VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPR3HardenedMain.cpp@ 92710

Last change on this file since 92710 was 92705, checked in by vboxsync, 3 years ago

SUP: Added SUPR3INIT_F_DRIVERLESS as a forced driverless option and an associated SUPR3IsDriverless(). The SUPR3INIT_F_DRIVERLESS flag requires the host specific init code to allow driverless, only done so on linux thus far. Started adjusting some of the SUPR3 APIs for driverless operation. [missing hardening flag] bugref:10138

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 100.4 KB
Line 
1/* $Id: SUPR3HardenedMain.cpp 92705 2021-12-02 12:56:20Z vboxsync $ */
2/** @file
3 * VirtualBox Support Library - Hardened main().
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27/** @page pg_hardening %VirtualBox %VM Process Hardening
28 *
29 * The %VM process hardening is to prevent malicious software from using
30 * %VirtualBox as a vehicle to obtain kernel level access.
31 *
32 * The %VirtualBox %VMM requires supervisor (kernel) level access to the CPU.
33 * For both practical and historical reasons, part of the %VMM is realized in
34 * ring-3, with a rich interface to the kernel part. While the device
35 * emulations can be executed exclusively in ring-3, we have performance
36 * optimizations that loads device emulation code into ring-0 and our special
37 * raw-mode execution context (none VT-x/AMD-V mode) for handling frequent
38 * operations a lot more efficiently. These share data between all three
39 * context (ring-3, ring-0 and raw-mode). All this poses a rather broad attack
40 * surface, which the hardening protects.
41 *
42 * The hardening focuses primarily on restricting access to the support driver,
43 * VBoxDrv or vboxdrv depending on the OS, as it is ultimately the link and
44 * instigator of the communication between ring-3 and the ring-0 and raw-mode
45 * contexts. A secondary focus is to make sure malicious code cannot be loaded
46 * and executed in the %VM process. Exactly how we go about this depends a lot
47 * on the host OS.
48 *
49 * @section sec_hardening_supdrv The Support Driver Interfaces
50 *
51 * The support driver has several interfaces thru which it can be accessed:
52 * - /dev/vboxdrv (win: \\Device\\VBoxDrv) for full unrestricted access.
53 * Offers a rich I/O control interface, which needs protecting.
54 * - /dev/vboxdrvu (win: \\Device\\VBoxDrvU) for restricted access, which
55 * VBoxSVC uses to query VT-x and AMD-V capabilities. This does not
56 * require protecting, though we limit it to the vboxgroup on some
57 * systems.
58 * - \\Device\\VBoxDrvStub on Windows for protecting the second stub
59 * process and its child, the %VM process. This is an open+close
60 * interface, only available to partially verified stub processes.
61 * - \\Device\\VBoxDrvErrorInfo on Windows for obtaining detailed error
62 * information on a previous attempt to open \\Device\\VBoxDrv or
63 * \\Device\\VBoxDrvStub. Open, read and close only interface.
64 *
65 * The rest of VBox accesses the device interface thru the support library,
66 * @ref grp_sup "SUPR3" / sup.h.
67 *
68 * The support driver also exposes a set of functions and data that other VBox
69 * ring-0 modules can import from. This includes much of the IPRT we need in
70 * the ring-0 part of the %VMM and device emulations.
71 *
72 * The ring-0 part of the %VMM and device emulations are loaded via the
73 * #SUPR3LoadModule and #SUPR3LoadServiceModule support library function, which
74 * both translates to a sequence of I/O controls against /dev/vboxdrv. On
75 * Windows we use the native kernel loader to load the module, while on the
76 * other systems ring-3 prepares the bits with help from the IPRT loader code.
77 *
78 *
79 * @section sec_hardening_unix Hardening on UNIX-like OSes
80 *
81 * On UNIX-like systems (Solaris, Linux, darwin, freebsd, ...) we put our trust
82 * in root and that root knows what he/she/it is doing.
83 *
84 * We only allow root to get full unrestricted access to the support driver.
85 * The device node corresponding to unrestricted access (/dev/vboxdrv) is own by
86 * root and has a 0600 access mode (i.e. only accessible to the owner, root). In
87 * addition to this file system level restriction, the support driver also
88 * checks that the effective user ID (EUID) is root when it is being opened.
89 *
90 * The %VM processes temporarily assume root privileges using the set-uid-bit on
91 * the executable with root as owner. In fact, all the files and directories we
92 * install are owned by root and the wheel (or equivalent gid = 0) group,
93 * including extension pack files.
94 *
95 * The executable with the set-uid-to-root-bit set is a stub binary that has no
96 * unnecessary library dependencies (only libc, pthreads, dynamic linker) and
97 * simply calls #SUPR3HardenedMain. It does the following:
98 * 1. Validate the VirtualBox installation (#supR3HardenedVerifyAll):
99 * - Check that the executable file of the process is one of the known
100 * VirtualBox executables.
101 * - Check that all mandatory files are present.
102 * - Check that all installed files and directories (both optional and
103 * mandatory ones) are owned by root:wheel and are not writable by
104 * anyone except root.
105 * - Check that all the parent directories, all the way up to the root
106 * if possible, only permits root (or system admin) to change them.
107 * This is that to rule out unintentional rename races.
108 * - On some systems we may also validate the cryptographic signtures
109 * of executable images.
110 *
111 * 2. Open a file descriptor for the support device driver
112 * (#supR3HardenedMainOpenDevice).
113 *
114 * 3. Grab ICMP capabilities for NAT ping support, if required by the OS
115 * (#supR3HardenedMainGrabCapabilites).
116 *
117 * 4. Correctly drop the root privileges
118 * (#supR3HardenedMainDropPrivileges).
119 *
120 * 5. Load the VBoxRT dynamic link library and hand over the file
121 * descriptor to the support library code in it
122 * (#supR3HardenedMainInitRuntime).
123 *
124 * 6. Load the dynamic library containing the actual %VM front end code and
125 * run it (tail of #SUPR3HardenedMain).
126 *
127 * The set-uid-to-root stub executable is paired with a dynamic link library
128 * which export one TrustedMain entry point (see #FNSUPTRUSTEDMAIN) that we
129 * call. In case of error reporting, the library may also export a TrustedError
130 * function (#FNSUPTRUSTEDERROR).
131 *
132 * That the set-uid-to-root-bit modifies the dynamic linker behavior on all
133 * systems, even after we've dropped back to the real user ID, is something we
134 * take advantage of. The dynamic linkers takes special care to prevent users
135 * from using clever tricks to inject their own code into set-uid processes and
136 * causing privilege escalation issues. This is the exact help we need.
137 *
138 * The VirtualBox installation location is hardcoded, which means the any
139 * dynamic linker paths embedded or inferred from the executable and dynamic
140 * libraries are also hardcoded. This helps eliminating search path attack
141 * vectors at the cost of being inflexible regarding installation location.
142 *
143 * In addition to what the dynamic linker does for us, the VirtualBox code will
144 * not directly be calling either RTLdrLoad or dlopen to load dynamic link
145 * libraries into the process. Instead it will call #SUPR3HardenedLdrLoad,
146 * #SUPR3HardenedLdrLoadAppPriv and #SUPR3HardenedLdrLoadPlugIn to do the
147 * loading. These functions will perform the same validations on the file being
148 * loaded as #SUPR3HardenedMain did in its validation step. So, anything we
149 * load must be installed with root/wheel as owner/group, the directory we load
150 * it from must also be owned by root:wheel and now allow for renaming the file.
151 * Similar ownership restrictions applies to all the parent directories (except
152 * on darwin).
153 *
154 * So, we place the responsibility of not installing malicious software on the
155 * root user on UNIX-like systems. Which is fair enough, in our opinion.
156 *
157 *
158 * @section sec_hardening_win Hardening on Windows
159 *
160 * On Windows we cannot put the same level or trust in the Administrator user(s)
161 * (equivalent of root/wheel on unix) as on the UNIX-like systems, which
162 * complicates things greatly.
163 *
164 * Some of the blame for this can be given to Windows being a descendant /
165 * replacement for a set of single user systems: DOS, Windows 1.0-3.11 Windows
166 * 95-ME, and OS/2. Users of NT 3.1 and later was inclined to want to always
167 * run it with full root/administrator privileges like they had done on the
168 * predecessors, while Microsoft didn't provide much incentive for more secure
169 * alternatives. Bad idea, security wise, but execellent for the security
170 * software industry. For this reason using a set-uid-to-root approach is
171 * pointless, even if Windows had one.
172 *
173 * So, in order to protect access to the support driver and protect the %VM
174 * process while it's running we have to do a lot more work. A keystone in the
175 * defences is cryptographic code signing. Here's the short version of what we
176 * do:
177 * - Minimal stub executable, signed with the same certificate as the
178 * kernel driver.
179 *
180 * - The stub executable respawns itself twice, hooking the NTDLL init
181 * routine to perform protection tasks as early as possible. The parent
182 * stub helps keep in the child clean for verification as does the
183 * support driver.
184 *
185 * - In order to protect against loading unwanted code into the process,
186 * the stub processes installs DLL load hooks with NTDLL as well as
187 * directly intercepting the LdrLoadDll and NtCreateSection APIs.
188 *
189 * - The support driver will verify all but the initial process very
190 * thoroughly before allowing them protection and in the final case full
191 * unrestricted access.
192 *
193 *
194 * @subsection sec_hardening_win_protsoft 3rd Party "Protection" Software
195 *
196 * What makes our life REALLY difficult on Windows is this 3rd party "security"
197 * software which is more or less required to keep a Windows system safe for
198 * normal users and all corporate IT departments rightly insists on installing.
199 * After the kernel patching clampdown in Vista, anti-* software has to do a
200 * lot more mucking about in user mode to get their job (kind of) done. So, it
201 * is common practice to patch a lot of NTDLL, KERNEL32, the executable import
202 * table, load extra DLLs into the process, allocate executable memory in the
203 * process (classic code injection) and more.
204 *
205 * The BIG problem with all this is that it is indistinguishable from what
206 * malicious software would be doing in order to intercept process activity
207 * (network sniffing, maybe password snooping) or gain a level of kernel access
208 * via the support driver. So, the "protection" software is what is currently
209 * forcing us to do the pre-NTDLL initialization.
210 *
211 *
212 * @subsection sec_hardening_win_1st_stub The Initial Stub Process
213 *
214 * We share the stub executable approach with the UNIX-like systems, so there's
215 * the #SUPR3HardenedMain calling stub executable with its partner DLL exporting
216 * TrustedMain and TrustedError. However, the stub executable does a lot more,
217 * while doing it in a more bare metal fashion:
218 * - It does not use the Microsoft CRT, what we need of CRT functions comes
219 * from IPRT.
220 * - It does not statically import anything. This is to avoid having an
221 * import table that can be patched to intercept our calls or extended to
222 * load additional DLLs.
223 * - Direct NT system calls. System calls normally going thru NTDLL, but
224 * since there is so much software out there which wants to patch known
225 * NTDLL entry points to control our software (either for good or
226 * malicious reasons), we do it ourselves.
227 *
228 * The initial stub process is not really to be trusted, though we try our best
229 * to limit potential harm (user mode debugger checks, disable thread creation).
230 * So, when it enters #SUPR3HardenedMain we only call #supR3HardenedVerifyAll to
231 * verify the installation (known executables and DLLs, checking their code
232 * signing signatures, keeping them all open to deny deletion and replacing) and
233 * does a respawn via #supR3HardenedWinReSpawn.
234 *
235 *
236 * @subsection sec_hardening_win_2nd_stub The Second Stub Process
237 *
238 * The second stub process will be created in suspended state, i.e. the main
239 * thread is suspended before it executes a single instruction. It is also
240 * created with a less generous ACLs, though this doesn't protect us from admin
241 * users. In order for #SUPR3HardenedMain to figure that it is the second stub
242 * process, the zeroth command line argument has been replaced by a known magic
243 * string (UUID).
244 *
245 * Now, before the process starts executing, the parent (initial stub) will
246 * patch the LdrInitializeThunk entry point in NTDLL to call
247 * #supR3HardenedEarlyProcessInit via #supR3HardenedEarlyProcessInitThunk. The
248 * parent will also plant some synchronization stuff via #g_ProcParams (NTDLL
249 * location, inherited event handles and associated ping-pong equipment).
250 *
251 * The LdrInitializeThunk entry point of NTDLL is where the kernel sets up
252 * process execution to start executing (via a user alert, so it is not subject
253 * to SetThreadContext). LdrInitializeThunk performs process, NTDLL and
254 * sub-system client (kernel32) initialization. A lot of "protection" software
255 * uses triggers in this initialization sequence (like the KERNEL32.DLL load
256 * event), so we avoid quite a bit of problems by getting our stuff done early
257 * on.
258 *
259 * However, there are also those that uses events that triggers immediately when
260 * the process is created or/and starts executing the first instruction. But we
261 * can easily counter these as we have a known process state we can restore. So,
262 * the first thing that #supR3HardenedEarlyProcessInit does is to signal the
263 * parent to perform a child purification, so the potentially evil influences
264 * can be exorcised.
265 *
266 * What the parent does during the purification is very similar to what the
267 * kernel driver will do later on when verifying the second stub and the %VM
268 * processes, except that instead of failing when encountering an shortcoming it
269 * will take corrective actions:
270 * - Executable memory regions not belonging to a DLL mapping will be
271 * attempted freed, and we'll only fail if we can't evict them.
272 * - All pages in the executable images in the process (should be just the
273 * stub executable and NTDLL) will be compared to the pristine fixed-up
274 * copy prepared by the IPRT PE loader code, restoring any bytes which
275 * appears differently in the child. (#g_ProcParams is exempted,
276 * LdrInitializeThunk is set to call NtTerminateThread.)
277 * - Unwanted DLLs will be unloaded (we have a set of DLLs we like).
278 *
279 * Before signalling the second stub process that it has been purified and should
280 * get on with it, the parent will close all handles with unrestricted access to
281 * the process and thread so that the initial stub process no longer can
282 * influence the child in any really harmful way. (The caller of CreateProcess
283 * usually receives handles with unrestricted access to the child process and
284 * its main thread. These could in theory be used with DuplicateHandle or
285 * WriteProcessMemory to get at the %VM process if we're not careful.)
286 *
287 * #supR3HardenedEarlyProcessInit will continue with opening the log file
288 * (requires command line parsing). It will continue to initialize a bunch of
289 * global variables, system calls and trustworthy/harmless NTDLL imports.
290 * #supR3HardenedWinInit is then called to setup image verification, that is:
291 * - Hook the NtCreateSection entry point in NTDLL so we can check all
292 * executable mappings before they're created and can be mapped. The
293 * NtCreateSection code jumps to #supR3HardenedMonitor_NtCreateSection.
