VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPR3HardenedMain.cpp@ 61290

Last change on this file since 61290 was 58407, checked in by vboxsync, 9 years ago

SUPR3HardenedMain.cpp: @page pg_hardening updates.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 86.4 KB
Line 
1/* $Id: SUPR3HardenedMain.cpp 58407 2015-10-26 00:42:39Z vboxsync $ */
2/** @file
3 * VirtualBox Support Library - Hardened main().
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27/** @page pg_hardening %VirtualBox %VM Process Hardening
28 *
29 * The %VM process hardening is to prevent malicious software from using
30 * %VirtualBox as a vehicle to obtain kernel level access.
31 *
32 * The %VirtualBox %VMM requires supervisor (kernel) level access to the CPU.
33 * For both practical and historical reasons, part of the %VMM is realized in
34 * ring-3, with a rich interface to the kernel part. While the device
35 * emulations can be executed exclusively in ring-3, we have performance
36 * optimizations that loads device emulation code into ring-0 and our special
37 * raw-mode execution context (none VT-x/AMD-V mode) for handling frequent
38 * operations a lot more efficiently. These share data between all three
39 * context (ring-3, ring-0 and raw-mode). All this poses a rather broad attack
40 * surface, which the hardening protects.
41 *
42 * The hardening focuses primarily on restricting access to the support driver,
43 * VBoxDrv or vboxdrv depending on the OS, as it is ultimately the link and
44 * instigator of the communication between ring-3 and the ring-0 and raw-mode
45 * contexts. A secondary focus is to make sure malicious code cannot be loaded
46 * and executed in the %VM process. Exactly how we go about this depends a lot
47 * on the host OS.
48 *
49 * @section sec_hardening_supdrv The Support Driver Interfaces
50 *
51 * The support driver has several interfaces thru which it can be accessed:
52 * - /dev/vboxdrv (win: \\Device\\VBoxDrv) for full unrestricted access.
53 * Offers a rich I/O control interface, which needs protecting.
54 * - /dev/vboxdrvu (win: \\Device\\VBoxDrvU) for restricted access, which
55 * VBoxSVC uses to query VT-x and AMD-V capabilities. This does not
56 * require protecting, though we limit it to the vboxgroup on some
57 * systems.
58 * - \\Device\\VBoxDrvStub on Windows for protecting the second stub
59 * process and its child, the %VM process. This is an open+close
60 * interface, only available to partially verified stub processes.
61 * - \\Device\\VBoxDrvErrorInfo on Windows for obtaining detailed error
62 * information on a previous attempt to open \\Device\\VBoxDrv or
63 * \\Device\\VBoxDrvStub. Open, read and close only interface.
64 *
65 * The rest of VBox accesses the device interface thru the support library,
66 * @ref grp_sup "SUPR3" / sup.h.
67 *
68 * The support driver also exposes a set of functions and data that other VBox
69 * ring-0 modules can import from. This includes much of the IPRT we need in
70 * the ring-0 part of the %VMM and device emulations.
71 *
72 * The ring-0 part of the %VMM and device emulations are loaded via the
73 * #SUPR3LoadModule and #SUPR3LoadServiceModule support library function, which
74 * both translates to a sequence of I/O controls against /dev/vboxdrv. On
75 * Windows we use the native kernel loader to load the module, while on the
76 * other systems ring-3 prepares the bits with help from the IPRT loader code.
77 *
78 *
79 * @section sec_hardening_unix Hardening on UNIX-like OSes
80 *
81 * On UNIX-like systems (Solaris, Linux, darwin, freebsd, ...) we put our trust
82 * in root and that root knows what he/she/it is doing.
83 *
84 * We only allow root to get full unrestricted access to the support driver.
85 * The device node corresponding to unrestricted access (/dev/vboxdrv) is own by
86 * root and has a 0600 access mode (i.e. only accessible to the owner, root). In
87 * addition to this file system level restriction, the support driver also
88 * checks that the effective user ID (EUID) is root when it is being opened.
89 *
90 * The %VM processes temporarily assume root privileges using the set-uid-bit on
91 * the executable with root as owner. In fact, all the files and directories we
92 * install are owned by root and the wheel (or equivalent gid = 0) group,
93 * including extension pack files.
94 *
95 * The executable with the set-uid-to-root-bit set is a stub binary that has no
96 * unnecessary library dependencies (only libc, pthreads, dynamic linker) and
97 * simply calls #SUPR3HardenedMain. It does the following:
98 * 1. Validate the VirtualBox installation (#supR3HardenedVerifyAll):
99 * - Check that the executable file of the process is one of the known
100 * VirtualBox executables.
101 * - Check that all mandatory files are present.
102 * - Check that all installed files and directories (both optional and
103 * mandatory ones) are owned by root:wheel and are not writable by
104 * anyone except root.
105 * - Check that all the parent directories, all the way up to the root
106 * if possible, only permits root (or system admin) to change them.
107 * This is that to rule out unintentional rename races.
108 * - On some systems we may also validate the cryptographic signtures
109 * of executable images.
110 *
111 * 2. Open a file descriptor for the support device driver
112 * (#supR3HardenedMainOpenDevice).
113 *
114 * 3. Grab ICMP capabilities for NAT ping support, if required by the OS
115 * (#supR3HardenedMainGrabCapabilites).
116 *
117 * 4. Correctly drop the root privileges
118 * (#supR3HardenedMainDropPrivileges).
119 *
120 * 5. Load the VBoxRT dynamic link library and hand over the file
121 * descriptor to the support library code in it
122 * (#supR3HardenedMainInitRuntime).
123 *
124 * 6. Load the dynamic library containing the actual %VM front end code and
125 * run it (tail of #SUPR3HardenedMain).
126 *
127 * The set-uid-to-root stub executable is paired with a dynamic link library
128 * which export one TrustedMain entry point (see #FNSUPTRUSTEDMAIN) that we
129 * call. In case of error reporting, the library may also export a TrustedError
130 * function (#FNSUPTRUSTEDERROR).
131 *
132 * That the set-uid-to-root-bit modifies the dynamic linker behavior on all
133 * systems, even after we've dropped back to the real user ID, is something we
134 * take advantage of. The dynamic linkers takes special care to prevent users
135 * from using clever tricks to inject their own code into set-uid processes and
136 * causing privilege escalation issues. This is the exact help we need.
137 *
138 * The VirtualBox installation location is hardcoded, which means the any
139 * dynamic linker paths embedded or inferred from the executable and dynamic
140 * libraries are also hardcoded. This helps eliminating search path attack
141 * vectors at the cost of being inflexible regarding installation location.
142 *
143 * In addition to what the dynamic linker does for us, the VirtualBox code will
144 * not directly be calling either RTLdrLoad or dlopen to load dynamic link
145 * libraries into the process. Instead it will call #SUPR3HardenedLdrLoad,
146 * #SUPR3HardenedLdrLoadAppPriv and #SUPR3HardenedLdrLoadPlugIn to do the
147 * loading. These functions will perform the same validations on the file being
148 * loaded as #SUPR3HardenedMain did in its validation step. So, anything we
149 * load must be installed with root/wheel as owner/group, the directory we load
150 * it from must also be owned by root:wheel and now allow for renaming the file.
151 * Similar ownership restrictions applies to all the parent directories (except
152 * on darwin).
153 *
154 * So, we place the responsibility of not installing malicious software on the
155 * root user on UNIX-like systems. Which is fair enough, in our opinion.
156 *
157 *
158 * @section sec_hardening_win Hardening on Windows
159 *
160 * On Windows we cannot put the same level or trust in the Administrator user(s)
161 * (equivalent of root/wheel on unix) as on the UNIX-like systems, which
162 * complicates things greatly.
163 *
164 * Some of the blame for this can be given to Windows being a descendant /
165 * replacement for a set of single user systems: DOS, Windows 1.0-3.11 Windows
166 * 95-ME, and OS/2. Users of NT 3.1 and later was inclined to want to always
167 * run it with full root/administrator privileges like they had done on the
168 * predecessors, while Microsoft didn't provide much incentive for more secure
169 * alternatives. Bad idea, security wise, but execellent for the security
170 * software industry. For this reason using a set-uid-to-root approach is
171 * pointless, even if Windows had one.
172 *
173 * So, in order to protect access to the support driver and protect the %VM
174 * process while it's running we have to do a lot more work. A keystone in the
175 * defences is cryptographic code signing. Here's the short version of what we
176 * do:
177 * - Minimal stub executable, signed with the same certificate as the
178 * kernel driver.
179 *
180 * - The stub executable respawns itself twice, hooking the NTDLL init
181 * routine to perform protection tasks as early as possible. The parent
182 * stub helps keep in the child clean for verification as does the
183 * support driver.
184 *
185 * - In order to protect against loading unwanted code into the process,
186 * the stub processes installs DLL load hooks with NTDLL as well as
187 * directly intercepting the LdrLoadDll and NtCreateSection APIs.
188 *
189 * - The support driver will verify all but the initial process very
190 * thoroughly before allowing them protection and in the final case full
191 * unrestricted access.
192 *
193 *
194 * @subsection sec_hardening_win_protsoft 3rd Party "Protection" Software
195 *
196 * What makes our life REALLY difficult on Windows is this 3rd party "security"
197 * software which is more or less required to keep a Windows system safe for
198 * normal users and all corporate IT departments rightly insists on installing.
199 * After the kernel patching clampdown in Vista, anti-* software has to do a
200 * lot more mucking about in user mode to get their job (kind of) done. So, it
201 * is common practice to patch a lot of NTDLL, KERNEL32, the executable import
202 * table, load extra DLLs into the process, allocate executable memory in the
203 * process (classic code injection) and more.
204 *
205 * The BIG problem with all this is that it is indistinguishable from what
206 * malicious software would be doing in order to intercept process activity
207 * (network sniffing, maybe password snooping) or gain a level of kernel access
208 * via the support driver. So, the "protection" software is what is currently
209 * forcing us to do the pre-NTDLL initialization.
210 *
211 *
212 * @subsection sec_hardening_win_1st_stub The Initial Stub Process
213 *
214 * We share the stub executable approach with the UNIX-like systems, so there's
215 * the #SUPR3HardenedMain calling stub executable with its partner DLL exporting
216 * TrustedMain and TrustedError. However, the stub executable does a lot more,
217 * while doing it in a more bare metal fashion:
218 * - It does not use the Microsoft CRT, what we need of CRT functions comes
219 * from IPRT.
220 * - It does not statically import anything. This is to avoid having an
221 * import table that can be patched to intercept our calls or extended to
222 * load additional DLLs.
223 * - Direct NT system calls. System calls normally going thru NTDLL, but
224 * since there is so much software out there which wants to patch known
225 * NTDLL entry points to control our software (either for good or
226 * malicious reasons), we do it ourselves.
227 *
228 * The initial stub process is not really to be trusted, though we try our best
229 * to limit potential harm (user mode debugger checks, disable thread creation).
230 * So, when it enters #SUPR3HardenedMain we only call #supR3HardenedVerifyAll to
231 * verify the installation (known executables and DLLs, checking their code
232 * signing signatures, keeping them all open to deny deletion and replacing) and
233 * does a respawn via #supR3HardenedWinReSpawn.
234 *
235 *
236 * @subsection sec_hardening_win_2nd_stub The Second Stub Process
237 *
238 * The second stub process will be created in suspended state, i.e. the main
239 * thread is suspended before it executes a single instruction. It is also
240 * created with a less generous ACLs, though this doesn't protect us from admin
241 * users. In order for #SUPR3HardenedMain to figure that it is the second stub
242 * process, the zeroth command line argument has been replaced by a known magic
243 * string (UUID).
244 *
245 * Now, before the process starts executing, the parent (initial stub) will
246 * patch the LdrInitializeThunk entry point in NTDLL to call
247 * #supR3HardenedEarlyProcessInit via #supR3HardenedEarlyProcessInitThunk. The
248 * parent will also plant some synchronization stuff via #g_ProcParams (NTDLL
249 * location, inherited event handles and associated ping-pong equipment).
250 *
251 * The LdrInitializeThunk entry point of NTDLL is where the kernel sets up
252 * process execution to start executing (via a user alert, so it is not subject
253 * to SetThreadContext). LdrInitializeThunk performs process, NTDLL and
254 * sub-system client (kernel32) initialization. A lot of "protection" software
255 * uses triggers in this initialization sequence (like the KERNEL32.DLL load
256 * event), so we avoid quite a bit of problems by getting our stuff done early
257 * on.
258 *
259 * However, there are also those that uses events that triggers immediately when
260 * the process is created or/and starts executing the first instruction. But we
261 * can easily counter these as we have a known process state we can restore. So,
262 * the first thing that #supR3HardenedEarlyProcessInit does is to signal the
263 * parent to perform a child purification, so the potentially evil influences
264 * can be exorcised.
265 *
266 * What the parent does during the purification is very similar to what the
267 * kernel driver will do later on when verifying the second stub and the %VM
268 * processes, except that instead of failing when encountering an shortcoming it
269 * will take corrective actions:
270 * - Executable memory regions not belonging to a DLL mapping will be
271 * attempted freed, and we'll only fail if we can't evict them.
272 * - All pages in the executable images in the process (should be just the
273 * stub executable and NTDLL) will be compared to the pristine fixed-up
274 * copy prepared by the IPRT PE loader code, restoring any bytes which
275 * appears differently in the child. (#g_ProcParams is exempted,
276 * LdrInitializeThunk is set to call NtTerminateThread.)
277 * - Unwanted DLLs will be unloaded (we have a set of DLLs we like).
278 *
279 * Before signalling the second stub process that it has been purified and should
280 * get on with it, the parent will close all handles with unrestricted access to
281 * the process and thread so that the initial stub process no longer can
282 * influence the child in any really harmful way. (The caller of CreateProcess
283 * usually receives handles with unrestricted access to the child process and
284 * its main thread. These could in theory be used with DuplicateHandle or
285 * WriteProcessMemory to get at the %VM process if we're not careful.)
286 *
287 * #supR3HardenedEarlyProcessInit will continue with opening the log file
288 * (requires command line parsing). It will continue to initialize a bunch of
289 * global variables, system calls and trustworthy/harmless NTDLL imports.
290 * #supR3HardenedWinInit is then called to setup image verification, that is:
291 * - Hook the NtCreateSection entry point in NTDLL so we can check all
292 * executable mappings before they're created and can be mapped. The
293 * NtCreateSection code jumps to #supR3HardenedMonitor_NtCreateSection.
294 * - Hook (ditto) the LdrLoadDll entry point in NTDLL so we can
295 * pre-validate all images that gets loaded the normal way (partly
296 * because the NtCreateSection context is restrictive because the NTDLL
297 * loader lock is usually held, which prevents us from safely calling
298 * WinVerityTrust). The LdrLoadDll code jumps to
299 * #supR3HardenedMonitor_LdrLoadDll.
300 *
301 * The image/DLL verification hooks are at this point able to verify DLLs
302 * containing embedded code signing signatures, and will restrict the locations
303 * from which DLLs will be loaded. When #SUPR3HardenedMain gets going later on,
304 * they will start insisting on everything having valid signatures, either
305 * embedded or in a signed installer catalog file.
306 *
307 * The function also irrevocably disables debug notifications related to the
308 * current thread, just to make attaching a debugging that much more difficult
309 * and less useful.
310 *
311 * Now, the second stub process will open the so called stub device
312 * (\\Device\\VBoxDrvStub), that is a special support driver device node that
313 * tells the support driver to:
314 * - Protect the process against the OpenProcess and OpenThread attack
315 * vectors by stripping risky access rights.
316 * - Check that the process isn't being debugged.
317 * - Check that the process contains exactly one thread.
318 * - Check that the process doesn't have any unknown DLLs loaded into it.
319 * - Check that the process doesn't have any executable memory (other than
320 * DLL sections) in it.
321 * - Check that the process executable is a known VBox executable which may
322 * access the support driver.
323 * - Check that the process executable is signed with the same code signing
324 * certificate as the driver and that the on disk image is valid
325 * according to its embedded signature.
326 * - Check all the signature of all DLLs in the process (NTDLL) if they are
327 * signed, and only accept unsigned ones in versions where they are known
328 * not to be signed.
329 * - Check that the code and readonly parts of the executable and DLLs
330 * mapped into the process matches the on disk content (no patches other
331 * than our own two in NTDLL are allowed).
332 *
333 * Once granted access to the stub device, #supR3HardenedEarlyProcessInit will
334 * restore the LdrInitializeThunk code and let the process perform normal
335 * initialization. Leading us to #SUPR3HardenedMain where we detect that this
336 * is the 2nd stub process and does another respawn.
337 *
338 *
339 * @subsection sec_hardening_win_3rd_stub The Final Stub / VM Process
340 *
341 * The third stub process is what becomes the %VM process. Because the parent
342 * has opened \\Device\\VBoxDrvSub, it is protected from malicious OpenProcess &
343 * OpenThread calls from the moment of inception, practically speaking.
344 *
345 * It goes thru the same suspended creation, patching, purification and such as
346 * its parent (the second stub process). However, instead of opening
347 * \\Device\\VBoxDrvStub from #supR3HardenedEarlyProcessInit, it opens the
348 * support driver for full unrestricted access, i.e. \\Device\\VBoxDrv.
349 *
350 * The support driver will perform the same checks as it did when
351 * \\Device\\VBoxDrvStub was opened, but in addition it will:
352 * - Check that the process is the first child of a process that opened
353 * \\Device\\VBoxDrvStub.
354 * - Check that the parent process is still alive.
355 * - Scan all open handles in the system for potentially harmful ones to
356 * the process or the primary thread.
357 *
358 * Knowing that the process is genuinly signed with the same certificate as the
359 * kernel driver, and the exectuable code in the process is either shipped by us
360 * or Microsoft, the support driver will trust it with full access and to keep
361 * the handle secure.
362 *
363 * We also trust the protection the support driver gives the process to keep out
364 * malicious ring-3 code, and therefore any code, patching or other mysterious
365 * stuff that enteres the process must be from kernel mode and that we can trust
366 * it (the alternative interpretation is that the kernel has been breanched
367 * already, which isn't our responsibility). This means that, the anti-software
368 * products can do whatever they like from this point on. However, should they
369 * do unrevertable changes to the process before this point, VirtualBox won't
370 * work.
371 *
372 * As in the second stub process, we'll now do normal process initialization and
373 * #SUPR3HardenedMain will take control. It will detect that it is being called
374 * by the 3rd stub process because of a different magic string starting the
375 * command line, and not respawn itself any more. #SUPR3HardenedMain will
376 * recheck the VirtualBox installation, keeping all known files open just like
377 * in two previous stub processes.
378 *
379 * It will then load the Windows cryptographic API and load the trusted root
380 * certificates from the Windows store. The API enables using installation
381 * catalog files for signature checking as well as providing a second
382 * verification in addition to our own implementation (IPRT). The certificates
383 * allows our signature validation implementation to validate all embedded
384 * signatures, not just the microsoft ones and the one signed by our own
385 * certificate.
386 *
387 */
388
389
390/*********************************************************************************************************************************
391* Header Files *
392*********************************************************************************************************************************/
393#if defined(RT_OS_OS2)
394# define INCL_BASE
395# define INCL_ERRORS
396# include <os2.h>
397# include <stdio.h>
398# include <stdlib.h>
399# include <dlfcn.h>
400# include <unistd.h>
401
402#elif RT_OS_WINDOWS
403# include <iprt/nt/nt-and-windows.h>
404
405#else /* UNIXes */
406# include <iprt/types.h> /* stdint fun on darwin. */
407
408# include <stdio.h>
409# include <stdlib.h>
410# include <dlfcn.h>
411# include <limits.h>
412# include <errno.h>
413# include <unistd.h>
414# include <sys/stat.h>
415# include <sys/time.h>
416# include <sys/types.h>
417# if defined(RT_OS_LINUX)
418# undef USE_LIB_PCAP /* don't depend on libcap as we had to depend on either
419 libcap1 or libcap2 */
420
421# undef _POSIX_SOURCE
422# include <linux/types.h> /* sys/capabilities from uek-headers require this */
423# include <sys/capability.h>
424# include <sys/prctl.h>
425# ifndef CAP_TO_MASK
426# define CAP_TO_MASK(cap) RT_BIT(cap)
427# endif
428# elif defined(RT_OS_FREEBSD)
429# include <sys/param.h>
430# include <sys/sysctl.h>
431# elif defined(RT_OS_SOLARIS)
432# include <priv.h>
433# endif
434# include <pwd.h>
435# ifdef RT_OS_DARWIN
436# include <mach-o/dyld.h>
437# endif
438
439#endif
440
441#include <VBox/sup.h>
442#include <VBox/err.h>
443#ifdef RT_OS_WINDOWS
444# include <VBox/version.h>
445#endif
446#include <iprt/ctype.h>
447#include <iprt/string.h>
448#include <iprt/initterm.h>
449#include <iprt/param.h>
450
451#include "SUPLibInternal.h"
452
453
454/*********************************************************************************************************************************
455* Defined Constants And Macros *
456*********************************************************************************************************************************/
457/** @def SUP_HARDENED_SUID
458 * Whether we're employing set-user-ID-on-execute in the hardening.
459 */
460#if !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS) && !defined(RT_OS_L4)
461# define SUP_HARDENED_SUID
462#else
463# undef SUP_HARDENED_SUID
464#endif
465
466/** @def SUP_HARDENED_SYM
467 * Decorate a symbol that's resolved dynamically.
468 */
469#ifdef RT_OS_OS2
470# define SUP_HARDENED_SYM(sym) "_" sym
471#else
472# define SUP_HARDENED_SYM(sym) sym
473#endif
474
475
476/*********************************************************************************************************************************
477* Structures and Typedefs *
478*********************************************************************************************************************************/
479/** @see RTR3InitEx */
480typedef DECLCALLBACK(int) FNRTR3INITEX(uint32_t iVersion, uint32_t fFlags, int cArgs,
481 char **papszArgs, const char *pszProgramPath);
482typedef FNRTR3INITEX *PFNRTR3INITEX;
483
484/** @see RTLogRelPrintf */
485typedef DECLCALLBACK(void) FNRTLOGRELPRINTF(const char *pszFormat, ...);
486typedef FNRTLOGRELPRINTF *PFNRTLOGRELPRINTF;
487
488
489/*********************************************************************************************************************************
490* Global Variables *
491*********************************************************************************************************************************/
492/** The pre-init data we pass on to SUPR3 (residing in VBoxRT). */
493static SUPPREINITDATA g_SupPreInitData;
494/** The program executable path. */
495#ifndef RT_OS_WINDOWS
496static
497#endif
498char g_szSupLibHardenedExePath[RTPATH_MAX];
499/** The application bin directory path. */
500static char g_szSupLibHardenedAppBinPath[RTPATH_MAX];
501
502/** The program name. */
503static const char *g_pszSupLibHardenedProgName;
504/** The flags passed to SUPR3HardenedMain. */
505static uint32_t g_fSupHardenedMain;
506
507#ifdef SUP_HARDENED_SUID
508/** The real UID at startup. */
509static uid_t g_uid;
510/** The real GID at startup. */
511static gid_t g_gid;
512# ifdef RT_OS_LINUX
513static uint32_t g_uCaps;
514# endif
515#endif
516
517/** The startup log file. */
518#ifdef RT_OS_WINDOWS
519static HANDLE g_hStartupLog = NULL;
520#else
521static int g_hStartupLog = -1;
522#endif
523/** The number of bytes we've written to the startup log. */
524static uint32_t volatile g_cbStartupLog = 0;
525
526/** The current SUPR3HardenedMain state / location. */
527SUPR3HARDENEDMAINSTATE g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_NOT_YET_CALLED;
528AssertCompileSize(g_enmSupR3HardenedMainState, sizeof(uint32_t));
529
530#ifdef RT_OS_WINDOWS
531/** Pointer to VBoxRT's RTLogRelPrintf function so we can write errors to the
532 * release log at runtime. */
533static PFNRTLOGRELPRINTF g_pfnRTLogRelPrintf = NULL;
534/** Log volume name (for attempting volume flush). */
535static RTUTF16 g_wszStartupLogVol[16];
536#endif
537
538
539/*********************************************************************************************************************************
540* Internal Functions *
541*********************************************************************************************************************************/
542#ifdef SUP_HARDENED_SUID
543static void supR3HardenedMainDropPrivileges(void);
544#endif
545static PFNSUPTRUSTEDERROR supR3HardenedMainGetTrustedError(const char *pszProgName);
546
547
548/**
549 * Safely copy one or more strings into the given buffer.
550 *
551 * @returns VINF_SUCCESS or VERR_BUFFER_OVERFLOW.
552 * @param pszDst The destionation buffer.
553 * @param cbDst The size of the destination buffer.
554 * @param ... One or more zero terminated strings, ending with
555 * a NULL.
556 */
557static int suplibHardenedStrCopyEx(char *pszDst, size_t cbDst, ...)
558{
559 int rc = VINF_SUCCESS;
560
561 if (cbDst == 0)
562 return VERR_BUFFER_OVERFLOW;
563
564 va_list va;
565 va_start(va, cbDst);
566 for (;;)
567 {
568 const char *pszSrc = va_arg(va, const char *);
569 if (!pszSrc)
570 break;
571
572 size_t cchSrc = suplibHardenedStrLen(pszSrc);
573 if (cchSrc < cbDst)
574 {
575 suplibHardenedMemCopy(pszDst, pszSrc, cchSrc);
576 pszDst += cchSrc;
577 cbDst -= cchSrc;
578 }
579 else
580 {
581 rc = VERR_BUFFER_OVERFLOW;
582 if (cbDst > 1)
583 {
584 suplibHardenedMemCopy(pszDst, pszSrc, cbDst - 1);
585 pszDst += cbDst - 1;
586 cbDst = 1;
587 }
588 }
589 *pszDst = '\0';
590 }
591 va_end(va);
592
593 return rc;
594}
595
596
597/**
598 * Exit current process in the quickest possible fashion.
599 *
600 * @param rcExit The exit code.
601 */
602DECLNORETURN(void) suplibHardenedExit(RTEXITCODE rcExit)
603{
604 for (;;)
605 {
606#ifdef RT_OS_WINDOWS
607 if (g_enmSupR3HardenedMainState >= SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED)
608 ExitProcess(rcExit);
609 if (RtlExitUserProcess != NULL)
610 RtlExitUserProcess(rcExit);
611 NtTerminateProcess(NtCurrentProcess(), rcExit);
612#else
613 _Exit(rcExit);
614#endif
615 }
616}
617
618
619/**
620 * Writes a substring to standard error.
621 *
622 * @param pch The start of the substring.
623 * @param cch The length of the substring.
624 */
625static void suplibHardenedPrintStrN(const char *pch, size_t cch)
626{
627#ifdef RT_OS_WINDOWS
628 HANDLE hStdOut = NtCurrentPeb()->ProcessParameters->StandardOutput;
629 if (hStdOut != NULL)
630 {
631 if (g_enmSupR3HardenedMainState >= SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED)
632 {
633 DWORD cbWritten;
634 WriteFile(hStdOut, pch, (DWORD)cch, &cbWritten, NULL);
635 }
636 /* Windows 7 and earlier uses fake handles, with the last two bits set ((hStdOut & 3) == 3). */
637 else if (NtWriteFile != NULL && ((uintptr_t)hStdOut & 3) == 0)
638 {
639 IO_STATUS_BLOCK Ios = RTNT_IO_STATUS_BLOCK_INITIALIZER;
640 NtWriteFile(hStdOut, NULL /*Event*/, NULL /*ApcRoutine*/, NULL /*ApcContext*/,
641 &Ios, (PVOID)pch, (ULONG)cch, NULL /*ByteOffset*/, NULL /*Key*/);
642 }
643 }
644#else
645 (void)write(2, pch, cch);
646#endif
647}
648
649
650/**
651 * Writes a string to standard error.
652 *
653 * @param psz The string.
654 */
655static void suplibHardenedPrintStr(const char *psz)
656{
657 suplibHardenedPrintStrN(psz, suplibHardenedStrLen(psz));
658}
659
660
661/**
662 * Writes a char to standard error.
663 *
664 * @param ch The character value to write.
665 */
666static void suplibHardenedPrintChr(char ch)
667{
668 suplibHardenedPrintStrN(&ch, 1);
669}
670
671
672/**
673 * Writes a decimal number to stdard error.
674 *
675 * @param uValue The value.
676 */
677static void suplibHardenedPrintDecimal(uint64_t uValue)
678{
679 char szBuf[64];
680 char *pszEnd = &szBuf[sizeof(szBuf) - 1];
681 char *psz = pszEnd;
682
683 *psz-- = '\0';
684
685 do
686 {
687 *psz-- = '0' + (uValue % 10);
688 uValue /= 10;
689 } while (uValue > 0);
690
691 psz++;
692 suplibHardenedPrintStrN(psz, pszEnd - psz);
693}
694
695
696/**
697 * Writes a hexadecimal or octal number to standard error.
698 *
699 * @param uValue The value.
700 * @param uBase The base (16 or 8).
701 * @param fFlags Format flags.
702 */
703static void suplibHardenedPrintHexOctal(uint64_t uValue, unsigned uBase, uint32_t fFlags)
704{
705 static char const s_achDigitsLower[17] = "0123456789abcdef";
706 static char const s_achDigitsUpper[17] = "0123456789ABCDEF";
707 const char *pchDigits = !(fFlags & RTSTR_F_CAPITAL) ? s_achDigitsLower : s_achDigitsUpper;
708 unsigned cShift = uBase == 16 ? 4 : 3;
709 unsigned fDigitMask = uBase == 16 ? 0xf : 7;
710 char szBuf[64];
711 char *pszEnd = &szBuf[sizeof(szBuf) - 1];
712 char *psz = pszEnd;
713
714 *psz-- = '\0';
715
716 do
717 {
718 *psz-- = pchDigits[uValue & fDigitMask];
719 uValue >>= cShift;
720 } while (uValue > 0);
721
722 if ((fFlags & RTSTR_F_SPECIAL) && uBase == 16)
723 {
724 *psz-- = !(fFlags & RTSTR_F_CAPITAL) ? 'x' : 'X';
725 *psz-- = '0';
726 }
727
728 psz++;
729 suplibHardenedPrintStrN(psz, pszEnd - psz);
730}
731
732
733/**
734 * Writes a wide character string to standard error.
735 *
736 * @param pwsz The string.
737 */
738static void suplibHardenedPrintWideStr(PCRTUTF16 pwsz)
739{
740 for (;;)
741 {
742 RTUTF16 wc = *pwsz++;
743 if (!wc)
744 return;
745 if ( (wc < 0x7f && wc >= 0x20)
746 || wc == '\n'
747 || wc == '\r')
748 suplibHardenedPrintChr((char)wc);
749 else
750 {
751 suplibHardenedPrintStrN(RT_STR_TUPLE("\\x"));
752 suplibHardenedPrintHexOctal(wc, 16, 0);
753 }
754 }
755}
756
757#ifdef IPRT_NO_CRT
758
759/** Buffer structure used by suplibHardenedOutput. */
760struct SUPLIBHARDENEDOUTPUTBUF
761{
762 size_t off;
763 char szBuf[2048];
764};
765
766/** Callback for RTStrFormatV, see FNRTSTROUTPUT. */
767static DECLCALLBACK(size_t) suplibHardenedOutput(void *pvArg, const char *pachChars, size_t cbChars)
768{
769 SUPLIBHARDENEDOUTPUTBUF *pBuf = (SUPLIBHARDENEDOUTPUTBUF *)pvArg;
770 size_t cbTodo = cbChars;
771 for (;;)
772 {
773 size_t cbSpace = sizeof(pBuf->szBuf) - pBuf->off - 1;
774
775 /* Flush the buffer? */
776 if ( cbSpace == 0
777 || (cbTodo == 0 && pBuf->off))
778 {
779 suplibHardenedPrintStrN(pBuf->szBuf, pBuf->off);
780# ifdef RT_OS_WINDOWS
781 if (g_enmSupR3HardenedMainState >= SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED)
782 OutputDebugString(pBuf->szBuf);
783# endif
784 pBuf->off = 0;
785 cbSpace = sizeof(pBuf->szBuf) - 1;
786 }
787
788 /* Copy the string into the buffer. */
789 if (cbTodo == 1)
790 {
791 pBuf->szBuf[pBuf->off++] = *pachChars;
792 break;
793 }
794 if (cbSpace >= cbTodo)
795 {
796 memcpy(&pBuf->szBuf[pBuf->off], pachChars, cbTodo);
797 pBuf->off += cbTodo;
798 break;
799 }
800 memcpy(&pBuf->szBuf[pBuf->off], pachChars, cbSpace);
801 pBuf->off += cbSpace;
802 cbTodo -= cbSpace;
803 }
804 pBuf->szBuf[pBuf->off] = '\0';
805
806 return cbChars;
807}
808
809#endif /* IPRT_NO_CRT */
810
811/**
812 * Simple printf to standard error.
813 *
814 * @param pszFormat The format string.
815 * @param va Arguments to format.
816 */
817DECLHIDDEN(void) suplibHardenedPrintFV(const char *pszFormat, va_list va)
818{
819#ifdef IPRT_NO_CRT
820 /*
821 * Use buffered output here to avoid character mixing on the windows
822 * console and to enable us to use OutputDebugString.
823 */
824 SUPLIBHARDENEDOUTPUTBUF Buf;
825 Buf.off = 0;
826 Buf.szBuf[0] = '\0';
827 RTStrFormatV(suplibHardenedOutput, &Buf, NULL, NULL, pszFormat, va);
828
829#else /* !IPRT_NO_CRT */
830 /*
831 * Format loop.
832 */
833 char ch;
834 const char *pszLast = pszFormat;
835 for (;;)
836 {
837 ch = *pszFormat;
838 if (!ch)
839 break;
840 pszFormat++;
841
842 if (ch == '%')
843 {
844 /*
845 * Format argument.
846 */
847
848 /* Flush unwritten bits. */
849 if (pszLast != pszFormat - 1)
850 suplibHardenedPrintStrN(pszLast, pszFormat - pszLast - 1);
851 pszLast = pszFormat;
852 ch = *pszFormat++;
853
854 /* flags. */
855 uint32_t fFlags = 0;
856 for (;;)
857 {
858 if (ch == '#') fFlags |= RTSTR_F_SPECIAL;
859 else if (ch == '-') fFlags |= RTSTR_F_LEFT;
860 else if (ch == '+') fFlags |= RTSTR_F_PLUS;
861 else if (ch == ' ') fFlags |= RTSTR_F_BLANK;
862 else if (ch == '0') fFlags |= RTSTR_F_ZEROPAD;
863 else if (ch == '\'') fFlags |= RTSTR_F_THOUSAND_SEP;
864 else break;
865 ch = *pszFormat++;
866 }
867
868 /* Width and precision - ignored. */
869 while (RT_C_IS_DIGIT(ch))
870 ch = *pszFormat++;
871 if (ch == '*')
872 va_arg(va, int);
873 if (ch == '.')
874 {
875 do ch = *pszFormat++;
876 while (RT_C_IS_DIGIT(ch));
877 if (ch == '*')
878 va_arg(va, int);
879 }
880
881 /* Size. */
882 char chArgSize = 0;
883 switch (ch)
884 {
885 case 'z':
886 case 'L':
887 case 'j':
888 case 't':
889 chArgSize = ch;
890 ch = *pszFormat++;
891 break;
892
893 case 'l':
894 chArgSize = ch;
895 ch = *pszFormat++;
896 if (ch == 'l')
897 {
898 chArgSize = 'L';
899 ch = *pszFormat++;
900 }
901 break;
902
903 case 'h':
904 chArgSize = ch;
905 ch = *pszFormat++;
906 if (ch == 'h')
907 {
908 chArgSize = 'H';
909 ch = *pszFormat++;
910 }
911 break;
912 }
913
914 /*
915 * Do type specific formatting.
916 */
917 switch (ch)
918 {
919 case 'c':
920 ch = (char)va_arg(va, int);
921 suplibHardenedPrintChr(ch);
922 break;
923
924 case 's':
925 if (chArgSize == 'l')
926 {
927 PCRTUTF16 pwszStr = va_arg(va, PCRTUTF16 );
928 if (RT_VALID_PTR(pwszStr))
929 suplibHardenedPrintWideStr(pwszStr);
930 else
931 suplibHardenedPrintStr("<NULL>");
932 }
933 else
934 {
935 const char *pszStr = va_arg(va, const char *);
936 if (!RT_VALID_PTR(pszStr))
937 pszStr = "<NULL>";
938 suplibHardenedPrintStr(pszStr);
939 }
940 break;
941
942 case 'd':
943 case 'i':
944 {
945 int64_t iValue;
946 if (chArgSize == 'L' || chArgSize == 'j')
947 iValue = va_arg(va, int64_t);
948 else if (chArgSize == 'l')
949 iValue = va_arg(va, signed long);
950 else if (chArgSize == 'z' || chArgSize == 't')
951 iValue = va_arg(va, intptr_t);
952 else
953 iValue = va_arg(va, signed int);
954 if (iValue < 0)
955 {
956 suplibHardenedPrintChr('-');
957 iValue = -iValue;
958 }
959 suplibHardenedPrintDecimal(iValue);
960 break;
961 }
962
963 case 'p':
964 case 'x':
965 case 'X':
966 case 'u':
967 case 'o':
968 {
969 unsigned uBase = 10;
970 uint64_t uValue;
971
972 switch (ch)
973 {
974 case 'p':
975 fFlags |= RTSTR_F_ZEROPAD; /* Note not standard behaviour (but I like it this way!) */
976 uBase = 16;
977 break;
978 case 'X':
979 fFlags |= RTSTR_F_CAPITAL;
980 case 'x':
981 uBase = 16;
982 break;
983 case 'u':
984 uBase = 10;
985 break;
986 case 'o':
987 uBase = 8;
988 break;
989 }
990
991 if (ch == 'p' || chArgSize == 'z' || chArgSize == 't')
992 uValue = va_arg(va, uintptr_t);
993 else if (chArgSize == 'L' || chArgSize == 'j')
994 uValue = va_arg(va, uint64_t);
995 else if (chArgSize == 'l')
996 uValue = va_arg(va, unsigned long);
997 else
998 uValue = va_arg(va, unsigned int);
999
1000 if (uBase == 10)
1001 suplibHardenedPrintDecimal(uValue);
1002 else
1003 suplibHardenedPrintHexOctal(uValue, uBase, fFlags);
1004 break;
1005 }
1006
1007 case 'R':
1008 if (pszFormat[0] == 'r' && pszFormat[1] == 'c')
1009 {
1010 int iValue = va_arg(va, int);
1011 if (iValue < 0)
1012 {
1013 suplibHardenedPrintChr('-');
1014 iValue = -iValue;
1015 }
1016 suplibHardenedPrintDecimal(iValue);
1017 pszFormat += 2;
1018 break;
1019 }
1020 /* fall thru */
1021
1022 /*
1023 * Custom format.
1024 */
1025 default:
1026 suplibHardenedPrintStr("[bad format: ");
1027 suplibHardenedPrintStrN(pszLast, pszFormat - pszLast);
1028 suplibHardenedPrintChr(']');
1029 break;
1030 }
1031
1032 /* continue */
1033 pszLast = pszFormat;
1034 }
1035 }
1036
1037 /* Flush the last bits of the string. */
1038 if (pszLast != pszFormat)
1039 suplibHardenedPrintStrN(pszLast, pszFormat - pszLast);
1040#endif /* !IPRT_NO_CRT */
1041}
1042
1043
1044/**
1045 * Prints to standard error.
1046 *
1047 * @param pszFormat The format string.
1048 * @param ... Arguments to format.
1049 */
1050DECLHIDDEN(void) suplibHardenedPrintF(const char *pszFormat, ...)
1051{
1052 va_list va;
1053 va_start(va, pszFormat);
1054 suplibHardenedPrintFV(pszFormat, va);
1055 va_end(va);
1056}
1057
1058
1059/**
1060 * @copydoc RTPathStripFilename
1061 */
1062static void suplibHardenedPathStripFilename(char *pszPath)
1063{
1064 char *psz = pszPath;
1065 char *pszLastSep = pszPath;
1066
1067 for (;; psz++)
1068 {
1069 switch (*psz)
1070 {
1071 /* handle separators. */
1072#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
1073 case ':':
1074 pszLastSep = psz + 1;
1075 break;
1076
1077 case '\\':
1078#endif
1079 case '/':
1080 pszLastSep = psz;
1081 break;
1082
1083 /* the end */
1084 case '\0':
1085 if (pszLastSep == pszPath)
1086 *pszLastSep++ = '.';
1087 *pszLastSep = '\0';
1088 return;
1089 }
1090 }
1091 /* will never get here */
1092}
1093
1094
1095/**
1096 * @copydoc RTPathFilename
1097 */
1098DECLHIDDEN(char *) supR3HardenedPathFilename(const char *pszPath)
1099{
1100 const char *psz = pszPath;
1101 const char *pszLastComp = pszPath;
1102
1103 for (;; psz++)
1104 {
1105 switch (*psz)
1106 {
1107 /* handle separators. */
1108#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
1109 case ':':
1110 pszLastComp = psz + 1;
1111 break;
1112
1113 case '\\':
1114#endif
1115 case '/':
1116 pszLastComp = psz + 1;
1117 break;
1118
1119 /* the end */
1120 case '\0':
1121 if (*pszLastComp)
1122 return (char *)(void *)pszLastComp;
1123 return NULL;
1124 }
1125 }
1126
1127 /* will never get here */
1128 return NULL;
1129}
1130
1131
1132/**
1133 * @copydoc RTPathAppPrivateNoArch
1134 */
1135DECLHIDDEN(int) supR3HardenedPathAppPrivateNoArch(char *pszPath, size_t cchPath)
1136{
1137#if !defined(RT_OS_WINDOWS) && defined(RTPATH_APP_PRIVATE)
1138 const char *pszSrcPath = RTPATH_APP_PRIVATE;
1139 size_t cchPathPrivateNoArch = suplibHardenedStrLen(pszSrcPath);
1140 if (cchPathPrivateNoArch >= cchPath)
1141 supR3HardenedFatal("supR3HardenedPathAppPrivateNoArch: Buffer overflow, %zu >= %zu\n", cchPathPrivateNoArch, cchPath);
1142 suplibHardenedMemCopy(pszPath, pszSrcPath, cchPathPrivateNoArch + 1);
1143 return VINF_SUCCESS;
1144
1145#else
1146 return supR3HardenedPathAppBin(pszPath, cchPath);
1147#endif
1148}
1149
1150
1151/**
1152 * @copydoc RTPathAppPrivateArch
1153 */
1154DECLHIDDEN(int) supR3HardenedPathAppPrivateArch(char *pszPath, size_t cchPath)
1155{
1156#if !defined(RT_OS_WINDOWS) && defined(RTPATH_APP_PRIVATE_ARCH)
1157 const char *pszSrcPath = RTPATH_APP_PRIVATE_ARCH;
1158 size_t cchPathPrivateArch = suplibHardenedStrLen(pszSrcPath);
1159 if (cchPathPrivateArch >= cchPath)
1160 supR3HardenedFatal("supR3HardenedPathAppPrivateArch: Buffer overflow, %zu >= %zu\n", cchPathPrivateArch, cchPath);
1161 suplibHardenedMemCopy(pszPath, pszSrcPath, cchPathPrivateArch + 1);
1162 return VINF_SUCCESS;
1163
1164#else
1165 return supR3HardenedPathAppBin(pszPath, cchPath);
1166#endif
1167}
1168
1169
1170/**
1171 * @copydoc RTPathSharedLibs
1172 */
1173DECLHIDDEN(int) supR3HardenedPathAppSharedLibs(char *pszPath, size_t cchPath)
1174{
1175#if !defined(RT_OS_WINDOWS) && defined(RTPATH_SHARED_LIBS)
1176 const char *pszSrcPath = RTPATH_SHARED_LIBS;
1177 size_t cchPathSharedLibs = suplibHardenedStrLen(pszSrcPath);
1178 if (cchPathSharedLibs >= cchPath)
1179 supR3HardenedFatal("supR3HardenedPathAppSharedLibs: Buffer overflow, %zu >= %zu\n", cchPathSharedLibs, cchPath);
1180 suplibHardenedMemCopy(pszPath, pszSrcPath, cchPathSharedLibs + 1);
1181 return VINF_SUCCESS;
1182
1183#else
1184 return supR3HardenedPathAppBin(pszPath, cchPath);
1185#endif
1186}
1187
1188
1189/**
1190 * @copydoc RTPathAppDocs
1191 */
1192DECLHIDDEN(int) supR3HardenedPathAppDocs(char *pszPath, size_t cchPath)
1193{
1194#if !defined(RT_OS_WINDOWS) && defined(RTPATH_APP_DOCS)
1195 const char *pszSrcPath = RTPATH_APP_DOCS;
1196 size_t cchPathAppDocs = suplibHardenedStrLen(pszSrcPath);
1197 if (cchPathAppDocs >= cchPath)
1198 supR3HardenedFatal("supR3HardenedPathAppDocs: Buffer overflow, %zu >= %zu\n", cchPathAppDocs, cchPath);
1199 suplibHardenedMemCopy(pszPath, pszSrcPath, cchPathAppDocs + 1);
1200 return VINF_SUCCESS;
1201
1202#else
1203 return supR3HardenedPathAppBin(pszPath, cchPath);
1204#endif
1205}
1206
1207
1208/**
1209 * Returns the full path to the executable in g_szSupLibHardenedExePath.
1210 *
1211 * @returns IPRT status code.
1212 */
1213static void supR3HardenedGetFullExePath(void)
1214{
1215 /*
1216 * Get the program filename.
1217 *
1218 * Most UNIXes have no API for obtaining the executable path, but provides a symbolic
1219 * link in the proc file system that tells who was exec'ed. The bad thing about this
1220 * is that we have to use readlink, one of the weirder UNIX APIs.
1221 *
1222 * Darwin, OS/2 and Windows all have proper APIs for getting the program file name.
1223 */
1224#if defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD) || defined(RT_OS_SOLARIS)
1225# ifdef RT_OS_LINUX
1226 int cchLink = readlink("/proc/self/exe", &g_szSupLibHardenedExePath[0], sizeof(g_szSupLibHardenedExePath) - 1);
1227
1228# elif defined(RT_OS_SOLARIS)
1229 char szFileBuf[PATH_MAX + 1];
1230 sprintf(szFileBuf, "/proc/%ld/path/a.out", (long)getpid());
1231 int cchLink = readlink(szFileBuf, &g_szSupLibHardenedExePath[0], sizeof(g_szSupLibHardenedExePath) - 1);
1232
1233# else /* RT_OS_FREEBSD */
1234 int aiName[4];
1235 aiName[0] = CTL_KERN;
1236 aiName[1] = KERN_PROC;
1237 aiName[2] = KERN_PROC_PATHNAME;
1238 aiName[3] = getpid();
1239
1240 size_t cbPath = sizeof(g_szSupLibHardenedExePath);
1241 if (sysctl(aiName, RT_ELEMENTS(aiName), g_szSupLibHardenedExePath, &cbPath, NULL, 0) < 0)
1242 supR3HardenedFatal("supR3HardenedExecDir: sysctl failed\n");
1243 g_szSupLibHardenedExePath[sizeof(g_szSupLibHardenedExePath) - 1] = '\0';
1244 int cchLink = suplibHardenedStrLen(g_szSupLibHardenedExePath); /* paranoid? can't we use cbPath? */
1245
1246# endif
1247 if (cchLink < 0 || cchLink == sizeof(g_szSupLibHardenedExePath) - 1)
1248 supR3HardenedFatal("supR3HardenedExecDir: couldn't read \"%s\", errno=%d cchLink=%d\n",
1249 g_szSupLibHardenedExePath, errno, cchLink);
1250 g_szSupLibHardenedExePath[cchLink] = '\0';
1251
1252#elif defined(RT_OS_OS2) || defined(RT_OS_L4)
1253 _execname(g_szSupLibHardenedExePath, sizeof(g_szSupLibHardenedExePath));
1254
1255#elif defined(RT_OS_DARWIN)
1256 const char *pszImageName = _dyld_get_image_name(0);
1257 if (!pszImageName)
1258 supR3HardenedFatal("supR3HardenedExecDir: _dyld_get_image_name(0) failed\n");
1259 size_t cchImageName = suplibHardenedStrLen(pszImageName);
1260 if (!cchImageName || cchImageName >= sizeof(g_szSupLibHardenedExePath))
1261 supR3HardenedFatal("supR3HardenedExecDir: _dyld_get_image_name(0) failed, cchImageName=%d\n", cchImageName);
1262 suplibHardenedMemCopy(g_szSupLibHardenedExePath, pszImageName, cchImageName + 1);
1263
1264#elif defined(RT_OS_WINDOWS)
1265 char *pszDst = g_szSupLibHardenedExePath;
1266 int rc = RTUtf16ToUtf8Ex(g_wszSupLibHardenedExePath, RTSTR_MAX, &pszDst, sizeof(g_szSupLibHardenedExePath), NULL);
1267 if (RT_FAILURE(rc))
1268 supR3HardenedFatal("supR3HardenedExecDir: RTUtf16ToUtf8Ex failed, rc=%Rrc\n", rc);
1269#else
1270# error needs porting.
1271#endif
1272
1273 /*
1274 * Determine the application binary directory location.
1275 */
1276 suplibHardenedStrCopy(g_szSupLibHardenedAppBinPath, g_szSupLibHardenedExePath);
1277 suplibHardenedPathStripFilename(g_szSupLibHardenedAppBinPath);
1278
1279 if (g_enmSupR3HardenedMainState < SUPR3HARDENEDMAINSTATE_HARDENED_MAIN_CALLED)
1280 supR3HardenedFatal("supR3HardenedExecDir: Called before SUPR3HardenedMain! (%d)\n", g_enmSupR3HardenedMainState);
1281 switch (g_fSupHardenedMain & SUPSECMAIN_FLAGS_LOC_MASK)
1282 {
1283 case SUPSECMAIN_FLAGS_LOC_APP_BIN:
1284 break;
1285 case SUPSECMAIN_FLAGS_LOC_TESTCASE:
1286 suplibHardenedPathStripFilename(g_szSupLibHardenedAppBinPath);
1287 break;
1288 default:
1289 supR3HardenedFatal("supR3HardenedExecDir: Unknown program binary location: %#x\n", g_fSupHardenedMain);
1290 }
1291}
1292
1293
1294#ifdef RT_OS_LINUX
1295/**
1296 * Checks if we can read /proc/self/exe.
1297 *
1298 * This is used on linux to see if we have to call init
1299 * with program path or not.
1300 *
1301 * @returns true / false.
1302 */
1303static bool supR3HardenedMainIsProcSelfExeAccssible(void)
1304{
1305 char szPath[RTPATH_MAX];
1306 int cchLink = readlink("/proc/self/exe", szPath, sizeof(szPath));
1307 return cchLink != -1;
1308}
1309#endif /* RT_OS_LINUX */
1310
1311
1312
1313/**
1314 * @copydoc RTPathExecDir
1315 * @remarks not quite like RTPathExecDir actually...
1316 */
1317DECLHIDDEN(int) supR3HardenedPathAppBin(char *pszPath, size_t cchPath)
1318{
1319 /*
1320 * Lazy init (probably not required).
1321 */
1322 if (!g_szSupLibHardenedAppBinPath[0])
1323 supR3HardenedGetFullExePath();
1324
1325 /*
1326 * Calc the length and check if there is space before copying.
1327 */
1328 size_t cch = suplibHardenedStrLen(g_szSupLibHardenedAppBinPath) + 1;
1329 if (cch <= cchPath)
1330 {
1331 suplibHardenedMemCopy(pszPath, g_szSupLibHardenedAppBinPath, cch + 1);
1332 return VINF_SUCCESS;
1333 }
1334
1335 supR3HardenedFatal("supR3HardenedPathAppBin: Buffer too small (%u < %u)\n", cchPath, cch);
1336 return VERR_BUFFER_OVERFLOW;
1337}
1338
1339
1340#ifdef RT_OS_WINDOWS
1341extern "C" uint32_t g_uNtVerCombined;
1342#endif
1343
1344DECLHIDDEN(void) supR3HardenedOpenLog(int *pcArgs, char **papszArgs)
1345{
1346 static const char s_szLogOption[] = "--sup-hardening-log=";
1347
1348 /*
1349 * Scan the argument vector.
1350 */
1351 int cArgs = *pcArgs;
1352 for (int iArg = 1; iArg < cArgs; iArg++)
1353 if (strncmp(papszArgs[iArg], s_szLogOption, sizeof(s_szLogOption) - 1) == 0)
1354 {
1355 const char *pszLogFile = &papszArgs[iArg][sizeof(s_szLogOption) - 1];
1356
1357 /*
1358 * Drop the argument from the vector (has trailing NULL entry).
1359 */
1360 memmove(&papszArgs[iArg], &papszArgs[iArg + 1], (cArgs - iArg) * sizeof(papszArgs[0]));
1361 *pcArgs -= 1;
1362 cArgs -= 1;
1363
1364 /*
1365 * Open the log file, unless we've already opened one.
1366 * First argument takes precedence
1367 */
1368#ifdef RT_OS_WINDOWS
1369 if (g_hStartupLog == NULL)
1370 {
1371 int rc = RTNtPathOpen(pszLogFile,
1372 GENERIC_WRITE | SYNCHRONIZE,
1373 FILE_ATTRIBUTE_NORMAL,
1374 FILE_SHARE_READ | FILE_SHARE_WRITE,
1375 FILE_OPEN_IF,
1376 FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT,
1377 OBJ_CASE_INSENSITIVE,
1378 &g_hStartupLog,
1379 NULL);
1380 if (RT_SUCCESS(rc))
1381 {
1382 SUP_DPRINTF(("Log file opened: " VBOX_VERSION_STRING "r%u g_hStartupLog=%p g_uNtVerCombined=%#x\n",
1383 VBOX_SVN_REV, g_hStartupLog, g_uNtVerCombined));
1384
1385 /*
1386 * If the path contains a drive volume, save it so we can
1387 * use it to flush the volume containing the log file.
1388 */
1389 if (RT_C_IS_ALPHA(pszLogFile[0]) && pszLogFile[1] == ':')
1390 {
1391 RTUtf16CopyAscii(g_wszStartupLogVol, RT_ELEMENTS(g_wszStartupLogVol), "\\??\\");
1392 g_wszStartupLogVol[sizeof("\\??\\") - 1] = RT_C_TO_UPPER(pszLogFile[0]);
1393 g_wszStartupLogVol[sizeof("\\??\\") + 0] = ':';
1394 g_wszStartupLogVol[sizeof("\\??\\") + 1] = '\0';
1395 }
1396 }
1397 else
1398 g_hStartupLog = NULL;
1399 }
1400#else
1401 //g_hStartupLog = open()
1402#endif
1403 }
1404}
1405
1406
1407DECLHIDDEN(void) supR3HardenedLogV(const char *pszFormat, va_list va)
1408{
1409#ifdef RT_OS_WINDOWS
1410 if ( g_hStartupLog != NULL
1411 && g_cbStartupLog < 16*_1M)
1412 {
1413 char szBuf[5120];
1414 PCLIENT_ID pSelfId = &((PTEB)NtCurrentTeb())->ClientId;
1415 size_t cchPrefix = RTStrPrintf(szBuf, sizeof(szBuf), "%x.%x: ", pSelfId->UniqueProcess, pSelfId->UniqueThread);
1416 size_t cch = RTStrPrintfV(&szBuf[cchPrefix], sizeof(szBuf) - cchPrefix, pszFormat, va) + cchPrefix;
1417
1418 if ((size_t)cch >= sizeof(szBuf))
1419 cch = sizeof(szBuf) - 1;
1420
1421 if (!cch || szBuf[cch - 1] != '\n')
1422 szBuf[cch++] = '\n';
1423
1424 ASMAtomicAddU32(&g_cbStartupLog, (uint32_t)cch);
1425
1426 IO_STATUS_BLOCK Ios = RTNT_IO_STATUS_BLOCK_INITIALIZER;
1427 LARGE_INTEGER Offset;
1428 Offset.QuadPart = -1; /* Write to end of file. */
1429 NtWriteFile(g_hStartupLog, NULL /*Event*/, NULL /*ApcRoutine*/, NULL /*ApcContext*/,
1430 &Ios, szBuf, (ULONG)cch, &Offset, NULL /*Key*/);
1431 }
1432#else
1433 /* later */
1434#endif
1435}
1436
1437
1438DECLHIDDEN(void) supR3HardenedLog(const char *pszFormat, ...)
1439{
1440 va_list va;
1441 va_start(va, pszFormat);
1442 supR3HardenedLogV(pszFormat, va);
1443 va_end(va);
1444}
1445
1446
1447DECLHIDDEN(void) supR3HardenedLogFlush(void)
1448{
1449#ifdef RT_OS_WINDOWS
1450 if ( g_hStartupLog != NULL
1451 && g_cbStartupLog < 16*_1M)
1452 {
1453 IO_STATUS_BLOCK Ios = RTNT_IO_STATUS_BLOCK_INITIALIZER;
1454 NTSTATUS rcNt = NtFlushBuffersFile(g_hStartupLog, &Ios);
1455
1456 /*
1457 * Try flush the volume containing the log file too.
1458 */
1459 if (g_wszStartupLogVol[0])
1460 {
1461 HANDLE hLogVol = RTNT_INVALID_HANDLE_VALUE;
1462 UNICODE_STRING NtName;
1463 NtName.Buffer = g_wszStartupLogVol;
1464 NtName.Length = (USHORT)(RTUtf16Len(g_wszStartupLogVol) * sizeof(RTUTF16));
1465 NtName.MaximumLength = NtName.Length + 1;
1466 OBJECT_ATTRIBUTES ObjAttr;
1467 InitializeObjectAttributes(&ObjAttr, &NtName, OBJ_CASE_INSENSITIVE, NULL /*hRootDir*/, NULL /*pSecDesc*/);
1468 RTNT_IO_STATUS_BLOCK_REINIT(&Ios);
1469 rcNt = NtCreateFile(&hLogVol,
1470 GENERIC_WRITE | GENERIC_READ | SYNCHRONIZE | FILE_READ_ATTRIBUTES,
1471 &ObjAttr,
1472 &Ios,
1473 NULL /* Allocation Size*/,
1474 0 /*FileAttributes*/,
1475 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
1476 FILE_OPEN,
1477 FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT,
1478 NULL /*EaBuffer*/,
1479 0 /*EaLength*/);
1480 if (NT_SUCCESS(rcNt))
1481 rcNt = Ios.Status;
1482 if (NT_SUCCESS(rcNt))
1483 {
1484 RTNT_IO_STATUS_BLOCK_REINIT(&Ios);
1485 rcNt = NtFlushBuffersFile(hLogVol, &Ios);
1486 NtClose(hLogVol);
1487 }
1488 else
1489 {
1490 /* This may have sideeffects similar to what we want... */
1491 hLogVol = RTNT_INVALID_HANDLE_VALUE;
1492 RTNT_IO_STATUS_BLOCK_REINIT(&Ios);
1493 rcNt = NtCreateFile(&hLogVol,
1494 GENERIC_READ | SYNCHRONIZE | FILE_READ_ATTRIBUTES,
1495 &ObjAttr,
1496 &Ios,
1497 NULL /* Allocation Size*/,
1498 0 /*FileAttributes*/,
1499 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
1500 FILE_OPEN,
1501 FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT,
1502 NULL /*EaBuffer*/,
1503 0 /*EaLength*/);
1504 if (NT_SUCCESS(rcNt) && NT_SUCCESS(Ios.Status))
1505 NtClose(hLogVol);
1506 }
1507 }
1508 }
1509#else
1510 /* later */
1511#endif
1512}
1513
1514
1515/**
1516 * Prints the message prefix.
1517 */
1518static void suplibHardenedPrintPrefix(void)
1519{
1520 if (g_pszSupLibHardenedProgName)
1521 suplibHardenedPrintStr(g_pszSupLibHardenedProgName);
1522 suplibHardenedPrintStr(": ");
1523}
1524
1525
1526DECLHIDDEN(void) supR3HardenedFatalMsgV(const char *pszWhere, SUPINITOP enmWhat, int rc, const char *pszMsgFmt, va_list va)
1527{
1528 /*
1529 * First to the log.
1530 */
1531 supR3HardenedLog("Error %d in %s! (enmWhat=%d)\n", rc, pszWhere, enmWhat);
1532 va_list vaCopy;
1533 va_copy(vaCopy, va);
1534 supR3HardenedLogV(pszMsgFmt, vaCopy);
1535 va_end(vaCopy);
1536
1537#ifdef RT_OS_WINDOWS
1538 /*
1539 * The release log.
1540 */
1541 if (g_pfnRTLogRelPrintf)
1542 {
1543 va_copy(vaCopy, va);
1544 g_pfnRTLogRelPrintf("supR3HardenedFatalMsgV: %s enmWhat=%d rc=%Rrc (%#x)\n", pszWhere, enmWhat, rc);
1545 g_pfnRTLogRelPrintf("supR3HardenedFatalMsgV: %N\n", pszMsgFmt, &vaCopy);
1546 va_end(vaCopy);
1547 }
1548#endif
1549
1550 /*
1551 * Then to the console.
1552 */
1553 suplibHardenedPrintPrefix();
1554 suplibHardenedPrintF("Error %d in %s!\n", rc, pszWhere);
1555
1556 suplibHardenedPrintPrefix();
1557 va_copy(vaCopy, va);
1558 suplibHardenedPrintFV(pszMsgFmt, vaCopy);
1559 va_end(vaCopy);
1560 suplibHardenedPrintChr('\n');
1561
1562 switch (enmWhat)
1563 {
1564 case kSupInitOp_Driver:
1565 suplibHardenedPrintChr('\n');
1566 suplibHardenedPrintPrefix();
1567 suplibHardenedPrintStr("Tip! Make sure the kernel module is loaded. It may also help to reinstall VirtualBox.\n");
1568 break;
1569
1570 case kSupInitOp_Misc:
1571 case kSupInitOp_IPRT:
1572 case kSupInitOp_Integrity:
1573 case kSupInitOp_RootCheck:
1574 suplibHardenedPrintChr('\n');
1575 suplibHardenedPrintPrefix();
1576 suplibHardenedPrintStr("Tip! It may help to reinstall VirtualBox.\n");
1577 break;
1578
1579 default:
1580 /* no hints here */
1581 break;
1582 }
1583
1584 /*
1585 * Finally, TrustedError if appropriate.
1586 */
1587 if (g_enmSupR3HardenedMainState >= SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED)
1588 {
1589#ifdef SUP_HARDENED_SUID
1590 /*
1591 * Drop any root privileges we might be holding, this won't return
1592 * if it fails but end up calling supR3HardenedFatal[V].
1593 */
1594 supR3HardenedMainDropPrivileges();
1595#endif
1596
1597 /*
1598 * Now try resolve and call the TrustedError entry point if we can
1599 * find it. We'll fork before we attempt this because that way the
1600 * session management in main will see us exiting immediately (if
1601 * it's involved with us).
1602 */
1603#if !defined(RT_OS_WINDOWS) && !defined(RT_OS_OS2)
1604 int pid = fork();
1605 if (pid <= 0)
1606#endif
1607 {
1608 static volatile bool s_fRecursive = false; /* Loader hooks may cause recursion. */
1609 if (!s_fRecursive)
1610 {
1611 s_fRecursive = true;
1612
1613 PFNSUPTRUSTEDERROR pfnTrustedError = supR3HardenedMainGetTrustedError(g_pszSupLibHardenedProgName);
1614 if (pfnTrustedError)
1615 pfnTrustedError(pszWhere, enmWhat, rc, pszMsgFmt, va);
1616
1617 s_fRecursive = false;
1618 }
1619 }
1620 }
1621#if defined(RT_OS_WINDOWS)
1622 /*
1623 * Report the error to the parent if this happens during early VM init.
1624 */
1625 else if ( g_enmSupR3HardenedMainState < SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED
1626 && g_enmSupR3HardenedMainState != SUPR3HARDENEDMAINSTATE_NOT_YET_CALLED)
1627 supR3HardenedWinReportErrorToParent(pszWhere, enmWhat, rc, pszMsgFmt, va);
1628#endif
1629
1630 /*
1631 * Quit
1632 */
1633 suplibHardenedExit(RTEXITCODE_FAILURE);
1634}
1635
1636
1637DECLHIDDEN(void) supR3HardenedFatalMsg(const char *pszWhere, SUPINITOP enmWhat, int rc, const char *pszMsgFmt, ...)
1638{
1639 va_list va;
1640 va_start(va, pszMsgFmt);
1641 supR3HardenedFatalMsgV(pszWhere, enmWhat, rc, pszMsgFmt, va);
1642 va_end(va);
1643}
1644
1645
1646DECLHIDDEN(void) supR3HardenedFatalV(const char *pszFormat, va_list va)
1647{
1648 supR3HardenedLog("Fatal error:\n");
1649 va_list vaCopy;
1650 va_copy(vaCopy, va);
1651 supR3HardenedLogV(pszFormat, vaCopy);
1652 va_end(vaCopy);
1653
1654#if defined(RT_OS_WINDOWS)
1655 /*
1656 * Report the error to the parent if this happens during early VM init.
1657 */
1658 if ( g_enmSupR3HardenedMainState < SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED
1659 && g_enmSupR3HardenedMainState != SUPR3HARDENEDMAINSTATE_NOT_YET_CALLED)
1660 supR3HardenedWinReportErrorToParent(NULL, kSupInitOp_Invalid, VERR_INTERNAL_ERROR, pszFormat, va);
1661 else
1662#endif
1663 {
1664#ifdef RT_OS_WINDOWS
1665 if (g_pfnRTLogRelPrintf)
1666 {
1667 va_copy(vaCopy, va);
1668 g_pfnRTLogRelPrintf("supR3HardenedFatalV: %N", pszFormat, &vaCopy);
1669 va_end(vaCopy);
1670 }
1671#endif
1672
1673 suplibHardenedPrintPrefix();
1674 suplibHardenedPrintFV(pszFormat, va);
1675 }
1676
1677 suplibHardenedExit(RTEXITCODE_FAILURE);
1678}
1679
1680
1681DECLHIDDEN(void) supR3HardenedFatal(const char *pszFormat, ...)
1682{
1683 va_list va;
1684 va_start(va, pszFormat);
1685 supR3HardenedFatalV(pszFormat, va);
1686 va_end(va);
1687}
1688
1689
1690DECLHIDDEN(int) supR3HardenedErrorV(int rc, bool fFatal, const char *pszFormat, va_list va)
1691{
1692 if (fFatal)
1693 supR3HardenedFatalV(pszFormat, va);
1694
1695 supR3HardenedLog("Error (rc=%d):\n", rc);
1696 va_list vaCopy;
1697 va_copy(vaCopy, va);
1698 supR3HardenedLogV(pszFormat, vaCopy);
1699 va_end(vaCopy);
1700
1701#ifdef RT_OS_WINDOWS
1702 if (g_pfnRTLogRelPrintf)
1703 {
1704 va_copy(vaCopy, va);
1705 g_pfnRTLogRelPrintf("supR3HardenedErrorV: %N", pszFormat, &vaCopy);
1706 va_end(vaCopy);
1707 }
1708#endif
1709
1710 suplibHardenedPrintPrefix();
1711 suplibHardenedPrintFV(pszFormat, va);
1712
1713 return rc;
1714}
1715
1716
1717DECLHIDDEN(int) supR3HardenedError(int rc, bool fFatal, const char *pszFormat, ...)
1718{
1719 va_list va;
1720 va_start(va, pszFormat);
1721 supR3HardenedErrorV(rc, fFatal, pszFormat, va);
1722 va_end(va);
1723 return rc;
1724}
1725
1726
1727
1728/**
1729 * Attempts to open /dev/vboxdrv (or equvivalent).
1730 *
1731 * @remarks This function will not return on failure.
1732 */
1733DECLHIDDEN(void) supR3HardenedMainOpenDevice(void)
1734{
1735 RTERRINFOSTATIC ErrInfo;
1736 SUPINITOP enmWhat = kSupInitOp_Driver;
1737 int rc = suplibOsInit(&g_SupPreInitData.Data, false /*fPreInit*/, true /*fUnrestricted*/,
1738 &enmWhat, RTErrInfoInitStatic(&ErrInfo));
1739 if (RT_SUCCESS(rc))
1740 return;
1741
1742 if (RTErrInfoIsSet(&ErrInfo.Core))
1743 supR3HardenedFatalMsg("suplibOsInit", enmWhat, rc, "%s", ErrInfo.szMsg);
1744
1745 switch (rc)
1746 {
1747 /** @todo better messages! */
1748 case VERR_VM_DRIVER_NOT_INSTALLED:
1749 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Kernel driver not installed");
1750 case VERR_VM_DRIVER_NOT_ACCESSIBLE:
1751 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Kernel driver not accessible");
1752 case VERR_VM_DRIVER_LOAD_ERROR:
1753 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "VERR_VM_DRIVER_LOAD_ERROR");
1754 case VERR_VM_DRIVER_OPEN_ERROR:
1755 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "VERR_VM_DRIVER_OPEN_ERROR");
1756 case VERR_VM_DRIVER_VERSION_MISMATCH:
1757 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Kernel driver version mismatch");
1758 case VERR_ACCESS_DENIED:
1759 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "VERR_ACCESS_DENIED");
1760 case VERR_NO_MEMORY:
1761 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Kernel memory allocation/mapping failed");
1762 case VERR_SUPDRV_HARDENING_EVIL_HANDLE:
1763 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Integrity, rc, "VERR_SUPDRV_HARDENING_EVIL_HANDLE");
1764 case VERR_SUPLIB_NT_PROCESS_UNTRUSTED_0:
1765 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Integrity, rc, "VERR_SUPLIB_NT_PROCESS_UNTRUSTED_0");
1766 case VERR_SUPLIB_NT_PROCESS_UNTRUSTED_1:
1767 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Integrity, rc, "VERR_SUPLIB_NT_PROCESS_UNTRUSTED_1");
1768 case VERR_SUPLIB_NT_PROCESS_UNTRUSTED_2:
1769 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Integrity, rc, "VERR_SUPLIB_NT_PROCESS_UNTRUSTED_2");
1770 default:
1771 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Unknown rc=%d (%Rrc)", rc, rc);
1772 }
1773}
1774
1775
1776#ifdef SUP_HARDENED_SUID
1777
1778/**
1779 * Grabs extra non-root capabilities / privileges that we might require.
1780 *
1781 * This is currently only used for being able to do ICMP from the NAT engine.
1782 *
1783 * @note We still have root privileges at the time of this call.
1784 */
1785static void supR3HardenedMainGrabCapabilites(void)
1786{
1787# if defined(RT_OS_LINUX)
1788 /*
1789 * We are about to drop all our privileges. Remove all capabilities but
1790 * keep the cap_net_raw capability for ICMP sockets for the NAT stack.
1791 */
1792 if (g_uCaps != 0)
1793 {
1794# ifdef USE_LIB_PCAP
1795 /* XXX cap_net_bind_service */
1796 if (!cap_set_proc(cap_from_text("all-eip cap_net_raw+ep")))
1797 prctl(PR_SET_KEEPCAPS, 1 /*keep=*/, 0, 0, 0);
1798 prctl(PR_SET_DUMPABLE, 1 /*dump*/, 0, 0, 0);
1799# else
1800 cap_user_header_t hdr = (cap_user_header_t)alloca(sizeof(*hdr));
1801 cap_user_data_t cap = (cap_user_data_t)alloca(sizeof(*cap));
1802 memset(hdr, 0, sizeof(*hdr));
1803 hdr->version = _LINUX_CAPABILITY_VERSION;
1804 memset(cap, 0, sizeof(*cap));
1805 cap->effective = g_uCaps;
1806 cap->permitted = g_uCaps;
1807 if (!capset(hdr, cap))
1808 prctl(PR_SET_KEEPCAPS, 1 /*keep*/, 0, 0, 0);
1809 prctl(PR_SET_DUMPABLE, 1 /*dump*/, 0, 0, 0);
1810# endif /* !USE_LIB_PCAP */
1811 }
1812
1813# elif defined(RT_OS_SOLARIS)
1814 /*
1815 * Add net_icmpaccess privilege to effective privileges and limit
1816 * permitted privileges before completely dropping root privileges.
1817 * This requires dropping root privileges temporarily to get the normal
1818 * user's privileges.
1819 */
1820 seteuid(g_uid);
1821 priv_set_t *pPrivEffective = priv_allocset();
1822 priv_set_t *pPrivNew = priv_allocset();
1823 if (pPrivEffective && pPrivNew)
1824 {
1825 int rc = getppriv(PRIV_EFFECTIVE, pPrivEffective);
1826 seteuid(0);
1827 if (!rc)
1828 {
1829 priv_copyset(pPrivEffective, pPrivNew);
1830 rc = priv_addset(pPrivNew, PRIV_NET_ICMPACCESS);
1831 if (!rc)
1832 {
1833 /* Order is important, as one can't set a privilege which is
1834 * not in the permitted privilege set. */
1835 rc = setppriv(PRIV_SET, PRIV_EFFECTIVE, pPrivNew);
1836 if (rc)
1837 supR3HardenedError(rc, false, "SUPR3HardenedMain: failed to set effective privilege set.\n");
1838 rc = setppriv(PRIV_SET, PRIV_PERMITTED, pPrivNew);
1839 if (rc)
1840 supR3HardenedError(rc, false, "SUPR3HardenedMain: failed to set permitted privilege set.\n");
1841 }
1842 else
1843 supR3HardenedError(rc, false, "SUPR3HardenedMain: failed to add NET_ICMPACCESS privilege.\n");
1844 }
1845 }
1846 else
1847 {
1848 /* for memory allocation failures just continue */
1849 seteuid(0);
1850 }
1851
1852 if (pPrivEffective)
1853 priv_freeset(pPrivEffective);
1854 if (pPrivNew)
1855 priv_freeset(pPrivNew);
1856# endif
1857}
1858
1859/*
1860 * Look at the environment for some special options.
