1137 */
1138 else if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1139 {
1140/** @todo This section of code is never reached atm, consider dropping it later on... */
1141 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1142 {
1143 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(idCpuStart);
1144 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpuStop);
1145 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1146 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
1147 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1148 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
1149 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
1150 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
1151 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX))
1152 {
1153 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
1154 {
1155 uTscStart -= iStartTscDelta;
1156 uTscStop -= iStopTscDelta;
1157 }
1158 }
1159 /*
1160 * Invalid CPU indexes are not caused by online/offline races, so
1161 * we have to trigger driver load failure if that happens as GIP
1162 * and IPRT assumptions are busted on this system.
1163 */
1164 else if (iStopGipCpu >= pGip->cCpus || iStartGipCpu >= pGip->cCpus)
1165 {
1166 SUPR0Printf("vboxdrv: Unexpected CPU index in supdrvGipInitMeasureTscFreq.\n");
1167 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
1168 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
1169 return VERR_INVALID_CPU_INDEX;
1170 }
1171 /*
1172 * No valid deltas. We retry, if we're on our last retry
1173 * we do the cross call instead just to get a result. The
1174 * frequency will be refined in a few seconds anyways.
1175 */
1176 else if (cTriesLeft > 0)
1177 continue;
1178 else
1179 fDoXCall = true;
1180 }
1181 }
1182 /*
1183 * Asynchronous TSC mode: This is bad as the reason we usually
1184 * use this mode is to deal with variable TSC frequencies and
1185 * deltas. So, we need to get the TSC from the same CPU as
1186 * started it, we also need to keep that CPU busy. So, retry
1187 * and fall back to the cross call on the last attempt.
1188 */
1189 else
1190 {
1191 Assert(pGip->u32Mode == SUPGIPMODE_ASYNC_TSC);
1192 if (cTriesLeft > 0)
1193 continue;
1194 fDoXCall = true;
1195 }
1196
1197 if (fDoXCall)
1198 {
1199 /*
1200 * Try read the TSC and timestamp on the start CPU.
1201 */
1202 int rc = RTMpOnSpecific(idCpuStart, supdrvGipInitReadTscAndNanoTsOnCpu, &uTscStop, &nsStop);
1203 if (RT_FAILURE(rc) && (!fRough || cTriesLeft > 0))
1204 continue;
1205 }
1206 }
1207
1208 /*
1209 * Calculate the TSC frequency and update it (shared with the refinement timer).
1210 */
1211 supdrvGipInitSetCpuFreq(pGip, nsStop - nsStart, uTscStop - uTscStart, 0);
1212 return VINF_SUCCESS;
1213 }
1214
1215 Assert(!fRough);
1216 return VERR_SUPDRV_TSC_FREQ_MEASUREMENT_FAILED;
1217}
1218
1219
1220/**
1221 * Finds our (@a idCpu) entry, or allocates a new one if not found.
1222 *
1223 * @returns Index of the CPU in the cache set.
1224 * @param pGip The GIP.
1225 * @param idCpu The CPU ID.
1226 */
1227static uint32_t supdrvGipFindOrAllocCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
1228{
1229 uint32_t i, cTries;
1230
1231 /*
1232 * ASSUMES that CPU IDs are constant.
1233 */
1234 for (i = 0; i < pGip->cCpus; i++)
1235 if (pGip->aCPUs[i].idCpu == idCpu)
1236 return i;
1237
1238 cTries = 0;
1239 do
1240 {
1241 for (i = 0; i < pGip->cCpus; i++)
1242 {
1243 bool fRc;
1244 ASMAtomicCmpXchgSize(&pGip->aCPUs[i].idCpu, idCpu, NIL_RTCPUID, fRc);
1245 if (fRc)
1246 return i;
1247 }
1248 } while (cTries++ < 32);
1249 AssertReleaseFailed();
1250 return i - 1;
1251}
1252
1253
1254/**
1255 * The calling CPU should be accounted as online, update GIP accordingly.
1256 *
1257 * This is used by supdrvGipCreate() as well as supdrvGipMpEvent().
1258 *
1259 * @param pDevExt The device extension.
1260 * @param idCpu The CPU ID.
1261 */
1262static void supdrvGipMpEventOnlineOrInitOnCpu(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1263{
1264 int iCpuSet = 0;
1265 uint16_t idApic = UINT16_MAX;
1266 uint32_t i = 0;
1267 uint64_t u64NanoTS = 0;
1268 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1269
1270 AssertPtrReturnVoid(pGip);
1271 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1272 AssertRelease(idCpu == RTMpCpuId());
1273 Assert(pGip->cPossibleCpus == RTMpGetCount());
1274
1275 /*
1276 * Do this behind a spinlock with interrupts disabled as this can fire
1277 * on all CPUs simultaneously, see @bugref{6110}.
1278 */
1279 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1280
1281 /*
1282 * Update the globals.
1283 */
1284 ASMAtomicWriteU16(&pGip->cPresentCpus, RTMpGetPresentCount());
1285 ASMAtomicWriteU16(&pGip->cOnlineCpus, RTMpGetOnlineCount());
1286 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1287 if (iCpuSet >= 0)
1288 {
1289 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1290 RTCpuSetAddByIndex(&pGip->OnlineCpuSet, iCpuSet);
1291 RTCpuSetAddByIndex(&pGip->PresentCpuSet, iCpuSet);
1292 }
1293
1294 /*
1295 * Update the entry.
1296 */
1297 u64NanoTS = RTTimeSystemNanoTS() - pGip->u32UpdateIntervalNS;
1298 i = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
1299
1300 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, pGip->u64CpuHz);
1301
1302 idApic = ASMGetApicId();
1303 ASMAtomicWriteU16(&pGip->aCPUs[i].idApic, idApic);
1304 ASMAtomicWriteS16(&pGip->aCPUs[i].iCpuSet, (int16_t)iCpuSet);
1305 ASMAtomicWriteSize(&pGip->aCPUs[i].idCpu, idCpu);
1306
1307 /*
1308 * Update the APIC ID and CPU set index mappings.
1309 */
1310 ASMAtomicWriteU16(&pGip->aiCpuFromApicId[idApic], i);
1311 ASMAtomicWriteU16(&pGip->aiCpuFromCpuSetIdx[iCpuSet], i);
1312
1313 /* Add this CPU to this set of CPUs we need to calculate the TSC-delta for. */
1314 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, RTMpCpuIdToSetIndex(idCpu));
1315
1316 /* Update the Mp online/offline counter. */
1317 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1318
1319 /* Commit it. */
1320 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_ONLINE);
1321
1322 RTSpinlockRelease(pDevExt->hGipSpinlock);
1323}
1324
1325
1326/**
1327 * RTMpOnSpecific callback wrapper for supdrvGipMpEventOnlineOrInitOnCpu().
1328 *
1329 * @param idCpu The CPU ID we are running on.
1330 * @param pvUser1 Opaque pointer to the device instance data.
1331 * @param pvUser2 Not used.
1332 */
1333static DECLCALLBACK(void) supdrvGipMpEventOnlineCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1334{
1335 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser1;
1336 NOREF(pvUser2);
1337 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
1338}
1339
1340
1341/**
1342 * The CPU should be accounted as offline, update the GIP accordingly.
1343 *
1344 * This is used by supdrvGipMpEvent.
1345 *
1346 * @param pDevExt The device extension.
1347 * @param idCpu The CPU ID.
1348 */
1349static void supdrvGipMpEventOffline(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1350{
1351 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1352 int iCpuSet;
1353 unsigned i;
1354
1355 AssertPtrReturnVoid(pGip);
1356 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1357
1358 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1359 AssertReturnVoid(iCpuSet >= 0);
1360
1361 i = pGip->aiCpuFromCpuSetIdx[iCpuSet];
1362 AssertReturnVoid(i < pGip->cCpus);
1363 AssertReturnVoid(pGip->aCPUs[i].idCpu == idCpu);
1364
1365 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1366 RTCpuSetDelByIndex(&pGip->OnlineCpuSet, iCpuSet);
1367
1368 /* Update the Mp online/offline counter. */
1369 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1370
1371 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1372 {
1373 /* Reset the TSC delta, we will recalculate it lazily. */
1374 ASMAtomicWriteS64(&pGip->aCPUs[i].i64TSCDelta, INT64_MAX);
1375 /* Remove this CPU from the set of CPUs that we have obtained the TSC deltas. */
1376 RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, iCpuSet);
1377 }
1378
1379 /* Commit it. */
1380 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_OFFLINE);
1381
1382 RTSpinlockRelease(pDevExt->hGipSpinlock);
1383}
1384
1385
1386/**
1387 * Multiprocessor event notification callback.
1388 *
1389 * This is used to make sure that the GIP master gets passed on to
1390 * another CPU. It also updates the associated CPU data.
1391 *
1392 * @param enmEvent The event.
1393 * @param idCpu The cpu it applies to.
1394 * @param pvUser Pointer to the device extension.
1395 */
1396static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
1397{
1398 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
1399 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1400
1401 if (pGip)
1402 {
1403 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1404 switch (enmEvent)
1405 {
1406 case RTMPEVENT_ONLINE:
1407 {
1408 RTThreadPreemptDisable(&PreemptState);
1409 if (idCpu == RTMpCpuId())
1410 {
1411 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
1412 RTThreadPreemptRestore(&PreemptState);
1413 }
1414 else
1415 {
1416 RTThreadPreemptRestore(&PreemptState);
1417 RTMpOnSpecific(idCpu, supdrvGipMpEventOnlineCallback, pDevExt, NULL /* pvUser2 */);
1418 }
1419
1420 /*
1421 * Recompute TSC-delta for the newly online'd CPU.
1422 */
1423 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1424 {
1425#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1426 supdrvTscDeltaThreadStartMeasurement(pDevExt);
1427#else
1428 uint32_t iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
1429 supdrvMeasureTscDeltaOne(pDevExt, iCpu);
1430#endif
1431 }
1432 break;
1433 }
1434
1435 case RTMPEVENT_OFFLINE:
1436 supdrvGipMpEventOffline(pDevExt, idCpu);
1437 break;
1438 }
1439 }
1440
1441 /*
1442 * Make sure there is a master GIP.
1443 */
1444 if (enmEvent == RTMPEVENT_OFFLINE)
1445 {
1446 RTCPUID idGipMaster = ASMAtomicReadU32(&pDevExt->idGipMaster);
1447 if (idGipMaster == idCpu)
1448 {
1449 /*
1450 * The GIP master is going offline, find a new one.
1451 */
1452 bool fIgnored;
1453 unsigned i;
1454 RTCPUID idNewGipMaster = NIL_RTCPUID;
1455 RTCPUSET OnlineCpus;
1456 RTMpGetOnlineSet(&OnlineCpus);
1457
1458 for (i = 0; i < RTCPUSET_MAX_CPUS; i++)
1459 if (RTCpuSetIsMemberByIndex(&OnlineCpus, i))
1460 {
1461 RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i);
1462 if (idCurCpu != idGipMaster)
1463 {
1464 idNewGipMaster = idCurCpu;
1465 break;
1466 }
1467 }
1468
1469 Log(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster));
1470 ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored);
1471 NOREF(fIgnored);
1472 }
1473 }
1474}
1475
1476
1477/**
1478 * On CPU initialization callback for RTMpOnAll.
1479 *
1480 * @param idCpu The CPU ID.
1481 * @param pvUser1 The device extension.
1482 * @param pvUser2 The GIP.
1483 */
1484static DECLCALLBACK(void) supdrvGipInitOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1485{
1486 /* This is good enough, even though it will update some of the globals a
1487 bit to much. */
1488 supdrvGipMpEventOnlineOrInitOnCpu((PSUPDRVDEVEXT)pvUser1, idCpu);
1489}
1490
1491
1492/**
1493 * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU.
1494 *
1495 * @param idCpu Ignored.
1496 * @param pvUser1 Where to put the TSC.
1497 * @param pvUser2 Ignored.
1498 */
1499static DECLCALLBACK(void) supdrvGipInitDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1500{
1501 ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC());
1502}
1503
1504
1505/**
1506 * Determine if Async GIP mode is required because of TSC drift.
1507 *
1508 * When using the default/normal timer code it is essential that the time stamp counter
1509 * (TSC) runs never backwards, that is, a read operation to the counter should return
1510 * a bigger value than any previous read operation. This is guaranteed by the latest
1511 * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other
1512 * case we have to choose the asynchronous timer mode.
1513 *
1514 * @param poffMin Pointer to the determined difference between different
1515 * cores (optional, can be NULL).
1516 * @return false if the time stamp counters appear to be synchronized, true otherwise.
1517 */
1518static bool supdrvGipInitDetermineAsyncTsc(uint64_t *poffMin)
1519{
1520 /*
1521 * Just iterate all the cpus 8 times and make sure that the TSC is
1522 * ever increasing. We don't bother taking TSC rollover into account.
1523 */
1524 int iEndCpu = RTMpGetArraySize();
1525 int iCpu;
1526 int cLoops = 8;
1527 bool fAsync = false;
1528 int rc = VINF_SUCCESS;
1529 uint64_t offMax = 0;
1530 uint64_t offMin = ~(uint64_t)0;
1531 uint64_t PrevTsc = ASMReadTSC();
1532
1533 while (cLoops-- > 0)
1534 {
1535 for (iCpu = 0; iCpu < iEndCpu; iCpu++)
1536 {
1537 uint64_t CurTsc;
1538 rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvGipInitDetermineAsyncTscWorker, &CurTsc, NULL);
1539 if (RT_SUCCESS(rc))
1540 {
1541 if (CurTsc <= PrevTsc)
1542 {
1543 fAsync = true;
1544 offMin = offMax = PrevTsc - CurTsc;
1545 Log(("supdrvGipInitDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n",
1546 iCpu, cLoops, CurTsc, PrevTsc));
1547 break;
1548 }
1549
1550 /* Gather statistics (except the first time). */
1551 if (iCpu != 0 || cLoops != 7)
1552 {
1553 uint64_t off = CurTsc - PrevTsc;
1554 if (off < offMin)
1555 offMin = off;
1556 if (off > offMax)
1557 offMax = off;
1558 Log2(("%d/%d: off=%llx\n", cLoops, iCpu, off));
1559 }
1560
1561 /* Next */
1562 PrevTsc = CurTsc;
1563 }
1564 else if (rc == VERR_NOT_SUPPORTED)
1565 break;
1566 else
1567 AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc));
1568 }
1569
1570 /* broke out of the loop. */
1571 if (iCpu < iEndCpu)
1572 break;
1573 }
1574
1575 if (poffMin)
1576 *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */
1577 Log(("supdrvGipInitDetermineAsyncTsc: returns %d; iEndCpu=%d rc=%d offMin=%llx offMax=%llx\n",
1578 fAsync, iEndCpu, rc, offMin, offMax));
1579#if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS)
1580 OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax));
1581#endif
1582 return fAsync;
1583}
1584
1585
1586/**
1587 * supdrvGipInit() worker that determines the GIP TSC mode.
1588 *
1589 * @returns The most suitable TSC mode.
1590 * @param pDevExt Pointer to the device instance data.
1591 */
1592static SUPGIPMODE supdrvGipInitDetermineTscMode(PSUPDRVDEVEXT pDevExt)
1593{
1594 uint64_t u64DiffCoresIgnored;
1595 uint32_t uEAX, uEBX, uECX, uEDX;
1596
1597 /*
1598 * Establish whether the CPU advertises TSC as invariant, we need that in
1599 * a couple of places below.
1600 */
1601 bool fInvariantTsc = false;
1602 if (ASMHasCpuId())
1603 {
1604 uEAX = ASMCpuId_EAX(0x80000000);
1605 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1606 {
1607 uEDX = ASMCpuId_EDX(0x80000007);
1608 if (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR)
1609 fInvariantTsc = true;
1610 }
1611 }
1612
1613 /*
1614 * On single CPU systems, we don't need to consider ASYNC mode.
1615 */
1616 if (RTMpGetCount() <= 1)
1617 return fInvariantTsc ? SUPGIPMODE_INVARIANT_TSC : SUPGIPMODE_SYNC_TSC;
1618
1619 /*
1620 * Allow the user and/or OS specific bits to force async mode.
1621 */
1622 if (supdrvOSGetForcedAsyncTscMode(pDevExt))
1623 return SUPGIPMODE_ASYNC_TSC;
1624
1625 /*
1626 * Use invariant mode if the CPU says TSC is invariant.
1627 */
1628 if (fInvariantTsc)
1629 return SUPGIPMODE_INVARIANT_TSC;
1630
1631 /*
1632 * TSC is not invariant and we're on SMP, this presents two problems:
1633 *
1634 * (1) There might be a skew between the CPU, so that cpu0
1635 * returns a TSC that is slightly different from cpu1.
1636 * This screw may be due to (2), bad TSC initialization
1637 * or slightly different TSC rates.
1638 *
1639 * (2) Power management (and other things) may cause the TSC
1640 * to run at a non-constant speed, and cause the speed
1641 * to be different on the cpus. This will result in (1).
1642 *
1643 * If any of the above is detected, we will have to use ASYNC mode.
1644 */
1645 /* (1). Try check for current differences between the cpus. */
1646 if (supdrvGipInitDetermineAsyncTsc(&u64DiffCoresIgnored))
1647 return SUPGIPMODE_ASYNC_TSC;
1648
1649 /* (2) If it's an AMD CPU with power management, we won't trust its TSC. */
1650 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
1651 if ( ASMIsValidStdRange(uEAX)
1652 && ASMIsAmdCpuEx(uEBX, uECX, uEDX))
1653 {
1654 /* Check for APM support. */
1655 uEAX = ASMCpuId_EAX(0x80000000);
1656 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1657 {
1658 uEDX = ASMCpuId_EDX(0x80000007);
1659 if (uEDX & 0x3e) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */
1660 return SUPGIPMODE_ASYNC_TSC;
1661 }
1662 }
1663
1664 return SUPGIPMODE_SYNC_TSC;
1665}
1666
1667
1668/**
1669 * Initializes per-CPU GIP information.
1670 *
1671 * @param pGip Pointer to the GIP.
1672 * @param pCpu Pointer to which GIP CPU to initalize.
1673 * @param u64NanoTS The current nanosecond timestamp.
1674 * @param uCpuHz The CPU frequency to set, 0 if the caller doesn't know.
1675 */
1676static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz)
1677{
1678 pCpu->u32TransactionId = 2;
1679 pCpu->u64NanoTS = u64NanoTS;
1680 pCpu->u64TSC = ASMReadTSC();
1681 pCpu->u64TSCSample = GIP_TSC_DELTA_RSVD;
1682 pCpu->i64TSCDelta = pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED ? INT64_MAX : 0;
1683
1684 ASMAtomicWriteSize(&pCpu->enmState, SUPGIPCPUSTATE_INVALID);
1685 ASMAtomicWriteSize(&pCpu->idCpu, NIL_RTCPUID);
1686 ASMAtomicWriteS16(&pCpu->iCpuSet, -1);
1687 ASMAtomicWriteU16(&pCpu->idApic, UINT16_MAX);
1688
1689 /*
1690 * The first time we're called, we don't have a CPU frequency handy,
1691 * so pretend it's a 4 GHz CPU. On CPUs that are online, we'll get
1692 * called again and at that point we have a more plausible CPU frequency
1693 * value handy. The frequency history will also be adjusted again on
1694 * the 2nd timer callout (maybe we can skip that now?).
1695 */
1696 if (!uCpuHz)
1697 {
1698 pCpu->u64CpuHz = _4G - 1;
1699 pCpu->u32UpdateIntervalTSC = (uint32_t)((_4G - 1) / pGip->u32UpdateHz);
1700 }
1701 else
1702 {
1703 pCpu->u64CpuHz = uCpuHz;
1704 pCpu->u32UpdateIntervalTSC = (uint32_t)(uCpuHz / pGip->u32UpdateHz);
1705 }
1706 pCpu->au32TSCHistory[0]
1707 = pCpu->au32TSCHistory[1]
1708 = pCpu->au32TSCHistory[2]
1709 = pCpu->au32TSCHistory[3]
1710 = pCpu->au32TSCHistory[4]
1711 = pCpu->au32TSCHistory[5]
1712 = pCpu->au32TSCHistory[6]
1713 = pCpu->au32TSCHistory[7]
1714 = pCpu->u32UpdateIntervalTSC;
1715}
1716
1717
1718/**
1719 * Initializes the GIP data.
1720 *
1721 * @param pDevExt Pointer to the device instance data.
1722 * @param pGip Pointer to the read-write kernel mapping of the GIP.
1723 * @param HCPhys The physical address of the GIP.
1724 * @param u64NanoTS The current nanosecond timestamp.
1725 * @param uUpdateHz The update frequency.
1726 * @param uUpdateIntervalNS The update interval in nanoseconds.
1727 * @param cCpus The CPU count.
1728 */
1729static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys,
1730 uint64_t u64NanoTS, unsigned uUpdateHz, unsigned uUpdateIntervalNS, unsigned cCpus)
1731{
1732 size_t const cbGip = RT_ALIGN_Z(RT_OFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), PAGE_SIZE);
1733 unsigned i;
1734#ifdef DEBUG_DARWIN_GIP
1735 OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1736#else
1737 LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1738#endif
1739
1740 /*
1741 * Initialize the structure.
1742 */
1743 memset(pGip, 0, cbGip);
1744
1745 pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
1746 pGip->u32Version = SUPGLOBALINFOPAGE_VERSION;
1747 pGip->u32Mode = supdrvGipInitDetermineTscMode(pDevExt);
1748 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
1749 /*|| pGip->u32Mode == SUPGIPMODE_SYNC_TSC */)
1750 pGip->enmUseTscDelta = supdrvOSAreTscDeltasInSync() /* Allow OS override (windows). */
1751 ? SUPGIPUSETSCDELTA_ZERO_CLAIMED : SUPGIPUSETSCDELTA_PRACTICALLY_ZERO /* downgrade later */;
1752 else
1753 pGip->enmUseTscDelta = SUPGIPUSETSCDELTA_NOT_APPLICABLE;
1754 pGip->cCpus = (uint16_t)cCpus;
1755 pGip->cPages = (uint16_t)(cbGip / PAGE_SIZE);
1756 pGip->u32UpdateHz = uUpdateHz;
1757 pGip->u32UpdateIntervalNS = uUpdateIntervalNS;
1758 pGip->fGetGipCpu = SUPGIPGETCPU_APIC_ID;
1759 RTCpuSetEmpty(&pGip->OnlineCpuSet);
1760 RTCpuSetEmpty(&pGip->PresentCpuSet);
1761 RTMpGetSet(&pGip->PossibleCpuSet);
1762 pGip->cOnlineCpus = RTMpGetOnlineCount();
1763 pGip->cPresentCpus = RTMpGetPresentCount();
1764 pGip->cPossibleCpus = RTMpGetCount();
1765 pGip->idCpuMax = RTMpGetMaxCpuId();
1766 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromApicId); i++)
1767 pGip->aiCpuFromApicId[i] = UINT16_MAX;
1768 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); i++)
1769 pGip->aiCpuFromCpuSetIdx[i] = UINT16_MAX;
1770 for (i = 0; i < cCpus; i++)
1771 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, 0 /*uCpuHz*/);
1772
1773 /*
1774 * Link it to the device extension.
1775 */
1776 pDevExt->pGip = pGip;
1777 pDevExt->HCPhysGip = HCPhys;
1778 pDevExt->cGipUsers = 0;
1779}
1780
1781
1782/**
1783 * Creates the GIP.
1784 *
1785 * @returns VBox status code.
1786 * @param pDevExt Instance data. GIP stuff may be updated.
1787 */
1788int VBOXCALL supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
1789{
1790 PSUPGLOBALINFOPAGE pGip;
1791 RTHCPHYS HCPhysGip;
1792 uint32_t u32SystemResolution;
1793 uint32_t u32Interval;
1794 uint32_t u32MinInterval;
1795 uint32_t uMod;
1796 unsigned cCpus;
1797 int rc;
1798
1799 LogFlow(("supdrvGipCreate:\n"));
1800
1801 /*
1802 * Assert order.
1803 */
1804 Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
1805 Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
1806 Assert(!pDevExt->pGipTimer);
1807#ifdef SUPDRV_USE_MUTEX_FOR_GIP
1808 Assert(pDevExt->mtxGip != NIL_RTSEMMUTEX);
1809 Assert(pDevExt->mtxTscDelta != NIL_RTSEMMUTEX);
1810#else
1811 Assert(pDevExt->mtxGip != NIL_RTSEMFASTMUTEX);
1812 Assert(pDevExt->mtxTscDelta != NIL_RTSEMFASTMUTEX);
1813#endif
1814
1815 /*
1816 * Check the CPU count.
1817 */
1818 cCpus = RTMpGetArraySize();
1819 if ( cCpus > RTCPUSET_MAX_CPUS
1820 || cCpus > 256 /* ApicId is used for the mappings */)
1821 {
1822 SUPR0Printf("VBoxDrv: Too many CPUs (%u) for the GIP (max %u)\n", cCpus, RT_MIN(RTCPUSET_MAX_CPUS, 256));
1823 return VERR_TOO_MANY_CPUS;
1824 }
1825
1826 /*
1827 * Allocate a contiguous set of pages with a default kernel mapping.
1828 */
1829 rc = RTR0MemObjAllocCont(&pDevExt->GipMemObj, RT_UOFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), false /*fExecutable*/);
1830 if (RT_FAILURE(rc))
1831 {
1832 OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
1833 return rc;
1834 }
1835 pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
1836 HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
1837
1838 /*
1839 * Find a reasonable update interval and initialize the structure.
1840 */
1841 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
1842 /** @todo figure out why using a 100Ms interval upsets timekeeping in VMs.
1843 * See @bugref{6710}. */
1844 u32MinInterval = RT_NS_10MS;
1845 u32SystemResolution = RTTimerGetSystemGranularity();
1846 u32Interval = u32MinInterval;
1847 uMod = u32MinInterval % u32SystemResolution;
1848 if (uMod)
1849 u32Interval += u32SystemResolution - uMod;
1850
1851 supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), RT_NS_1SEC / u32Interval /*=Hz*/, u32Interval, cCpus);
1852
1853 /*
1854 * Important sanity check...
1855 */
1856 if (RT_UNLIKELY( pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_ZERO_CLAIMED
1857 && pGip->u32Mode == SUPGIPMODE_ASYNC_TSC
1858 && !supdrvOSGetForcedAsyncTscMode(pDevExt)))
1859 {
1860 /* Basically, invariant Windows boxes, should never be detected as async (i.e. TSC-deltas should be 0). */
1861 OSDBGPRINT(("supdrvGipCreate: The TSC-deltas should be normalized by the host OS, but verifying shows it's not!\n"));
1862 return VERR_INTERNAL_ERROR_2;
1863 }
1864
1865 /*
1866 * Do the TSC frequency measurements.
1867 *
1868 * If we're in invariant TSC mode, just to a quick preliminary measurement
1869 * that the TSC-delta measurement code can use to yield cross calls.
1870 *
1871 * If we're in any of the other two modes, neither which require MP init,
1872 * notifications or deltas for the job, do the full measurement now so
1873 * that supdrvGipInitOnCpu() can populate the TSC interval and history
1874 * array with more reasonable values.
1875 */
1876 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1877 {
1878 rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, true /*fRough*/); /* cannot fail */
1879 supdrvGipInitStartTimerForRefiningInvariantTscFreq(pDevExt, pGip);
1880 }
1881 else
1882 rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, false /*fRough*/);
1883 if (RT_SUCCESS(rc))
1884 {
1885 /*
1886 * Start TSC-delta measurement thread before we start getting MP
1887 * events that will try kick it into action (includes the
1888 * RTMpOnAll/supdrvGipInitOnCpu call below).
1889 */
1890 RTCpuSetEmpty(&pDevExt->TscDeltaCpuSet);
1891 RTCpuSetEmpty(&pDevExt->TscDeltaObtainedCpuSet);
1892#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1893 if ( pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED
1894 && pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1895 rc = supdrvTscDeltaThreadInit(pDevExt);
1896#endif
1897 if (RT_SUCCESS(rc))
1898 {
1899 rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt);
1900 if (RT_SUCCESS(rc))
1901 {
1902 /*
1903 * Do GIP initialization on all online CPUs. Wake up the
1904 * TSC-delta thread afterwards.
1905 */
1906 rc = RTMpOnAll(supdrvGipInitOnCpu, pDevExt, pGip);
1907 if (RT_SUCCESS(rc))
1908 {
1909#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1910 supdrvTscDeltaThreadStartMeasurement(pDevExt);
1911#else
1912 uint16_t iCpu;
1913 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1914 {
1915 /*
1916 * Measure the TSC deltas now that we have MP notifications.
1917 */
1918 int cTries = 5;
1919 do
1920 {
1921 rc = supdrvMeasureInitialTscDeltas(pDevExt);
1922 if ( rc != VERR_TRY_AGAIN
1923 && rc != VERR_CPU_OFFLINE)
1924 break;
1925 } while (--cTries > 0);
1926 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1927 Log(("supdrvTscDeltaInit: cpu[%u] delta %lld\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta));
1928 }
1929 else
1930 {
1931 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1932 AssertMsg(!pGip->aCPUs[iCpu].i64TSCDelta, ("iCpu=%u %lld mode=%d\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta, pGip->u32Mode));
1933 }
1934 if (RT_SUCCESS(rc))
1935#endif
1936 {
1937 /*
1938 * Create the timer.
1939 * If CPU_ALL isn't supported we'll have to fall back to synchronous mode.
1940 */
1941 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
1942 {
1943 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL,
1944 supdrvGipAsyncTimer, pDevExt);
1945 if (rc == VERR_NOT_SUPPORTED)
1946 {
1947 OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n"));
1948 pGip->u32Mode = SUPGIPMODE_SYNC_TSC;
1949 }
1950 }
1951 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
1952 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0 /* fFlags */,
1953 supdrvGipSyncAndInvariantTimer, pDevExt);
1954 if (RT_SUCCESS(rc))
1955 {
1956 /*
1957 * We're good.
1958 */
1959 Log(("supdrvGipCreate: %u ns interval.\n", u32Interval));
1960 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
1961
1962 g_pSUPGlobalInfoPage = pGip;
1963 return VINF_SUCCESS;
1964 }
1965
1966 OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %u ns interval. rc=%Rrc\n", u32Interval, rc));
1967 Assert(!pDevExt->pGipTimer);
1968 }
1969 }
1970 else
1971 OSDBGPRINT(("supdrvGipCreate: RTMpOnAll failed. rc=%Rrc\n", rc));
1972 }
1973 else
1974 OSDBGPRINT(("supdrvGipCreate: failed to register MP event notfication. rc=%Rrc\n", rc));
1975 }
1976 else
1977 OSDBGPRINT(("supdrvGipCreate: supdrvTscDeltaInit failed. rc=%Rrc\n", rc));
1978 }
1979 else
1980 OSDBGPRINT(("supdrvGipCreate: supdrvMeasureInitialTscDeltas failed. rc=%Rrc\n", rc));
1981
1982 /* Releases timer frequency increase too. */
1983 supdrvGipDestroy(pDevExt);
1984 return rc;
1985}
1986
1987
1988/**
1989 * Invalidates the GIP data upon termination.
1990 *
1991 * @param pGip Pointer to the read-write kernel mapping of the GIP.
1992 */
1993static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
1994{
1995 unsigned i;
1996 pGip->u32Magic = 0;
1997 for (i = 0; i < pGip->cCpus; i++)
1998 {
1999 pGip->aCPUs[i].u64NanoTS = 0;
2000 pGip->aCPUs[i].u64TSC = 0;
2001 pGip->aCPUs[i].iTSCHistoryHead = 0;
2002 pGip->aCPUs[i].u64TSCSample = 0;
2003 pGip->aCPUs[i].i64TSCDelta = INT64_MAX;
2004 }
2005}
2006
2007
2008/**
2009 * Terminates the GIP.
2010 *
2011 * @param pDevExt Instance data. GIP stuff may be updated.
2012 */
2013void VBOXCALL supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
2014{
2015 int rc;
2016#ifdef DEBUG_DARWIN_GIP
2017 OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt,
2018 pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL,
2019 pDevExt->pGipTimer, pDevExt->GipMemObj));
2020#endif
2021
2022 /*
2023 * Stop receiving MP notifications before tearing anything else down.
2024 */
2025 RTMpNotificationDeregister(supdrvGipMpEvent, pDevExt);
2026
2027#ifdef SUPDRV_USE_TSC_DELTA_THREAD
2028 /*
2029 * Terminate the TSC-delta measurement thread and resources.
2030 */
2031 supdrvTscDeltaTerm(pDevExt);
2032#endif
2033
2034 /*
2035 * Destroy the TSC-refinement timer.
2036 */
2037 if (pDevExt->pInvarTscRefineTimer)
2038 {
2039 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
2040 pDevExt->pInvarTscRefineTimer = NULL;
2041 }
2042
2043 /*
2044 * Invalid the GIP data.
2045 */
2046 if (pDevExt->pGip)
2047 {
2048 supdrvGipTerm(pDevExt->pGip);
2049 pDevExt->pGip = NULL;
2050 }
2051 g_pSUPGlobalInfoPage = NULL;
2052
2053 /*
2054 * Destroy the timer and free the GIP memory object.
2055 */
2056 if (pDevExt->pGipTimer)
2057 {
2058 rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
2059 pDevExt->pGipTimer = NULL;
2060 }
2061
2062 if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
2063 {
2064 rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
2065 pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
2066 }
2067
2068 /*
2069 * Finally, make sure we've release the system timer resolution request
2070 * if one actually succeeded and is still pending.
2071 */
2072 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
2073}
2074
2075
2076
2077
2078/*
2079 *
2080 *
2081 * GIP Update Timer Related Code
2082 * GIP Update Timer Related Code
2083 * GIP Update Timer Related Code
2084 *
2085 *
2086 */
2087
2088
2089/**
2090 * Worker routine for supdrvGipUpdate() and supdrvGipUpdatePerCpu() that
2091 * updates all the per cpu data except the transaction id.
2092 *
2093 * @param pDevExt The device extension.
2094 * @param pGipCpu Pointer to the per cpu data.
2095 * @param u64NanoTS The current time stamp.
2096 * @param u64TSC The current TSC.
2097 * @param iTick The current timer tick.
2098 *
2099 * @remarks Can be called with interrupts disabled!
2100 */
2101static void supdrvGipDoUpdateCpu(PSUPDRVDEVEXT pDevExt, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
2102{
2103 uint64_t u64TSCDelta;
2104 uint32_t u32UpdateIntervalTSC;
2105 uint32_t u32UpdateIntervalTSCSlack;
2106 unsigned iTSCHistoryHead;
2107 uint64_t u64CpuHz;
2108 uint32_t u32TransactionId;
2109
2110 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2111 AssertPtrReturnVoid(pGip);
2112
2113 /* Delta between this and the previous update. */
2114 ASMAtomicUoWriteU32(&pGipCpu->u32PrevUpdateIntervalNS, (uint32_t)(u64NanoTS - pGipCpu->u64NanoTS));
2115
2116 /*
2117 * Update the NanoTS.
2118 */
2119 ASMAtomicWriteU64(&pGipCpu->u64NanoTS, u64NanoTS);
2120
2121 /*
2122 * Calc TSC delta.
2123 */
2124 u64TSCDelta = u64TSC - pGipCpu->u64TSC;
2125 ASMAtomicWriteU64(&pGipCpu->u64TSC, u64TSC);
2126
2127 /*
2128 * We don't need to keep realculating the frequency when it's invariant, so
2129 * the remainder of this function is only for the sync and async TSC modes.
2130 */
2131 if (pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC)
2132 {
2133 if (u64TSCDelta >> 32)
2134 {
2135 u64TSCDelta = pGipCpu->u32UpdateIntervalTSC;
2136 pGipCpu->cErrors++;
2137 }
2138
2139 /*
2140 * On the 2nd and 3rd callout, reset the history with the current TSC
2141 * interval since the values entered by supdrvGipInit are totally off.
2142 * The interval on the 1st callout completely unreliable, the 2nd is a bit
2143 * better, while the 3rd should be most reliable.
2144 */
2145 /** @todo Could we drop this now that we initializes the history
2146 * with nominal TSC frequency values? */
2147 u32TransactionId = pGipCpu->u32TransactionId;
2148 if (RT_UNLIKELY( ( u32TransactionId == 5
2149 || u32TransactionId == 7)
2150 && ( iTick == 2
2151 || iTick == 3) ))
2152 {
2153 unsigned i;
2154 for (i = 0; i < RT_ELEMENTS(pGipCpu->au32TSCHistory); i++)
2155 ASMAtomicUoWriteU32(&pGipCpu->au32TSCHistory[i], (uint32_t)u64TSCDelta);
2156 }
2157
2158 /*
2159 * Validate the NanoTS deltas between timer fires with an arbitrary threshold of 0.5%.
2160 * Wait until we have at least one full history since the above history reset. The
2161 * assumption is that the majority of the previous history values will be tolerable.
2162 * See @bugref{6710} comment #67.
2163 */
2164 /** @todo Could we drop the fuding there now that we initializes the history
2165 * with nominal TSC frequency values? */
2166 if ( u32TransactionId > 23 /* 7 + (8 * 2) */
2167 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2168 {
2169 uint32_t uNanoTsThreshold = pGip->u32UpdateIntervalNS / 200;
2170 if ( pGipCpu->u32PrevUpdateIntervalNS > pGip->u32UpdateIntervalNS + uNanoTsThreshold
2171 || pGipCpu->u32PrevUpdateIntervalNS < pGip->u32UpdateIntervalNS - uNanoTsThreshold)
2172 {
2173 uint32_t u32;
2174 u32 = pGipCpu->au32TSCHistory[0];
2175 u32 += pGipCpu->au32TSCHistory[1];
2176 u32 += pGipCpu->au32TSCHistory[2];
2177 u32 += pGipCpu->au32TSCHistory[3];
2178 u32 >>= 2;
2179 u64TSCDelta = pGipCpu->au32TSCHistory[4];
2180 u64TSCDelta += pGipCpu->au32TSCHistory[5];
2181 u64TSCDelta += pGipCpu->au32TSCHistory[6];
2182 u64TSCDelta += pGipCpu->au32TSCHistory[7];
2183 u64TSCDelta >>= 2;
2184 u64TSCDelta += u32;
2185 u64TSCDelta >>= 1;
2186 }
2187 }
2188
2189 /*
2190 * TSC History.
2191 */
2192 Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8);
2193 iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7;
2194 ASMAtomicWriteU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead);
2195 ASMAtomicWriteU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
2196
2197 /*
2198 * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
2199 *
2200 * On Windows, we have an occasional (but recurring) sour value that messed up
2201 * the history but taking only 1 interval reduces the precision overall.
2202 */
2203 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
2204 || pGip->u32UpdateHz >= 1000)
2205 {
2206 uint32_t u32;
2207 u32 = pGipCpu->au32TSCHistory[0];
2208 u32 += pGipCpu->au32TSCHistory[1];
2209 u32 += pGipCpu->au32TSCHistory[2];
2210 u32 += pGipCpu->au32TSCHistory[3];
2211 u32 >>= 2;
2212 u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4];
2213 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5];
2214 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6];
2215 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7];
2216 u32UpdateIntervalTSC >>= 2;
2217 u32UpdateIntervalTSC += u32;
2218 u32UpdateIntervalTSC >>= 1;
2219
2220 /* Value chosen for a 2GHz Athlon64 running linux 2.6.10/11. */
2221 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
2222 }
2223 else if (pGip->u32UpdateHz >= 90)
2224 {
2225 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2226 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
2227 u32UpdateIntervalTSC >>= 1;
2228
2229 /* value chosen on a 2GHz thinkpad running windows */
2230 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
2231 }
2232 else
2233 {
2234 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2235
2236 /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
2237 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
2238 }
2239 ASMAtomicWriteU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
2240
2241 /*
2242 * CpuHz.
2243 */
2244 u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, RT_NS_1SEC);
2245 u64CpuHz /= pGip->u32UpdateIntervalNS;
2246 ASMAtomicWriteU64(&pGipCpu->u64CpuHz, u64CpuHz);
2247 }
2248}
2249
2250
2251/**
2252 * Updates the GIP.
2253 *
2254 * @param pDevExt The device extension.
2255 * @param u64NanoTS The current nanosecond timesamp.
2256 * @param u64TSC The current TSC timesamp.
2257 * @param idCpu The CPU ID.
2258 * @param iTick The current timer tick.
2259 *
2260 * @remarks Can be called with interrupts disabled!
2261 */
2262static void supdrvGipUpdate(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC, RTCPUID idCpu, uint64_t iTick)
2263{
2264 /*
2265 * Determine the relevant CPU data.
2266 */
2267 PSUPGIPCPU pGipCpu;
2268 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2269 AssertPtrReturnVoid(pGip);
2270
2271 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2272 pGipCpu = &pGip->aCPUs[0];
2273 else
2274 {
2275 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
2276 if (RT_UNLIKELY(iCpu >= pGip->cCpus))
2277 return;
2278 pGipCpu = &pGip->aCPUs[iCpu];
2279 if (RT_UNLIKELY(pGipCpu->idCpu != idCpu))
2280 return;
2281 }
2282
2283 /*
2284 * Start update transaction.
2285 */
2286 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2287 {
2288 /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
2289 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2290 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2291 pGipCpu->cErrors++;
2292 return;
2293 }
2294
2295 /*
2296 * Recalc the update frequency every 0x800th time.
2297 */
2298 if ( pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC /* cuz we're not recalculating the frequency on invariants hosts. */
2299 && !(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
2300 {
2301 if (pGip->u64NanoTSLastUpdateHz)
2302 {
2303#ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */
2304 uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
2305 uint32_t u32UpdateHz = (uint32_t)((RT_NS_1SEC_64 * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
2306 if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
2307 {
2308 /** @todo r=ramshankar: Changing u32UpdateHz might screw up TSC frequency
2309 * calculation on non-invariant hosts if it changes the history decision
2310 * taken in supdrvGipDoUpdateCpu(). */
2311 uint64_t u64Interval = u64Delta / GIP_UPDATEHZ_RECALC_FREQ;
2312 ASMAtomicWriteU32(&pGip->u32UpdateHz, u32UpdateHz);
2313 ASMAtomicWriteU32(&pGip->u32UpdateIntervalNS, (uint32_t)u64Interval);
2314 }
2315#endif
2316 }
2317 ASMAtomicWriteU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS | 1);
2318 }
2319
2320 /*
2321 * Update the data.
2322 */
2323 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2324
2325 /*
2326 * Complete transaction.
2327 */
2328 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2329}
2330
2331
2332/**
2333 * Updates the per cpu GIP data for the calling cpu.
2334 *
2335 * @param pDevExt The device extension.
2336 * @param u64NanoTS The current nanosecond timesamp.
2337 * @param u64TSC The current TSC timesamp.
2338 * @param idCpu The CPU ID.
2339 * @param idApic The APIC id for the CPU index.
2340 * @param iTick The current timer tick.
2341 *
2342 * @remarks Can be called with interrupts disabled!
2343 */
2344static void supdrvGipUpdatePerCpu(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC,
2345 RTCPUID idCpu, uint8_t idApic, uint64_t iTick)
2346{
2347 uint32_t iCpu;
2348 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2349
2350 /*
2351 * Avoid a potential race when a CPU online notification doesn't fire on
2352 * the onlined CPU but the tick creeps in before the event notification is
2353 * run.
2354 */
2355 if (RT_UNLIKELY(iTick == 1))
2356 {
2357 iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
2358 if (pGip->aCPUs[iCpu].enmState == SUPGIPCPUSTATE_OFFLINE)
2359 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
2360 }
2361
2362 iCpu = pGip->aiCpuFromApicId[idApic];
2363 if (RT_LIKELY(iCpu < pGip->cCpus))
2364 {
2365 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
2366 if (pGipCpu->idCpu == idCpu)
2367 {
2368 /*
2369 * Start update transaction.
2370 */
2371 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2372 {
2373 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2374 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2375 pGipCpu->cErrors++;
2376 return;
2377 }
2378
2379 /*
2380 * Update the data.
2381 */
2382 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2383
2384 /*
2385 * Complete transaction.
2386 */
2387 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2388 }
2389 }
2390}
2391
2392
2393/**
2394 * Timer callback function for the sync and invariant GIP modes.
2395 *
2396 * @param pTimer The timer.
2397 * @param pvUser Opaque pointer to the device extension.
2398 * @param iTick The timer tick.
2399 */
2400static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2401{
2402 RTCCUINTREG uFlags;
2403 uint64_t u64TSC;
2404 uint64_t u64NanoTS;
2405 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2406 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2407
2408 uFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2409 u64TSC = ASMReadTSC();
2410 u64NanoTS = RTTimeSystemNanoTS();
2411
2412 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
2413 {
2414 /*
2415 * The calculations in supdrvGipUpdate() is somewhat timing sensitive,
2416 * missing timer ticks is not an option for GIP because the GIP users
2417 * will end up incrementing the time in 1ns per time getter call until
2418 * there is a complete timer update. So, if the delta has yet to be
2419 * calculated, we just pretend it is zero for now (the GIP users
2420 * probably won't have it for a wee while either and will do the same).
2421 *
2422 * We could maybe on some platforms try cross calling a CPU with a
2423 * working delta here, but it's not worth the hassle since the
2424 * likelyhood of this happening is really low. On Windows, Linux, and
2425 * Solaris timers fire on the CPU they were registered/started on.
2426 * Darwin timers doesn't necessarily (they are high priority threads).
2427 */
2428 uint32_t iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
2429 uint16_t iGipCpu = RT_LIKELY(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx))
2430 ? pGip->aiCpuFromCpuSetIdx[iCpuSet] : UINT16_MAX;
2431 Assert(!ASMIntAreEnabled());
2432 if (RT_LIKELY(iGipCpu < pGip->cCpus))
2433 {
2434 int64_t iTscDelta = pGip->aCPUs[iGipCpu].i64TSCDelta;
2435 if (iTscDelta != INT64_MAX)
2436 u64TSC -= iTscDelta;
2437 }
2438 }
2439
2440 supdrvGipUpdate(pDevExt, u64NanoTS, u64TSC, NIL_RTCPUID, iTick);
2441
2442 ASMSetFlags(uFlags);
2443}
2444
2445
2446/**
2447 * Timer callback function for async GIP mode.
2448 * @param pTimer The timer.
2449 * @param pvUser Opaque pointer to the device extension.
2450 * @param iTick The timer tick.
2451 */
2452static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2453{
2454 RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2455 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2456 RTCPUID idCpu = RTMpCpuId();
2457 uint64_t u64TSC = ASMReadTSC();
2458 uint64_t NanoTS = RTTimeSystemNanoTS();
2459
2460 /** @todo reset the transaction number and whatnot when iTick == 1. */
2461 if (pDevExt->idGipMaster == idCpu)
2462 supdrvGipUpdate(pDevExt, NanoTS, u64TSC, idCpu, iTick);
2463 else
2464 supdrvGipUpdatePerCpu(pDevExt, NanoTS, u64TSC, idCpu, ASMGetApicId(), iTick);
2465
2466 ASMSetFlags(fOldFlags);
2467}
2468
2469
2470
2471
2472/*
2473 *
2474 *
2475 * TSC Delta Measurements And Related Code
2476 * TSC Delta Measurements And Related Code
2477 * TSC Delta Measurements And Related Code
2478 *
2479 *
2480 */
2481
2482
2483/*
2484 * Select TSC delta measurement algorithm.
2485 */
2486#if 1
2487# define GIP_TSC_DELTA_METHOD_1
2488#else
2489# define GIP_TSC_DELTA_METHOD_2
2490#endif
2491
2492/** For padding variables to keep them away from other cache lines. Better too
2493 * large than too small!
2494 * @remarks Current AMD64 and x86 CPUs seems to use 64 bytes. There are claims
2495 * that NetBurst had 128 byte cache lines while the 486 thru Pentium
2496 * III had 32 bytes cache lines. */
2497#define GIP_TSC_DELTA_CACHE_LINE_SIZE 128
2498
2499
2500/**
2501 * TSC delta measurment algorithm \#2 result entry.
2502 */
2503typedef struct SUPDRVTSCDELTAMETHOD2ENTRY
2504{
2505 uint32_t iSeqMine;
2506 uint32_t iSeqOther;
2507 uint64_t uTsc;
2508} SUPDRVTSCDELTAMETHOD2ENTRY;
2509
2510/**
2511 * TSC delta measurment algorithm \#2 Data.
2512 */
2513typedef struct SUPDRVTSCDELTAMETHOD2
2514{
2515 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2516 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 1];
2517 /** The current sequence number of this worker. */
2518 uint32_t volatile iCurSeqNo;
2519 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2520 uint32_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint32_t) - 1];
2521 /** Result table. */
2522 SUPDRVTSCDELTAMETHOD2ENTRY aResults[96];
2523} SUPDRVTSCDELTAMETHOD2;
2524/** Pointer to the data for TSC delta mesurment algorithm \#2 .*/
2525typedef SUPDRVTSCDELTAMETHOD2 *PSUPDRVTSCDELTAMETHOD2;
2526
2527
2528/**
2529 * The TSC delta synchronization struct, version 2.
2530 *
2531 * The syncrhonization variable is completely isolated in its own cache line
2532 * (provided our max cache line size estimate is correct).
2533 */
2534typedef struct SUPTSCDELTASYNC2
2535{
2536 /** Padding to make sure the uVar1 is in its own cache line. */
2537 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2538
2539 /** The synchronization variable, holds values GIP_TSC_DELTA_SYNC_*. */
2540 volatile uint32_t uSyncVar;
2541 /** Sequence synchronizing variable used for post 'GO' synchronization. */
2542 volatile uint32_t uSyncSeq;
2543
2544 /** Padding to make sure the uVar1 is in its own cache line. */
2545 uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 2];
2546
2547 /** Start RDTSC value. Put here mainly to save stack space. */
2548 uint64_t uTscStart;
2549 /** Copy of SUPDRVGIPTSCDELTARGS::cMaxTscTicks. */
2550 uint64_t cMaxTscTicks;
2551} SUPTSCDELTASYNC2;
2552AssertCompileSize(SUPTSCDELTASYNC2, GIP_TSC_DELTA_CACHE_LINE_SIZE * 2 + sizeof(uint64_t));
2553typedef SUPTSCDELTASYNC2 *PSUPTSCDELTASYNC2;
2554
2555/** Prestart wait. */
2556#define GIP_TSC_DELTA_SYNC2_PRESTART_WAIT UINT32_C(0x0ffe)
2557/** Prestart aborted. */
2558#define GIP_TSC_DELTA_SYNC2_PRESTART_ABORT UINT32_C(0x0fff)
2559/** Ready (on your mark). */
2560#define GIP_TSC_DELTA_SYNC2_READY UINT32_C(0x1000)
2561/** Steady (get set). */
2562#define GIP_TSC_DELTA_SYNC2_STEADY UINT32_C(0x1001)
2563/** Go! */
2564#define GIP_TSC_DELTA_SYNC2_GO UINT32_C(0x1002)
2565/** Used by the verfication test. */
2566#define GIP_TSC_DELTA_SYNC2_GO_GO UINT32_C(0x1003)
2567
2568/** We reached the time limit. */
2569#define GIP_TSC_DELTA_SYNC2_TIMEOUT UINT32_C(0x1ffe)
2570/** The other party won't touch the sync struct ever again. */
2571#define GIP_TSC_DELTA_SYNC2_FINAL UINT32_C(0x1fff)
2572
2573
2574/**
2575 * Argument package/state passed by supdrvMeasureTscDeltaOne() to the RTMpOn
2576 * callback worker.
2577 */
2578typedef struct SUPDRVGIPTSCDELTARGS
2579{
2580 /** The device extension. */
2581 PSUPDRVDEVEXT pDevExt;
2582 /** Pointer to the GIP CPU array entry for the worker. */
2583 PSUPGIPCPU pWorker;
2584 /** Pointer to the GIP CPU array entry for the master. */
2585 PSUPGIPCPU pMaster;
2586 /** The maximum number of ticks to spend in supdrvMeasureTscDeltaCallback.
2587 * (This is what we need a rough TSC frequency for.) */
2588 uint64_t cMaxTscTicks;
2589 /** Used to abort synchronization setup. */
2590 bool volatile fAbortSetup;
2591
2592#if 0
2593 /** Method 1 data. */
2594 struct
2595 {
2596 } M1;
2597#endif
2598
2599#ifdef GIP_TSC_DELTA_METHOD_2
2600 struct
2601 {
2602 PSUPDRVTSCDELTAMETHOD2 pMasterData;
2603 PSUPDRVTSCDELTAMETHOD2 pWorkerData;
2604 uint32_t cHits;
2605 bool fLagMaster;
2606 bool fLagWorker;
2607 bool volatile fQuitEarly;
2608 } M2;
2609#endif
2610
2611
2612 /** Padding to make sure the master variables live in its own cache lines. */
2613 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2614 /** Pointer to the master's synchronization struct (on stack). */
2615 PSUPTSCDELTASYNC2 volatile pSyncMaster;
2616 /** Verification test TSC values for the master. */
2617 uint64_t volatile auVerifyMasterTscs[32];
2618 /** The verifier verdict, VINF_SUCCESS if ok, VERR_OUT_OF_RANGE if not,
2619 * VERR_TRY_AGAIN on timeout. */
2620 int32_t rcVerify;
2621 /** The maximum difference between TSC read during delta verification. */
2622 int64_t cMaxVerifyTscTicks;
2623 /** The minimum difference between two TSC reads during verification. */
2624 int64_t cMinVerifyTscTicks;
2625 /** The bad TSC diff, worker relative to master (= worker - master).
2626 * Negative value means the worker is behind the master. */
2627 int64_t iVerifyBadTscDiff;
2628
2629 /** Padding to make sure the uVar1 is in its own cache line. */
2630 uint64_t au64CacheLinePaddingBetween[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2631 /** Pointer to the worker's synchronization struct (on stack). */
2632 PSUPTSCDELTASYNC2 volatile pSyncWorker;
2633 /** Verification test TSC values for the worker. */
2634 uint64_t volatile auVerifyWorkerTscs[32];
2635
2636 /** Padding to make sure the above is in its own cache line. */
2637 uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2638} SUPDRVGIPTSCDELTARGS;
2639typedef SUPDRVGIPTSCDELTARGS *PSUPDRVGIPTSCDELTARGS;
2640
2641
2642/** @name Macros that implements the basic synchronization steps common to
2643 * the algorithms.
2644 *
2645 * Must be used from loop as the timeouts are implemented via 'break' statements
2646 * at the moment.
2647 *
2648 * @{
2649 */
2650#if defined(DEBUG_bird) /* || defined(VBOX_STRICT) */
2651# define TSCDELTA_DBG_VARS() uint32_t iDbgCounter
2652# define TSCDELTA_DBG_START_LOOP() do { iDbgCounter = 0; } while (0)
2653# define TSCDELTA_DBG_CHECK_LOOP() \
2654 do { iDbgCounter++; if ((iDbgCounter & UINT32_C(0x01ffffff)) == 0) RT_BREAKPOINT(); } while (0)
2655#else
2656# define TSCDELTA_DBG_VARS() ((void)0)
2657# define TSCDELTA_DBG_START_LOOP() ((void)0)
2658# define TSCDELTA_DBG_CHECK_LOOP() ((void)0)
2659#endif
2660
2661
2662static bool supdrvTscDeltaSync2_Before(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
2663 bool fIsMaster, PRTCCUINTREG pfEFlags)
2664{
2665 uint32_t iMySeq = fIsMaster ? 0 : 256;
2666 uint32_t const iMaxSeq = iMySeq + 16; /* For the last loop, darn linux/freebsd C-ishness. */
2667 uint32_t u32Tmp;
2668 uint32_t iSync2Loops = 0;
2669 RTCCUINTREG fEFlags;
2670 TSCDELTA_DBG_VARS();
2671
2672 *pfEFlags = X86_EFL_IF | X86_EFL_1; /* should shut up most nagging compilers. */
2673
2674 /*
2675 * The master tells the worker to get on it's mark.
2676 */
2677 if (fIsMaster)
2678 {
2679 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
2680 { /* likely*/ }
2681 else
2682 return false;
2683 }
2684
2685 /*
2686 * Wait for the on your mark signal (ack in the master case). We process timeouts here.
2687 */
2688 ASMAtomicWriteU32(&(pMySync)->uSyncSeq, 0);
2689 for (;;)
2690 {
2691 fEFlags = ASMIntDisableFlags();
2692 u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2693 if (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY)
2694 break;
2695
2696 ASMSetFlags(fEFlags);
2697 ASMNopPause();
2698
2699 /* Abort? */
2700 if (u32Tmp != GIP_TSC_DELTA_SYNC2_READY)
2701 break;
2702
2703 /* Check for timeouts every so often (not every loop in case RDTSC is
2704 trapping or something). Must check the first time around. */
2705#if 0 /* For debugging the timeout paths. */
2706 static uint32_t volatile xxx;
2707#endif
2708 if ( ( (iSync2Loops & 0x3ff) == 0
2709 && ASMReadTSC() - pMySync->uTscStart > pMySync->cMaxTscTicks)
2710#if 0 /* This is crazy, I know, but enable this code and the results are markedly better when enabled on the 1.4GHz AMD (debug). */
2711 || (!fIsMaster && (++xxx & 0xf) == 0)
2712#endif
2713 )
2714 {
2715 /* Try switch our own state into timeout mode so the master cannot tell us to 'GO',
2716 ignore the timeout if we've got the go ahead already (simpler). */
2717 if (ASMAtomicCmpXchgU32(&pMySync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_READY))
2718 {
2719 ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_STEADY);
2720 return false;
2721 }
2722 }
2723 iSync2Loops++;
2724 }
2725
2726 /*
2727 * Interrupts are now disabled and will remain disabled until we do
2728 * TSCDELTA_MASTER_SYNC_AFTER / TSCDELTA_OTHER_SYNC_AFTER.
2729 */
2730 *pfEFlags = fEFlags;
2731
2732 /*
2733 * The worker tells the master that it is on its mark and that the master
2734 * need to get into position as well.
2735 */
2736 if (!fIsMaster)
2737 {
2738 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
2739 { /* likely */ }
2740 else
2741 {
2742 ASMSetFlags(fEFlags);
2743 return false;
2744 }
2745 }
2746
2747 /*
2748 * The master sends the 'go' to the worker and wait for ACK.
2749 */
2750 if (fIsMaster)
2751 {
2752 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
2753 { /* likely */ }
2754 else
2755 {
2756 ASMSetFlags(fEFlags);
2757 return false;
2758 }
2759 }
2760
2761 /*
2762 * Wait for the 'go' signal (ack in the master case).
2763 */
2764 TSCDELTA_DBG_START_LOOP();
2765 for (;;)
2766 {
2767 u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2768 if (u32Tmp == GIP_TSC_DELTA_SYNC2_GO)
2769 break;
2770 if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY))
2771 { /* likely */ }
2772 else
2773 {
2774 ASMSetFlags(fEFlags);
2775 return false;
2776 }
2777
2778 TSCDELTA_DBG_CHECK_LOOP();
2779 ASMNopPause();
2780 }
2781
2782 /*
2783 * The worker acks the 'go' (shouldn't fail).
2784 */
2785 if (!fIsMaster)
2786 {
2787 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
2788 { /* likely */ }
2789 else
2790 {
2791 ASMSetFlags(fEFlags);
2792 return false;
2793 }
2794 }
2795
2796 /*
2797 * Try enter mostly lockstep execution with it.
2798 */
2799 for (;;)
2800 {
2801 uint32_t iOtherSeq1, iOtherSeq2;
2802 ASMCompilerBarrier();
2803 ASMSerializeInstruction();
2804
2805 ASMAtomicWriteU32(&pMySync->uSyncSeq, iMySeq);
2806 ASMNopPause();
2807 iOtherSeq1 = ASMAtomicXchgU32(&pOtherSync->uSyncSeq, iMySeq);
2808 ASMNopPause();
2809 iOtherSeq2 = ASMAtomicReadU32(&pMySync->uSyncSeq);
2810
2811 ASMCompilerBarrier();
2812 if (iOtherSeq1 == iOtherSeq2)
2813 return true;
2814
2815 /* Did the other guy give up? Should we give up? */
2816 if ( iOtherSeq1 == UINT32_MAX
2817 || iOtherSeq2 == UINT32_MAX)
2818 return true;
2819 if (++iMySeq >= iMaxSeq)
2820 {
2821 ASMAtomicWriteU32(&pMySync->uSyncSeq, UINT32_MAX);
2822 return true;
2823 }
2824 ASMNopPause();
2825 }
2826}
2827
2828#define TSCDELTA_MASTER_SYNC_BEFORE(a_pMySync, a_pOtherSync) \
2829 do { \
2830 if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, true /*fMaster*/, &uFlags))) \
2831 { /*likely*/ } \
2832 else break; \
2833 } while (0)
2834#define TSCDELTA_OTHER_SYNC_BEFORE(a_pMySync, a_pOtherSync) \
2835 do { \
2836 if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, false /*fMaster*/, &uFlags))) \
2837 { /*likely*/ } \
2838 else break; \
2839 } while (0)
2840
2841
2842static bool supdrvTscDeltaSync2_After(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync, RTCCUINTREG fEFlags)
2843{
2844 TSCDELTA_DBG_VARS();
2845
2846 /*
2847 * Wait for the 'ready' signal. In the master's case, this means the
2848 * worker has completed its data collection, while in the worker's case it
2849 * means the master is done processing the data and it's time for the next
2850 * loop iteration (or whatever).
2851 */
2852 ASMSetFlags(fEFlags);
2853 TSCDELTA_DBG_START_LOOP();
2854 for (;;)
2855 {
2856 uint32_t u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2857 if (u32Tmp == GIP_TSC_DELTA_SYNC2_READY)
2858 return true;
2859 ASMNopPause();
2860 if (u32Tmp != GIP_TSC_DELTA_SYNC2_GO)
2861 return false; /* shouldn't ever happen! */
2862 TSCDELTA_DBG_CHECK_LOOP();
2863 ASMNopPause();
2864 }
2865}
2866
2867#define TSCDELTA_MASTER_SYNC_AFTER(a_pMySync, a_pOtherSync) \
2868 do { \
2869 if (supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, uFlags)) \
2870 { /* likely */ } \
2871 else break; \
2872 } while (0)
2873
2874#define TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(a_pMySync, a_pOtherSync) \
2875 do {\
2876 /* \
2877 * Tell the woker that we're done processing the data and ready for the next round. \
2878 */ \
2879 if (!ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO)) \
2880 { \
2881 ASMSetFlags(uFlags); \
2882 break; \
2883 } \
2884 } while (0)
2885
2886#define TSCDELTA_OTHER_SYNC_AFTER(a_pMySync, a_pOtherSync) \
2887 do { \
2888 /* \
2889 * Tell the master that we're done collecting data and wait for the next round to start. \
2890 */ \
2891 if (!ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO)) \
2892 { \
2893 ASMSetFlags(uFlags); \
2894 break; \
2895 } \
2896 if (supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, uFlags)) \
2897 { /* likely */ } \
2898 else break; \
2899 } while (0)
2900/** @} */
2901
2902#ifdef GIP_TSC_DELTA_METHOD_1
2903
2904/**
2905 * TSC delta measurment algorithm \#1 (GIP_TSC_DELTA_METHOD_1).
2906 *
2907 *
2908 * We ignore the first few runs of the loop in order to prime the
2909 * cache. Also, we need to be careful about using 'pause' instruction
2910 * in critical busy-wait loops in this code - it can cause undesired
2911 * behaviour with hyperthreading.
2912 *
2913 * We try to minimize the measurement error by computing the minimum
2914 * read time of the compare statement in the worker by taking TSC
2915 * measurements across it.
2916 *
2917 * It must be noted that the computed minimum read time is mostly to
2918 * eliminate huge deltas when the worker is too early and doesn't by
2919 * itself help produce more accurate deltas. We allow two times the
2920 * computed minimum as an arbibtrary acceptable threshold. Therefore,
2921 * it is still possible to get negative deltas where there are none
2922 * when the worker is earlier. As long as these occasional negative
2923 * deltas are lower than the time it takes to exit guest-context and
2924 * the OS to reschedule EMT on a different CPU we won't expose a TSC
2925 * that jumped backwards. It is because of the existence of the
2926 * negative deltas we don't recompute the delta with the master and
2927 * worker interchanged to eliminate the remaining measurement error.
2928 *
2929 *
2930 * @param pArgs The argument/state data.
2931 * @param pMySync My synchronization structure.
2932 * @param pOtherSync My partner's synchronization structure.
2933 * @param fIsMaster Set if master, clear if worker.
2934 * @param iTry The attempt number.
2935 */
2936static void supdrvTscDeltaMethod1Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
2937 bool fIsMaster, uint32_t iTry)
2938{
2939 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
2940 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
2941 uint64_t uMinCmpReadTime = UINT64_MAX;
2942 unsigned iLoop;
2943 NOREF(iTry);
2944
2945 for (iLoop = 0; iLoop < GIP_TSC_DELTA_LOOPS; iLoop++)
2946 {
2947 RTCCUINTREG uFlags;
2948 if (fIsMaster)
2949 {
2950 /*
2951 * The master.
2952 */
2953 AssertMsg(pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD,
2954 ("%#llx idMaster=%#x idWorker=%#x (idGipMaster=%#x)\n",
2955 pGipCpuMaster->u64TSCSample, pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, pArgs->pDevExt->idGipMaster));
2956 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync);
2957
2958 do
2959 {
2960 ASMSerializeInstruction();
2961 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, ASMReadTSC());
2962 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
2963
2964 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync);
2965
2966 /* Process the data. */
2967 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
2968 {
2969 if (pGipCpuWorker->u64TSCSample != GIP_TSC_DELTA_RSVD)
2970 {
2971 int64_t iDelta = pGipCpuWorker->u64TSCSample
2972 - (pGipCpuMaster->u64TSCSample - pGipCpuMaster->i64TSCDelta);
2973 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
2974 ? iDelta < pGipCpuWorker->i64TSCDelta
2975 : iDelta > pGipCpuWorker->i64TSCDelta || pGipCpuWorker->i64TSCDelta == INT64_MAX)
2976 pGipCpuWorker->i64TSCDelta = iDelta;
2977 }
2978 }
2979
2980 /* Reset our TSC sample and tell the worker to move on. */
2981 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, GIP_TSC_DELTA_RSVD);
2982 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
2983 }
2984 else
2985 {
2986 /*
2987 * The worker.
2988 */
2989 uint64_t uTscWorker;
2990 uint64_t uTscWorkerFlushed;
2991 uint64_t uCmpReadTime;
2992
2993 ASMAtomicReadU64(&pGipCpuMaster->u64TSCSample); /* Warm the cache line. */
2994 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync);
2995
2996 /*
2997 * Keep reading the TSC until we notice that the master has read his. Reading
2998 * the TSC -after- the master has updated the memory is way too late. We thus
2999 * compensate by trying to measure how long it took for the worker to notice
3000 * the memory flushed from the master.
3001 */
3002 do
3003 {
3004 ASMSerializeInstruction();
3005 uTscWorker = ASMReadTSC();
3006 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
3007 ASMSerializeInstruction();
3008 uTscWorkerFlushed = ASMReadTSC();
3009
3010 uCmpReadTime = uTscWorkerFlushed - uTscWorker;
3011 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
3012 {
3013 /* This is totally arbitrary a.k.a I don't like it but I have no better ideas for now. */
3014 if (uCmpReadTime < (uMinCmpReadTime << 1))
3015 {
3016 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, uTscWorker);
3017 if (uCmpReadTime < uMinCmpReadTime)
3018 uMinCmpReadTime = uCmpReadTime;
3019 }
3020 else
3021 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
3022 }
3023 else if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS)
3024 {
3025 if (uCmpReadTime < uMinCmpReadTime)
3026 uMinCmpReadTime = uCmpReadTime;
3027 }
3028
3029 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync);
3030 }
3031 }
3032
3033 /*
3034 * We must reset the worker TSC sample value in case it gets picked as a
3035 * GIP master later on (it's trashed above, naturally).
3036 */
3037 if (!fIsMaster)
3038 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
3039}
3040
3041
3042/**
3043 * Initializes the argument/state data belonging to algorithm \#1.
3044 *
3045 * @returns VBox status code.
3046 * @param pArgs The argument/state data.
3047 */
3048static int supdrvTscDeltaMethod1Init(PSUPDRVGIPTSCDELTARGS pArgs)
3049{
3050 NOREF(pArgs);
3051 return VINF_SUCCESS;
3052}
3053
3054
3055/**
3056 * Undoes what supdrvTscDeltaMethod1Init() did.
3057 *
3058 * @param pArgs The argument/state data.
3059 */
3060static void supdrvTscDeltaMethod1Delete(PSUPDRVGIPTSCDELTARGS pArgs)
3061{
3062 NOREF(pArgs);
3063}
3064
3065#endif /* GIP_TSC_DELTA_METHOD_1 */
3066
3067
3068#ifdef GIP_TSC_DELTA_METHOD_2
3069/*
3070 * TSC delta measurement algorithm \#2 configuration and code - Experimental!!
3071 */
3072
3073# define GIP_TSC_DELTA_M2_LOOPS (12 + GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3074# define GIP_TSC_DELTA_M2_PRIMER_LOOPS 1
3075
3076
3077static void supdrvTscDeltaMethod2ProcessDataOnMaster(PSUPDRVGIPTSCDELTARGS pArgs, uint32_t iLoop)
3078{
3079 PSUPDRVTSCDELTAMETHOD2 pMasterData = pArgs->M2.pMasterData;
3080 PSUPDRVTSCDELTAMETHOD2 pOtherData = pArgs->M2.pWorkerData;
3081 int64_t iMasterTscDelta = pArgs->pMaster->i64TSCDelta;
3082 int64_t iBestDelta = pArgs->pWorker->i64TSCDelta;
3083 uint32_t idxResult;
3084 uint32_t cHits = 0;
3085
3086 /*
3087 * Look for matching entries in the master and worker tables.
3088 */
3089 for (idxResult = 0; idxResult < RT_ELEMENTS(pMasterData->aResults); idxResult++)
3090 {
3091 uint32_t idxOther = pMasterData->aResults[idxResult].iSeqOther;
3092 if (idxOther & 1)
3093 {
3094 idxOther >>= 1;
3095 if (idxOther < RT_ELEMENTS(pOtherData->aResults))
3096 {
3097 if (pOtherData->aResults[idxOther].iSeqOther == pMasterData->aResults[idxResult].iSeqMine)
3098 {
3099 int64_t iDelta;
3100 iDelta = pOtherData->aResults[idxOther].uTsc
3101 - (pMasterData->aResults[idxResult].uTsc - iMasterTscDelta);
3102 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3103 ? iDelta < iBestDelta
3104 : iDelta > iBestDelta || iBestDelta == INT64_MAX)
3105 iBestDelta = iDelta;
3106 cHits++;
3107 }
3108 }
3109 }
3110 }
3111
3112 /*
3113 * Save the results.
3114 */
3115 if (cHits > 2)
3116 pArgs->pWorker->i64TSCDelta = iBestDelta;
3117 pArgs->M2.cHits += cHits;
3118
3119 /*
3120 * Check and see if we can quit a little early. If the result is already
3121 * extremely good (+/-16 ticks seems reasonable), just stop.
3122 */
3123 if ( iBestDelta >= 0 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3124 ? iBestDelta <= 16 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3125 : iBestDelta >= -16 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE)
3126 {
3127 /*SUPR0Printf("quitting early #1: hits=%#x iLoop=%d iBestDelta=%lld\n", cHits, iLoop, iBestDelta);*/
3128 ASMAtomicWriteBool(&pArgs->M2.fQuitEarly, true);
3129 }
3130 /*
3131 * After a while, just stop if we get sufficent hits.
3132 */
3133 else if ( iLoop >= GIP_TSC_DELTA_M2_LOOPS / 3
3134 && cHits > 8)
3135 {
3136 uint32_t const cHitsNeeded = GIP_TSC_DELTA_M2_LOOPS * RT_ELEMENTS(pArgs->M2.pMasterData->aResults) / 4; /* 25% */
3137 if ( pArgs->M2.cHits >= cHitsNeeded
3138 && ( iBestDelta >= 0 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3139 ? iBestDelta <= GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3140 : iBestDelta >= -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO + GIP_TSC_DELTA_INITIAL_MASTER_VALUE) )
3141 {
3142 /*SUPR0Printf("quitting early hits=%#x (%#x) needed=%#x iLoop=%d iBestDelta=%lld\n",
3143 pArgs->M2.cHits, cHits, cHitsNeeded, iLoop, iBestDelta);*/
3144 ASMAtomicWriteBool(&pArgs->M2.fQuitEarly, true);
3145 }
3146 }
3147}
3148
3149
3150/**
3151 * The core function of the 2nd TSC delta mesurment algorithm.
3152 *
3153 * The idea here is that we have the two CPUs execute the exact same code
3154 * collecting a largish set of TSC samples. The code has one data dependency on
3155 * the other CPU which intention it is to synchronize the execution as well as
3156 * help cross references the two sets of TSC samples (the sequence numbers).
3157 *
3158 * The @a fLag parameter is used to modify the execution a tiny bit on one or
3159 * both of the CPUs. When @a fLag differs between the CPUs, it is thought that
3160 * it will help with making the CPUs enter lock step execution occationally.
3161 *
3162 */
3163static void supdrvTscDeltaMethod2CollectData(PSUPDRVTSCDELTAMETHOD2 pMyData, uint32_t volatile *piOtherSeqNo, bool fLag)
3164{
3165 SUPDRVTSCDELTAMETHOD2ENTRY *pEntry = &pMyData->aResults[0];
3166 uint32_t cLeft = RT_ELEMENTS(pMyData->aResults);
3167
3168 ASMAtomicWriteU32(&pMyData->iCurSeqNo, 0);
3169 ASMSerializeInstruction();
3170 while (cLeft-- > 0)
3171 {
3172 uint64_t uTsc;
3173 uint32_t iSeqMine = ASMAtomicIncU32(&pMyData->iCurSeqNo);
3174 uint32_t iSeqOther = ASMAtomicReadU32(piOtherSeqNo);
3175 ASMCompilerBarrier();
3176 ASMSerializeInstruction(); /* Way better result than with ASMMemoryFenceSSE2() in this position! */
3177 uTsc = ASMReadTSC();
3178 ASMAtomicIncU32(&pMyData->iCurSeqNo);
3179 ASMCompilerBarrier();
3180 ASMSerializeInstruction();
3181 pEntry->iSeqMine = iSeqMine;
3182 pEntry->iSeqOther = iSeqOther;
3183 pEntry->uTsc = uTsc;
3184 pEntry++;
3185 ASMSerializeInstruction();
3186 if (fLag)
3187 ASMNopPause();
3188 }
3189}
3190
3191
3192/**
3193 * TSC delta measurment algorithm \#2 (GIP_TSC_DELTA_METHOD_2).
3194 *
3195 * See supdrvTscDeltaMethod2CollectData for algorithm details.
3196 *
3197 * @param pArgs The argument/state data.
3198 * @param pMySync My synchronization structure.
3199 * @param pOtherSync My partner's synchronization structure.
3200 * @param fIsMaster Set if master, clear if worker.
3201 * @param iTry The attempt number.
3202 */
3203static void supdrvTscDeltaMethod2Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
3204 bool fIsMaster, uint32_t iTry)
3205{
3206 unsigned iLoop;
3207
3208 if (fIsMaster)
3209 ASMAtomicWriteBool(&pArgs->M2.fQuitEarly, false);
3210
3211 for (iLoop = 0; iLoop < GIP_TSC_DELTA_M2_LOOPS; iLoop++)
3212 {
3213 RTCCUINTREG uFlags;
3214 if (fIsMaster)
3215 {
3216 /*
3217 * Adjust the loop lag fudge.
3218 */
3219# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
3220 if (iLoop < GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3221 {
3222 /* Lag during the priming to be nice to everyone.. */
3223 pArgs->M2.fLagMaster = true;
3224 pArgs->M2.fLagWorker = true;
3225 }
3226 else
3227# endif
3228 if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4)
3229 {
3230 /* 25 % of the body without lagging. */
3231 pArgs->M2.fLagMaster = false;
3232 pArgs->M2.fLagWorker = false;
3233 }
3234 else if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4 * 2)
3235 {
3236 /* 25 % of the body with both lagging. */
3237 pArgs->M2.fLagMaster = true;
3238 pArgs->M2.fLagWorker = true;
3239 }
3240 else
3241 {
3242 /* 50% of the body with alternating lag. */
3243 pArgs->M2.fLagMaster = (iLoop & 1) == 0;
3244 pArgs->M2.fLagWorker = (iLoop & 1) == 1;
3245 }
3246
3247 /*
3248 * Sync up with the worker and collect data.
3249 */
3250 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync);
3251 supdrvTscDeltaMethod2CollectData(pArgs->M2.pMasterData, &pArgs->M2.pWorkerData->iCurSeqNo, pArgs->M2.fLagMaster);
3252 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync);
3253
3254 /*
3255 * Process the data.
3256 */
3257# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
3258 if (iLoop >= GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3259# endif
3260 supdrvTscDeltaMethod2ProcessDataOnMaster(pArgs, iLoop);
3261
3262 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
3263 }
3264 else
3265 {
3266 /*
3267 * The worker.
3268 */
3269 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync);
3270 supdrvTscDeltaMethod2CollectData(pArgs->M2.pWorkerData, &pArgs->M2.pMasterData->iCurSeqNo, pArgs->M2.fLagWorker);
3271 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync);
3272 }
3273
3274 if (ASMAtomicReadBool(&pArgs->M2.fQuitEarly))
3275 break;
3276
3277 }
3278}
3279
3280
3281/**
3282 * Initializes the argument/state data belonging to algorithm \#2.
3283 *
3284 * @returns VBox status code.
3285 * @param pArgs The argument/state data.
3286 */
3287static int supdrvTscDeltaMethod2Init(PSUPDRVGIPTSCDELTARGS pArgs)
3288{
3289 pArgs->M2.pMasterData = NULL;
3290 pArgs->M2.pWorkerData = NULL;
3291
3292 uint32_t const fFlags = /*RTMEMALLOCEX_FLAGS_ANY_CTX |*/ RTMEMALLOCEX_FLAGS_ZEROED;
3293 int rc = RTMemAllocEx(sizeof(*pArgs->M2.pWorkerData), 0, fFlags, (void **)&pArgs->M2.pWorkerData);
3294 if (RT_SUCCESS(rc))
3295 rc = RTMemAllocEx(sizeof(*pArgs->M2.pMasterData), 0, fFlags, (void **)&pArgs->M2.pMasterData);
3296 return rc;
3297}
3298
3299
3300/**
3301 * Undoes what supdrvTscDeltaMethod2Init() did.
3302 *
3303 * @param pArgs The argument/state data.
3304 */
3305static void supdrvTscDeltaMethod2Delete(PSUPDRVGIPTSCDELTARGS pArgs)
3306{
3307 RTMemFreeEx(pArgs->M2.pMasterData, sizeof(*pArgs->M2.pMasterData));
3308 RTMemFreeEx(pArgs->M2.pWorkerData, sizeof(*pArgs->M2.pWorkerData));
3309# if 0
3310 SUPR0Printf("cHits=%d m=%d w=%d\n", pArgs->M2.cHits, pArgs->pMaster->idApic, pArgs->pWorker->idApic);
3311# endif
3312}
3313
3314
3315#endif /* GIP_TSC_DELTA_METHOD_2 */
3316
3317
3318
3319static int supdrvTscDeltaVerify(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync,
3320 PSUPTSCDELTASYNC2 pOtherSync, bool fIsMaster, int64_t iWorkerTscDelta)
3321{
3322 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
3323 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3324 uint32_t i;
3325 TSCDELTA_DBG_VARS();
3326
3327 for (;;)
3328 {
3329 RTCCUINTREG uFlags;
3330 AssertCompile((RT_ELEMENTS(pArgs->auVerifyMasterTscs) & 1) == 0);
3331 AssertCompile(RT_ELEMENTS(pArgs->auVerifyWorkerTscs) == RT_ELEMENTS(pArgs->auVerifyMasterTscs));
3332
3333 if (fIsMaster)
3334 {
3335 uint64_t uTscWorker;
3336 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync);
3337
3338 /*
3339 * Collect TSC, master goes first.
3340 */
3341 for (i = 0; i < RT_ELEMENTS(pArgs->auVerifyMasterTscs); i += 2)
3342 {
3343 /* Read, kick & wait #1. */
3344 uint64_t register uTsc = ASMReadTSC();
3345 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO);
3346 ASMSerializeInstruction();
3347 pArgs->auVerifyMasterTscs[i] = uTsc;
3348 TSCDELTA_DBG_START_LOOP();
3349 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO)
3350 {
3351 TSCDELTA_DBG_CHECK_LOOP();
3352 ASMNopPause();
3353 }
3354
3355 /* Read, kick & wait #2. */
3356 uTsc = ASMReadTSC();
3357 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO);
3358 ASMSerializeInstruction();
3359 pArgs->auVerifyMasterTscs[i + 1] = uTsc;
3360 TSCDELTA_DBG_START_LOOP();
3361 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO)
3362 {
3363 TSCDELTA_DBG_CHECK_LOOP();
3364 ASMNopPause();
3365 }
3366 }
3367
3368 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync);
3369
3370 /*
3371 * Process the data.
3372 */
3373 pArgs->cMaxVerifyTscTicks = INT64_MIN;
3374 pArgs->cMinVerifyTscTicks = INT64_MAX;
3375 pArgs->iVerifyBadTscDiff = 0;
3376 ASMAtomicWriteS32(&pArgs->rcVerify, VINF_SUCCESS);
3377 uTscWorker = 0;
3378 for (i = 0; i < RT_ELEMENTS(pArgs->auVerifyMasterTscs); i++)
3379 {
3380 /* Master vs previous worker entry. */
3381 uint64_t uTscMaster = pArgs->auVerifyMasterTscs[i] - pGipCpuMaster->i64TSCDelta;
3382 int64_t iDiff;
3383 if (i > 0)
3384 {
3385 iDiff = uTscMaster - uTscWorker;
3386 if (iDiff > pArgs->cMaxVerifyTscTicks)
3387 pArgs->cMaxVerifyTscTicks = iDiff;
3388 if (iDiff < pArgs->cMinVerifyTscTicks)
3389 pArgs->cMinVerifyTscTicks = iDiff;
3390 if (iDiff < 0)
3391 {
3392 pArgs->iVerifyBadTscDiff = -iDiff;
3393 ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE);
3394 break;
3395 }
3396 }
3397
3398 /* Worker vs master. */
3399 uTscWorker = pArgs->auVerifyWorkerTscs[i] - iWorkerTscDelta;
3400 iDiff = uTscWorker - uTscMaster;
3401 if (iDiff > pArgs->cMaxVerifyTscTicks)
3402 pArgs->cMaxVerifyTscTicks = iDiff;
3403 if (iDiff < pArgs->cMinVerifyTscTicks)
3404 pArgs->cMinVerifyTscTicks = iDiff;
3405 if (iDiff < 0)
3406 {
3407 pArgs->iVerifyBadTscDiff = iDiff;
3408 ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE);
3409 break;
3410 }
3411 }
3412
3413 /* Done. */
3414 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
3415 }
3416 else
3417 {
3418 /*
3419 * The worker, master leads.
3420 */
3421 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync);
3422
3423 for (i = 0; i < RT_ELEMENTS(pArgs->auVerifyWorkerTscs); i += 2)
3424 {
3425 uint64_t register uTsc;
3426
3427 /* Wait, Read and Kick #1. */
3428 TSCDELTA_DBG_START_LOOP();
3429 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO)
3430 {
3431 TSCDELTA_DBG_CHECK_LOOP();
3432 ASMNopPause();
3433 }
3434 uTsc = ASMReadTSC();
3435 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO);
3436 ASMSerializeInstruction();
3437 pArgs->auVerifyWorkerTscs[i] = uTsc;
3438
3439 /* Wait, Read and Kick #2. */
3440 TSCDELTA_DBG_START_LOOP();
3441 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO)
3442 {
3443 TSCDELTA_DBG_CHECK_LOOP();
3444 ASMNopPause();
3445 }
3446 uTsc = ASMReadTSC();
3447 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO);
3448 ASMSerializeInstruction();
3449 pArgs->auVerifyWorkerTscs[i + 1] = uTsc;
3450 }
3451
3452 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync);
3453 }
3454 return pArgs->rcVerify;
3455 }
3456
3457 /*
3458 * Timed out, please retry.
3459 */
3460 ASMAtomicWriteS32(&pArgs->rcVerify, VERR_TRY_AGAIN);
3461 return VERR_TIMEOUT;
3462}
3463
3464
3465
3466/**
3467 * Handles the special abort procedure during synchronization setup in
3468 * supdrvMeasureTscDeltaCallbackUnwrapped().
3469 *
3470 * @returns 0 (dummy, ignored)
3471 * @param pArgs Pointer to argument/state data.
3472 * @param pMySync Pointer to my sync structure.
3473 * @param fIsMaster Set if we're the master, clear if worker.
3474 * @param fTimeout Set if it's a timeout.
3475 */
3476
3477/* XXX See linux-3.14/include/linux/compiler-gcc.h:
3478 * #define noinline __attribute__((noinline)) */
3479#undef noinline
3480DECL_NO_INLINE(static, int)
3481supdrvMeasureTscDeltaCallbackAbortSyncSetup(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, bool fIsMaster, bool fTimeout)
3482{
3483 PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
3484 PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
3485 TSCDELTA_DBG_VARS();
3486
3487 /*
3488 * Clear our sync pointer and make sure the abort flag is set.
3489 */
3490 ASMAtomicWriteNullPtr(ppMySync);
3491 ASMAtomicWriteBool(&pArgs->fAbortSetup, true);
3492
3493 /*
3494 * Make sure the other party is out of there and won't be touching our
3495 * sync state again (would cause stack corruption).
3496 */
3497 TSCDELTA_DBG_START_LOOP();
3498 while (ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2) != NULL)
3499 {
3500 ASMNopPause();
3501 ASMNopPause();
3502 ASMNopPause();
3503 TSCDELTA_DBG_CHECK_LOOP();
3504 }
3505
3506 return 0;
3507}
3508
3509
3510/**
3511 * This is used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs
3512 * and compute the delta between them.
3513 *
3514 * To reduce code size a good when timeout handling was added, a dummy return
3515 * value had to be added (saves 1-3 lines per timeout case), thus this
3516 * 'Unwrapped' function and the dummy 0 return value.
3517 *
3518 * @returns 0 (dummy, ignored)
3519 * @param idCpu The CPU we are current scheduled on.
3520 * @param pArgs Pointer to a parameter package.
3521 *
3522 * @remarks Measuring TSC deltas between the CPUs is tricky because we need to
3523 * read the TSC at exactly the same time on both the master and the
3524 * worker CPUs. Due to DMA, bus arbitration, cache locality,
3525 * contention, SMI, pipelining etc. there is no guaranteed way of
3526 * doing this on x86 CPUs.
3527 */
3528static int supdrvMeasureTscDeltaCallbackUnwrapped(RTCPUID idCpu, PSUPDRVGIPTSCDELTARGS pArgs)
3529{
3530 PSUPDRVDEVEXT pDevExt = pArgs->pDevExt;
3531 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
3532 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3533 bool const fIsMaster = idCpu == pGipCpuMaster->idCpu;
3534 uint32_t iTry;
3535 PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
3536 PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
3537 SUPTSCDELTASYNC2 MySync;
3538 PSUPTSCDELTASYNC2 pOtherSync;
3539 int rc;
3540 TSCDELTA_DBG_VARS();
3541
3542 /* A bit of paranoia first. */
3543 if (!pGipCpuMaster || !pGipCpuWorker)
3544 return 0;
3545
3546 /*
3547 * If the CPU isn't part of the measurement, return immediately.
3548 */
3549 if ( !fIsMaster
3550 && idCpu != pGipCpuWorker->idCpu)
3551 return 0;
3552
3553 /*
3554 * Set up my synchronization stuff and wait for the other party to show up.
3555 *
3556 * We don't wait forever since the other party may be off fishing (offline,
3557 * spinning with ints disables, whatever), we must play nice to the rest of
3558 * the system as this context generally isn't one in which we will get
3559 * preempted and we may hold up a number of lower priority interrupts.
3560 */
3561 ASMAtomicWriteU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT);
3562 ASMAtomicWritePtr(ppMySync, &MySync);
3563 MySync.uTscStart = ASMReadTSC();
3564 MySync.cMaxTscTicks = pArgs->cMaxTscTicks;
3565
3566 /* Look for the partner, might not be here yet... Special abort considerations. */
3567 iTry = 0;
3568 TSCDELTA_DBG_START_LOOP();
3569 while ((pOtherSync = ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2)) == NULL)
3570 {
3571 ASMNopPause();
3572 if ( ASMAtomicReadBool(&pArgs->fAbortSetup)
3573 || !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu) )
3574 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3575 if ( (iTry++ & 0xff) == 0
3576 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
3577 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
3578 TSCDELTA_DBG_CHECK_LOOP();
3579 ASMNopPause();
3580 }
3581
3582 /* I found my partner, waiting to be found... Special abort considerations. */
3583 if (fIsMaster)
3584 if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* parnaoia */
3585 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3586
3587 iTry = 0;
3588 TSCDELTA_DBG_START_LOOP();
3589 while (ASMAtomicReadU32(&MySync.uSyncVar) == GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)
3590 {
3591 ASMNopPause();
3592 if (ASMAtomicReadBool(&pArgs->fAbortSetup))
3593 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3594 if ( (iTry++ & 0xff) == 0
3595 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
3596 {
3597 if ( fIsMaster
3598 && !ASMAtomicCmpXchgU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_ABORT, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT))
3599 break; /* race #1: slave has moved on, handle timeout in loop instead. */
3600 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
3601 }
3602 TSCDELTA_DBG_CHECK_LOOP();
3603 }
3604
3605 if (!fIsMaster)
3606 if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* race #1 */
3607 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3608
3609/** @todo Add a resumable state to pArgs so we don't waste time if we time
3610 * out or something. Timeouts are legit, any of the two CPUs may get
3611 * interrupted. */
3612
3613 /*
3614 * Start by seeing if we have a zero delta between the two CPUs.
3615 * This should normally be the case.
3616 */
3617 rc = supdrvTscDeltaVerify(pArgs, &MySync, pOtherSync, fIsMaster, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3618 if (RT_SUCCESS(rc))
3619 {
3620 if (fIsMaster)
3621 {
3622 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3623 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuMaster->iCpuSet);
3624 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuMaster->iCpuSet);
3625 }
3626 else
3627 {
3628 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
3629 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
3630 }
3631 }
3632 /*
3633 * If the verification didn't time out, do regular delta measurements.
3634 * We retry this until we get a reasonable value.
3635 */
3636 else if (rc != VERR_TIMEOUT)
3637 {
3638 Assert(pGipCpuWorker->i64TSCDelta == INT64_MAX);
3639 for (iTry = 0; iTry < 12; iTry++)
3640 {
3641 if (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_READY)
3642 break;
3643
3644 /*
3645 * Do the measurements.
3646 */
3647#ifdef GIP_TSC_DELTA_METHOD_1
3648 supdrvTscDeltaMethod1Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
3649#elif defined(GIP_TSC_DELTA_METHOD_2)
3650 supdrvTscDeltaMethod2Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
3651#else
3652# error "huh??"
3653#endif
3654 if (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_READY)
3655 break;
3656
3657 /*
3658 * Success? If so, stop trying.
3659 */
3660 if (pGipCpuWorker->i64TSCDelta != INT64_MAX)
3661 {
3662 if (fIsMaster)
3663 {
3664 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuMaster->iCpuSet);
3665 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuMaster->iCpuSet);
3666 }
3667 else
3668 {
3669 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
3670 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
3671 }
3672 break;
3673 }
3674 }
3675 }
3676
3677 /*
3678 * End the synchroniziation dance. We tell the other that we're done,
3679 * then wait for the same kind of reply.
3680 */
3681 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_FINAL);
3682 ASMAtomicWriteNullPtr(ppMySync);
3683 iTry = 0;
3684 TSCDELTA_DBG_START_LOOP();
3685 while (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_FINAL)
3686 {
3687 iTry++;
3688 if ( iTry == 0
3689 && !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu))
3690 break; /* this really shouldn't happen. */
3691 TSCDELTA_DBG_CHECK_LOOP();
3692 ASMNopPause();
3693 }
3694
3695 return 0;
3696}
3697
3698/**
3699 * Callback used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs
3700 * and compute the delta between them.
3701 *
3702 * @param idCpu The CPU we are current scheduled on.
3703 * @param pvUser1 Pointer to a parameter package (SUPDRVGIPTSCDELTARGS).
3704 * @param pvUser2 Unused.
3705 */
3706static DECLCALLBACK(void) supdrvMeasureTscDeltaCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
3707{
3708 supdrvMeasureTscDeltaCallbackUnwrapped(idCpu, (PSUPDRVGIPTSCDELTARGS)pvUser1);
3709}
3710
3711
3712/**
3713 * Measures the TSC delta between the master GIP CPU and one specified worker
3714 * CPU.
3715 *
3716 * @returns VBox status code.
3717 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED on pure measurement
3718 * failure.
3719 * @param pDevExt Pointer to the device instance data.
3720 * @param idxWorker The index of the worker CPU from the GIP's array of
3721 * CPUs.
3722 *
3723 * @remarks This must be called with preemption enabled!
3724 */
3725static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker)
3726{
3727 int rc;
3728 int rc2;
3729 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3730 RTCPUID idMaster = pDevExt->idGipMaster;
3731 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[idxWorker];
3732 PSUPGIPCPU pGipCpuMaster;
3733 uint32_t iGipCpuMaster;
3734
3735 /* Validate input a bit. */
3736 AssertReturn(pGip, VERR_INVALID_PARAMETER);
3737 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
3738 Assert(RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3739
3740 /*
3741 * Don't attempt measuring the delta for the GIP master.
3742 */
3743 if (pGipCpuWorker->idCpu == idMaster)
3744 {
3745 if (pGipCpuWorker->i64TSCDelta == INT64_MAX) /* This shouldn't happen, but just in case. */
3746 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3747 return VINF_SUCCESS;
3748 }
3749
3750 /*
3751 * One measurement at at time, at least for now. We might be using
3752 * broadcast IPIs so, so be nice to the rest of the system.
3753 */
3754#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3755 rc = RTSemMutexRequest(pDevExt->mtxTscDelta, RT_INDEFINITE_WAIT);
3756#else
3757 rc = RTSemFastMutexRequest(pDevExt->mtxTscDelta);
3758#endif
3759 if (RT_FAILURE(rc))
3760 return rc;
3761
3762 /*
3763 * If the CPU has hyper-threading and the APIC IDs of the master and worker are adjacent,
3764 * try pick a different master. (This fudge only works with multi core systems.)
3765 * ASSUMES related threads have adjacent APIC IDs. ASSUMES two threads per core.
3766 *
3767 * We skip this on AMDs for now as their HTT is different from intel's and
3768 * it doesn't seem to have any favorable effect on the results.
3769 *
3770 * If the master is offline, we need a new master too, so share the code.
3771 */
3772 iGipCpuMaster = supdrvGipFindCpuIndexForCpuId(pGip, idMaster);
3773 AssertReturn(iGipCpuMaster < pGip->cCpus, VERR_INVALID_CPU_ID);
3774 pGipCpuMaster = &pGip->aCPUs[iGipCpuMaster];
3775 if ( ( (pGipCpuMaster->idApic & ~1) == (pGipCpuWorker->idApic & ~1)
3776 && ASMHasCpuId()
3777 && ASMIsValidStdRange(ASMCpuId_EAX(0))
3778 && (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_HTT)
3779 && !ASMIsAmdCpu()
3780 && pGip->cOnlineCpus > 2)
3781 || !RTMpIsCpuOnline(idMaster) )
3782 {
3783 uint32_t i;
3784 for (i = 0; i < pGip->cCpus; i++)
3785 if ( i != iGipCpuMaster
3786 && i != idxWorker
3787 && pGip->aCPUs[i].enmState == SUPGIPCPUSTATE_ONLINE
3788 && pGip->aCPUs[i].i64TSCDelta != INT64_MAX
3789 && pGip->aCPUs[i].idCpu != NIL_RTCPUID
3790 && pGip->aCPUs[i].idCpu != idMaster /* paranoia starts here... */
3791 && pGip->aCPUs[i].idCpu != pGipCpuWorker->idCpu
3792 && pGip->aCPUs[i].idApic != pGipCpuWorker->idApic
3793 && pGip->aCPUs[i].idApic != pGipCpuMaster->idApic
3794 && RTMpIsCpuOnline(pGip->aCPUs[i].idCpu))
3795 {
3796 iGipCpuMaster = i;
3797 pGipCpuMaster = &pGip->aCPUs[i];
3798 idMaster = pGipCpuMaster->idCpu;
3799 break;
3800 }
3801 }
3802
3803 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpuWorker->iCpuSet))
3804 {
3805 /*
3806 * Initialize data package for the RTMpOnPair callback.
3807 */
3808 PSUPDRVGIPTSCDELTARGS pArgs = (PSUPDRVGIPTSCDELTARGS)RTMemAllocZ(sizeof(*pArgs));
3809 if (pArgs)
3810 {
3811 pArgs->pWorker = pGipCpuWorker;
3812 pArgs->pMaster = pGipCpuMaster;
3813 pArgs->pDevExt = pDevExt;
3814 pArgs->pSyncMaster = NULL;
3815 pArgs->pSyncWorker = NULL;
3816#if 0 /* later */
3817 pArgs->cMaxTscTicks = ASMAtomicReadU64(&pGip->u64CpuHz) / 2048; /* 488 us */
3818#else
3819 pArgs->cMaxTscTicks = ASMAtomicReadU64(&pGip->u64CpuHz) / 1024; /* 976 us */
3820#endif
3821
3822#ifdef GIP_TSC_DELTA_METHOD_1
3823 rc = supdrvTscDeltaMethod1Init(pArgs);
3824#elif defined(GIP_TSC_DELTA_METHOD_2)
3825 rc = supdrvTscDeltaMethod2Init(pArgs);
3826#else
3827# error "huh?"
3828#endif
3829 if (RT_SUCCESS(rc))
3830 {
3831 /*
3832 * Do the RTMpOnPair call. We reset i64TSCDelta first so we
3833 * and supdrvMeasureTscDeltaCallback can use it as a success check.
3834 */
3835 /** @todo Store the i64TSCDelta result in pArgs first? Perhaps deals with
3836 * that when doing the restart loop reorg. */
3837 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, INT64_MAX);
3838 rc = RTMpOnPair(pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, RTMPON_F_CONCURRENT_EXEC,
3839 supdrvMeasureTscDeltaCallback, pArgs, NULL);
3840 if (RT_SUCCESS(rc))
3841 {
3842#if 0
3843 SUPR0Printf("rcVerify=%d iVerifyBadTscDiff=%lld cMinVerifyTscTicks=%lld cMaxVerifyTscTicks=%lld\n",
3844 pArgs->rcVerify, pArgs->iVerifyBadTscDiff, pArgs->cMinVerifyTscTicks, pArgs->cMaxVerifyTscTicks);
3845#endif
3846 if (RT_LIKELY(pGipCpuWorker->i64TSCDelta != INT64_MAX))
3847 {
3848 /*
3849 * Work the TSC delta applicability rating. It starts
3850 * optimistic in supdrvGipInit, we downgrade it here.
3851 */
3852 SUPGIPUSETSCDELTA enmRating;
3853 if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO
3854 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO)
3855 enmRating = SUPGIPUSETSCDELTA_NOT_ZERO;
3856 else if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO
3857 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO)
3858 enmRating = SUPGIPUSETSCDELTA_ROUGHLY_ZERO;
3859 else
3860 enmRating = SUPGIPUSETSCDELTA_PRACTICALLY_ZERO;
3861 if (pGip->enmUseTscDelta < enmRating)
3862 {
3863 AssertCompile(sizeof(pGip->enmUseTscDelta) == sizeof(uint32_t));
3864 ASMAtomicWriteU32((uint32_t volatile *)&pGip->enmUseTscDelta, enmRating);
3865 }
3866 }
3867 else
3868 rc = VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
3869 }
3870 /** @todo return try-again if we get an offline CPU error. */
3871 }
3872
3873#ifdef GIP_TSC_DELTA_METHOD_1
3874 supdrvTscDeltaMethod1Delete(pArgs);
3875#elif defined(GIP_TSC_DELTA_METHOD_2)
3876 supdrvTscDeltaMethod2Delete(pArgs);
3877#else
3878# error "huh?"
3879#endif
3880 RTMemFree(pArgs);
3881 }
3882 else
3883 rc = VERR_NO_MEMORY;
3884 }
3885 else
3886 rc = VERR_CPU_OFFLINE;
3887
3888 /*
3889 * We're done now.
3890 */
3891#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3892 rc2 = RTSemMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
3893#else
3894 rc2 = RTSemFastMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
3895#endif
3896 return rc;
3897}
3898
3899
3900/**
3901 * Clears TSC delta related variables.
3902 *
3903 * Clears all TSC samples as well as the delta synchronization variable on the
3904 * all the per-CPU structs. Optionally also clears the per-cpu deltas too.
3905 *
3906 * @param pDevExt Pointer to the device instance data.
3907 * @param fClearDeltas Whether the deltas are also to be cleared.
3908 */
3909static void supdrvClearTscSamples(PSUPDRVDEVEXT pDevExt, bool fClearDeltas)
3910{
3911 unsigned iCpu;
3912 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3913 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
3914 {
3915 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
3916 ASMAtomicWriteU64(&pGipCpu->u64TSCSample, GIP_TSC_DELTA_RSVD);
3917 if (fClearDeltas)
3918 ASMAtomicWriteS64(&pGipCpu->i64TSCDelta, INT64_MAX);
3919 }
3920}
3921
3922
3923/**
3924 * Performs the initial measurements of the TSC deltas between CPUs.
3925 *
3926 * This is called by supdrvGipCreate or triggered by it if threaded.
3927 *
3928 * @returns VBox status code.
3929 * @param pDevExt Pointer to the device instance data.
3930 *
3931 * @remarks Must be called only after supdrvGipInitOnCpu() as this function uses
3932 * idCpu, GIP's online CPU set which are populated in
3933 * supdrvGipInitOnCpu().
3934 */
3935static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt)
3936{
3937 PSUPGIPCPU pGipCpuMaster;
3938 unsigned iCpu;
3939 unsigned iOddEven;
3940 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3941 uint32_t idxMaster = UINT32_MAX;
3942 int rc = VINF_SUCCESS;
3943 uint32_t cMpOnOffEvents = ASMAtomicReadU32(&pDevExt->cMpOnOffEvents);
3944
3945 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
3946
3947 /*
3948 * Pick the first CPU online as the master TSC and make it the new GIP master based
3949 * on the APIC ID.
3950 *
3951 * Technically we can simply use "idGipMaster" but doing this gives us master as CPU 0
3952 * in most cases making it nicer/easier for comparisons. It is safe to update the GIP
3953 * master as this point since the sync/async timer isn't created yet.
3954 */
3955 supdrvClearTscSamples(pDevExt, true /* fClearDeltas */);
3956 for (iCpu = 0; iCpu < RT_ELEMENTS(pGip->aiCpuFromApicId); iCpu++)
3957 {
3958 uint16_t idxCpu = pGip->aiCpuFromApicId[iCpu];
3959 if (idxCpu != UINT16_MAX)
3960 {
3961 PSUPGIPCPU pGipCpu = &pGip->aCPUs[idxCpu];
3962 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpu->iCpuSet))
3963 {
3964 idxMaster = idxCpu;
3965 pGipCpu->i64TSCDelta = GIP_TSC_DELTA_INITIAL_MASTER_VALUE;
3966 break;
3967 }
3968 }
3969 }
3970 AssertReturn(idxMaster != UINT32_MAX, VERR_CPU_NOT_FOUND);
3971 pGipCpuMaster = &pGip->aCPUs[idxMaster];
3972 ASMAtomicWriteSize(&pDevExt->idGipMaster, pGipCpuMaster->idCpu);
3973
3974 /*
3975 * If there is only a single CPU online we have nothing to do.
3976 */
3977 if (pGip->cOnlineCpus <= 1)
3978 {
3979 AssertReturn(pGip->cOnlineCpus > 0, VERR_INTERNAL_ERROR_5);
3980 return VINF_SUCCESS;
3981 }
3982
3983 /*
3984 * Loop thru the GIP CPU array and get deltas for each CPU (except the
3985 * master). We do the CPUs with the even numbered APIC IDs first so that
3986 * we've got alternative master CPUs to pick from on hyper-threaded systems.
3987 */
3988 for (iOddEven = 0; iOddEven < 2; iOddEven++)
3989 {
3990 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
3991 {
3992 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
3993 if ( iCpu != idxMaster
3994 && (iOddEven > 0 || (pGipCpuWorker->idApic & 1) == 0)
3995 && RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
3996 {
3997 rc = supdrvMeasureTscDeltaOne(pDevExt, iCpu);
3998 if (RT_FAILURE(rc))
3999 {
4000 SUPR0Printf("supdrvMeasureTscDeltaOne failed. rc=%d CPU[%u].idCpu=%u Master[%u].idCpu=%u\n", rc, iCpu,
4001 pGipCpuWorker->idCpu, idxMaster, pDevExt->idGipMaster, pGipCpuMaster->idCpu);
4002 break;
4003 }
4004
4005 if (ASMAtomicReadU32(&pDevExt->cMpOnOffEvents) != cMpOnOffEvents)
4006 {
4007 SUPR0Printf("One or more CPUs transitioned between online & offline states. I'm confused, retry...\n");
4008 rc = VERR_TRY_AGAIN;
4009 break;
4010 }
4011 }
4012 }
4013 }
4014
4015 return rc;
4016}
4017
4018
4019#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4020
4021/**
4022 * Switches the TSC-delta measurement thread into the butchered state.
4023 *
4024 * @returns VBox status code.
4025 * @param pDevExt Pointer to the device instance data.
4026 * @param fSpinlockHeld Whether the TSC-delta spinlock is held or not.
4027 * @param pszFailed An error message to log.
4028 * @param rcFailed The error code to exit the thread with.
4029 */
4030static int supdrvTscDeltaThreadButchered(PSUPDRVDEVEXT pDevExt, bool fSpinlockHeld, const char *pszFailed, int rcFailed)
4031{
4032 if (!fSpinlockHeld)
4033 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4034
4035 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Butchered;
4036 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4037 OSDBGPRINT(("supdrvTscDeltaThreadButchered: %s. rc=%Rrc\n", rcFailed));
4038 return rcFailed;
4039}
4040
4041
4042/**
4043 * The TSC-delta measurement thread.
4044 *
4045 * @returns VBox status code.
4046 * @param hThread The thread handle.
4047 * @param pvUser Opaque pointer to the device instance data.
4048 */
4049static DECLCALLBACK(int) supdrvTscDeltaThread(RTTHREAD hThread, void *pvUser)
4050{
4051 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4052 bool fInitialMeasurement = true;
4053 uint32_t cConsecutiveTimeouts = 0;
4054 int rc = VERR_INTERNAL_ERROR_2;
4055 for (;;)
4056 {
4057 /*
4058 * Switch on the current state.
4059 */
4060 SUPDRVTSCDELTATHREADSTATE enmState;
4061 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4062 enmState = pDevExt->enmTscDeltaThreadState;
4063 switch (enmState)
4064 {
4065 case kTscDeltaThreadState_Creating:
4066 {
4067 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
4068 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent);
4069 if (RT_FAILURE(rc))
4070 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
4071 /* fall thru */
4072 }
4073
4074 case kTscDeltaThreadState_Listening:
4075 {
4076 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4077
4078 /* Simple adaptive timeout. */
4079 if (cConsecutiveTimeouts++ == 10)
4080 {
4081 if (pDevExt->cMsTscDeltaTimeout == 1) /* 10 ms */
4082 pDevExt->cMsTscDeltaTimeout = 10;
4083 else if (pDevExt->cMsTscDeltaTimeout == 10) /* +100 ms */
4084 pDevExt->cMsTscDeltaTimeout = 100;
4085 else if (pDevExt->cMsTscDeltaTimeout == 100) /* +1000 ms */
4086 pDevExt->cMsTscDeltaTimeout = 500;
4087 cConsecutiveTimeouts = 0;
4088 }
4089 rc = RTThreadUserWait(pDevExt->hTscDeltaThread, pDevExt->cMsTscDeltaTimeout);
4090 if ( RT_FAILURE(rc)
4091 && rc != VERR_TIMEOUT)
4092 return supdrvTscDeltaThreadButchered(pDevExt, false /* fSpinlockHeld */, "RTThreadUserWait", rc);
4093 RTThreadUserReset(pDevExt->hTscDeltaThread);
4094 break;
4095 }
4096
4097 case kTscDeltaThreadState_WaitAndMeasure:
4098 {
4099 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Measuring;
4100 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent); /* (Safe on windows as long as spinlock isn't IRQ safe.) */
4101 if (RT_FAILURE(rc))
4102 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
4103 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4104 pDevExt->cMsTscDeltaTimeout = 1;
4105 RTThreadSleep(1);
4106 /* fall thru */
4107 }
4108
4109 case kTscDeltaThreadState_Measuring:
4110 {
4111 cConsecutiveTimeouts = 0;
4112 if (fInitialMeasurement)
4113 {
4114 int cTries = 8;
4115 int cMsWaitPerTry = 10;
4116 fInitialMeasurement = false;
4117 do
4118 {
4119 rc = supdrvMeasureInitialTscDeltas(pDevExt);
4120 if ( RT_SUCCESS(rc)
4121 || ( RT_FAILURE(rc)
4122 && rc != VERR_TRY_AGAIN
4123 && rc != VERR_CPU_OFFLINE))
4124 {
4125 break;
4126 }
4127 RTThreadSleep(cMsWaitPerTry);
4128 } while (cTries-- > 0);
4129 }
4130 else
4131 {
4132 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4133 unsigned iCpu;
4134
4135 /* Measure TSC-deltas only for the CPUs that are in the set. */
4136 rc = VINF_SUCCESS;
4137 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
4138 {
4139 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
4140 if (RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
4141 {
4142 if (pGipCpuWorker->i64TSCDelta == INT64_MAX)
4143 {
4144 int rc2 = supdrvMeasureTscDeltaOne(pDevExt, iCpu);
4145 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4146 rc = rc2;
4147 }
4148 else
4149 {
4150 /*
4151 * The thread/someone must've called SUPR0TscDeltaMeasureBySetIndex,
4152 * mark the delta as fine to get the timer thread off our back.
4153 */
4154 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
4155 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
4156 }
4157 }
4158 }
4159 }
4160 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4161 if (pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4162 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
4163 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4164 Assert(rc != VERR_NOT_AVAILABLE); /* VERR_NOT_AVAILABLE is used as the initial value. */
4165 ASMAtomicWriteS32(&pDevExt->rcTscDelta, rc);
4166 break;
4167 }
4168
4169 case kTscDeltaThreadState_Terminating:
4170 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Destroyed;
4171 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4172 return VINF_SUCCESS;
4173
4174 case kTscDeltaThreadState_Butchered:
4175 default:
4176 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "Invalid state", VERR_INVALID_STATE);
4177 }
4178 }
4179
4180 return rc;
4181}
4182
4183
4184/**
4185 * Waits for the TSC-delta measurement thread to respond to a state change.
4186 *
4187 * @returns VINF_SUCCESS on success, VERR_TIMEOUT if it doesn't respond in time,
4188 * other error code on internal error.
4189 *
4190 * @param pThis Pointer to the grant service instance data.
4191 * @param enmCurState The current state.
4192 * @param enmNewState The new state we're waiting for it to enter.
4193 */
4194static int supdrvTscDeltaThreadWait(PSUPDRVDEVEXT pDevExt, SUPDRVTSCDELTATHREADSTATE enmCurState,
4195 SUPDRVTSCDELTATHREADSTATE enmNewState)
4196{
4197 /*
4198 * Wait a short while for the expected state transition.
4199 */
4200 int rc;
4201 RTSemEventWait(pDevExt->hTscDeltaEvent, RT_MS_1SEC);
4202 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4203 if (pDevExt->enmTscDeltaThreadState == enmNewState)
4204 {
4205 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4206 rc = VINF_SUCCESS;
4207 }
4208 else if (pDevExt->enmTscDeltaThreadState == enmCurState)
4209 {
4210 /*
4211 * Wait longer if the state has not yet transitioned to the one we want.
4212 */
4213 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4214 rc = RTSemEventWait(pDevExt->hTscDeltaEvent, 50 * RT_MS_1SEC);
4215 if ( RT_SUCCESS(rc)
4216 || rc == VERR_TIMEOUT)
4217 {
4218 /*
4219 * Check the state whether we've succeeded.
4220 */
4221 SUPDRVTSCDELTATHREADSTATE enmState;
4222 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4223 enmState = pDevExt->enmTscDeltaThreadState;
4224 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4225 if (enmState == enmNewState)
4226 rc = VINF_SUCCESS;
4227 else if (enmState == enmCurState)
4228 {
4229 rc = VERR_TIMEOUT;
4230 OSDBGPRINT(("supdrvTscDeltaThreadWait: timed out state transition. enmState=%d enmNewState=%d\n", enmState,
4231 enmNewState));
4232 }
4233 else
4234 {
4235 rc = VERR_INTERNAL_ERROR;
4236 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d, expected %d\n", enmCurState,
4237 enmState, enmNewState));
4238 }
4239 }
4240 else
4241 OSDBGPRINT(("supdrvTscDeltaThreadWait: RTSemEventWait failed. rc=%Rrc\n", rc));
4242 }
4243 else
4244 {
4245 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4246 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d\n", enmCurState, enmNewState));
4247 rc = VERR_INTERNAL_ERROR;
4248 }
4249
4250 return rc;
4251}
4252
4253
4254/**
4255 * Signals the TSC-delta thread to start measuring TSC-deltas.
4256 *
4257 * @param pDevExt Pointer to the device instance data.
4258 */
4259static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt)
4260{
4261 if (RT_LIKELY(pDevExt->hTscDeltaThread != NIL_RTTHREAD))
4262 {
4263 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4264 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
4265 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4266 {
4267 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
4268 }
4269 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4270 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4271 }
4272}
4273
4274
4275/**
4276 * Terminates the actual thread running supdrvTscDeltaThread().
4277 *
4278 * This is an internal worker function for supdrvTscDeltaThreadInit() and
4279 * supdrvTscDeltaTerm().
4280 *
4281 * @param pDevExt Pointer to the device instance data.
4282 */
4283static void supdrvTscDeltaThreadTerminate(PSUPDRVDEVEXT pDevExt)
4284{
4285 int rc;
4286 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4287 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Terminating;
4288 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4289 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4290 rc = RTThreadWait(pDevExt->hTscDeltaThread, 50 * RT_MS_1SEC, NULL /* prc */);
4291 if (RT_FAILURE(rc))
4292 {
4293 /* Signal a few more times before giving up. */
4294 int cTriesLeft = 5;
4295 while (--cTriesLeft > 0)
4296 {
4297 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4298 rc = RTThreadWait(pDevExt->hTscDeltaThread, 2 * RT_MS_1SEC, NULL /* prc */);
4299 if (rc != VERR_TIMEOUT)
4300 break;
4301 }
4302 }
4303}
4304
4305
4306/**
4307 * Initializes and spawns the TSC-delta measurement thread.
4308 *
4309 * A thread is required for servicing re-measurement requests from events like
4310 * CPUs coming online, suspend/resume etc. as it cannot be done synchronously
4311 * under all contexts on all OSs.
4312 *
4313 * @returns VBox status code.
4314 * @param pDevExt Pointer to the device instance data.
4315 *
4316 * @remarks Must only be called -after- initializing GIP and setting up MP
4317 * notifications!
4318 */
4319static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt)
4320{
4321 int rc;
4322 Assert(pDevExt->pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
4323 rc = RTSpinlockCreate(&pDevExt->hTscDeltaSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_UNSAFE, "VBoxTscSpnLck");
4324 if (RT_SUCCESS(rc))
4325 {
4326 rc = RTSemEventCreate(&pDevExt->hTscDeltaEvent);
4327 if (RT_SUCCESS(rc))
4328 {
4329 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Creating;
4330 pDevExt->cMsTscDeltaTimeout = 1;
4331 rc = RTThreadCreate(&pDevExt->hTscDeltaThread, supdrvTscDeltaThread, pDevExt, 0 /* cbStack */,
4332 RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "VBoxTscThread");
4333 if (RT_SUCCESS(rc))
4334 {
4335 rc = supdrvTscDeltaThreadWait(pDevExt, kTscDeltaThreadState_Creating, kTscDeltaThreadState_Listening);
4336 if (RT_SUCCESS(rc))
4337 {
4338 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
4339 return rc;
4340 }
4341
4342 OSDBGPRINT(("supdrvTscDeltaInit: supdrvTscDeltaThreadWait failed. rc=%Rrc\n", rc));
4343 supdrvTscDeltaThreadTerminate(pDevExt);
4344 }
4345 else
4346 OSDBGPRINT(("supdrvTscDeltaInit: RTThreadCreate failed. rc=%Rrc\n", rc));
4347 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
4348 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
4349 }
4350 else
4351 OSDBGPRINT(("supdrvTscDeltaInit: RTSemEventCreate failed. rc=%Rrc\n", rc));
4352 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
4353 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
4354 }
4355 else
4356 OSDBGPRINT(("supdrvTscDeltaInit: RTSpinlockCreate failed. rc=%Rrc\n", rc));
4357
4358 return rc;
4359}
4360
4361
4362/**
4363 * Terminates the TSC-delta measurement thread and cleanup.
4364 *
4365 * @param pDevExt Pointer to the device instance data.
4366 */
4367static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt)
4368{
4369 if ( pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK
4370 && pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
4371 {
4372 supdrvTscDeltaThreadTerminate(pDevExt);
4373 }
4374
4375 if (pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK)
4376 {
4377 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
4378 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
4379 }
4380
4381 if (pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
4382 {
4383 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
4384 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
4385 }
4386
4387 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
4388}
4389
4390#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
4391
4392/**
4393 * Measure the TSC delta for the CPU given by its CPU set index.
4394 *
4395 * @returns VBox status code.
4396 * @retval VERR_INTERRUPTED if interrupted while waiting.
4397 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED if we were unable to get a
4398 * measurment.
4399 * @retval VERR_CPU_OFFLINE if the specified CPU is offline.
4400 * @retval VERR_CPU_OFFLINE if the specified CPU is offline.
4401 *
4402 * @param pSession The caller's session. GIP must've been mapped.
4403 * @param iCpuSet The CPU set index of the CPU to measure.
4404 * @param fFlags Flags, SUP_TSCDELTA_MEASURE_F_XXX.
4405 * @param cMsWaitRetry Number of milliseconds to wait between each retry.
4406 * @param cMsWaitThread Number of milliseconds to wait for the thread to get
4407 * ready.
4408 * @param cTries Number of times to try, pass 0 for the default.
4409 */
4410SUPR0DECL(int) SUPR0TscDeltaMeasureBySetIndex(PSUPDRVSESSION pSession, uint32_t iCpuSet, uint32_t fFlags,
4411 RTMSINTERVAL cMsWaitRetry, RTMSINTERVAL cMsWaitThread, uint32_t cTries)
4412{
4413 PSUPDRVDEVEXT pDevExt;
4414 PSUPGLOBALINFOPAGE pGip;
4415 uint16_t iGipCpu;
4416 int rc;
4417#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4418 uint64_t msTsStartWait;
4419 uint32_t iWaitLoop;
4420#endif
4421
4422 /*
4423 * Validate and adjust the input.
4424 */
4425 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
4426 if (!pSession->fGipReferenced)
4427 return VERR_WRONG_ORDER;
4428
4429 pDevExt = pSession->pDevExt;
4430 AssertReturn(SUP_IS_DEVEXT_VALID(pDevExt), VERR_INVALID_PARAMETER);
4431
4432 pGip = pDevExt->pGip;
4433 AssertPtrReturn(pGip, VERR_INTERNAL_ERROR_2);
4434
4435 AssertReturn(iCpuSet < RTCPUSET_MAX_CPUS, VERR_INVALID_CPU_INDEX);
4436 AssertReturn(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx), VERR_INVALID_CPU_INDEX);
4437 iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
4438 AssertReturn(iGipCpu < pGip->cCpus, VERR_INVALID_CPU_INDEX);
4439
4440 if (fFlags & ~SUP_TSCDELTA_MEASURE_F_VALID_MASK)
4441 return VERR_INVALID_FLAGS;
4442
4443 /*
4444 * The request is a noop if the TSC delta isn't being used.
4445 */
4446 if (pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED)
4447 return VINF_SUCCESS;
4448
4449 if (cTries == 0)
4450 cTries = 12;
4451 else if (cTries > 256)
4452 cTries = 256;
4453
4454 if (cMsWaitRetry == 0)
4455 cMsWaitRetry = 2;
4456 else if (cMsWaitRetry > 1000)
4457 cMsWaitRetry = 1000;
4458
4459#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4460 /*
4461 * Has the TSC already been measured and we're not forced to redo it?
4462 */
4463 if ( pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX
4464 && !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE))
4465 return VINF_SUCCESS;
4466
4467 /*
4468 * Asynchronous request? Forward it to the thread, no waiting.
4469 */
4470 if (fFlags & SUP_TSCDELTA_MEASURE_F_ASYNC)
4471 {
4472 /** @todo Async. doesn't implement options like retries, waiting. We'll need
4473 * to pass those options to the thread somehow and implement it in the
4474 * thread. Check if anyone uses/needs fAsync before implementing this. */
4475 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4476 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, iCpuSet);
4477 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
4478 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4479 {
4480 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
4481 rc = VINF_SUCCESS;
4482 }
4483 else if (pDevExt->enmTscDeltaThreadState != kTscDeltaThreadState_WaitAndMeasure)
4484 rc = VERR_THREAD_IS_DEAD;
4485 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4486 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4487 return VINF_SUCCESS;
4488 }
4489
4490 /*
4491 * If a TSC-delta measurement request is already being serviced by the thread,
4492 * wait 'cTries' times if a retry-timeout is provided, otherwise bail as busy.
4493 */
4494 msTsStartWait = RTTimeSystemMilliTS();
4495 for (iWaitLoop = 0;; iWaitLoop++)
4496 {
4497 uint64_t cMsElapsed;
4498 SUPDRVTSCDELTATHREADSTATE enmState;
4499 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4500 enmState = pDevExt->enmTscDeltaThreadState;
4501 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4502
4503 if (enmState == kTscDeltaThreadState_Measuring)
4504 { /* Must wait, the thread is busy. */ }
4505 else if (enmState == kTscDeltaThreadState_WaitAndMeasure)
4506 { /* Must wait, this state only says what will happen next. */ }
4507 else if (enmState == kTscDeltaThreadState_Terminating)
4508 { /* Must wait, this state only says what should happen next. */ }
4509 else
4510 break; /* All other states, the thread is either idly listening or dead. */
4511
4512 /* Wait or fail. */
4513 if (cMsWaitThread == 0)
4514 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4515 cMsElapsed = RTTimeSystemMilliTS() - msTsStartWait;
4516 if (cMsElapsed >= cMsWaitThread)
4517 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4518
4519 rc = RTThreadSleep(RT_MIN((RTMSINTERVAL)(cMsWaitThread - cMsElapsed), RT_MIN(iWaitLoop + 1, 10)));
4520 if (rc == VERR_INTERRUPTED)
4521 return rc;
4522 }
4523#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
4524
4525 /*
4526 * Try measure the TSC delta the given number of times.
4527 */
4528 for (;;)
4529 {
4530 /* Unless we're forced to measure the delta, check whether it's done already. */
4531 if ( !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE)
4532 && pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX)
4533 {
4534 rc = VINF_SUCCESS;
4535 break;
4536 }
4537
4538 /* Measure it. */
4539 rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
4540 if (rc != VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED)
4541 {
4542 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4543 break;
4544 }
4545
4546 /* Retry? */
4547 if (cTries <= 1)
4548 break;
4549 cTries--;
4550
4551 /* Always delay between retries (be nice to the rest of the system
4552 and avoid the BSOD hounds). */
4553 rc = RTThreadSleep(cMsWaitRetry);
4554 if (rc == VERR_INTERRUPTED)
4555 break;
4556 }
4557
4558 return rc;
4559}
4560
4561
4562/**
4563 * Service a TSC-delta measurement request.
4564 *
4565 * @returns VBox status code.
4566 * @param pDevExt Pointer to the device instance data.
4567 * @param pSession The support driver session.
4568 * @param pReq Pointer to the TSC-delta measurement request.
4569 */
4570int VBOXCALL supdrvIOCtl_TscDeltaMeasure(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCDELTAMEASURE pReq)
4571{
4572 uint32_t cTries;
4573 uint32_t iCpuSet;
4574 uint32_t fFlags;
4575 RTMSINTERVAL cMsWaitRetry;
4576
4577 /*
4578 * Validate and adjust/resolve the input so they can be passed onto SUPR0TscDeltaMeasureBySetIndex.
4579 */
4580 AssertPtr(pDevExt); AssertPtr(pSession); AssertPtr(pReq); /* paranoia^2 */
4581
4582 if (pReq->u.In.idCpu == NIL_RTCPUID)
4583 return VERR_INVALID_CPU_ID;
4584 iCpuSet = RTMpCpuIdToSetIndex(pReq->u.In.idCpu);
4585 if (iCpuSet >= RTCPUSET_MAX_CPUS)
4586 return VERR_INVALID_CPU_ID;
4587
4588 cTries = pReq->u.In.cRetries == 0 ? 0 : (uint32_t)pReq->u.In.cRetries + 1;
4589
4590 cMsWaitRetry = RT_MAX(pReq->u.In.cMsWaitRetry, 5);
4591
4592 fFlags = 0;
4593 if (pReq->u.In.fAsync)
4594 fFlags |= SUP_TSCDELTA_MEASURE_F_ASYNC;
4595 if (pReq->u.In.fForce)
4596 fFlags |= SUP_TSCDELTA_MEASURE_F_FORCE;
4597
4598 return SUPR0TscDeltaMeasureBySetIndex(pSession, iCpuSet, fFlags, cMsWaitRetry,
4599 cTries == 0 ? 5 * RT_MS_1SEC : cMsWaitRetry * cTries /*cMsWaitThread*/,
4600 cTries);
4601}
4602
4603
4604/**
4605 * Reads TSC with delta applied.
4606 *
4607 * Will try to resolve delta value INT64_MAX before applying it. This is the
4608 * main purpose of this function, to handle the case where the delta needs to be
4609 * determined.
4610 *
4611 * @returns VBox status code.
4612 * @param pDevExt Pointer to the device instance data.
4613 * @param pSession The support driver session.
4614 * @param pReq Pointer to the TSC-read request.
4615 */
4616int VBOXCALL supdrvIOCtl_TscRead(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCREAD pReq)
4617{
4618 PSUPGLOBALINFOPAGE pGip;
4619 int rc;
4620
4621 /*
4622 * Validate. We require the client to have mapped GIP (no asserting on
4623 * ring-3 preconditions).
4624 */
4625 AssertPtr(pDevExt); AssertPtr(pReq); AssertPtr(pSession); /* paranoia^2 */
4626 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
4627 return VERR_WRONG_ORDER;
4628 pGip = pDevExt->pGip;
4629 AssertReturn(pGip, VERR_INTERNAL_ERROR_2);
4630
4631 /*
4632 * We're usually here because we need to apply delta, but we shouldn't be
4633 * upset if the GIP is some different mode.
4634 */
4635 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
4636 {
4637 uint32_t cTries = 0;
4638 for (;;)
4639 {
4640 /*
4641 * Start by gathering the data, using CLI for disabling preemption
4642 * while we do that.
4643 */
4644 RTCCUINTREG uFlags = ASMIntDisableFlags();
4645 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4646 int iGipCpu;
4647 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4648 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4649 {
4650 int64_t i64Delta = pGip->aCPUs[iGipCpu].i64TSCDelta;
4651 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4652 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4653 ASMSetFlags(uFlags);
4654
4655 /*
4656 * If we're lucky we've got a delta, but no predicitions here
4657 * as this I/O control is normally only used when the TSC delta
4658 * is set to INT64_MAX.
4659 */
4660 if (i64Delta != INT64_MAX)
4661 {
4662 pReq->u.Out.u64AdjustedTsc -= i64Delta;
4663 rc = VINF_SUCCESS;
4664 break;
4665 }
4666
4667 /* Give up after a few times. */
4668 if (cTries >= 4)
4669 {
4670 rc = VWRN_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
4671 break;
4672 }
4673
4674 /* Need to measure the delta an try again. */
4675 rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
4676 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4677 /** @todo should probably delay on failure... dpc watchdogs */
4678 }
4679 else
4680 {
4681 /* This really shouldn't happen. */
4682 AssertMsgFailed(("idCpu=%#x iCpuSet=%#x (%d)\n", RTMpCpuId(), iCpuSet, iCpuSet));
4683 pReq->u.Out.idApic = ASMGetApicId();
4684 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4685 ASMSetFlags(uFlags);
4686 rc = VERR_INTERNAL_ERROR_5; /** @todo change to warning. */
4687 break;
4688 }
4689 }
4690 }
4691 else
4692 {
4693 /*
4694 * No delta to apply. Easy. Deal with preemption the lazy way.
4695 */
4696 RTCCUINTREG uFlags = ASMIntDisableFlags();
4697 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4698 int iGipCpu;
4699 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4700 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4701 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4702 else
4703 pReq->u.Out.idApic = ASMGetApicId();
4704 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4705 ASMSetFlags(uFlags);
4706 rc = VINF_SUCCESS;
4707 }
4708
4709 return rc;
4710}
4711
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette