/* $Id: ApplianceImplImport.cpp 33332 2010-10-22 09:27:23Z vboxsync $ */ /** @file * * IAppliance and IVirtualSystem COM class implementations. */ /* * Copyright (C) 2008-2010 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ #include #include #include #include #include #include #include #include #include #include #include "ApplianceImpl.h" #include "VirtualBoxImpl.h" #include "GuestOSTypeImpl.h" #include "ProgressImpl.h" #include "MachineImpl.h" #include "MediumImpl.h" #include "MediumFormatImpl.h" #include "SystemPropertiesImpl.h" #include "AutoCaller.h" #include "Logging.h" #include "ApplianceImplPrivate.h" #include #include #include using namespace std; //////////////////////////////////////////////////////////////////////////////// // // IAppliance public methods // //////////////////////////////////////////////////////////////////////////////// /** * Public method implementation. This opens the OVF with ovfreader.cpp. * Thread implementation is in Appliance::readImpl(). * * @param path * @return */ STDMETHODIMP Appliance::Read(IN_BSTR path, IProgress **aProgress) { if (!path) return E_POINTER; CheckComArgOutPointerValid(aProgress); AutoCaller autoCaller(this); if (FAILED(autoCaller.rc())) return autoCaller.rc(); AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS); if (!isApplianceIdle()) return E_ACCESSDENIED; if (m->pReader) { delete m->pReader; m->pReader = NULL; } // see if we can handle this file; for now we insist it has an ovf/ova extension Utf8Str strPath (path); if (!( strPath.endsWith(".ovf", Utf8Str::CaseInsensitive) || strPath.endsWith(".ova", Utf8Str::CaseInsensitive))) return setError(VBOX_E_FILE_ERROR, tr("Appliance file must have .ovf extension")); ComObjPtr progress; HRESULT rc = S_OK; try { /* Parse all necessary info out of the URI */ parseURI(strPath, m->locInfo); rc = readImpl(m->locInfo, progress); } catch (HRESULT aRC) { rc = aRC; } if (SUCCEEDED(rc)) /* Return progress to the caller */ progress.queryInterfaceTo(aProgress); return S_OK; } /** * Public method implementation. This looks at the output of ovfreader.cpp and creates * VirtualSystemDescription instances. * @return */ STDMETHODIMP Appliance::Interpret() { // @todo: // - don't use COM methods but the methods directly (faster, but needs appropriate locking of that objects itself (s. HardDisk)) // - Appropriate handle errors like not supported file formats AutoCaller autoCaller(this); if (FAILED(autoCaller.rc())) return autoCaller.rc(); AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS); if (!isApplianceIdle()) return E_ACCESSDENIED; HRESULT rc = S_OK; /* Clear any previous virtual system descriptions */ m->virtualSystemDescriptions.clear(); if (!m->pReader) return setError(E_FAIL, tr("Cannot interpret appliance without reading it first (call read() before interpret())")); // Change the appliance state so we can safely leave the lock while doing time-consuming // disk imports; also the below method calls do all kinds of locking which conflicts with // the appliance object lock m->state = Data::ApplianceImporting; alock.release(); /* Try/catch so we can clean up on error */ try { list::const_iterator it; /* Iterate through all virtual systems */ for (it = m->pReader->m_llVirtualSystems.begin(); it != m->pReader->m_llVirtualSystems.end(); ++it) { const ovf::VirtualSystem &vsysThis = *it; ComObjPtr pNewDesc; rc = pNewDesc.createObject(); if (FAILED(rc)) throw rc; rc = pNewDesc->init(); if (FAILED(rc)) throw rc; // if the virtual system in OVF had a element, have the // VirtualBox settings code parse that XML now if (vsysThis.pelmVboxMachine) pNewDesc->importVboxMachineXML(*vsysThis.pelmVboxMachine); /* Guest OS type */ Utf8Str strOsTypeVBox, strCIMOSType = Utf8StrFmt("%RI32", (uint32_t)vsysThis.cimos); convertCIMOSType2VBoxOSType(strOsTypeVBox, vsysThis.cimos, vsysThis.strCimosDesc); pNewDesc->addEntry(VirtualSystemDescriptionType_OS, "", strCIMOSType, strOsTypeVBox); /* VM name */ /* If the there isn't any name specified create a default one out of * the OS type */ Utf8Str nameVBox = vsysThis.strName; if (nameVBox.isEmpty()) nameVBox = strOsTypeVBox; searchUniqueVMName(nameVBox); pNewDesc->addEntry(VirtualSystemDescriptionType_Name, "", vsysThis.strName, nameVBox); /* Based on the VM name, create a target machine path. */ Bstr bstrMachineFilename; rc = mVirtualBox->ComposeMachineFilename(Bstr(nameVBox).raw(), NULL, bstrMachineFilename.asOutParam()); if (FAILED(rc)) throw rc; /* Determine the machine folder from that */ Utf8Str strMachineFolder = Utf8Str(bstrMachineFilename).stripFilename(); /* VM Product */ if (!vsysThis.strProduct.isEmpty()) pNewDesc->addEntry(VirtualSystemDescriptionType_Product, "", vsysThis.strProduct, vsysThis.strProduct); /* VM Vendor */ if (!vsysThis.strVendor.isEmpty()) pNewDesc->addEntry(VirtualSystemDescriptionType_Vendor, "", vsysThis.strVendor, vsysThis.strVendor); /* VM Version */ if (!vsysThis.strVersion.isEmpty()) pNewDesc->addEntry(VirtualSystemDescriptionType_Version, "", vsysThis.strVersion, vsysThis.strVersion); /* VM ProductUrl */ if (!vsysThis.strProductUrl.isEmpty()) pNewDesc->addEntry(VirtualSystemDescriptionType_ProductUrl, "", vsysThis.strProductUrl, vsysThis.strProductUrl); /* VM VendorUrl */ if (!vsysThis.strVendorUrl.isEmpty()) pNewDesc->addEntry(VirtualSystemDescriptionType_VendorUrl, "", vsysThis.strVendorUrl, vsysThis.strVendorUrl); /* VM description */ if (!vsysThis.strDescription.isEmpty()) pNewDesc->addEntry(VirtualSystemDescriptionType_Description, "", vsysThis.strDescription, vsysThis.strDescription); /* VM license */ if (!vsysThis.strLicenseText.isEmpty()) pNewDesc->addEntry(VirtualSystemDescriptionType_License, "", vsysThis.strLicenseText, vsysThis.strLicenseText); /* Now that we know the OS type, get our internal defaults based on that. */ ComPtr pGuestOSType; rc = mVirtualBox->GetGuestOSType(Bstr(strOsTypeVBox).raw(), pGuestOSType.asOutParam()); if (FAILED(rc)) throw rc; /* CPU count */ ULONG cpuCountVBox = vsysThis.cCPUs; /* Check for the constraints */ if (cpuCountVBox > SchemaDefs::MaxCPUCount) { addWarning(tr("The virtual system \"%s\" claims support for %u CPU's, but VirtualBox has support for max %u CPU's only."), vsysThis.strName.c_str(), cpuCountVBox, SchemaDefs::MaxCPUCount); cpuCountVBox = SchemaDefs::MaxCPUCount; } if (vsysThis.cCPUs == 0) cpuCountVBox = 1; pNewDesc->addEntry(VirtualSystemDescriptionType_CPU, "", Utf8StrFmt("%RI32", (uint32_t)vsysThis.cCPUs), Utf8StrFmt("%RI32", (uint32_t)cpuCountVBox)); /* RAM */ uint64_t ullMemSizeVBox = vsysThis.ullMemorySize / _1M; /* Check for the constraints */ if ( ullMemSizeVBox != 0 && ( ullMemSizeVBox < MM_RAM_MIN_IN_MB || ullMemSizeVBox > MM_RAM_MAX_IN_MB ) ) { addWarning(tr("The virtual system \"%s\" claims support for %llu MB RAM size, but VirtualBox has support for min %u & max %u MB RAM size only."), vsysThis.strName.c_str(), ullMemSizeVBox, MM_RAM_MIN_IN_MB, MM_RAM_MAX_IN_MB); ullMemSizeVBox = RT_MIN(RT_MAX(ullMemSizeVBox, MM_RAM_MIN_IN_MB), MM_RAM_MAX_IN_MB); } if (vsysThis.ullMemorySize == 0) { /* If the RAM of the OVF is zero, use our predefined values */ ULONG memSizeVBox2; rc = pGuestOSType->COMGETTER(RecommendedRAM)(&memSizeVBox2); if (FAILED(rc)) throw rc; /* VBox stores that in MByte */ ullMemSizeVBox = (uint64_t)memSizeVBox2; } pNewDesc->addEntry(VirtualSystemDescriptionType_Memory, "", Utf8StrFmt("%RI64", (uint64_t)vsysThis.ullMemorySize), Utf8StrFmt("%RI64", (uint64_t)ullMemSizeVBox)); /* Audio */ if (!vsysThis.strSoundCardType.isEmpty()) /* Currently we set the AC97 always. @todo: figure out the hardware which could be possible */ pNewDesc->addEntry(VirtualSystemDescriptionType_SoundCard, "", vsysThis.strSoundCardType, Utf8StrFmt("%RI32", (uint32_t)AudioControllerType_AC97)); #ifdef VBOX_WITH_USB /* USB Controller */ if (vsysThis.fHasUsbController) pNewDesc->addEntry(VirtualSystemDescriptionType_USBController, "", "", ""); #endif /* VBOX_WITH_USB */ /* Network Controller */ size_t cEthernetAdapters = vsysThis.llEthernetAdapters.size(); if (cEthernetAdapters > 0) { /* Check for the constrains */ if (cEthernetAdapters > SchemaDefs::NetworkAdapterCount) addWarning(tr("The virtual system \"%s\" claims support for %zu network adapters, but VirtualBox has support for max %u network adapter only."), vsysThis.strName.c_str(), cEthernetAdapters, SchemaDefs::NetworkAdapterCount); /* Get the default network adapter type for the selected guest OS */ NetworkAdapterType_T defaultAdapterVBox = NetworkAdapterType_Am79C970A; rc = pGuestOSType->COMGETTER(AdapterType)(&defaultAdapterVBox); if (FAILED(rc)) throw rc; ovf::EthernetAdaptersList::const_iterator itEA; /* Iterate through all abstract networks. We support 8 network * adapters at the maximum, so the first 8 will be added only. */ size_t a = 0; for (itEA = vsysThis.llEthernetAdapters.begin(); itEA != vsysThis.llEthernetAdapters.end() && a < SchemaDefs::NetworkAdapterCount; ++itEA, ++a) { const ovf::EthernetAdapter &ea = *itEA; // logical network to connect to Utf8Str strNetwork = ea.strNetworkName; // make sure it's one of these two if ( (strNetwork.compare("Null", Utf8Str::CaseInsensitive)) && (strNetwork.compare("NAT", Utf8Str::CaseInsensitive)) && (strNetwork.compare("Bridged", Utf8Str::CaseInsensitive)) && (strNetwork.compare("Internal", Utf8Str::CaseInsensitive)) && (strNetwork.compare("HostOnly", Utf8Str::CaseInsensitive)) ) strNetwork = "Bridged"; // VMware assumes this is the default apparently /* Figure out the hardware type */ NetworkAdapterType_T nwAdapterVBox = defaultAdapterVBox; if (!ea.strAdapterType.compare("PCNet32", Utf8Str::CaseInsensitive)) { /* If the default adapter is already one of the two * PCNet adapters use the default one. If not use the * Am79C970A as fallback. */ if (!(defaultAdapterVBox == NetworkAdapterType_Am79C970A || defaultAdapterVBox == NetworkAdapterType_Am79C973)) nwAdapterVBox = NetworkAdapterType_Am79C970A; } #ifdef VBOX_WITH_E1000 /* VMWare accidentally write this with VirtualCenter 3.5, so make sure in this case always to use the VMWare one */ else if (!ea.strAdapterType.compare("E10000", Utf8Str::CaseInsensitive)) nwAdapterVBox = NetworkAdapterType_I82545EM; else if (!ea.strAdapterType.compare("E1000", Utf8Str::CaseInsensitive)) { /* Check if this OVF was written by VirtualBox */ if (Utf8Str(vsysThis.strVirtualSystemType).contains("virtualbox", Utf8Str::CaseInsensitive)) { /* If the default adapter is already one of the three * E1000 adapters use the default one. If not use the * I82545EM as fallback. */ if (!(defaultAdapterVBox == NetworkAdapterType_I82540EM || defaultAdapterVBox == NetworkAdapterType_I82543GC || defaultAdapterVBox == NetworkAdapterType_I82545EM)) nwAdapterVBox = NetworkAdapterType_I82540EM; } else /* Always use this one since it's what VMware uses */ nwAdapterVBox = NetworkAdapterType_I82545EM; } #endif /* VBOX_WITH_E1000 */ pNewDesc->addEntry(VirtualSystemDescriptionType_NetworkAdapter, "", // ref ea.strNetworkName, // orig Utf8StrFmt("%RI32", (uint32_t)nwAdapterVBox), // conf 0, Utf8StrFmt("type=%s", strNetwork.c_str())); // extra conf } } /* Floppy Drive */ if (vsysThis.fHasFloppyDrive) pNewDesc->addEntry(VirtualSystemDescriptionType_Floppy, "", "", ""); /* CD Drive */ if (vsysThis.fHasCdromDrive) pNewDesc->addEntry(VirtualSystemDescriptionType_CDROM, "", "", ""); /* Hard disk Controller */ uint16_t cIDEused = 0; uint16_t cSATAused = 0; NOREF(cSATAused); uint16_t cSCSIused = 0; NOREF(cSCSIused); ovf::ControllersMap::const_iterator hdcIt; /* Iterate through all hard disk controllers */ for (hdcIt = vsysThis.mapControllers.begin(); hdcIt != vsysThis.mapControllers.end(); ++hdcIt) { const ovf::HardDiskController &hdc = hdcIt->second; Utf8Str strControllerID = Utf8StrFmt("%RI32", (uint32_t)hdc.idController); switch (hdc.system) { case ovf::HardDiskController::IDE: /* Check for the constrains */ if (cIDEused < 4) { // @todo: figure out the IDE types /* Use PIIX4 as default */ Utf8Str strType = "PIIX4"; if (!hdc.strControllerType.compare("PIIX3", Utf8Str::CaseInsensitive)) strType = "PIIX3"; else if (!hdc.strControllerType.compare("ICH6", Utf8Str::CaseInsensitive)) strType = "ICH6"; pNewDesc->addEntry(VirtualSystemDescriptionType_HardDiskControllerIDE, strControllerID, // strRef hdc.strControllerType, // aOvfValue strType); // aVboxValue } else /* Warn only once */ if (cIDEused == 2) addWarning(tr("The virtual \"%s\" system requests support for more than two IDE controller channels, but VirtualBox supports only two."), vsysThis.strName.c_str()); ++cIDEused; break; case ovf::HardDiskController::SATA: /* Check for the constrains */ if (cSATAused < 1) { // @todo: figure out the SATA types /* We only support a plain AHCI controller, so use them always */ pNewDesc->addEntry(VirtualSystemDescriptionType_HardDiskControllerSATA, strControllerID, hdc.strControllerType, "AHCI"); } else { /* Warn only once */ if (cSATAused == 1) addWarning(tr("The virtual system \"%s\" requests support for more than one SATA controller, but VirtualBox has support for only one"), vsysThis.strName.c_str()); } ++cSATAused; break; case ovf::HardDiskController::SCSI: /* Check for the constrains */ if (cSCSIused < 1) { VirtualSystemDescriptionType_T vsdet = VirtualSystemDescriptionType_HardDiskControllerSCSI; Utf8Str hdcController = "LsiLogic"; if (!hdc.strControllerType.compare("lsilogicsas", Utf8Str::CaseInsensitive)) { // OVF considers SAS a variant of SCSI but VirtualBox considers it a class of its own vsdet = VirtualSystemDescriptionType_HardDiskControllerSAS; hdcController = "LsiLogicSas"; } else if (!hdc.strControllerType.compare("BusLogic", Utf8Str::CaseInsensitive)) hdcController = "BusLogic"; pNewDesc->addEntry(vsdet, strControllerID, hdc.strControllerType, hdcController); } else addWarning(tr("The virtual system \"%s\" requests support for an additional SCSI controller of type \"%s\" with ID %s, but VirtualBox presently supports only one SCSI controller."), vsysThis.strName.c_str(), hdc.strControllerType.c_str(), strControllerID.c_str()); ++cSCSIused; break; } } /* Hard disks */ if (vsysThis.mapVirtualDisks.size() > 0) { ovf::VirtualDisksMap::const_iterator itVD; /* Iterate through all hard disks ()*/ for (itVD = vsysThis.mapVirtualDisks.begin(); itVD != vsysThis.mapVirtualDisks.end(); ++itVD) { const ovf::VirtualDisk &hd = itVD->second; /* Get the associated disk image */ const ovf::DiskImage &di = m->pReader->m_mapDisks[hd.strDiskId]; // @todo: // - figure out all possible vmdk formats we also support // - figure out if there is a url specifier for vhd already // - we need a url specifier for the vdi format if ( di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#sparse", Utf8Str::CaseInsensitive) || di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#streamOptimized", Utf8Str::CaseInsensitive) || di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive) || di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive) ) { /* If the href is empty use the VM name as filename */ Utf8Str strFilename = di.strHref; if (!strFilename.length()) strFilename = Utf8StrFmt("%s.vmdk", nameVBox.c_str()); Utf8Str strTargetPath = Utf8Str(strMachineFolder) .append(RTPATH_DELIMITER) .append(di.strHref);; searchUniqueDiskImageFilePath(strTargetPath); /* find the description for the hard disk controller * that has the same ID as hd.idController */ const VirtualSystemDescriptionEntry *pController; if (!(pController = pNewDesc->findControllerFromID(hd.idController))) throw setError(E_FAIL, tr("Cannot find hard disk controller with OVF instance ID %RI32 to which disk \"%s\" should be attached"), hd.idController, di.strHref.c_str()); /* controller to attach to, and the bus within that controller */ Utf8StrFmt strExtraConfig("controller=%RI16;channel=%RI16", pController->ulIndex, hd.ulAddressOnParent); pNewDesc->addEntry(VirtualSystemDescriptionType_HardDiskImage, hd.strDiskId, di.strHref, strTargetPath, di.ulSuggestedSizeMB, strExtraConfig); } else throw setError(VBOX_E_FILE_ERROR, tr("Unsupported format for virtual disk image in OVF: \"%s\"", di.strFormat.c_str())); } } m->virtualSystemDescriptions.push_back(pNewDesc); } } catch (HRESULT aRC) { /* On error we clear the list & return */ m->virtualSystemDescriptions.clear(); rc = aRC; } // reset the appliance state alock.acquire(); m->state = Data::ApplianceIdle; return rc; } /** * Public method implementation. This creates one or more new machines according to the * VirtualSystemScription instances created by Appliance::Interpret(). * Thread implementation is in Appliance::importImpl(). * @param aProgress * @return */ STDMETHODIMP Appliance::ImportMachines(IProgress **aProgress) { CheckComArgOutPointerValid(aProgress); AutoCaller autoCaller(this); if (FAILED(autoCaller.rc())) return autoCaller.rc(); AutoReadLock alock(this COMMA_LOCKVAL_SRC_POS); // do not allow entering this method if the appliance is busy reading or writing if (!isApplianceIdle()) return E_ACCESSDENIED; if (!m->pReader) return setError(E_FAIL, tr("Cannot import machines without reading it first (call read() before importMachines())")); ComObjPtr progress; HRESULT rc = S_OK; try { rc = importImpl(m->locInfo, progress); } catch (HRESULT aRC) { rc = aRC; } if (SUCCEEDED(rc)) /* Return progress to the caller */ progress.queryInterfaceTo(aProgress); return rc; } //////////////////////////////////////////////////////////////////////////////// // // Appliance private methods // //////////////////////////////////////////////////////////////////////////////// /******************************************************************************* * Read stuff ******************************************************************************/ /** * Implementation for reading an OVF. This starts a new thread which will call * Appliance::taskThreadImportOrExport() which will then call readFS() or readS3(). * This will then open the OVF with ovfreader.cpp. * * This is in a separate private method because it is used from three locations: * * 1) from the public Appliance::Read(). * * 2) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(), which * called Appliance::readFSOVA(), which called Appliance::importImpl(), which then called this again. * * 3) from Appliance::readS3(), which got called from a previous instance of Appliance::taskThreadImportOrExport(). * * @param aLocInfo * @param aProgress * @return */ HRESULT Appliance::readImpl(const LocationInfo &aLocInfo, ComObjPtr &aProgress) { BstrFmt bstrDesc = BstrFmt(tr("Reading appliance '%s'"), aLocInfo.strPath.c_str()); HRESULT rc; /* Create the progress object */ aProgress.createObject(); if (aLocInfo.storageType == VFSType_File) /* 1 operation only */ rc = aProgress->init(mVirtualBox, static_cast(this), bstrDesc.raw(), TRUE /* aCancelable */); else /* 4/5 is downloading, 1/5 is reading */ rc = aProgress->init(mVirtualBox, static_cast(this), bstrDesc.raw(), TRUE /* aCancelable */, 2, // ULONG cOperations, 5, // ULONG ulTotalOperationsWeight, BstrFmt(tr("Download appliance '%s'"), aLocInfo.strPath.c_str()).raw(), // CBSTR bstrFirstOperationDescription, 4); // ULONG ulFirstOperationWeight, if (FAILED(rc)) throw rc; /* Initialize our worker task */ std::auto_ptr task(new TaskOVF(this, TaskOVF::Read, aLocInfo, aProgress)); rc = task->startThread(); if (FAILED(rc)) throw rc; /* Don't destruct on success */ task.release(); return rc; } /** * Actual worker code for reading an OVF from disk. This is called from Appliance::taskThreadImportOrExport() * and therefore runs on the OVF read worker thread. This opens the OVF with ovfreader.cpp. * * This runs in two contexts: * * 1) in a first worker thread; in that case, Appliance::Read() called Appliance::readImpl(); * * 2) in a second worker thread; in that case, Appliance::Read() called Appliance::readImpl(), which * called Appliance::readS3(), which called Appliance::readImpl(), which then called this. * * @param pTask * @return */ HRESULT Appliance::readFS(TaskOVF *pTask) { LogFlowFuncEnter(); LogFlowFunc(("Appliance %p\n", this)); AutoCaller autoCaller(this); if (FAILED(autoCaller.rc())) return autoCaller.rc(); AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS); HRESULT rc = S_OK; if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive)) rc = readFSOVF(pTask); else rc = readFSOVA(pTask); LogFlowFunc(("rc=%Rhrc\n", rc)); LogFlowFuncLeave(); return rc; } HRESULT Appliance::readFSOVF(TaskOVF *pTask) { LogFlowFuncEnter(); HRESULT rc = S_OK; PVDINTERFACEIO pSha1Callbacks = 0; PVDINTERFACEIO pRTFileCallbacks = 0; do { pSha1Callbacks = Sha1CreateInterface(); if (!pSha1Callbacks) { rc = E_OUTOFMEMORY; break; } pRTFileCallbacks = RTFileCreateInterface(); if (!pRTFileCallbacks) { rc = E_OUTOFMEMORY; break; } VDINTERFACE VDInterfaceIO; SHA1STORAGE storage; RT_ZERO(storage); int vrc = VDInterfaceAdd(&VDInterfaceIO, "Appliance::IORTFile", VDINTERFACETYPE_IO, pRTFileCallbacks, 0, &storage.pVDImageIfaces); if (RT_FAILURE(vrc)) { rc = E_FAIL; break; } rc = readFSImpl(pTask, pSha1Callbacks, &storage); }while(0); /* Cleanup */ if (pSha1Callbacks) RTMemFree(pSha1Callbacks); if (pRTFileCallbacks) RTMemFree(pRTFileCallbacks); LogFlowFunc(("rc=%Rhrc\n", rc)); LogFlowFuncLeave(); return rc; } HRESULT Appliance::readFSOVA(TaskOVF *pTask) { LogFlowFuncEnter(); RTTAR tar; int vrc = RTTarOpen(&tar, pTask->locInfo.strPath.c_str(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, true); if (RT_FAILURE(vrc)) return setError(VBOX_E_FILE_ERROR, tr("Could not open OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc); HRESULT rc = S_OK; PVDINTERFACEIO pSha1Callbacks = 0; PVDINTERFACEIO pRTTarCallbacks = 0; do { pSha1Callbacks = Sha1CreateInterface(); if (!pSha1Callbacks) { rc = E_OUTOFMEMORY; break; } pRTTarCallbacks = RTTarCreateInterface(); if (!pRTTarCallbacks) { rc = E_OUTOFMEMORY; break; } VDINTERFACE VDInterfaceIO; SHA1STORAGE storage; RT_ZERO(storage); vrc = VDInterfaceAdd(&VDInterfaceIO, "Appliance::IORTTar", VDINTERFACETYPE_IO, pRTTarCallbacks, tar, &storage.pVDImageIfaces); if (RT_FAILURE(vrc)) { rc = E_FAIL; break; } rc = readFSImpl(pTask, pSha1Callbacks, &storage); }while(0); RTTarClose(tar); /* Cleanup */ if (pSha1Callbacks) RTMemFree(pSha1Callbacks); if (pRTTarCallbacks) RTMemFree(pRTTarCallbacks); LogFlowFunc(("rc=%Rhrc\n", rc)); LogFlowFuncLeave(); return rc; } HRESULT Appliance::readFSImpl(TaskOVF *pTask, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage) { LogFlowFuncEnter(); HRESULT rc = S_OK; pStorage->fCreateDigest = true; void *pvTmpBuf = 0; try { Utf8Str strOvfFile = Utf8Str(pTask->locInfo.strPath).stripExt().append(".ovf"); /* Read the OVF into a memory buffer */ size_t cbSize = 0; int vrc = Sha1ReadBuf(strOvfFile.c_str(), &pvTmpBuf, &cbSize, pCallbacks, pStorage); if (RT_FAILURE(vrc)) throw setError(VBOX_E_FILE_ERROR, tr("Could not read OVF file '%s' (%Rrc)"), RTPathFilename(strOvfFile.c_str()), vrc); /* Copy the SHA1 sum of the OVF file for later validation */ m->strOVFSHA1Digest = pStorage->strDigest; /* Read & parse the XML structure of the OVF file */ m->pReader = new ovf::OVFReader(pvTmpBuf, cbSize, pTask->locInfo.strPath); } catch (iprt::Error &x) // includes all XML exceptions { rc = setError(VBOX_E_FILE_ERROR, x.what()); } catch (HRESULT aRC) { rc = aRC; } /* Cleanup */ if (pvTmpBuf) RTMemFree(pvTmpBuf); LogFlowFunc(("rc=%Rhrc\n", rc)); LogFlowFuncLeave(); return rc; } /** * Worker code for reading OVF from the cloud. This is called from Appliance::taskThreadImportOrExport() * in S3 mode and therefore runs on the OVF read worker thread. This then starts a second worker * thread to create temporary files (see Appliance::readFS()). * * @param pTask * @return */ HRESULT Appliance::readS3(TaskOVF *pTask) { LogFlowFuncEnter(); LogFlowFunc(("Appliance %p\n", this)); AutoCaller autoCaller(this); if (FAILED(autoCaller.rc())) return autoCaller.rc(); AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS); HRESULT rc = S_OK; int vrc = VINF_SUCCESS; RTS3 hS3 = NIL_RTS3; char szOSTmpDir[RTPATH_MAX]; RTPathTemp(szOSTmpDir, sizeof(szOSTmpDir)); /* The template for the temporary directory created below */ char *pszTmpDir; RTStrAPrintf(&pszTmpDir, "%s"RTPATH_SLASH_STR"vbox-ovf-XXXXXX", szOSTmpDir); list< pair > filesList; Utf8Str strTmpOvf; try { /* Extract the bucket */ Utf8Str tmpPath = pTask->locInfo.strPath; Utf8Str bucket; parseBucket(tmpPath, bucket); /* We need a temporary directory which we can put the OVF file & all * disk images in */ vrc = RTDirCreateTemp(pszTmpDir); if (RT_FAILURE(vrc)) throw setError(VBOX_E_FILE_ERROR, tr("Cannot create temporary directory '%s'"), pszTmpDir); /* The temporary name of the target OVF file */ strTmpOvf = Utf8StrFmt("%s/%s", pszTmpDir, RTPathFilename(tmpPath.c_str())); /* Next we have to download the OVF */ vrc = RTS3Create(&hS3, pTask->locInfo.strUsername.c_str(), pTask->locInfo.strPassword.c_str(), pTask->locInfo.strHostname.c_str(), "virtualbox-agent/"VBOX_VERSION_STRING); if (RT_FAILURE(vrc)) throw setError(VBOX_E_IPRT_ERROR, tr("Cannot create S3 service handler")); RTS3SetProgressCallback(hS3, pTask->updateProgress, &pTask); /* Get it */ char *pszFilename = RTPathFilename(strTmpOvf.c_str()); vrc = RTS3GetKey(hS3, bucket.c_str(), pszFilename, strTmpOvf.c_str()); if (RT_FAILURE(vrc)) { if (vrc == VERR_S3_CANCELED) throw S_OK; /* todo: !!!!!!!!!!!!! */ else if (vrc == VERR_S3_ACCESS_DENIED) throw setError(E_ACCESSDENIED, tr("Cannot download file '%s' from S3 storage server (Access denied). Make sure that your credentials are right." "Also check that your host clock is properly synced"), pszFilename); else if (vrc == VERR_S3_NOT_FOUND) throw setError(VBOX_E_FILE_ERROR, tr("Cannot download file '%s' from S3 storage server (File not found)"), pszFilename); else throw setError(VBOX_E_IPRT_ERROR, tr("Cannot download file '%s' from S3 storage server (%Rrc)"), pszFilename, vrc); } /* Close the connection early */ RTS3Destroy(hS3); hS3 = NIL_RTS3; pTask->pProgress->SetNextOperation(Bstr(tr("Reading")).raw(), 1); /* Prepare the temporary reading of the OVF */ ComObjPtr progress; LocationInfo li; li.strPath = strTmpOvf; /* Start the reading from the fs */ rc = readImpl(li, progress); if (FAILED(rc)) throw rc; /* Unlock the appliance for the reading thread */ appLock.release(); /* Wait until the reading is done, but report the progress back to the caller */ ComPtr progressInt(progress); waitForAsyncProgress(pTask->pProgress, progressInt); /* Any errors will be thrown */ /* Again lock the appliance for the next steps */ appLock.acquire(); } catch(HRESULT aRC) { rc = aRC; } /* Cleanup */ RTS3Destroy(hS3); /* Delete all files which where temporary created */ if (RTPathExists(strTmpOvf.c_str())) { vrc = RTFileDelete(strTmpOvf.c_str()); if (RT_FAILURE(vrc)) rc = setError(VBOX_E_FILE_ERROR, tr("Cannot delete file '%s' (%Rrc)"), strTmpOvf.c_str(), vrc); } /* Delete the temporary directory */ if (RTPathExists(pszTmpDir)) { vrc = RTDirRemove(pszTmpDir); if (RT_FAILURE(vrc)) rc = setError(VBOX_E_FILE_ERROR, tr("Cannot delete temporary directory '%s' (%Rrc)"), pszTmpDir, vrc); } if (pszTmpDir) RTStrFree(pszTmpDir); LogFlowFunc(("rc=%Rhrc\n", rc)); LogFlowFuncLeave(); return rc; } /******************************************************************************* * Import stuff ******************************************************************************/ /** * Implementation for importing OVF data into VirtualBox. This starts a new thread which will call * Appliance::taskThreadImportOrExport(). * * This creates one or more new machines according to the VirtualSystemScription instances created by * Appliance::Interpret(). * * This is in a separate private method because it is used from two locations: * * 1) from the public Appliance::ImportMachines(). * 2) from Appliance::importS3(), which got called from a previous instance of Appliance::taskThreadImportOrExport(). * * @param aLocInfo * @param aProgress * @return */ HRESULT Appliance::importImpl(const LocationInfo &locInfo, ComObjPtr &progress) { HRESULT rc = S_OK; SetUpProgressMode mode; if (locInfo.storageType == VFSType_File) mode = ImportFile; else mode = ImportS3; rc = setUpProgress(progress, BstrFmt(tr("Importing appliance '%s'"), locInfo.strPath.c_str()), mode); if (FAILED(rc)) throw rc; /* Initialize our worker task */ std::auto_ptr task(new TaskOVF(this, TaskOVF::Import, locInfo, progress)); rc = task->startThread(); if (FAILED(rc)) throw rc; /* Don't destruct on success */ task.release(); return rc; } /** * Actual worker code for importing OVF data into VirtualBox. This is called from Appliance::taskThreadImportOrExport() * and therefore runs on the OVF import worker thread. This creates one or more new machines according to the * VirtualSystemScription instances created by Appliance::Interpret(). * * This runs in three contexts: * * 1) in a first worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(); * * 2) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(), which * called Appliance::importFSOVA(), which called Appliance::importImpl(), which then called this again. * * 3) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(), which * called Appliance::importS3(), which called Appliance::importImpl(), which then called this again. * * @param pTask * @return */ HRESULT Appliance::importFS(TaskOVF *pTask) { LogFlowFuncEnter(); LogFlowFunc(("Appliance %p\n", this)); AutoCaller autoCaller(this); if (FAILED(autoCaller.rc())) return autoCaller.rc(); /* Change the appliance state so we can safely leave the lock while doing * time-consuming disk imports; also the below method calls do all kinds of * locking which conflicts with the appliance object lock. */ AutoWriteLock writeLock(this COMMA_LOCKVAL_SRC_POS); /* Check if the appliance is currently busy. */ if (!isApplianceIdle()) return E_ACCESSDENIED; /* Set the internal state to importing. */ m->state = Data::ApplianceImporting; HRESULT rc = S_OK; /* Clear the list of imported machines, if any */ m->llGuidsMachinesCreated.clear(); if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive)) rc = importFSOVF(pTask, writeLock); else rc = importFSOVA(pTask, writeLock); if (FAILED(rc)) { /* With _whatever_ error we've had, do a complete roll-back of * machines and disks we've created */ writeLock.release(); for (list::iterator itID = m->llGuidsMachinesCreated.begin(); itID != m->llGuidsMachinesCreated.end(); ++itID) { Guid guid = *itID; Bstr bstrGuid = guid.toUtf16(); ComPtr failedMachine; HRESULT rc2 = mVirtualBox->FindMachine(bstrGuid.raw(), failedMachine.asOutParam()); if (SUCCEEDED(rc2)) { SafeIfaceArray aMedia; rc2 = failedMachine->Unregister(CleanupMode_DetachAllReturnHardDisksOnly, ComSafeArrayAsOutParam(aMedia)); ComPtr pProgress2; rc2 = failedMachine->Delete(ComSafeArrayAsInParam(aMedia), pProgress2.asOutParam()); pProgress2->WaitForCompletion(-1); } } writeLock.acquire(); } /* Reset the state so others can call methods again */ m->state = Data::ApplianceIdle; LogFlowFunc(("rc=%Rhrc\n", rc)); LogFlowFuncLeave(); return rc; } HRESULT Appliance::importFSOVF(TaskOVF *pTask, AutoWriteLockBase& writeLock) { LogFlowFuncEnter(); HRESULT rc = S_OK; PVDINTERFACEIO pSha1Callbacks = 0; PVDINTERFACEIO pRTFileCallbacks = 0; void *pvMfBuf = 0; writeLock.release(); try { /* Create the necessary file access interfaces. */ pSha1Callbacks = Sha1CreateInterface(); if (!pSha1Callbacks) throw E_OUTOFMEMORY; pRTFileCallbacks = RTFileCreateInterface(); if (!pRTFileCallbacks) throw E_OUTOFMEMORY; VDINTERFACE VDInterfaceIO; SHA1STORAGE storage; RT_ZERO(storage); storage.fCreateDigest = true; int vrc = VDInterfaceAdd(&VDInterfaceIO, "Appliance::IORTFile", VDINTERFACETYPE_IO, pRTFileCallbacks, 0, &storage.pVDImageIfaces); if (RT_FAILURE(vrc)) throw E_FAIL; size_t cbMfSize = 0; Utf8Str strMfFile = Utf8Str(pTask->locInfo.strPath).stripExt().append(".mf"); /* Create the import stack for the rollback on errors. */ ImportStack stack(pTask->locInfo, m->pReader->m_mapDisks, pTask->pProgress); /* Do we need the digest information? */ storage.fCreateDigest = RTFileExists(strMfFile.c_str()); /* Now import the appliance. */ importMachines(stack, pSha1Callbacks, &storage); /* Read & verify the manifest file, if there is one. */ if (storage.fCreateDigest) { /* Add the ovf file to the digest list. */ stack.llSrcDisksDigest.push_front(STRPAIR(pTask->locInfo.strPath, m->strOVFSHA1Digest)); rc = readManifestFile(strMfFile, &pvMfBuf, &cbMfSize, pSha1Callbacks, &storage); if (FAILED(rc)) throw rc; rc = verifyManifestFile(strMfFile, stack, pvMfBuf, cbMfSize); if (FAILED(rc)) throw rc; } } catch (HRESULT rc2) { rc = rc2; } writeLock.acquire(); /* Cleanup */ if (pvMfBuf) RTMemFree(pvMfBuf); if (pSha1Callbacks) RTMemFree(pSha1Callbacks); if (pRTFileCallbacks) RTMemFree(pRTFileCallbacks); LogFlowFunc(("rc=%Rhrc\n", rc)); LogFlowFuncLeave(); return rc; } HRESULT Appliance::importFSOVA(TaskOVF *pTask, AutoWriteLockBase& writeLock) { LogFlowFuncEnter(); RTTAR tar; int vrc = RTTarOpen(&tar, pTask->locInfo.strPath.c_str(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, true); if (RT_FAILURE(vrc)) return setError(VBOX_E_FILE_ERROR, tr("Could not open OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc); HRESULT rc = S_OK; PVDINTERFACEIO pSha1Callbacks = 0; PVDINTERFACEIO pRTTarCallbacks = 0; void *pvMfBuf = 0; writeLock.release(); try { /* Create the necessary file access interfaces. */ pSha1Callbacks = Sha1CreateInterface(); if (!pSha1Callbacks) throw E_OUTOFMEMORY; pRTTarCallbacks = RTTarCreateInterface(); if (!pRTTarCallbacks) throw E_OUTOFMEMORY; VDINTERFACE VDInterfaceIO; SHA1STORAGE storage; RT_ZERO(storage); vrc = VDInterfaceAdd(&VDInterfaceIO, "Appliance::IORTTar", VDINTERFACETYPE_IO, pRTTarCallbacks, tar, &storage.pVDImageIfaces); if (RT_FAILURE(vrc)) throw E_FAIL; /* Skip the OVF file, cause this was read in IAppliance::Read already. */ vrc = RTTarSeekNextFile(tar); if (RT_FAILURE(vrc)) /* Better error .... no unusual error */ throw E_FAIL; PVDINTERFACEIO pCallbacks = pSha1Callbacks; PSHA1STORAGE pStorage = &storage; /* We always need to create the digest, cause we didn't know if there * is a manifest file in the stream. */ pStorage->fCreateDigest = true; size_t cbMfSize = 0; Utf8Str strMfFile = Utf8Str(pTask->locInfo.strPath).stripExt().append(".mf"); /* Create the import stack for the rollback on errors. */ ImportStack stack(pTask->locInfo, m->pReader->m_mapDisks, pTask->pProgress); /* * Try to read the manifest file. First try. * * Note: This isn't fatal if the file is not found. The standard * defines 3 cases. * 1. no manifest file * 2. manifest file after the OVF file * 3. manifest file after all disk files * If we want streaming capabilities, we can't check if it is there by * searching for it. We have to try to open it on all possible places. * If it fails here, we will try it again after all disks where read. */ rc = readTarManifestFile(tar, strMfFile, &pvMfBuf, &cbMfSize, pCallbacks, pStorage); if (FAILED(rc)) throw rc; /* Now import the appliance. */ importMachines(stack, pCallbacks, pStorage); /* Try to read the manifest file. Second try. */ if (!pvMfBuf) { rc = readTarManifestFile(tar, strMfFile, &pvMfBuf, &cbMfSize, pCallbacks, pStorage); if (FAILED(rc)) throw rc; } /* If we were able to read a manifest file we can check it now. */ if (pvMfBuf) { /* Add the ovf file to the digest list. */ stack.llSrcDisksDigest.push_front(STRPAIR(Utf8Str(pTask->locInfo.strPath).stripExt().append(".ovf"), m->strOVFSHA1Digest)); rc = verifyManifestFile(strMfFile, stack, pvMfBuf, cbMfSize); if (FAILED(rc)) throw rc; } } catch (HRESULT rc2) { rc = rc2; } writeLock.acquire(); RTTarClose(tar); /* Cleanup */ if (pvMfBuf) RTMemFree(pvMfBuf); if (pSha1Callbacks) RTMemFree(pSha1Callbacks); if (pRTTarCallbacks) RTMemFree(pRTTarCallbacks); LogFlowFunc(("rc=%Rhrc\n", rc)); LogFlowFuncLeave(); return rc; } /** * Worker code for importing OVF from the cloud. This is called from Appliance::taskThreadImportOrExport() * in S3 mode and therefore runs on the OVF import worker thread. This then starts a second worker * thread to import from temporary files (see Appliance::importFS()). * @param pTask * @return */ HRESULT Appliance::importS3(TaskOVF *pTask) { LogFlowFuncEnter(); LogFlowFunc(("Appliance %p\n", this)); AutoCaller autoCaller(this); if (FAILED(autoCaller.rc())) return autoCaller.rc(); AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS); int vrc = VINF_SUCCESS; RTS3 hS3 = NIL_RTS3; char szOSTmpDir[RTPATH_MAX]; RTPathTemp(szOSTmpDir, sizeof(szOSTmpDir)); /* The template for the temporary directory created below */ char *pszTmpDir; RTStrAPrintf(&pszTmpDir, "%s"RTPATH_SLASH_STR"vbox-ovf-XXXXXX", szOSTmpDir); list< pair > filesList; HRESULT rc = S_OK; try { /* Extract the bucket */ Utf8Str tmpPath = pTask->locInfo.strPath; Utf8Str bucket; parseBucket(tmpPath, bucket); /* We need a temporary directory which we can put the all disk images * in */ vrc = RTDirCreateTemp(pszTmpDir); if (RT_FAILURE(vrc)) throw setError(VBOX_E_FILE_ERROR, tr("Cannot create temporary directory '%s' (%Rrc)"), pszTmpDir, vrc); /* Add every disks of every virtual system to an internal list */ list< ComObjPtr >::const_iterator it; for (it = m->virtualSystemDescriptions.begin(); it != m->virtualSystemDescriptions.end(); ++it) { ComObjPtr vsdescThis = (*it); std::list avsdeHDs = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskImage); std::list::const_iterator itH; for (itH = avsdeHDs.begin(); itH != avsdeHDs.end(); ++itH) { const Utf8Str &strTargetFile = (*itH)->strOvf; if (!strTargetFile.isEmpty()) { /* The temporary name of the target disk file */ Utf8StrFmt strTmpDisk("%s/%s", pszTmpDir, RTPathFilename(strTargetFile.c_str())); filesList.push_back(pair(strTmpDisk, (*itH)->ulSizeMB)); } } } /* Next we have to download the disk images */ vrc = RTS3Create(&hS3, pTask->locInfo.strUsername.c_str(), pTask->locInfo.strPassword.c_str(), pTask->locInfo.strHostname.c_str(), "virtualbox-agent/"VBOX_VERSION_STRING); if (RT_FAILURE(vrc)) throw setError(VBOX_E_IPRT_ERROR, tr("Cannot create S3 service handler")); RTS3SetProgressCallback(hS3, pTask->updateProgress, &pTask); /* Download all files */ for (list< pair >::const_iterator it1 = filesList.begin(); it1 != filesList.end(); ++it1) { const pair &s = (*it1); const Utf8Str &strSrcFile = s.first; /* Construct the source file name */ char *pszFilename = RTPathFilename(strSrcFile.c_str()); /* Advance to the next operation */ if (!pTask->pProgress.isNull()) pTask->pProgress->SetNextOperation(BstrFmt(tr("Downloading file '%s'"), pszFilename).raw(), s.second); vrc = RTS3GetKey(hS3, bucket.c_str(), pszFilename, strSrcFile.c_str()); if (RT_FAILURE(vrc)) { if (vrc == VERR_S3_CANCELED) throw S_OK; /* todo: !!!!!!!!!!!!! */ else if (vrc == VERR_S3_ACCESS_DENIED) throw setError(E_ACCESSDENIED, tr("Cannot download file '%s' from S3 storage server (Access denied). " "Make sure that your credentials are right. Also check that your host clock is properly synced"), pszFilename); else if (vrc == VERR_S3_NOT_FOUND) throw setError(VBOX_E_FILE_ERROR, tr("Cannot download file '%s' from S3 storage server (File not found)"), pszFilename); else throw setError(VBOX_E_IPRT_ERROR, tr("Cannot download file '%s' from S3 storage server (%Rrc)"), pszFilename, vrc); } } /* Provide a OVF file (haven't to exist) so the import routine can * figure out where the disk images/manifest file are located. */ Utf8StrFmt strTmpOvf("%s/%s", pszTmpDir, RTPathFilename(tmpPath.c_str())); /* Now check if there is an manifest file. This is optional. */ Utf8Str strManifestFile; //= queryManifestFileName(strTmpOvf); // Utf8Str strManifestFile = queryManifestFileName(strTmpOvf); char *pszFilename = RTPathFilename(strManifestFile.c_str()); if (!pTask->pProgress.isNull()) pTask->pProgress->SetNextOperation(BstrFmt(tr("Downloading file '%s'"), pszFilename).raw(), 1); /* Try to download it. If the error is VERR_S3_NOT_FOUND, it isn't fatal. */ vrc = RTS3GetKey(hS3, bucket.c_str(), pszFilename, strManifestFile.c_str()); if (RT_SUCCESS(vrc)) filesList.push_back(pair(strManifestFile, 0)); else if (RT_FAILURE(vrc)) { if (vrc == VERR_S3_CANCELED) throw S_OK; /* todo: !!!!!!!!!!!!! */ else if (vrc == VERR_S3_NOT_FOUND) vrc = VINF_SUCCESS; /* Not found is ok */ else if (vrc == VERR_S3_ACCESS_DENIED) throw setError(E_ACCESSDENIED, tr("Cannot download file '%s' from S3 storage server (Access denied)." "Make sure that your credentials are right. Also check that your host clock is properly synced"), pszFilename); else throw setError(VBOX_E_IPRT_ERROR, tr("Cannot download file '%s' from S3 storage server (%Rrc)"), pszFilename, vrc); } /* Close the connection early */ RTS3Destroy(hS3); hS3 = NIL_RTS3; pTask->pProgress->SetNextOperation(BstrFmt(tr("Importing appliance")).raw(), m->ulWeightForXmlOperation); ComObjPtr progress; /* Import the whole temporary OVF & the disk images */ LocationInfo li; li.strPath = strTmpOvf; rc = importImpl(li, progress); if (FAILED(rc)) throw rc; /* Unlock the appliance for the fs import thread */ appLock.release(); /* Wait until the import is done, but report the progress back to the caller */ ComPtr progressInt(progress); waitForAsyncProgress(pTask->pProgress, progressInt); /* Any errors will be thrown */ /* Again lock the appliance for the next steps */ appLock.acquire(); } catch(HRESULT aRC) { rc = aRC; } /* Cleanup */ RTS3Destroy(hS3); /* Delete all files which where temporary created */ for (list< pair >::const_iterator it1 = filesList.begin(); it1 != filesList.end(); ++it1) { const char *pszFilePath = (*it1).first.c_str(); if (RTPathExists(pszFilePath)) { vrc = RTFileDelete(pszFilePath); if (RT_FAILURE(vrc)) rc = setError(VBOX_E_FILE_ERROR, tr("Cannot delete file '%s' (%Rrc)"), pszFilePath, vrc); } } /* Delete the temporary directory */ if (RTPathExists(pszTmpDir)) { vrc = RTDirRemove(pszTmpDir); if (RT_FAILURE(vrc)) rc = setError(VBOX_E_FILE_ERROR, tr("Cannot delete temporary directory '%s' (%Rrc)"), pszTmpDir, vrc); } if (pszTmpDir) RTStrFree(pszTmpDir); LogFlowFunc(("rc=%Rhrc\n", rc)); LogFlowFuncLeave(); return rc; } HRESULT Appliance::readManifestFile(const Utf8Str &strFile, void **ppvBuf, size_t *pcbSize, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage) { HRESULT rc = S_OK; bool fOldDigest = pStorage->fCreateDigest; pStorage->fCreateDigest = false; /* No digest for the manifest file */ int vrc = Sha1ReadBuf(strFile.c_str(), ppvBuf, pcbSize, pCallbacks, pStorage); if ( RT_FAILURE(vrc) && vrc != VERR_FILE_NOT_FOUND) rc = setError(VBOX_E_FILE_ERROR, tr("Could not read manifest file '%s' (%Rrc)"), RTPathFilename(strFile.c_str()), vrc); pStorage->fCreateDigest = fOldDigest; /* Restore the old digest creation behavior again. */ return rc; } HRESULT Appliance::readTarManifestFile(RTTAR tar, const Utf8Str &strFile, void **ppvBuf, size_t *pcbSize, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage) { HRESULT rc = S_OK; char *pszCurFile; int vrc = RTTarCurrentFile(tar, &pszCurFile); if (RT_SUCCESS(vrc)) { if (!strcmp(pszCurFile, RTPathFilename(strFile.c_str()))) rc = readManifestFile(strFile, ppvBuf, pcbSize, pCallbacks, pStorage); RTStrFree(pszCurFile); } else if (vrc != VERR_TAR_END_OF_FILE) rc = E_FAIL; return rc; } HRESULT Appliance::verifyManifestFile(const Utf8Str &strFile, ImportStack &stack, void *pvBuf, size_t cbSize) { HRESULT rc = S_OK; PRTMANIFESTTEST paTests = (PRTMANIFESTTEST)RTMemAlloc(sizeof(RTMANIFESTTEST) * stack.llSrcDisksDigest.size()); if (!paTests) return E_OUTOFMEMORY; size_t i = 0; list::const_iterator it1; for (it1 = stack.llSrcDisksDigest.begin(); it1 != stack.llSrcDisksDigest.end(); ++it1, ++i) { paTests[i].pszTestFile = (*it1).first.c_str(); paTests[i].pszTestDigest = (*it1).second.c_str(); } size_t iFailed; int vrc = RTManifestVerifyFilesBuf(pvBuf, cbSize, paTests, stack.llSrcDisksDigest.size(), &iFailed); if (RT_UNLIKELY(vrc == VERR_MANIFEST_DIGEST_MISMATCH)) rc = setError(VBOX_E_FILE_ERROR, tr("The SHA1 digest of '%s' does not match the one in '%s' (%Rrc)"), RTPathFilename(paTests[iFailed].pszTestFile), RTPathFilename(strFile.c_str()), vrc); else if (RT_FAILURE(vrc)) rc = setError(VBOX_E_FILE_ERROR, tr("Could not verify the content of '%s' against the available files (%Rrc)"), RTPathFilename(strFile.c_str()), vrc); RTMemFree(paTests); return rc; } /** * Helper that converts VirtualSystem attachment values into VirtualBox attachment values. * Throws HRESULT values on errors! * * @param hdc in: the HardDiskController structure to attach to. * @param ulAddressOnParent in: the AddressOnParent parameter from OVF. * @param controllerType out: the name of the hard disk controller to attach to (e.g. "IDE Controller"). * @param lControllerPort out: the channel (controller port) of the controller to attach to. * @param lDevice out: the device number to attach to. */ void Appliance::convertDiskAttachmentValues(const ovf::HardDiskController &hdc, uint32_t ulAddressOnParent, Bstr &controllerType, int32_t &lControllerPort, int32_t &lDevice) { Log(("Appliance::convertDiskAttachmentValues: hdc.system=%d, hdc.fPrimary=%d, ulAddressOnParent=%d\n", hdc.system, hdc.fPrimary, ulAddressOnParent)); switch (hdc.system) { case ovf::HardDiskController::IDE: // For the IDE bus, the port parameter can be either 0 or 1, to specify the primary // or secondary IDE controller, respectively. For the primary controller of the IDE bus, // the device number can be either 0 or 1, to specify the master or the slave device, // respectively. For the secondary IDE controller, the device number is always 1 because // the master device is reserved for the CD-ROM drive. controllerType = Bstr("IDE Controller"); switch (ulAddressOnParent) { case 0: // master if (!hdc.fPrimary) { // secondary master lControllerPort = (long)1; lDevice = (long)0; } else // primary master { lControllerPort = (long)0; lDevice = (long)0; } break; case 1: // slave if (!hdc.fPrimary) { // secondary slave lControllerPort = (long)1; lDevice = (long)1; } else // primary slave { lControllerPort = (long)0; lDevice = (long)1; } break; // used by older VBox exports case 2: // interpret this as secondary master lControllerPort = (long)1; lDevice = (long)0; break; // used by older VBox exports case 3: // interpret this as secondary slave lControllerPort = (long)1; lDevice = (long)1; break; default: throw setError(VBOX_E_NOT_SUPPORTED, tr("Invalid channel %RI16 specified; IDE controllers support only 0, 1 or 2"), ulAddressOnParent); break; } break; case ovf::HardDiskController::SATA: controllerType = Bstr("SATA Controller"); lControllerPort = (long)ulAddressOnParent; lDevice = (long)0; break; case ovf::HardDiskController::SCSI: controllerType = Bstr("SCSI Controller"); lControllerPort = (long)ulAddressOnParent; lDevice = (long)0; break; default: break; } Log(("=> lControllerPort=%d, lDevice=%d\n", lControllerPort, lDevice)); } /** * Imports one disk image. This is common code shared between * -- importMachineGeneric() for the OVF case; in that case the information comes from * the OVF virtual systems; * -- importVBoxMachine(); in that case, the information comes from the * tag. * * Both ways of describing machines use the OVF disk references section, so in both cases * the caller needs to pass in the ovf::DiskImage structure from ovfreader.cpp. * * As a result, in both cases, if di.strHref is empty, we create a new disk as per the OVF * spec, even though this cannot really happen in the vbox:Machine case since such data * would never have been exported. * * This advances stack.pProgress by one operation with the disk's weight. * * @param di ovfreader.cpp structure describing the disk image from the OVF that is to be imported * @param ulSizeMB Size of the disk image (for progress reporting) * @param strTargetPath Where to create the target image. * @param pTargetHD out: The newly created target disk. This also gets pushed on stack.llHardDisksCreated for cleanup. * @param stack */ void Appliance::importOneDiskImage(const ovf::DiskImage &di, const Utf8Str &strTargetPath, ComObjPtr &pTargetHD, ImportStack &stack, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage) { // destination file must not exist if ( strTargetPath.isEmpty() || RTPathExists(strTargetPath.c_str()) ) throw setError(VBOX_E_FILE_ERROR, tr("Destination file '%s' exists"), strTargetPath.c_str()); const Utf8Str &strSourceOVF = di.strHref; // construct source file path Utf8StrFmt strSrcFilePath("%s%c%s", stack.strSourceDir.c_str(), RTPATH_DELIMITER, strSourceOVF.c_str()); // subprogress object for hard disk ComPtr pProgress2; /**************** Check */ ComObjPtr pProgress3; pProgress3.createObject(); HRESULT rc = pProgress3->init(mVirtualBox, static_cast(this), BstrFmt(tr("Creating medium")).raw(), TRUE); // rc = pProgress3->init(mVirtualBox, static_cast(this), BstrFmt(tr("Creating medium '%s'"), strTargetFilePath.c_str()).raw(), TRUE); if (FAILED(rc)) throw rc; /**************** Check */ pTargetHD.createObject(); bool fNeedsGlobalSaveSettings; // create an empty hard disk rc = pTargetHD->init(mVirtualBox, Utf8Str("VMDK"), strTargetPath, Guid::Empty, // media registry &fNeedsGlobalSaveSettings); if (FAILED(rc)) throw rc; /* If strHref is empty we have to create a new file */ if (strSourceOVF.isEmpty()) { // which format to use? Bstr srcFormat = L"VDI"; if ( di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#sparse", Utf8Str::CaseInsensitive) || di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#streamOptimized", Utf8Str::CaseInsensitive) || di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive) || di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive) ) srcFormat = L"VMDK"; rc = mVirtualBox->CreateHardDisk(srcFormat.raw(), Bstr(strTargetPath).raw(), ComPtr(pTargetHD).asOutParam()); if (FAILED(rc)) throw rc; // create a dynamic growing disk image with the given capacity rc = pTargetHD->CreateBaseStorage(di.iCapacity / _1M, MediumVariant_Standard, pProgress2.asOutParam()); if (FAILED(rc)) throw rc; // advance to the next operation stack.pProgress->SetNextOperation(BstrFmt(tr("Creating disk image '%s'"), strTargetPath.c_str()).raw(), di.ulSuggestedSizeMB); // operation's weight, as set up with the IProgress originally } else { /* Create a new hard disk interface for the destination disk image */ rc = mVirtualBox->CreateHardDisk(NULL, Bstr(strTargetPath).raw(), ComPtr(pTargetHD).asOutParam()); if (FAILED(rc)) throw rc; // We need a proper format description ComObjPtr format; // Scope for the AutoReadLock { SystemProperties *pSysProps = mVirtualBox->getSystemProperties(); AutoReadLock propsLock(pSysProps COMMA_LOCKVAL_SRC_POS); Utf8Str strFormat = "VMDK"; if (strTargetPath.endsWith("vdi", Utf8Str::CaseInsensitive)) strFormat = "VDI"; else if (strTargetPath.endsWith("vhd", Utf8Str::CaseInsensitive)) strFormat = "VHD"; format = pSysProps->mediumFormat(strFormat); if (format.isNull()) throw setError(VBOX_E_NOT_SUPPORTED, tr("Invalid medium storage format")); } /* Clone the source disk image */ ComObjPtr nullParent; rc = pTargetHD->importFile(strSrcFilePath.c_str(), format, MediumVariant_Standard, pCallbacks, pStorage, nullParent, pProgress3); /* Advance to the next operation */ stack.pProgress->SetNextOperation(BstrFmt(tr("Importing virtual disk image '%s'"), RTPathFilename(strSrcFilePath.c_str())).raw(), di.ulSuggestedSizeMB); // operation's weight, as set up with the IProgress originally); } // now wait for the background disk operation to complete; this throws HRESULTs on error ComPtr pp(pProgress3); waitForAsyncProgress(stack.pProgress, pp); stack.llSrcDisksDigest.push_back(STRPAIR(strSrcFilePath, pStorage->strDigest)); } /** * Imports one OVF virtual system (described by the given ovf::VirtualSystem and VirtualSystemDescription) * into VirtualBox by creating an IMachine instance, which is returned. * * This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean * up any leftovers from this function. For this, the given ImportStack instance has received information * about what needs cleaning up (to support rollback). * * @param vsysThis OVF virtual system (machine) to import. * @param vsdescThis Matching virtual system description (machine) to import. * @param pNewMachine out: Newly created machine. * @param stack Cleanup stack for when this throws. */ void Appliance::importMachineGeneric(const ovf::VirtualSystem &vsysThis, ComObjPtr &vsdescThis, ComPtr &pNewMachine, ImportStack &stack, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage) { HRESULT rc; // Get the instance of IGuestOSType which matches our string guest OS type so we // can use recommended defaults for the new machine where OVF doesen't provice any ComPtr osType; rc = mVirtualBox->GetGuestOSType(Bstr(stack.strOsTypeVBox).raw(), osType.asOutParam()); if (FAILED(rc)) throw rc; /* Create the machine */ rc = mVirtualBox->CreateMachine(Bstr(stack.strNameVBox).raw(), Bstr(stack.strOsTypeVBox).raw(), NULL, NULL, FALSE, pNewMachine.asOutParam()); if (FAILED(rc)) throw rc; // set the description if (!stack.strDescription.isEmpty()) { rc = pNewMachine->COMSETTER(Description)(Bstr(stack.strDescription).raw()); if (FAILED(rc)) throw rc; } // CPU count rc = pNewMachine->COMSETTER(CPUCount)(stack.cCPUs); if (FAILED(rc)) throw rc; if (stack.fForceHWVirt) { rc = pNewMachine->SetHWVirtExProperty(HWVirtExPropertyType_Enabled, TRUE); if (FAILED(rc)) throw rc; } // RAM rc = pNewMachine->COMSETTER(MemorySize)(stack.ulMemorySizeMB); if (FAILED(rc)) throw rc; /* VRAM */ /* Get the recommended VRAM for this guest OS type */ ULONG vramVBox; rc = osType->COMGETTER(RecommendedVRAM)(&vramVBox); if (FAILED(rc)) throw rc; /* Set the VRAM */ rc = pNewMachine->COMSETTER(VRAMSize)(vramVBox); if (FAILED(rc)) throw rc; // I/O APIC: Generic OVF has no setting for this. Enable it if we // import a Windows VM because if if Windows was installed without IOAPIC, // it will not mind finding an one later on, but if Windows was installed // _with_ an IOAPIC, it will bluescreen if it's not found if (!stack.fForceIOAPIC) { Bstr bstrFamilyId; rc = osType->COMGETTER(FamilyId)(bstrFamilyId.asOutParam()); if (FAILED(rc)) throw rc; if (bstrFamilyId == "Windows") stack.fForceIOAPIC = true; } if (stack.fForceIOAPIC) { ComPtr pBIOSSettings; rc = pNewMachine->COMGETTER(BIOSSettings)(pBIOSSettings.asOutParam()); if (FAILED(rc)) throw rc; rc = pBIOSSettings->COMSETTER(IOAPICEnabled)(TRUE); if (FAILED(rc)) throw rc; } if (!stack.strAudioAdapter.isEmpty()) if (stack.strAudioAdapter.compare("null", Utf8Str::CaseInsensitive) != 0) { uint32_t audio = RTStrToUInt32(stack.strAudioAdapter.c_str()); // should be 0 for AC97 ComPtr audioAdapter; rc = pNewMachine->COMGETTER(AudioAdapter)(audioAdapter.asOutParam()); if (FAILED(rc)) throw rc; rc = audioAdapter->COMSETTER(Enabled)(true); if (FAILED(rc)) throw rc; rc = audioAdapter->COMSETTER(AudioController)(static_cast(audio)); if (FAILED(rc)) throw rc; } #ifdef VBOX_WITH_USB /* USB Controller */ ComPtr usbController; rc = pNewMachine->COMGETTER(USBController)(usbController.asOutParam()); if (FAILED(rc)) throw rc; rc = usbController->COMSETTER(Enabled)(stack.fUSBEnabled); if (FAILED(rc)) throw rc; #endif /* VBOX_WITH_USB */ /* Change the network adapters */ std::list vsdeNW = vsdescThis->findByType(VirtualSystemDescriptionType_NetworkAdapter); if (vsdeNW.size() == 0) { /* No network adapters, so we have to disable our default one */ ComPtr nwVBox; rc = pNewMachine->GetNetworkAdapter(0, nwVBox.asOutParam()); if (FAILED(rc)) throw rc; rc = nwVBox->COMSETTER(Enabled)(false); if (FAILED(rc)) throw rc; } else if (vsdeNW.size() > SchemaDefs::NetworkAdapterCount) throw setError(VBOX_E_FILE_ERROR, tr("Too many network adapters: OVF requests %d network adapters, but VirtualBox only supports %d"), vsdeNW.size(), SchemaDefs::NetworkAdapterCount); else { list::const_iterator nwIt; size_t a = 0; for (nwIt = vsdeNW.begin(); nwIt != vsdeNW.end(); ++nwIt, ++a) { const VirtualSystemDescriptionEntry* pvsys = *nwIt; const Utf8Str &nwTypeVBox = pvsys->strVboxCurrent; uint32_t tt1 = RTStrToUInt32(nwTypeVBox.c_str()); ComPtr pNetworkAdapter; rc = pNewMachine->GetNetworkAdapter((ULONG)a, pNetworkAdapter.asOutParam()); if (FAILED(rc)) throw rc; /* Enable the network card & set the adapter type */ rc = pNetworkAdapter->COMSETTER(Enabled)(true); if (FAILED(rc)) throw rc; rc = pNetworkAdapter->COMSETTER(AdapterType)(static_cast(tt1)); if (FAILED(rc)) throw rc; // default is NAT; change to "bridged" if extra conf says so if (!pvsys->strExtraConfigCurrent.compare("type=Bridged", Utf8Str::CaseInsensitive)) { /* Attach to the right interface */ rc = pNetworkAdapter->AttachToBridgedInterface(); if (FAILED(rc)) throw rc; ComPtr host; rc = mVirtualBox->COMGETTER(Host)(host.asOutParam()); if (FAILED(rc)) throw rc; com::SafeIfaceArray nwInterfaces; rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces)); if (FAILED(rc)) throw rc; // We search for the first host network interface which // is usable for bridged networking for (size_t j = 0; j < nwInterfaces.size(); ++j) { HostNetworkInterfaceType_T itype; rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype); if (FAILED(rc)) throw rc; if (itype == HostNetworkInterfaceType_Bridged) { Bstr name; rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam()); if (FAILED(rc)) throw rc; /* Set the interface name to attach to */ pNetworkAdapter->COMSETTER(HostInterface)(name.raw()); if (FAILED(rc)) throw rc; break; } } } /* Next test for host only interfaces */ else if (!pvsys->strExtraConfigCurrent.compare("type=HostOnly", Utf8Str::CaseInsensitive)) { /* Attach to the right interface */ rc = pNetworkAdapter->AttachToHostOnlyInterface(); if (FAILED(rc)) throw rc; ComPtr host; rc = mVirtualBox->COMGETTER(Host)(host.asOutParam()); if (FAILED(rc)) throw rc; com::SafeIfaceArray nwInterfaces; rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces)); if (FAILED(rc)) throw rc; // We search for the first host network interface which // is usable for host only networking for (size_t j = 0; j < nwInterfaces.size(); ++j) { HostNetworkInterfaceType_T itype; rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype); if (FAILED(rc)) throw rc; if (itype == HostNetworkInterfaceType_HostOnly) { Bstr name; rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam()); if (FAILED(rc)) throw rc; /* Set the interface name to attach to */ pNetworkAdapter->COMSETTER(HostInterface)(name.raw()); if (FAILED(rc)) throw rc; break; } } } } } // IDE Hard disk controller std::list vsdeHDCIDE = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerIDE); // In OVF (at least VMware's version of it), an IDE controller has two ports, so VirtualBox's single IDE controller // with two channels and two ports each counts as two OVF IDE controllers -- so we accept one or two such IDE controllers uint32_t cIDEControllers = vsdeHDCIDE.size(); if (cIDEControllers > 2) throw setError(VBOX_E_FILE_ERROR, tr("Too many IDE controllers in OVF; import facility only supports two")); if (vsdeHDCIDE.size() > 0) { // one or two IDE controllers present in OVF: add one VirtualBox controller ComPtr pController; rc = pNewMachine->AddStorageController(Bstr("IDE Controller").raw(), StorageBus_IDE, pController.asOutParam()); if (FAILED(rc)) throw rc; const char *pcszIDEType = vsdeHDCIDE.front()->strVboxCurrent.c_str(); if (!strcmp(pcszIDEType, "PIIX3")) rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX3); else if (!strcmp(pcszIDEType, "PIIX4")) rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX4); else if (!strcmp(pcszIDEType, "ICH6")) rc = pController->COMSETTER(ControllerType)(StorageControllerType_ICH6); else throw setError(VBOX_E_FILE_ERROR, tr("Invalid IDE controller type \"%s\""), pcszIDEType); if (FAILED(rc)) throw rc; } /* Hard disk controller SATA */ std::list vsdeHDCSATA = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerSATA); if (vsdeHDCSATA.size() > 1) throw setError(VBOX_E_FILE_ERROR, tr("Too many SATA controllers in OVF; import facility only supports one")); if (vsdeHDCSATA.size() > 0) { ComPtr pController; const Utf8Str &hdcVBox = vsdeHDCSATA.front()->strVboxCurrent; if (hdcVBox == "AHCI") { rc = pNewMachine->AddStorageController(Bstr("SATA Controller").raw(), StorageBus_SATA, pController.asOutParam()); if (FAILED(rc)) throw rc; } else throw setError(VBOX_E_FILE_ERROR, tr("Invalid SATA controller type \"%s\""), hdcVBox.c_str()); } /* Hard disk controller SCSI */ std::list vsdeHDCSCSI = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerSCSI); if (vsdeHDCSCSI.size() > 1) throw setError(VBOX_E_FILE_ERROR, tr("Too many SCSI controllers in OVF; import facility only supports one")); if (vsdeHDCSCSI.size() > 0) { ComPtr pController; Bstr bstrName(L"SCSI Controller"); StorageBus_T busType = StorageBus_SCSI; StorageControllerType_T controllerType; const Utf8Str &hdcVBox = vsdeHDCSCSI.front()->strVboxCurrent; if (hdcVBox == "LsiLogic") controllerType = StorageControllerType_LsiLogic; else if (hdcVBox == "LsiLogicSas") { // OVF treats LsiLogicSas as a SCSI controller but VBox considers it a class of its own bstrName = L"SAS Controller"; busType = StorageBus_SAS; controllerType = StorageControllerType_LsiLogicSas; } else if (hdcVBox == "BusLogic") controllerType = StorageControllerType_BusLogic; else throw setError(VBOX_E_FILE_ERROR, tr("Invalid SCSI controller type \"%s\""), hdcVBox.c_str()); rc = pNewMachine->AddStorageController(bstrName.raw(), busType, pController.asOutParam()); if (FAILED(rc)) throw rc; rc = pController->COMSETTER(ControllerType)(controllerType); if (FAILED(rc)) throw rc; } /* Hard disk controller SAS */ std::list vsdeHDCSAS = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerSAS); if (vsdeHDCSAS.size() > 1) throw setError(VBOX_E_FILE_ERROR, tr("Too many SAS controllers in OVF; import facility only supports one")); if (vsdeHDCSAS.size() > 0) { ComPtr pController; rc = pNewMachine->AddStorageController(Bstr(L"SAS Controller").raw(), StorageBus_SAS, pController.asOutParam()); if (FAILED(rc)) throw rc; rc = pController->COMSETTER(ControllerType)(StorageControllerType_LsiLogicSas); if (FAILED(rc)) throw rc; } /* Now its time to register the machine before we add any hard disks */ rc = mVirtualBox->RegisterMachine(pNewMachine); if (FAILED(rc)) throw rc; // store new machine for roll-back in case of errors Bstr bstrNewMachineId; rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam()); if (FAILED(rc)) throw rc; Guid uuidNewMachine(bstrNewMachineId); m->llGuidsMachinesCreated.push_back(uuidNewMachine); // Add floppies and CD-ROMs to the appropriate controllers. std::list vsdeFloppy = vsdescThis->findByType(VirtualSystemDescriptionType_Floppy); if (vsdeFloppy.size() > 1) throw setError(VBOX_E_FILE_ERROR, tr("Too many floppy controllers in OVF; import facility only supports one")); std::list vsdeCDROM = vsdescThis->findByType(VirtualSystemDescriptionType_CDROM); if ( (vsdeFloppy.size() > 0) || (vsdeCDROM.size() > 0) ) { // If there's an error here we need to close the session, so // we need another try/catch block. try { // to attach things we need to open a session for the new machine rc = pNewMachine->LockMachine(stack.pSession, LockType_Write); if (FAILED(rc)) throw rc; stack.fSessionOpen = true; ComPtr sMachine; rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam()); if (FAILED(rc)) throw rc; // floppy first if (vsdeFloppy.size() == 1) { ComPtr pController; rc = sMachine->AddStorageController(Bstr("Floppy Controller").raw(), StorageBus_Floppy, pController.asOutParam()); if (FAILED(rc)) throw rc; Bstr bstrName; rc = pController->COMGETTER(Name)(bstrName.asOutParam()); if (FAILED(rc)) throw rc; // this is for rollback later MyHardDiskAttachment mhda; mhda.pMachine = pNewMachine; mhda.controllerType = bstrName; mhda.lControllerPort = 0; mhda.lDevice = 0; Log(("Attaching floppy\n")); rc = sMachine->AttachDevice(mhda.controllerType.raw(), mhda.lControllerPort, mhda.lDevice, DeviceType_Floppy, NULL); if (FAILED(rc)) throw rc; stack.llHardDiskAttachments.push_back(mhda); } // CD-ROMs next for (std::list::const_iterator jt = vsdeCDROM.begin(); jt != vsdeCDROM.end(); ++jt) { // for now always attach to secondary master on IDE controller; // there seems to be no useful information in OVF where else to // attach it (@todo test with latest versions of OVF software) // find the IDE controller const ovf::HardDiskController *pController = NULL; for (ovf::ControllersMap::const_iterator kt = vsysThis.mapControllers.begin(); kt != vsysThis.mapControllers.end(); ++kt) { if (kt->second.system == ovf::HardDiskController::IDE) { pController = &kt->second; break; } } if (!pController) throw setError(VBOX_E_FILE_ERROR, tr("OVF wants a CD-ROM drive but cannot find IDE controller, which is required in this version of VirtualBox")); // this is for rollback later MyHardDiskAttachment mhda; mhda.pMachine = pNewMachine; convertDiskAttachmentValues(*pController, 2, // interpreted as secondary master mhda.controllerType, // Bstr mhda.lControllerPort, mhda.lDevice); Log(("Attaching CD-ROM to port %d on device %d\n", mhda.lControllerPort, mhda.lDevice)); rc = sMachine->AttachDevice(mhda.controllerType.raw(), mhda.lControllerPort, mhda.lDevice, DeviceType_DVD, NULL); if (FAILED(rc)) throw rc; stack.llHardDiskAttachments.push_back(mhda); } // end for (itHD = avsdeHDs.begin(); rc = sMachine->SaveSettings(); if (FAILED(rc)) throw rc; // only now that we're done with all disks, close the session rc = stack.pSession->UnlockMachine(); if (FAILED(rc)) throw rc; stack.fSessionOpen = false; } catch(HRESULT /* aRC */) { if (stack.fSessionOpen) stack.pSession->UnlockMachine(); throw; } } // create the hard disks & connect them to the appropriate controllers std::list avsdeHDs = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskImage); if (avsdeHDs.size() > 0) { // If there's an error here we need to close the session, so // we need another try/catch block. try { // to attach things we need to open a session for the new machine rc = pNewMachine->LockMachine(stack.pSession, LockType_Write); if (FAILED(rc)) throw rc; stack.fSessionOpen = true; /* Iterate over all given disk images */ list::const_iterator itHD; for (itHD = avsdeHDs.begin(); itHD != avsdeHDs.end(); ++itHD) { VirtualSystemDescriptionEntry *vsdeHD = *itHD; // vsdeHD->strRef contains the disk identifier (e.g. "vmdisk1"), which should exist // in the virtual system's disks map under that ID and also in the global images map ovf::VirtualDisksMap::const_iterator itVirtualDisk = vsysThis.mapVirtualDisks.find(vsdeHD->strRef); // and find the disk from the OVF's disk list ovf::DiskImagesMap::const_iterator itDiskImage = stack.mapDisks.find(vsdeHD->strRef); if ( (itVirtualDisk == vsysThis.mapVirtualDisks.end()) || (itDiskImage == stack.mapDisks.end()) ) throw setError(E_FAIL, tr("Internal inconsistency looking up disk image '%s'"), vsdeHD->strRef.c_str()); const ovf::DiskImage &ovfDiskImage = itDiskImage->second; const ovf::VirtualDisk &ovfVdisk = itVirtualDisk->second; ComObjPtr pTargetHD; importOneDiskImage(ovfDiskImage, vsdeHD->strVboxCurrent, pTargetHD, stack, pCallbacks, pStorage); // now use the new uuid to attach the disk image to our new machine ComPtr sMachine; rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam()); if (FAILED(rc)) throw rc; // find the hard disk controller to which we should attach ovf::HardDiskController hdc = (*vsysThis.mapControllers.find(ovfVdisk.idController)).second; // this is for rollback later MyHardDiskAttachment mhda; mhda.pMachine = pNewMachine; convertDiskAttachmentValues(hdc, ovfVdisk.ulAddressOnParent, mhda.controllerType, // Bstr mhda.lControllerPort, mhda.lDevice); Log(("Attaching disk %s to port %d on device %d\n", vsdeHD->strVboxCurrent.c_str(), mhda.lControllerPort, mhda.lDevice)); rc = sMachine->AttachDevice(mhda.controllerType.raw(), // wstring name mhda.lControllerPort, // long controllerPort mhda.lDevice, // long device DeviceType_HardDisk, // DeviceType_T type pTargetHD); if (FAILED(rc)) throw rc; stack.llHardDiskAttachments.push_back(mhda); rc = sMachine->SaveSettings(); if (FAILED(rc)) throw rc; } // end for (itHD = avsdeHDs.begin(); // only now that we're done with all disks, close the session rc = stack.pSession->UnlockMachine(); if (FAILED(rc)) throw rc; stack.fSessionOpen = false; } catch(HRESULT /* aRC */) { if (stack.fSessionOpen) stack.pSession->UnlockMachine(); throw; } } } /** * Imports one OVF virtual system (described by a vbox:Machine tag represented by the given config * structure) into VirtualBox by creating an IMachine instance, which is returned. * * This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean * up any leftovers from this function. For this, the given ImportStack instance has received information * about what needs cleaning up (to support rollback). * * The machine config stored in the settings::MachineConfigFile structure contains the UUIDs of * the disk attachments used by the machine when it was exported. We also add vbox:uuid attributes * to the OVF disks sections so we can look them up. While importing these UUIDs into a second host * will most probably work, reimporting them into the same host will cause conflicts, so we always * generate new ones on import. This involves the following: * * 1) Scan the machine config for disk attachments. * * 2) For each disk attachment found, look up the OVF disk image from the disk references section * and import the disk into VirtualBox, which creates a new UUID for it. In the machine config, * replace the old UUID with the new one. * * 3) Change the machine config according to the OVF virtual system descriptions, in case the * caller has modified them using setFinalValues(). * * 4) Create the VirtualBox machine with the modfified machine config. * * @param config * @param pNewMachine * @param stack */ void Appliance::importVBoxMachine(ComObjPtr &vsdescThis, ComPtr &pReturnNewMachine, ImportStack &stack, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage) { Assert(vsdescThis->m->pConfig); HRESULT rc = S_OK; settings::MachineConfigFile &config = *vsdescThis->m->pConfig; /* * * step 1): modify machine config according to OVF config, in case the user * has modified them using setFinalValues() * */ config.machineUserData.strDescription = stack.strDescription; config.hardwareMachine.cCPUs = stack.cCPUs; config.hardwareMachine.ulMemorySizeMB = stack.ulMemorySizeMB; if (stack.fForceIOAPIC) config.hardwareMachine.fHardwareVirt = true; if (stack.fForceIOAPIC) config.hardwareMachine.biosSettings.fIOAPICEnabled = true; /* */ #ifdef VBOX_WITH_USB // disable USB if user disabled USB config.hardwareMachine.usbController.fEnabled = stack.fUSBEnabled; #endif // audio adapter: only config is turning it off presently if (stack.strAudioAdapter.isEmpty()) config.hardwareMachine.audioAdapter.fEnabled = false; /* * * step 2: scan the machine config for media attachments * */ // for each storage controller... for (settings::StorageControllersList::iterator sit = config.storageMachine.llStorageControllers.begin(); sit != config.storageMachine.llStorageControllers.end(); ++sit) { settings::StorageController &sc = *sit; // find the OVF virtual system description entry for this storage controller switch (sc.storageBus) { case StorageBus_SATA: break; case StorageBus_SCSI: break; case StorageBus_IDE: break; case StorageBus_SAS: break; } // for each medium attachment to this controller... for (settings::AttachedDevicesList::iterator dit = sc.llAttachedDevices.begin(); dit != sc.llAttachedDevices.end(); ++dit) { settings::AttachedDevice &d = *dit; if (d.uuid.isEmpty()) // empty DVD and floppy media continue; // convert the Guid to string Utf8Str strUuid = d.uuid.toString(); // there must be an image in the OVF disk structs with the same UUID bool fFound = false; for (ovf::DiskImagesMap::const_iterator oit = stack.mapDisks.begin(); oit != stack.mapDisks.end(); ++oit) { const ovf::DiskImage &di = oit->second; if (di.uuidVbox == strUuid) { Utf8Str strTargetPath(stack.strMachineFolder); strTargetPath.append(RTPATH_DELIMITER); strTargetPath.append(di.strHref); searchUniqueDiskImageFilePath(strTargetPath); /* * * step 3: import disk * */ ComObjPtr pTargetHD; importOneDiskImage(di, strTargetPath, pTargetHD, stack, pCallbacks, pStorage); // ... and replace the old UUID in the machine config with the one of // the imported disk that was just created Bstr hdId; rc = pTargetHD->COMGETTER(Id)(hdId.asOutParam()); if (FAILED(rc)) throw rc; d.uuid = hdId; fFound = true; break; } } // no disk with such a UUID found: if (!fFound) throw setError(E_FAIL, tr(" element in OVF contains a medium attachment for the disk image %s but the OVF describes no such image"), strUuid.c_str()); } // for (settings::AttachedDevicesList::const_iterator dit = sc.llAttachedDevices.begin(); } // for (settings::StorageControllersList::const_iterator sit = config.storageMachine.llStorageControllers.begin(); /* * * step 4): create the machine and have it import the config * */ ComObjPtr pNewMachine; rc = pNewMachine.createObject(); if (FAILED(rc)) throw rc; // this magic constructor fills the new machine object with the MachineConfig // instance that we created from the vbox:Machine rc = pNewMachine->init(mVirtualBox, stack.strNameVBox, // name from OVF preparations; can be suffixed to avoid duplicates, or changed by user config); // the whole machine config if (FAILED(rc)) throw rc; pReturnNewMachine = ComPtr(pNewMachine); // and register it rc = mVirtualBox->RegisterMachine(pNewMachine); if (FAILED(rc)) throw rc; // store new machine for roll-back in case of errors Bstr bstrNewMachineId; rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam()); if (FAILED(rc)) throw rc; m->llGuidsMachinesCreated.push_back(Guid(bstrNewMachineId)); } void Appliance::importMachines(ImportStack &stack, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage) { HRESULT rc = S_OK; // this is safe to access because this thread only gets started // if pReader != NULL const ovf::OVFReader &reader = *m->pReader; // create a session for the machine + disks we manipulate below rc = stack.pSession.createInprocObject(CLSID_Session); if (FAILED(rc)) throw rc; list::const_iterator it; list< ComObjPtr >::const_iterator it1; /* Iterate through all virtual systems of that appliance */ size_t i = 0; for (it = reader.m_llVirtualSystems.begin(), it1 = m->virtualSystemDescriptions.begin(); it != reader.m_llVirtualSystems.end(); ++it, ++it1, ++i) { const ovf::VirtualSystem &vsysThis = *it; ComObjPtr vsdescThis = (*it1); ComPtr pNewMachine; // there are two ways in which we can create a vbox machine from OVF: // -- either this OVF was written by vbox 3.2 or later, in which case there is a element // in the ; then the VirtualSystemDescription::Data has a settings::MachineConfigFile // with all the machine config pretty-parsed; // -- or this is an OVF from an older vbox or an external source, and then we need to translate the // VirtualSystemDescriptionEntry and do import work // Even for the vbox:Machine case, there are a number of configuration items that will be taken from // the OVF because otherwise the "override import parameters" mechanism in the GUI won't work. // VM name std::list vsdeName = vsdescThis->findByType(VirtualSystemDescriptionType_Name); if (vsdeName.size() < 1) throw setError(VBOX_E_FILE_ERROR, tr("Missing VM name")); stack.strNameVBox = vsdeName.front()->strVboxCurrent; // have VirtualBox suggest where the filename would be placed so we can // put the disk images in the same directory Bstr bstrMachineFilename; rc = mVirtualBox->ComposeMachineFilename(Bstr(stack.strNameVBox).raw(), NULL, bstrMachineFilename.asOutParam()); if (FAILED(rc)) throw rc; // and determine the machine folder from that stack.strMachineFolder = bstrMachineFilename; stack.strMachineFolder.stripFilename(); // guest OS type std::list vsdeOS; vsdeOS = vsdescThis->findByType(VirtualSystemDescriptionType_OS); if (vsdeOS.size() < 1) throw setError(VBOX_E_FILE_ERROR, tr("Missing guest OS type")); stack.strOsTypeVBox = vsdeOS.front()->strVboxCurrent; // CPU count std::list vsdeCPU = vsdescThis->findByType(VirtualSystemDescriptionType_CPU); if (vsdeCPU.size() != 1) throw setError(VBOX_E_FILE_ERROR, tr("CPU count missing")); const Utf8Str &cpuVBox = vsdeCPU.front()->strVboxCurrent; stack.cCPUs = (uint32_t)RTStrToUInt64(cpuVBox.c_str()); // We need HWVirt & IO-APIC if more than one CPU is requested if (stack.cCPUs > 1) { stack.fForceHWVirt = true; stack.fForceIOAPIC = true; } // RAM std::list vsdeRAM = vsdescThis->findByType(VirtualSystemDescriptionType_Memory); if (vsdeRAM.size() != 1) throw setError(VBOX_E_FILE_ERROR, tr("RAM size missing")); const Utf8Str &memoryVBox = vsdeRAM.front()->strVboxCurrent; stack.ulMemorySizeMB = (uint32_t)RTStrToUInt64(memoryVBox.c_str()); #ifdef VBOX_WITH_USB // USB controller std::list vsdeUSBController = vsdescThis->findByType(VirtualSystemDescriptionType_USBController); // USB support is enabled if there's at least one such entry; to disable USB support, // the type of the USB item would have been changed to "ignore" stack.fUSBEnabled = vsdeUSBController.size() > 0; #endif // audio adapter std::list vsdeAudioAdapter = vsdescThis->findByType(VirtualSystemDescriptionType_SoundCard); /* @todo: we support one audio adapter only */ if (vsdeAudioAdapter.size() > 0) stack.strAudioAdapter = vsdeAudioAdapter.front()->strVboxCurrent; // for the description of the new machine, always use the OVF entry, the user may have changed it in the import config std::list vsdeDescription = vsdescThis->findByType(VirtualSystemDescriptionType_Description); if (vsdeDescription.size()) stack.strDescription = vsdeDescription.front()->strVboxCurrent; // import vbox:machine or OVF now if (vsdescThis->m->pConfig) // vbox:Machine config importVBoxMachine(vsdescThis, pNewMachine, stack, pCallbacks, pStorage); else // generic OVF config importMachineGeneric(vsysThis, vsdescThis, pNewMachine, stack, pCallbacks, pStorage); } // for (it = pAppliance->m->llVirtualSystems.begin() ... }