294 * - Hook (ditto) the LdrLoadDll entry point in NTDLL so we can
295 * pre-validate all images that gets loaded the normal way (partly
296 * because the NtCreateSection context is restrictive because the NTDLL
297 * loader lock is usually held, which prevents us from safely calling
298 * WinVerityTrust). The LdrLoadDll code jumps to
299 * #supR3HardenedMonitor_LdrLoadDll.
300 *
301 * The image/DLL verification hooks are at this point able to verify DLLs
302 * containing embedded code signing signatures, and will restrict the locations
303 * from which DLLs will be loaded. When #SUPR3HardenedMain gets going later on,
304 * they will start insisting on everything having valid signatures, either
305 * embedded or in a signed installer catalog file.
306 *
307 * The function also irrevocably disables debug notifications related to the
308 * current thread, just to make attaching a debugging that much more difficult
309 * and less useful.
310 *
311 * Now, the second stub process will open the so called stub device
312 * (\\Device\\VBoxDrvStub), that is a special support driver device node that
313 * tells the support driver to:
314 * - Protect the process against the OpenProcess and OpenThread attack
315 * vectors by stripping risky access rights.
316 * - Check that the process isn't being debugged.
317 * - Check that the process contains exactly one thread.
318 * - Check that the process doesn't have any unknown DLLs loaded into it.
319 * - Check that the process doesn't have any executable memory (other than
320 * DLL sections) in it.
321 * - Check that the process executable is a known VBox executable which may
322 * access the support driver.
323 * - Check that the process executable is signed with the same code signing
324 * certificate as the driver and that the on disk image is valid
325 * according to its embedded signature.
326 * - Check all the signature of all DLLs in the process (NTDLL) if they are
327 * signed, and only accept unsigned ones in versions where they are known
328 * not to be signed.
329 * - Check that the code and readonly parts of the executable and DLLs
330 * mapped into the process matches the on disk content (no patches other
331 * than our own two in NTDLL are allowed).
332 *
333 * Once granted access to the stub device, #supR3HardenedEarlyProcessInit will
334 * restore the LdrInitializeThunk code and let the process perform normal
335 * initialization. Leading us to #SUPR3HardenedMain where we detect that this
336 * is the 2nd stub process and does another respawn.
337 *
338 *
339 * @subsection sec_hardening_win_3rd_stub The Final Stub / VM Process
340 *
341 * The third stub process is what becomes the %VM process. Because the parent
342 * has opened \\Device\\VBoxDrvSub, it is protected from malicious OpenProcess &
343 * OpenThread calls from the moment of inception, practically speaking.
344 *
345 * It goes thru the same suspended creation, patching, purification and such as
346 * its parent (the second stub process). However, instead of opening
347 * \\Device\\VBoxDrvStub from #supR3HardenedEarlyProcessInit, it opens the
348 * support driver for full unrestricted access, i.e. \\Device\\VBoxDrv.
349 *
350 * The support driver will perform the same checks as it did when
351 * \\Device\\VBoxDrvStub was opened, but in addition it will:
352 * - Check that the process is the first child of a process that opened
353 * \\Device\\VBoxDrvStub.
354 * - Check that the parent process is still alive.
355 * - Scan all open handles in the system for potentially harmful ones to
356 * the process or the primary thread.
357 *
358 * Knowing that the process is genuinly signed with the same certificate as the
359 * kernel driver, and the exectuable code in the process is either shipped by us
360 * or Microsoft, the support driver will trust it with full access and to keep
361 * the handle secure.
362 *
363 * We also trust the protection the support driver gives the process to keep out
364 * malicious ring-3 code, and therefore any code, patching or other mysterious
365 * stuff that enteres the process must be from kernel mode and that we can trust
366 * it (the alternative interpretation is that the kernel has been breanched
367 * already, which isn't our responsibility). This means that, the anti-software
368 * products can do whatever they like from this point on. However, should they
369 * do unrevertable changes to the process before this point, VirtualBox won't
370 * work.
371 *
372 * As in the second stub process, we'll now do normal process initialization and
373 * #SUPR3HardenedMain will take control. It will detect that it is being called
374 * by the 3rd stub process because of a different magic string starting the
375 * command line, and not respawn itself any more. #SUPR3HardenedMain will
376 * recheck the VirtualBox installation, keeping all known files open just like
377 * in two previous stub processes.
378 *
379 * It will then load the Windows cryptographic API and load the trusted root
380 * certificates from the Windows store. The API enables using installation
381 * catalog files for signature checking as well as providing a second
382 * verification in addition to our own implementation (IPRT). The certificates
383 * allows our signature validation implementation to validate all embedded
384 * signatures, not just the microsoft ones and the one signed by our own
385 * certificate.
386 *
387 */
388
389
390/*********************************************************************************************************************************
391* Header Files *
392*********************************************************************************************************************************/
393#if defined(RT_OS_OS2)
394# define INCL_BASE
395# define INCL_ERRORS
396# include <os2.h>
397# include <stdio.h>
398# include <stdlib.h>
399# include <dlfcn.h>
400# include <unistd.h>
401
402#elif RT_OS_WINDOWS
403# include <iprt/nt/nt-and-windows.h>
404
405#else /* UNIXes */
406# ifdef RT_OS_DARWIN
407# define _POSIX_C_SOURCE 1 /* pick the correct prototype for unsetenv. */
408# endif
409# include <iprt/types.h> /* stdint fun on darwin. */
410
411# include <stdio.h>
412# include <stdlib.h>
413# include <dlfcn.h>
414# include <limits.h>
415# include <errno.h>
416# include <unistd.h>
417# include <sys/stat.h>
418# include <sys/time.h>
419# include <sys/types.h>
420# if defined(RT_OS_LINUX)
421# undef USE_LIB_PCAP /* don't depend on libcap as we had to depend on either
422 libcap1 or libcap2 */
423
424# undef _POSIX_SOURCE
425# include <linux/types.h> /* sys/capabilities from uek-headers require this */
426# include <sys/capability.h>
427# include <sys/prctl.h>
428# ifndef CAP_TO_MASK
429# define CAP_TO_MASK(cap) RT_BIT(cap)
430# endif
431# elif defined(RT_OS_FREEBSD)
432# include <sys/param.h>
433# include <sys/sysctl.h>
434# elif defined(RT_OS_SOLARIS)
435# include <priv.h>
436# endif
437# include <pwd.h>
438# ifdef RT_OS_DARWIN
439# include <mach-o/dyld.h>
440# endif
441
442#endif
443
444#include <VBox/sup.h>
445#include <VBox/err.h>
446#ifdef RT_OS_WINDOWS
447# include <VBox/version.h>
448# include <iprt/utf16.h>
449#endif
450#include <iprt/ctype.h>
451#include <iprt/string.h>
452#include <iprt/initterm.h>
453#include <iprt/param.h>
454#include <iprt/path.h>
455
456#include "SUPLibInternal.h"
457
458
459/*********************************************************************************************************************************
460* Defined Constants And Macros *
461*********************************************************************************************************************************/
462/* This mess is temporary after eliminating a define duplicated in SUPLibInternal.h. */
463#if !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS) && !defined(RT_OS_L4)
464# ifndef SUP_HARDENED_SUID
465# error "SUP_HARDENED_SUID is NOT defined?!?"
466# endif
467#else
468# ifdef SUP_HARDENED_SUID
469# error "SUP_HARDENED_SUID is defined?!?"
470# endif
471#endif
472
473/** @def SUP_HARDENED_SYM
474 * Decorate a symbol that's resolved dynamically.
475 */
476#ifdef RT_OS_OS2
477# define SUP_HARDENED_SYM(sym) "_" sym
478#else
479# define SUP_HARDENED_SYM(sym) sym
480#endif
481
482
483/*********************************************************************************************************************************
484* Structures and Typedefs *
485*********************************************************************************************************************************/
486/** @see RTR3InitEx */
487typedef DECLCALLBACKTYPE(int, FNRTR3INITEX,(uint32_t iVersion, uint32_t fFlags, int cArgs,
488 char **papszArgs, const char *pszProgramPath));
489typedef FNRTR3INITEX *PFNRTR3INITEX;
490
491/** @see RTLogRelPrintf */
492typedef DECLCALLBACKTYPE(void, FNRTLOGRELPRINTF,(const char *pszFormat, ...));
493typedef FNRTLOGRELPRINTF *PFNRTLOGRELPRINTF;
494
495
496/**
497 * Descriptor of an environment variable to purge.
498 */
499typedef struct SUPENVPURGEDESC
500{
501 /** Name of the environment variable to purge. */
502 const char *pszEnv;
503 /** The length of the variable name. */
504 uint8_t cchEnv;
505 /** Flag whether a failure in purging the variable leads to
506 * a fatal error resulting in an process exit. */
507 bool fPurgeErrFatal;
508} SUPENVPURGEDESC;
509/** Pointer to a environment variable purge descriptor. */
510typedef SUPENVPURGEDESC *PSUPENVPURGEDESC;
511/** Pointer to a const environment variable purge descriptor. */
512typedef const SUPENVPURGEDESC *PCSUPENVPURGEDESC;
513
514/**
515 * Descriptor of an command line argument to purge.
516 */
517typedef struct SUPARGPURGEDESC
518{
519 /** Name of the argument to purge. */
520 const char *pszArg;
521 /** The length of the argument name. */
522 uint8_t cchArg;
523 /** Flag whether the argument is followed by an extra argument
524 * which must be purged too */
525 bool fTakesValue;
526} SUPARGPURGEDESC;
527/** Pointer to a environment variable purge descriptor. */
528typedef SUPARGPURGEDESC *PSUPARGPURGEDESC;
529/** Pointer to a const environment variable purge descriptor. */
530typedef const SUPARGPURGEDESC *PCSUPARGPURGEDESC;
531
532
533/*********************************************************************************************************************************
534* Global Variables *
535*********************************************************************************************************************************/
536/** The pre-init data we pass on to SUPR3 (residing in VBoxRT). */
537static SUPPREINITDATA g_SupPreInitData;
538/** The program executable path. */
539#ifndef RT_OS_WINDOWS
540static
541#endif
542char g_szSupLibHardenedExePath[RTPATH_MAX];
543/** The application bin directory path. */
544static char g_szSupLibHardenedAppBinPath[RTPATH_MAX];
545/** The offset into g_szSupLibHardenedExePath of the executable name. */
546static size_t g_offSupLibHardenedExecName;
547/** The length of the executable name in g_szSupLibHardenedExePath. */
548static size_t g_cchSupLibHardenedExecName;
549
550/** The program name. */
551static const char *g_pszSupLibHardenedProgName;
552/** The flags passed to SUPR3HardenedMain - SUPSECMAIN_FLAGS_XXX. */
553static uint32_t g_fSupHardenedMain;
554
555#ifdef SUP_HARDENED_SUID
556/** The real UID at startup. */
557static uid_t g_uid;
558/** The real GID at startup. */
559static gid_t g_gid;
560# ifdef RT_OS_LINUX
561static uint32_t g_uCaps;
562static uint32_t g_uCapsVersion;
563# endif
564#endif
565
566/** The startup log file. */
567#ifdef RT_OS_WINDOWS
568static HANDLE g_hStartupLog = NULL;
569#else
570static int g_hStartupLog = -1;
571#endif
572/** The number of bytes we've written to the startup log. */
573static uint32_t volatile g_cbStartupLog = 0;
574
575/** The current SUPR3HardenedMain state / location. */
576SUPR3HARDENEDMAINSTATE g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_NOT_YET_CALLED;
577AssertCompileSize(g_enmSupR3HardenedMainState, sizeof(uint32_t));
578
579#ifdef RT_OS_WINDOWS
580/** Pointer to VBoxRT's RTLogRelPrintf function so we can write errors to the
581 * release log at runtime. */
582static PFNRTLOGRELPRINTF g_pfnRTLogRelPrintf = NULL;
583/** Log volume name (for attempting volume flush). */
584static RTUTF16 g_wszStartupLogVol[16];
585#endif
586
587/** Environment variables to purge from the process because
588 * they are known to be harmful. */
589static const SUPENVPURGEDESC g_aSupEnvPurgeDescs[] =
590{
591 /* pszEnv fPurgeErrFatal */
592 /* Qt related environment variables: */
593 { RT_STR_TUPLE("QT_QPA_PLATFORM_PLUGIN_PATH"), true },
594 { RT_STR_TUPLE("QT_PLUGIN_PATH"), true },
595 /* ALSA related environment variables: */
596 { RT_STR_TUPLE("ALSA_MIXER_SIMPLE_MODULES"), true },
597 { RT_STR_TUPLE("LADSPA_PATH"), true },
598};
599
600/** Arguments to purge from the argument vector because
601 * they are known to be harmful. */
602static const SUPARGPURGEDESC g_aSupArgPurgeDescs[] =
603{
604 /* pszArg fTakesValue */
605 /* Qt related environment variables: */
606 { RT_STR_TUPLE("-platformpluginpath"), true },
607};
608
609
610/*********************************************************************************************************************************
611* Internal Functions *
612*********************************************************************************************************************************/
613#ifdef SUP_HARDENED_SUID
614static void supR3HardenedMainDropPrivileges(void);
615#endif
616static PFNSUPTRUSTEDERROR supR3HardenedMainGetTrustedError(const char *pszProgName);
617
618
619/**
620 * Safely copy one or more strings into the given buffer.
621 *
622 * @returns VINF_SUCCESS or VERR_BUFFER_OVERFLOW.
623 * @param pszDst The destionation buffer.
624 * @param cbDst The size of the destination buffer.
625 * @param ... One or more zero terminated strings, ending with
626 * a NULL.
627 */
628static int suplibHardenedStrCopyEx(char *pszDst, size_t cbDst, ...)
629{
630 int rc = VINF_SUCCESS;
631
632 if (cbDst == 0)
633 return VERR_BUFFER_OVERFLOW;
634
635 va_list va;
636 va_start(va, cbDst);
637 for (;;)
638 {
639 const char *pszSrc = va_arg(va, const char *);
640 if (!pszSrc)
641 break;
642
643 size_t cchSrc = suplibHardenedStrLen(pszSrc);
644 if (cchSrc < cbDst)
645 {
646 suplibHardenedMemCopy(pszDst, pszSrc, cchSrc);
647 pszDst += cchSrc;
648 cbDst -= cchSrc;
649 }
650 else
651 {
652 rc = VERR_BUFFER_OVERFLOW;
653 if (cbDst > 1)
654 {
655 suplibHardenedMemCopy(pszDst, pszSrc, cbDst - 1);
656 pszDst += cbDst - 1;
657 cbDst = 1;
658 }
659 }
660 *pszDst = '\0';
661 }
662 va_end(va);
663
664 return rc;
665}
666
667
668/**
669 * Exit current process in the quickest possible fashion.
670 *
671 * @param rcExit The exit code.
672 */
673DECLHIDDEN(DECL_NO_RETURN(void)) suplibHardenedExit(RTEXITCODE rcExit)
674{
675 for (;;)
676 {
677#ifdef RT_OS_WINDOWS
678 if (g_enmSupR3HardenedMainState >= SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED)
679 ExitProcess(rcExit);
680 if (RtlExitUserProcess != NULL)
681 RtlExitUserProcess(rcExit);
682 NtTerminateProcess(NtCurrentProcess(), rcExit);
683#else
684 _Exit(rcExit);
685#endif
686 }
687}
688
689
690/**
691 * Writes a substring to standard error.
692 *
693 * @param pch The start of the substring.
694 * @param cch The length of the substring.
695 */
696static void suplibHardenedPrintStrN(const char *pch, size_t cch)
697{
698#ifdef RT_OS_WINDOWS
699 HANDLE hStdOut = NtCurrentPeb()->ProcessParameters->StandardOutput;
700 if (hStdOut != NULL)
701 {
702 if (g_enmSupR3HardenedMainState >= SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED)
703 {
704 DWORD cbWritten;
705 WriteFile(hStdOut, pch, (DWORD)cch, &cbWritten, NULL);
706 }
707 /* Windows 7 and earlier uses fake handles, with the last two bits set ((hStdOut & 3) == 3). */
708 else if (NtWriteFile != NULL && ((uintptr_t)hStdOut & 3) == 0)
709 {
710 IO_STATUS_BLOCK Ios = RTNT_IO_STATUS_BLOCK_INITIALIZER;
711 NtWriteFile(hStdOut, NULL /*Event*/, NULL /*ApcRoutine*/, NULL /*ApcContext*/,
712 &Ios, (PVOID)pch, (ULONG)cch, NULL /*ByteOffset*/, NULL /*Key*/);
713 }
714 }
715#else
716 int res = write(2, pch, cch);
717 NOREF(res);
718#endif
719}
720
721
722/**
723 * Writes a string to standard error.
724 *
725 * @param psz The string.
726 */
727static void suplibHardenedPrintStr(const char *psz)
728{
729 suplibHardenedPrintStrN(psz, suplibHardenedStrLen(psz));
730}
731
732
733/**
734 * Writes a char to standard error.
735 *
736 * @param ch The character value to write.
737 */
738static void suplibHardenedPrintChr(char ch)
739{
740 suplibHardenedPrintStrN(&ch, 1);
741}
742
743#ifndef IPRT_NO_CRT
744
745/**
746 * Writes a decimal number to stdard error.
747 *
748 * @param uValue The value.
749 */
750static void suplibHardenedPrintDecimal(uint64_t uValue)
751{
752 char szBuf[64];
753 char *pszEnd = &szBuf[sizeof(szBuf) - 1];
754 char *psz = pszEnd;
755
756 *psz-- = '\0';
757
758 do
759 {
760 *psz-- = '0' + (uValue % 10);
761 uValue /= 10;
762 } while (uValue > 0);
763
764 psz++;
765 suplibHardenedPrintStrN(psz, pszEnd - psz);
766}
767
768
769/**
770 * Writes a hexadecimal or octal number to standard error.
771 *
772 * @param uValue The value.
773 * @param uBase The base (16 or 8).
774 * @param fFlags Format flags.
775 */
776static void suplibHardenedPrintHexOctal(uint64_t uValue, unsigned uBase, uint32_t fFlags)
777{
778 static char const s_achDigitsLower[17] = "0123456789abcdef";
779 static char const s_achDigitsUpper[17] = "0123456789ABCDEF";
780 const char *pchDigits = !(fFlags & RTSTR_F_CAPITAL) ? s_achDigitsLower : s_achDigitsUpper;
781 unsigned cShift = uBase == 16 ? 4 : 3;
782 unsigned fDigitMask = uBase == 16 ? 0xf : 7;
783 char szBuf[64];
784 char *pszEnd = &szBuf[sizeof(szBuf) - 1];
785 char *psz = pszEnd;
786
787 *psz-- = '\0';
788
789 do
790 {
791 *psz-- = pchDigits[uValue & fDigitMask];
792 uValue >>= cShift;
793 } while (uValue > 0);
794
795 if ((fFlags & RTSTR_F_SPECIAL) && uBase == 16)
796 {
797 *psz-- = !(fFlags & RTSTR_F_CAPITAL) ? 'x' : 'X';
798 *psz-- = '0';
799 }
800
801 psz++;
802 suplibHardenedPrintStrN(psz, pszEnd - psz);
803}
804
805
806/**
807 * Writes a wide character string to standard error.
808 *
809 * @param pwsz The string.
810 */
811static void suplibHardenedPrintWideStr(PCRTUTF16 pwsz)
812{
813 for (;;)
814 {
815 RTUTF16 wc = *pwsz++;
816 if (!wc)
817 return;
818 if ( (wc < 0x7f && wc >= 0x20)
819 || wc == '\n'
820 || wc == '\r')
821 suplibHardenedPrintChr((char)wc);
822 else
823 {
824 suplibHardenedPrintStrN(RT_STR_TUPLE("\\x"));
825 suplibHardenedPrintHexOctal(wc, 16, 0);
826 }
827 }
828}
829
830#else /* IPRT_NO_CRT */
831
832/** Buffer structure used by suplibHardenedOutput. */
833struct SUPLIBHARDENEDOUTPUTBUF
834{
835 size_t off;
836 char szBuf[2048];
837};
838
839/** Callback for RTStrFormatV, see FNRTSTROUTPUT. */
840static DECLCALLBACK(size_t) suplibHardenedOutput(void *pvArg, const char *pachChars, size_t cbChars)
841{
842 SUPLIBHARDENEDOUTPUTBUF *pBuf = (SUPLIBHARDENEDOUTPUTBUF *)pvArg;
843 size_t cbTodo = cbChars;
844 for (;;)
845 {
846 size_t cbSpace = sizeof(pBuf->szBuf) - pBuf->off - 1;
847
848 /* Flush the buffer? */
849 if ( cbSpace == 0
850 || (cbTodo == 0 && pBuf->off))
851 {
852 suplibHardenedPrintStrN(pBuf->szBuf, pBuf->off);
853# ifdef RT_OS_WINDOWS
854 if (g_enmSupR3HardenedMainState >= SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED)
855 OutputDebugString(pBuf->szBuf);
856# endif
857 pBuf->off = 0;
858 cbSpace = sizeof(pBuf->szBuf) - 1;
859 }
860
861 /* Copy the string into the buffer. */
862 if (cbTodo == 1)
863 {
864 pBuf->szBuf[pBuf->off++] = *pachChars;
865 break;
866 }
867 if (cbSpace >= cbTodo)
868 {
869 memcpy(&pBuf->szBuf[pBuf->off], pachChars, cbTodo);
870 pBuf->off += cbTodo;
871 break;
872 }
873 memcpy(&pBuf->szBuf[pBuf->off], pachChars, cbSpace);
874 pBuf->off += cbSpace;
875 cbTodo -= cbSpace;
876 }
877 pBuf->szBuf[pBuf->off] = '\0';
878
879 return cbChars;
880}
881
882#endif /* IPRT_NO_CRT */
883
884/**
885 * Simple printf to standard error.
886 *
887 * @param pszFormat The format string.
888 * @param va Arguments to format.
889 */
890DECLHIDDEN(void) suplibHardenedPrintFV(const char *pszFormat, va_list va)
891{
892#ifdef IPRT_NO_CRT
893 /*
894 * Use buffered output here to avoid character mixing on the windows
895 * console and to enable us to use OutputDebugString.
896 */
897 SUPLIBHARDENEDOUTPUTBUF Buf;
898 Buf.off = 0;
899 Buf.szBuf[0] = '\0';
900 RTStrFormatV(suplibHardenedOutput, &Buf, NULL, NULL, pszFormat, va);
901
902#else /* !IPRT_NO_CRT */
903 /*
904 * Format loop.
905 */
906 char ch;
907 const char *pszLast = pszFormat;
908 for (;;)
909 {
910 ch = *pszFormat;
911 if (!ch)
912 break;
913 pszFormat++;
914
915 if (ch == '%')
916 {
917 /*
918 * Format argument.
919 */
920
921 /* Flush unwritten bits. */
922 if (pszLast != pszFormat - 1)
923 suplibHardenedPrintStrN(pszLast, pszFormat - pszLast - 1);
924 pszLast = pszFormat;
925 ch = *pszFormat++;
926
927 /* flags. */
928 uint32_t fFlags = 0;
929 for (;;)
930 {
931 if (ch == '#') fFlags |= RTSTR_F_SPECIAL;
932 else if (ch == '-') fFlags |= RTSTR_F_LEFT;
933 else if (ch == '+') fFlags |= RTSTR_F_PLUS;
934 else if (ch == ' ') fFlags |= RTSTR_F_BLANK;
935 else if (ch == '0') fFlags |= RTSTR_F_ZEROPAD;
936 else if (ch == '\'') fFlags |= RTSTR_F_THOUSAND_SEP;
937 else break;
938 ch = *pszFormat++;
939 }
940
941 /* Width and precision - ignored. */
942 while (RT_C_IS_DIGIT(ch))
943 ch = *pszFormat++;
944 if (ch == '*')
945 va_arg(va, int);
946 if (ch == '.')
947 {
948 do ch = *pszFormat++;
949 while (RT_C_IS_DIGIT(ch));
950 if (ch == '*')
951 va_arg(va, int);
952 }
953
954 /* Size. */
955 char chArgSize = 0;
956 switch (ch)
957 {
958 case 'z':
959 case 'L':
960 case 'j':
961 case 't':
962 chArgSize = ch;
963 ch = *pszFormat++;
964 break;
965
966 case 'l':
967 chArgSize = ch;
968 ch = *pszFormat++;
969 if (ch == 'l')
970 {
971 chArgSize = 'L';
972 ch = *pszFormat++;
973 }
974 break;
975
976 case 'h':
977 chArgSize = ch;
978 ch = *pszFormat++;
979 if (ch == 'h')
980 {
981 chArgSize = 'H';
982 ch = *pszFormat++;
983 }
984 break;
985 }
986
987 /*
988 * Do type specific formatting.
989 */
990 switch (ch)
991 {
992 case 'c':
993 ch = (char)va_arg(va, int);
994 suplibHardenedPrintChr(ch);
995 break;
996
997 case 's':
998 if (chArgSize == 'l')
999 {
1000 PCRTUTF16 pwszStr = va_arg(va, PCRTUTF16 );
1001 if (RT_VALID_PTR(pwszStr))
1002 suplibHardenedPrintWideStr(pwszStr);
1003 else
1004 suplibHardenedPrintStr("<NULL>");
1005 }
1006 else
1007 {
1008 const char *pszStr = va_arg(va, const char *);
1009 if (!RT_VALID_PTR(pszStr))
1010 pszStr = "<NULL>";
1011 suplibHardenedPrintStr(pszStr);
1012 }
1013 break;
1014
1015 case 'd':
1016 case 'i':
1017 {
1018 int64_t iValue;
1019 if (chArgSize == 'L' || chArgSize == 'j')
1020 iValue = va_arg(va, int64_t);
1021 else if (chArgSize == 'l')
1022 iValue = va_arg(va, signed long);
1023 else if (chArgSize == 'z' || chArgSize == 't')
1024 iValue = va_arg(va, intptr_t);
1025 else
1026 iValue = va_arg(va, signed int);
1027 if (iValue < 0)
1028 {
1029 suplibHardenedPrintChr('-');
1030 iValue = -iValue;
1031 }
1032 suplibHardenedPrintDecimal(iValue);
1033 break;
1034 }
1035
1036 case 'p':
1037 case 'x':
1038 case 'X':
1039 case 'u':
1040 case 'o':
1041 {
1042 unsigned uBase = 10;
1043 uint64_t uValue;
1044
1045 switch (ch)
1046 {
1047 case 'p':
1048 fFlags |= RTSTR_F_ZEROPAD; /* Note not standard behaviour (but I like it this way!) */
1049 uBase = 16;
1050 break;
1051 case 'X':
1052 fFlags |= RTSTR_F_CAPITAL;
1053 RT_FALL_THRU();
1054 case 'x':
1055 uBase = 16;
1056 break;
1057 case 'u':
1058 uBase = 10;
1059 break;
1060 case 'o':
1061 uBase = 8;
1062 break;
1063 }
1064
1065 if (ch == 'p' || chArgSize == 'z' || chArgSize == 't')
1066 uValue = va_arg(va, uintptr_t);
1067 else if (chArgSize == 'L' || chArgSize == 'j')
1068 uValue = va_arg(va, uint64_t);
1069 else if (chArgSize == 'l')
1070 uValue = va_arg(va, unsigned long);
1071 else
1072 uValue = va_arg(va, unsigned int);
1073
1074 if (uBase == 10)
1075 suplibHardenedPrintDecimal(uValue);
1076 else
1077 suplibHardenedPrintHexOctal(uValue, uBase, fFlags);
1078 break;
1079 }
1080
1081 case 'R':
1082 if (pszFormat[0] == 'r' && pszFormat[1] == 'c')
1083 {
1084 int iValue = va_arg(va, int);
1085 if (iValue < 0)
1086 {
1087 suplibHardenedPrintChr('-');
1088 iValue = -iValue;
1089 }
1090 suplibHardenedPrintDecimal(iValue);
1091 pszFormat += 2;
1092 break;
1093 }
1094 RT_FALL_THRU();
1095
1096 /*
1097 * Custom format.
1098 */
1099 default:
1100 suplibHardenedPrintStr("[bad format: ");
1101 suplibHardenedPrintStrN(pszLast, pszFormat - pszLast);
1102 suplibHardenedPrintChr(']');
1103 break;
1104 }
1105
1106 /* continue */
1107 pszLast = pszFormat;
1108 }
1109 }
1110
1111 /* Flush the last bits of the string. */
1112 if (pszLast != pszFormat)
1113 suplibHardenedPrintStrN(pszLast, pszFormat - pszLast);
1114#endif /* !IPRT_NO_CRT */
1115}
1116
1117
1118/**
1119 * Prints to standard error.
1120 *
1121 * @param pszFormat The format string.
1122 * @param ... Arguments to format.
1123 */
1124DECLHIDDEN(void) suplibHardenedPrintF(const char *pszFormat, ...)
1125{
1126 va_list va;
1127 va_start(va, pszFormat);
1128 suplibHardenedPrintFV(pszFormat, va);
1129 va_end(va);
1130}
1131
1132
1133/**
1134 * @copydoc RTPathStripFilename
1135 */
1136static void suplibHardenedPathStripFilename(char *pszPath)
1137{
1138 char *psz = pszPath;
1139 char *pszLastSep = pszPath;
1140
1141 for (;; psz++)
1142 {
1143 switch (*psz)
1144 {
1145 /* handle separators. */
1146#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
1147 case ':':
1148 pszLastSep = psz + 1;
1149 break;
1150
1151 case '\\':
1152#endif
1153 case '/':
1154 pszLastSep = psz;
1155 break;
1156
1157 /* the end */
1158 case '\0':
1159 if (pszLastSep == pszPath)
1160 *pszLastSep++ = '.';
1161 *pszLastSep = '\0';
1162 return;
1163 }
1164 }
1165 /* will never get here */
1166}
1167
1168
1169/**
1170 * @copydoc RTPathFilename
1171 */
1172DECLHIDDEN(char *) supR3HardenedPathFilename(const char *pszPath)
1173{
1174 const char *psz = pszPath;
1175 const char *pszLastComp = pszPath;
1176
1177 for (;; psz++)
1178 {
1179 switch (*psz)
1180 {
1181 /* handle separators. */
1182#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
1183 case ':':
1184 pszLastComp = psz + 1;
1185 break;
1186
1187 case '\\':
1188#endif
1189 case '/':
1190 pszLastComp = psz + 1;
1191 break;
1192
1193 /* the end */
1194 case '\0':
1195 if (*pszLastComp)
1196 return (char *)(void *)pszLastComp;
1197 return NULL;
1198 }
1199 }
1200
1201 /* will never get here */
1202}
1203
1204
1205/**
1206 * @copydoc RTPathAppPrivateNoArch
1207 */
1208DECLHIDDEN(int) supR3HardenedPathAppPrivateNoArch(char *pszPath, size_t cchPath)
1209{
1210#if !defined(RT_OS_WINDOWS) && defined(RTPATH_APP_PRIVATE)
1211 const char *pszSrcPath = RTPATH_APP_PRIVATE;
1212 size_t cchPathPrivateNoArch = suplibHardenedStrLen(pszSrcPath);
1213 if (cchPathPrivateNoArch >= cchPath)
1214 supR3HardenedFatal("supR3HardenedPathAppPrivateNoArch: Buffer overflow, %zu >= %zu\n", cchPathPrivateNoArch, cchPath);
1215 suplibHardenedMemCopy(pszPath, pszSrcPath, cchPathPrivateNoArch + 1);
1216 return VINF_SUCCESS;
1217
1218#else
1219 return supR3HardenedPathAppBin(pszPath, cchPath);
1220#endif
1221}
1222
1223
1224/**
1225 * @copydoc RTPathAppPrivateArch
1226 */
1227DECLHIDDEN(int) supR3HardenedPathAppPrivateArch(char *pszPath, size_t cchPath)
1228{
1229#if !defined(RT_OS_WINDOWS) && defined(RTPATH_APP_PRIVATE_ARCH)
1230 const char *pszSrcPath = RTPATH_APP_PRIVATE_ARCH;
1231 size_t cchPathPrivateArch = suplibHardenedStrLen(pszSrcPath);
1232 if (cchPathPrivateArch >= cchPath)
1233 supR3HardenedFatal("supR3HardenedPathAppPrivateArch: Buffer overflow, %zu >= %zu\n", cchPathPrivateArch, cchPath);
1234 suplibHardenedMemCopy(pszPath, pszSrcPath, cchPathPrivateArch + 1);
1235 return VINF_SUCCESS;
1236
1237#else
1238 return supR3HardenedPathAppBin(pszPath, cchPath);
1239#endif
1240}
1241
1242
1243/**
1244 * @copydoc RTPathSharedLibs
1245 */
1246DECLHIDDEN(int) supR3HardenedPathAppSharedLibs(char *pszPath, size_t cchPath)
1247{
1248#if !defined(RT_OS_WINDOWS) && defined(RTPATH_SHARED_LIBS)
1249 const char *pszSrcPath = RTPATH_SHARED_LIBS;
1250 size_t cchPathSharedLibs = suplibHardenedStrLen(pszSrcPath);
1251 if (cchPathSharedLibs >= cchPath)
1252 supR3HardenedFatal("supR3HardenedPathAppSharedLibs: Buffer overflow, %zu >= %zu\n", cchPathSharedLibs, cchPath);
1253 suplibHardenedMemCopy(pszPath, pszSrcPath, cchPathSharedLibs + 1);
1254 return VINF_SUCCESS;
1255
1256#else
1257 return supR3HardenedPathAppBin(pszPath, cchPath);
1258#endif
1259}
1260
1261
1262/**
1263 * @copydoc RTPathAppDocs
1264 */
1265DECLHIDDEN(int) supR3HardenedPathAppDocs(char *pszPath, size_t cchPath)
1266{
1267#if !defined(RT_OS_WINDOWS) && defined(RTPATH_APP_DOCS)
1268 const char *pszSrcPath = RTPATH_APP_DOCS;
1269 size_t cchPathAppDocs = suplibHardenedStrLen(pszSrcPath);
1270 if (cchPathAppDocs >= cchPath)
1271 supR3HardenedFatal("supR3HardenedPathAppDocs: Buffer overflow, %zu >= %zu\n", cchPathAppDocs, cchPath);
1272 suplibHardenedMemCopy(pszPath, pszSrcPath, cchPathAppDocs + 1);
1273 return VINF_SUCCESS;
1274
1275#else
1276 return supR3HardenedPathAppBin(pszPath, cchPath);
1277#endif
1278}
1279
1280
1281/**
1282 * Returns the full path to the executable in g_szSupLibHardenedExePath.
1283 *
1284 * @returns IPRT status code.
1285 */
1286static void supR3HardenedGetFullExePath(void)
1287{
1288 /*
1289 * Get the program filename.
1290 *
1291 * Most UNIXes have no API for obtaining the executable path, but provides a symbolic
1292 * link in the proc file system that tells who was exec'ed. The bad thing about this
1293 * is that we have to use readlink, one of the weirder UNIX APIs.
1294 *
1295 * Darwin, OS/2 and Windows all have proper APIs for getting the program file name.
1296 */
1297#if defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD) || defined(RT_OS_SOLARIS)
1298# ifdef RT_OS_LINUX
1299 int cchLink = readlink("/proc/self/exe", &g_szSupLibHardenedExePath[0], sizeof(g_szSupLibHardenedExePath) - 1);
1300
1301# elif defined(RT_OS_SOLARIS)
1302 char szFileBuf[PATH_MAX + 1];
1303 sprintf(szFileBuf, "/proc/%ld/path/a.out", (long)getpid());
1304 int cchLink = readlink(szFileBuf, &g_szSupLibHardenedExePath[0], sizeof(g_szSupLibHardenedExePath) - 1);
1305
1306# else /* RT_OS_FREEBSD */
1307 int aiName[4];
1308 aiName[0] = CTL_KERN;
1309 aiName[1] = KERN_PROC;
1310 aiName[2] = KERN_PROC_PATHNAME;
1311 aiName[3] = getpid();
1312
1313 size_t cbPath = sizeof(g_szSupLibHardenedExePath);
1314 if (sysctl(aiName, RT_ELEMENTS(aiName), g_szSupLibHardenedExePath, &cbPath, NULL, 0) < 0)
1315 supR3HardenedFatal("supR3HardenedExecDir: sysctl failed\n");
1316 g_szSupLibHardenedExePath[sizeof(g_szSupLibHardenedExePath) - 1] = '\0';
1317 int cchLink = suplibHardenedStrLen(g_szSupLibHardenedExePath); /* paranoid? can't we use cbPath? */
1318
1319# endif
1320 if (cchLink < 0 || cchLink == sizeof(g_szSupLibHardenedExePath) - 1)
1321 supR3HardenedFatal("supR3HardenedExecDir: couldn't read \"%s\", errno=%d cchLink=%d\n",
1322 g_szSupLibHardenedExePath, errno, cchLink);
1323 g_szSupLibHardenedExePath[cchLink] = '\0';
1324
1325#elif defined(RT_OS_OS2) || defined(RT_OS_L4)
1326 _execname(g_szSupLibHardenedExePath, sizeof(g_szSupLibHardenedExePath));
1327
1328#elif defined(RT_OS_DARWIN)
1329 const char *pszImageName = _dyld_get_image_name(0);
1330 if (!pszImageName)
1331 supR3HardenedFatal("supR3HardenedExecDir: _dyld_get_image_name(0) failed\n");
1332 size_t cchImageName = suplibHardenedStrLen(pszImageName);
1333 if (!cchImageName || cchImageName >= sizeof(g_szSupLibHardenedExePath))
1334 supR3HardenedFatal("supR3HardenedExecDir: _dyld_get_image_name(0) failed, cchImageName=%d\n", cchImageName);
1335 suplibHardenedMemCopy(g_szSupLibHardenedExePath, pszImageName, cchImageName + 1);
1336 /** @todo abspath the string or this won't work:
1337 * cd /Applications/VirtualBox.app/Contents/Resources/VirtualBoxVM.app/Contents/MacOS/ && ./VirtualBoxVM --startvm name */
1338
1339#elif defined(RT_OS_WINDOWS)
1340 char *pszDst = g_szSupLibHardenedExePath;
1341 int rc = RTUtf16ToUtf8Ex(g_wszSupLibHardenedExePath, RTSTR_MAX, &pszDst, sizeof(g_szSupLibHardenedExePath), NULL);
1342 if (RT_FAILURE(rc))
1343 supR3HardenedFatal("supR3HardenedExecDir: RTUtf16ToUtf8Ex failed, rc=%Rrc\n", rc);
1344#else
1345# error needs porting.
1346#endif
1347
1348 /*
1349 * Determine the application binary directory location.
1350 */
1351 suplibHardenedStrCopy(g_szSupLibHardenedAppBinPath, g_szSupLibHardenedExePath);
1352 suplibHardenedPathStripFilename(g_szSupLibHardenedAppBinPath);
1353
1354 g_offSupLibHardenedExecName = suplibHardenedStrLen(g_szSupLibHardenedAppBinPath);
1355 while (RTPATH_IS_SEP(g_szSupLibHardenedExePath[g_offSupLibHardenedExecName]))
1356 g_offSupLibHardenedExecName++;
1357 g_cchSupLibHardenedExecName = suplibHardenedStrLen(&g_szSupLibHardenedExePath[g_offSupLibHardenedExecName]);
1358
1359 if (g_enmSupR3HardenedMainState < SUPR3HARDENEDMAINSTATE_HARDENED_MAIN_CALLED)
1360 supR3HardenedFatal("supR3HardenedExecDir: Called before SUPR3HardenedMain! (%d)\n", g_enmSupR3HardenedMainState);
1361 switch (g_fSupHardenedMain & SUPSECMAIN_FLAGS_LOC_MASK)
1362 {
1363 case SUPSECMAIN_FLAGS_LOC_APP_BIN:
1364 break;
1365 case SUPSECMAIN_FLAGS_LOC_TESTCASE:
1366 suplibHardenedPathStripFilename(g_szSupLibHardenedAppBinPath);
1367 break;
1368#ifdef RT_OS_DARWIN
1369 case SUPSECMAIN_FLAGS_LOC_OSX_HLP_APP:
1370 {
1371 /* We must ascend to the parent bundle's Contents directory then decend into its MacOS: */
1372 static const RTSTRTUPLE s_aComponentsToSkip[] =
1373 { { RT_STR_TUPLE("MacOS") }, { RT_STR_TUPLE("Contents") }, { NULL /*some.app*/, 0 }, { RT_STR_TUPLE("Resources") } };
1374 size_t cchPath = suplibHardenedStrLen(g_szSupLibHardenedAppBinPath);
1375 for (uintptr_t i = 0; i < RT_ELEMENTS(s_aComponentsToSkip); i++)
1376 {
1377 while (cchPath > 1 && g_szSupLibHardenedAppBinPath[cchPath - 1] == '/')
1378 cchPath--;
1379 size_t const cchMatch = s_aComponentsToSkip[i].cch;
1380 if (cchMatch > 0)
1381 {
1382 if ( cchPath >= cchMatch + sizeof("VirtualBox.app/Contents")
1383 && g_szSupLibHardenedAppBinPath[cchPath - cchMatch - 1] == '/'
1384 && suplibHardenedMemComp(&g_szSupLibHardenedAppBinPath[cchPath - cchMatch],
1385 s_aComponentsToSkip[i].psz, cchMatch) == 0)
1386 cchPath -= cchMatch;
1387 else
1388 supR3HardenedFatal("supR3HardenedExecDir: Bad helper app path (tail component #%u '%s'): %s\n",
1389 i, s_aComponentsToSkip[i].psz, g_szSupLibHardenedAppBinPath);
1390 }
1391 else if ( cchPath > g_cchSupLibHardenedExecName + sizeof("VirtualBox.app/Contents/Resources/.app")
1392 && suplibHardenedMemComp(&g_szSupLibHardenedAppBinPath[cchPath - 4], ".app", 4) == 0
1393 && suplibHardenedMemComp(&g_szSupLibHardenedAppBinPath[cchPath - 4 - g_cchSupLibHardenedExecName],
1394 &g_szSupLibHardenedExePath[g_offSupLibHardenedExecName],
1395 g_cchSupLibHardenedExecName) == 0)
1396 cchPath -= g_cchSupLibHardenedExecName + 4;
1397 else
1398 supR3HardenedFatal("supR3HardenedExecDir: Bad helper app path (tail component #%u '%s.app'): %s\n",
1399 i, &g_szSupLibHardenedExePath[g_offSupLibHardenedExecName], g_szSupLibHardenedAppBinPath);
1400 }
1401 suplibHardenedMemCopy(&g_szSupLibHardenedAppBinPath[cchPath], "MacOS", sizeof("MacOS"));
1402 break;
1403 }
1404#endif /* RT_OS_DARWIN */
1405 default:
1406 supR3HardenedFatal("supR3HardenedExecDir: Unknown program binary location: %#x\n", g_fSupHardenedMain);
1407 }
1408}
1409
1410
1411#ifdef RT_OS_LINUX
1412/**
1413 * Checks if we can read /proc/self/exe.
1414 *
1415 * This is used on linux to see if we have to call init
1416 * with program path or not.
1417 *
1418 * @returns true / false.
1419 */
1420static bool supR3HardenedMainIsProcSelfExeAccssible(void)
1421{
1422 char szPath[RTPATH_MAX];
1423 int cchLink = readlink("/proc/self/exe", szPath, sizeof(szPath));
1424 return cchLink != -1;
1425}
1426#endif /* RT_OS_LINUX */
1427
1428
1429
1430/**
1431 * @remarks not quite like RTPathExecDir actually...
1432 */
1433DECLHIDDEN(int) supR3HardenedPathAppBin(char *pszPath, size_t cchPath)
1434{
1435 /*
1436 * Lazy init (probably not required).
1437 */
1438 if (!g_szSupLibHardenedAppBinPath[0])
1439 supR3HardenedGetFullExePath();
1440
1441 /*
1442 * Calc the length and check if there is space before copying.
1443 */
1444 size_t cch = suplibHardenedStrLen(g_szSupLibHardenedAppBinPath) + 1;
1445 if (cch <= cchPath)
1446 {
1447 suplibHardenedMemCopy(pszPath, g_szSupLibHardenedAppBinPath, cch + 1);
1448 return VINF_SUCCESS;
1449 }
1450
1451 supR3HardenedFatal("supR3HardenedPathAppBin: Buffer too small (%u < %u)\n", cchPath, cch);
1452 /* not reached */
1453}
1454
1455
1456#ifdef RT_OS_WINDOWS
1457extern "C" uint32_t g_uNtVerCombined;
1458#endif
1459
1460DECLHIDDEN(void) supR3HardenedOpenLog(int *pcArgs, char **papszArgs)
1461{
1462 static const char s_szLogOption[] = "--sup-hardening-log=";
1463
1464 /*
1465 * Scan the argument vector.
1466 */
1467 int cArgs = *pcArgs;
1468 for (int iArg = 1; iArg < cArgs; iArg++)
1469 if (strncmp(papszArgs[iArg], s_szLogOption, sizeof(s_szLogOption) - 1) == 0)
1470 {
1471#ifdef RT_OS_WINDOWS
1472 const char *pszLogFile = &papszArgs[iArg][sizeof(s_szLogOption) - 1];
1473#endif
1474
1475 /*
1476 * Drop the argument from the vector (has trailing NULL entry).
1477 */
1478// memmove(&papszArgs[iArg], &papszArgs[iArg + 1], (cArgs - iArg) * sizeof(papszArgs[0]));
1479 *pcArgs -= 1;
1480 cArgs -= 1;
1481
1482 /*
1483 * Open the log file, unless we've already opened one.
1484 * First argument takes precedence
1485 */
1486#ifdef RT_OS_WINDOWS
1487 if (g_hStartupLog == NULL)
1488 {
1489 int rc = RTNtPathOpen(pszLogFile,
1490 GENERIC_WRITE | SYNCHRONIZE,
1491 FILE_ATTRIBUTE_NORMAL,
1492 FILE_SHARE_READ | FILE_SHARE_WRITE,
1493 FILE_OPEN_IF,
1494 FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT,
1495 OBJ_CASE_INSENSITIVE,
1496 &g_hStartupLog,
1497 NULL);
1498 if (RT_SUCCESS(rc))
1499 {
1500// SUP_DPRINTF(("Log file opened: " VBOX_VERSION_STRING "r%u g_hStartupLog=%p g_uNtVerCombined=%#x\n",
1501// VBOX_SVN_REV, g_hStartupLog, g_uNtVerCombined));
1502
1503 /*
1504 * If the path contains a drive volume, save it so we can
1505 * use it to flush the volume containing the log file.
1506 */
1507 if (RT_C_IS_ALPHA(pszLogFile[0]) && pszLogFile[1] == ':')
1508 {
1509// RTUtf16CopyAscii(g_wszStartupLogVol, RT_ELEMENTS(g_wszStartupLogVol), "\\??\\");
1510 g_wszStartupLogVol[sizeof("\\??\\") - 1] = RT_C_TO_UPPER(pszLogFile[0]);
1511 g_wszStartupLogVol[sizeof("\\??\\") + 0] = ':';
1512 g_wszStartupLogVol[sizeof("\\??\\") + 1] = '\0';
1513 }
1514 }
1515 else
1516 g_hStartupLog = NULL;
1517 }
1518#else
1519 /* Just some mumbo jumbo to shut up the compiler. */
1520 g_hStartupLog -= 1;
1521 g_cbStartupLog += 1;
1522 //g_hStartupLog = open()
1523#endif
1524 }
1525}
1526
1527
1528DECLHIDDEN(void) supR3HardenedLogV(const char *pszFormat, va_list va)
1529{
1530#ifdef RT_OS_WINDOWS
1531 if ( g_hStartupLog != NULL
1532 && g_cbStartupLog < 16*_1M)
1533 {
1534 char szBuf[5120];
1535 PCLIENT_ID pSelfId = &((PTEB)NtCurrentTeb())->ClientId;
1536 size_t cchPrefix = RTStrPrintf(szBuf, sizeof(szBuf), "%x.%x: ", pSelfId->UniqueProcess, pSelfId->UniqueThread);
1537 size_t cch = RTStrPrintfV(&szBuf[cchPrefix], sizeof(szBuf) - cchPrefix, pszFormat, va) + cchPrefix;
1538
1539 if ((size_t)cch >= sizeof(szBuf))
1540 cch = sizeof(szBuf) - 1;
1541
1542 if (!cch || szBuf[cch - 1] != '\n')
1543 szBuf[cch++] = '\n';
1544
1545 ASMAtomicAddU32(&g_cbStartupLog, (uint32_t)cch);
1546
1547 IO_STATUS_BLOCK Ios = RTNT_IO_STATUS_BLOCK_INITIALIZER;
1548 LARGE_INTEGER Offset;
1549 Offset.QuadPart = -1; /* Write to end of file. */
1550 NtWriteFile(g_hStartupLog, NULL /*Event*/, NULL /*ApcRoutine*/, NULL /*ApcContext*/,
1551 &Ios, szBuf, (ULONG)cch, &Offset, NULL /*Key*/);
1552 }
1553#else
1554 RT_NOREF(pszFormat, va);
1555 /* later */
1556#endif
1557}
1558
1559
1560DECLHIDDEN(void) supR3HardenedLog(const char *pszFormat, ...)
1561{
1562 va_list va;
1563 va_start(va, pszFormat);
1564 supR3HardenedLogV(pszFormat, va);
1565 va_end(va);
1566}
1567
1568
1569DECLHIDDEN(void) supR3HardenedLogFlush(void)
1570{
1571#ifdef RT_OS_WINDOWS
1572 if ( g_hStartupLog != NULL
1573 && g_cbStartupLog < 16*_1M)
1574 {
1575 IO_STATUS_BLOCK Ios = RTNT_IO_STATUS_BLOCK_INITIALIZER;
1576 NTSTATUS rcNt = NtFlushBuffersFile(g_hStartupLog, &Ios);
1577
1578 /*
1579 * Try flush the volume containing the log file too.
1580 */
1581 if (g_wszStartupLogVol[0])
1582 {
1583 HANDLE hLogVol = RTNT_INVALID_HANDLE_VALUE;
1584 UNICODE_STRING NtName;
1585 NtName.Buffer = g_wszStartupLogVol;
1586 NtName.Length = (USHORT)(RTUtf16Len(g_wszStartupLogVol) * sizeof(RTUTF16));
1587 NtName.MaximumLength = NtName.Length + 1;
1588 OBJECT_ATTRIBUTES ObjAttr;
1589 InitializeObjectAttributes(&ObjAttr, &NtName, OBJ_CASE_INSENSITIVE, NULL /*hRootDir*/, NULL /*pSecDesc*/);
1590 RTNT_IO_STATUS_BLOCK_REINIT(&Ios);
1591 rcNt = NtCreateFile(&hLogVol,
1592 GENERIC_WRITE | GENERIC_READ | SYNCHRONIZE | FILE_READ_ATTRIBUTES,
1593 &ObjAttr,
1594 &Ios,
1595 NULL /* Allocation Size*/,
1596 0 /*FileAttributes*/,
1597 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
1598 FILE_OPEN,
1599 FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT,
1600 NULL /*EaBuffer*/,
1601 0 /*EaLength*/);
1602 if (NT_SUCCESS(rcNt))
1603 rcNt = Ios.Status;
1604 if (NT_SUCCESS(rcNt))
1605 {
1606 RTNT_IO_STATUS_BLOCK_REINIT(&Ios);
1607 rcNt = NtFlushBuffersFile(hLogVol, &Ios);
1608 NtClose(hLogVol);
1609 }
1610 else
1611 {
1612 /* This may have sideeffects similar to what we want... */
1613 hLogVol = RTNT_INVALID_HANDLE_VALUE;
1614 RTNT_IO_STATUS_BLOCK_REINIT(&Ios);
1615 rcNt = NtCreateFile(&hLogVol,
1616 GENERIC_READ | SYNCHRONIZE | FILE_READ_ATTRIBUTES,
1617 &ObjAttr,
1618 &Ios,
1619 NULL /* Allocation Size*/,
1620 0 /*FileAttributes*/,
1621 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
1622 FILE_OPEN,
1623 FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT,
1624 NULL /*EaBuffer*/,
1625 0 /*EaLength*/);
1626 if (NT_SUCCESS(rcNt) && NT_SUCCESS(Ios.Status))
1627 NtClose(hLogVol);
1628 }
1629 }
1630 }
1631#else
1632 /* later */
1633#endif
1634}
1635
1636
1637/**
1638 * Prints the message prefix.
1639 */
1640static void suplibHardenedPrintPrefix(void)
1641{
1642 if (g_pszSupLibHardenedProgName)
1643 suplibHardenedPrintStr(g_pszSupLibHardenedProgName);
1644 suplibHardenedPrintStr(": ");
1645}
1646
1647
1648DECL_NO_RETURN(DECLHIDDEN(void)) supR3HardenedFatalMsgV(const char *pszWhere, SUPINITOP enmWhat, int rc,
1649 const char *pszMsgFmt, va_list va)
1650{
1651 /*
1652 * First to the log.
1653 */
1654 supR3HardenedLog("Error %d in %s! (enmWhat=%d)\n", rc, pszWhere, enmWhat);
1655 va_list vaCopy;
1656 va_copy(vaCopy, va);
1657 supR3HardenedLogV(pszMsgFmt, vaCopy);
1658 va_end(vaCopy);
1659
1660#ifdef RT_OS_WINDOWS
1661 /*
1662 * The release log.
1663 */
1664 if (g_pfnRTLogRelPrintf)
1665 {
1666 va_copy(vaCopy, va);
1667 g_pfnRTLogRelPrintf("supR3HardenedFatalMsgV: %s enmWhat=%d rc=%Rrc (%#x)\n", pszWhere, enmWhat, rc);
1668 g_pfnRTLogRelPrintf("supR3HardenedFatalMsgV: %N\n", pszMsgFmt, &vaCopy);
1669 va_end(vaCopy);
1670 }
1671#endif
1672
1673 /*
1674 * Then to the console.
1675 */
1676 suplibHardenedPrintPrefix();
1677 suplibHardenedPrintF("Error %d in %s!\n", rc, pszWhere);
1678
1679 suplibHardenedPrintPrefix();
1680 va_copy(vaCopy, va);
1681 suplibHardenedPrintFV(pszMsgFmt, vaCopy);
1682 va_end(vaCopy);
1683 suplibHardenedPrintChr('\n');
1684
1685 switch (enmWhat)
1686 {
1687 case kSupInitOp_Driver:
1688 suplibHardenedPrintChr('\n');
1689 suplibHardenedPrintPrefix();
1690 suplibHardenedPrintStr("Tip! Make sure the kernel module is loaded. It may also help to reinstall VirtualBox.\n");
1691 break;
1692
1693 case kSupInitOp_Misc:
1694 case kSupInitOp_IPRT:
1695 case kSupInitOp_Integrity:
1696 case kSupInitOp_RootCheck:
1697 suplibHardenedPrintChr('\n');
1698 suplibHardenedPrintPrefix();
1699 suplibHardenedPrintStr("Tip! It may help to reinstall VirtualBox.\n");
1700 break;
1701
1702 default:
1703 /* no hints here */
1704 break;
1705 }
1706
1707 /*
1708 * Finally, TrustedError if appropriate.
1709 */
1710 if (g_enmSupR3HardenedMainState >= SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED)
1711 {
1712#ifdef SUP_HARDENED_SUID
1713 /* Drop any root privileges we might be holding, this won't return
1714 if it fails but end up calling supR3HardenedFatal[V]. */
1715 supR3HardenedMainDropPrivileges();
1716#endif
1717 /* Close the driver, if we succeeded opening it. Both because
1718 TrustedError may be untrustworthy and because the driver deosn't
1719 like us if we fork(). @bugref{8838} */
1720 suplibOsTerm(&g_SupPreInitData.Data);
1721
1722 /*
1723 * Now try resolve and call the TrustedError entry point if we can find it.
1724 * Note! Loader involved, so we must guard against loader hooks calling us.
1725 */
1726 static volatile bool s_fRecursive = false;
1727 if (!s_fRecursive)
1728 {
1729 s_fRecursive = true;
1730
1731 PFNSUPTRUSTEDERROR pfnTrustedError = supR3HardenedMainGetTrustedError(g_pszSupLibHardenedProgName);
1732 if (pfnTrustedError)
1733 {
1734 /* We'll fork before we make the call because that way the session management
1735 in main will see us exiting immediately (if it's involved with us) and possibly
1736 get an error back to the API / user. */
1737#if !defined(RT_OS_WINDOWS) && !defined(RT_OS_OS2)
1738 int pid = fork();
1739 if (pid <= 0)
1740#endif
1741 {
1742 pfnTrustedError(pszWhere, enmWhat, rc, pszMsgFmt, va);
1743 }
1744 }
1745
1746 s_fRecursive = false;
1747 }
1748 }
1749#if defined(RT_OS_WINDOWS)
1750 /*
1751 * Report the error to the parent if this happens during early VM init.
1752 */
1753 else if ( g_enmSupR3HardenedMainState < SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED
1754 && g_enmSupR3HardenedMainState != SUPR3HARDENEDMAINSTATE_NOT_YET_CALLED)
1755 supR3HardenedWinReportErrorToParent(pszWhere, enmWhat, rc, pszMsgFmt, va);
1756#endif
1757
1758 /*
1759 * Quit
1760 */
1761 suplibHardenedExit(RTEXITCODE_FAILURE);
1762}
1763
1764
1765DECL_NO_RETURN(DECLHIDDEN(void)) supR3HardenedFatalMsg(const char *pszWhere, SUPINITOP enmWhat, int rc,
1766 const char *pszMsgFmt, ...)
1767{
1768 va_list va;
1769 va_start(va, pszMsgFmt);
1770 supR3HardenedFatalMsgV(pszWhere, enmWhat, rc, pszMsgFmt, va);
1771 /* not reached */
1772}
1773
1774
1775DECL_NO_RETURN(DECLHIDDEN(void)) supR3HardenedFatalV(const char *pszFormat, va_list va)
1776{
1777 supR3HardenedLog("Fatal error:\n");
1778 va_list vaCopy;
1779 va_copy(vaCopy, va);
1780 supR3HardenedLogV(pszFormat, vaCopy);
1781 va_end(vaCopy);
1782
1783#if defined(RT_OS_WINDOWS)
1784 /*
1785 * Report the error to the parent if this happens during early VM init.
1786 */
1787 if ( g_enmSupR3HardenedMainState < SUPR3HARDENEDMAINSTATE_WIN_IMPORTS_RESOLVED
1788 && g_enmSupR3HardenedMainState != SUPR3HARDENEDMAINSTATE_NOT_YET_CALLED)
1789 supR3HardenedWinReportErrorToParent(NULL, kSupInitOp_Invalid, VERR_INTERNAL_ERROR, pszFormat, va);
1790 else
1791#endif
1792 {
1793#ifdef RT_OS_WINDOWS
1794 if (g_pfnRTLogRelPrintf)
1795 {
1796 va_copy(vaCopy, va);
1797 g_pfnRTLogRelPrintf("supR3HardenedFatalV: %N", pszFormat, &vaCopy);
1798 va_end(vaCopy);
1799 }
1800#endif
1801
1802 suplibHardenedPrintPrefix();
1803 suplibHardenedPrintFV(pszFormat, va);
1804 }
1805
1806 suplibHardenedExit(RTEXITCODE_FAILURE);
1807}
1808
1809
1810DECL_NO_RETURN(DECLHIDDEN(void)) supR3HardenedFatal(const char *pszFormat, ...)
1811{
1812 va_list va;
1813 va_start(va, pszFormat);
1814 supR3HardenedFatalV(pszFormat, va);
1815 /* not reached */
1816}
1817
1818
1819DECLHIDDEN(int) supR3HardenedErrorV(int rc, bool fFatal, const char *pszFormat, va_list va)
1820{
1821 if (fFatal)
1822 supR3HardenedFatalV(pszFormat, va);
1823
1824 supR3HardenedLog("Error (rc=%d):\n", rc);
1825 va_list vaCopy;
1826 va_copy(vaCopy, va);
1827 supR3HardenedLogV(pszFormat, vaCopy);
1828 va_end(vaCopy);
1829
1830#ifdef RT_OS_WINDOWS
1831 if (g_pfnRTLogRelPrintf)
1832 {
1833 va_copy(vaCopy, va);
1834 g_pfnRTLogRelPrintf("supR3HardenedErrorV: %N", pszFormat, &vaCopy);
1835 va_end(vaCopy);
1836 }
1837#endif
1838
1839 suplibHardenedPrintPrefix();
1840 suplibHardenedPrintFV(pszFormat, va);
1841
1842 return rc;
1843}
1844
1845
1846DECLHIDDEN(int) supR3HardenedError(int rc, bool fFatal, const char *pszFormat, ...)
1847{
1848 va_list va;
1849 va_start(va, pszFormat);
1850 supR3HardenedErrorV(rc, fFatal, pszFormat, va);
1851 va_end(va);
1852 return rc;
1853}
1854
1855
1856
1857/**
1858 * Attempts to open /dev/vboxdrv (or equvivalent).
1859 *
1860 * @remarks This function will not return on failure.
1861 */
1862DECLHIDDEN(void) supR3HardenedMainOpenDevice(void)
1863{
1864 RTERRINFOSTATIC ErrInfo;
1865 SUPINITOP enmWhat = kSupInitOp_Driver;
1866 uint32_t fFlags = SUPR3INIT_F_UNRESTRICTED;
1867 if (g_fSupHardenedMain & SUPSECMAIN_FLAGS_DRIVERLESS)
1868 fFlags |= SUPR3INIT_F_DRIVERLESS;
1869 if (g_fSupHardenedMain & SUPSECMAIN_FLAGS_DRIVERLESS_IEM_ALLOWED)
1870 fFlags |= SUPR3INIT_F_DRIVERLESS_IEM_ALLOWED;
1871#ifdef VBOX_WITH_DRIVERLESS_NEM_FALLBACK
1872 if (g_fSupHardenedMain & SUPSECMAIN_FLAGS_DRIVERLESS_NEM_FALLBACK)
1873 fFlags |= SUPR3INIT_F_DRIVERLESS_NEM_FALLBACK;
1874#endif
1875 int rc = suplibOsInit(&g_SupPreInitData.Data, false /*fPreInit*/, fFlags, &enmWhat, RTErrInfoInitStatic(&ErrInfo));
1876 if (RT_SUCCESS(rc))
1877 return;
1878
1879 if (RTErrInfoIsSet(&ErrInfo.Core))
1880 supR3HardenedFatalMsg("suplibOsInit", enmWhat, rc, "%s", ErrInfo.szMsg);
1881
1882 switch (rc)
1883 {
1884 /** @todo better messages! */
1885 case VERR_VM_DRIVER_NOT_INSTALLED:
1886 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Kernel driver not installed");
1887 case VERR_VM_DRIVER_NOT_ACCESSIBLE:
1888 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Kernel driver not accessible");
1889 case VERR_VM_DRIVER_LOAD_ERROR:
1890 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "VERR_VM_DRIVER_LOAD_ERROR");
1891 case VERR_VM_DRIVER_OPEN_ERROR:
1892 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "VERR_VM_DRIVER_OPEN_ERROR");
1893 case VERR_VM_DRIVER_VERSION_MISMATCH:
1894 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Kernel driver version mismatch");
1895 case VERR_ACCESS_DENIED:
1896 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "VERR_ACCESS_DENIED");
1897 case VERR_NO_MEMORY:
1898 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Kernel memory allocation/mapping failed");
1899 case VERR_SUPDRV_HARDENING_EVIL_HANDLE:
1900 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Integrity, rc, "VERR_SUPDRV_HARDENING_EVIL_HANDLE");
1901 case VERR_SUPLIB_NT_PROCESS_UNTRUSTED_0:
1902 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Integrity, rc, "VERR_SUPLIB_NT_PROCESS_UNTRUSTED_0");
1903 case VERR_SUPLIB_NT_PROCESS_UNTRUSTED_1:
1904 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Integrity, rc, "VERR_SUPLIB_NT_PROCESS_UNTRUSTED_1");
1905 case VERR_SUPLIB_NT_PROCESS_UNTRUSTED_2:
1906 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Integrity, rc, "VERR_SUPLIB_NT_PROCESS_UNTRUSTED_2");
1907 default:
1908 supR3HardenedFatalMsg("suplibOsInit", kSupInitOp_Driver, rc, "Unknown rc=%d (%Rrc)", rc, rc);
1909 }
1910}
1911
1912
1913#ifdef SUP_HARDENED_SUID
1914
1915/**
1916 * Grabs extra non-root capabilities / privileges that we might require.
1917 *
1918 * This is currently only used for being able to do ICMP from the NAT engine
1919 * and for being able to raise thread scheduling priority
1920 *
1921 * @note We still have root privileges at the time of this call.
1922 */
1923static void supR3HardenedMainGrabCapabilites(void)
1924{
1925# if defined(RT_OS_LINUX)
1926 /*
1927 * We are about to drop all our privileges. Remove all capabilities but
1928 * keep the cap_net_raw capability for ICMP sockets for the NAT stack,
1929 * also keep cap_sys_nice capability for priority tweaking.
1930 */
1931 if (g_uCaps != 0)
1932 {
1933# ifdef USE_LIB_PCAP
1934 /* XXX cap_net_bind_service */
1935 if (!cap_set_proc(cap_from_text("all-eip cap_net_raw+ep cap_sys_nice+ep")))
1936 prctl(PR_SET_KEEPCAPS, 1 /*keep=*/, 0, 0, 0);
1937 prctl(PR_SET_DUMPABLE, 1 /*dump*/, 0, 0, 0);
1938# else
1939 cap_user_header_t hdr = (cap_user_header_t)alloca(sizeof(*hdr));
1940 cap_user_data_t cap = (cap_user_data_t)alloca(2 /*_LINUX_CAPABILITY_U32S_3*/ * sizeof(*cap));
1941 memset(hdr, 0, sizeof(*hdr));
1942 capget(hdr, NULL);
1943 if ( hdr->version != 0x19980330 /* _LINUX_CAPABILITY_VERSION_1, _LINUX_CAPABILITY_U32S_1 = 1 */
1944 && hdr->version != 0x20071026 /* _LINUX_CAPABILITY_VERSION_2, _LINUX_CAPABILITY_U32S_2 = 2 */
1945 && hdr->version != 0x20080522 /* _LINUX_CAPABILITY_VERSION_3, _LINUX_CAPABILITY_U32S_3 = 2 */)
1946 hdr->version = _LINUX_CAPABILITY_VERSION;
1947 g_uCapsVersion = hdr->version;
1948 memset(cap, 0, 2 /* _LINUX_CAPABILITY_U32S_3 */ * sizeof(*cap));
1949 cap->effective = g_uCaps;
1950 cap->permitted = g_uCaps;
1951 if (!capset(hdr, cap))
1952 prctl(PR_SET_KEEPCAPS, 1 /*keep*/, 0, 0, 0);
1953 prctl(PR_SET_DUMPABLE, 1 /*dump*/, 0, 0, 0);
1954# endif /* !USE_LIB_PCAP */
1955 }
1956
1957# elif defined(RT_OS_SOLARIS)
1958 /*
1959 * Add net_icmpaccess privilege to effective privileges and limit
1960 * permitted privileges before completely dropping root privileges.
1961 * This requires dropping root privileges temporarily to get the normal
1962 * user's privileges.
1963 */
1964 seteuid(g_uid);
1965 priv_set_t *pPrivEffective = priv_allocset();
1966 priv_set_t *pPrivNew = priv_allocset();
1967 if (pPrivEffective && pPrivNew)
1968 {
1969 int rc = getppriv(PRIV_EFFECTIVE, pPrivEffective);
1970 seteuid(0);
1971 if (!rc)
1972 {
1973 priv_copyset(pPrivEffective, pPrivNew);
1974 rc = priv_addset(pPrivNew, PRIV_NET_ICMPACCESS);
1975 if (!rc)
1976 {
1977 /* Order is important, as one can't set a privilege which is
1978 * not in the permitted privilege set. */
1979 rc = setppriv(PRIV_SET, PRIV_EFFECTIVE, pPrivNew);
1980 if (rc)
1981 supR3HardenedError(rc, false, "SUPR3HardenedMain: failed to set effective privilege set.\n");
1982 rc = setppriv(PRIV_SET, PRIV_PERMITTED, pPrivNew);
1983 if (rc)
1984 supR3HardenedError(rc, false, "SUPR3HardenedMain: failed to set permitted privilege set.\n");
1985 }
1986 else
1987 supR3HardenedError(rc, false, "SUPR3HardenedMain: failed to add NET_ICMPACCESS privilege.\n");
1988 }
1989 }
1990 else
1991 {
1992 /* for memory allocation failures just continue */
1993 seteuid(0);
1994 }
1995
1996 if (pPrivEffective)
1997 priv_freeset(pPrivEffective);
1998 if (pPrivNew)
1999 priv_freeset(pPrivNew);
2000# endif
2001}
2002
2003/*
2004 * Look at the environment for some special options.
2005 */
2006static void supR3GrabOptions(void)
2007{
2008# ifdef RT_OS_LINUX
2009 g_uCaps = 0;
2010
2011 /*
2012 * Do _not_ perform any capability-related system calls for root processes
2013 * (leaving g_uCaps at 0).
2014 * (Hint: getuid gets the real user id, not the effective.)
2015 */
2016 if (getuid() != 0)
2017 {
2018 /*
2019 * CAP_NET_RAW.
2020 * Default: enabled.
2021 * Can be disabled with 'export VBOX_HARD_CAP_NET_RAW=0'.
2022 */
2023 const char *pszOpt = getenv("VBOX_HARD_CAP_NET_RAW");
2024 if ( !pszOpt
2025 || memcmp(pszOpt, "0", sizeof("0")) != 0)
2026 g_uCaps = CAP_TO_MASK(CAP_NET_RAW);
2027
2028 /*
2029 * CAP_NET_BIND_SERVICE.
2030 * Default: disabled.
2031 * Can be enabled with 'export VBOX_HARD_CAP_NET_BIND_SERVICE=1'.
2032 */
2033 pszOpt = getenv("VBOX_HARD_CAP_NET_BIND_SERVICE");
2034 if ( pszOpt
2035 && memcmp(pszOpt, "0", sizeof("0")) != 0)
2036 g_uCaps |= CAP_TO_MASK(CAP_NET_BIND_SERVICE);
2037
2038 /*
2039 * CAP_SYS_NICE.
2040 * Default: enabled.
2041 * Can be disabled with 'export VBOX_HARD_CAP_SYS_NICE=0'.
2042 */
2043 pszOpt = getenv("VBOX_HARD_CAP_SYS_NICE");
2044 if ( !pszOpt
2045 || memcmp(pszOpt, "0", sizeof("0")) != 0)
2046 g_uCaps |= CAP_TO_MASK(CAP_SYS_NICE);
2047 }
2048# endif
2049}
2050
2051/**
2052 * Drop any root privileges we might be holding.
2053 */
2054static void supR3HardenedMainDropPrivileges(void)
2055{
2056 /*
2057 * Try use setre[ug]id since this will clear the save uid/gid and thus
2058 * leave fewer traces behind that libs like GTK+ may pick up.
2059 */
2060 uid_t euid, ruid, suid;
2061 gid_t egid, rgid, sgid;
2062# if defined(RT_OS_DARWIN)
2063 /* The really great thing here is that setreuid isn't available on
2064 OS X 10.4, libc emulates it. While 10.4 have a slightly different and
2065 non-standard setuid implementation compared to 10.5, the following
2066 works the same way with both version since we're super user (10.5 req).
2067 The following will set all three variants of the group and user IDs. */
2068 setgid(g_gid);
2069 setuid(g_uid);
2070 euid = geteuid();
2071 ruid = suid = getuid();
2072 egid = getegid();
2073 rgid = sgid = getgid();
2074
2075# elif defined(RT_OS_SOLARIS)
2076 /* Solaris doesn't have setresuid, but the setreuid interface is BSD
2077 compatible and will set the saved uid to euid when we pass it a ruid
2078 that isn't -1 (which we do). */
2079 setregid(g_gid, g_gid);
2080 setreuid(g_uid, g_uid);
2081 euid = geteuid();
2082 ruid = suid = getuid();
2083 egid = getegid();
2084 rgid = sgid = getgid();
2085
2086# else
2087 /* This is the preferred one, full control no questions about semantics.
2088 PORTME: If this isn't work, try join one of two other gangs above. */
2089 int res = setresgid(g_gid, g_gid, g_gid);
2090 NOREF(res);
2091 res = setresuid(g_uid, g_uid, g_uid);
2092 NOREF(res);
2093 if (getresuid(&ruid, &euid, &suid) != 0)
2094 {
2095 euid = geteuid();
2096 ruid = suid = getuid();
2097 }
2098 if (getresgid(&rgid, &egid, &sgid) != 0)
2099 {
2100 egid = getegid();
2101 rgid = sgid = getgid();
2102 }
2103# endif
2104
2105
2106 /* Check that it worked out all right. */
2107 if ( euid != g_uid
2108 || ruid != g_uid
2109 || suid != g_uid
2110 || egid != g_gid
2111 || rgid != g_gid
2112 || sgid != g_gid)
2113 supR3HardenedFatal("SUPR3HardenedMain: failed to drop root privileges!"
2114 " (euid=%d ruid=%d suid=%d egid=%d rgid=%d sgid=%d; wanted uid=%d and gid=%d)\n",
2115 euid, ruid, suid, egid, rgid, sgid, g_uid, g_gid);
2116
2117# if RT_OS_LINUX
2118 /*
2119 * Re-enable the cap_net_raw and cap_sys_nice capabilities which were disabled during setresuid.
2120 */
2121 if (g_uCaps != 0)
2122 {
2123# ifdef USE_LIB_PCAP
2124 /** @todo Warn if that does not work? */
2125 /* XXX cap_net_bind_service */
2126 cap_set_proc(cap_from_text("cap_net_raw+ep cap_sys_nice+ep"));
2127# else
2128 cap_user_header_t hdr = (cap_user_header_t)alloca(sizeof(*hdr));
2129 cap_user_data_t cap = (cap_user_data_t)alloca(2 /* _LINUX_CAPABILITY_U32S_3 */ * sizeof(*cap));
2130 memset(hdr, 0, sizeof(*hdr));
2131 hdr->version = g_uCapsVersion;
2132 memset(cap, 0, 2 /* _LINUX_CAPABILITY_U32S_3 */ * sizeof(*cap));
2133 cap->effective = g_uCaps;
2134 cap->permitted = g_uCaps;
2135 /** @todo Warn if that does not work? */
2136 capset(hdr, cap);
2137# endif /* !USE_LIB_PCAP */
2138 }
2139# endif
2140}
2141
2142#endif /* SUP_HARDENED_SUID */
2143
2144/**
2145 * Purge the process environment from any environment vairable which can lead
2146 * to loading untrusted binaries compromising the process address space.
2147 *
2148 * @param envp The initial environment vector. (Can be NULL.)
2149 */
2150static void supR3HardenedMainPurgeEnvironment(char **envp)
2151{
2152 for (unsigned i = 0; i < RT_ELEMENTS(g_aSupEnvPurgeDescs); i++)
2153 {
2154 /*
2155 * Update the initial environment vector, just in case someone actually cares about it.
2156 */
2157 if (envp)
2158 {
2159 const char * const pszEnv = g_aSupEnvPurgeDescs[i].pszEnv;
2160 size_t const cchEnv = g_aSupEnvPurgeDescs[i].cchEnv;
2161 unsigned iSrc = 0;
2162 unsigned iDst = 0;
2163 char *pszTmp;
2164
2165 while ((pszTmp = envp[iSrc]) != NULL)
2166 {
2167 if ( memcmp(pszTmp, pszEnv, cchEnv) != 0
2168 || (pszTmp[cchEnv] != '=' && pszTmp[cchEnv] != '\0'))
2169 {
2170 if (iDst != iSrc)
2171 envp[iDst] = pszTmp;
2172 iDst++;
2173 }
2174 else
2175 SUP_DPRINTF(("supR3HardenedMainPurgeEnvironment: dropping envp[%d]=%s\n", iSrc, pszTmp));
2176 iSrc++;
2177 }
2178
2179 if (iDst != iSrc)
2180 while (iDst <= iSrc)
2181 envp[iDst++] = NULL;
2182 }
2183
2184 /*
2185 * Remove from the process environment if present.
2186 */
2187#ifndef RT_OS_WINDOWS
2188 const char *pszTmp = getenv(g_aSupEnvPurgeDescs[i].pszEnv);
2189 if (pszTmp != NULL)
2190 {
2191 if (unsetenv((char *)g_aSupEnvPurgeDescs[i].pszEnv) == 0)
2192 SUP_DPRINTF(("supR3HardenedMainPurgeEnvironment: dropped %s\n", pszTmp));
2193 else
2194 if (g_aSupEnvPurgeDescs[i].fPurgeErrFatal)
2195 supR3HardenedFatal("SUPR3HardenedMain: failed to purge %s environment variable! (errno=%d %s)\n",
2196 g_aSupEnvPurgeDescs[i].pszEnv, errno, strerror(errno));
2197 else
2198 SUP_DPRINTF(("supR3HardenedMainPurgeEnvironment: dropping %s failed! errno=%d\n", pszTmp, errno));
2199 }
2200#else
2201 /** @todo Call NT API to do the same. */
2202#endif
2203 }
2204}
2205
2206
2207/**
2208 * Returns the argument purge descriptor of the given argument if available.
2209 *
2210 * @retval 0 if it should not be purged.
2211 * @retval 1 if it only the current argument should be purged.
2212 * @retval 2 if the argument and the following (if present) should be purged.
2213 * @param pszArg The argument to look for.
2214 */
2215static unsigned supR3HardenedMainShouldPurgeArg(const char *pszArg)
2216{
2217 for (unsigned i = 0; i < RT_ELEMENTS(g_aSupArgPurgeDescs); i++)
2218 {
2219 size_t const cchPurge = g_aSupArgPurgeDescs[i].cchArg;
2220 if (!memcmp(pszArg, g_aSupArgPurgeDescs[i].pszArg, cchPurge))
2221 {
2222 if (pszArg[cchPurge] == '\0')
2223 return 1 + g_aSupArgPurgeDescs[i].fTakesValue;
2224 if ( g_aSupArgPurgeDescs[i].fTakesValue
2225 && (pszArg[cchPurge] == ':' || pszArg[cchPurge] == '='))
2226 return 1;
2227 }
2228 }
2229
2230 return 0;
2231}
2232
2233
2234/**
2235 * Purges any command line arguments considered harmful.
2236 *
2237 * @returns nothing.
2238 * @param cArgsOrig The original number of arguments.
2239 * @param papszArgsOrig The original argument vector.
2240 * @param pcArgsNew Where to store the new number of arguments on success.
2241 * @param ppapszArgsNew Where to store the pointer to the purged argument vector.
2242 */
2243static void supR3HardenedMainPurgeArgs(int cArgsOrig, char **papszArgsOrig, int *pcArgsNew, char ***ppapszArgsNew)
2244{
2245 int iDst = 0;
2246#ifdef RT_OS_WINDOWS
2247 char **papszArgsNew = papszArgsOrig; /* We allocated this, no need to allocate again. */
2248#else
2249 char **papszArgsNew = (char **)malloc((cArgsOrig + 1) * sizeof(char *));
2250#endif
2251 if (papszArgsNew)
2252 {
2253 for (int iSrc = 0; iSrc < cArgsOrig; iSrc++)
2254 {
2255 unsigned cPurgedArgs = supR3HardenedMainShouldPurgeArg(papszArgsOrig[iSrc]);
2256 if (!cPurgedArgs)
2257 papszArgsNew[iDst++] = papszArgsOrig[iSrc];
2258 else
2259 iSrc += cPurgedArgs - 1;
2260 }
2261
2262 papszArgsNew[iDst] = NULL; /* The array is NULL terminated, just like envp. */
2263 }
2264 else
2265 supR3HardenedFatal("SUPR3HardenedMain: failed to allocate memory for purged command line!\n");
2266 *pcArgsNew = iDst;
2267 *ppapszArgsNew = papszArgsNew;
2268
2269#ifdef RT_OS_WINDOWS
2270 /** @todo Update command line pointers in PEB, wont really work without it. */
2271#endif
2272}
2273
2274
2275/**
2276 * Loads the VBoxRT DLL/SO/DYLIB, hands it the open driver,
2277 * and calls RTR3InitEx.
2278 *
2279 * @param fFlags The SUPR3HardenedMain fFlags argument, passed to supR3PreInit.
2280 *
2281 * @remarks VBoxRT contains both IPRT and SUPR3.
2282 * @remarks This function will not return on failure.
2283 */
2284static void supR3HardenedMainInitRuntime(uint32_t fFlags)
2285{
2286 /*
2287 * Construct the name.
2288 */
2289 char szPath[RTPATH_MAX];
2290 supR3HardenedPathAppSharedLibs(szPath, sizeof(szPath) - sizeof("/VBoxRT" SUPLIB_DLL_SUFF));
2291 suplibHardenedStrCat(szPath, "/VBoxRT" SUPLIB_DLL_SUFF);
2292
2293 /*
2294 * Open it and resolve the symbols.
2295 */
2296#if defined(RT_OS_WINDOWS)
2297 HMODULE hMod = (HMODULE)supR3HardenedWinLoadLibrary(szPath, false /*fSystem32Only*/, g_fSupHardenedMain);
2298 if (!hMod)
2299 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_MODULE_NOT_FOUND,
2300 "LoadLibrary \"%s\" failed (rc=%d)",
2301 szPath, RtlGetLastWin32Error());
2302 PFNRTR3INITEX pfnRTInitEx = (PFNRTR3INITEX)GetProcAddress(hMod, SUP_HARDENED_SYM("RTR3InitEx"));
2303 if (!pfnRTInitEx)
2304 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_SYMBOL_NOT_FOUND,
2305 "Entrypoint \"RTR3InitEx\" not found in \"%s\" (rc=%d)",
2306 szPath, RtlGetLastWin32Error());
2307
2308 PFNSUPR3PREINIT pfnSUPPreInit = (PFNSUPR3PREINIT)GetProcAddress(hMod, SUP_HARDENED_SYM("supR3PreInit"));
2309 if (!pfnSUPPreInit)
2310 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_SYMBOL_NOT_FOUND,
2311 "Entrypoint \"supR3PreInit\" not found in \"%s\" (rc=%d)",
2312 szPath, RtlGetLastWin32Error());
2313
2314 g_pfnRTLogRelPrintf = (PFNRTLOGRELPRINTF)GetProcAddress(hMod, SUP_HARDENED_SYM("RTLogRelPrintf"));
2315 Assert(g_pfnRTLogRelPrintf); /* Not fatal in non-strict builds. */
2316
2317#else
2318 /* the dlopen crowd */
2319 void *pvMod = dlopen(szPath, RTLD_NOW | RTLD_GLOBAL);
2320 if (!pvMod)
2321 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_MODULE_NOT_FOUND,
2322 "dlopen(\"%s\",) failed: %s",
2323 szPath, dlerror());
2324 PFNRTR3INITEX pfnRTInitEx = (PFNRTR3INITEX)(uintptr_t)dlsym(pvMod, SUP_HARDENED_SYM("RTR3InitEx"));
2325 if (!pfnRTInitEx)
2326 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_SYMBOL_NOT_FOUND,
2327 "Entrypoint \"RTR3InitEx\" not found in \"%s\"!\ndlerror: %s",
2328 szPath, dlerror());
2329 PFNSUPR3PREINIT pfnSUPPreInit = (PFNSUPR3PREINIT)(uintptr_t)dlsym(pvMod, SUP_HARDENED_SYM("supR3PreInit"));
2330 if (!pfnSUPPreInit)
2331 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, VERR_SYMBOL_NOT_FOUND,
2332 "Entrypoint \"supR3PreInit\" not found in \"%s\"!\ndlerror: %s",
2333 szPath, dlerror());
2334#endif
2335
2336 /*
2337 * Make the calls.
2338 */
2339 supR3HardenedGetPreInitData(&g_SupPreInitData);
2340 int rc = pfnSUPPreInit(&g_SupPreInitData, fFlags);
2341 if (RT_FAILURE(rc))
2342 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, rc,
2343 "supR3PreInit failed with rc=%d", rc);
2344
2345 /* Get the executable path for the IPRT init on linux if /proc/self/exe isn't accessible. */
2346 const char *pszExePath = NULL;
2347#ifdef RT_OS_LINUX
2348 if (!supR3HardenedMainIsProcSelfExeAccssible())
2349 pszExePath = g_szSupLibHardenedExePath;
2350#endif
2351
2352 /* Assemble the IPRT init flags. We could probably just pass RTR3INIT_FLAGS_TRY_SUPLIB
2353 here and be done with it, but it's not too much hazzle to convert fFlags 1:1. */
2354 uint32_t fRtInit = 0;
2355 if (!(fFlags & SUPSECMAIN_FLAGS_DONT_OPEN_DEV))
2356 {
2357 if (fFlags & SUPSECMAIN_FLAGS_DRIVERLESS)
2358 fRtInit |= (SUPR3INIT_F_DRIVERLESS << RTR3INIT_FLAGS_SUPLIB_SHIFT) | RTR3INIT_FLAGS_TRY_SUPLIB;
2359 if (fFlags & SUPSECMAIN_FLAGS_DRIVERLESS_IEM_ALLOWED)
2360 fRtInit |= (SUPR3INIT_F_DRIVERLESS_IEM_ALLOWED << RTR3INIT_FLAGS_SUPLIB_SHIFT) | RTR3INIT_FLAGS_TRY_SUPLIB;
2361#ifdef VBOX_WITH_DRIVERLESS_NEM_FALLBACK
2362 if (fFlags & SUPSECMAIN_FLAGS_DRIVERLESS_NEM_FALLBACK)
2363 fRtInit |= (SUPR3INIT_F_DRIVERLESS_NEM_FALLBACK << RTR3INIT_FLAGS_SUPLIB_SHIFT) | RTR3INIT_FLAGS_TRY_SUPLIB;
2364#endif
2365 if (!(fRtInit & RTR3INIT_FLAGS_TRY_SUPLIB))
2366 fRtInit |= RTR3INIT_FLAGS_SUPLIB;
2367 }
2368
2369 /* Now do the IPRT init. */
2370 rc = pfnRTInitEx(RTR3INIT_VER_CUR, fFlags & SUPSECMAIN_FLAGS_DONT_OPEN_DEV ? 0 : RTR3INIT_FLAGS_SUPLIB,
2371 0 /*cArgs*/, NULL /*papszArgs*/, pszExePath);
2372 if (RT_FAILURE(rc))
2373 supR3HardenedFatalMsg("supR3HardenedMainInitRuntime", kSupInitOp_IPRT, rc,
2374 "RTR3InitEx failed with rc=%d (fRtFlags=%#x)", rc, fRtInit);
2375
2376#if defined(RT_OS_WINDOWS)
2377 /*
2378 * Windows: Create thread that terminates the process when the parent stub
2379 * process terminates (VBoxNetDHCP, Ctrl-C, etc).
2380 */
2381 if (!(fFlags & SUPSECMAIN_FLAGS_DONT_OPEN_DEV))
2382 supR3HardenedWinCreateParentWatcherThread(hMod);
2383#endif
2384}
2385
2386
2387/**
2388 * Construct the path to the DLL/SO/DYLIB containing the actual program.
2389 *
2390 * @returns VBox status code.
2391 * @param pszProgName The program name.
2392 * @param fMainFlags The flags passed to SUPR3HardenedMain.
2393 * @param pszPath The output buffer.
2394 * @param cbPath The size of the output buffer, in bytes. Must be at
2395 * least 128 bytes!
2396 */
2397static int supR3HardenedMainGetTrustedLib(const char *pszProgName, uint32_t fMainFlags, char *pszPath, size_t cbPath)
2398{
2399 supR3HardenedPathAppPrivateArch(pszPath, sizeof(cbPath) - 10);
2400 const char *pszSubDirSlash;
2401 switch (g_fSupHardenedMain & SUPSECMAIN_FLAGS_LOC_MASK)
2402 {
2403 case SUPSECMAIN_FLAGS_LOC_APP_BIN:
2404#ifdef RT_OS_DARWIN
2405 case SUPSECMAIN_FLAGS_LOC_OSX_HLP_APP:
2406#endif
2407 pszSubDirSlash = "/";
2408 break;
2409 case SUPSECMAIN_FLAGS_LOC_TESTCASE:
2410 pszSubDirSlash = "/testcase/";
2411 break;
2412 default:
2413 pszSubDirSlash = "/";
2414 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: Unknown program binary location: %#x\n", g_fSupHardenedMain);
2415 }
2416#ifdef RT_OS_DARWIN
2417 if (fMainFlags & SUPSECMAIN_FLAGS_OSX_VM_APP)
2418 pszProgName = "VirtualBox";
2419#else
2420 RT_NOREF1(fMainFlags);
2421#endif
2422 size_t cch = suplibHardenedStrLen(pszPath);
2423 return suplibHardenedStrCopyEx(&pszPath[cch], cbPath - cch, pszSubDirSlash, pszProgName, SUPLIB_DLL_SUFF, NULL);
2424}
2425
2426
2427/**
2428 * Loads the DLL/SO/DYLIB containing the actual program and
2429 * resolves the TrustedError symbol.
2430 *
2431 * This is very similar to supR3HardenedMainGetTrustedMain().
2432 *
2433 * @returns Pointer to the trusted error symbol if it is exported, NULL
2434 * and no error messages otherwise.
2435 * @param pszProgName The program name.
2436 */
2437static PFNSUPTRUSTEDERROR supR3HardenedMainGetTrustedError(const char *pszProgName)
2438{
2439 /*
2440 * Don't bother if the main() function didn't advertise any TrustedError
2441 * export. It's both a waste of time and may trigger additional problems,
2442 * confusing or obscuring the original issue.
2443 */
2444 if (!(g_fSupHardenedMain & SUPSECMAIN_FLAGS_TRUSTED_ERROR))
2445 return NULL;
2446
2447 /*
2448 * Construct the name.
2449 */
2450 char szPath[RTPATH_MAX];
2451 supR3HardenedMainGetTrustedLib(pszProgName, g_fSupHardenedMain, szPath, sizeof(szPath));
2452
2453 /*
2454 * Open it and resolve the symbol.
2455 */
2456#if defined(RT_OS_WINDOWS)
2457 supR3HardenedWinEnableThreadCreation();
2458 HMODULE hMod = (HMODULE)supR3HardenedWinLoadLibrary(szPath, false /*fSystem32Only*/, 0 /*fMainFlags*/);
2459 if (!hMod)
2460 return NULL;
2461 FARPROC pfn = GetProcAddress(hMod, SUP_HARDENED_SYM("TrustedError"));
2462 if (!pfn)
2463 return NULL;
2464 return (PFNSUPTRUSTEDERROR)pfn;
2465
2466#else
2467 /* the dlopen crowd */
2468 void *pvMod = dlopen(szPath, RTLD_NOW | RTLD_GLOBAL);
2469 if (!pvMod)
2470 return NULL;
2471 void *pvSym = dlsym(pvMod, SUP_HARDENED_SYM("TrustedError"));
2472 if (!pvSym)
2473 return NULL;
2474 return (PFNSUPTRUSTEDERROR)(uintptr_t)pvSym;
2475#endif
2476}
2477
2478
2479/**
2480 * Loads the DLL/SO/DYLIB containing the actual program and
2481 * resolves the TrustedMain symbol.
2482 *
2483 * @returns Pointer to the trusted main of the actual program.
2484 * @param pszProgName The program name.
2485 * @param fMainFlags The flags passed to SUPR3HardenedMain.
2486 * @remarks This function will not return on failure.
2487 */
2488static PFNSUPTRUSTEDMAIN supR3HardenedMainGetTrustedMain(const char *pszProgName, uint32_t fMainFlags)
2489{
2490 /*
2491 * Construct the name.
2492 */
2493 char szPath[RTPATH_MAX];
2494 supR3HardenedMainGetTrustedLib(pszProgName, fMainFlags, szPath, sizeof(szPath));
2495
2496 /*
2497 * Open it and resolve the symbol.
2498 */
2499#if defined(RT_OS_WINDOWS)
2500 HMODULE hMod = (HMODULE)supR3HardenedWinLoadLibrary(szPath, false /*fSystem32Only*/, 0 /*fMainFlags*/);
2501 if (!hMod)
2502 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: LoadLibrary \"%s\" failed, rc=%d\n",
2503 szPath, RtlGetLastWin32Error());
2504 FARPROC pfn = GetProcAddress(hMod, SUP_HARDENED_SYM("TrustedMain"));
2505 if (!pfn)
2506 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: Entrypoint \"TrustedMain\" not found in \"%s\" (rc=%d)\n",
2507 szPath, RtlGetLastWin32Error());
2508 return (PFNSUPTRUSTEDMAIN)pfn;
2509
2510#else
2511 /* the dlopen crowd */
2512 void *pvMod = dlopen(szPath, RTLD_NOW | RTLD_GLOBAL);
2513 if (!pvMod)
2514 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: dlopen(\"%s\",) failed: %s\n",
2515 szPath, dlerror());
2516 void *pvSym = dlsym(pvMod, SUP_HARDENED_SYM("TrustedMain"));
2517 if (!pvSym)
2518 supR3HardenedFatal("supR3HardenedMainGetTrustedMain: Entrypoint \"TrustedMain\" not found in \"%s\"!\ndlerror: %s\n",
2519 szPath, dlerror());
2520 return (PFNSUPTRUSTEDMAIN)(uintptr_t)pvSym;
2521#endif
2522}
2523
2524
2525/**
2526 * Secure main.
2527 *
2528 * This is used for the set-user-ID-on-execute binaries on unixy systems
2529 * and when using the open-vboxdrv-via-root-service setup on Windows.
2530 *
2531 * This function will perform the integrity checks of the VirtualBox
2532 * installation, open the support driver, open the root service (later),
2533 * and load the DLL corresponding to \a pszProgName and execute its main
2534 * function.
2535 *
2536 * @returns Return code appropriate for main().
2537 *
2538 * @param pszProgName The program name. This will be used to figure out which
2539 * DLL/SO/DYLIB to load and execute.
2540 * @param fFlags Flags.
2541 * @param argc The argument count.
2542 * @param argv The argument vector.
2543 * @param envp The environment vector.
2544 */
2545DECLHIDDEN(int) SUPR3HardenedMain(const char *pszProgName, uint32_t fFlags, int argc, char **argv, char **envp)
2546{
2547 SUP_DPRINTF(("SUPR3HardenedMain: pszProgName=%s fFlags=%#x\n", pszProgName, fFlags));
2548 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_HARDENED_MAIN_CALLED;
2549
2550 /*
2551 * Note! At this point there is no IPRT, so we will have to stick
2552 * to basic CRT functions that everyone agree upon.
2553 */
2554 g_pszSupLibHardenedProgName = pszProgName;
2555 g_fSupHardenedMain = fFlags;
2556 g_SupPreInitData.u32Magic = SUPPREINITDATA_MAGIC;
2557 g_SupPreInitData.u32EndMagic = SUPPREINITDATA_MAGIC;
2558#ifdef RT_OS_WINDOWS
2559 if (!g_fSupEarlyProcessInit)
2560#endif
2561 g_SupPreInitData.Data.hDevice = SUP_HDEVICE_NIL;
2562
2563 /*
2564 * Determine the full exe path as we'll be needing it for the verify all
2565 * call(s) below. (We have to do this early on Linux because we * *might*
2566 * not be able to access /proc/self/exe after the seteuid call.)
2567 */
2568 supR3HardenedGetFullExePath();
2569#ifdef RT_OS_WINDOWS
2570 supR3HardenedWinInitAppBin(fFlags);
2571#endif
2572
2573#ifdef SUP_HARDENED_SUID
2574 /*
2575 * Grab any options from the environment.
2576 */
2577 supR3GrabOptions();
2578
2579 /*
2580 * Check that we're root, if we aren't then the installation is butchered.
2581 */
2582 g_uid = getuid();
2583 g_gid = getgid();
2584 if (geteuid() != 0 /* root */)
2585 supR3HardenedFatalMsg("SUPR3HardenedMain", kSupInitOp_RootCheck, VERR_PERMISSION_DENIED,
2586 "Effective UID is not root (euid=%d egid=%d uid=%d gid=%d)",
2587 geteuid(), getegid(), g_uid, g_gid);
2588#endif /* SUP_HARDENED_SUID */
2589
2590#ifdef RT_OS_WINDOWS
2591 /*
2592 * Windows: First respawn. On Windows we will respawn the process twice to establish
2593 * something we can put some kind of reliable trust in. The first respawning aims
2594 * at dropping compatibility layers and process "security" solutions.
2595 */
2596 if ( !g_fSupEarlyProcessInit
2597 && !(fFlags & SUPSECMAIN_FLAGS_DONT_OPEN_DEV)
2598 && supR3HardenedWinIsReSpawnNeeded(1 /*iWhich*/, argc, argv))
2599 {
2600 SUP_DPRINTF(("SUPR3HardenedMain: Respawn #1\n"));
2601 supR3HardenedWinInit(SUPSECMAIN_FLAGS_DONT_OPEN_DEV | SUPSECMAIN_FLAGS_FIRST_PROCESS, false /*fAvastKludge*/);
2602 supR3HardenedVerifyAll(true /* fFatal */, pszProgName, g_szSupLibHardenedExePath, fFlags);
2603 return supR3HardenedWinReSpawn(1 /*iWhich*/);
2604 }
2605
2606 /*
2607 * Windows: Initialize the image verification global data so we can verify the
2608 * signature of the process image and hook the core of the DLL loader API so we
2609 * can check the signature of all DLLs mapped into the process. (Already done
2610 * by early VM process init.)
2611 */
2612 if (!g_fSupEarlyProcessInit)
2613 supR3HardenedWinInit(fFlags, true /*fAvastKludge*/);
2614#endif /* RT_OS_WINDOWS */
2615
2616 /*
2617 * Validate the installation.
2618 */
2619 supR3HardenedVerifyAll(true /* fFatal */, pszProgName, g_szSupLibHardenedExePath, fFlags);
2620
2621 /*
2622 * The next steps are only taken if we actually need to access the support
2623 * driver. (Already done by early process init.)
2624 */
2625 if (!(fFlags & SUPSECMAIN_FLAGS_DONT_OPEN_DEV))
2626 {
2627#ifdef RT_OS_WINDOWS
2628 /*
2629 * Windows: Must have done early process init if we get here.
2630 */
2631 if (!g_fSupEarlyProcessInit)
2632 supR3HardenedFatalMsg("SUPR3HardenedMain", kSupInitOp_Integrity, VERR_WRONG_ORDER,
2633 "Early process init was somehow skipped.");
2634
2635 /*
2636 * Windows: The second respawn. This time we make a special arrangement
2637 * with vboxdrv to monitor access to the new process from its inception.
2638 */
2639 if (supR3HardenedWinIsReSpawnNeeded(2 /* iWhich*/, argc, argv))
2640 {
2641 SUP_DPRINTF(("SUPR3HardenedMain: Respawn #2\n"));
2642 return supR3HardenedWinReSpawn(2 /* iWhich*/);
2643 }
2644 SUP_DPRINTF(("SUPR3HardenedMain: Final process, opening VBoxDrv...\n"));
2645 supR3HardenedWinFlushLoaderCache();
2646
2647#else
2648 /*
2649 * Open the vboxdrv device.
2650 */
2651 supR3HardenedMainOpenDevice();
2652#endif /* !RT_OS_WINDOWS */
2653 }
2654
2655#ifdef RT_OS_WINDOWS
2656 /*
2657 * Windows: Enable the use of windows APIs to verify images at load time.
2658 */
2659 supR3HardenedWinEnableThreadCreation();
2660 supR3HardenedWinFlushLoaderCache();
2661 supR3HardenedWinResolveVerifyTrustApiAndHookThreadCreation(g_pszSupLibHardenedProgName);
2662 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_WIN_VERIFY_TRUST_READY;
2663#else /* !RT_OS_WINDOWS */
2664# if defined(RT_OS_DARWIN)
2665 supR3HardenedDarwinInit();
2666# elif !defined(RT_OS_FREEBSD) /** @todo Portme. */
2667 /*
2668 * Posix: Hook the load library interface interface.
2669 */
2670 supR3HardenedPosixInit();
2671# endif
2672#endif /* !RT_OS_WINDOWS */
2673
2674#ifdef SUP_HARDENED_SUID
2675 /*
2676 * Grab additional capabilities / privileges.
2677 */
2678 supR3HardenedMainGrabCapabilites();
2679
2680 /*
2681 * Drop any root privileges we might be holding (won't return on failure)
2682 */
2683 supR3HardenedMainDropPrivileges();
2684#endif
2685
2686 /*
2687 * Purge any environment variables and command line arguments considered harmful.
2688 */
2689 /** @todo May need to move this to a much earlier stage on windows. */
2690 supR3HardenedMainPurgeEnvironment(envp);
2691 supR3HardenedMainPurgeArgs(argc, argv, &argc, &argv);
2692
2693 /*
2694 * Load the IPRT, hand the SUPLib part the open driver and
2695 * call RTR3InitEx.
2696 */
2697 SUP_DPRINTF(("SUPR3HardenedMain: Load Runtime...\n"));
2698 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_INIT_RUNTIME;
2699 supR3HardenedMainInitRuntime(fFlags);
2700#ifdef RT_OS_WINDOWS
2701 supR3HardenedWinModifyDllSearchPath(fFlags, g_szSupLibHardenedAppBinPath);
2702#endif
2703
2704 /*
2705 * Load the DLL/SO/DYLIB containing the actual program
2706 * and pass control to it.
2707 */
2708 SUP_DPRINTF(("SUPR3HardenedMain: Load TrustedMain...\n"));
2709 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_GET_TRUSTED_MAIN;
2710 PFNSUPTRUSTEDMAIN pfnTrustedMain = supR3HardenedMainGetTrustedMain(pszProgName, fFlags);
2711
2712 SUP_DPRINTF(("SUPR3HardenedMain: Calling TrustedMain (%p)...\n", pfnTrustedMain));
2713 g_enmSupR3HardenedMainState = SUPR3HARDENEDMAINSTATE_CALLED_TRUSTED_MAIN;
2714 return pfnTrustedMain(argc, argv, envp);
2715}
2716
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette