/* $Id: Performance.cpp 10753 2008-07-18 19:22:21Z vboxsync $ */ /** @file * * VBox Performance Classes implementation. */ /* * Copyright (C) 2008 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ #include #include #include #include #include #include #include "Performance.h" using namespace pm; // Default factory BaseMetric *MetricFactory::createHostCpuLoad(ComPtr object, SubMetric *user, SubMetric *kernel, SubMetric *idle) { Assert(mHAL); return new HostCpuLoad(mHAL, object, user, kernel, idle); } BaseMetric *MetricFactory::createHostCpuMHz(ComPtr object, SubMetric *mhz) { Assert(mHAL); return new HostCpuMhz(mHAL, object, mhz); } BaseMetric *MetricFactory::createHostRamUsage(ComPtr object, SubMetric *total, SubMetric *used, SubMetric *available) { Assert(mHAL); return new HostRamUsage(mHAL, object, total, used, available); } BaseMetric *MetricFactory::createMachineCpuLoad(ComPtr object, RTPROCESS process, SubMetric *user, SubMetric *kernel) { Assert(mHAL); return new MachineCpuLoad(mHAL, object, process, user, kernel); } BaseMetric *MetricFactory::createMachineRamUsage(ComPtr object, RTPROCESS process, SubMetric *used) { Assert(mHAL); return new MachineRamUsage(mHAL, object, process, used); } // Stubs for non-pure virtual methods int CollectorHAL::getHostCpuLoad(unsigned long *user, unsigned long *kernel, unsigned long *idle) { return E_NOTIMPL; } int CollectorHAL::getProcessCpuLoad(RTPROCESS process, unsigned long *user, unsigned long *kernel) { return E_NOTIMPL; } int CollectorHAL::getRawHostCpuLoad(unsigned long *user, unsigned long *kernel, unsigned long *idle) { return E_NOTIMPL; } int CollectorHAL::getRawProcessCpuLoad(RTPROCESS process, unsigned long *user, unsigned long *kernel) { return E_NOTIMPL; } void BaseMetric::collectorBeat(uint64_t nowAt) { if (isEnabled()) { if (nowAt - mLastSampleTaken >= mPeriod * 1000) { mLastSampleTaken = nowAt; collect(); } } } void HostCpuLoad::init(unsigned long period, unsigned long length) { mPeriod = period; mLength = length; mUser->init(mLength); mKernel->init(mLength); mIdle->init(mLength); } void HostCpuLoad::collect() { unsigned long user, kernel, idle; int rc = mHAL->getHostCpuLoad(&user, &kernel, &idle); if (RT_SUCCESS(rc)) { mUser->put(user); mKernel->put(kernel); mIdle->put(idle); } } void HostCpuLoadRaw::collect() { unsigned long user, kernel, idle; unsigned long userDiff, kernelDiff, idleDiff, totalDiff; int rc = mHAL->getRawHostCpuLoad(&user, &kernel, &idle); if (RT_SUCCESS(rc)) { userDiff = user - mUserPrev; kernelDiff = kernel - mKernelPrev; idleDiff = idle - mIdlePrev; totalDiff = userDiff + kernelDiff + idleDiff; mUser->put(PM_CPU_LOAD_MULTIPLIER * userDiff / totalDiff); mKernel->put(PM_CPU_LOAD_MULTIPLIER * kernelDiff / totalDiff); mIdle->put(PM_CPU_LOAD_MULTIPLIER * idleDiff / totalDiff); mUserPrev = user; mKernelPrev = kernel; mIdlePrev = idle; } } void HostCpuMhz::init(unsigned long period, unsigned long length) { mPeriod = period; mLength = length; mMHz->init(mLength); } void HostCpuMhz::collect() { unsigned long mhz; int rc = mHAL->getHostCpuMHz(&mhz); if (RT_SUCCESS(rc)) mMHz->put(mhz); } void HostRamUsage::init(unsigned long period, unsigned long length) { mPeriod = period; mLength = length; mTotal->init(mLength); mUsed->init(mLength); mAvailable->init(mLength); } void HostRamUsage::collect() { unsigned long total, used, available; int rc = mHAL->getHostMemoryUsage(&total, &used, &available); if (RT_SUCCESS(rc)) { mTotal->put(total); mUsed->put(used); mAvailable->put(available); } } void MachineCpuLoad::init(unsigned long period, unsigned long length) { mPeriod = period; mLength = length; mUser->init(mLength); mKernel->init(mLength); } void MachineCpuLoad::collect() { unsigned long user, kernel; int rc = mHAL->getProcessCpuLoad(mProcess, &user, &kernel); if (RT_SUCCESS(rc)) { mUser->put(user); mKernel->put(kernel); } } void MachineCpuLoadRaw::collect() { unsigned long hostUser, hostKernel, hostIdle, hostTotal; unsigned long processUser, processKernel; int rc = mHAL->getRawHostCpuLoad(&hostUser, &hostKernel, &hostIdle); if (RT_SUCCESS(rc)) { hostTotal = hostUser + hostKernel + hostIdle; rc = mHAL->getRawProcessCpuLoad(mProcess, &processUser, &processKernel); AssertRC(rc); if (RT_SUCCESS(rc)) { mUser->put(PM_CPU_LOAD_MULTIPLIER * (processUser - mProcessUserPrev) / (hostTotal - mHostTotalPrev)); mUser->put(PM_CPU_LOAD_MULTIPLIER * (processKernel - mProcessKernelPrev ) / (hostTotal - mHostTotalPrev)); mHostTotalPrev = hostTotal; mProcessUserPrev = processUser; mProcessKernelPrev = processKernel; } } } void MachineRamUsage::init(unsigned long period, unsigned long length) { mPeriod = period; mLength = length; mUsed->init(mLength); } void MachineRamUsage::collect() { unsigned long used; int rc = mHAL->getProcessMemoryUsage(mProcess, &used); if (RT_SUCCESS(rc)) mUsed->put(used); } void CircularBuffer::init(unsigned long length) { if (mData) RTMemFree(mData); mLength = length; mData = (unsigned long *)RTMemAllocZ(length * sizeof(unsigned long)); mWrapped = false; mEnd = 0; } unsigned long CircularBuffer::length() { return mWrapped ? mLength : mEnd; } void CircularBuffer::put(unsigned long value) { if (mData) { mData[mEnd++] = value; if (mEnd >= mLength) { mEnd = 0; mWrapped = true; } } } void CircularBuffer::copyTo(unsigned long *data) { if (mWrapped) { memcpy(data, mData + mEnd, (mLength - mEnd) * sizeof(unsigned long)); // Copy the wrapped part if (mEnd) memcpy(data + mEnd, mData, mEnd * sizeof(unsigned long)); } else memcpy(data, mData, mEnd * sizeof(unsigned long)); } void SubMetric::query(unsigned long *data) { copyTo(data); } void Metric::query(unsigned long **data, unsigned long *count) { unsigned long length; unsigned long *tmpData; length = mSubMetric->length(); if (length) { tmpData = (unsigned long*)RTMemAlloc(sizeof(*tmpData)*length); mSubMetric->query(tmpData); if (mAggregate) { *count = 1; *data = (unsigned long*)RTMemAlloc(sizeof(**data)); **data = mAggregate->compute(tmpData, length); RTMemFree(tmpData); } else { *count = length; *data = tmpData; } } else { *count = 0; *data = 0; } } unsigned long AggregateAvg::compute(unsigned long *data, unsigned long length) { uint64_t tmp = 0; for (unsigned long i = 0; i < length; ++i) tmp += data[i]; return (unsigned long)(tmp / length); } const char * AggregateAvg::getName() { return "avg"; } unsigned long AggregateMin::compute(unsigned long *data, unsigned long length) { unsigned long tmp = *data; for (unsigned long i = 0; i < length; ++i) if (data[i] < tmp) tmp = data[i]; return tmp; } const char * AggregateMin::getName() { return "min"; } unsigned long AggregateMax::compute(unsigned long *data, unsigned long length) { unsigned long tmp = *data; for (unsigned long i = 0; i < length; ++i) if (data[i] > tmp) tmp = data[i]; return tmp; } const char * AggregateMax::getName() { return "max"; } Filter::Filter(ComSafeArrayIn(INPTR BSTR, metricNames), ComSafeArrayIn(IUnknown *, objects)) { com::SafeIfaceArray objectArray(ComSafeArrayInArg(objects)); com::SafeArray nameArray(ComSafeArrayInArg(metricNames)); if (objectArray.isNull()) { if (nameArray.size()) { for (size_t i = 0; i < nameArray.size(); ++i) processMetricList(std::string(com::Utf8Str(nameArray[i])), ComPtr()); } else processMetricList(std::string("*"), ComPtr()); } else { for (size_t i = 0; i < objectArray.size(); ++i) switch (nameArray.size()) { case 0: processMetricList(std::string("*"), objectArray[i]); break; case 1: processMetricList(std::string(com::Utf8Str(nameArray[0])), objectArray[i]); break; default: processMetricList(std::string(com::Utf8Str(nameArray[i])), objectArray[i]); break; } } } void Filter::processMetricList(const std::string &name, const ComPtr object) { std::string::size_type startPos = 0; for (std::string::size_type pos = name.find(","); pos != std::string::npos; pos = name.find(",", startPos)) { mElements.push_back(std::make_pair(object, name.substr(startPos, pos - startPos))); startPos = pos + 1; } mElements.push_back(std::make_pair(object, name.substr(startPos))); } bool Filter::match(const ComPtr object, const std::string &name) const { ElementList::const_iterator it; printf("Filter::match(%p, %s)\n", static_cast (object), name.c_str()); for (it = mElements.begin(); it != mElements.end(); it++) { printf("...matching against(%p, %s)\n", static_cast ((*it).first), (*it).second.c_str()); if ((*it).first.isNull() || (*it).first == object) { // Objects match, compare names if ((*it).second == "*" || (*it).second == name) { printf("...found!\n"); return true; } } } printf("...no matches!\n"); return false; }