1861 */
1862static void supR3GrabOptions(void)
1863{
1864 const char *pszOpt;
1865
1866# ifdef RT_OS_LINUX
1867 g_uCaps = 0;
1868
1869 /*
1870 * Do _not_ perform any capability-related system calls for root processes
1871 * (leaving g_uCaps at 0).
1872 * (Hint: getuid gets the real user id, not the effective.)
1873 */
1874 if (getuid() != 0)
1875 {
1876 /*
1877 * CAP_NET_RAW.
1878 * Default: enabled.
1879 * Can be disabled with 'export VBOX_HARD_CAP_NET_RAW=0'.
1880 */
1881 pszOpt = getenv("VBOX_HARD_CAP_NET_RAW");
1882 if ( !pszOpt
1883 || memcmp(pszOpt, "0", sizeof("0")) != 0)
1884 g_uCaps = CAP_TO_MASK(CAP_NET_RAW);
1885
1886 /*
1887 * CAP_NET_BIND_SERVICE.
1888 * Default: disabled.
1889 * Can be enabled with 'export VBOX_HARD_CAP_NET_BIND_SERVICE=1'.
1890 */
1891 pszOpt = getenv("VBOX_HARD_CAP_NET_BIND_SERVICE");
1892 if ( pszOpt
1893 && memcmp(pszOpt, "0", sizeof("0")) != 0)
1894 g_uCaps |= CAP_TO_MASK(CAP_NET_BIND_SERVICE);
1895 }
1896# endif
1897}
1898
1899/**
1900 * Drop any root privileges we might be holding.
1901 */
1902static void supR3HardenedMainDropPrivileges(void)
1903{
1904 /*
1905 * Try use setre[ug]id since this will clear the save uid/gid and thus
1906 * leave fewer traces behind that libs like GTK+ may pick up.
1907 */
1908 uid_t euid, ruid, suid;
1909 gid_t egid, rgid, sgid;
1910# if defined(RT_OS_DARWIN)
1911 /* The really great thing here is that setreuid isn't available on
1912 OS X 10.4, libc emulates it. While 10.4 have a slightly different and
1913 non-standard setuid implementation compared to 10.5, the following
1914 works the same way with both version since we're super user (10.5 req).
1915 The following will set all three variants of the group and user IDs. */
1916 setgid(g_gid);
1917 setuid(g_uid);
1918 euid = geteuid();
1919 ruid = suid = getuid();
1920 egid = getegid();
1921 rgid = sgid = getgid();
1922
1923# elif defined(RT_OS_SOLARIS)
1924 /* Solaris doesn't have setresuid, but the setreuid interface is BSD
1925 compatible and will set the saved uid to euid when we pass it a ruid
1926 that isn't -1 (which we do). */
1927 setregid(g_gid, g_gid);
1928 setreuid(g_uid, g_uid);
1929 euid = geteuid();
1930 ruid = suid = getuid();
1931 egid = getegid();
1932 rgid = sgid = getgid();
1933
1934# else
1935 /* This is the preferred one, full control no questions about semantics.
1936 PORTME: If this isn't work, try join one of two other gangs above. */
1937 setresgid(g_gid, g_gid, g_gid);
1938 setresuid(g_uid, g_uid, g_uid);
1939 if (getresuid(&ruid, &euid, &suid) != 0)
1940 {
1941 euid = geteuid();
1942 ruid = suid = getuid();
1943 }
1944 if (getresgid(&rgid, &egid, &sgid) != 0)
1945 {
1946 egid = getegid();
1947 rgid = sgid = getgid();
1948 }
1949# endif
1950
1951
1952 /* Check that it worked out all right. */
1953 if ( euid != g_uid
1954 || ruid != g_uid
1955 || suid != g_uid
1956 || egid != g_gid
1957 || rgid != g_gid
1958 || sgid != g_gid)
1959 supR3HardenedFatal("SUPR3HardenedMain: failed to drop root privileges!"
1960 " (euid=%d ruid=%d suid=%d egid=%d rgid=%d sgid=%d; wanted uid=%d and gid=%d)\n",
1961 euid, ruid, suid, egid, rgid, sgid, g_uid, g_gid);
1962
1963# if RT_OS_LINUX
1964 /*
1965 * Re-enable the cap_net_raw capability which was disabled during setresuid.
1966 */
1967 if (g_uCaps != 0)
1968 {
1969# ifdef USE_LIB_PCAP
1970 /** @todo Warn if that does not work? */
1971 /* XXX cap_net_bind_service */
1972 cap_set_proc(cap_from_text("cap_net_raw+ep"));
1973# else
1974 cap_user_header_t hdr = (cap_user_header_t)alloca(sizeof(*hdr));
1975 cap_user_data_t cap = (cap_user_data_t)alloca(sizeof(*cap));
1976 memset(hdr, 0, sizeof(*hdr));
1977 hdr->version = _LINUX_CAPABILITY_VERSION;
1978 memset(cap, 0, sizeof(*cap));
1979 cap->effective = g_uCaps;
1980 cap->permitted = g_uCaps;
1981 /** @todo Warn if that does not work? */
1982 capset(hdr, cap);
1983# endif /* !USE_LIB_PCAP */
1984 }
1985# endif
1986}
1987
1988#endif /* SUP_HARDENED_SUID */
1989
1990/**
1991 * Loads the VBoxRT DLL/SO/DYLIB, hands it the open driver,
1992 * and calls RTR3InitEx.
1993 *
1994 * @param fFlags The SUPR3HardenedMain fFlags argument, passed to supR3PreInit.
1995 *
1996 * @remarks VBoxRT contains both IPRT and SUPR3.
1997 * @remarks This function will not return on failure.
1998 */
1999static void supR3HardenedMainInitRuntime(uint32_t fFlags)
2000{
2001 /*
2002 * Construct the name.
2003 */
2004 char szPath[RTPATH_MAX];
2005 supR3HardenedPathAppSharedLibs(szPath, sizeof(szPath) - sizeof("/VBoxRT" SUPLIB_DLL_SUFF));
2006 suplibHardenedStrCat(szPath, "/VBoxRT" SUPLIB_DLL_SUFF);
2007
2008 /*
2009 * Open it and resolve the symbols.
2010 */
2011#if defined(RT_OS_WINDOWS)
2012 HMODULE hMod = (HMODULE)supR3HardenedWinLoadLibrary(szPath, false /*fSystem32Only*/, g_fSupHardenedMain);
2013 if (!hMod)
2014 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_MODULE_NOT_FOUND,
2015 "LoadLibrary \"%s\" failed (rc=%d)",
2016 szPath, RtlGetLastWin32Error());
2017 PFNRTR3INITEX pfnRTInitEx = (PFNRTR3INITEX)GetProcAddress(hMod, SUP_HARDENED_SYM("RTR3InitEx"));
2018 if (!pfnRTInitEx)
2019 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_SYMBOL_NOT_FOUND,
2020 "Entrypoint \"RTR3InitEx\" not found in \"%s\" (rc=%d)",
2021 szPath, RtlGetLastWin32Error());
2022
2023 PFNSUPR3PREINIT pfnSUPPreInit = (PFNSUPR3PREINIT)GetProcAddress(hMod, SUP_HARDENED_SYM("supR3PreInit"));
2024 if (!pfnSUPPreInit)
2025 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_SYMBOL_NOT_FOUND,
2026 "Entrypoint \"supR3PreInit\" not found in \"%s\" (rc=%d)",
2027 szPath, RtlGetLastWin32Error());
2028
2029 g_pfnRTLogRelPrintf = (PFNRTLOGRELPRINTF)GetProcAddress(hMod, SUP_HARDENED_SYM("RTLogRelPrintf"));
2030 Assert(g_pfnRTLogRelPrintf); /* Not fatal in non-strict builds. */
2031
2032#else
2033 /* the dlopen crowd */
2034 void *pvMod = dlopen(szPath, RTLD_NOW | RTLD_GLOBAL);
2035 if (!pvMod)
2036 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_MODULE_NOT_FOUND,
2037 "dlopen(\"%s\",) failed: %s",
2038 szPath, dlerror());
2039 PFNRTR3INITEX pfnRTInitEx = (PFNRTR3INITEX)(uintptr_t)dlsym(pvMod, SUP_HARDENED_SYM("RTR3InitEx"));
2040 if (!pfnRTInitEx)
2041 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_SYMBOL_NOT_FOUND,
2042 "Entrypoint \"RTR3InitEx\" not found in \"%s\"!\ndlerror: %s",
2043 szPath, dlerror());
2044 PFNSUPR3PREINIT pfnSUPPreInit = (PFNSUPR3PREINIT)(uintptr_t)dlsym(pvMod, SUP_HARDENED_SYM("supR3PreInit"));
2045 if (!pfnSUPPreInit)
2046 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_SYMBOL_NOT_FOUND,
2047 "Entrypoint \"supR3PreInit\" not found in \"%s\"!\ndlerror: %s",
2048 szPath, dlerror());
2049#endif
2050
2051 /*
2052 * Make the calls.
2053 */
2054 supR3HardenedGetPreInitData(&g_SupPreInitData);
2055 int rc = pfnSUPPreInit(&g_SupPreInitData, fFlags);
2056 if (RT_FAILURE(rc))
2057 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, rc,
2058 "supR3PreInit failed with rc=%d", rc);
2059 const char *pszExePath = NULL;
2060#ifdef RT_OS_LINUX
2061 if (!supR3HardenedMainIsProcSelfExeAccssible())
2062 pszExePath = g_szSupLibHardenedExePath;
2063#endif
2064 rc = pfnRTInitEx(RTR3INIT_VER_1,
2065 fFlags & SUPSECMAIN_FLAGS_DONT_OPEN_DEV ? 0 : RTR3INIT_FLAGS_SUPLIB,
2066 0 /*cArgs*/, NULL /*papszArgs*/, pszExePath);
2067 if (RT_FAILURE(rc))
2068 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, rc,
2069 "RTR3InitEx failed with rc=%d", rc);
2070
2071#if defined(RT_OS_WINDOWS)
2072 /*
2073 * Windows: Create thread that terminates the process when the parent stub
2074 * process terminates (VBoxNetDHCP, Ctrl-C, etc).
2075 */
2076 if (!(fFlags & SUPSECMAIN_FLAGS_DONT_OPEN_DEV))
2077 supR3HardenedWinCreateParentWatcherThread(hMod);
2078#endif
2079}
2080
2081
2082/**
2083 * Construct the path to the DLL/SO/DYLIB containing the actual program.
2084 *
2085 * @returns VBox status code.
2086 * @param pszProgName The program name.
2087 * @param fMainFlags The flags passed to SUPR3HardenedMain.
2088 * @param pszPath The output buffer.
2089 * @param cbPath The size of the output buffer, in bytes. Must be at
2090 * least 128 bytes!
2091 */
2092static int supR3HardenedMainGetTrustedLib(const char *pszProgName, uint32_t fMainFlags, char *pszPath, size_t cbPath)
2093{
2094 supR3HardenedPathAppPrivateArch(pszPath, sizeof(cbPath) - 10);
2095 const char *pszSubDirSlash;
2096 switch (g_fSupHardenedMain & SUPSECMAIN_FLAGS_LOC_MASK)
2097 {
2098 case SUPSECMAIN_FLAGS_LOC_APP_BIN:
2099 pszSubDirSlash = "/";
2100 break;
2101 case SUPSECMAIN_FLAGS_LOC_TESTCASE:
2102 pszSubDirSlash = "/testcase/";
2103 break;
2104 default:
2105 pszSubDirSlash = "/";
2106 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: Unknown program binary location: %#x\n", g_fSupHardenedMain);
2107 }
2108#ifdef RT_OS_DARWIN
2109 if (fMainFlags & SUPSECMAIN_FLAGS_OSX_VM_APP)
2110 pszProgName = "VirtualBox";
2111#endif
2112 size_t cch = suplibHardenedStrLen(pszPath);
2113 return suplibHardenedStrCopyEx(&pszPath[cch], cbPath - cch, pszSubDirSlash, pszProgName, SUPLIB_DLL_SUFF, NULL);
2114}
2115
2116
2117/**
2118 * Loads the DLL/SO/DYLIB containing the actual program and
2119 * resolves the TrustedError symbol.
2120 *
2121 * This is very similar to supR3HardenedMainGetTrustedMain().
2122 *
2123 * @returns Pointer to the trusted error symbol if it is exported, NULL
2124 * and no error messages otherwise.
2125 * @param pszProgName The program name.
2126 */
2127static PFNSUPTRUSTEDERROR supR3HardenedMainGetTrustedError(const char *pszProgName)
2128{
2129 /*
2130 * Don't bother if the main() function didn't advertise any TrustedError
2131 * export. It's both a waste of time and may trigger additional problems,
2132 * confusing or obscuring the original issue.
2133 */
2134 if (!(g_fSupHardenedMain & SUPSECMAIN_FLAGS_TRUSTED_ERROR))
2135 return NULL;
2136
2137 /*
2138 * Construct the name.
2139 */
2140 char szPath[RTPATH_MAX];
2141 supR3HardenedMainGetTrustedLib(pszProgName, g_fSupHardenedMain, szPath, sizeof(szPath));
2142
2143 /*
2144 * Open it and resolve the symbol.
2145 */
2146#if defined(RT_OS_WINDOWS)
2147 supR3HardenedWinEnableThreadCreation();
2148 HMODULE hMod = (HMODULE)supR3HardenedWinLoadLibrary(szPath, false /*fSystem32Only*/, 0 /*fMainFlags*/);
2149 if (!hMod)
2150 return NULL;
2151 FARPROC pfn = GetProcAddress(hMod, SUP_HARDENED_SYM("TrustedError"));
2152 if (!pfn)
2153 return NULL;
2154 return (PFNSUPTRUSTEDERROR)pfn;
2155
2156#else
2157 /* the dlopen crowd */
2158 void *pvMod = dlopen(szPath, RTLD_NOW | RTLD_GLOBAL);
2159 if (!pvMod)
2160 return NULL;
2161 void *pvSym = dlsym(pvMod, SUP_HARDENED_SYM("TrustedError"));
2162 if (!pvSym)
2163 return NULL;
2164 return (PFNSUPTRUSTEDERROR)(uintptr_t)pvSym;
2165#endif
2166}
2167
2168
2169/**
2170 * Loads the DLL/SO/DYLIB containing the actual program and
2171 * resolves the TrustedMain symbol.
2172 *
2173 * @returns Pointer to the trusted main of the actual program.
2174 * @param pszProgName The program name.
2175 * @param fMainFlags The flags passed to SUPR3HardenedMain.
2176 * @remarks This function will not return on failure.
2177 */
2178static PFNSUPTRUSTEDMAIN supR3HardenedMainGetTrustedMain(const char *pszProgName, uint32_t fMainFlags)
2179{
2180 /*
2181 * Construct the name.
2182 */
2183 char szPath[RTPATH_MAX];
2184 supR3HardenedMainGetTrustedLib(pszProgName, fMainFlags, szPath, sizeof(szPath));
2185
2186 /*
2187 * Open it and resolve the symbol.
2188 */
2189#if defined(RT_OS_WINDOWS)
2190 HMODULE hMod = (HMODULE)supR3HardenedWinLoadLibrary(szPath, false /*fSystem32Only*/, 0 /*fMainFlags*/);
2191 if (!hMod)
2192 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: LoadLibrary \"%s\" failed, rc=%d\n",
2193 szPath, RtlGetLastWin32Error());
2194 FARPROC pfn = GetProcAddress(hMod, SUP_HARDENED_SYM("TrustedMain"));
2195 if (!pfn)
2196 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: Entrypoint \"TrustedMain\" not found in \"%s\" (rc=%d)\n",
2197 szPath, RtlGetLastWin32Error());
2198 return (PFNSUPTRUSTEDMAIN)pfn;
2199
2200#else
2201 /* the dlopen crowd */
2202 void *pvMod = dlopen(szPath, RTLD_NOW | RTLD_GLOBAL);
2203 if (!pvMod)
2204 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: dlopen(\"%s\",) failed: %s\n",
2205 szPath, dlerror());
2206 void *pvSym = dlsym(pvMod, SUP_HARDENED_SYM("TrustedMain"));
2207 if (!pvSym)
2208 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: Entrypoint \"TrustedMain\" not found in \"%s\"!\ndlerror: %s\n",
2209 szPath, dlerror());
2210 return (PFNSUPTRUSTEDMAIN)(uintptr_t)pvSym;
2211#endif
2212}
2213
2214
2215/**
2216 * Secure main.
2217 *
2218 * This is used for the set-user-ID-on-execute binaries on unixy systems
2219 * and when using the open-vboxdrv-via-root-service setup on Windows.
2220 *
2221 * This function will perform the integrity checks of the VirtualBox
2222 * installation, open the support driver, open the root service (later),
2223 * and load the DLL corresponding to \a pszProgName and execute its main
2224 * function.
2225 *
2226 * @returns Return code appropriate for main().
2227 *
2228 * @param pszProgName The program name. This will be used to figure out which
2229 * DLL/SO/DYLIB to load and execute.
2230 * @param fFlags Flags.
2231 * @param argc The argument count.
2232 * @param argv The argument vector.
2233 * @param envp The environment vector.
2234 */
2235DECLHIDDEN(int) SUPR3HardenedMain(const char *pszProgName, uint32_t fFlags, int argc, char **argv, char **envp)
2236{
2237 SUP_DPRINTF(("SUPR3HardenedMain: pszProgName=%s fFlags=%#x\n", pszProgName, fFlags));
2238 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_HARDENED_MAIN_CALLED;
2239
2240 /*
2241 * Note! At this point there is no IPRT, so we will have to stick
2242 * to basic CRT functions that everyone agree upon.
2243 */
2244 g_pszSupLibHardenedProgName = pszProgName;
2245 g_fSupHardenedMain = fFlags;
2246 g_SupPreInitData.u32Magic = SUPPREINITDATA_MAGIC;
2247 g_SupPreInitData.u32EndMagic = SUPPREINITDATA_MAGIC;
2248#ifdef RT_OS_WINDOWS
2249 if (!g_fSupEarlyProcessInit)
2250#endif
2251 g_SupPreInitData.Data.hDevice = SUP_HDEVICE_NIL;
2252
2253 /*
2254 * Determine the full exe path as we'll be needing it for the verify all
2255 * call(s) below. (We have to do this early on Linux because we * *might*
2256 * not be able to access /proc/self/exe after the seteuid call.)
2257 */
2258 supR3HardenedGetFullExePath();
2259#ifdef RT_OS_WINDOWS
2260 supR3HardenedWinInitAppBin(fFlags);
2261#endif
2262
2263#ifdef SUP_HARDENED_SUID
2264 /*
2265 * Grab any options from the environment.
2266 */
2267 supR3GrabOptions();
2268
2269 /*
2270 * Check that we're root, if we aren't then the installation is butchered.
2271 */
2272 g_uid = getuid();
2273 g_gid = getgid();
2274 if (geteuid() != 0 /* root */)
2275 supR3HardenedFatalMsg("SUPR3HardenedMain", kSupInitOp_RootCheck, VERR_PERMISSION_DENIED,
2276 "Effective UID is not root (euid=%d egid=%d uid=%d gid=%d)",
2277 geteuid(), getegid(), g_uid, g_gid);
2278#endif /* SUP_HARDENED_SUID */
2279
2280#ifdef RT_OS_WINDOWS
2281 /*
2282 * Windows: First respawn. On Windows we will respawn the process twice to establish
2283 * something we can put some kind of reliable trust in. The first respawning aims
2284 * at dropping compatibility layers and process "security" solutions.
2285 */
2286 if ( !g_fSupEarlyProcessInit
2287 && !(fFlags & SUPSECMAIN_FLAGS_DONT_OPEN_DEV)
2288 && supR3HardenedWinIsReSpawnNeeded(1 /*iWhich*/, argc, argv))
2289 {
2290 SUP_DPRINTF(("SUPR3HardenedMain: Respawn #1\n"));
2291 supR3HardenedWinInit(SUPSECMAIN_FLAGS_DONT_OPEN_DEV, false /*fAvastKludge*/);
2292 supR3HardenedVerifyAll(true /* fFatal */, pszProgName, g_szSupLibHardenedExePath, fFlags);
2293 return supR3HardenedWinReSpawn(1 /*iWhich*/);
2294 }
2295
2296 /*
2297 * Windows: Initialize the image verification global data so we can verify the
2298 * signature of the process image and hook the core of the DLL loader API so we
2299 * can check the signature of all DLLs mapped into the process. (Already done
2300 * by early VM process init.)
2301 */
2302 if (!g_fSupEarlyProcessInit)
2303 supR3HardenedWinInit(fFlags, true /*fAvastKludge*/);
2304#endif /* RT_OS_WINDOWS */
2305
2306 /*
2307 * Validate the installation.
2308 */
2309 supR3HardenedVerifyAll(true /* fFatal */, pszProgName, g_szSupLibHardenedExePath, fFlags);
2310
2311 /*
2312 * The next steps are only taken if we actually need to access the support
2313 * driver. (Already done by early process init.)
2314 */
2315 if (!(fFlags & SUPSECMAIN_FLAGS_DONT_OPEN_DEV))
2316 {
2317#ifdef RT_OS_WINDOWS
2318 /*
2319 * Windows: Must have done early process init if we get here.
2320 */
2321 if (!g_fSupEarlyProcessInit)
2322 supR3HardenedFatalMsg("SUPR3HardenedMain", kSupInitOp_Integrity, VERR_WRONG_ORDER,
2323 "Early process init was somehow skipped.");
2324
2325 /*
2326 * Windows: The second respawn. This time we make a special arrangement
2327 * with vboxdrv to monitor access to the new process from its inception.
2328 */
2329 if (supR3HardenedWinIsReSpawnNeeded(2 /* iWhich*/, argc, argv))
2330 {
2331 SUP_DPRINTF(("SUPR3HardenedMain: Respawn #2\n"));
2332 return supR3HardenedWinReSpawn(2 /* iWhich*/);
2333 }
2334 SUP_DPRINTF(("SUPR3HardenedMain: Final process, opening VBoxDrv...\n"));
2335 supR3HardenedWinFlushLoaderCache();
2336
2337#else
2338 /*
2339 * Open the vboxdrv device.
2340 */
2341 supR3HardenedMainOpenDevice();
2342#endif /* !RT_OS_WINDOWS */
2343 }
2344
2345#ifdef RT_OS_WINDOWS
2346 /*
2347 * Windows: Enable the use of windows APIs to verify images at load time.
2348 */
2349 supR3HardenedWinEnableThreadCreation();
2350 supR3HardenedWinFlushLoaderCache();
2351 supR3HardenedWinResolveVerifyTrustApiAndHookThreadCreation(g_pszSupLibHardenedProgName);
2352 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_WIN_VERIFY_TRUST_READY;
2353#endif
2354
2355#ifdef SUP_HARDENED_SUID
2356 /*
2357 * Grab additional capabilities / privileges.
2358 */
2359 supR3HardenedMainGrabCapabilites();
2360
2361 /*
2362 * Drop any root privileges we might be holding (won't return on failure)
2363 */
2364 supR3HardenedMainDropPrivileges();
2365#endif
2366
2367 /*
2368 * Load the IPRT, hand the SUPLib part the open driver and
2369 * call RTR3InitEx.
2370 */
2371 SUP_DPRINTF(("SUPR3HardenedMain: Load Runtime...\n"));
2372 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_INIT_RUNTIME;
2373 supR3HardenedMainInitRuntime(fFlags);
2374#ifdef RT_OS_WINDOWS
2375 supR3HardenedWinModifyDllSearchPath(fFlags, g_szSupLibHardenedAppBinPath);
2376#endif
2377
2378 /*
2379 * Load the DLL/SO/DYLIB containing the actual program
2380 * and pass control to it.
2381 */
2382 SUP_DPRINTF(("SUPR3HardenedMain: Load TrustedMain...\n"));
2383 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_GET_TRUSTED_MAIN;
2384 PFNSUPTRUSTEDMAIN pfnTrustedMain = supR3HardenedMainGetTrustedMain(pszProgName, fFlags);
2385
2386 SUP_DPRINTF(("SUPR3HardenedMain: Calling TrustedMain (%p)...\n", pfnTrustedMain));
2387 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_CALLED_TRUSTED_MAIN;
2388 return pfnTrustedMain(argc, argv, envp);
2389}
2390
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette