VirtualBox

source: vbox/trunk/src/VBox/Main/src-server/ApplianceImplImport.cpp@ 37069

Last change on this file since 37069 was 36575, checked in by vboxsync, 14 years ago

Main/src-server/ApplianceImplImport: automatically repair broken OVF images with multiple disks, created by 3.2.8 and earlier

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 118.9 KB
Line 
1/* $Id: ApplianceImplImport.cpp 36575 2011-04-06 13:07:54Z vboxsync $ */
2/** @file
3 *
4 * IAppliance and IVirtualSystem COM class implementations.
5 */
6
7/*
8 * Copyright (C) 2008-2011 Oracle Corporation
9 *
10 * This file is part of VirtualBox Open Source Edition (OSE), as
11 * available from http://www.virtualbox.org. This file is free software;
12 * you can redistribute it and/or modify it under the terms of the GNU
13 * General Public License (GPL) as published by the Free Software
14 * Foundation, in version 2 as it comes in the "COPYING" file of the
15 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
16 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
17 */
18
19#include <iprt/path.h>
20#include <iprt/dir.h>
21#include <iprt/file.h>
22#include <iprt/s3.h>
23#include <iprt/sha.h>
24#include <iprt/manifest.h>
25#include <iprt/tar.h>
26#include <iprt/stream.h>
27
28#include <VBox/vd.h>
29#include <VBox/com/array.h>
30
31#include "ApplianceImpl.h"
32#include "VirtualBoxImpl.h"
33#include "GuestOSTypeImpl.h"
34#include "ProgressImpl.h"
35#include "MachineImpl.h"
36#include "MediumImpl.h"
37#include "MediumFormatImpl.h"
38#include "SystemPropertiesImpl.h"
39
40#include "AutoCaller.h"
41#include "Logging.h"
42
43#include "ApplianceImplPrivate.h"
44
45#include <VBox/param.h>
46#include <VBox/version.h>
47#include <VBox/settings.h>
48
49using namespace std;
50
51////////////////////////////////////////////////////////////////////////////////
52//
53// IAppliance public methods
54//
55////////////////////////////////////////////////////////////////////////////////
56
57/**
58 * Public method implementation. This opens the OVF with ovfreader.cpp.
59 * Thread implementation is in Appliance::readImpl().
60 *
61 * @param path
62 * @return
63 */
64STDMETHODIMP Appliance::Read(IN_BSTR path, IProgress **aProgress)
65{
66 if (!path) return E_POINTER;
67 CheckComArgOutPointerValid(aProgress);
68
69 AutoCaller autoCaller(this);
70 if (FAILED(autoCaller.rc())) return autoCaller.rc();
71
72 AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
73
74 if (!isApplianceIdle())
75 return E_ACCESSDENIED;
76
77 if (m->pReader)
78 {
79 delete m->pReader;
80 m->pReader = NULL;
81 }
82
83 // see if we can handle this file; for now we insist it has an ovf/ova extension
84 Utf8Str strPath (path);
85 if (!( strPath.endsWith(".ovf", Utf8Str::CaseInsensitive)
86 || strPath.endsWith(".ova", Utf8Str::CaseInsensitive)))
87 return setError(VBOX_E_FILE_ERROR,
88 tr("Appliance file must have .ovf extension"));
89
90 ComObjPtr<Progress> progress;
91 HRESULT rc = S_OK;
92 try
93 {
94 /* Parse all necessary info out of the URI */
95 parseURI(strPath, m->locInfo);
96 rc = readImpl(m->locInfo, progress);
97 }
98 catch (HRESULT aRC)
99 {
100 rc = aRC;
101 }
102
103 if (SUCCEEDED(rc))
104 /* Return progress to the caller */
105 progress.queryInterfaceTo(aProgress);
106
107 return S_OK;
108}
109
110/**
111 * Public method implementation. This looks at the output of ovfreader.cpp and creates
112 * VirtualSystemDescription instances.
113 * @return
114 */
115STDMETHODIMP Appliance::Interpret()
116{
117 // @todo:
118 // - don't use COM methods but the methods directly (faster, but needs appropriate locking of that objects itself (s. HardDisk))
119 // - Appropriate handle errors like not supported file formats
120 AutoCaller autoCaller(this);
121 if (FAILED(autoCaller.rc())) return autoCaller.rc();
122
123 AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
124
125 if (!isApplianceIdle())
126 return E_ACCESSDENIED;
127
128 HRESULT rc = S_OK;
129
130 /* Clear any previous virtual system descriptions */
131 m->virtualSystemDescriptions.clear();
132
133 if (!m->pReader)
134 return setError(E_FAIL,
135 tr("Cannot interpret appliance without reading it first (call read() before interpret())"));
136
137 // Change the appliance state so we can safely leave the lock while doing time-consuming
138 // disk imports; also the below method calls do all kinds of locking which conflicts with
139 // the appliance object lock
140 m->state = Data::ApplianceImporting;
141 alock.release();
142
143 /* Try/catch so we can clean up on error */
144 try
145 {
146 list<ovf::VirtualSystem>::const_iterator it;
147 /* Iterate through all virtual systems */
148 for (it = m->pReader->m_llVirtualSystems.begin();
149 it != m->pReader->m_llVirtualSystems.end();
150 ++it)
151 {
152 const ovf::VirtualSystem &vsysThis = *it;
153
154 ComObjPtr<VirtualSystemDescription> pNewDesc;
155 rc = pNewDesc.createObject();
156 if (FAILED(rc)) throw rc;
157 rc = pNewDesc->init();
158 if (FAILED(rc)) throw rc;
159
160 // if the virtual system in OVF had a <vbox:Machine> element, have the
161 // VirtualBox settings code parse that XML now
162 if (vsysThis.pelmVboxMachine)
163 pNewDesc->importVboxMachineXML(*vsysThis.pelmVboxMachine);
164
165 // Guest OS type
166 // This is taken from one of three places, in this order:
167 Utf8Str strOsTypeVBox;
168 Utf8StrFmt strCIMOSType("%RU32", (uint32_t)vsysThis.cimos);
169 // 1) If there is a <vbox:Machine>, then use the type from there.
170 if ( vsysThis.pelmVboxMachine
171 && pNewDesc->m->pConfig->machineUserData.strOsType.isNotEmpty()
172 )
173 strOsTypeVBox = pNewDesc->m->pConfig->machineUserData.strOsType;
174 // 2) Otherwise, if there is OperatingSystemSection/vbox:OSType, use that one.
175 else if (vsysThis.strTypeVbox.isNotEmpty()) // OVFReader has found vbox:OSType
176 strOsTypeVBox = vsysThis.strTypeVbox;
177 // 3) Otherwise, make a best guess what the vbox type is from the OVF (CIM) OS type.
178 else
179 convertCIMOSType2VBoxOSType(strOsTypeVBox, vsysThis.cimos, vsysThis.strCimosDesc);
180 pNewDesc->addEntry(VirtualSystemDescriptionType_OS,
181 "",
182 strCIMOSType,
183 strOsTypeVBox);
184
185 /* VM name */
186 Utf8Str nameVBox;
187 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
188 if ( vsysThis.pelmVboxMachine
189 && pNewDesc->m->pConfig->machineUserData.strName.isNotEmpty())
190 nameVBox = pNewDesc->m->pConfig->machineUserData.strName;
191 else
192 nameVBox = vsysThis.strName;
193 /* If the there isn't any name specified create a default one out
194 * of the OS type */
195 if (nameVBox.isEmpty())
196 nameVBox = strOsTypeVBox;
197 searchUniqueVMName(nameVBox);
198 pNewDesc->addEntry(VirtualSystemDescriptionType_Name,
199 "",
200 vsysThis.strName,
201 nameVBox);
202
203 /* Based on the VM name, create a target machine path. */
204 Bstr bstrMachineFilename;
205 rc = mVirtualBox->ComposeMachineFilename(Bstr(nameVBox).raw(),
206 NULL,
207 bstrMachineFilename.asOutParam());
208 if (FAILED(rc)) throw rc;
209 /* Determine the machine folder from that */
210 Utf8Str strMachineFolder = Utf8Str(bstrMachineFilename).stripFilename();
211
212 /* VM Product */
213 if (!vsysThis.strProduct.isEmpty())
214 pNewDesc->addEntry(VirtualSystemDescriptionType_Product,
215 "",
216 vsysThis.strProduct,
217 vsysThis.strProduct);
218
219 /* VM Vendor */
220 if (!vsysThis.strVendor.isEmpty())
221 pNewDesc->addEntry(VirtualSystemDescriptionType_Vendor,
222 "",
223 vsysThis.strVendor,
224 vsysThis.strVendor);
225
226 /* VM Version */
227 if (!vsysThis.strVersion.isEmpty())
228 pNewDesc->addEntry(VirtualSystemDescriptionType_Version,
229 "",
230 vsysThis.strVersion,
231 vsysThis.strVersion);
232
233 /* VM ProductUrl */
234 if (!vsysThis.strProductUrl.isEmpty())
235 pNewDesc->addEntry(VirtualSystemDescriptionType_ProductUrl,
236 "",
237 vsysThis.strProductUrl,
238 vsysThis.strProductUrl);
239
240 /* VM VendorUrl */
241 if (!vsysThis.strVendorUrl.isEmpty())
242 pNewDesc->addEntry(VirtualSystemDescriptionType_VendorUrl,
243 "",
244 vsysThis.strVendorUrl,
245 vsysThis.strVendorUrl);
246
247 /* VM description */
248 if (!vsysThis.strDescription.isEmpty())
249 pNewDesc->addEntry(VirtualSystemDescriptionType_Description,
250 "",
251 vsysThis.strDescription,
252 vsysThis.strDescription);
253
254 /* VM license */
255 if (!vsysThis.strLicenseText.isEmpty())
256 pNewDesc->addEntry(VirtualSystemDescriptionType_License,
257 "",
258 vsysThis.strLicenseText,
259 vsysThis.strLicenseText);
260
261 /* Now that we know the OS type, get our internal defaults based on that. */
262 ComPtr<IGuestOSType> pGuestOSType;
263 rc = mVirtualBox->GetGuestOSType(Bstr(strOsTypeVBox).raw(), pGuestOSType.asOutParam());
264 if (FAILED(rc)) throw rc;
265
266 /* CPU count */
267 ULONG cpuCountVBox;
268 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
269 if ( vsysThis.pelmVboxMachine
270 && pNewDesc->m->pConfig->hardwareMachine.cCPUs)
271 cpuCountVBox = pNewDesc->m->pConfig->hardwareMachine.cCPUs;
272 else
273 cpuCountVBox = vsysThis.cCPUs;
274 /* Check for the constraints */
275 if (cpuCountVBox > SchemaDefs::MaxCPUCount)
276 {
277 addWarning(tr("The virtual system \"%s\" claims support for %u CPU's, but VirtualBox has support for max %u CPU's only."),
278 vsysThis.strName.c_str(), cpuCountVBox, SchemaDefs::MaxCPUCount);
279 cpuCountVBox = SchemaDefs::MaxCPUCount;
280 }
281 if (vsysThis.cCPUs == 0)
282 cpuCountVBox = 1;
283 pNewDesc->addEntry(VirtualSystemDescriptionType_CPU,
284 "",
285 Utf8StrFmt("%RU32", (uint32_t)vsysThis.cCPUs),
286 Utf8StrFmt("%RU32", (uint32_t)cpuCountVBox));
287
288 /* RAM */
289 uint64_t ullMemSizeVBox;
290 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
291 if ( vsysThis.pelmVboxMachine
292 && pNewDesc->m->pConfig->hardwareMachine.ulMemorySizeMB)
293 ullMemSizeVBox = pNewDesc->m->pConfig->hardwareMachine.ulMemorySizeMB;
294 else
295 ullMemSizeVBox = vsysThis.ullMemorySize / _1M;
296 /* Check for the constraints */
297 if ( ullMemSizeVBox != 0
298 && ( ullMemSizeVBox < MM_RAM_MIN_IN_MB
299 || ullMemSizeVBox > MM_RAM_MAX_IN_MB
300 )
301 )
302 {
303 addWarning(tr("The virtual system \"%s\" claims support for %llu MB RAM size, but VirtualBox has support for min %u & max %u MB RAM size only."),
304 vsysThis.strName.c_str(), ullMemSizeVBox, MM_RAM_MIN_IN_MB, MM_RAM_MAX_IN_MB);
305 ullMemSizeVBox = RT_MIN(RT_MAX(ullMemSizeVBox, MM_RAM_MIN_IN_MB), MM_RAM_MAX_IN_MB);
306 }
307 if (vsysThis.ullMemorySize == 0)
308 {
309 /* If the RAM of the OVF is zero, use our predefined values */
310 ULONG memSizeVBox2;
311 rc = pGuestOSType->COMGETTER(RecommendedRAM)(&memSizeVBox2);
312 if (FAILED(rc)) throw rc;
313 /* VBox stores that in MByte */
314 ullMemSizeVBox = (uint64_t)memSizeVBox2;
315 }
316 pNewDesc->addEntry(VirtualSystemDescriptionType_Memory,
317 "",
318 Utf8StrFmt("%RU64", (uint64_t)vsysThis.ullMemorySize),
319 Utf8StrFmt("%RU64", (uint64_t)ullMemSizeVBox));
320
321 /* Audio */
322 Utf8Str strSoundCard;
323 Utf8Str strSoundCardOrig;
324 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
325 if ( vsysThis.pelmVboxMachine
326 && pNewDesc->m->pConfig->hardwareMachine.audioAdapter.fEnabled)
327 strSoundCard = Utf8StrFmt("%RU32", (uint32_t)pNewDesc->m->pConfig->hardwareMachine.audioAdapter.controllerType);
328 else if (vsysThis.strSoundCardType.isNotEmpty())
329 {
330 /* Set the AC97 always for the simple OVF case.
331 * @todo: figure out the hardware which could be possible */
332 strSoundCard = Utf8StrFmt("%RU32", (uint32_t)AudioControllerType_AC97);
333 strSoundCardOrig = vsysThis.strSoundCardType;
334 }
335 if (strSoundCard.isNotEmpty())
336 pNewDesc->addEntry(VirtualSystemDescriptionType_SoundCard,
337 "",
338 strSoundCardOrig,
339 strSoundCard);
340
341#ifdef VBOX_WITH_USB
342 /* USB Controller */
343 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
344 if ( ( vsysThis.pelmVboxMachine
345 && pNewDesc->m->pConfig->hardwareMachine.usbController.fEnabled)
346 || vsysThis.fHasUsbController)
347 pNewDesc->addEntry(VirtualSystemDescriptionType_USBController, "", "", "");
348#endif /* VBOX_WITH_USB */
349
350 /* Network Controller */
351 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
352 if (vsysThis.pelmVboxMachine)
353 {
354 const settings::NetworkAdaptersList &llNetworkAdapters = pNewDesc->m->pConfig->hardwareMachine.llNetworkAdapters;
355 /* Check for the constrains */
356 if (llNetworkAdapters.size() > SchemaDefs::NetworkAdapterCount)
357 addWarning(tr("The virtual system \"%s\" claims support for %zu network adapters, but VirtualBox has support for max %u network adapter only."),
358 vsysThis.strName.c_str(), llNetworkAdapters.size(), SchemaDefs::NetworkAdapterCount);
359 /* Iterate through all network adapters. */
360 settings::NetworkAdaptersList::const_iterator it1;
361 size_t a = 0;
362 for (it1 = llNetworkAdapters.begin();
363 it1 != llNetworkAdapters.end() && a < SchemaDefs::NetworkAdapterCount;
364 ++it1, ++a)
365 {
366 if (it1->fEnabled)
367 {
368 Utf8Str strMode = convertNetworkAttachmentTypeToString(it1->mode);
369 pNewDesc->addEntry(VirtualSystemDescriptionType_NetworkAdapter,
370 "", // ref
371 strMode, // orig
372 Utf8StrFmt("%RU32", (uint32_t)it1->type), // conf
373 0,
374 Utf8StrFmt("slot=%RU32;type=%s", it1->ulSlot, strMode.c_str())); // extra conf
375 }
376 }
377 }
378 /* else we use the ovf configuration. */
379 else if (size_t cEthernetAdapters = vsysThis.llEthernetAdapters.size() > 0)
380 {
381 /* Check for the constrains */
382 if (cEthernetAdapters > SchemaDefs::NetworkAdapterCount)
383 addWarning(tr("The virtual system \"%s\" claims support for %zu network adapters, but VirtualBox has support for max %u network adapter only."),
384 vsysThis.strName.c_str(), cEthernetAdapters, SchemaDefs::NetworkAdapterCount);
385
386 /* Get the default network adapter type for the selected guest OS */
387 NetworkAdapterType_T defaultAdapterVBox = NetworkAdapterType_Am79C970A;
388 rc = pGuestOSType->COMGETTER(AdapterType)(&defaultAdapterVBox);
389 if (FAILED(rc)) throw rc;
390
391 ovf::EthernetAdaptersList::const_iterator itEA;
392 /* Iterate through all abstract networks. We support 8 network
393 * adapters at the maximum, so the first 8 will be added only. */
394 size_t a = 0;
395 for (itEA = vsysThis.llEthernetAdapters.begin();
396 itEA != vsysThis.llEthernetAdapters.end() && a < SchemaDefs::NetworkAdapterCount;
397 ++itEA, ++a)
398 {
399 const ovf::EthernetAdapter &ea = *itEA; // logical network to connect to
400 Utf8Str strNetwork = ea.strNetworkName;
401 // make sure it's one of these two
402 if ( (strNetwork.compare("Null", Utf8Str::CaseInsensitive))
403 && (strNetwork.compare("NAT", Utf8Str::CaseInsensitive))
404 && (strNetwork.compare("Bridged", Utf8Str::CaseInsensitive))
405 && (strNetwork.compare("Internal", Utf8Str::CaseInsensitive))
406 && (strNetwork.compare("HostOnly", Utf8Str::CaseInsensitive))
407 && (strNetwork.compare("VDE", Utf8Str::CaseInsensitive))
408 )
409 strNetwork = "Bridged"; // VMware assumes this is the default apparently
410
411 /* Figure out the hardware type */
412 NetworkAdapterType_T nwAdapterVBox = defaultAdapterVBox;
413 if (!ea.strAdapterType.compare("PCNet32", Utf8Str::CaseInsensitive))
414 {
415 /* If the default adapter is already one of the two
416 * PCNet adapters use the default one. If not use the
417 * Am79C970A as fallback. */
418 if (!(defaultAdapterVBox == NetworkAdapterType_Am79C970A ||
419 defaultAdapterVBox == NetworkAdapterType_Am79C973))
420 nwAdapterVBox = NetworkAdapterType_Am79C970A;
421 }
422#ifdef VBOX_WITH_E1000
423 /* VMWare accidentally write this with VirtualCenter 3.5,
424 so make sure in this case always to use the VMWare one */
425 else if (!ea.strAdapterType.compare("E10000", Utf8Str::CaseInsensitive))
426 nwAdapterVBox = NetworkAdapterType_I82545EM;
427 else if (!ea.strAdapterType.compare("E1000", Utf8Str::CaseInsensitive))
428 {
429 /* Check if this OVF was written by VirtualBox */
430 if (Utf8Str(vsysThis.strVirtualSystemType).contains("virtualbox", Utf8Str::CaseInsensitive))
431 {
432 /* If the default adapter is already one of the three
433 * E1000 adapters use the default one. If not use the
434 * I82545EM as fallback. */
435 if (!(defaultAdapterVBox == NetworkAdapterType_I82540EM ||
436 defaultAdapterVBox == NetworkAdapterType_I82543GC ||
437 defaultAdapterVBox == NetworkAdapterType_I82545EM))
438 nwAdapterVBox = NetworkAdapterType_I82540EM;
439 }
440 else
441 /* Always use this one since it's what VMware uses */
442 nwAdapterVBox = NetworkAdapterType_I82545EM;
443 }
444#endif /* VBOX_WITH_E1000 */
445
446 pNewDesc->addEntry(VirtualSystemDescriptionType_NetworkAdapter,
447 "", // ref
448 ea.strNetworkName, // orig
449 Utf8StrFmt("%RU32", (uint32_t)nwAdapterVBox), // conf
450 0,
451 Utf8StrFmt("type=%s", strNetwork.c_str())); // extra conf
452 }
453 }
454
455 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
456 bool fFloppy = false;
457 bool fDVD = false;
458 if (vsysThis.pelmVboxMachine)
459 {
460 settings::StorageControllersList &llControllers = pNewDesc->m->pConfig->storageMachine.llStorageControllers;
461 settings::StorageControllersList::iterator it3;
462 for (it3 = llControllers.begin();
463 it3 != llControllers.end();
464 ++it3)
465 {
466 settings::AttachedDevicesList &llAttachments = it3->llAttachedDevices;
467 settings::AttachedDevicesList::iterator it4;
468 for (it4 = llAttachments.begin();
469 it4 != llAttachments.end();
470 ++it4)
471 {
472 fDVD |= it4->deviceType == DeviceType_DVD;
473 fFloppy |= it4->deviceType == DeviceType_Floppy;
474 if (fFloppy && fDVD)
475 break;
476 }
477 if (fFloppy && fDVD)
478 break;
479 }
480 }
481 else
482 {
483 fFloppy = vsysThis.fHasFloppyDrive;
484 fDVD = vsysThis.fHasCdromDrive;
485 }
486 /* Floppy Drive */
487 if (fFloppy)
488 pNewDesc->addEntry(VirtualSystemDescriptionType_Floppy, "", "", "");
489 /* CD Drive */
490 if (fDVD)
491 pNewDesc->addEntry(VirtualSystemDescriptionType_CDROM, "", "", "");
492
493 /* Hard disk Controller */
494 uint16_t cIDEused = 0;
495 uint16_t cSATAused = 0; NOREF(cSATAused);
496 uint16_t cSCSIused = 0; NOREF(cSCSIused);
497 ovf::ControllersMap::const_iterator hdcIt;
498 /* Iterate through all hard disk controllers */
499 for (hdcIt = vsysThis.mapControllers.begin();
500 hdcIt != vsysThis.mapControllers.end();
501 ++hdcIt)
502 {
503 const ovf::HardDiskController &hdc = hdcIt->second;
504 Utf8Str strControllerID = Utf8StrFmt("%RI32", (uint32_t)hdc.idController);
505
506 switch (hdc.system)
507 {
508 case ovf::HardDiskController::IDE:
509 /* Check for the constrains */
510 if (cIDEused < 4)
511 {
512 // @todo: figure out the IDE types
513 /* Use PIIX4 as default */
514 Utf8Str strType = "PIIX4";
515 if (!hdc.strControllerType.compare("PIIX3", Utf8Str::CaseInsensitive))
516 strType = "PIIX3";
517 else if (!hdc.strControllerType.compare("ICH6", Utf8Str::CaseInsensitive))
518 strType = "ICH6";
519 pNewDesc->addEntry(VirtualSystemDescriptionType_HardDiskControllerIDE,
520 strControllerID, // strRef
521 hdc.strControllerType, // aOvfValue
522 strType); // aVboxValue
523 }
524 else
525 /* Warn only once */
526 if (cIDEused == 2)
527 addWarning(tr("The virtual \"%s\" system requests support for more than two IDE controller channels, but VirtualBox supports only two."),
528 vsysThis.strName.c_str());
529
530 ++cIDEused;
531 break;
532
533 case ovf::HardDiskController::SATA:
534 /* Check for the constrains */
535 if (cSATAused < 1)
536 {
537 // @todo: figure out the SATA types
538 /* We only support a plain AHCI controller, so use them always */
539 pNewDesc->addEntry(VirtualSystemDescriptionType_HardDiskControllerSATA,
540 strControllerID,
541 hdc.strControllerType,
542 "AHCI");
543 }
544 else
545 {
546 /* Warn only once */
547 if (cSATAused == 1)
548 addWarning(tr("The virtual system \"%s\" requests support for more than one SATA controller, but VirtualBox has support for only one"),
549 vsysThis.strName.c_str());
550
551 }
552 ++cSATAused;
553 break;
554
555 case ovf::HardDiskController::SCSI:
556 /* Check for the constrains */
557 if (cSCSIused < 1)
558 {
559 VirtualSystemDescriptionType_T vsdet = VirtualSystemDescriptionType_HardDiskControllerSCSI;
560 Utf8Str hdcController = "LsiLogic";
561 if (!hdc.strControllerType.compare("lsilogicsas", Utf8Str::CaseInsensitive))
562 {
563 // OVF considers SAS a variant of SCSI but VirtualBox considers it a class of its own
564 vsdet = VirtualSystemDescriptionType_HardDiskControllerSAS;
565 hdcController = "LsiLogicSas";
566 }
567 else if (!hdc.strControllerType.compare("BusLogic", Utf8Str::CaseInsensitive))
568 hdcController = "BusLogic";
569 pNewDesc->addEntry(vsdet,
570 strControllerID,
571 hdc.strControllerType,
572 hdcController);
573 }
574 else
575 addWarning(tr("The virtual system \"%s\" requests support for an additional SCSI controller of type \"%s\" with ID %s, but VirtualBox presently supports only one SCSI controller."),
576 vsysThis.strName.c_str(),
577 hdc.strControllerType.c_str(),
578 strControllerID.c_str());
579 ++cSCSIused;
580 break;
581 }
582 }
583
584 /* Hard disks */
585 if (vsysThis.mapVirtualDisks.size() > 0)
586 {
587 ovf::VirtualDisksMap::const_iterator itVD;
588 /* Iterate through all hard disks ()*/
589 for (itVD = vsysThis.mapVirtualDisks.begin();
590 itVD != vsysThis.mapVirtualDisks.end();
591 ++itVD)
592 {
593 const ovf::VirtualDisk &hd = itVD->second;
594 /* Get the associated disk image */
595 const ovf::DiskImage &di = m->pReader->m_mapDisks[hd.strDiskId];
596
597 // @todo:
598 // - figure out all possible vmdk formats we also support
599 // - figure out if there is a url specifier for vhd already
600 // - we need a url specifier for the vdi format
601 if ( di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#sparse", Utf8Str::CaseInsensitive)
602 || di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#streamOptimized", Utf8Str::CaseInsensitive)
603 || di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive)
604 || di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive)
605 )
606 {
607 /* If the href is empty use the VM name as filename */
608 Utf8Str strFilename = di.strHref;
609 if (!strFilename.length())
610 strFilename = Utf8StrFmt("%s.vmdk", nameVBox.c_str());
611
612 Utf8Str strTargetPath = Utf8Str(strMachineFolder)
613 .append(RTPATH_DELIMITER)
614 .append(di.strHref);
615 searchUniqueDiskImageFilePath(strTargetPath);
616
617 /* find the description for the hard disk controller
618 * that has the same ID as hd.idController */
619 const VirtualSystemDescriptionEntry *pController;
620 if (!(pController = pNewDesc->findControllerFromID(hd.idController)))
621 throw setError(E_FAIL,
622 tr("Cannot find hard disk controller with OVF instance ID %RI32 to which disk \"%s\" should be attached"),
623 hd.idController,
624 di.strHref.c_str());
625
626 /* controller to attach to, and the bus within that controller */
627 Utf8StrFmt strExtraConfig("controller=%RI16;channel=%RI16",
628 pController->ulIndex,
629 hd.ulAddressOnParent);
630 pNewDesc->addEntry(VirtualSystemDescriptionType_HardDiskImage,
631 hd.strDiskId,
632 di.strHref,
633 strTargetPath,
634 di.ulSuggestedSizeMB,
635 strExtraConfig);
636 }
637 else
638 throw setError(VBOX_E_FILE_ERROR,
639 tr("Unsupported format for virtual disk image in OVF: \"%s\"", di.strFormat.c_str()));
640 }
641 }
642
643 m->virtualSystemDescriptions.push_back(pNewDesc);
644 }
645 }
646 catch (HRESULT aRC)
647 {
648 /* On error we clear the list & return */
649 m->virtualSystemDescriptions.clear();
650 rc = aRC;
651 }
652
653 // reset the appliance state
654 alock.acquire();
655 m->state = Data::ApplianceIdle;
656
657 return rc;
658}
659
660/**
661 * Public method implementation. This creates one or more new machines according to the
662 * VirtualSystemScription instances created by Appliance::Interpret().
663 * Thread implementation is in Appliance::importImpl().
664 * @param aProgress
665 * @return
666 */
667STDMETHODIMP Appliance::ImportMachines(IProgress **aProgress)
668{
669 CheckComArgOutPointerValid(aProgress);
670
671 AutoCaller autoCaller(this);
672 if (FAILED(autoCaller.rc())) return autoCaller.rc();
673
674 AutoReadLock alock(this COMMA_LOCKVAL_SRC_POS);
675
676 // do not allow entering this method if the appliance is busy reading or writing
677 if (!isApplianceIdle())
678 return E_ACCESSDENIED;
679
680 if (!m->pReader)
681 return setError(E_FAIL,
682 tr("Cannot import machines without reading it first (call read() before importMachines())"));
683
684 ComObjPtr<Progress> progress;
685 HRESULT rc = S_OK;
686 try
687 {
688 rc = importImpl(m->locInfo, progress);
689 }
690 catch (HRESULT aRC)
691 {
692 rc = aRC;
693 }
694
695 if (SUCCEEDED(rc))
696 /* Return progress to the caller */
697 progress.queryInterfaceTo(aProgress);
698
699 return rc;
700}
701
702////////////////////////////////////////////////////////////////////////////////
703//
704// Appliance private methods
705//
706////////////////////////////////////////////////////////////////////////////////
707
708
709/*******************************************************************************
710 * Read stuff
711 ******************************************************************************/
712
713/**
714 * Implementation for reading an OVF. This starts a new thread which will call
715 * Appliance::taskThreadImportOrExport() which will then call readFS() or readS3().
716 * This will then open the OVF with ovfreader.cpp.
717 *
718 * This is in a separate private method because it is used from three locations:
719 *
720 * 1) from the public Appliance::Read().
721 *
722 * 2) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(), which
723 * called Appliance::readFSOVA(), which called Appliance::importImpl(), which then called this again.
724 *
725 * 3) from Appliance::readS3(), which got called from a previous instance of Appliance::taskThreadImportOrExport().
726 *
727 * @param aLocInfo
728 * @param aProgress
729 * @return
730 */
731HRESULT Appliance::readImpl(const LocationInfo &aLocInfo, ComObjPtr<Progress> &aProgress)
732{
733 BstrFmt bstrDesc = BstrFmt(tr("Reading appliance '%s'"),
734 aLocInfo.strPath.c_str());
735 HRESULT rc;
736 /* Create the progress object */
737 aProgress.createObject();
738 if (aLocInfo.storageType == VFSType_File)
739 /* 1 operation only */
740 rc = aProgress->init(mVirtualBox, static_cast<IAppliance*>(this),
741 bstrDesc.raw(),
742 TRUE /* aCancelable */);
743 else
744 /* 4/5 is downloading, 1/5 is reading */
745 rc = aProgress->init(mVirtualBox, static_cast<IAppliance*>(this),
746 bstrDesc.raw(),
747 TRUE /* aCancelable */,
748 2, // ULONG cOperations,
749 5, // ULONG ulTotalOperationsWeight,
750 BstrFmt(tr("Download appliance '%s'"),
751 aLocInfo.strPath.c_str()).raw(), // CBSTR bstrFirstOperationDescription,
752 4); // ULONG ulFirstOperationWeight,
753 if (FAILED(rc)) throw rc;
754
755 /* Initialize our worker task */
756 std::auto_ptr<TaskOVF> task(new TaskOVF(this, TaskOVF::Read, aLocInfo, aProgress));
757
758 rc = task->startThread();
759 if (FAILED(rc)) throw rc;
760
761 /* Don't destruct on success */
762 task.release();
763
764 return rc;
765}
766
767/**
768 * Actual worker code for reading an OVF from disk. This is called from Appliance::taskThreadImportOrExport()
769 * and therefore runs on the OVF read worker thread. This opens the OVF with ovfreader.cpp.
770 *
771 * This runs in two contexts:
772 *
773 * 1) in a first worker thread; in that case, Appliance::Read() called Appliance::readImpl();
774 *
775 * 2) in a second worker thread; in that case, Appliance::Read() called Appliance::readImpl(), which
776 * called Appliance::readS3(), which called Appliance::readImpl(), which then called this.
777 *
778 * @param pTask
779 * @return
780 */
781HRESULT Appliance::readFS(TaskOVF *pTask)
782{
783 LogFlowFuncEnter();
784 LogFlowFunc(("Appliance %p\n", this));
785
786 AutoCaller autoCaller(this);
787 if (FAILED(autoCaller.rc())) return autoCaller.rc();
788
789 AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS);
790
791 HRESULT rc = S_OK;
792
793 if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive))
794 rc = readFSOVF(pTask);
795 else
796 rc = readFSOVA(pTask);
797
798 LogFlowFunc(("rc=%Rhrc\n", rc));
799 LogFlowFuncLeave();
800
801 return rc;
802}
803
804HRESULT Appliance::readFSOVF(TaskOVF *pTask)
805{
806 LogFlowFuncEnter();
807
808 HRESULT rc = S_OK;
809
810 PVDINTERFACEIO pSha1Callbacks = 0;
811 PVDINTERFACEIO pFileCallbacks = 0;
812 do
813 {
814 pSha1Callbacks = Sha1CreateInterface();
815 if (!pSha1Callbacks)
816 {
817 rc = E_OUTOFMEMORY;
818 break;
819 }
820 pFileCallbacks = FileCreateInterface();
821 if (!pFileCallbacks)
822 {
823 rc = E_OUTOFMEMORY;
824 break;
825 }
826 VDINTERFACE VDInterfaceIO;
827 SHA1STORAGE storage;
828 RT_ZERO(storage);
829 int vrc = VDInterfaceAdd(&VDInterfaceIO, "Appliance::IOFile",
830 VDINTERFACETYPE_IO, pFileCallbacks,
831 0, &storage.pVDImageIfaces);
832 if (RT_FAILURE(vrc))
833 {
834 rc = E_FAIL;
835 break;
836 }
837 rc = readFSImpl(pTask, pSha1Callbacks, &storage);
838 }while(0);
839
840 /* Cleanup */
841 if (pSha1Callbacks)
842 RTMemFree(pSha1Callbacks);
843 if (pFileCallbacks)
844 RTMemFree(pFileCallbacks);
845
846 LogFlowFunc(("rc=%Rhrc\n", rc));
847 LogFlowFuncLeave();
848
849 return rc;
850}
851
852HRESULT Appliance::readFSOVA(TaskOVF *pTask)
853{
854 LogFlowFuncEnter();
855
856 RTTAR tar;
857 int vrc = RTTarOpen(&tar, pTask->locInfo.strPath.c_str(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, true);
858 if (RT_FAILURE(vrc))
859 return setError(VBOX_E_FILE_ERROR,
860 tr("Could not open OVA file '%s' (%Rrc)"),
861 pTask->locInfo.strPath.c_str(), vrc);
862
863 HRESULT rc = S_OK;
864
865 PVDINTERFACEIO pSha1Callbacks = 0;
866 PVDINTERFACEIO pTarCallbacks = 0;
867 do
868 {
869 pSha1Callbacks = Sha1CreateInterface();
870 if (!pSha1Callbacks)
871 {
872 rc = E_OUTOFMEMORY;
873 break;
874 }
875 pTarCallbacks = TarCreateInterface();
876 if (!pTarCallbacks)
877 {
878 rc = E_OUTOFMEMORY;
879 break;
880 }
881 VDINTERFACE VDInterfaceIO;
882 SHA1STORAGE storage;
883 RT_ZERO(storage);
884 vrc = VDInterfaceAdd(&VDInterfaceIO, "Appliance::IOTar",
885 VDINTERFACETYPE_IO, pTarCallbacks,
886 tar, &storage.pVDImageIfaces);
887 if (RT_FAILURE(vrc))
888 {
889 rc = E_FAIL;
890 break;
891 }
892 rc = readFSImpl(pTask, pSha1Callbacks, &storage);
893 }while(0);
894
895 RTTarClose(tar);
896
897 /* Cleanup */
898 if (pSha1Callbacks)
899 RTMemFree(pSha1Callbacks);
900 if (pTarCallbacks)
901 RTMemFree(pTarCallbacks);
902
903 LogFlowFunc(("rc=%Rhrc\n", rc));
904 LogFlowFuncLeave();
905
906 return rc;
907}
908
909HRESULT Appliance::readFSImpl(TaskOVF *pTask, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage)
910{
911 LogFlowFuncEnter();
912
913 HRESULT rc = S_OK;
914
915 pStorage->fCreateDigest = true;
916
917 void *pvTmpBuf = 0;
918 try
919 {
920 Utf8Str strOvfFile = Utf8Str(pTask->locInfo.strPath).stripExt().append(".ovf");
921 /* Read the OVF into a memory buffer */
922 size_t cbSize = 0;
923 int vrc = Sha1ReadBuf(strOvfFile.c_str(), &pvTmpBuf, &cbSize, pCallbacks, pStorage);
924 if ( RT_FAILURE(vrc)
925 || !pvTmpBuf)
926 throw setError(VBOX_E_FILE_ERROR,
927 tr("Could not read OVF file '%s' (%Rrc)"),
928 RTPathFilename(strOvfFile.c_str()), vrc);
929 /* Copy the SHA1 sum of the OVF file for later validation */
930 m->strOVFSHA1Digest = pStorage->strDigest;
931 /* Read & parse the XML structure of the OVF file */
932 m->pReader = new ovf::OVFReader(pvTmpBuf, cbSize, pTask->locInfo.strPath);
933 }
934 catch (RTCError &x) // includes all XML exceptions
935 {
936 rc = setError(VBOX_E_FILE_ERROR,
937 x.what());
938 }
939 catch (HRESULT aRC)
940 {
941 rc = aRC;
942 }
943
944 /* Cleanup */
945 if (pvTmpBuf)
946 RTMemFree(pvTmpBuf);
947
948 LogFlowFunc(("rc=%Rhrc\n", rc));
949 LogFlowFuncLeave();
950
951 return rc;
952}
953
954#ifdef VBOX_WITH_S3
955/**
956 * Worker code for reading OVF from the cloud. This is called from Appliance::taskThreadImportOrExport()
957 * in S3 mode and therefore runs on the OVF read worker thread. This then starts a second worker
958 * thread to create temporary files (see Appliance::readFS()).
959 *
960 * @param pTask
961 * @return
962 */
963HRESULT Appliance::readS3(TaskOVF *pTask)
964{
965 LogFlowFuncEnter();
966 LogFlowFunc(("Appliance %p\n", this));
967
968 AutoCaller autoCaller(this);
969 if (FAILED(autoCaller.rc())) return autoCaller.rc();
970
971 AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS);
972
973 HRESULT rc = S_OK;
974 int vrc = VINF_SUCCESS;
975 RTS3 hS3 = NIL_RTS3;
976 char szOSTmpDir[RTPATH_MAX];
977 RTPathTemp(szOSTmpDir, sizeof(szOSTmpDir));
978 /* The template for the temporary directory created below */
979 char *pszTmpDir = RTPathJoinA(szOSTmpDir, "vbox-ovf-XXXXXX");
980 list< pair<Utf8Str, ULONG> > filesList;
981 Utf8Str strTmpOvf;
982
983 try
984 {
985 /* Extract the bucket */
986 Utf8Str tmpPath = pTask->locInfo.strPath;
987 Utf8Str bucket;
988 parseBucket(tmpPath, bucket);
989
990 /* We need a temporary directory which we can put the OVF file & all
991 * disk images in */
992 vrc = RTDirCreateTemp(pszTmpDir);
993 if (RT_FAILURE(vrc))
994 throw setError(VBOX_E_FILE_ERROR,
995 tr("Cannot create temporary directory '%s'"), pszTmpDir);
996
997 /* The temporary name of the target OVF file */
998 strTmpOvf = Utf8StrFmt("%s/%s", pszTmpDir, RTPathFilename(tmpPath.c_str()));
999
1000 /* Next we have to download the OVF */
1001 vrc = RTS3Create(&hS3, pTask->locInfo.strUsername.c_str(), pTask->locInfo.strPassword.c_str(), pTask->locInfo.strHostname.c_str(), "virtualbox-agent/"VBOX_VERSION_STRING);
1002 if (RT_FAILURE(vrc))
1003 throw setError(VBOX_E_IPRT_ERROR,
1004 tr("Cannot create S3 service handler"));
1005 RTS3SetProgressCallback(hS3, pTask->updateProgress, &pTask);
1006
1007 /* Get it */
1008 char *pszFilename = RTPathFilename(strTmpOvf.c_str());
1009 vrc = RTS3GetKey(hS3, bucket.c_str(), pszFilename, strTmpOvf.c_str());
1010 if (RT_FAILURE(vrc))
1011 {
1012 if (vrc == VERR_S3_CANCELED)
1013 throw S_OK; /* todo: !!!!!!!!!!!!! */
1014 else if (vrc == VERR_S3_ACCESS_DENIED)
1015 throw setError(E_ACCESSDENIED,
1016 tr("Cannot download file '%s' from S3 storage server (Access denied). Make sure that your credentials are right."
1017 "Also check that your host clock is properly synced"),
1018 pszFilename);
1019 else if (vrc == VERR_S3_NOT_FOUND)
1020 throw setError(VBOX_E_FILE_ERROR,
1021 tr("Cannot download file '%s' from S3 storage server (File not found)"), pszFilename);
1022 else
1023 throw setError(VBOX_E_IPRT_ERROR,
1024 tr("Cannot download file '%s' from S3 storage server (%Rrc)"), pszFilename, vrc);
1025 }
1026
1027 /* Close the connection early */
1028 RTS3Destroy(hS3);
1029 hS3 = NIL_RTS3;
1030
1031 pTask->pProgress->SetNextOperation(Bstr(tr("Reading")).raw(), 1);
1032
1033 /* Prepare the temporary reading of the OVF */
1034 ComObjPtr<Progress> progress;
1035 LocationInfo li;
1036 li.strPath = strTmpOvf;
1037 /* Start the reading from the fs */
1038 rc = readImpl(li, progress);
1039 if (FAILED(rc)) throw rc;
1040
1041 /* Unlock the appliance for the reading thread */
1042 appLock.release();
1043 /* Wait until the reading is done, but report the progress back to the
1044 caller */
1045 ComPtr<IProgress> progressInt(progress);
1046 waitForAsyncProgress(pTask->pProgress, progressInt); /* Any errors will be thrown */
1047
1048 /* Again lock the appliance for the next steps */
1049 appLock.acquire();
1050 }
1051 catch(HRESULT aRC)
1052 {
1053 rc = aRC;
1054 }
1055 /* Cleanup */
1056 RTS3Destroy(hS3);
1057 /* Delete all files which where temporary created */
1058 if (RTPathExists(strTmpOvf.c_str()))
1059 {
1060 vrc = RTFileDelete(strTmpOvf.c_str());
1061 if (RT_FAILURE(vrc))
1062 rc = setError(VBOX_E_FILE_ERROR,
1063 tr("Cannot delete file '%s' (%Rrc)"), strTmpOvf.c_str(), vrc);
1064 }
1065 /* Delete the temporary directory */
1066 if (RTPathExists(pszTmpDir))
1067 {
1068 vrc = RTDirRemove(pszTmpDir);
1069 if (RT_FAILURE(vrc))
1070 rc = setError(VBOX_E_FILE_ERROR,
1071 tr("Cannot delete temporary directory '%s' (%Rrc)"), pszTmpDir, vrc);
1072 }
1073 if (pszTmpDir)
1074 RTStrFree(pszTmpDir);
1075
1076 LogFlowFunc(("rc=%Rhrc\n", rc));
1077 LogFlowFuncLeave();
1078
1079 return rc;
1080}
1081#endif /* VBOX_WITH_S3 */
1082
1083/*******************************************************************************
1084 * Import stuff
1085 ******************************************************************************/
1086
1087/**
1088 * Implementation for importing OVF data into VirtualBox. This starts a new thread which will call
1089 * Appliance::taskThreadImportOrExport().
1090 *
1091 * This creates one or more new machines according to the VirtualSystemScription instances created by
1092 * Appliance::Interpret().
1093 *
1094 * This is in a separate private method because it is used from two locations:
1095 *
1096 * 1) from the public Appliance::ImportMachines().
1097 * 2) from Appliance::importS3(), which got called from a previous instance of Appliance::taskThreadImportOrExport().
1098 *
1099 * @param aLocInfo
1100 * @param aProgress
1101 * @return
1102 */
1103HRESULT Appliance::importImpl(const LocationInfo &locInfo,
1104 ComObjPtr<Progress> &progress)
1105{
1106 HRESULT rc = S_OK;
1107
1108 SetUpProgressMode mode;
1109 if (locInfo.storageType == VFSType_File)
1110 mode = ImportFile;
1111 else
1112 mode = ImportS3;
1113
1114 rc = setUpProgress(progress,
1115 BstrFmt(tr("Importing appliance '%s'"), locInfo.strPath.c_str()),
1116 mode);
1117 if (FAILED(rc)) throw rc;
1118
1119 /* Initialize our worker task */
1120 std::auto_ptr<TaskOVF> task(new TaskOVF(this, TaskOVF::Import, locInfo, progress));
1121
1122 rc = task->startThread();
1123 if (FAILED(rc)) throw rc;
1124
1125 /* Don't destruct on success */
1126 task.release();
1127
1128 return rc;
1129}
1130
1131/**
1132 * Actual worker code for importing OVF data into VirtualBox. This is called from Appliance::taskThreadImportOrExport()
1133 * and therefore runs on the OVF import worker thread. This creates one or more new machines according to the
1134 * VirtualSystemScription instances created by Appliance::Interpret().
1135 *
1136 * This runs in three contexts:
1137 *
1138 * 1) in a first worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl();
1139 *
1140 * 2) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(), which
1141 * called Appliance::importFSOVA(), which called Appliance::importImpl(), which then called this again.
1142 *
1143 * 3) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(), which
1144 * called Appliance::importS3(), which called Appliance::importImpl(), which then called this again.
1145 *
1146 * @param pTask
1147 * @return
1148 */
1149HRESULT Appliance::importFS(TaskOVF *pTask)
1150{
1151
1152 LogFlowFuncEnter();
1153 LogFlowFunc(("Appliance %p\n", this));
1154
1155 AutoCaller autoCaller(this);
1156 if (FAILED(autoCaller.rc())) return autoCaller.rc();
1157
1158 /* Change the appliance state so we can safely leave the lock while doing
1159 * time-consuming disk imports; also the below method calls do all kinds of
1160 * locking which conflicts with the appliance object lock. */
1161 AutoWriteLock writeLock(this COMMA_LOCKVAL_SRC_POS);
1162 /* Check if the appliance is currently busy. */
1163 if (!isApplianceIdle())
1164 return E_ACCESSDENIED;
1165 /* Set the internal state to importing. */
1166 m->state = Data::ApplianceImporting;
1167
1168 HRESULT rc = S_OK;
1169
1170 /* Clear the list of imported machines, if any */
1171 m->llGuidsMachinesCreated.clear();
1172
1173 if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive))
1174 rc = importFSOVF(pTask, writeLock);
1175 else
1176 rc = importFSOVA(pTask, writeLock);
1177
1178 if (FAILED(rc))
1179 {
1180 /* With _whatever_ error we've had, do a complete roll-back of
1181 * machines and disks we've created */
1182 writeLock.release();
1183 for (list<Guid>::iterator itID = m->llGuidsMachinesCreated.begin();
1184 itID != m->llGuidsMachinesCreated.end();
1185 ++itID)
1186 {
1187 Guid guid = *itID;
1188 Bstr bstrGuid = guid.toUtf16();
1189 ComPtr<IMachine> failedMachine;
1190 HRESULT rc2 = mVirtualBox->FindMachine(bstrGuid.raw(), failedMachine.asOutParam());
1191 if (SUCCEEDED(rc2))
1192 {
1193 SafeIfaceArray<IMedium> aMedia;
1194 rc2 = failedMachine->Unregister(CleanupMode_DetachAllReturnHardDisksOnly, ComSafeArrayAsOutParam(aMedia));
1195 ComPtr<IProgress> pProgress2;
1196 rc2 = failedMachine->Delete(ComSafeArrayAsInParam(aMedia), pProgress2.asOutParam());
1197 pProgress2->WaitForCompletion(-1);
1198 }
1199 }
1200 writeLock.acquire();
1201 }
1202
1203 /* Reset the state so others can call methods again */
1204 m->state = Data::ApplianceIdle;
1205
1206 LogFlowFunc(("rc=%Rhrc\n", rc));
1207 LogFlowFuncLeave();
1208
1209 return rc;
1210}
1211
1212HRESULT Appliance::importFSOVF(TaskOVF *pTask, AutoWriteLockBase& writeLock)
1213{
1214 LogFlowFuncEnter();
1215
1216 HRESULT rc = S_OK;
1217
1218 PVDINTERFACEIO pSha1Callbacks = 0;
1219 PVDINTERFACEIO pFileCallbacks = 0;
1220 void *pvMfBuf = 0;
1221 writeLock.release();
1222 try
1223 {
1224 /* Create the necessary file access interfaces. */
1225 pSha1Callbacks = Sha1CreateInterface();
1226 if (!pSha1Callbacks)
1227 throw E_OUTOFMEMORY;
1228 pFileCallbacks = FileCreateInterface();
1229 if (!pFileCallbacks)
1230 throw E_OUTOFMEMORY;
1231
1232 VDINTERFACE VDInterfaceIO;
1233 SHA1STORAGE storage;
1234 RT_ZERO(storage);
1235 storage.fCreateDigest = true;
1236 int vrc = VDInterfaceAdd(&VDInterfaceIO, "Appliance::IOFile",
1237 VDINTERFACETYPE_IO, pFileCallbacks,
1238 0, &storage.pVDImageIfaces);
1239 if (RT_FAILURE(vrc))
1240 throw E_FAIL;
1241
1242 size_t cbMfSize = 0;
1243 Utf8Str strMfFile = Utf8Str(pTask->locInfo.strPath).stripExt().append(".mf");
1244 /* Create the import stack for the rollback on errors. */
1245 ImportStack stack(pTask->locInfo, m->pReader->m_mapDisks, pTask->pProgress);
1246 /* Do we need the digest information? */
1247 storage.fCreateDigest = RTFileExists(strMfFile.c_str());
1248 /* Now import the appliance. */
1249 importMachines(stack, pSha1Callbacks, &storage);
1250 /* Read & verify the manifest file, if there is one. */
1251 if (storage.fCreateDigest)
1252 {
1253 /* Add the ovf file to the digest list. */
1254 stack.llSrcDisksDigest.push_front(STRPAIR(pTask->locInfo.strPath, m->strOVFSHA1Digest));
1255 rc = readManifestFile(strMfFile, &pvMfBuf, &cbMfSize, pSha1Callbacks, &storage);
1256 if (FAILED(rc)) throw rc;
1257 rc = verifyManifestFile(strMfFile, stack, pvMfBuf, cbMfSize);
1258 if (FAILED(rc)) throw rc;
1259 }
1260 }
1261 catch (HRESULT rc2)
1262 {
1263 rc = rc2;
1264 }
1265 writeLock.acquire();
1266
1267 /* Cleanup */
1268 if (pvMfBuf)
1269 RTMemFree(pvMfBuf);
1270 if (pSha1Callbacks)
1271 RTMemFree(pSha1Callbacks);
1272 if (pFileCallbacks)
1273 RTMemFree(pFileCallbacks);
1274
1275 LogFlowFunc(("rc=%Rhrc\n", rc));
1276 LogFlowFuncLeave();
1277
1278 return rc;
1279}
1280
1281HRESULT Appliance::importFSOVA(TaskOVF *pTask, AutoWriteLockBase& writeLock)
1282{
1283 LogFlowFuncEnter();
1284
1285 RTTAR tar;
1286 int vrc = RTTarOpen(&tar, pTask->locInfo.strPath.c_str(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, true);
1287 if (RT_FAILURE(vrc))
1288 return setError(VBOX_E_FILE_ERROR,
1289 tr("Could not open OVA file '%s' (%Rrc)"),
1290 pTask->locInfo.strPath.c_str(), vrc);
1291
1292 HRESULT rc = S_OK;
1293
1294 PVDINTERFACEIO pSha1Callbacks = 0;
1295 PVDINTERFACEIO pTarCallbacks = 0;
1296 void *pvMfBuf = 0;
1297 writeLock.release();
1298 try
1299 {
1300 /* Create the necessary file access interfaces. */
1301 pSha1Callbacks = Sha1CreateInterface();
1302 if (!pSha1Callbacks)
1303 throw E_OUTOFMEMORY;
1304 pTarCallbacks = TarCreateInterface();
1305 if (!pTarCallbacks)
1306 throw E_OUTOFMEMORY;
1307
1308 VDINTERFACE VDInterfaceIO;
1309 SHA1STORAGE storage;
1310 RT_ZERO(storage);
1311 vrc = VDInterfaceAdd(&VDInterfaceIO, "Appliance::IOTar",
1312 VDINTERFACETYPE_IO, pTarCallbacks,
1313 tar, &storage.pVDImageIfaces);
1314 if (RT_FAILURE(vrc))
1315 throw setError(E_FAIL,
1316 tr("Internal error (%Rrc)"), vrc);
1317
1318 /* Skip the OVF file, cause this was read in IAppliance::Read already. */
1319 vrc = RTTarSeekNextFile(tar);
1320 if ( RT_FAILURE(vrc)
1321 && vrc != VERR_TAR_END_OF_FILE)
1322 throw setError(E_FAIL,
1323 tr("Internal error (%Rrc)"), vrc);
1324
1325 PVDINTERFACEIO pCallbacks = pSha1Callbacks;
1326 PSHA1STORAGE pStorage = &storage;
1327
1328 /* We always need to create the digest, cause we didn't know if there
1329 * is a manifest file in the stream. */
1330 pStorage->fCreateDigest = true;
1331
1332 size_t cbMfSize = 0;
1333 Utf8Str strMfFile = Utf8Str(pTask->locInfo.strPath).stripExt().append(".mf");
1334 /* Create the import stack for the rollback on errors. */
1335 ImportStack stack(pTask->locInfo, m->pReader->m_mapDisks, pTask->pProgress);
1336 /*
1337 * Try to read the manifest file. First try.
1338 *
1339 * Note: This isn't fatal if the file is not found. The standard
1340 * defines 3 cases.
1341 * 1. no manifest file
1342 * 2. manifest file after the OVF file
1343 * 3. manifest file after all disk files
1344 * If we want streaming capabilities, we can't check if it is there by
1345 * searching for it. We have to try to open it on all possible places.
1346 * If it fails here, we will try it again after all disks where read.
1347 */
1348 rc = readTarManifestFile(tar, strMfFile, &pvMfBuf, &cbMfSize, pCallbacks, pStorage);
1349 if (FAILED(rc)) throw rc;
1350 /* Now import the appliance. */
1351 importMachines(stack, pCallbacks, pStorage);
1352 /* Try to read the manifest file. Second try. */
1353 if (!pvMfBuf)
1354 {
1355 rc = readTarManifestFile(tar, strMfFile, &pvMfBuf, &cbMfSize, pCallbacks, pStorage);
1356 if (FAILED(rc)) throw rc;
1357 }
1358 /* If we were able to read a manifest file we can check it now. */
1359 if (pvMfBuf)
1360 {
1361 /* Add the ovf file to the digest list. */
1362 stack.llSrcDisksDigest.push_front(STRPAIR(Utf8Str(pTask->locInfo.strPath).stripExt().append(".ovf"), m->strOVFSHA1Digest));
1363 rc = verifyManifestFile(strMfFile, stack, pvMfBuf, cbMfSize);
1364 if (FAILED(rc)) throw rc;
1365 }
1366 }
1367 catch (HRESULT rc2)
1368 {
1369 rc = rc2;
1370 }
1371 writeLock.acquire();
1372
1373 RTTarClose(tar);
1374
1375 /* Cleanup */
1376 if (pvMfBuf)
1377 RTMemFree(pvMfBuf);
1378 if (pSha1Callbacks)
1379 RTMemFree(pSha1Callbacks);
1380 if (pTarCallbacks)
1381 RTMemFree(pTarCallbacks);
1382
1383 LogFlowFunc(("rc=%Rhrc\n", rc));
1384 LogFlowFuncLeave();
1385
1386 return rc;
1387}
1388
1389#ifdef VBOX_WITH_S3
1390/**
1391 * Worker code for importing OVF from the cloud. This is called from Appliance::taskThreadImportOrExport()
1392 * in S3 mode and therefore runs on the OVF import worker thread. This then starts a second worker
1393 * thread to import from temporary files (see Appliance::importFS()).
1394 * @param pTask
1395 * @return
1396 */
1397HRESULT Appliance::importS3(TaskOVF *pTask)
1398{
1399 LogFlowFuncEnter();
1400 LogFlowFunc(("Appliance %p\n", this));
1401
1402 AutoCaller autoCaller(this);
1403 if (FAILED(autoCaller.rc())) return autoCaller.rc();
1404
1405 AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS);
1406
1407 int vrc = VINF_SUCCESS;
1408 RTS3 hS3 = NIL_RTS3;
1409 char szOSTmpDir[RTPATH_MAX];
1410 RTPathTemp(szOSTmpDir, sizeof(szOSTmpDir));
1411 /* The template for the temporary directory created below */
1412 char *pszTmpDir = RTPathJoinA(szOSTmpDir, "vbox-ovf-XXXXXX");
1413 list< pair<Utf8Str, ULONG> > filesList;
1414
1415 HRESULT rc = S_OK;
1416 try
1417 {
1418 /* Extract the bucket */
1419 Utf8Str tmpPath = pTask->locInfo.strPath;
1420 Utf8Str bucket;
1421 parseBucket(tmpPath, bucket);
1422
1423 /* We need a temporary directory which we can put the all disk images
1424 * in */
1425 vrc = RTDirCreateTemp(pszTmpDir);
1426 if (RT_FAILURE(vrc))
1427 throw setError(VBOX_E_FILE_ERROR,
1428 tr("Cannot create temporary directory '%s' (%Rrc)"), pszTmpDir, vrc);
1429
1430 /* Add every disks of every virtual system to an internal list */
1431 list< ComObjPtr<VirtualSystemDescription> >::const_iterator it;
1432 for (it = m->virtualSystemDescriptions.begin();
1433 it != m->virtualSystemDescriptions.end();
1434 ++it)
1435 {
1436 ComObjPtr<VirtualSystemDescription> vsdescThis = (*it);
1437 std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskImage);
1438 std::list<VirtualSystemDescriptionEntry*>::const_iterator itH;
1439 for (itH = avsdeHDs.begin();
1440 itH != avsdeHDs.end();
1441 ++itH)
1442 {
1443 const Utf8Str &strTargetFile = (*itH)->strOvf;
1444 if (!strTargetFile.isEmpty())
1445 {
1446 /* The temporary name of the target disk file */
1447 Utf8StrFmt strTmpDisk("%s/%s", pszTmpDir, RTPathFilename(strTargetFile.c_str()));
1448 filesList.push_back(pair<Utf8Str, ULONG>(strTmpDisk, (*itH)->ulSizeMB));
1449 }
1450 }
1451 }
1452
1453 /* Next we have to download the disk images */
1454 vrc = RTS3Create(&hS3, pTask->locInfo.strUsername.c_str(), pTask->locInfo.strPassword.c_str(), pTask->locInfo.strHostname.c_str(), "virtualbox-agent/"VBOX_VERSION_STRING);
1455 if (RT_FAILURE(vrc))
1456 throw setError(VBOX_E_IPRT_ERROR,
1457 tr("Cannot create S3 service handler"));
1458 RTS3SetProgressCallback(hS3, pTask->updateProgress, &pTask);
1459
1460 /* Download all files */
1461 for (list< pair<Utf8Str, ULONG> >::const_iterator it1 = filesList.begin(); it1 != filesList.end(); ++it1)
1462 {
1463 const pair<Utf8Str, ULONG> &s = (*it1);
1464 const Utf8Str &strSrcFile = s.first;
1465 /* Construct the source file name */
1466 char *pszFilename = RTPathFilename(strSrcFile.c_str());
1467 /* Advance to the next operation */
1468 if (!pTask->pProgress.isNull())
1469 pTask->pProgress->SetNextOperation(BstrFmt(tr("Downloading file '%s'"), pszFilename).raw(), s.second);
1470
1471 vrc = RTS3GetKey(hS3, bucket.c_str(), pszFilename, strSrcFile.c_str());
1472 if (RT_FAILURE(vrc))
1473 {
1474 if (vrc == VERR_S3_CANCELED)
1475 throw S_OK; /* todo: !!!!!!!!!!!!! */
1476 else if (vrc == VERR_S3_ACCESS_DENIED)
1477 throw setError(E_ACCESSDENIED,
1478 tr("Cannot download file '%s' from S3 storage server (Access denied). "
1479 "Make sure that your credentials are right. Also check that your host clock is properly synced"),
1480 pszFilename);
1481 else if (vrc == VERR_S3_NOT_FOUND)
1482 throw setError(VBOX_E_FILE_ERROR,
1483 tr("Cannot download file '%s' from S3 storage server (File not found)"),
1484 pszFilename);
1485 else
1486 throw setError(VBOX_E_IPRT_ERROR,
1487 tr("Cannot download file '%s' from S3 storage server (%Rrc)"),
1488 pszFilename, vrc);
1489 }
1490 }
1491
1492 /* Provide a OVF file (haven't to exist) so the import routine can
1493 * figure out where the disk images/manifest file are located. */
1494 Utf8StrFmt strTmpOvf("%s/%s", pszTmpDir, RTPathFilename(tmpPath.c_str()));
1495 /* Now check if there is an manifest file. This is optional. */
1496 Utf8Str strManifestFile; //= queryManifestFileName(strTmpOvf);
1497// Utf8Str strManifestFile = queryManifestFileName(strTmpOvf);
1498 char *pszFilename = RTPathFilename(strManifestFile.c_str());
1499 if (!pTask->pProgress.isNull())
1500 pTask->pProgress->SetNextOperation(BstrFmt(tr("Downloading file '%s'"), pszFilename).raw(), 1);
1501
1502 /* Try to download it. If the error is VERR_S3_NOT_FOUND, it isn't fatal. */
1503 vrc = RTS3GetKey(hS3, bucket.c_str(), pszFilename, strManifestFile.c_str());
1504 if (RT_SUCCESS(vrc))
1505 filesList.push_back(pair<Utf8Str, ULONG>(strManifestFile, 0));
1506 else if (RT_FAILURE(vrc))
1507 {
1508 if (vrc == VERR_S3_CANCELED)
1509 throw S_OK; /* todo: !!!!!!!!!!!!! */
1510 else if (vrc == VERR_S3_NOT_FOUND)
1511 vrc = VINF_SUCCESS; /* Not found is ok */
1512 else if (vrc == VERR_S3_ACCESS_DENIED)
1513 throw setError(E_ACCESSDENIED,
1514 tr("Cannot download file '%s' from S3 storage server (Access denied)."
1515 "Make sure that your credentials are right. Also check that your host clock is properly synced"),
1516 pszFilename);
1517 else
1518 throw setError(VBOX_E_IPRT_ERROR,
1519 tr("Cannot download file '%s' from S3 storage server (%Rrc)"),
1520 pszFilename, vrc);
1521 }
1522
1523 /* Close the connection early */
1524 RTS3Destroy(hS3);
1525 hS3 = NIL_RTS3;
1526
1527 pTask->pProgress->SetNextOperation(BstrFmt(tr("Importing appliance")).raw(), m->ulWeightForXmlOperation);
1528
1529 ComObjPtr<Progress> progress;
1530 /* Import the whole temporary OVF & the disk images */
1531 LocationInfo li;
1532 li.strPath = strTmpOvf;
1533 rc = importImpl(li, progress);
1534 if (FAILED(rc)) throw rc;
1535
1536 /* Unlock the appliance for the fs import thread */
1537 appLock.release();
1538 /* Wait until the import is done, but report the progress back to the
1539 caller */
1540 ComPtr<IProgress> progressInt(progress);
1541 waitForAsyncProgress(pTask->pProgress, progressInt); /* Any errors will be thrown */
1542
1543 /* Again lock the appliance for the next steps */
1544 appLock.acquire();
1545 }
1546 catch(HRESULT aRC)
1547 {
1548 rc = aRC;
1549 }
1550 /* Cleanup */
1551 RTS3Destroy(hS3);
1552 /* Delete all files which where temporary created */
1553 for (list< pair<Utf8Str, ULONG> >::const_iterator it1 = filesList.begin(); it1 != filesList.end(); ++it1)
1554 {
1555 const char *pszFilePath = (*it1).first.c_str();
1556 if (RTPathExists(pszFilePath))
1557 {
1558 vrc = RTFileDelete(pszFilePath);
1559 if (RT_FAILURE(vrc))
1560 rc = setError(VBOX_E_FILE_ERROR,
1561 tr("Cannot delete file '%s' (%Rrc)"), pszFilePath, vrc);
1562 }
1563 }
1564 /* Delete the temporary directory */
1565 if (RTPathExists(pszTmpDir))
1566 {
1567 vrc = RTDirRemove(pszTmpDir);
1568 if (RT_FAILURE(vrc))
1569 rc = setError(VBOX_E_FILE_ERROR,
1570 tr("Cannot delete temporary directory '%s' (%Rrc)"), pszTmpDir, vrc);
1571 }
1572 if (pszTmpDir)
1573 RTStrFree(pszTmpDir);
1574
1575 LogFlowFunc(("rc=%Rhrc\n", rc));
1576 LogFlowFuncLeave();
1577
1578 return rc;
1579}
1580#endif /* VBOX_WITH_S3 */
1581
1582HRESULT Appliance::readManifestFile(const Utf8Str &strFile, void **ppvBuf, size_t *pcbSize, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage)
1583{
1584 HRESULT rc = S_OK;
1585
1586 bool fOldDigest = pStorage->fCreateDigest;
1587 pStorage->fCreateDigest = false; /* No digest for the manifest file */
1588 int vrc = Sha1ReadBuf(strFile.c_str(), ppvBuf, pcbSize, pCallbacks, pStorage);
1589 if ( RT_FAILURE(vrc)
1590 && vrc != VERR_FILE_NOT_FOUND)
1591 rc = setError(VBOX_E_FILE_ERROR,
1592 tr("Could not read manifest file '%s' (%Rrc)"),
1593 RTPathFilename(strFile.c_str()), vrc);
1594 pStorage->fCreateDigest = fOldDigest; /* Restore the old digest creation behavior again. */
1595
1596 return rc;
1597}
1598
1599HRESULT Appliance::readTarManifestFile(RTTAR tar, const Utf8Str &strFile, void **ppvBuf, size_t *pcbSize, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage)
1600{
1601 HRESULT rc = S_OK;
1602
1603 char *pszCurFile;
1604 int vrc = RTTarCurrentFile(tar, &pszCurFile);
1605 if (RT_SUCCESS(vrc))
1606 {
1607 if (!strcmp(pszCurFile, RTPathFilename(strFile.c_str())))
1608 rc = readManifestFile(strFile, ppvBuf, pcbSize, pCallbacks, pStorage);
1609 RTStrFree(pszCurFile);
1610 }
1611 else if (vrc != VERR_TAR_END_OF_FILE)
1612 rc = E_FAIL;
1613
1614 return rc;
1615}
1616
1617HRESULT Appliance::verifyManifestFile(const Utf8Str &strFile, ImportStack &stack, void *pvBuf, size_t cbSize)
1618{
1619 HRESULT rc = S_OK;
1620
1621 PRTMANIFESTTEST paTests = (PRTMANIFESTTEST)RTMemAlloc(sizeof(RTMANIFESTTEST) * stack.llSrcDisksDigest.size());
1622 if (!paTests)
1623 return E_OUTOFMEMORY;
1624
1625 size_t i = 0;
1626 list<STRPAIR>::const_iterator it1;
1627 for (it1 = stack.llSrcDisksDigest.begin();
1628 it1 != stack.llSrcDisksDigest.end();
1629 ++it1, ++i)
1630 {
1631 paTests[i].pszTestFile = (*it1).first.c_str();
1632 paTests[i].pszTestDigest = (*it1).second.c_str();
1633 }
1634 size_t iFailed;
1635 int vrc = RTManifestVerifyFilesBuf(pvBuf, cbSize, paTests, stack.llSrcDisksDigest.size(), &iFailed);
1636 if (RT_UNLIKELY(vrc == VERR_MANIFEST_DIGEST_MISMATCH))
1637 rc = setError(VBOX_E_FILE_ERROR,
1638 tr("The SHA1 digest of '%s' does not match the one in '%s' (%Rrc)"),
1639 RTPathFilename(paTests[iFailed].pszTestFile), RTPathFilename(strFile.c_str()), vrc);
1640 else if (RT_FAILURE(vrc))
1641 rc = setError(VBOX_E_FILE_ERROR,
1642 tr("Could not verify the content of '%s' against the available files (%Rrc)"),
1643 RTPathFilename(strFile.c_str()), vrc);
1644
1645 RTMemFree(paTests);
1646
1647 return rc;
1648}
1649
1650
1651/**
1652 * Helper that converts VirtualSystem attachment values into VirtualBox attachment values.
1653 * Throws HRESULT values on errors!
1654 *
1655 * @param hdc in: the HardDiskController structure to attach to.
1656 * @param ulAddressOnParent in: the AddressOnParent parameter from OVF.
1657 * @param controllerType out: the name of the hard disk controller to attach to (e.g. "IDE Controller").
1658 * @param lControllerPort out: the channel (controller port) of the controller to attach to.
1659 * @param lDevice out: the device number to attach to.
1660 */
1661void Appliance::convertDiskAttachmentValues(const ovf::HardDiskController &hdc,
1662 uint32_t ulAddressOnParent,
1663 Bstr &controllerType,
1664 int32_t &lControllerPort,
1665 int32_t &lDevice)
1666{
1667 Log(("Appliance::convertDiskAttachmentValues: hdc.system=%d, hdc.fPrimary=%d, ulAddressOnParent=%d\n", hdc.system, hdc.fPrimary, ulAddressOnParent));
1668
1669 switch (hdc.system)
1670 {
1671 case ovf::HardDiskController::IDE:
1672 // For the IDE bus, the port parameter can be either 0 or 1, to specify the primary
1673 // or secondary IDE controller, respectively. For the primary controller of the IDE bus,
1674 // the device number can be either 0 or 1, to specify the master or the slave device,
1675 // respectively. For the secondary IDE controller, the device number is always 1 because
1676 // the master device is reserved for the CD-ROM drive.
1677 controllerType = Bstr("IDE Controller");
1678 switch (ulAddressOnParent)
1679 {
1680 case 0: // master
1681 if (!hdc.fPrimary)
1682 {
1683 // secondary master
1684 lControllerPort = (long)1;
1685 lDevice = (long)0;
1686 }
1687 else // primary master
1688 {
1689 lControllerPort = (long)0;
1690 lDevice = (long)0;
1691 }
1692 break;
1693
1694 case 1: // slave
1695 if (!hdc.fPrimary)
1696 {
1697 // secondary slave
1698 lControllerPort = (long)1;
1699 lDevice = (long)1;
1700 }
1701 else // primary slave
1702 {
1703 lControllerPort = (long)0;
1704 lDevice = (long)1;
1705 }
1706 break;
1707
1708 // used by older VBox exports
1709 case 2: // interpret this as secondary master
1710 lControllerPort = (long)1;
1711 lDevice = (long)0;
1712 break;
1713
1714 // used by older VBox exports
1715 case 3: // interpret this as secondary slave
1716 lControllerPort = (long)1;
1717 lDevice = (long)1;
1718 break;
1719
1720 default:
1721 throw setError(VBOX_E_NOT_SUPPORTED,
1722 tr("Invalid channel %RI16 specified; IDE controllers support only 0, 1 or 2"),
1723 ulAddressOnParent);
1724 break;
1725 }
1726 break;
1727
1728 case ovf::HardDiskController::SATA:
1729 controllerType = Bstr("SATA Controller");
1730 lControllerPort = (long)ulAddressOnParent;
1731 lDevice = (long)0;
1732 break;
1733
1734 case ovf::HardDiskController::SCSI:
1735 controllerType = Bstr("SCSI Controller");
1736 lControllerPort = (long)ulAddressOnParent;
1737 lDevice = (long)0;
1738 break;
1739
1740 default: break;
1741 }
1742
1743 Log(("=> lControllerPort=%d, lDevice=%d\n", lControllerPort, lDevice));
1744}
1745
1746/**
1747 * Imports one disk image. This is common code shared between
1748 * -- importMachineGeneric() for the OVF case; in that case the information comes from
1749 * the OVF virtual systems;
1750 * -- importVBoxMachine(); in that case, the information comes from the <vbox:Machine>
1751 * tag.
1752 *
1753 * Both ways of describing machines use the OVF disk references section, so in both cases
1754 * the caller needs to pass in the ovf::DiskImage structure from ovfreader.cpp.
1755 *
1756 * As a result, in both cases, if di.strHref is empty, we create a new disk as per the OVF
1757 * spec, even though this cannot really happen in the vbox:Machine case since such data
1758 * would never have been exported.
1759 *
1760 * This advances stack.pProgress by one operation with the disk's weight.
1761 *
1762 * @param di ovfreader.cpp structure describing the disk image from the OVF that is to be imported
1763 * @param ulSizeMB Size of the disk image (for progress reporting)
1764 * @param strTargetPath Where to create the target image.
1765 * @param pTargetHD out: The newly created target disk. This also gets pushed on stack.llHardDisksCreated for cleanup.
1766 * @param stack
1767 */
1768void Appliance::importOneDiskImage(const ovf::DiskImage &di,
1769 const Utf8Str &strTargetPath,
1770 ComObjPtr<Medium> &pTargetHD,
1771 ImportStack &stack,
1772 PVDINTERFACEIO pCallbacks,
1773 PSHA1STORAGE pStorage)
1774{
1775 ComObjPtr<Progress> pProgress;
1776 pProgress.createObject();
1777 HRESULT rc = pProgress->init(mVirtualBox, static_cast<IAppliance*>(this), BstrFmt(tr("Creating medium '%s'"), strTargetPath.c_str()).raw(), TRUE);
1778 if (FAILED(rc)) throw rc;
1779
1780 /* Get the system properties. */
1781 SystemProperties *pSysProps = mVirtualBox->getSystemProperties();
1782
1783 /* First of all check if the path is an UUID. If so, the user like to
1784 * import the disk into an existing path. This is useful for iSCSI for
1785 * example. */
1786 RTUUID uuid;
1787 int vrc = RTUuidFromStr(&uuid, strTargetPath.c_str());
1788 if (vrc == VINF_SUCCESS)
1789 {
1790 rc = mVirtualBox->findHardDiskById(Guid(uuid), true, &pTargetHD);
1791 if (FAILED(rc)) throw rc;
1792 }
1793 else
1794 {
1795 Utf8Str strTrgFormat = "VMDK";
1796 if (RTPathHaveExt(strTargetPath.c_str()))
1797 {
1798 char *pszExt = RTPathExt(strTargetPath.c_str());
1799 /* Figure out which format the user like to have. Default is VMDK. */
1800 ComObjPtr<MediumFormat> trgFormat = pSysProps->mediumFormatFromExtension(&pszExt[1]);
1801 if (trgFormat.isNull())
1802 throw setError(VBOX_E_NOT_SUPPORTED,
1803 tr("Could not find a valid medium format for the target disk '%s'"),
1804 strTargetPath.c_str());
1805 /* Check the capabilities. We need create capabilities. */
1806 ULONG lCabs = 0;
1807 rc = trgFormat->COMGETTER(Capabilities)(&lCabs);
1808 if (FAILED(rc)) throw rc;
1809 if (!( ((lCabs & MediumFormatCapabilities_CreateFixed) == MediumFormatCapabilities_CreateFixed)
1810 || ((lCabs & MediumFormatCapabilities_CreateDynamic) == MediumFormatCapabilities_CreateDynamic)))
1811 throw setError(VBOX_E_NOT_SUPPORTED,
1812 tr("Could not find a valid medium format for the target disk '%s'"),
1813 strTargetPath.c_str());
1814 Bstr bstrFormatName;
1815 rc = trgFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
1816 if (FAILED(rc)) throw rc;
1817 strTrgFormat = Utf8Str(bstrFormatName);
1818 }
1819
1820 /* Create an IMedium object. */
1821 pTargetHD.createObject();
1822 rc = pTargetHD->init(mVirtualBox,
1823 strTrgFormat,
1824 strTargetPath,
1825 Guid::Empty, // media registry: none yet
1826 NULL /* llRegistriesThatNeedSaving */);
1827 if (FAILED(rc)) throw rc;
1828
1829 /* Now create an empty hard disk. */
1830 rc = mVirtualBox->CreateHardDisk(NULL,
1831 Bstr(strTargetPath).raw(),
1832 ComPtr<IMedium>(pTargetHD).asOutParam());
1833 if (FAILED(rc)) throw rc;
1834 }
1835
1836 const Utf8Str &strSourceOVF = di.strHref;
1837 /* Construct source file path */
1838 Utf8StrFmt strSrcFilePath("%s%c%s", stack.strSourceDir.c_str(), RTPATH_DELIMITER, strSourceOVF.c_str());
1839
1840 /* If strHref is empty we have to create a new file. */
1841 if (strSourceOVF.isEmpty())
1842 {
1843 /* Create a dynamic growing disk image with the given capacity. */
1844 rc = pTargetHD->CreateBaseStorage(di.iCapacity / _1M, MediumVariant_Standard, ComPtr<IProgress>(pProgress).asOutParam());
1845 if (FAILED(rc)) throw rc;
1846
1847 /* Advance to the next operation. */
1848 stack.pProgress->SetNextOperation(BstrFmt(tr("Creating disk image '%s'"), strTargetPath.c_str()).raw(),
1849 di.ulSuggestedSizeMB); // operation's weight, as set up with the IProgress originally
1850 }
1851 else
1852 {
1853 /* We need a proper source format description */
1854 ComObjPtr<MediumFormat> srcFormat;
1855 /* Which format to use? */
1856 Utf8Str strSrcFormat = "VDI";
1857 if ( di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#sparse", Utf8Str::CaseInsensitive)
1858 || di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#streamOptimized", Utf8Str::CaseInsensitive)
1859 || di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive)
1860 || di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive)
1861 )
1862 strSrcFormat = "VMDK";
1863 srcFormat = pSysProps->mediumFormat(strSrcFormat);
1864 if (srcFormat.isNull())
1865 throw setError(VBOX_E_NOT_SUPPORTED,
1866 tr("Could not find a valid medium format for the source disk '%s'"),
1867 RTPathFilename(strSrcFilePath.c_str()));
1868
1869 /* Clone the source disk image */
1870 ComObjPtr<Medium> nullParent;
1871 rc = pTargetHD->importFile(strSrcFilePath.c_str(),
1872 srcFormat,
1873 MediumVariant_Standard,
1874 pCallbacks, pStorage,
1875 nullParent,
1876 pProgress);
1877 if (FAILED(rc)) throw rc;
1878
1879 /* Advance to the next operation. */
1880 stack.pProgress->SetNextOperation(BstrFmt(tr("Importing virtual disk image '%s'"), RTPathFilename(strSrcFilePath.c_str())).raw(),
1881 di.ulSuggestedSizeMB); // operation's weight, as set up with the IProgress originally);
1882 }
1883
1884 /* Now wait for the background disk operation to complete; this throws
1885 * HRESULTs on error. */
1886 ComPtr<IProgress> pp(pProgress);
1887 waitForAsyncProgress(stack.pProgress, pp);
1888
1889 /* Add the newly create disk path + a corresponding digest the our list for
1890 * later manifest verification. */
1891 stack.llSrcDisksDigest.push_back(STRPAIR(strSrcFilePath, pStorage->strDigest));
1892}
1893
1894/**
1895 * Imports one OVF virtual system (described by the given ovf::VirtualSystem and VirtualSystemDescription)
1896 * into VirtualBox by creating an IMachine instance, which is returned.
1897 *
1898 * This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean
1899 * up any leftovers from this function. For this, the given ImportStack instance has received information
1900 * about what needs cleaning up (to support rollback).
1901 *
1902 * @param vsysThis OVF virtual system (machine) to import.
1903 * @param vsdescThis Matching virtual system description (machine) to import.
1904 * @param pNewMachine out: Newly created machine.
1905 * @param stack Cleanup stack for when this throws.
1906 */
1907void Appliance::importMachineGeneric(const ovf::VirtualSystem &vsysThis,
1908 ComObjPtr<VirtualSystemDescription> &vsdescThis,
1909 ComPtr<IMachine> &pNewMachine,
1910 ImportStack &stack,
1911 PVDINTERFACEIO pCallbacks,
1912 PSHA1STORAGE pStorage)
1913{
1914 HRESULT rc;
1915
1916 // Get the instance of IGuestOSType which matches our string guest OS type so we
1917 // can use recommended defaults for the new machine where OVF doesn't provide any
1918 ComPtr<IGuestOSType> osType;
1919 rc = mVirtualBox->GetGuestOSType(Bstr(stack.strOsTypeVBox).raw(), osType.asOutParam());
1920 if (FAILED(rc)) throw rc;
1921
1922 /* Create the machine */
1923 rc = mVirtualBox->CreateMachine(NULL, /* machine name: use default */
1924 Bstr(stack.strNameVBox).raw(),
1925 Bstr(stack.strOsTypeVBox).raw(),
1926 NULL, /* uuid */
1927 FALSE, /* fForceOverwrite */
1928 pNewMachine.asOutParam());
1929 if (FAILED(rc)) throw rc;
1930
1931 // set the description
1932 if (!stack.strDescription.isEmpty())
1933 {
1934 rc = pNewMachine->COMSETTER(Description)(Bstr(stack.strDescription).raw());
1935 if (FAILED(rc)) throw rc;
1936 }
1937
1938 // CPU count
1939 rc = pNewMachine->COMSETTER(CPUCount)(stack.cCPUs);
1940 if (FAILED(rc)) throw rc;
1941
1942 if (stack.fForceHWVirt)
1943 {
1944 rc = pNewMachine->SetHWVirtExProperty(HWVirtExPropertyType_Enabled, TRUE);
1945 if (FAILED(rc)) throw rc;
1946 }
1947
1948 // RAM
1949 rc = pNewMachine->COMSETTER(MemorySize)(stack.ulMemorySizeMB);
1950 if (FAILED(rc)) throw rc;
1951
1952 /* VRAM */
1953 /* Get the recommended VRAM for this guest OS type */
1954 ULONG vramVBox;
1955 rc = osType->COMGETTER(RecommendedVRAM)(&vramVBox);
1956 if (FAILED(rc)) throw rc;
1957
1958 /* Set the VRAM */
1959 rc = pNewMachine->COMSETTER(VRAMSize)(vramVBox);
1960 if (FAILED(rc)) throw rc;
1961
1962 // I/O APIC: Generic OVF has no setting for this. Enable it if we
1963 // import a Windows VM because if if Windows was installed without IOAPIC,
1964 // it will not mind finding an one later on, but if Windows was installed
1965 // _with_ an IOAPIC, it will bluescreen if it's not found
1966 if (!stack.fForceIOAPIC)
1967 {
1968 Bstr bstrFamilyId;
1969 rc = osType->COMGETTER(FamilyId)(bstrFamilyId.asOutParam());
1970 if (FAILED(rc)) throw rc;
1971 if (bstrFamilyId == "Windows")
1972 stack.fForceIOAPIC = true;
1973 }
1974
1975 if (stack.fForceIOAPIC)
1976 {
1977 ComPtr<IBIOSSettings> pBIOSSettings;
1978 rc = pNewMachine->COMGETTER(BIOSSettings)(pBIOSSettings.asOutParam());
1979 if (FAILED(rc)) throw rc;
1980
1981 rc = pBIOSSettings->COMSETTER(IOAPICEnabled)(TRUE);
1982 if (FAILED(rc)) throw rc;
1983 }
1984
1985 if (!stack.strAudioAdapter.isEmpty())
1986 if (stack.strAudioAdapter.compare("null", Utf8Str::CaseInsensitive) != 0)
1987 {
1988 uint32_t audio = RTStrToUInt32(stack.strAudioAdapter.c_str()); // should be 0 for AC97
1989 ComPtr<IAudioAdapter> audioAdapter;
1990 rc = pNewMachine->COMGETTER(AudioAdapter)(audioAdapter.asOutParam());
1991 if (FAILED(rc)) throw rc;
1992 rc = audioAdapter->COMSETTER(Enabled)(true);
1993 if (FAILED(rc)) throw rc;
1994 rc = audioAdapter->COMSETTER(AudioController)(static_cast<AudioControllerType_T>(audio));
1995 if (FAILED(rc)) throw rc;
1996 }
1997
1998#ifdef VBOX_WITH_USB
1999 /* USB Controller */
2000 ComPtr<IUSBController> usbController;
2001 rc = pNewMachine->COMGETTER(USBController)(usbController.asOutParam());
2002 if (FAILED(rc)) throw rc;
2003 rc = usbController->COMSETTER(Enabled)(stack.fUSBEnabled);
2004 if (FAILED(rc)) throw rc;
2005#endif /* VBOX_WITH_USB */
2006
2007 /* Change the network adapters */
2008 std::list<VirtualSystemDescriptionEntry*> vsdeNW = vsdescThis->findByType(VirtualSystemDescriptionType_NetworkAdapter);
2009 if (vsdeNW.size() == 0)
2010 {
2011 /* No network adapters, so we have to disable our default one */
2012 ComPtr<INetworkAdapter> nwVBox;
2013 rc = pNewMachine->GetNetworkAdapter(0, nwVBox.asOutParam());
2014 if (FAILED(rc)) throw rc;
2015 rc = nwVBox->COMSETTER(Enabled)(false);
2016 if (FAILED(rc)) throw rc;
2017 }
2018 else if (vsdeNW.size() > SchemaDefs::NetworkAdapterCount)
2019 throw setError(VBOX_E_FILE_ERROR,
2020 tr("Too many network adapters: OVF requests %d network adapters, but VirtualBox only supports %d"),
2021 vsdeNW.size(), SchemaDefs::NetworkAdapterCount);
2022 else
2023 {
2024 list<VirtualSystemDescriptionEntry*>::const_iterator nwIt;
2025 size_t a = 0;
2026 for (nwIt = vsdeNW.begin();
2027 nwIt != vsdeNW.end();
2028 ++nwIt, ++a)
2029 {
2030 const VirtualSystemDescriptionEntry* pvsys = *nwIt;
2031
2032 const Utf8Str &nwTypeVBox = pvsys->strVboxCurrent;
2033 uint32_t tt1 = RTStrToUInt32(nwTypeVBox.c_str());
2034 ComPtr<INetworkAdapter> pNetworkAdapter;
2035 rc = pNewMachine->GetNetworkAdapter((ULONG)a, pNetworkAdapter.asOutParam());
2036 if (FAILED(rc)) throw rc;
2037 /* Enable the network card & set the adapter type */
2038 rc = pNetworkAdapter->COMSETTER(Enabled)(true);
2039 if (FAILED(rc)) throw rc;
2040 rc = pNetworkAdapter->COMSETTER(AdapterType)(static_cast<NetworkAdapterType_T>(tt1));
2041 if (FAILED(rc)) throw rc;
2042
2043 // default is NAT; change to "bridged" if extra conf says so
2044 if (pvsys->strExtraConfigCurrent.endsWith("type=Bridged", Utf8Str::CaseInsensitive))
2045 {
2046 /* Attach to the right interface */
2047 rc = pNetworkAdapter->AttachToBridgedInterface();
2048 if (FAILED(rc)) throw rc;
2049 ComPtr<IHost> host;
2050 rc = mVirtualBox->COMGETTER(Host)(host.asOutParam());
2051 if (FAILED(rc)) throw rc;
2052 com::SafeIfaceArray<IHostNetworkInterface> nwInterfaces;
2053 rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces));
2054 if (FAILED(rc)) throw rc;
2055 // We search for the first host network interface which
2056 // is usable for bridged networking
2057 for (size_t j = 0;
2058 j < nwInterfaces.size();
2059 ++j)
2060 {
2061 HostNetworkInterfaceType_T itype;
2062 rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype);
2063 if (FAILED(rc)) throw rc;
2064 if (itype == HostNetworkInterfaceType_Bridged)
2065 {
2066 Bstr name;
2067 rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam());
2068 if (FAILED(rc)) throw rc;
2069 /* Set the interface name to attach to */
2070 pNetworkAdapter->COMSETTER(HostInterface)(name.raw());
2071 if (FAILED(rc)) throw rc;
2072 break;
2073 }
2074 }
2075 }
2076 /* Next test for host only interfaces */
2077 else if (pvsys->strExtraConfigCurrent.endsWith("type=HostOnly", Utf8Str::CaseInsensitive))
2078 {
2079 /* Attach to the right interface */
2080 rc = pNetworkAdapter->AttachToHostOnlyInterface();
2081 if (FAILED(rc)) throw rc;
2082 ComPtr<IHost> host;
2083 rc = mVirtualBox->COMGETTER(Host)(host.asOutParam());
2084 if (FAILED(rc)) throw rc;
2085 com::SafeIfaceArray<IHostNetworkInterface> nwInterfaces;
2086 rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces));
2087 if (FAILED(rc)) throw rc;
2088 // We search for the first host network interface which
2089 // is usable for host only networking
2090 for (size_t j = 0;
2091 j < nwInterfaces.size();
2092 ++j)
2093 {
2094 HostNetworkInterfaceType_T itype;
2095 rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype);
2096 if (FAILED(rc)) throw rc;
2097 if (itype == HostNetworkInterfaceType_HostOnly)
2098 {
2099 Bstr name;
2100 rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam());
2101 if (FAILED(rc)) throw rc;
2102 /* Set the interface name to attach to */
2103 pNetworkAdapter->COMSETTER(HostInterface)(name.raw());
2104 if (FAILED(rc)) throw rc;
2105 break;
2106 }
2107 }
2108 }
2109 /* Next test for internal interfaces */
2110 else if (pvsys->strExtraConfigCurrent.endsWith("type=Internal", Utf8Str::CaseInsensitive))
2111 {
2112 /* Attach to the right interface */
2113 rc = pNetworkAdapter->AttachToInternalNetwork();
2114 if (FAILED(rc)) throw rc;
2115 }
2116 /* Next test for VDE interfaces */
2117 else if (pvsys->strExtraConfigCurrent.endsWith("type=VDE", Utf8Str::CaseInsensitive))
2118 {
2119 /* Attach to the right interface */
2120 rc = pNetworkAdapter->AttachToVDE();
2121 if (FAILED(rc)) throw rc;
2122 }
2123 }
2124 }
2125
2126 // IDE Hard disk controller
2127 std::list<VirtualSystemDescriptionEntry*> vsdeHDCIDE = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerIDE);
2128 // In OVF (at least VMware's version of it), an IDE controller has two ports, so VirtualBox's single IDE controller
2129 // with two channels and two ports each counts as two OVF IDE controllers -- so we accept one or two such IDE controllers
2130 size_t cIDEControllers = vsdeHDCIDE.size();
2131 if (cIDEControllers > 2)
2132 throw setError(VBOX_E_FILE_ERROR,
2133 tr("Too many IDE controllers in OVF; import facility only supports two"));
2134 if (vsdeHDCIDE.size() > 0)
2135 {
2136 // one or two IDE controllers present in OVF: add one VirtualBox controller
2137 ComPtr<IStorageController> pController;
2138 rc = pNewMachine->AddStorageController(Bstr("IDE Controller").raw(), StorageBus_IDE, pController.asOutParam());
2139 if (FAILED(rc)) throw rc;
2140
2141 const char *pcszIDEType = vsdeHDCIDE.front()->strVboxCurrent.c_str();
2142 if (!strcmp(pcszIDEType, "PIIX3"))
2143 rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX3);
2144 else if (!strcmp(pcszIDEType, "PIIX4"))
2145 rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX4);
2146 else if (!strcmp(pcszIDEType, "ICH6"))
2147 rc = pController->COMSETTER(ControllerType)(StorageControllerType_ICH6);
2148 else
2149 throw setError(VBOX_E_FILE_ERROR,
2150 tr("Invalid IDE controller type \"%s\""),
2151 pcszIDEType);
2152 if (FAILED(rc)) throw rc;
2153 }
2154
2155 /* Hard disk controller SATA */
2156 std::list<VirtualSystemDescriptionEntry*> vsdeHDCSATA = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerSATA);
2157 if (vsdeHDCSATA.size() > 1)
2158 throw setError(VBOX_E_FILE_ERROR,
2159 tr("Too many SATA controllers in OVF; import facility only supports one"));
2160 if (vsdeHDCSATA.size() > 0)
2161 {
2162 ComPtr<IStorageController> pController;
2163 const Utf8Str &hdcVBox = vsdeHDCSATA.front()->strVboxCurrent;
2164 if (hdcVBox == "AHCI")
2165 {
2166 rc = pNewMachine->AddStorageController(Bstr("SATA Controller").raw(), StorageBus_SATA, pController.asOutParam());
2167 if (FAILED(rc)) throw rc;
2168 }
2169 else
2170 throw setError(VBOX_E_FILE_ERROR,
2171 tr("Invalid SATA controller type \"%s\""),
2172 hdcVBox.c_str());
2173 }
2174
2175 /* Hard disk controller SCSI */
2176 std::list<VirtualSystemDescriptionEntry*> vsdeHDCSCSI = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerSCSI);
2177 if (vsdeHDCSCSI.size() > 1)
2178 throw setError(VBOX_E_FILE_ERROR,
2179 tr("Too many SCSI controllers in OVF; import facility only supports one"));
2180 if (vsdeHDCSCSI.size() > 0)
2181 {
2182 ComPtr<IStorageController> pController;
2183 Bstr bstrName(L"SCSI Controller");
2184 StorageBus_T busType = StorageBus_SCSI;
2185 StorageControllerType_T controllerType;
2186 const Utf8Str &hdcVBox = vsdeHDCSCSI.front()->strVboxCurrent;
2187 if (hdcVBox == "LsiLogic")
2188 controllerType = StorageControllerType_LsiLogic;
2189 else if (hdcVBox == "LsiLogicSas")
2190 {
2191 // OVF treats LsiLogicSas as a SCSI controller but VBox considers it a class of its own
2192 bstrName = L"SAS Controller";
2193 busType = StorageBus_SAS;
2194 controllerType = StorageControllerType_LsiLogicSas;
2195 }
2196 else if (hdcVBox == "BusLogic")
2197 controllerType = StorageControllerType_BusLogic;
2198 else
2199 throw setError(VBOX_E_FILE_ERROR,
2200 tr("Invalid SCSI controller type \"%s\""),
2201 hdcVBox.c_str());
2202
2203 rc = pNewMachine->AddStorageController(bstrName.raw(), busType, pController.asOutParam());
2204 if (FAILED(rc)) throw rc;
2205 rc = pController->COMSETTER(ControllerType)(controllerType);
2206 if (FAILED(rc)) throw rc;
2207 }
2208
2209 /* Hard disk controller SAS */
2210 std::list<VirtualSystemDescriptionEntry*> vsdeHDCSAS = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerSAS);
2211 if (vsdeHDCSAS.size() > 1)
2212 throw setError(VBOX_E_FILE_ERROR,
2213 tr("Too many SAS controllers in OVF; import facility only supports one"));
2214 if (vsdeHDCSAS.size() > 0)
2215 {
2216 ComPtr<IStorageController> pController;
2217 rc = pNewMachine->AddStorageController(Bstr(L"SAS Controller").raw(), StorageBus_SAS, pController.asOutParam());
2218 if (FAILED(rc)) throw rc;
2219 rc = pController->COMSETTER(ControllerType)(StorageControllerType_LsiLogicSas);
2220 if (FAILED(rc)) throw rc;
2221 }
2222
2223 /* Now its time to register the machine before we add any hard disks */
2224 rc = mVirtualBox->RegisterMachine(pNewMachine);
2225 if (FAILED(rc)) throw rc;
2226
2227 // store new machine for roll-back in case of errors
2228 Bstr bstrNewMachineId;
2229 rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam());
2230 if (FAILED(rc)) throw rc;
2231 Guid uuidNewMachine(bstrNewMachineId);
2232 m->llGuidsMachinesCreated.push_back(uuidNewMachine);
2233
2234 // Add floppies and CD-ROMs to the appropriate controllers.
2235 std::list<VirtualSystemDescriptionEntry*> vsdeFloppy = vsdescThis->findByType(VirtualSystemDescriptionType_Floppy);
2236 if (vsdeFloppy.size() > 1)
2237 throw setError(VBOX_E_FILE_ERROR,
2238 tr("Too many floppy controllers in OVF; import facility only supports one"));
2239 std::list<VirtualSystemDescriptionEntry*> vsdeCDROM = vsdescThis->findByType(VirtualSystemDescriptionType_CDROM);
2240 if ( (vsdeFloppy.size() > 0)
2241 || (vsdeCDROM.size() > 0)
2242 )
2243 {
2244 // If there's an error here we need to close the session, so
2245 // we need another try/catch block.
2246
2247 try
2248 {
2249 // to attach things we need to open a session for the new machine
2250 rc = pNewMachine->LockMachine(stack.pSession, LockType_Write);
2251 if (FAILED(rc)) throw rc;
2252 stack.fSessionOpen = true;
2253
2254 ComPtr<IMachine> sMachine;
2255 rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam());
2256 if (FAILED(rc)) throw rc;
2257
2258 // floppy first
2259 if (vsdeFloppy.size() == 1)
2260 {
2261 ComPtr<IStorageController> pController;
2262 rc = sMachine->AddStorageController(Bstr("Floppy Controller").raw(), StorageBus_Floppy, pController.asOutParam());
2263 if (FAILED(rc)) throw rc;
2264
2265 Bstr bstrName;
2266 rc = pController->COMGETTER(Name)(bstrName.asOutParam());
2267 if (FAILED(rc)) throw rc;
2268
2269 // this is for rollback later
2270 MyHardDiskAttachment mhda;
2271 mhda.pMachine = pNewMachine;
2272 mhda.controllerType = bstrName;
2273 mhda.lControllerPort = 0;
2274 mhda.lDevice = 0;
2275
2276 Log(("Attaching floppy\n"));
2277
2278 rc = sMachine->AttachDevice(mhda.controllerType.raw(),
2279 mhda.lControllerPort,
2280 mhda.lDevice,
2281 DeviceType_Floppy,
2282 NULL);
2283 if (FAILED(rc)) throw rc;
2284
2285 stack.llHardDiskAttachments.push_back(mhda);
2286 }
2287
2288 // CD-ROMs next
2289 for (std::list<VirtualSystemDescriptionEntry*>::const_iterator jt = vsdeCDROM.begin();
2290 jt != vsdeCDROM.end();
2291 ++jt)
2292 {
2293 // for now always attach to secondary master on IDE controller;
2294 // there seems to be no useful information in OVF where else to
2295 // attach it (@todo test with latest versions of OVF software)
2296
2297 // find the IDE controller
2298 const ovf::HardDiskController *pController = NULL;
2299 for (ovf::ControllersMap::const_iterator kt = vsysThis.mapControllers.begin();
2300 kt != vsysThis.mapControllers.end();
2301 ++kt)
2302 {
2303 if (kt->second.system == ovf::HardDiskController::IDE)
2304 {
2305 pController = &kt->second;
2306 break;
2307 }
2308 }
2309
2310 if (!pController)
2311 throw setError(VBOX_E_FILE_ERROR,
2312 tr("OVF wants a CD-ROM drive but cannot find IDE controller, which is required in this version of VirtualBox"));
2313
2314 // this is for rollback later
2315 MyHardDiskAttachment mhda;
2316 mhda.pMachine = pNewMachine;
2317
2318 convertDiskAttachmentValues(*pController,
2319 2, // interpreted as secondary master
2320 mhda.controllerType, // Bstr
2321 mhda.lControllerPort,
2322 mhda.lDevice);
2323
2324 Log(("Attaching CD-ROM to port %d on device %d\n", mhda.lControllerPort, mhda.lDevice));
2325
2326 rc = sMachine->AttachDevice(mhda.controllerType.raw(),
2327 mhda.lControllerPort,
2328 mhda.lDevice,
2329 DeviceType_DVD,
2330 NULL);
2331 if (FAILED(rc)) throw rc;
2332
2333 stack.llHardDiskAttachments.push_back(mhda);
2334 } // end for (itHD = avsdeHDs.begin();
2335
2336 rc = sMachine->SaveSettings();
2337 if (FAILED(rc)) throw rc;
2338
2339 // only now that we're done with all disks, close the session
2340 rc = stack.pSession->UnlockMachine();
2341 if (FAILED(rc)) throw rc;
2342 stack.fSessionOpen = false;
2343 }
2344 catch(HRESULT /* aRC */)
2345 {
2346 if (stack.fSessionOpen)
2347 stack.pSession->UnlockMachine();
2348
2349 throw;
2350 }
2351 }
2352
2353 // create the hard disks & connect them to the appropriate controllers
2354 std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskImage);
2355 if (avsdeHDs.size() > 0)
2356 {
2357 // If there's an error here we need to close the session, so
2358 // we need another try/catch block.
2359 try
2360 {
2361 // to attach things we need to open a session for the new machine
2362 rc = pNewMachine->LockMachine(stack.pSession, LockType_Write);
2363 if (FAILED(rc)) throw rc;
2364 stack.fSessionOpen = true;
2365
2366 /* Iterate over all given disk images */
2367 list<VirtualSystemDescriptionEntry*>::const_iterator itHD;
2368 for (itHD = avsdeHDs.begin();
2369 itHD != avsdeHDs.end();
2370 ++itHD)
2371 {
2372 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
2373
2374 // vsdeHD->strRef contains the disk identifier (e.g. "vmdisk1"), which should exist
2375 // in the virtual system's disks map under that ID and also in the global images map
2376 ovf::VirtualDisksMap::const_iterator itVirtualDisk = vsysThis.mapVirtualDisks.find(vsdeHD->strRef);
2377 // and find the disk from the OVF's disk list
2378 ovf::DiskImagesMap::const_iterator itDiskImage = stack.mapDisks.find(vsdeHD->strRef);
2379 if ( (itVirtualDisk == vsysThis.mapVirtualDisks.end())
2380 || (itDiskImage == stack.mapDisks.end())
2381 )
2382 throw setError(E_FAIL,
2383 tr("Internal inconsistency looking up disk image '%s'"),
2384 vsdeHD->strRef.c_str());
2385
2386 const ovf::DiskImage &ovfDiskImage = itDiskImage->second;
2387 const ovf::VirtualDisk &ovfVdisk = itVirtualDisk->second;
2388
2389 ComObjPtr<Medium> pTargetHD;
2390 importOneDiskImage(ovfDiskImage,
2391 vsdeHD->strVboxCurrent,
2392 pTargetHD,
2393 stack,
2394 pCallbacks,
2395 pStorage);
2396
2397 // now use the new uuid to attach the disk image to our new machine
2398 ComPtr<IMachine> sMachine;
2399 rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam());
2400 if (FAILED(rc)) throw rc;
2401
2402 // find the hard disk controller to which we should attach
2403 ovf::HardDiskController hdc = (*vsysThis.mapControllers.find(ovfVdisk.idController)).second;
2404
2405 // this is for rollback later
2406 MyHardDiskAttachment mhda;
2407 mhda.pMachine = pNewMachine;
2408
2409 convertDiskAttachmentValues(hdc,
2410 ovfVdisk.ulAddressOnParent,
2411 mhda.controllerType, // Bstr
2412 mhda.lControllerPort,
2413 mhda.lDevice);
2414
2415 Log(("Attaching disk %s to port %d on device %d\n", vsdeHD->strVboxCurrent.c_str(), mhda.lControllerPort, mhda.lDevice));
2416
2417 rc = sMachine->AttachDevice(mhda.controllerType.raw(), // wstring name
2418 mhda.lControllerPort, // long controllerPort
2419 mhda.lDevice, // long device
2420 DeviceType_HardDisk, // DeviceType_T type
2421 pTargetHD);
2422 if (FAILED(rc)) throw rc;
2423
2424 stack.llHardDiskAttachments.push_back(mhda);
2425
2426 rc = sMachine->SaveSettings();
2427 if (FAILED(rc)) throw rc;
2428 } // end for (itHD = avsdeHDs.begin();
2429
2430 // only now that we're done with all disks, close the session
2431 rc = stack.pSession->UnlockMachine();
2432 if (FAILED(rc)) throw rc;
2433 stack.fSessionOpen = false;
2434 }
2435 catch(HRESULT /* aRC */)
2436 {
2437 if (stack.fSessionOpen)
2438 stack.pSession->UnlockMachine();
2439
2440 throw;
2441 }
2442 }
2443}
2444
2445/**
2446 * Imports one OVF virtual system (described by a vbox:Machine tag represented by the given config
2447 * structure) into VirtualBox by creating an IMachine instance, which is returned.
2448 *
2449 * This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean
2450 * up any leftovers from this function. For this, the given ImportStack instance has received information
2451 * about what needs cleaning up (to support rollback).
2452 *
2453 * The machine config stored in the settings::MachineConfigFile structure contains the UUIDs of
2454 * the disk attachments used by the machine when it was exported. We also add vbox:uuid attributes
2455 * to the OVF disks sections so we can look them up. While importing these UUIDs into a second host
2456 * will most probably work, reimporting them into the same host will cause conflicts, so we always
2457 * generate new ones on import. This involves the following:
2458 *
2459 * 1) Scan the machine config for disk attachments.
2460 *
2461 * 2) For each disk attachment found, look up the OVF disk image from the disk references section
2462 * and import the disk into VirtualBox, which creates a new UUID for it. In the machine config,
2463 * replace the old UUID with the new one.
2464 *
2465 * 3) Change the machine config according to the OVF virtual system descriptions, in case the
2466 * caller has modified them using setFinalValues().
2467 *
2468 * 4) Create the VirtualBox machine with the modfified machine config.
2469 *
2470 * @param config
2471 * @param pNewMachine
2472 * @param stack
2473 */
2474void Appliance::importVBoxMachine(ComObjPtr<VirtualSystemDescription> &vsdescThis,
2475 ComPtr<IMachine> &pReturnNewMachine,
2476 ImportStack &stack,
2477 PVDINTERFACEIO pCallbacks,
2478 PSHA1STORAGE pStorage)
2479{
2480 Assert(vsdescThis->m->pConfig);
2481
2482 HRESULT rc = S_OK;
2483
2484 settings::MachineConfigFile &config = *vsdescThis->m->pConfig;
2485
2486 /*
2487 *
2488 * step 1): modify machine config according to OVF config, in case the user
2489 * has modified them using setFinalValues()
2490 *
2491 */
2492
2493 /* OS Type */
2494 config.machineUserData.strOsType = stack.strOsTypeVBox;
2495 /* Description */
2496 config.machineUserData.strDescription = stack.strDescription;
2497 /* CPU count & extented attributes */
2498 config.hardwareMachine.cCPUs = stack.cCPUs;
2499 if (stack.fForceIOAPIC)
2500 config.hardwareMachine.fHardwareVirt = true;
2501 if (stack.fForceIOAPIC)
2502 config.hardwareMachine.biosSettings.fIOAPICEnabled = true;
2503 /* RAM size */
2504 config.hardwareMachine.ulMemorySizeMB = stack.ulMemorySizeMB;
2505
2506/*
2507 <const name="HardDiskControllerIDE" value="14" />
2508 <const name="HardDiskControllerSATA" value="15" />
2509 <const name="HardDiskControllerSCSI" value="16" />
2510 <const name="HardDiskControllerSAS" value="17" />
2511*/
2512
2513#ifdef VBOX_WITH_USB
2514 /* USB controller */
2515 config.hardwareMachine.usbController.fEnabled = stack.fUSBEnabled;
2516#endif
2517 /* Audio adapter */
2518 if (stack.strAudioAdapter.isNotEmpty())
2519 {
2520 config.hardwareMachine.audioAdapter.fEnabled = true;
2521 config.hardwareMachine.audioAdapter.controllerType = (AudioControllerType_T)stack.strAudioAdapter.toUInt32();
2522 }
2523 else
2524 config.hardwareMachine.audioAdapter.fEnabled = false;
2525 /* Network adapter */
2526 settings::NetworkAdaptersList &llNetworkAdapters = config.hardwareMachine.llNetworkAdapters;
2527 /* First disable all network cards, they will be enabled below again. */
2528 settings::NetworkAdaptersList::iterator it1;
2529 for (it1 = llNetworkAdapters.begin(); it1 != llNetworkAdapters.end(); ++it1)
2530 it1->fEnabled = false;
2531 /* Now iterate over all network entries. */
2532 std::list<VirtualSystemDescriptionEntry*> avsdeNWs = vsdescThis->findByType(VirtualSystemDescriptionType_NetworkAdapter);
2533 if (avsdeNWs.size() > 0)
2534 {
2535 /* Iterate through all network adapter entries and search for the
2536 * corrosponding one in the machine config. If one is found, configure
2537 * it based on the user settings. */
2538 list<VirtualSystemDescriptionEntry*>::const_iterator itNW;
2539 for (itNW = avsdeNWs.begin();
2540 itNW != avsdeNWs.end();
2541 ++itNW)
2542 {
2543 VirtualSystemDescriptionEntry *vsdeNW = *itNW;
2544 if ( vsdeNW->strExtraConfigCurrent.startsWith("slot=", Utf8Str::CaseInsensitive)
2545 && vsdeNW->strExtraConfigCurrent.length() > 6)
2546 {
2547 uint32_t iSlot = vsdeNW->strExtraConfigCurrent.substr(5, 1).toUInt32();
2548 /* Iterate through all network adapters in the machine config. */
2549 for (it1 = llNetworkAdapters.begin();
2550 it1 != llNetworkAdapters.end();
2551 ++it1)
2552 {
2553 /* Compare the slots. */
2554 if (it1->ulSlot == iSlot)
2555 {
2556 it1->fEnabled = true;
2557 it1->type = (NetworkAdapterType_T)vsdeNW->strVboxCurrent.toUInt32();
2558 break;
2559 }
2560 }
2561 }
2562 }
2563 }
2564
2565 /* Floppy controller */
2566 bool fFloppy = vsdescThis->findByType(VirtualSystemDescriptionType_Floppy).size() > 0;
2567 /* DVD controller */
2568 bool fDVD = vsdescThis->findByType(VirtualSystemDescriptionType_CDROM).size() > 0;
2569 /* Iterate over all storage controller check the attachments and remove
2570 * them when necessary. Also detect broken configs with more than one
2571 * attachment. Old VirtualBox versions (prior to 3.2.10) had all disk
2572 * attachments pointing to the last hard disk image, which causes import
2573 * failures. A long fixed bug, however the OVF files are long lived. */
2574 settings::StorageControllersList &llControllers = config.storageMachine.llStorageControllers;
2575 Guid hdUuid;
2576 uint32_t cHardDisks = 0;
2577 bool fInconsistent = false;
2578 bool fRepairDuplicate = false;
2579 settings::StorageControllersList::iterator it3;
2580 for (it3 = llControllers.begin();
2581 it3 != llControllers.end();
2582 ++it3)
2583 {
2584 settings::AttachedDevicesList &llAttachments = it3->llAttachedDevices;
2585 settings::AttachedDevicesList::iterator it4;
2586 for (it4 = llAttachments.begin();
2587 it4 != llAttachments.end();
2588 ++it4)
2589 {
2590 if ( ( !fDVD
2591 && it4->deviceType == DeviceType_DVD)
2592 ||
2593 ( !fFloppy
2594 && it4->deviceType == DeviceType_Floppy))
2595 llAttachments.erase(it4++);
2596 else if (it4->deviceType == DeviceType_HardDisk)
2597 {
2598 const Guid &thisUuid = it4->uuid;
2599 cHardDisks++;
2600 if (cHardDisks == 1)
2601 {
2602 if (hdUuid.isEmpty())
2603 hdUuid = thisUuid;
2604 else
2605 fInconsistent = true;
2606 }
2607 else
2608 {
2609 if (thisUuid.isEmpty())
2610 fInconsistent = true;
2611 else if (thisUuid == hdUuid)
2612 fRepairDuplicate = true;
2613 }
2614 }
2615 }
2616 }
2617 /* paranoia... */
2618 if (fInconsistent || cHardDisks == 1)
2619 fRepairDuplicate = false;
2620
2621 /*
2622 *
2623 * step 2: scan the machine config for media attachments
2624 *
2625 */
2626
2627 /* Get all hard disk descriptions. */
2628 std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskImage);
2629 std::list<VirtualSystemDescriptionEntry*>::iterator avsdeHDsIt = avsdeHDs.begin();
2630 /* paranoia - if there is no 1:1 match do not try to repair. */
2631 if (cHardDisks != avsdeHDs.size())
2632 fRepairDuplicate = false;
2633
2634 // for each storage controller...
2635 for (settings::StorageControllersList::iterator sit = config.storageMachine.llStorageControllers.begin();
2636 sit != config.storageMachine.llStorageControllers.end();
2637 ++sit)
2638 {
2639 settings::StorageController &sc = *sit;
2640
2641 // find the OVF virtual system description entry for this storage controller
2642 switch (sc.storageBus)
2643 {
2644 case StorageBus_SATA:
2645 break;
2646 case StorageBus_SCSI:
2647 break;
2648 case StorageBus_IDE:
2649 break;
2650 case StorageBus_SAS:
2651 break;
2652 }
2653
2654 // for each medium attachment to this controller...
2655 for (settings::AttachedDevicesList::iterator dit = sc.llAttachedDevices.begin();
2656 dit != sc.llAttachedDevices.end();
2657 ++dit)
2658 {
2659 settings::AttachedDevice &d = *dit;
2660
2661 if (d.uuid.isEmpty())
2662 // empty DVD and floppy media
2663 continue;
2664
2665 // When repairing a broken VirtualBox xml config section (written
2666 // by VirtualBox versions earlier than 3.2.10) assume the disks
2667 // show up in the same order as in the OVF description.
2668 if (fRepairDuplicate)
2669 {
2670 VirtualSystemDescriptionEntry *vsdeHD = *avsdeHDsIt;
2671 ovf::DiskImagesMap::const_iterator itDiskImage = stack.mapDisks.find(vsdeHD->strRef);
2672 if (itDiskImage != stack.mapDisks.end())
2673 {
2674 const ovf::DiskImage &di = itDiskImage->second;
2675 d.uuid = Guid(di.uuidVbox);
2676 }
2677 ++avsdeHDsIt;
2678 }
2679
2680 // convert the Guid to string
2681 Utf8Str strUuid = d.uuid.toString();
2682
2683 // there must be an image in the OVF disk structs with the same UUID
2684 bool fFound = false;
2685 for (ovf::DiskImagesMap::const_iterator oit = stack.mapDisks.begin();
2686 oit != stack.mapDisks.end();
2687 ++oit)
2688 {
2689 const ovf::DiskImage &di = oit->second;
2690
2691 if (di.uuidVbox == strUuid)
2692 {
2693 VirtualSystemDescriptionEntry *vsdeTargetHD = 0;
2694
2695 /* Iterate over all given disk images of the virtual system
2696 * disks description. We need to find the target disk path,
2697 * which could be changed by the user. */
2698 list<VirtualSystemDescriptionEntry*>::const_iterator itHD;
2699 for (itHD = avsdeHDs.begin();
2700 itHD != avsdeHDs.end();
2701 ++itHD)
2702 {
2703 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
2704 if (vsdeHD->strRef == oit->first)
2705 {
2706 vsdeTargetHD = vsdeHD;
2707 break;
2708 }
2709 }
2710 if (!vsdeTargetHD)
2711 throw setError(E_FAIL,
2712 tr("Internal inconsistency looking up disk image '%s'"),
2713 oit->first.c_str());
2714
2715 /*
2716 *
2717 * step 3: import disk
2718 *
2719 */
2720 ComObjPtr<Medium> pTargetHD;
2721 importOneDiskImage(di,
2722 vsdeTargetHD->strVboxCurrent,
2723 pTargetHD,
2724 stack,
2725 pCallbacks,
2726 pStorage);
2727
2728 // ... and replace the old UUID in the machine config with the one of
2729 // the imported disk that was just created
2730 Bstr hdId;
2731 rc = pTargetHD->COMGETTER(Id)(hdId.asOutParam());
2732 if (FAILED(rc)) throw rc;
2733
2734 d.uuid = hdId;
2735
2736 fFound = true;
2737 break;
2738 }
2739 }
2740
2741 // no disk with such a UUID found:
2742 if (!fFound)
2743 throw setError(E_FAIL,
2744 tr("<vbox:Machine> element in OVF contains a medium attachment for the disk image %s but the OVF describes no such image"),
2745 strUuid.c_str());
2746 } // for (settings::AttachedDevicesList::const_iterator dit = sc.llAttachedDevices.begin();
2747 } // for (settings::StorageControllersList::const_iterator sit = config.storageMachine.llStorageControllers.begin();
2748
2749 /*
2750 *
2751 * step 4): create the machine and have it import the config
2752 *
2753 */
2754
2755 ComObjPtr<Machine> pNewMachine;
2756 rc = pNewMachine.createObject();
2757 if (FAILED(rc)) throw rc;
2758
2759 // this magic constructor fills the new machine object with the MachineConfig
2760 // instance that we created from the vbox:Machine
2761 rc = pNewMachine->init(mVirtualBox,
2762 stack.strNameVBox, // name from OVF preparations; can be suffixed to avoid duplicates, or changed by user
2763 config); // the whole machine config
2764 if (FAILED(rc)) throw rc;
2765
2766 pReturnNewMachine = ComPtr<IMachine>(pNewMachine);
2767
2768 // and register it
2769 rc = mVirtualBox->RegisterMachine(pNewMachine);
2770 if (FAILED(rc)) throw rc;
2771
2772 // store new machine for roll-back in case of errors
2773 Bstr bstrNewMachineId;
2774 rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam());
2775 if (FAILED(rc)) throw rc;
2776 m->llGuidsMachinesCreated.push_back(Guid(bstrNewMachineId));
2777}
2778
2779void Appliance::importMachines(ImportStack &stack,
2780 PVDINTERFACEIO pCallbacks,
2781 PSHA1STORAGE pStorage)
2782{
2783 HRESULT rc = S_OK;
2784
2785 // this is safe to access because this thread only gets started
2786 // if pReader != NULL
2787 const ovf::OVFReader &reader = *m->pReader;
2788
2789 // create a session for the machine + disks we manipulate below
2790 rc = stack.pSession.createInprocObject(CLSID_Session);
2791 if (FAILED(rc)) throw rc;
2792
2793 list<ovf::VirtualSystem>::const_iterator it;
2794 list< ComObjPtr<VirtualSystemDescription> >::const_iterator it1;
2795 /* Iterate through all virtual systems of that appliance */
2796 size_t i = 0;
2797 for (it = reader.m_llVirtualSystems.begin(),
2798 it1 = m->virtualSystemDescriptions.begin();
2799 it != reader.m_llVirtualSystems.end();
2800 ++it, ++it1, ++i)
2801 {
2802 const ovf::VirtualSystem &vsysThis = *it;
2803 ComObjPtr<VirtualSystemDescription> vsdescThis = (*it1);
2804
2805 ComPtr<IMachine> pNewMachine;
2806
2807 // there are two ways in which we can create a vbox machine from OVF:
2808 // -- either this OVF was written by vbox 3.2 or later, in which case there is a <vbox:Machine> element
2809 // in the <VirtualSystem>; then the VirtualSystemDescription::Data has a settings::MachineConfigFile
2810 // with all the machine config pretty-parsed;
2811 // -- or this is an OVF from an older vbox or an external source, and then we need to translate the
2812 // VirtualSystemDescriptionEntry and do import work
2813
2814 // Even for the vbox:Machine case, there are a number of configuration items that will be taken from
2815 // the OVF because otherwise the "override import parameters" mechanism in the GUI won't work.
2816
2817 // VM name
2818 std::list<VirtualSystemDescriptionEntry*> vsdeName = vsdescThis->findByType(VirtualSystemDescriptionType_Name);
2819 if (vsdeName.size() < 1)
2820 throw setError(VBOX_E_FILE_ERROR,
2821 tr("Missing VM name"));
2822 stack.strNameVBox = vsdeName.front()->strVboxCurrent;
2823
2824 // have VirtualBox suggest where the filename would be placed so we can
2825 // put the disk images in the same directory
2826 Bstr bstrMachineFilename;
2827 rc = mVirtualBox->ComposeMachineFilename(Bstr(stack.strNameVBox).raw(),
2828 NULL,
2829 bstrMachineFilename.asOutParam());
2830 if (FAILED(rc)) throw rc;
2831 // and determine the machine folder from that
2832 stack.strMachineFolder = bstrMachineFilename;
2833 stack.strMachineFolder.stripFilename();
2834
2835 // guest OS type
2836 std::list<VirtualSystemDescriptionEntry*> vsdeOS;
2837 vsdeOS = vsdescThis->findByType(VirtualSystemDescriptionType_OS);
2838 if (vsdeOS.size() < 1)
2839 throw setError(VBOX_E_FILE_ERROR,
2840 tr("Missing guest OS type"));
2841 stack.strOsTypeVBox = vsdeOS.front()->strVboxCurrent;
2842
2843 // CPU count
2844 std::list<VirtualSystemDescriptionEntry*> vsdeCPU = vsdescThis->findByType(VirtualSystemDescriptionType_CPU);
2845 if (vsdeCPU.size() != 1)
2846 throw setError(VBOX_E_FILE_ERROR, tr("CPU count missing"));
2847
2848 stack.cCPUs = vsdeCPU.front()->strVboxCurrent.toUInt32();
2849 // We need HWVirt & IO-APIC if more than one CPU is requested
2850 if (stack.cCPUs > 1)
2851 {
2852 stack.fForceHWVirt = true;
2853 stack.fForceIOAPIC = true;
2854 }
2855
2856 // RAM
2857 std::list<VirtualSystemDescriptionEntry*> vsdeRAM = vsdescThis->findByType(VirtualSystemDescriptionType_Memory);
2858 if (vsdeRAM.size() != 1)
2859 throw setError(VBOX_E_FILE_ERROR, tr("RAM size missing"));
2860 stack.ulMemorySizeMB = (ULONG)vsdeRAM.front()->strVboxCurrent.toUInt64();
2861
2862#ifdef VBOX_WITH_USB
2863 // USB controller
2864 std::list<VirtualSystemDescriptionEntry*> vsdeUSBController = vsdescThis->findByType(VirtualSystemDescriptionType_USBController);
2865 // USB support is enabled if there's at least one such entry; to disable USB support,
2866 // the type of the USB item would have been changed to "ignore"
2867 stack.fUSBEnabled = vsdeUSBController.size() > 0;
2868#endif
2869 // audio adapter
2870 std::list<VirtualSystemDescriptionEntry*> vsdeAudioAdapter = vsdescThis->findByType(VirtualSystemDescriptionType_SoundCard);
2871 /* @todo: we support one audio adapter only */
2872 if (vsdeAudioAdapter.size() > 0)
2873 stack.strAudioAdapter = vsdeAudioAdapter.front()->strVboxCurrent;
2874
2875 // for the description of the new machine, always use the OVF entry, the user may have changed it in the import config
2876 std::list<VirtualSystemDescriptionEntry*> vsdeDescription = vsdescThis->findByType(VirtualSystemDescriptionType_Description);
2877 if (vsdeDescription.size())
2878 stack.strDescription = vsdeDescription.front()->strVboxCurrent;
2879
2880 // import vbox:machine or OVF now
2881 if (vsdescThis->m->pConfig)
2882 // vbox:Machine config
2883 importVBoxMachine(vsdescThis, pNewMachine, stack, pCallbacks, pStorage);
2884 else
2885 // generic OVF config
2886 importMachineGeneric(vsysThis, vsdescThis, pNewMachine, stack, pCallbacks, pStorage);
2887
2888 } // for (it = pAppliance->m->llVirtualSystems.begin() ...
2889}
2890
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette