/* $Id: BusAssignmentManager.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */ /** @file * VirtualBox bus slots assignment manager */ /* * Copyright (C) 2010-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ #define LOG_GROUP LOG_GROUP_MAIN #include "LoggingNew.h" #include "BusAssignmentManager.h" #include #include #include #include #include #include #include struct DeviceAssignmentRule { const char *pszName; int iBus; int iDevice; int iFn; int iPriority; }; struct DeviceAliasRule { const char *pszDevName; const char *pszDevAlias; }; /* Those rules define PCI slots assignment */ /** @note * The EFI takes assumptions about PCI slot assignments which are different * from the following tables in certain cases, for example the IDE device * is assumed to be 00:01.1! */ /* Device Bus Device Function Priority */ /* Generic rules */ static const DeviceAssignmentRule aGenericRules[] = { /* VGA controller */ {"vga", 0, 2, 0, 0}, /* VMM device */ {"VMMDev", 0, 4, 0, 0}, /* Audio controllers */ {"ichac97", 0, 5, 0, 0}, {"hda", 0, 5, 0, 0}, /* Storage controllers */ {"lsilogic", 0, 20, 0, 1}, {"buslogic", 0, 21, 0, 1}, {"lsilogicsas", 0, 22, 0, 1}, {"nvme", 0, 14, 0, 1}, /* USB controllers */ {"usb-ohci", 0, 6, 0, 0}, {"usb-ehci", 0, 11, 0, 0}, {"usb-xhci", 0, 12, 0, 0}, /* ACPI controller */ {"acpi", 0, 7, 0, 0}, /* Network controllers */ /* the first network card gets the PCI ID 3, the next 3 gets 8..10, * next 4 get 16..19. In "VMWare compatibility" mode the IDs 3 and 17 * swap places, i.e. the first card goes to ID 17=0x11. */ {"nic", 0, 3, 0, 1}, {"nic", 0, 8, 0, 1}, {"nic", 0, 9, 0, 1}, {"nic", 0, 10, 0, 1}, {"nic", 0, 16, 0, 1}, {"nic", 0, 17, 0, 1}, {"nic", 0, 18, 0, 1}, {"nic", 0, 19, 0, 1}, /* ISA/LPC controller */ {"lpc", 0, 31, 0, 0}, { NULL, -1, -1, -1, 0} }; /* PIIX3 chipset rules */ static const DeviceAssignmentRule aPiix3Rules[] = { {"piix3ide", 0, 1, 1, 0}, {"ahci", 0, 13, 0, 1}, {"pcibridge", 0, 24, 0, 0}, {"pcibridge", 0, 25, 0, 0}, { NULL, -1, -1, -1, 0} }; /* ICH9 chipset rules */ static const DeviceAssignmentRule aIch9Rules[] = { /* Host Controller */ {"i82801", 0, 30, 0, 0}, /* Those are functions of LPC at 00:1e:00 */ /** * Please note, that for devices being functions, like we do here, device 0 * must be multifunction, i.e. have header type 0x80. Our LPC device is. * Alternative approach is to assign separate slot to each device. */ {"piix3ide", 0, 31, 1, 2}, {"ahci", 0, 31, 2, 2}, {"smbus", 0, 31, 3, 2}, {"usb-ohci", 0, 31, 4, 2}, {"usb-ehci", 0, 31, 5, 2}, {"thermal", 0, 31, 6, 2}, /* to make sure rule never used before rules assigning devices on it */ {"ich9pcibridge", 0, 24, 0, 10}, {"ich9pcibridge", 0, 25, 0, 10}, {"ich9pcibridge", 2, 24, 0, 9}, /* Bridges must be instantiated depth */ {"ich9pcibridge", 2, 25, 0, 9}, /* first (assumption in PDM and other */ {"ich9pcibridge", 4, 24, 0, 8}, /* places), so make sure that nested */ {"ich9pcibridge", 4, 25, 0, 8}, /* bridges are added to the last bridge */ {"ich9pcibridge", 6, 24, 0, 7}, /* only, avoiding the need to re-sort */ {"ich9pcibridge", 6, 25, 0, 7}, /* everything before starting the VM. */ {"ich9pcibridge", 8, 24, 0, 6}, {"ich9pcibridge", 8, 25, 0, 6}, {"ich9pcibridge", 10, 24, 0, 5}, {"ich9pcibridge", 10, 25, 0, 5}, /* Storage controllers */ {"ahci", 1, 0, 0, 0}, {"ahci", 1, 1, 0, 0}, {"ahci", 1, 2, 0, 0}, {"ahci", 1, 3, 0, 0}, {"ahci", 1, 4, 0, 0}, {"ahci", 1, 5, 0, 0}, {"ahci", 1, 6, 0, 0}, {"lsilogic", 1, 7, 0, 0}, {"lsilogic", 1, 8, 0, 0}, {"lsilogic", 1, 9, 0, 0}, {"lsilogic", 1, 10, 0, 0}, {"lsilogic", 1, 11, 0, 0}, {"lsilogic", 1, 12, 0, 0}, {"lsilogic", 1, 13, 0, 0}, {"buslogic", 1, 14, 0, 0}, {"buslogic", 1, 15, 0, 0}, {"buslogic", 1, 16, 0, 0}, {"buslogic", 1, 17, 0, 0}, {"buslogic", 1, 18, 0, 0}, {"buslogic", 1, 19, 0, 0}, {"buslogic", 1, 20, 0, 0}, {"lsilogicsas", 1, 21, 0, 0}, {"lsilogicsas", 1, 26, 0, 0}, {"lsilogicsas", 1, 27, 0, 0}, {"lsilogicsas", 1, 28, 0, 0}, {"lsilogicsas", 1, 29, 0, 0}, {"lsilogicsas", 1, 30, 0, 0}, {"lsilogicsas", 1, 31, 0, 0}, /* NICs */ {"nic", 2, 0, 0, 0}, {"nic", 2, 1, 0, 0}, {"nic", 2, 2, 0, 0}, {"nic", 2, 3, 0, 0}, {"nic", 2, 4, 0, 0}, {"nic", 2, 5, 0, 0}, {"nic", 2, 6, 0, 0}, {"nic", 2, 7, 0, 0}, {"nic", 2, 8, 0, 0}, {"nic", 2, 9, 0, 0}, {"nic", 2, 10, 0, 0}, {"nic", 2, 11, 0, 0}, {"nic", 2, 12, 0, 0}, {"nic", 2, 13, 0, 0}, {"nic", 2, 14, 0, 0}, {"nic", 2, 15, 0, 0}, {"nic", 2, 16, 0, 0}, {"nic", 2, 17, 0, 0}, {"nic", 2, 18, 0, 0}, {"nic", 2, 19, 0, 0}, {"nic", 2, 20, 0, 0}, {"nic", 2, 21, 0, 0}, {"nic", 2, 26, 0, 0}, {"nic", 2, 27, 0, 0}, {"nic", 2, 28, 0, 0}, {"nic", 2, 29, 0, 0}, {"nic", 2, 30, 0, 0}, {"nic", 2, 31, 0, 0}, /* Storage controller #2 (NVMe) */ {"nvme", 3, 0, 0, 0}, {"nvme", 3, 1, 0, 0}, {"nvme", 3, 2, 0, 0}, {"nvme", 3, 3, 0, 0}, {"nvme", 3, 4, 0, 0}, {"nvme", 3, 5, 0, 0}, {"nvme", 3, 6, 0, 0}, { NULL, -1, -1, -1, 0} }; /* Aliasing rules */ static const DeviceAliasRule aDeviceAliases[] = { {"e1000", "nic"}, {"pcnet", "nic"}, {"virtio-net", "nic"}, {"ahci", "storage"}, {"lsilogic", "storage"}, {"buslogic", "storage"}, {"lsilogicsas", "storage"}, {"nvme", "storage"} }; struct BusAssignmentManager::State { struct PCIDeviceRecord { char szDevName[32]; PCIBusAddress HostAddress; PCIDeviceRecord(const char *pszName, PCIBusAddress aHostAddress) { RTStrCopy(this->szDevName, sizeof(szDevName), pszName); this->HostAddress = aHostAddress; } PCIDeviceRecord(const char *pszName) { RTStrCopy(this->szDevName, sizeof(szDevName), pszName); } bool operator<(const PCIDeviceRecord &a) const { return RTStrNCmp(szDevName, a.szDevName, sizeof(szDevName)) < 0; } bool operator==(const PCIDeviceRecord &a) const { return RTStrNCmp(szDevName, a.szDevName, sizeof(szDevName)) == 0; } }; typedef std::map PCIMap; typedef std::vector PCIAddrList; typedef std::vector PCIRulesList; typedef std::map ReversePCIMap; volatile int32_t cRefCnt; ChipsetType_T mChipsetType; const char * mpszBridgeName; PCIMap mPCIMap; ReversePCIMap mReversePCIMap; State() : cRefCnt(1), mChipsetType(ChipsetType_Null), mpszBridgeName("unknownbridge") {} ~State() {} HRESULT init(ChipsetType_T chipsetType); HRESULT record(const char *pszName, PCIBusAddress& GuestAddress, PCIBusAddress HostAddress); HRESULT autoAssign(const char *pszName, PCIBusAddress& Address); bool checkAvailable(PCIBusAddress& Address); bool findPCIAddress(const char *pszDevName, int iInstance, PCIBusAddress& Address); const char *findAlias(const char *pszName); void addMatchingRules(const char *pszName, PCIRulesList& aList); void listAttachedPCIDevices(std::vector &aAttached); }; HRESULT BusAssignmentManager::State::init(ChipsetType_T chipsetType) { mChipsetType = chipsetType; switch (chipsetType) { case ChipsetType_PIIX3: mpszBridgeName = "pcibridge"; break; case ChipsetType_ICH9: mpszBridgeName = "ich9pcibridge"; break; default: mpszBridgeName = "unknownbridge"; AssertFailed(); break; } return S_OK; } HRESULT BusAssignmentManager::State::record(const char *pszName, PCIBusAddress& Address, PCIBusAddress HostAddress) { PCIDeviceRecord devRec(pszName, HostAddress); /* Remember address -> device mapping */ mPCIMap.insert(PCIMap::value_type(Address, devRec)); ReversePCIMap::iterator it = mReversePCIMap.find(devRec); if (it == mReversePCIMap.end()) { mReversePCIMap.insert(ReversePCIMap::value_type(devRec, PCIAddrList())); it = mReversePCIMap.find(devRec); } /* Remember device name -> addresses mapping */ it->second.push_back(Address); return S_OK; } bool BusAssignmentManager::State::findPCIAddress(const char *pszDevName, int iInstance, PCIBusAddress& Address) { PCIDeviceRecord devRec(pszDevName); ReversePCIMap::iterator it = mReversePCIMap.find(devRec); if (it == mReversePCIMap.end()) return false; if (iInstance >= (int)it->second.size()) return false; Address = it->second[iInstance]; return true; } void BusAssignmentManager::State::addMatchingRules(const char *pszName, PCIRulesList& aList) { size_t iRuleset, iRule; const DeviceAssignmentRule *aArrays[2] = {aGenericRules, NULL}; switch (mChipsetType) { case ChipsetType_PIIX3: aArrays[1] = aPiix3Rules; break; case ChipsetType_ICH9: aArrays[1] = aIch9Rules; break; default: AssertFailed(); break; } for (iRuleset = 0; iRuleset < RT_ELEMENTS(aArrays); iRuleset++) { if (aArrays[iRuleset] == NULL) continue; for (iRule = 0; aArrays[iRuleset][iRule].pszName != NULL; iRule++) { if (RTStrCmp(pszName, aArrays[iRuleset][iRule].pszName) == 0) aList.push_back(&aArrays[iRuleset][iRule]); } } } const char *BusAssignmentManager::State::findAlias(const char *pszDev) { for (size_t iAlias = 0; iAlias < RT_ELEMENTS(aDeviceAliases); iAlias++) { if (strcmp(pszDev, aDeviceAliases[iAlias].pszDevName) == 0) return aDeviceAliases[iAlias].pszDevAlias; } return NULL; } static bool RuleComparator(const DeviceAssignmentRule *r1, const DeviceAssignmentRule *r2) { return (r1->iPriority > r2->iPriority); } HRESULT BusAssignmentManager::State::autoAssign(const char *pszName, PCIBusAddress& Address) { PCIRulesList matchingRules; addMatchingRules(pszName, matchingRules); const char *pszAlias = findAlias(pszName); if (pszAlias) addMatchingRules(pszAlias, matchingRules); AssertMsg(matchingRules.size() > 0, ("No rule for %s(%s)\n", pszName, pszAlias)); stable_sort(matchingRules.begin(), matchingRules.end(), RuleComparator); for (size_t iRule = 0; iRule < matchingRules.size(); iRule++) { const DeviceAssignmentRule *rule = matchingRules[iRule]; Address.miBus = rule->iBus; Address.miDevice = rule->iDevice; Address.miFn = rule->iFn; if (checkAvailable(Address)) return S_OK; } AssertLogRelMsgFailed(("BusAssignmentManager: All possible candidate positions for %s exhausted\n", pszName)); return E_INVALIDARG; } bool BusAssignmentManager::State::checkAvailable(PCIBusAddress& Address) { PCIMap::const_iterator it = mPCIMap.find(Address); return (it == mPCIMap.end()); } void BusAssignmentManager::State::listAttachedPCIDevices(std::vector &aAttached) { aAttached.resize(mPCIMap.size()); size_t i = 0; PCIDeviceInfo dev; for (PCIMap::const_iterator it = mPCIMap.begin(); it != mPCIMap.end(); ++it, ++i) { dev.strDeviceName = it->second.szDevName; dev.guestAddress = it->first; dev.hostAddress = it->second.HostAddress; aAttached[i] = dev; } } BusAssignmentManager::BusAssignmentManager() : pState(NULL) { pState = new State(); Assert(pState); } BusAssignmentManager::~BusAssignmentManager() { if (pState) { delete pState; pState = NULL; } } BusAssignmentManager *BusAssignmentManager::createInstance(ChipsetType_T chipsetType) { BusAssignmentManager *pInstance = new BusAssignmentManager(); pInstance->pState->init(chipsetType); Assert(pInstance); return pInstance; } void BusAssignmentManager::AddRef() { ASMAtomicIncS32(&pState->cRefCnt); } void BusAssignmentManager::Release() { if (ASMAtomicDecS32(&pState->cRefCnt) == 0) delete this; } DECLINLINE(HRESULT) InsertConfigInteger(PCFGMNODE pCfg, const char *pszName, uint64_t u64) { int vrc = CFGMR3InsertInteger(pCfg, pszName, u64); if (RT_FAILURE(vrc)) return E_INVALIDARG; return S_OK; } DECLINLINE(HRESULT) InsertConfigNode(PCFGMNODE pNode, const char *pcszName, PCFGMNODE *ppChild) { int vrc = CFGMR3InsertNode(pNode, pcszName, ppChild); if (RT_FAILURE(vrc)) return E_INVALIDARG; return S_OK; } HRESULT BusAssignmentManager::assignPCIDeviceImpl(const char *pszDevName, PCFGMNODE pCfg, PCIBusAddress& GuestAddress, PCIBusAddress HostAddress, bool fGuestAddressRequired) { HRESULT rc = S_OK; if (!GuestAddress.valid()) rc = pState->autoAssign(pszDevName, GuestAddress); else { bool fAvailable = pState->checkAvailable(GuestAddress); if (!fAvailable) { if (fGuestAddressRequired) rc = E_ACCESSDENIED; else rc = pState->autoAssign(pszDevName, GuestAddress); } } if (FAILED(rc)) return rc; Assert(GuestAddress.valid() && pState->checkAvailable(GuestAddress)); rc = pState->record(pszDevName, GuestAddress, HostAddress); if (FAILED(rc)) return rc; rc = InsertConfigInteger(pCfg, "PCIBusNo", GuestAddress.miBus); if (FAILED(rc)) return rc; rc = InsertConfigInteger(pCfg, "PCIDeviceNo", GuestAddress.miDevice); if (FAILED(rc)) return rc; rc = InsertConfigInteger(pCfg, "PCIFunctionNo", GuestAddress.miFn); if (FAILED(rc)) return rc; /* Check if the bus is still unknown, i.e. the bridge to it is missing */ if ( GuestAddress.miBus > 0 && !hasPCIDevice(pState->mpszBridgeName, GuestAddress.miBus - 1)) { PCFGMNODE pDevices = CFGMR3GetParent(CFGMR3GetParent(pCfg)); AssertLogRelMsgReturn(pDevices, ("BusAssignmentManager: cannot find base device configuration\n"), E_UNEXPECTED); PCFGMNODE pBridges = CFGMR3GetChild(pDevices, "ich9pcibridge"); AssertLogRelMsgReturn(pBridges, ("BusAssignmentManager: cannot find bridge configuration base\n"), E_UNEXPECTED); /* Device should be on a not yet existing bus, add it automatically */ for (int iBridge = 0; iBridge <= GuestAddress.miBus - 1; iBridge++) { if (!hasPCIDevice(pState->mpszBridgeName, iBridge)) { PCIBusAddress BridgeGuestAddress; rc = pState->autoAssign(pState->mpszBridgeName, BridgeGuestAddress); if (FAILED(rc)) return rc; if (BridgeGuestAddress.miBus > iBridge) AssertLogRelMsgFailedReturn(("BusAssignmentManager: cannot create bridge for bus %i because the possible parent bus positions are exhausted\n", iBridge + 1), E_UNEXPECTED); PCFGMNODE pInst; InsertConfigNode(pBridges, Utf8StrFmt("%d", iBridge).c_str(), &pInst); InsertConfigInteger(pInst, "Trusted", 1); rc = assignPCIDevice(pState->mpszBridgeName, pInst); if (FAILED(rc)) return rc; } } } return S_OK; } bool BusAssignmentManager::findPCIAddress(const char *pszDevName, int iInstance, PCIBusAddress& Address) { return pState->findPCIAddress(pszDevName, iInstance, Address); } void BusAssignmentManager::listAttachedPCIDevices(std::vector &aAttached) { pState->listAttachedPCIDevices(aAttached); }