VirtualBox

source: vbox/trunk/src/VBox/Main/src-server/ApplianceImplImport.cpp@ 60332

Last change on this file since 60332 was 60332, checked in by vboxsync, 9 years ago

ApplianceImpl: The what's needed to determine the trusted state of the certificate is already all there, no need of extra variables. Also: Data members shall start with 'm' unless obvious (like with 'm->xxx'). There shall be space after 'if'. A 'bool' shall under no circumstances start with a 'l' prefix.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 174.7 KB
Line 
1/* $Id: ApplianceImplImport.cpp 60332 2016-04-05 12:32:22Z vboxsync $ */
2/** @file
3 * IAppliance and IVirtualSystem COM class implementations.
4 */
5
6/*
7 * Copyright (C) 2008-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include <iprt/alloca.h>
19#include <iprt/path.h>
20#include <iprt/dir.h>
21#include <iprt/file.h>
22#include <iprt/s3.h>
23#include <iprt/sha.h>
24#include <iprt/manifest.h>
25#include <iprt/tar.h>
26#include <iprt/zip.h>
27#include <iprt/stream.h>
28#include <iprt/crypto/digest.h>
29#include <iprt/crypto/pkix.h>
30#include <iprt/crypto/store.h>
31#include <iprt/crypto/x509.h>
32
33#include <VBox/vd.h>
34#include <VBox/com/array.h>
35
36#include "ApplianceImpl.h"
37#include "VirtualBoxImpl.h"
38#include "GuestOSTypeImpl.h"
39#include "ProgressImpl.h"
40#include "MachineImpl.h"
41#include "MediumImpl.h"
42#include "MediumFormatImpl.h"
43#include "SystemPropertiesImpl.h"
44#include "HostImpl.h"
45
46#include "AutoCaller.h"
47#include "Logging.h"
48
49#include "ApplianceImplPrivate.h"
50#include "CertificateImpl.h"
51
52#include <VBox/param.h>
53#include <VBox/version.h>
54#include <VBox/settings.h>
55
56#include <set>
57
58using namespace std;
59
60////////////////////////////////////////////////////////////////////////////////
61//
62// IAppliance public methods
63//
64////////////////////////////////////////////////////////////////////////////////
65
66/**
67 * Public method implementation. This opens the OVF with ovfreader.cpp.
68 * Thread implementation is in Appliance::readImpl().
69 *
70 * @param aFile
71 * @return
72 */
73HRESULT Appliance::read(const com::Utf8Str &aFile,
74 ComPtr<IProgress> &aProgress)
75{
76 AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
77
78 if (!i_isApplianceIdle())
79 return E_ACCESSDENIED;
80
81 if (m->pReader)
82 {
83 delete m->pReader;
84 m->pReader = NULL;
85 }
86
87 // see if we can handle this file; for now we insist it has an ovf/ova extension
88 if ( !aFile.endsWith(".ovf", Utf8Str::CaseInsensitive)
89 && !aFile.endsWith(".ova", Utf8Str::CaseInsensitive))
90 return setError(VBOX_E_FILE_ERROR, tr("Appliance file must have .ovf or .ova extension"));
91
92 ComObjPtr<Progress> progress;
93 try
94 {
95 /* Parse all necessary info out of the URI */
96 i_parseURI(aFile, m->locInfo);
97 i_readImpl(m->locInfo, progress);
98 }
99 catch (HRESULT aRC)
100 {
101 return aRC;
102 }
103
104 /* Return progress to the caller */
105 progress.queryInterfaceTo(aProgress.asOutParam());
106 return S_OK;
107}
108
109/**
110 * Public method implementation. This looks at the output of ovfreader.cpp and creates
111 * VirtualSystemDescription instances.
112 * @return
113 */
114HRESULT Appliance::interpret()
115{
116 // @todo:
117 // - don't use COM methods but the methods directly (faster, but needs appropriate
118 // locking of that objects itself (s. HardDisk))
119 // - Appropriate handle errors like not supported file formats
120 AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
121
122 if (!i_isApplianceIdle())
123 return E_ACCESSDENIED;
124
125 HRESULT rc = S_OK;
126
127 /* Clear any previous virtual system descriptions */
128 m->virtualSystemDescriptions.clear();
129
130 if (!m->pReader)
131 return setError(E_FAIL,
132 tr("Cannot interpret appliance without reading it first (call read() before interpret())"));
133
134 // Change the appliance state so we can safely leave the lock while doing time-consuming
135 // disk imports; also the below method calls do all kinds of locking which conflicts with
136 // the appliance object lock
137 m->state = Data::ApplianceImporting;
138 alock.release();
139
140 /* Try/catch so we can clean up on error */
141 try
142 {
143 list<ovf::VirtualSystem>::const_iterator it;
144 /* Iterate through all virtual systems */
145 for (it = m->pReader->m_llVirtualSystems.begin();
146 it != m->pReader->m_llVirtualSystems.end();
147 ++it)
148 {
149 const ovf::VirtualSystem &vsysThis = *it;
150
151 ComObjPtr<VirtualSystemDescription> pNewDesc;
152 rc = pNewDesc.createObject();
153 if (FAILED(rc)) throw rc;
154 rc = pNewDesc->init();
155 if (FAILED(rc)) throw rc;
156
157 // if the virtual system in OVF had a <vbox:Machine> element, have the
158 // VirtualBox settings code parse that XML now
159 if (vsysThis.pelmVBoxMachine)
160 pNewDesc->i_importVBoxMachineXML(*vsysThis.pelmVBoxMachine);
161
162 // Guest OS type
163 // This is taken from one of three places, in this order:
164 Utf8Str strOsTypeVBox;
165 Utf8StrFmt strCIMOSType("%RU32", (uint32_t)vsysThis.cimos);
166 // 1) If there is a <vbox:Machine>, then use the type from there.
167 if ( vsysThis.pelmVBoxMachine
168 && pNewDesc->m->pConfig->machineUserData.strOsType.isNotEmpty()
169 )
170 strOsTypeVBox = pNewDesc->m->pConfig->machineUserData.strOsType;
171 // 2) Otherwise, if there is OperatingSystemSection/vbox:OSType, use that one.
172 else if (vsysThis.strTypeVBox.isNotEmpty()) // OVFReader has found vbox:OSType
173 strOsTypeVBox = vsysThis.strTypeVBox;
174 // 3) Otherwise, make a best guess what the vbox type is from the OVF (CIM) OS type.
175 else
176 convertCIMOSType2VBoxOSType(strOsTypeVBox, vsysThis.cimos, vsysThis.strCimosDesc);
177 pNewDesc->i_addEntry(VirtualSystemDescriptionType_OS,
178 "",
179 strCIMOSType,
180 strOsTypeVBox);
181
182 /* VM name */
183 Utf8Str nameVBox;
184 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
185 if ( vsysThis.pelmVBoxMachine
186 && pNewDesc->m->pConfig->machineUserData.strName.isNotEmpty())
187 nameVBox = pNewDesc->m->pConfig->machineUserData.strName;
188 else
189 nameVBox = vsysThis.strName;
190 /* If there isn't any name specified create a default one out
191 * of the OS type */
192 if (nameVBox.isEmpty())
193 nameVBox = strOsTypeVBox;
194 i_searchUniqueVMName(nameVBox);
195 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Name,
196 "",
197 vsysThis.strName,
198 nameVBox);
199
200 /* Based on the VM name, create a target machine path. */
201 Bstr bstrMachineFilename;
202 rc = mVirtualBox->ComposeMachineFilename(Bstr(nameVBox).raw(),
203 NULL /* aGroup */,
204 NULL /* aCreateFlags */,
205 NULL /* aBaseFolder */,
206 bstrMachineFilename.asOutParam());
207 if (FAILED(rc)) throw rc;
208 /* Determine the machine folder from that */
209 Utf8Str strMachineFolder = Utf8Str(bstrMachineFilename).stripFilename();
210
211 /* VM Product */
212 if (!vsysThis.strProduct.isEmpty())
213 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Product,
214 "",
215 vsysThis.strProduct,
216 vsysThis.strProduct);
217
218 /* VM Vendor */
219 if (!vsysThis.strVendor.isEmpty())
220 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Vendor,
221 "",
222 vsysThis.strVendor,
223 vsysThis.strVendor);
224
225 /* VM Version */
226 if (!vsysThis.strVersion.isEmpty())
227 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Version,
228 "",
229 vsysThis.strVersion,
230 vsysThis.strVersion);
231
232 /* VM ProductUrl */
233 if (!vsysThis.strProductUrl.isEmpty())
234 pNewDesc->i_addEntry(VirtualSystemDescriptionType_ProductUrl,
235 "",
236 vsysThis.strProductUrl,
237 vsysThis.strProductUrl);
238
239 /* VM VendorUrl */
240 if (!vsysThis.strVendorUrl.isEmpty())
241 pNewDesc->i_addEntry(VirtualSystemDescriptionType_VendorUrl,
242 "",
243 vsysThis.strVendorUrl,
244 vsysThis.strVendorUrl);
245
246 /* VM description */
247 if (!vsysThis.strDescription.isEmpty())
248 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Description,
249 "",
250 vsysThis.strDescription,
251 vsysThis.strDescription);
252
253 /* VM license */
254 if (!vsysThis.strLicenseText.isEmpty())
255 pNewDesc->i_addEntry(VirtualSystemDescriptionType_License,
256 "",
257 vsysThis.strLicenseText,
258 vsysThis.strLicenseText);
259
260 /* Now that we know the OS type, get our internal defaults based on that. */
261 ComPtr<IGuestOSType> pGuestOSType;
262 rc = mVirtualBox->GetGuestOSType(Bstr(strOsTypeVBox).raw(), pGuestOSType.asOutParam());
263 if (FAILED(rc)) throw rc;
264
265 /* CPU count */
266 ULONG cpuCountVBox;
267 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
268 if ( vsysThis.pelmVBoxMachine
269 && pNewDesc->m->pConfig->hardwareMachine.cCPUs)
270 cpuCountVBox = pNewDesc->m->pConfig->hardwareMachine.cCPUs;
271 else
272 cpuCountVBox = vsysThis.cCPUs;
273 /* Check for the constraints */
274 if (cpuCountVBox > SchemaDefs::MaxCPUCount)
275 {
276 i_addWarning(tr("The virtual system \"%s\" claims support for %u CPU's, but VirtualBox has support for "
277 "max %u CPU's only."),
278 vsysThis.strName.c_str(), cpuCountVBox, SchemaDefs::MaxCPUCount);
279 cpuCountVBox = SchemaDefs::MaxCPUCount;
280 }
281 if (vsysThis.cCPUs == 0)
282 cpuCountVBox = 1;
283 pNewDesc->i_addEntry(VirtualSystemDescriptionType_CPU,
284 "",
285 Utf8StrFmt("%RU32", (uint32_t)vsysThis.cCPUs),
286 Utf8StrFmt("%RU32", (uint32_t)cpuCountVBox));
287
288 /* RAM */
289 uint64_t ullMemSizeVBox;
290 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
291 if ( vsysThis.pelmVBoxMachine
292 && pNewDesc->m->pConfig->hardwareMachine.ulMemorySizeMB)
293 ullMemSizeVBox = pNewDesc->m->pConfig->hardwareMachine.ulMemorySizeMB;
294 else
295 ullMemSizeVBox = vsysThis.ullMemorySize / _1M;
296 /* Check for the constraints */
297 if ( ullMemSizeVBox != 0
298 && ( ullMemSizeVBox < MM_RAM_MIN_IN_MB
299 || ullMemSizeVBox > MM_RAM_MAX_IN_MB
300 )
301 )
302 {
303 i_addWarning(tr("The virtual system \"%s\" claims support for %llu MB RAM size, but VirtualBox has "
304 "support for min %u & max %u MB RAM size only."),
305 vsysThis.strName.c_str(), ullMemSizeVBox, MM_RAM_MIN_IN_MB, MM_RAM_MAX_IN_MB);
306 ullMemSizeVBox = RT_MIN(RT_MAX(ullMemSizeVBox, MM_RAM_MIN_IN_MB), MM_RAM_MAX_IN_MB);
307 }
308 if (vsysThis.ullMemorySize == 0)
309 {
310 /* If the RAM of the OVF is zero, use our predefined values */
311 ULONG memSizeVBox2;
312 rc = pGuestOSType->COMGETTER(RecommendedRAM)(&memSizeVBox2);
313 if (FAILED(rc)) throw rc;
314 /* VBox stores that in MByte */
315 ullMemSizeVBox = (uint64_t)memSizeVBox2;
316 }
317 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Memory,
318 "",
319 Utf8StrFmt("%RU64", (uint64_t)vsysThis.ullMemorySize),
320 Utf8StrFmt("%RU64", (uint64_t)ullMemSizeVBox));
321
322 /* Audio */
323 Utf8Str strSoundCard;
324 Utf8Str strSoundCardOrig;
325 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
326 if ( vsysThis.pelmVBoxMachine
327 && pNewDesc->m->pConfig->hardwareMachine.audioAdapter.fEnabled)
328 {
329 strSoundCard = Utf8StrFmt("%RU32",
330 (uint32_t)pNewDesc->m->pConfig->hardwareMachine.audioAdapter.controllerType);
331 }
332 else if (vsysThis.strSoundCardType.isNotEmpty())
333 {
334 /* Set the AC97 always for the simple OVF case.
335 * @todo: figure out the hardware which could be possible */
336 strSoundCard = Utf8StrFmt("%RU32", (uint32_t)AudioControllerType_AC97);
337 strSoundCardOrig = vsysThis.strSoundCardType;
338 }
339 if (strSoundCard.isNotEmpty())
340 pNewDesc->i_addEntry(VirtualSystemDescriptionType_SoundCard,
341 "",
342 strSoundCardOrig,
343 strSoundCard);
344
345#ifdef VBOX_WITH_USB
346 /* USB Controller */
347 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
348 if ( ( vsysThis.pelmVBoxMachine
349 && pNewDesc->m->pConfig->hardwareMachine.usbSettings.llUSBControllers.size() > 0)
350 || vsysThis.fHasUsbController)
351 pNewDesc->i_addEntry(VirtualSystemDescriptionType_USBController, "", "", "");
352#endif /* VBOX_WITH_USB */
353
354 /* Network Controller */
355 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
356 if (vsysThis.pelmVBoxMachine)
357 {
358 uint32_t maxNetworkAdapters = Global::getMaxNetworkAdapters(pNewDesc->m->pConfig->hardwareMachine.chipsetType);
359
360 const settings::NetworkAdaptersList &llNetworkAdapters = pNewDesc->m->pConfig->hardwareMachine.llNetworkAdapters;
361 /* Check for the constrains */
362 if (llNetworkAdapters.size() > maxNetworkAdapters)
363 i_addWarning(tr("The virtual system \"%s\" claims support for %zu network adapters, but VirtualBox "
364 "has support for max %u network adapter only."),
365 vsysThis.strName.c_str(), llNetworkAdapters.size(), maxNetworkAdapters);
366 /* Iterate through all network adapters. */
367 settings::NetworkAdaptersList::const_iterator it1;
368 size_t a = 0;
369 for (it1 = llNetworkAdapters.begin();
370 it1 != llNetworkAdapters.end() && a < maxNetworkAdapters;
371 ++it1, ++a)
372 {
373 if (it1->fEnabled)
374 {
375 Utf8Str strMode = convertNetworkAttachmentTypeToString(it1->mode);
376 pNewDesc->i_addEntry(VirtualSystemDescriptionType_NetworkAdapter,
377 "", // ref
378 strMode, // orig
379 Utf8StrFmt("%RU32", (uint32_t)it1->type), // conf
380 0,
381 Utf8StrFmt("slot=%RU32;type=%s", it1->ulSlot, strMode.c_str())); // extra conf
382 }
383 }
384 }
385 /* else we use the ovf configuration. */
386 else if (vsysThis.llEthernetAdapters.size() > 0)
387 {
388 size_t cEthernetAdapters = vsysThis.llEthernetAdapters.size();
389 uint32_t maxNetworkAdapters = Global::getMaxNetworkAdapters(ChipsetType_PIIX3);
390
391 /* Check for the constrains */
392 if (cEthernetAdapters > maxNetworkAdapters)
393 i_addWarning(tr("The virtual system \"%s\" claims support for %zu network adapters, but VirtualBox "
394 "has support for max %u network adapter only."),
395 vsysThis.strName.c_str(), cEthernetAdapters, maxNetworkAdapters);
396
397 /* Get the default network adapter type for the selected guest OS */
398 NetworkAdapterType_T defaultAdapterVBox = NetworkAdapterType_Am79C970A;
399 rc = pGuestOSType->COMGETTER(AdapterType)(&defaultAdapterVBox);
400 if (FAILED(rc)) throw rc;
401
402 ovf::EthernetAdaptersList::const_iterator itEA;
403 /* Iterate through all abstract networks. Ignore network cards
404 * which exceed the limit of VirtualBox. */
405 size_t a = 0;
406 for (itEA = vsysThis.llEthernetAdapters.begin();
407 itEA != vsysThis.llEthernetAdapters.end() && a < maxNetworkAdapters;
408 ++itEA, ++a)
409 {
410 const ovf::EthernetAdapter &ea = *itEA; // logical network to connect to
411 Utf8Str strNetwork = ea.strNetworkName;
412 // make sure it's one of these two
413 if ( (strNetwork.compare("Null", Utf8Str::CaseInsensitive))
414 && (strNetwork.compare("NAT", Utf8Str::CaseInsensitive))
415 && (strNetwork.compare("Bridged", Utf8Str::CaseInsensitive))
416 && (strNetwork.compare("Internal", Utf8Str::CaseInsensitive))
417 && (strNetwork.compare("HostOnly", Utf8Str::CaseInsensitive))
418 && (strNetwork.compare("Generic", Utf8Str::CaseInsensitive))
419 )
420 strNetwork = "Bridged"; // VMware assumes this is the default apparently
421
422 /* Figure out the hardware type */
423 NetworkAdapterType_T nwAdapterVBox = defaultAdapterVBox;
424 if (!ea.strAdapterType.compare("PCNet32", Utf8Str::CaseInsensitive))
425 {
426 /* If the default adapter is already one of the two
427 * PCNet adapters use the default one. If not use the
428 * Am79C970A as fallback. */
429 if (!(defaultAdapterVBox == NetworkAdapterType_Am79C970A ||
430 defaultAdapterVBox == NetworkAdapterType_Am79C973))
431 nwAdapterVBox = NetworkAdapterType_Am79C970A;
432 }
433#ifdef VBOX_WITH_E1000
434 /* VMWare accidentally write this with VirtualCenter 3.5,
435 so make sure in this case always to use the VMWare one */
436 else if (!ea.strAdapterType.compare("E10000", Utf8Str::CaseInsensitive))
437 nwAdapterVBox = NetworkAdapterType_I82545EM;
438 else if (!ea.strAdapterType.compare("E1000", Utf8Str::CaseInsensitive))
439 {
440 /* Check if this OVF was written by VirtualBox */
441 if (Utf8Str(vsysThis.strVirtualSystemType).contains("virtualbox", Utf8Str::CaseInsensitive))
442 {
443 /* If the default adapter is already one of the three
444 * E1000 adapters use the default one. If not use the
445 * I82545EM as fallback. */
446 if (!(defaultAdapterVBox == NetworkAdapterType_I82540EM ||
447 defaultAdapterVBox == NetworkAdapterType_I82543GC ||
448 defaultAdapterVBox == NetworkAdapterType_I82545EM))
449 nwAdapterVBox = NetworkAdapterType_I82540EM;
450 }
451 else
452 /* Always use this one since it's what VMware uses */
453 nwAdapterVBox = NetworkAdapterType_I82545EM;
454 }
455#endif /* VBOX_WITH_E1000 */
456
457 pNewDesc->i_addEntry(VirtualSystemDescriptionType_NetworkAdapter,
458 "", // ref
459 ea.strNetworkName, // orig
460 Utf8StrFmt("%RU32", (uint32_t)nwAdapterVBox), // conf
461 0,
462 Utf8StrFmt("type=%s", strNetwork.c_str())); // extra conf
463 }
464 }
465
466 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
467 bool fFloppy = false;
468 bool fDVD = false;
469 if (vsysThis.pelmVBoxMachine)
470 {
471 settings::StorageControllersList &llControllers = pNewDesc->m->pConfig->storageMachine.llStorageControllers;
472 settings::StorageControllersList::iterator it3;
473 for (it3 = llControllers.begin();
474 it3 != llControllers.end();
475 ++it3)
476 {
477 settings::AttachedDevicesList &llAttachments = it3->llAttachedDevices;
478 settings::AttachedDevicesList::iterator it4;
479 for (it4 = llAttachments.begin();
480 it4 != llAttachments.end();
481 ++it4)
482 {
483 fDVD |= it4->deviceType == DeviceType_DVD;
484 fFloppy |= it4->deviceType == DeviceType_Floppy;
485 if (fFloppy && fDVD)
486 break;
487 }
488 if (fFloppy && fDVD)
489 break;
490 }
491 }
492 else
493 {
494 fFloppy = vsysThis.fHasFloppyDrive;
495 fDVD = vsysThis.fHasCdromDrive;
496 }
497 /* Floppy Drive */
498 if (fFloppy)
499 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Floppy, "", "", "");
500 /* CD Drive */
501 if (fDVD)
502 pNewDesc->i_addEntry(VirtualSystemDescriptionType_CDROM, "", "", "");
503
504 /* Hard disk Controller */
505 uint16_t cIDEused = 0;
506 uint16_t cSATAused = 0; NOREF(cSATAused);
507 uint16_t cSCSIused = 0; NOREF(cSCSIused);
508 ovf::ControllersMap::const_iterator hdcIt;
509 /* Iterate through all hard disk controllers */
510 for (hdcIt = vsysThis.mapControllers.begin();
511 hdcIt != vsysThis.mapControllers.end();
512 ++hdcIt)
513 {
514 const ovf::HardDiskController &hdc = hdcIt->second;
515 Utf8Str strControllerID = Utf8StrFmt("%RI32", (uint32_t)hdc.idController);
516
517 switch (hdc.system)
518 {
519 case ovf::HardDiskController::IDE:
520 /* Check for the constrains */
521 if (cIDEused < 4)
522 {
523 // @todo: figure out the IDE types
524 /* Use PIIX4 as default */
525 Utf8Str strType = "PIIX4";
526 if (!hdc.strControllerType.compare("PIIX3", Utf8Str::CaseInsensitive))
527 strType = "PIIX3";
528 else if (!hdc.strControllerType.compare("ICH6", Utf8Str::CaseInsensitive))
529 strType = "ICH6";
530 pNewDesc->i_addEntry(VirtualSystemDescriptionType_HardDiskControllerIDE,
531 strControllerID, // strRef
532 hdc.strControllerType, // aOvfValue
533 strType); // aVBoxValue
534 }
535 else
536 /* Warn only once */
537 if (cIDEused == 2)
538 i_addWarning(tr("The virtual \"%s\" system requests support for more than two "
539 "IDE controller channels, but VirtualBox supports only two."),
540 vsysThis.strName.c_str());
541
542 ++cIDEused;
543 break;
544
545 case ovf::HardDiskController::SATA:
546 /* Check for the constrains */
547 if (cSATAused < 1)
548 {
549 // @todo: figure out the SATA types
550 /* We only support a plain AHCI controller, so use them always */
551 pNewDesc->i_addEntry(VirtualSystemDescriptionType_HardDiskControllerSATA,
552 strControllerID,
553 hdc.strControllerType,
554 "AHCI");
555 }
556 else
557 {
558 /* Warn only once */
559 if (cSATAused == 1)
560 i_addWarning(tr("The virtual system \"%s\" requests support for more than one "
561 "SATA controller, but VirtualBox has support for only one"),
562 vsysThis.strName.c_str());
563
564 }
565 ++cSATAused;
566 break;
567
568 case ovf::HardDiskController::SCSI:
569 /* Check for the constrains */
570 if (cSCSIused < 1)
571 {
572 VirtualSystemDescriptionType_T vsdet = VirtualSystemDescriptionType_HardDiskControllerSCSI;
573 Utf8Str hdcController = "LsiLogic";
574 if (!hdc.strControllerType.compare("lsilogicsas", Utf8Str::CaseInsensitive))
575 {
576 // OVF considers SAS a variant of SCSI but VirtualBox considers it a class of its own
577 vsdet = VirtualSystemDescriptionType_HardDiskControllerSAS;
578 hdcController = "LsiLogicSas";
579 }
580 else if (!hdc.strControllerType.compare("BusLogic", Utf8Str::CaseInsensitive))
581 hdcController = "BusLogic";
582 pNewDesc->i_addEntry(vsdet,
583 strControllerID,
584 hdc.strControllerType,
585 hdcController);
586 }
587 else
588 i_addWarning(tr("The virtual system \"%s\" requests support for an additional "
589 "SCSI controller of type \"%s\" with ID %s, but VirtualBox presently "
590 "supports only one SCSI controller."),
591 vsysThis.strName.c_str(),
592 hdc.strControllerType.c_str(),
593 strControllerID.c_str());
594 ++cSCSIused;
595 break;
596 }
597 }
598
599 /* Hard disks */
600 if (vsysThis.mapVirtualDisks.size() > 0)
601 {
602 ovf::VirtualDisksMap::const_iterator itVD;
603 /* Iterate through all hard disks ()*/
604 for (itVD = vsysThis.mapVirtualDisks.begin();
605 itVD != vsysThis.mapVirtualDisks.end();
606 ++itVD)
607 {
608 const ovf::VirtualDisk &hd = itVD->second;
609 /* Get the associated disk image */
610 ovf::DiskImage di;
611 std::map<RTCString, ovf::DiskImage>::iterator foundDisk;
612
613 foundDisk = m->pReader->m_mapDisks.find(hd.strDiskId);
614 if (foundDisk == m->pReader->m_mapDisks.end())
615 continue;
616 else
617 {
618 di = foundDisk->second;
619 }
620
621 /*
622 * Figure out from URI which format the image of disk has.
623 * URI must have inside section <Disk> .
624 * But there aren't strong requirements about correspondence one URI for one disk virtual format.
625 * So possibly, we aren't able to recognize some URIs.
626 */
627
628 ComObjPtr<MediumFormat> mediumFormat;
629 rc = i_findMediumFormatFromDiskImage(di, mediumFormat);
630 if (FAILED(rc))
631 throw rc;
632
633 Bstr bstrFormatName;
634 rc = mediumFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
635 if (FAILED(rc))
636 throw rc;
637 Utf8Str vdf = Utf8Str(bstrFormatName);
638
639 // @todo:
640 // - figure out all possible vmdk formats we also support
641 // - figure out if there is a url specifier for vhd already
642 // - we need a url specifier for the vdi format
643
644 if (vdf.compare("VMDK", Utf8Str::CaseInsensitive) == 0)
645 {
646 /* If the href is empty use the VM name as filename */
647 Utf8Str strFilename = di.strHref;
648 if (!strFilename.length())
649 strFilename = Utf8StrFmt("%s.vmdk", hd.strDiskId.c_str());
650
651 Utf8Str strTargetPath = Utf8Str(strMachineFolder);
652 strTargetPath.append(RTPATH_DELIMITER).append(di.strHref);
653 /*
654 * Remove last extension from the file name if the file is compressed
655 */
656 if (di.strCompression.compare("gzip", Utf8Str::CaseInsensitive)==0)
657 {
658 strTargetPath.stripSuffix();
659 }
660
661 i_searchUniqueDiskImageFilePath(strTargetPath);
662
663 /* find the description for the hard disk controller
664 * that has the same ID as hd.idController */
665 const VirtualSystemDescriptionEntry *pController;
666 if (!(pController = pNewDesc->i_findControllerFromID(hd.idController)))
667 throw setError(E_FAIL,
668 tr("Cannot find hard disk controller with OVF instance ID %RI32 "
669 "to which disk \"%s\" should be attached"),
670 hd.idController,
671 di.strHref.c_str());
672
673 /* controller to attach to, and the bus within that controller */
674 Utf8StrFmt strExtraConfig("controller=%RI16;channel=%RI16",
675 pController->ulIndex,
676 hd.ulAddressOnParent);
677 pNewDesc->i_addEntry(VirtualSystemDescriptionType_HardDiskImage,
678 hd.strDiskId,
679 di.strHref,
680 strTargetPath,
681 di.ulSuggestedSizeMB,
682 strExtraConfig);
683 }
684 else if (vdf.compare("RAW", Utf8Str::CaseInsensitive) == 0)
685 {
686 /* If the href is empty use the VM name as filename */
687 Utf8Str strFilename = di.strHref;
688 if (!strFilename.length())
689 strFilename = Utf8StrFmt("%s.iso", hd.strDiskId.c_str());
690
691 Utf8Str strTargetPath = Utf8Str(strMachineFolder)
692 .append(RTPATH_DELIMITER)
693 .append(di.strHref);
694 /*
695 * Remove last extension from the file name if the file is compressed
696 */
697 if (di.strCompression.compare("gzip", Utf8Str::CaseInsensitive)==0)
698 {
699 strTargetPath.stripSuffix();
700 }
701
702 i_searchUniqueDiskImageFilePath(strTargetPath);
703
704 /* find the description for the hard disk controller
705 * that has the same ID as hd.idController */
706 const VirtualSystemDescriptionEntry *pController;
707 if (!(pController = pNewDesc->i_findControllerFromID(hd.idController)))
708 throw setError(E_FAIL,
709 tr("Cannot find disk controller with OVF instance ID %RI32 "
710 "to which disk \"%s\" should be attached"),
711 hd.idController,
712 di.strHref.c_str());
713
714 /* controller to attach to, and the bus within that controller */
715 Utf8StrFmt strExtraConfig("controller=%RI16;channel=%RI16",
716 pController->ulIndex,
717 hd.ulAddressOnParent);
718 pNewDesc->i_addEntry(VirtualSystemDescriptionType_HardDiskImage,
719 hd.strDiskId,
720 di.strHref,
721 strTargetPath,
722 di.ulSuggestedSizeMB,
723 strExtraConfig);
724 }
725 else
726 throw setError(VBOX_E_FILE_ERROR,
727 tr("Unsupported format for virtual disk image %s in OVF: \"%s\""),
728 di.strHref.c_str(),
729 di.strFormat.c_str());
730 }
731 }
732
733 m->virtualSystemDescriptions.push_back(pNewDesc);
734 }
735 }
736 catch (HRESULT aRC)
737 {
738 /* On error we clear the list & return */
739 m->virtualSystemDescriptions.clear();
740 rc = aRC;
741 }
742
743 // reset the appliance state
744 alock.acquire();
745 m->state = Data::ApplianceIdle;
746
747 return rc;
748}
749
750/**
751 * Public method implementation. This creates one or more new machines according to the
752 * VirtualSystemScription instances created by Appliance::Interpret().
753 * Thread implementation is in Appliance::i_importImpl().
754 * @param aProgress
755 * @return
756 */
757HRESULT Appliance::importMachines(const std::vector<ImportOptions_T> &aOptions,
758 ComPtr<IProgress> &aProgress)
759{
760 AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
761
762 if (aOptions.size())
763 {
764 m->optListImport.setCapacity(aOptions.size());
765 for (size_t i = 0; i < aOptions.size(); ++i)
766 {
767 m->optListImport.insert(i, aOptions[i]);
768 }
769 }
770
771 AssertReturn(!( m->optListImport.contains(ImportOptions_KeepAllMACs)
772 && m->optListImport.contains(ImportOptions_KeepNATMACs) )
773 , E_INVALIDARG);
774
775 // do not allow entering this method if the appliance is busy reading or writing
776 if (!i_isApplianceIdle())
777 return E_ACCESSDENIED;
778
779 if (!m->pReader)
780 return setError(E_FAIL,
781 tr("Cannot import machines without reading it first (call read() before i_importMachines())"));
782
783 ComObjPtr<Progress> progress;
784 HRESULT rc = S_OK;
785 try
786 {
787 rc = i_importImpl(m->locInfo, progress);
788 }
789 catch (HRESULT aRC)
790 {
791 rc = aRC;
792 }
793
794 if (SUCCEEDED(rc))
795 /* Return progress to the caller */
796 progress.queryInterfaceTo(aProgress.asOutParam());
797
798 return rc;
799}
800
801////////////////////////////////////////////////////////////////////////////////
802//
803// Appliance private methods
804//
805////////////////////////////////////////////////////////////////////////////////
806
807/**
808 * Ensures that there is a look-ahead object ready.
809 *
810 * @returns true if there's an object handy, false if end-of-stream.
811 * @throws HRESULT if the next object isn't a regular file. Sets error info
812 * (which is why it's a method on Appliance and not the
813 * ImportStack).
814 */
815bool Appliance::i_importEnsureOvaLookAhead(ImportStack &stack)
816{
817 Assert(stack.hVfsFssOva != NULL);
818 if (stack.hVfsIosOvaLookAhead == NIL_RTVFSIOSTREAM)
819 {
820 RTStrFree(stack.pszOvaLookAheadName);
821 stack.pszOvaLookAheadName = NULL;
822
823 RTVFSOBJTYPE enmType;
824 RTVFSOBJ hVfsObj;
825 int vrc = RTVfsFsStrmNext(stack.hVfsFssOva, &stack.pszOvaLookAheadName, &enmType, &hVfsObj);
826 if (RT_SUCCESS(vrc))
827 {
828 stack.hVfsIosOvaLookAhead = RTVfsObjToIoStream(hVfsObj);
829 RTVfsObjRelease(hVfsObj);
830 if ( ( enmType != RTVFSOBJTYPE_FILE
831 && enmType != RTVFSOBJTYPE_IO_STREAM)
832 || stack.hVfsIosOvaLookAhead == NIL_RTVFSIOSTREAM)
833 throw setError(VBOX_E_FILE_ERROR,
834 tr("Malformed OVA. '%s' is not a regular file (%d)."), stack.pszOvaLookAheadName, enmType);
835 }
836 else if (vrc == VERR_EOF)
837 return false;
838 else
839 throw setErrorVrc(vrc, tr("RTVfsFsStrmNext failed (%Rrc)"), vrc);
840 }
841 return true;
842}
843
844HRESULT Appliance::i_preCheckImageAvailability(ImportStack &stack)
845{
846 if (i_importEnsureOvaLookAhead(stack))
847 return S_OK;
848 throw setError(VBOX_E_FILE_ERROR, tr("Unexpected end of OVA package"));
849 /** @todo r=bird: dunno why this bother returning a value and the caller
850 * having a special 'continue' case for it. It always threw all non-OK
851 * status codes. It's possibly to handle out of order stuff, so that
852 * needs adding to the testcase! */
853}
854
855/**
856 * Setup automatic I/O stream digest calculation, adding it to hOurManifest.
857 *
858 * @returns Passthru I/O stream, of @a hVfsIos if no digest calc needed.
859 * @param hVfsIos The stream to wrap. Always consumed.
860 * @param pszManifestEntry The manifest entry.
861 * @throws Nothing.
862 */
863RTVFSIOSTREAM Appliance::i_importSetupDigestCalculationForGivenIoStream(RTVFSIOSTREAM hVfsIos, const char *pszManifestEntry)
864{
865 int vrc;
866 Assert(!RTManifestPtIosIsInstanceOf(hVfsIos));
867
868 if (m->fDigestTypes == 0)
869 return hVfsIos;
870
871 /* Create the manifest if necessary. */
872 if (m->hOurManifest == NIL_RTMANIFEST)
873 {
874 vrc = RTManifestCreate(0 /*fFlags*/, &m->hOurManifest);
875 AssertRCReturnStmt(vrc, RTVfsIoStrmRelease(hVfsIos), NIL_RTVFSIOSTREAM);
876 }
877
878 /* Setup the stream. */
879 RTVFSIOSTREAM hVfsIosPt;
880 vrc = RTManifestEntryAddPassthruIoStream(m->hOurManifest, hVfsIos, pszManifestEntry, m->fDigestTypes,
881 true /*fReadOrWrite*/, &hVfsIosPt);
882
883 RTVfsIoStrmRelease(hVfsIos); /* always consumed! */
884 if (RT_SUCCESS(vrc))
885 return hVfsIosPt;
886
887 setErrorVrc(vrc, "RTManifestEntryAddPassthruIoStream failed with rc=%Rrc", vrc);
888 return NIL_RTVFSIOSTREAM;
889}
890
891/**
892 * Opens a source file (for reading obviously).
893 *
894 * @param rstrSrcPath The source file to open.
895 * @param pszManifestEntry The manifest entry of the source file. This is
896 * used when constructing our manifest using a pass
897 * thru.
898 * @returns I/O stream handle to the source file.
899 * @throws HRESULT error status, error info set.
900 */
901RTVFSIOSTREAM Appliance::i_importOpenSourceFile(ImportStack &stack, Utf8Str const &rstrSrcPath, const char *pszManifestEntry)
902{
903 /*
904 * Open the source file. Special considerations for OVAs.
905 */
906 RTVFSIOSTREAM hVfsIosSrc;
907 if (stack.hVfsFssOva != NIL_RTVFSFSSTREAM)
908 {
909 for (uint32_t i = 0;; i++)
910 {
911 if (!i_importEnsureOvaLookAhead(stack))
912 throw setErrorBoth(VBOX_E_FILE_ERROR, VERR_EOF,
913 tr("Unexpected end of OVA / internal error - missing '%s' (skipped %u)"),
914 rstrSrcPath.c_str(), i);
915 if (RTStrICmp(stack.pszOvaLookAheadName, rstrSrcPath.c_str()) == 0)
916 break;
917
918 /* release the current object, loop to get the next. */
919 RTVfsIoStrmRelease(stack.claimOvaLookAHead());
920 }
921 hVfsIosSrc = stack.claimOvaLookAHead();
922 }
923 else
924 {
925 int vrc = RTVfsIoStrmOpenNormal(rstrSrcPath.c_str(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, &hVfsIosSrc);
926 if (RT_FAILURE(vrc))
927 throw setErrorVrc(vrc, tr("Error opening '%s' for reading (%Rrc)"), rstrSrcPath.c_str(), vrc);
928 }
929
930 /*
931 * Digest calculation filtering.
932 */
933 hVfsIosSrc = i_importSetupDigestCalculationForGivenIoStream(hVfsIosSrc, pszManifestEntry);
934 if (hVfsIosSrc == NIL_RTVFSIOSTREAM)
935 throw E_FAIL;
936
937 return hVfsIosSrc;
938}
939
940/**
941 * Creates the destination file and fills it with bytes from the source stream.
942 *
943 * This assumes that we digest the source when fDigestTypes is non-zero, and
944 * thus calls RTManifestPtIosAddEntryNow when done.
945 *
946 * @param rstrDstPath The path to the destination file. Missing path
947 * components will be created.
948 * @param hVfsIosSrc The source I/O stream.
949 * @param rstrSrcLogNm The name of the source for logging and error
950 * messages.
951 * @returns COM status code.
952 * @throws Nothing (as the caller has VFS handles to release).
953 */
954HRESULT Appliance::i_importCreateAndWriteDestinationFile(Utf8Str const &rstrDstPath, RTVFSIOSTREAM hVfsIosSrc,
955 Utf8Str const &rstrSrcLogNm)
956{
957 int vrc;
958
959 /*
960 * Create the output file, including necessary paths.
961 * Any existing file will be overwritten.
962 */
963 HRESULT hrc = VirtualBox::i_ensureFilePathExists(rstrDstPath, true /*fCreate*/);
964 if (SUCCEEDED(hrc))
965 {
966 RTVFSIOSTREAM hVfsIosDst;
967 vrc = RTVfsIoStrmOpenNormal(rstrDstPath.c_str(),
968 RTFILE_O_CREATE_REPLACE | RTFILE_O_WRITE | RTFILE_O_DENY_ALL,
969 &hVfsIosDst);
970 if (RT_SUCCESS(vrc))
971 {
972 /*
973 * Pump the bytes thru. If we fail, delete the output file.
974 */
975 vrc = RTVfsUtilPumpIoStreams(hVfsIosSrc, hVfsIosDst, 0);
976 if (RT_SUCCESS(vrc))
977 hrc = S_OK;
978 else
979 hrc = setErrorVrc(vrc, tr("Error occured decompressing '%s' to '%s' (%Rrc)"),
980 rstrSrcLogNm.c_str(), rstrDstPath.c_str(), vrc);
981 uint32_t cRefs = RTVfsIoStrmRelease(hVfsIosDst);
982 AssertMsg(cRefs == 0, ("cRefs=%u\n", cRefs)); NOREF(cRefs);
983 if (RT_FAILURE(vrc))
984 RTFileDelete(rstrDstPath.c_str());
985 }
986 else
987 hrc = setErrorVrc(vrc, tr("Error opening destionation image '%s' for writing (%Rrc)"), rstrDstPath.c_str(), vrc);
988 }
989 return hrc;
990}
991
992
993/**
994 *
995 * @param pszManifestEntry The manifest entry of the source file. This is
996 * used when constructing our manifest using a pass
997 * thru.
998 * @throws HRESULT error status, error info set.
999 */
1000void Appliance::i_importCopyFile(ImportStack &stack, Utf8Str const &rstrSrcPath, Utf8Str const &rstrDstPath,
1001 const char *pszManifestEntry)
1002{
1003 /*
1004 * Open the file (throws error) and add a read ahead thread so we can do
1005 * concurrent reads (+digest) and writes.
1006 */
1007 RTVFSIOSTREAM hVfsIosSrc = i_importOpenSourceFile(stack, rstrSrcPath, pszManifestEntry);
1008 RTVFSIOSTREAM hVfsIosReadAhead;
1009 int vrc = RTVfsCreateReadAheadForIoStream(hVfsIosSrc, 0 /*fFlags*/, 0 /*cBuffers=default*/, 0 /*cbBuffers=default*/,
1010 &hVfsIosReadAhead);
1011 if (RT_FAILURE(vrc))
1012 {
1013 RTVfsIoStrmRelease(hVfsIosSrc);
1014 throw setErrorVrc(vrc, tr("Error initializing read ahead thread for '%s' (%Rrc)"), rstrSrcPath.c_str(), vrc);
1015 }
1016
1017 /*
1018 * Write the destination file (nothrow).
1019 */
1020 HRESULT hrc = i_importCreateAndWriteDestinationFile(rstrDstPath, hVfsIosReadAhead, rstrSrcPath);
1021 RTVfsIoStrmRelease(hVfsIosReadAhead);
1022
1023 /*
1024 * Before releasing the source stream, make sure we've successfully added
1025 * the digest to our manifest.
1026 */
1027 if (SUCCEEDED(hrc) && m->fDigestTypes)
1028 {
1029 vrc = RTManifestPtIosAddEntryNow(hVfsIosSrc);
1030 if (RT_FAILURE(vrc))
1031 hrc = setErrorVrc(vrc, tr("RTManifestPtIosAddEntryNow failed with %Rrc"), vrc);
1032 }
1033
1034 uint32_t cRefs = RTVfsIoStrmRelease(hVfsIosSrc);
1035 AssertMsg(cRefs == 0, ("cRefs=%u\n", cRefs)); NOREF(cRefs);
1036 if (SUCCEEDED(hrc))
1037 return;
1038 throw hrc;
1039}
1040
1041/**
1042 *
1043 * @param pszManifestEntry The manifest entry of the source file. This is
1044 * used when constructing our manifest using a pass
1045 * thru.
1046 * @throws HRESULT error status, error info set.
1047 */
1048void Appliance::i_importDecompressFile(ImportStack &stack, Utf8Str const &rstrSrcPath, Utf8Str const &rstrDstPath,
1049 const char *pszManifestEntry)
1050{
1051 RTVFSIOSTREAM hVfsIosSrcCompressed = i_importOpenSourceFile(stack, rstrSrcPath, pszManifestEntry);
1052
1053 /*
1054 * Add a read ahead thread here. This means reading and digest calculation
1055 * is done on one thread, while unpacking and writing is one on this thread.
1056 */
1057 RTVFSIOSTREAM hVfsIosReadAhead;
1058 int vrc = RTVfsCreateReadAheadForIoStream(hVfsIosSrcCompressed, 0 /*fFlags*/, 0 /*cBuffers=default*/,
1059 0 /*cbBuffers=default*/, &hVfsIosReadAhead);
1060 if (RT_FAILURE(vrc))
1061 {
1062 RTVfsIoStrmRelease(hVfsIosSrcCompressed);
1063 throw setErrorVrc(vrc, tr("Error initializing read ahead thread for '%s' (%Rrc)"), rstrSrcPath.c_str(), vrc);
1064 }
1065
1066 /*
1067 * Add decompression step.
1068 */
1069 RTVFSIOSTREAM hVfsIosSrc;
1070 vrc = RTZipGzipDecompressIoStream(hVfsIosReadAhead, 0, &hVfsIosSrc);
1071 RTVfsIoStrmRelease(hVfsIosReadAhead);
1072 if (RT_FAILURE(vrc))
1073 {
1074 RTVfsIoStrmRelease(hVfsIosSrcCompressed);
1075 throw setErrorVrc(vrc, tr("Error initializing gzip decompression for '%s' (%Rrc)"), rstrSrcPath.c_str(), vrc);
1076 }
1077
1078 /*
1079 * Write the stream to the destination file (nothrow).
1080 */
1081 HRESULT hrc = i_importCreateAndWriteDestinationFile(rstrDstPath, hVfsIosSrc, rstrSrcPath);
1082
1083 /*
1084 * Before releasing the source stream, make sure we've successfully added
1085 * the digest to our manifest.
1086 */
1087 if (SUCCEEDED(hrc) && m->fDigestTypes)
1088 {
1089 vrc = RTManifestPtIosAddEntryNow(hVfsIosSrcCompressed);
1090 if (RT_FAILURE(vrc))
1091 hrc = setErrorVrc(vrc, tr("RTManifestPtIosAddEntryNow failed with %Rrc"), vrc);
1092 }
1093
1094 uint32_t cRefs = RTVfsIoStrmRelease(hVfsIosSrc);
1095 AssertMsg(cRefs == 0, ("cRefs=%u\n", cRefs)); NOREF(cRefs);
1096
1097 cRefs = RTVfsIoStrmRelease(hVfsIosSrcCompressed);
1098 AssertMsg(cRefs == 0, ("cRefs=%u\n", cRefs)); NOREF(cRefs);
1099
1100 if (SUCCEEDED(hrc))
1101 return;
1102 throw hrc;
1103}
1104
1105/*******************************************************************************
1106 * Read stuff
1107 ******************************************************************************/
1108
1109/**
1110 * Implementation for reading an OVF (via task).
1111 *
1112 * This starts a new thread which will call
1113 * Appliance::taskThreadImportOrExport() which will then call readFS(). This
1114 * will then open the OVF with ovfreader.cpp.
1115 *
1116 * This is in a separate private method because it is used from two locations:
1117 *
1118 * 1) from the public Appliance::Read().
1119 *
1120 * 2) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::i_importImpl(), which
1121 * called Appliance::readFSOVA(), which called Appliance::i_importImpl(), which then called this again.
1122 *
1123 * @param aLocInfo The OVF location.
1124 * @param aProgress Where to return the progress object.
1125 * @throws COM error codes will be thrown.
1126 */
1127void Appliance::i_readImpl(const LocationInfo &aLocInfo, ComObjPtr<Progress> &aProgress)
1128{
1129 BstrFmt bstrDesc = BstrFmt(tr("Reading appliance '%s'"),
1130 aLocInfo.strPath.c_str());
1131 HRESULT rc;
1132 /* Create the progress object */
1133 aProgress.createObject();
1134 if (aLocInfo.storageType == VFSType_File)
1135 /* 1 operation only */
1136 rc = aProgress->init(mVirtualBox, static_cast<IAppliance*>(this),
1137 bstrDesc.raw(),
1138 TRUE /* aCancelable */);
1139 else
1140 /* 4/5 is downloading, 1/5 is reading */
1141 rc = aProgress->init(mVirtualBox, static_cast<IAppliance*>(this),
1142 bstrDesc.raw(),
1143 TRUE /* aCancelable */,
1144 2, // ULONG cOperations,
1145 5, // ULONG ulTotalOperationsWeight,
1146 BstrFmt(tr("Download appliance '%s'"),
1147 aLocInfo.strPath.c_str()).raw(), // CBSTR bstrFirstOperationDescription,
1148 4); // ULONG ulFirstOperationWeight,
1149 if (FAILED(rc)) throw rc;
1150
1151 /* Initialize our worker task */
1152 TaskOVF *task = NULL;
1153 try
1154 {
1155 task = new TaskOVF(this, TaskOVF::Read, aLocInfo, aProgress);
1156 }
1157 catch (...)
1158 {
1159 throw setError(VBOX_E_OBJECT_NOT_FOUND,
1160 tr("Could not create TaskOVF object for reading the OVF from disk"));
1161 }
1162
1163 rc = task->createThread();
1164 if (FAILED(rc)) throw rc;
1165}
1166
1167/**
1168 * Actual worker code for reading an OVF from disk. This is called from Appliance::taskThreadImportOrExport()
1169 * and therefore runs on the OVF read worker thread. This opens the OVF with ovfreader.cpp.
1170 *
1171 * This runs in one context:
1172 *
1173 * 1) in a first worker thread; in that case, Appliance::Read() called Appliance::readImpl();
1174 *
1175 * @param pTask
1176 * @return
1177 */
1178HRESULT Appliance::i_readFS(TaskOVF *pTask)
1179{
1180 LogFlowFuncEnter();
1181 LogFlowFunc(("Appliance %p\n", this));
1182
1183 AutoCaller autoCaller(this);
1184 if (FAILED(autoCaller.rc())) return autoCaller.rc();
1185
1186 AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS);
1187
1188 HRESULT rc;
1189 if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive))
1190 rc = i_readFSOVF(pTask);
1191 else
1192 rc = i_readFSOVA(pTask);
1193
1194 LogFlowFunc(("rc=%Rhrc\n", rc));
1195 LogFlowFuncLeave();
1196
1197 return rc;
1198}
1199
1200HRESULT Appliance::i_readFSOVF(TaskOVF *pTask)
1201{
1202 LogFlowFunc(("'%s'\n", pTask->locInfo.strPath.c_str()));
1203
1204 /*
1205 * Allocate a buffer for filenames and prep it for suffix appending.
1206 */
1207 char *pszNameBuf = (char *)alloca(pTask->locInfo.strPath.length() + 16);
1208 AssertReturn(pszNameBuf, VERR_NO_TMP_MEMORY);
1209 memcpy(pszNameBuf, pTask->locInfo.strPath.c_str(), pTask->locInfo.strPath.length() + 1);
1210 RTPathStripSuffix(pszNameBuf);
1211 size_t const cchBaseName = strlen(pszNameBuf);
1212
1213 /*
1214 * Open the OVF file first since that is what this is all about.
1215 */
1216 RTVFSIOSTREAM hIosOvf;
1217 int vrc = RTVfsIoStrmOpenNormal(pTask->locInfo.strPath.c_str(),
1218 RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, &hIosOvf);
1219 if (RT_FAILURE(vrc))
1220 return setErrorVrc(vrc, tr("Failed to open OVF file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1221
1222 HRESULT hrc = i_readOVFFile(pTask, hIosOvf, RTPathFilename(pTask->locInfo.strPath.c_str())); /* consumes hIosOvf */
1223 if (FAILED(hrc))
1224 return hrc;
1225
1226 /*
1227 * Try open the manifest file (for signature purposes and to determine digest type(s)).
1228 */
1229 RTVFSIOSTREAM hIosMf;
1230 strcpy(&pszNameBuf[cchBaseName], ".mf");
1231 vrc = RTVfsIoStrmOpenNormal(pszNameBuf, RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, &hIosMf);
1232 if (RT_SUCCESS(vrc))
1233 {
1234 const char * const pszFilenamePart = RTPathFilename(pszNameBuf);
1235 hrc = i_readManifestFile(pTask, hIosMf /*consumed*/, pszFilenamePart);
1236 if (FAILED(hrc))
1237 return hrc;
1238
1239 /*
1240 * Check for the signature file.
1241 */
1242 RTVFSIOSTREAM hIosCert;
1243 strcpy(&pszNameBuf[cchBaseName], ".cert");
1244 vrc = RTVfsIoStrmOpenNormal(pszNameBuf, RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, &hIosCert);
1245 if (RT_SUCCESS(vrc))
1246 {
1247 hrc = i_readSignatureFile(pTask, hIosCert /*consumed*/, pszFilenamePart);
1248 if (FAILED(hrc))
1249 return hrc;
1250 }
1251 else if (vrc != VERR_FILE_NOT_FOUND && vrc != VERR_PATH_NOT_FOUND)
1252 return setErrorVrc(vrc, tr("Failed to open the signature file '%s' (%Rrc)"), pszNameBuf, vrc);
1253
1254 }
1255 else if (vrc == VERR_FILE_NOT_FOUND || vrc == VERR_PATH_NOT_FOUND)
1256 {
1257 m->fDeterminedDigestTypes = true;
1258 m->fDigestTypes = 0;
1259 }
1260 else
1261 return setErrorVrc(vrc, tr("Failed to open the manifest file '%s' (%Rrc)"), pszNameBuf, vrc);
1262
1263 /*
1264 * Do tail processing (check the signature).
1265 */
1266 hrc = i_readTailProcessing(pTask);
1267
1268 LogFlowFunc(("returns %Rhrc\n", hrc));
1269 return hrc;
1270}
1271
1272HRESULT Appliance::i_readFSOVA(TaskOVF *pTask)
1273{
1274 LogFlowFunc(("'%s'\n", pTask->locInfo.strPath.c_str()));
1275
1276 /*
1277 * Open the tar file as file stream.
1278 */
1279 RTVFSIOSTREAM hVfsIosOva;
1280 int vrc = RTVfsIoStrmOpenNormal(pTask->locInfo.strPath.c_str(),
1281 RTFILE_O_READ | RTFILE_O_DENY_NONE | RTFILE_O_OPEN, &hVfsIosOva);
1282 if (RT_FAILURE(vrc))
1283 return setErrorVrc(vrc, tr("Error opening the OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1284
1285 RTVFSFSSTREAM hVfsFssOva;
1286 vrc = RTZipTarFsStreamFromIoStream(hVfsIosOva, 0 /*fFlags*/, &hVfsFssOva);
1287 RTVfsIoStrmRelease(hVfsIosOva);
1288 if (RT_FAILURE(vrc))
1289 return setErrorVrc(vrc, tr("Error reading the OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1290
1291 /*
1292 * Since jumping thru an OVA file with seekable disk backing is rather
1293 * efficient, we can process .ovf, .mf and .cert files here without any
1294 * strict ordering restrictions.
1295 *
1296 * (Technically, the .ovf-file comes first, while the manifest and its
1297 * optional signature file either follows immediately or at the very end of
1298 * the OVA. The manifest is optional.)
1299 */
1300 char *pszOvfNameBase = NULL;
1301 size_t cchOvfNameBase = 0;
1302 unsigned cLeftToFind = 3;
1303 HRESULT hrc = S_OK;
1304 do
1305 {
1306 char *pszName = NULL;
1307 RTVFSOBJTYPE enmType;
1308 RTVFSOBJ hVfsObj;
1309 vrc = RTVfsFsStrmNext(hVfsFssOva, &pszName, &enmType, &hVfsObj);
1310 if (RT_FAILURE(vrc))
1311 {
1312 if (vrc != VERR_EOF)
1313 hrc = setErrorVrc(vrc, tr("Error reading OVA '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1314 break;
1315 }
1316
1317 /* We only care about entries that are files. Get the I/O stream handle for them. */
1318 if ( enmType == RTVFSOBJTYPE_IO_STREAM
1319 || enmType == RTVFSOBJTYPE_FILE)
1320 {
1321 /* Find the suffix and check if this is a possibly interesting file. */
1322 char *pszSuffix = strrchr(pszName, '.');
1323 if ( pszSuffix
1324 && ( RTStrICmp(pszSuffix + 1, "ovf") == 0
1325 || RTStrICmp(pszSuffix + 1, "mf") == 0
1326 || RTStrICmp(pszSuffix + 1, "cert") == 0) )
1327 {
1328 /* Match the OVF base name. */
1329 *pszSuffix = '\0';
1330 if ( pszOvfNameBase == NULL
1331 || RTStrICmp(pszName, pszOvfNameBase) == 0)
1332 {
1333 *pszSuffix = '.';
1334
1335 /* Since we're pretty sure we'll be processing this file, get the I/O stream. */
1336 RTVFSIOSTREAM hVfsIos = RTVfsObjToIoStream(hVfsObj);
1337 Assert(hVfsIos != NIL_RTVFSIOSTREAM);
1338
1339 /* Check for the OVF (should come first). */
1340 if (RTStrICmp(pszSuffix + 1, "ovf") == 0)
1341 {
1342 if (pszOvfNameBase == NULL)
1343 {
1344 hrc = i_readOVFFile(pTask, hVfsIos, pszName);
1345 hVfsIos = NIL_RTVFSIOSTREAM;
1346
1347 /* Set the base name. */
1348 *pszSuffix = '\0';
1349 pszOvfNameBase = pszName;
1350 cchOvfNameBase = strlen(pszName);
1351 pszName = NULL;
1352 cLeftToFind--;
1353 }
1354 else
1355 LogRel(("i_readFSOVA: '%s' contains more than one OVF file ('%s'), picking the first one\n",
1356 pTask->locInfo.strPath.c_str(), pszName));
1357 }
1358 /* Check for manifest. */
1359 else if (RTStrICmp(pszSuffix + 1, "mf") == 0)
1360 {
1361 if (m->hMemFileTheirManifest == NIL_RTVFSFILE)
1362 {
1363 hrc = i_readManifestFile(pTask, hVfsIos, pszName);
1364 hVfsIos = NIL_RTVFSIOSTREAM; /*consumed*/
1365 cLeftToFind--;
1366 }
1367 else
1368 LogRel(("i_readFSOVA: '%s' contains more than one manifest file ('%s'), picking the first one\n",
1369 pTask->locInfo.strPath.c_str(), pszName));
1370 }
1371 /* Check for signature. */
1372 else if (RTStrICmp(pszSuffix + 1, "cert") == 0)
1373 {
1374 if (!m->fSignerCertLoaded)
1375 {
1376 hrc = i_readSignatureFile(pTask, hVfsIos, pszName);
1377 hVfsIos = NIL_RTVFSIOSTREAM; /*consumed*/
1378 cLeftToFind--;
1379 }
1380 else
1381 LogRel(("i_readFSOVA: '%s' contains more than one signature file ('%s'), picking the first one\n",
1382 pTask->locInfo.strPath.c_str(), pszName));
1383 }
1384 else
1385 AssertFailed();
1386 if (hVfsIos != NIL_RTVFSIOSTREAM)
1387 RTVfsIoStrmRelease(hVfsIos);
1388 }
1389 }
1390 }
1391 RTVfsObjRelease(hVfsObj);
1392 RTStrFree(pszName);
1393 } while (cLeftToFind > 0 && SUCCEEDED(hrc));
1394
1395 RTVfsFsStrmRelease(hVfsFssOva);
1396 RTStrFree(pszOvfNameBase);
1397
1398 /*
1399 * Check that we found and OVF file.
1400 */
1401 if (SUCCEEDED(hrc) && !pszOvfNameBase)
1402 hrc = setError(VBOX_E_FILE_ERROR, tr("OVA '%s' does not contain an .ovf-file"), pTask->locInfo.strPath.c_str());
1403 if (SUCCEEDED(hrc))
1404 {
1405 /*
1406 * Do tail processing (check the signature).
1407 */
1408 hrc = i_readTailProcessing(pTask);
1409 }
1410 LogFlowFunc(("returns %Rhrc\n", hrc));
1411 return hrc;
1412}
1413
1414/**
1415 * Reads & parses the OVF file.
1416 *
1417 * @param pTask The read task.
1418 * @param hVfsIosOvf The I/O stream for the OVF. The reference is
1419 * always consumed.
1420 * @param pszManifestEntry The manifest entry name.
1421 * @returns COM status code, error info set.
1422 * @throws Nothing
1423 */
1424HRESULT Appliance::i_readOVFFile(TaskOVF *pTask, RTVFSIOSTREAM hVfsIosOvf, const char *pszManifestEntry)
1425{
1426 LogFlowFunc(("%s[%s]\n", pTask->locInfo.strPath.c_str(), pszManifestEntry));
1427
1428 /*
1429 * Set the OVF manifest entry name (needed for tweaking the manifest
1430 * validation during import).
1431 */
1432 try { m->strOvfManifestEntry = pszManifestEntry; }
1433 catch (...) { return E_OUTOFMEMORY; }
1434
1435 /*
1436 * Set up digest calculation.
1437 */
1438 hVfsIosOvf = i_importSetupDigestCalculationForGivenIoStream(hVfsIosOvf, pszManifestEntry);
1439 if (hVfsIosOvf == NIL_RTVFSIOSTREAM)
1440 return VBOX_E_FILE_ERROR;
1441
1442 /*
1443 * Read the OVF into a memory buffer and parse it.
1444 */
1445 void *pvBufferedOvf;
1446 size_t cbBufferedOvf;
1447 int vrc = RTVfsIoStrmReadAll(hVfsIosOvf, &pvBufferedOvf, &cbBufferedOvf);
1448 uint32_t cRefs = RTVfsIoStrmRelease(hVfsIosOvf); /* consumes stream handle. */
1449 Assert(cRefs == 0);
1450 if (RT_FAILURE(vrc))
1451 return setErrorVrc(vrc, tr("Could not read the OVF file for '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1452
1453 HRESULT hrc;
1454 try
1455 {
1456 m->pReader = new ovf::OVFReader(pvBufferedOvf, cbBufferedOvf, pTask->locInfo.strPath);
1457 hrc = S_OK;
1458 }
1459 catch (RTCError &rXcpt) // includes all XML exceptions
1460 {
1461 hrc = setError(VBOX_E_FILE_ERROR, rXcpt.what());
1462 }
1463 catch (HRESULT aRC)
1464 {
1465 hrc = aRC;
1466 }
1467 catch (...)
1468 {
1469 hrc = E_FAIL;
1470 }
1471 LogFlowFunc(("OVFReader(%s) -> rc=%Rhrc\n", pTask->locInfo.strPath.c_str(), hrc));
1472
1473 RTVfsIoStrmReadAllFree(pvBufferedOvf, cbBufferedOvf);
1474 if (SUCCEEDED(hrc))
1475 {
1476 /*
1477 * If we see an OVF v2.0 envelope, select only the SHA-256 digest.
1478 */
1479 if ( !m->fDeterminedDigestTypes
1480 && m->pReader->m_envelopeData.getOVFVersion() == ovf::OVFVersion_2_0)
1481 m->fDigestTypes &= ~RTMANIFEST_ATTR_SHA256;
1482 }
1483
1484 return hrc;
1485}
1486
1487/**
1488 * Reads & parses the manifest file.
1489 *
1490 * @param pTask The read task.
1491 * @param hVfsIosMf The I/O stream for the manifest file. The
1492 * reference is always consumed.
1493 * @param pszSubFileNm The manifest filename (no path) for error
1494 * messages and logging.
1495 * @returns COM status code, error info set.
1496 * @throws Nothing
1497 */
1498HRESULT Appliance::i_readManifestFile(TaskOVF *pTask, RTVFSIOSTREAM hVfsIosMf, const char *pszSubFileNm)
1499{
1500 LogFlowFunc(("%s[%s]\n", pTask->locInfo.strPath.c_str(), pszSubFileNm));
1501
1502 /*
1503 * Copy the manifest into a memory backed file so we can later do signature
1504 * validation indepentend of the algorithms used by the signature.
1505 */
1506 int vrc = RTVfsMemorizeIoStreamAsFile(hVfsIosMf, RTFILE_O_READ, &m->hMemFileTheirManifest);
1507 RTVfsIoStrmRelease(hVfsIosMf); /* consumes stream handle. */
1508 if (RT_FAILURE(vrc))
1509 return setErrorVrc(vrc, tr("Error reading the manifest file '%s' for '%s' (%Rrc)"),
1510 pszSubFileNm, pTask->locInfo.strPath.c_str(), vrc);
1511
1512 /*
1513 * Parse the manifest.
1514 */
1515 Assert(m->hTheirManifest == NIL_RTMANIFEST);
1516 vrc = RTManifestCreate(0 /*fFlags*/, &m->hTheirManifest);
1517 AssertStmt(RT_SUCCESS(vrc), Global::vboxStatusCodeToCOM(vrc));
1518
1519 char szErr[256];
1520 RTVFSIOSTREAM hVfsIos = RTVfsFileToIoStream(m->hMemFileTheirManifest);
1521 vrc = RTManifestReadStandardEx(m->hTheirManifest, hVfsIos, szErr, sizeof(szErr));
1522 RTVfsIoStrmRelease(hVfsIos);
1523 if (RT_FAILURE(vrc))
1524 throw setErrorVrc(vrc, tr("Failed to parse manifest file '%s' for '%s' (%Rrc): %s"),
1525 pszSubFileNm, pTask->locInfo.strPath.c_str(), vrc, szErr);
1526
1527 /*
1528 * Check which digest files are used.
1529 * Note! the file could be empty, in which case fDigestTypes is set to 0.
1530 */
1531 vrc = RTManifestQueryAllAttrTypes(m->hTheirManifest, true /*fEntriesOnly*/, &m->fDigestTypes);
1532 AssertRCReturn(vrc, Global::vboxStatusCodeToCOM(vrc));
1533 m->fDeterminedDigestTypes = true;
1534
1535 m->fSha256 = RT_BOOL(m->fDigestTypes & RTMANIFEST_ATTR_SHA256); /** @todo retire this member */
1536 return S_OK;
1537}
1538
1539/**
1540 * Reads the signature & certificate file.
1541 *
1542 * @param pTask The read task.
1543 * @param hVfsIosCert The I/O stream for the signature file. The
1544 * reference is always consumed.
1545 * @param pszSubFileNm The signature filename (no path) for error
1546 * messages and logging. Used to construct
1547 * .mf-file name.
1548 * @returns COM status code, error info set.
1549 * @throws Nothing
1550 */
1551HRESULT Appliance::i_readSignatureFile(TaskOVF *pTask, RTVFSIOSTREAM hVfsIosCert, const char *pszSubFileNm)
1552{
1553 LogFlowFunc(("%s[%s]\n", pTask->locInfo.strPath.c_str(), pszSubFileNm));
1554
1555 /*
1556 * Construct the manifest filename from pszSubFileNm.
1557 */
1558 Utf8Str strManifestName;
1559 try
1560 {
1561 const char *pszSuffix = strrchr(pszSubFileNm, '.');
1562 AssertReturn(pszSuffix, E_FAIL);
1563 strManifestName = Utf8Str(pszSubFileNm, pszSuffix - pszSubFileNm);
1564 strManifestName.append(".mf");
1565 }
1566 catch (...)
1567 {
1568 return E_OUTOFMEMORY;
1569 }
1570
1571 /*
1572 * Copy the manifest into a memory buffer. We'll do the signature processing
1573 * later to not force any specific order in the OVAs or any other archive we
1574 * may be accessing later.
1575 */
1576 void *pvSignature;
1577 size_t cbSignature;
1578 int vrc = RTVfsIoStrmReadAll(hVfsIosCert, &pvSignature, &cbSignature);
1579 RTVfsIoStrmRelease(hVfsIosCert); /* consumes stream handle. */
1580 if (RT_FAILURE(vrc))
1581 return setErrorVrc(vrc, tr("Error reading the signature file '%s' for '%s' (%Rrc)"),
1582 pszSubFileNm, pTask->locInfo.strPath.c_str(), vrc);
1583
1584 /*
1585 * Parse the signing certificate. Unlike the manifest parser we use below,
1586 * this API ignores parse of the file that aren't relevant.
1587 */
1588 RTERRINFOSTATIC StaticErrInfo;
1589 vrc = RTCrX509Certificate_ReadFromBuffer(&m->SignerCert, pvSignature, cbSignature, 0 /*fFlags*/,
1590 &g_RTAsn1DefaultAllocator, RTErrInfoInitStatic(&StaticErrInfo), pszSubFileNm);
1591 HRESULT hrc;
1592 if (RT_SUCCESS(vrc))
1593 {
1594 m->fSignerCertLoaded = true;
1595 m->fCertificateIsSelfSigned = RTCrX509Certificate_IsSelfSigned(&m->SignerCert);
1596
1597 /*
1598 * Find the start of the certificate part of the file, so we can avoid
1599 * upsetting the manifest parser with it.
1600 */
1601 char *pszSplit = (char *)RTCrPemFindFirstSectionInContent(pvSignature, cbSignature,
1602 g_aRTCrX509CertificateMarkers, g_cRTCrX509CertificateMarkers);
1603 if (pszSplit)
1604 while ( pszSplit != (char *)pvSignature
1605 && pszSplit[-1] != '\n'
1606 && pszSplit[-1] != '\r')
1607 pszSplit--;
1608 else
1609 {
1610 AssertLogRelMsgFailed(("Failed to find BEGIN CERTIFICATE markers in '%s'::'%s' - impossible unless it's a DER encoded certificate!",
1611 pTask->locInfo.strPath.c_str(), pszSubFileNm));
1612 pszSplit = (char *)pvSignature + cbSignature;
1613 }
1614 *pszSplit = '\0';
1615
1616 /*
1617 * Now, read the manifest part. We use the IPRT manifest reader here
1618 * to avoid duplicating code and be somewhat flexible wrt the digest
1619 * type choosen by the signer.
1620 */
1621 RTMANIFEST hSignedDigestManifest;
1622 vrc = RTManifestCreate(0 /*fFlags*/, &hSignedDigestManifest);
1623 if (RT_SUCCESS(vrc))
1624 {
1625 RTVFSIOSTREAM hVfsIosTmp;
1626 vrc = RTVfsIoStrmFromBuffer(RTFILE_O_READ, pvSignature, pszSplit - (char *)pvSignature, &hVfsIosTmp);
1627 if (RT_SUCCESS(vrc))
1628 {
1629 vrc = RTManifestReadStandardEx(hSignedDigestManifest, hVfsIosTmp, StaticErrInfo.szMsg, sizeof(StaticErrInfo.szMsg));
1630 RTVfsIoStrmRelease(hVfsIosTmp);
1631 if (RT_SUCCESS(vrc))
1632 {
1633 /*
1634 * Get signed digest, we prefer SHA-2, so explicitly query those first.
1635 */
1636 uint32_t fDigestType;
1637 char szSignedDigest[_8K + 1];
1638 vrc = RTManifestEntryQueryAttr(hSignedDigestManifest, strManifestName.c_str(), NULL,
1639 RTMANIFEST_ATTR_SHA512 | RTMANIFEST_ATTR_SHA256,
1640 szSignedDigest, sizeof(szSignedDigest), &fDigestType);
1641 if (vrc == VERR_MANIFEST_ATTR_TYPE_NOT_FOUND)
1642 vrc = RTManifestEntryQueryAttr(hSignedDigestManifest, strManifestName.c_str(), NULL,
1643 RTMANIFEST_ATTR_ANY, szSignedDigest, sizeof(szSignedDigest), &fDigestType);
1644 if (RT_SUCCESS(vrc))
1645 {
1646 const char *pszSignedDigest = RTStrStrip(szSignedDigest);
1647 size_t cbSignedDigest = strlen(pszSignedDigest) / 2;
1648 uint8_t abSignedDigest[sizeof(szSignedDigest) / 2];
1649 vrc = RTStrConvertHexBytes(szSignedDigest, abSignedDigest, cbSignedDigest, 0 /*fFlags*/);
1650 if (RT_SUCCESS(vrc))
1651 {
1652 /*
1653 * Convert it to RTDIGESTTYPE_XXX and save the binary value for later use.
1654 */
1655 switch (fDigestType)
1656 {
1657 case RTMANIFEST_ATTR_SHA1: m->enmSignedDigestType = RTDIGESTTYPE_SHA1; break;
1658 case RTMANIFEST_ATTR_SHA256: m->enmSignedDigestType = RTDIGESTTYPE_SHA256; break;
1659 case RTMANIFEST_ATTR_SHA512: m->enmSignedDigestType = RTDIGESTTYPE_SHA512; break;
1660 case RTMANIFEST_ATTR_MD5: m->enmSignedDigestType = RTDIGESTTYPE_MD5; break;
1661 default: AssertFailed(); m->enmSignedDigestType = RTDIGESTTYPE_INVALID; break;
1662 }
1663 if (m->enmSignedDigestType != RTDIGESTTYPE_INVALID)
1664 {
1665 m->pbSignedDigest = (uint8_t *)RTMemDup(abSignedDigest, cbSignedDigest);
1666 m->cbSignedDigest = cbSignedDigest;
1667 hrc = S_OK;
1668 }
1669 else
1670 hrc = setError(E_FAIL, tr("Unsupported signed digest type (%#x)"), fDigestType);
1671 }
1672 else
1673 hrc = setErrorVrc(vrc, tr("Error reading signed manifest digest: %Rrc"), vrc);
1674 }
1675 else if (vrc == VERR_NOT_FOUND)
1676 hrc = setErrorVrc(vrc, tr("Could not locate signed digest for '%s' in the cert-file for '%s'"),
1677 strManifestName.c_str(), pTask->locInfo.strPath.c_str());
1678 else
1679 hrc = setErrorVrc(vrc, tr("RTManifestEntryQueryAttr failed unexpectedly: %Rrc"), vrc);
1680 }
1681 else
1682 hrc = setErrorVrc(vrc, tr("Error parsing the .cert-file for '%s': %s"),
1683 pTask->locInfo.strPath.c_str(), StaticErrInfo.szMsg);
1684 }
1685 else
1686 hrc = E_OUTOFMEMORY;
1687 RTManifestRelease(hSignedDigestManifest);
1688 }
1689 else
1690 hrc = E_OUTOFMEMORY;
1691 }
1692 else
1693 hrc = setErrorVrc(vrc, tr("Error reading the signer's certificate from '%s' for '%s' (%Rrc): %s"),
1694 pszSubFileNm, pTask->locInfo.strPath.c_str(), vrc, StaticErrInfo.Core.pszMsg);
1695
1696 RTVfsIoStrmReadAllFree(pvSignature, cbSignature);
1697 LogFlowFunc(("returns %Rhrc (%Rrc)\n", hrc, vrc));
1698 return hrc;
1699}
1700
1701
1702/**
1703 * Does tail processing after the files have been read in.
1704 *
1705 * @param pTask The read task.
1706 * @returns COM status.
1707 * @throws Nothing!
1708 */
1709HRESULT Appliance::i_readTailProcessing(TaskOVF *pTask)
1710{
1711 /*
1712 * Parse and validate the signature file.
1713 *
1714 * The signature file has two parts, manifest part and a PEM encoded
1715 * certificate. The former contains an entry for the manifest file with a
1716 * digest that is encrypted with the certificate in the latter part.
1717 */
1718 if (m->pbSignedDigest)
1719 {
1720 /* Since we're validating the digest of the manifest, there have to be
1721 a manifest. We cannot allow a the manifest to be missing. */
1722 if (m->hMemFileTheirManifest == NIL_RTVFSFILE)
1723 return setError(VBOX_E_FILE_ERROR, tr("Found .cert-file but no .mf-file for '%s'"), pTask->locInfo.strPath.c_str());
1724
1725 /*
1726 * Validate the signed digest.
1727 *
1728 * It's possible we should allow the user to ignore signature
1729 * mismatches, but for now it is a solid show stopper.
1730 */
1731 HRESULT hrc;
1732 RTERRINFOSTATIC StaticErrInfo;
1733
1734 /* Calc the digest of the manifest using the algorithm found above. */
1735 RTCRDIGEST hDigest;
1736 int vrc = RTCrDigestCreateByType(&hDigest, m->enmSignedDigestType);
1737 if (RT_SUCCESS(vrc))
1738 {
1739 vrc = RTCrDigestUpdateFromVfsFile(hDigest, m->hMemFileTheirManifest, true /*fRewindFile*/);
1740 if (RT_SUCCESS(vrc))
1741 {
1742 /* Compare the signed digest with the one we just calculated. (This
1743 API will do the verification twice, once using IPRT's own crypto
1744 and once using OpenSSL. Both must OK it for success.) */
1745 vrc = RTCrPkixPubKeyVerifySignedDigest(&m->SignerCert.TbsCertificate.SubjectPublicKeyInfo.Algorithm.Algorithm,
1746 &m->SignerCert.TbsCertificate.SubjectPublicKeyInfo.Algorithm.Parameters,
1747 &m->SignerCert.TbsCertificate.SubjectPublicKeyInfo.SubjectPublicKey,
1748 m->pbSignedDigest, m->cbSignedDigest, hDigest,
1749 RTErrInfoInitStatic(&StaticErrInfo));
1750 if (RT_SUCCESS(vrc))
1751 {
1752 m->fSignatureValid = true;
1753 hrc = S_OK;
1754 }
1755 else if (vrc == VERR_CR_PKIX_SIGNATURE_MISMATCH)
1756 hrc = setErrorVrc(vrc, tr("The manifest signature does not match"));
1757 else
1758 hrc = setErrorVrc(vrc,
1759 tr("Error validating the manifest signature (%Rrc, %s)"), vrc, StaticErrInfo.Core.pszMsg);
1760 }
1761 else
1762 hrc = setErrorVrc(vrc, tr("RTCrDigestUpdateFromVfsFile failed: %Rrc"), vrc);
1763 RTCrDigestRelease(hDigest);
1764 }
1765 else
1766 hrc = setErrorVrc(vrc, tr("RTCrDigestCreateByType failed: %Rrc"), vrc);
1767
1768 /*
1769 * Validate the certificate.
1770 *
1771 * We don't fail here on if we cannot validate the certificate, we postpone
1772 * that till the import stage, so that we can allow the user to ignore it.
1773 *
1774 * The certificate validity time is deliberately left as warnings as the
1775 * OVF specification does not provision for any timestamping of the
1776 * signature. This is course a security concern, but the whole signing
1777 * of OVFs is currently weirdly trusting (self signed * certs), so this
1778 * is the least of our current problems.
1779 *
1780 * While we try build and verify certificate paths properly, the
1781 * "neighbours" quietly ignores this and seems only to check the signature
1782 * and not whether the certificate is trusted. Also, we don't currently
1783 * complain about self-signed certificates either (ditto "neighbours").
1784 * The OVF creator is also a bit restricted wrt to helping us build the
1785 * path as he cannot supply intermediate certificates. Anyway, we issue
1786 * warnings (goes to /dev/null, am I right?) for self-signed certificates
1787 * and certificates we cannot build and verify a root path for.
1788 *
1789 * (The OVF sillibuggers should've used PKCS#7, CMS or something else
1790 * that's already been standardized instead of combining manifests with
1791 * certificate PEM files in some very restrictive manner! I wonder if
1792 * we could add a PKCS#7 section to the .cert file in addition to the CERT
1793 * and manifest stuff dictated by the standard. Would depend on how others
1794 * deal with it.)
1795 */
1796 Assert(!m->fCertificateValid);
1797 Assert(m->fCertificateMissingPath);
1798 Assert(!m->fCertificateValidTime);
1799 Assert(m->strCertError.isEmpty());
1800 Assert(m->fCertificateIsSelfSigned == RTCrX509Certificate_IsSelfSigned(&m->SignerCert));
1801
1802 HRESULT hrc2 = S_OK;
1803 if (m->fCertificateIsSelfSigned)
1804 {
1805 /*
1806 * It's a self signed certificate. We assume the frontend will
1807 * present this fact to the user and give a choice whether this
1808 * is acceptible. But, first make sure it makes internal sense.
1809 */
1810 m->fCertificateMissingPath = false; /** @todo need to check if the certificate is trusted by the system! */
1811 vrc = RTCrX509Certificate_VerifySignatureSelfSigned(&m->SignerCert, RTErrInfoInitStatic(&StaticErrInfo));
1812 if (RT_SUCCESS(vrc))
1813 {
1814 m->fCertificateValid = true;
1815
1816 /* Check whether the certificate is currently valid, just warn if not. */
1817 RTTIMESPEC Now;
1818 if (RTCrX509Validity_IsValidAtTimeSpec(&m->SignerCert.TbsCertificate.Validity, RTTimeNow(&Now)))
1819 {
1820 m->fCertificateValidTime = true;
1821 i_addWarning(tr("A self signed certificate was used to sign '%s'"), pTask->locInfo.strPath.c_str());
1822 }
1823 else
1824 i_addWarning(tr("Self signed certificate used to sign '%s' is not currently valid"),
1825 pTask->locInfo.strPath.c_str());
1826
1827 /* Just warn if it's not a CA. Self-signed certificates are
1828 hardly trustworthy to start with without the user's consent. */
1829 if ( !m->SignerCert.TbsCertificate.T3.pBasicConstraints
1830 || !m->SignerCert.TbsCertificate.T3.pBasicConstraints->CA.fValue)
1831 i_addWarning(tr("Self signed certificate used to sign '%s' is not marked as certificate authority (CA)"),
1832 pTask->locInfo.strPath.c_str());
1833 }
1834 else
1835 {
1836 try { m->strCertError = Utf8StrFmt(tr("Verification of the self signed certificate failed (%Rrc, %s)"),
1837 vrc, StaticErrInfo.Core.pszMsg); }
1838 catch (...) { AssertFailed(); }
1839 i_addWarning(tr("Verification of the self signed certificate used to sign '%s' failed (%Rrc): %s"),
1840 pTask->locInfo.strPath.c_str(), vrc, StaticErrInfo.Core.pszMsg);
1841 }
1842 }
1843 else
1844 {
1845 /*
1846 * The certificate is not self-signed. Use the system certificate
1847 * stores to try build a path that validates successfully.
1848 */
1849 RTCRX509CERTPATHS hCertPaths;
1850 vrc = RTCrX509CertPathsCreate(&hCertPaths, &m->SignerCert);
1851 if (RT_SUCCESS(vrc))
1852 {
1853 /* Get trusted certificates from the system and add them to the path finding mission. */
1854 RTCRSTORE hTrustedCerts;
1855 vrc = RTCrStoreCreateSnapshotOfUserAndSystemTrustedCAsAndCerts(&hTrustedCerts,
1856 RTErrInfoInitStatic(&StaticErrInfo));
1857 if (RT_SUCCESS(vrc))
1858 {
1859 vrc = RTCrX509CertPathsSetTrustedStore(hCertPaths, hTrustedCerts);
1860 if (RT_FAILURE(vrc))
1861 hrc2 = setError(E_FAIL, tr("RTCrX509CertPathsSetTrustedStore failed (%Rrc)"), vrc);
1862 RTCrStoreRelease(hTrustedCerts);
1863 }
1864 else
1865 hrc2 = setError(E_FAIL,
1866 tr("Failed to query trusted CAs and Certificates from the system and for the current user (%Rrc, %s)"),
1867 vrc, StaticErrInfo.Core.pszMsg);
1868
1869 /* Add untrusted intermediate certificates. */
1870 if (RT_SUCCESS(vrc))
1871 {
1872 /// @todo RTCrX509CertPathsSetUntrustedStore(hCertPaths, hAdditionalCerts);
1873 /// By scanning for additional certificates in the .cert file? It would be
1874 /// convenient to be able to supply intermediate certificates for the user,
1875 /// right? Or would that be unacceptable as it may weaken security?
1876 ///
1877 /// Anyway, we should look for intermediate certificates on the system, at
1878 /// least.
1879 }
1880 if (RT_SUCCESS(vrc))
1881 {
1882 /*
1883 * Do the building and verification of certificate paths.
1884 */
1885 vrc = RTCrX509CertPathsBuild(hCertPaths, RTErrInfoInitStatic(&StaticErrInfo));
1886 if (RT_SUCCESS(vrc))
1887 {
1888 vrc = RTCrX509CertPathsValidateAll(hCertPaths, NULL, RTErrInfoInitStatic(&StaticErrInfo));
1889 if (RT_SUCCESS(vrc))
1890 {
1891 /*
1892 * Mark the certificate as good.
1893 */
1894 /** @todo check the certificate purpose? If so, share with self-signed. */
1895 m->fCertificateValid = true;
1896 m->fCertificateMissingPath = false;
1897
1898 /*
1899 * We add a warning if the certificate path isn't valid at the current
1900 * time. Since the time is only considered during path validation and we
1901 * can repeat the validation process (but not building), it's easy to check.
1902 */
1903 RTTIMESPEC Now;
1904 vrc = RTCrX509CertPathsSetValidTimeSpec(hCertPaths, RTTimeNow(&Now));
1905 if (RT_SUCCESS(vrc))
1906 {
1907 vrc = RTCrX509CertPathsValidateAll(hCertPaths, NULL, RTErrInfoInitStatic(&StaticErrInfo));
1908 if (RT_SUCCESS(vrc))
1909 m->fCertificateValidTime = true;
1910 else
1911 i_addWarning(tr("The certificate used to sign '%s' (or a certificate in the path) is not currently valid (%Rrc)"),
1912 pTask->locInfo.strPath.c_str(), vrc);
1913 }
1914 else
1915 hrc2 = setErrorVrc(vrc, "RTCrX509CertPathsSetValidTimeSpec failed: %Rrc", vrc);
1916 }
1917 else if (vrc == VERR_CR_X509_CPV_NO_TRUSTED_PATHS)
1918 {
1919 m->fCertificateValid = true;
1920 i_addWarning(tr("No trusted certificate paths"));
1921
1922 /* Add another warning if the pathless certificate is not valid at present. */
1923 RTTIMESPEC Now;
1924 if (RTCrX509Validity_IsValidAtTimeSpec(&m->SignerCert.TbsCertificate.Validity, RTTimeNow(&Now)))
1925 m->fCertificateValidTime = true;
1926 else
1927 i_addWarning(tr("The certificate used to sign '%s' is not currently valid"),
1928 pTask->locInfo.strPath.c_str());
1929 }
1930 else
1931 hrc2 = setError(E_FAIL, tr("Certificate path validation failed (%Rrc, %s)"),
1932 vrc, StaticErrInfo.Core.pszMsg);
1933 }
1934 else
1935 hrc2 = setError(E_FAIL, tr("Certificate path building failed (%Rrc, %s)"),
1936 vrc, StaticErrInfo.Core.pszMsg);
1937 }
1938 RTCrX509CertPathsRelease(hCertPaths);
1939 }
1940 else
1941 hrc2 = setErrorVrc(vrc, tr("RTCrX509CertPathsCreate failed: %Rrc"), vrc);
1942 }
1943
1944 /* Merge statuses from signature and certificate validation, prefering the signature one. */
1945 if (SUCCEEDED(hrc) && FAILED(hrc2))
1946 hrc = hrc2;
1947 if (FAILED(hrc))
1948 return hrc;
1949 }
1950
1951 /** @todo provide details about the signatory, signature, etc. */
1952 if (m->fSignerCertLoaded)
1953 mptrCertificateInfo->initCertificate(&m->SignerCert, m->fCertificateValid && !m->fCertificateMissingPath);
1954
1955 /*
1956 * If there is a manifest, check that the OVF digest matches up (if present).
1957 */
1958
1959 NOREF(pTask);
1960 return S_OK;
1961}
1962
1963
1964
1965/*******************************************************************************
1966 * Import stuff
1967 ******************************************************************************/
1968
1969/**
1970 * Implementation for importing OVF data into VirtualBox. This starts a new thread which will call
1971 * Appliance::taskThreadImportOrExport().
1972 *
1973 * This creates one or more new machines according to the VirtualSystemScription instances created by
1974 * Appliance::Interpret().
1975 *
1976 * This is in a separate private method because it is used from one location:
1977 *
1978 * 1) from the public Appliance::ImportMachines().
1979 *
1980 * @param aLocInfo
1981 * @param aProgress
1982 * @return
1983 */
1984HRESULT Appliance::i_importImpl(const LocationInfo &locInfo,
1985 ComObjPtr<Progress> &progress)
1986{
1987 HRESULT rc = S_OK;
1988
1989 SetUpProgressMode mode;
1990 if (locInfo.storageType == VFSType_File)
1991 mode = ImportFile;
1992 else
1993 mode = ImportS3;
1994
1995 rc = i_setUpProgress(progress,
1996 BstrFmt(tr("Importing appliance '%s'"), locInfo.strPath.c_str()),
1997 mode);
1998 if (FAILED(rc)) throw rc;
1999
2000 /* Initialize our worker task */
2001 TaskOVF* task = NULL;
2002 try
2003 {
2004 task = new TaskOVF(this, TaskOVF::Import, locInfo, progress);
2005 }
2006 catch(...)
2007 {
2008 delete task;
2009 throw rc = setError(VBOX_E_OBJECT_NOT_FOUND,
2010 tr("Could not create TaskOVF object for importing OVF data into VirtualBox"));
2011 }
2012
2013 rc = task->createThread();
2014 if (FAILED(rc)) throw rc;
2015
2016 return rc;
2017}
2018
2019/**
2020 * Actual worker code for importing OVF data into VirtualBox.
2021 *
2022 * This is called from Appliance::taskThreadImportOrExport() and therefore runs
2023 * on the OVF import worker thread. This creates one or more new machines
2024 * according to the VirtualSystemScription instances created by
2025 * Appliance::Interpret().
2026 *
2027 * This runs in two contexts:
2028 *
2029 * 1) in a first worker thread; in that case, Appliance::ImportMachines() called
2030 * Appliance::i_importImpl();
2031 *
2032 * 2) in a second worker thread; in that case, Appliance::ImportMachines()
2033 * called Appliance::i_importImpl(), which called Appliance::i_importFSOVA(),
2034 * which called Appliance::i_importImpl(), which then called this again.
2035 *
2036 * @param pTask The OVF task data.
2037 * @return COM status code.
2038 */
2039HRESULT Appliance::i_importFS(TaskOVF *pTask)
2040{
2041 LogFlowFuncEnter();
2042 LogFlowFunc(("Appliance %p\n", this));
2043
2044 /* Change the appliance state so we can safely leave the lock while doing
2045 * time-consuming disk imports; also the below method calls do all kinds of
2046 * locking which conflicts with the appliance object lock. */
2047 AutoWriteLock writeLock(this COMMA_LOCKVAL_SRC_POS);
2048 /* Check if the appliance is currently busy. */
2049 if (!i_isApplianceIdle())
2050 return E_ACCESSDENIED;
2051 /* Set the internal state to importing. */
2052 m->state = Data::ApplianceImporting;
2053
2054 HRESULT rc = S_OK;
2055
2056 /* Clear the list of imported machines, if any */
2057 m->llGuidsMachinesCreated.clear();
2058
2059 if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive))
2060 rc = i_importFSOVF(pTask, writeLock);
2061 else
2062 rc = i_importFSOVA(pTask, writeLock);
2063 if (FAILED(rc))
2064 {
2065 /* With _whatever_ error we've had, do a complete roll-back of
2066 * machines and disks we've created */
2067 writeLock.release();
2068 ErrorInfoKeeper eik;
2069 for (list<Guid>::iterator itID = m->llGuidsMachinesCreated.begin();
2070 itID != m->llGuidsMachinesCreated.end();
2071 ++itID)
2072 {
2073 Guid guid = *itID;
2074 Bstr bstrGuid = guid.toUtf16();
2075 ComPtr<IMachine> failedMachine;
2076 HRESULT rc2 = mVirtualBox->FindMachine(bstrGuid.raw(), failedMachine.asOutParam());
2077 if (SUCCEEDED(rc2))
2078 {
2079 SafeIfaceArray<IMedium> aMedia;
2080 rc2 = failedMachine->Unregister(CleanupMode_DetachAllReturnHardDisksOnly, ComSafeArrayAsOutParam(aMedia));
2081 ComPtr<IProgress> pProgress2;
2082 rc2 = failedMachine->DeleteConfig(ComSafeArrayAsInParam(aMedia), pProgress2.asOutParam());
2083 pProgress2->WaitForCompletion(-1);
2084 }
2085 }
2086 writeLock.acquire();
2087 }
2088
2089 /* Reset the state so others can call methods again */
2090 m->state = Data::ApplianceIdle;
2091
2092 LogFlowFunc(("rc=%Rhrc\n", rc));
2093 LogFlowFuncLeave();
2094 return rc;
2095}
2096
2097HRESULT Appliance::i_importFSOVF(TaskOVF *pTask, AutoWriteLockBase &rWriteLock)
2098{
2099 return i_importDoIt(pTask, rWriteLock);
2100}
2101
2102HRESULT Appliance::i_importFSOVA(TaskOVF *pTask, AutoWriteLockBase &rWriteLock)
2103{
2104 LogFlowFuncEnter();
2105
2106 /*
2107 * Open the tar file as file stream.
2108 */
2109 RTVFSIOSTREAM hVfsIosOva;
2110 int vrc = RTVfsIoStrmOpenNormal(pTask->locInfo.strPath.c_str(),
2111 RTFILE_O_READ | RTFILE_O_DENY_NONE | RTFILE_O_OPEN, &hVfsIosOva);
2112 if (RT_FAILURE(vrc))
2113 return setErrorVrc(vrc, tr("Error opening the OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
2114
2115 RTVFSFSSTREAM hVfsFssOva;
2116 vrc = RTZipTarFsStreamFromIoStream(hVfsIosOva, 0 /*fFlags*/, &hVfsFssOva);
2117 RTVfsIoStrmRelease(hVfsIosOva);
2118 if (RT_FAILURE(vrc))
2119 return setErrorVrc(vrc, tr("Error reading the OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
2120
2121 /*
2122 * Join paths with the i_importFSOVF code.
2123 *
2124 * Note! We don't need to skip the OVF, manifest or signature files, as the
2125 * i_importMachineGeneric, i_importVBoxMachine and i_importOpenSourceFile
2126 * code will deal with this (as there could be other files in the OVA
2127 * that we don't process, like 'de-DE-resources.xml' in EXAMPLE 1,
2128 * Appendix D.1, OVF v2.1.0).
2129 */
2130 HRESULT hrc = i_importDoIt(pTask, rWriteLock, hVfsFssOva);
2131
2132 RTVfsFsStrmRelease(hVfsFssOva);
2133
2134 LogFlowFunc(("returns %Rhrc\n", hrc));
2135 return hrc;
2136}
2137
2138/**
2139 * Does the actual importing after the caller has made the source accessible.
2140 *
2141 * @param pTask The import task.
2142 * @param rWriteLock The write lock the caller's caller is holding,
2143 * will be released for some reason.
2144 * @param hVfsFssOva The file system stream if OVA, NIL if not.
2145 * @returns COM status code.
2146 * @throws Nothing.
2147 */
2148HRESULT Appliance::i_importDoIt(TaskOVF *pTask, AutoWriteLockBase &rWriteLock, RTVFSFSSTREAM hVfsFssOva /*= NIL_RTVFSFSSTREAM*/)
2149{
2150 rWriteLock.release();
2151
2152 HRESULT hrc = E_FAIL;
2153 try
2154 {
2155 /*
2156 * Create the import stack for the rollback on errors.
2157 */
2158 ImportStack stack(pTask->locInfo, m->pReader->m_mapDisks, pTask->pProgress, hVfsFssOva);
2159
2160 try
2161 {
2162 /* Do the importing. */
2163 i_importMachines(stack);
2164
2165 /* We should've processed all the files now, so compare. */
2166 hrc = i_verifyManifestFile(stack);
2167 }
2168 catch (HRESULT hrcXcpt)
2169 {
2170 hrc = hrcXcpt;
2171 }
2172 catch (...)
2173 {
2174 AssertFailed();
2175 hrc = E_FAIL;
2176 }
2177 if (FAILED(hrc))
2178 {
2179 /*
2180 * Restoring original UUID from OVF description file.
2181 * During import VBox creates new UUIDs for imported images and
2182 * assigns them to the images. In case of failure we have to restore
2183 * the original UUIDs because those new UUIDs are obsolete now and
2184 * won't be used anymore.
2185 */
2186 ErrorInfoKeeper eik; /* paranoia */
2187 list< ComObjPtr<VirtualSystemDescription> >::const_iterator itvsd;
2188 /* Iterate through all virtual systems of that appliance */
2189 for (itvsd = m->virtualSystemDescriptions.begin();
2190 itvsd != m->virtualSystemDescriptions.end();
2191 ++itvsd)
2192 {
2193 ComObjPtr<VirtualSystemDescription> vsdescThis = (*itvsd);
2194 settings::MachineConfigFile *pConfig = vsdescThis->m->pConfig;
2195 if(vsdescThis->m->pConfig!=NULL)
2196 stack.restoreOriginalUUIDOfAttachedDevice(pConfig);
2197 }
2198 }
2199 }
2200 catch (...)
2201 {
2202 hrc = E_FAIL;
2203 AssertFailed();
2204 }
2205
2206 rWriteLock.acquire();
2207 return hrc;
2208}
2209
2210/**
2211 * Undocumented, you figure it from the name.
2212 *
2213 * @returns Undocumented
2214 * @param stack Undocumented.
2215 */
2216HRESULT Appliance::i_verifyManifestFile(ImportStack &stack)
2217{
2218 LogFlowThisFuncEnter();
2219 HRESULT hrc;
2220 int vrc;
2221
2222 /*
2223 * No manifest is fine, it always matches.
2224 */
2225 if (m->hTheirManifest == NIL_RTMANIFEST)
2226 hrc = S_OK;
2227 else
2228 {
2229 /*
2230 * Hack: If the manifest we just read doesn't have a digest for the OVF, copy
2231 * it from the manifest we got from the caller.
2232 * @bugref{6022#c119}
2233 */
2234 if ( !RTManifestEntryExists(m->hTheirManifest, m->strOvfManifestEntry.c_str())
2235 && RTManifestEntryExists(m->hOurManifest, m->strOvfManifestEntry.c_str()) )
2236 {
2237 uint32_t fType = 0;
2238 char szDigest[512 + 1];
2239 vrc = RTManifestEntryQueryAttr(m->hOurManifest, m->strOvfManifestEntry.c_str(), NULL, RTMANIFEST_ATTR_ANY,
2240 szDigest, sizeof(szDigest), &fType);
2241 if (RT_SUCCESS(vrc))
2242 vrc = RTManifestEntrySetAttr(m->hTheirManifest, m->strOvfManifestEntry.c_str(),
2243 NULL /*pszAttr*/, szDigest, fType);
2244 if (RT_FAILURE(vrc))
2245 return setError(VBOX_E_IPRT_ERROR, tr("Error fudging missing OVF digest in manifest: %Rrc"), vrc);
2246 }
2247
2248 /*
2249 * Compare with the digests we've created while read/processing the import.
2250 *
2251 * We specify the RTMANIFEST_EQUALS_IGN_MISSING_ATTRS to ignore attributes
2252 * (SHA1, SHA256, etc) that are only present in one of the manifests, as long
2253 * as each entry has at least one common attribute that we can check. This
2254 * is important for the OVF in OVAs, for which we generates several digests
2255 * since we don't know which are actually used in the manifest (OVF comes
2256 * first in an OVA, then manifest).
2257 */
2258 char szErr[256];
2259 vrc = RTManifestEqualsEx(m->hTheirManifest, m->hOurManifest, NULL /*papszIgnoreEntries*/,
2260 NULL /*papszIgnoreAttrs*/, RTMANIFEST_EQUALS_IGN_MISSING_ATTRS, szErr, sizeof(szErr));
2261 if (RT_SUCCESS(vrc))
2262 hrc = S_OK;
2263 else
2264 hrc = setErrorVrc(vrc, tr("Digest mismatch (%Rrc): %s"), vrc, szErr);
2265 }
2266
2267 NOREF(stack);
2268 LogFlowThisFunc(("returns %Rhrc\n", hrc));
2269 return hrc;
2270}
2271
2272/**
2273 * Helper that converts VirtualSystem attachment values into VirtualBox attachment values.
2274 * Throws HRESULT values on errors!
2275 *
2276 * @param hdc in: the HardDiskController structure to attach to.
2277 * @param ulAddressOnParent in: the AddressOnParent parameter from OVF.
2278 * @param controllerType out: the name of the hard disk controller to attach to (e.g. "IDE Controller").
2279 * @param lControllerPort out: the channel (controller port) of the controller to attach to.
2280 * @param lDevice out: the device number to attach to.
2281 */
2282void Appliance::i_convertDiskAttachmentValues(const ovf::HardDiskController &hdc,
2283 uint32_t ulAddressOnParent,
2284 Bstr &controllerType,
2285 int32_t &lControllerPort,
2286 int32_t &lDevice)
2287{
2288 Log(("Appliance::i_convertDiskAttachmentValues: hdc.system=%d, hdc.fPrimary=%d, ulAddressOnParent=%d\n",
2289 hdc.system,
2290 hdc.fPrimary,
2291 ulAddressOnParent));
2292
2293 switch (hdc.system)
2294 {
2295 case ovf::HardDiskController::IDE:
2296 // For the IDE bus, the port parameter can be either 0 or 1, to specify the primary
2297 // or secondary IDE controller, respectively. For the primary controller of the IDE bus,
2298 // the device number can be either 0 or 1, to specify the master or the slave device,
2299 // respectively. For the secondary IDE controller, the device number is always 1 because
2300 // the master device is reserved for the CD-ROM drive.
2301 controllerType = Bstr("IDE Controller");
2302 switch (ulAddressOnParent)
2303 {
2304 case 0: // master
2305 if (!hdc.fPrimary)
2306 {
2307 // secondary master
2308 lControllerPort = (long)1;
2309 lDevice = (long)0;
2310 }
2311 else // primary master
2312 {
2313 lControllerPort = (long)0;
2314 lDevice = (long)0;
2315 }
2316 break;
2317
2318 case 1: // slave
2319 if (!hdc.fPrimary)
2320 {
2321 // secondary slave
2322 lControllerPort = (long)1;
2323 lDevice = (long)1;
2324 }
2325 else // primary slave
2326 {
2327 lControllerPort = (long)0;
2328 lDevice = (long)1;
2329 }
2330 break;
2331
2332 // used by older VBox exports
2333 case 2: // interpret this as secondary master
2334 lControllerPort = (long)1;
2335 lDevice = (long)0;
2336 break;
2337
2338 // used by older VBox exports
2339 case 3: // interpret this as secondary slave
2340 lControllerPort = (long)1;
2341 lDevice = (long)1;
2342 break;
2343
2344 default:
2345 throw setError(VBOX_E_NOT_SUPPORTED,
2346 tr("Invalid channel %RI16 specified; IDE controllers support only 0, 1 or 2"),
2347 ulAddressOnParent);
2348 break;
2349 }
2350 break;
2351
2352 case ovf::HardDiskController::SATA:
2353 controllerType = Bstr("SATA Controller");
2354 lControllerPort = (long)ulAddressOnParent;
2355 lDevice = (long)0;
2356 break;
2357
2358 case ovf::HardDiskController::SCSI:
2359 {
2360 if(hdc.strControllerType.compare("lsilogicsas")==0)
2361 controllerType = Bstr("SAS Controller");
2362 else
2363 controllerType = Bstr("SCSI Controller");
2364 lControllerPort = (long)ulAddressOnParent;
2365 lDevice = (long)0;
2366 }
2367 break;
2368
2369 default: break;
2370 }
2371
2372 Log(("=> lControllerPort=%d, lDevice=%d\n", lControllerPort, lDevice));
2373}
2374
2375/**
2376 * Imports one disk image.
2377 *
2378 * This is common code shared between
2379 * -- i_importMachineGeneric() for the OVF case; in that case the information comes from
2380 * the OVF virtual systems;
2381 * -- i_importVBoxMachine(); in that case, the information comes from the <vbox:Machine>
2382 * tag.
2383 *
2384 * Both ways of describing machines use the OVF disk references section, so in both cases
2385 * the caller needs to pass in the ovf::DiskImage structure from ovfreader.cpp.
2386 *
2387 * As a result, in both cases, if di.strHref is empty, we create a new disk as per the OVF
2388 * spec, even though this cannot really happen in the vbox:Machine case since such data
2389 * would never have been exported.
2390 *
2391 * This advances stack.pProgress by one operation with the disk's weight.
2392 *
2393 * @param di ovfreader.cpp structure describing the disk image from the OVF that is to be imported
2394 * @param strTargetPath Where to create the target image.
2395 * @param pTargetHD out: The newly created target disk. This also gets pushed on stack.llHardDisksCreated for cleanup.
2396 * @param stack
2397 */
2398void Appliance::i_importOneDiskImage(const ovf::DiskImage &di,
2399 Utf8Str *pStrDstPath,
2400 ComObjPtr<Medium> &pTargetHD,
2401 ImportStack &stack)
2402{
2403 ComObjPtr<Progress> pProgress;
2404 pProgress.createObject();
2405 HRESULT rc = pProgress->init(mVirtualBox,
2406 static_cast<IAppliance*>(this),
2407 BstrFmt(tr("Creating medium '%s'"),
2408 pStrDstPath->c_str()).raw(),
2409 TRUE);
2410 if (FAILED(rc)) throw rc;
2411
2412 /* Get the system properties. */
2413 SystemProperties *pSysProps = mVirtualBox->i_getSystemProperties();
2414
2415 /* Keep the source file ref handy for later. */
2416 const Utf8Str &strSourceOVF = di.strHref;
2417
2418 /* Construct source file path */
2419 Utf8Str strSrcFilePath;
2420 if (stack.hVfsFssOva != NIL_RTVFSFSSTREAM)
2421 strSrcFilePath = strSourceOVF;
2422 else
2423 {
2424 strSrcFilePath = stack.strSourceDir;
2425 strSrcFilePath.append(RTPATH_SLASH_STR);
2426 strSrcFilePath.append(strSourceOVF);
2427 }
2428
2429 /* First of all check if the path is an UUID. If so, the user like to
2430 * import the disk into an existing path. This is useful for iSCSI for
2431 * example. */
2432 RTUUID uuid;
2433 int vrc = RTUuidFromStr(&uuid, pStrDstPath->c_str());
2434 if (vrc == VINF_SUCCESS)
2435 {
2436 rc = mVirtualBox->i_findHardDiskById(Guid(uuid), true, &pTargetHD);
2437 if (FAILED(rc)) throw rc;
2438 }
2439 else
2440 {
2441 RTVFSIOSTREAM hVfsIosSrc = NIL_RTVFSIOSTREAM;
2442
2443 /* check read file to GZIP compression */
2444 bool const fGzipped = di.strCompression.compare("gzip",Utf8Str::CaseInsensitive) == 0;
2445 Utf8Str strDeleteTemp;
2446 try
2447 {
2448 Utf8Str strTrgFormat = "VMDK";
2449 ComObjPtr<MediumFormat> trgFormat;
2450 Bstr bstrFormatName;
2451 ULONG lCabs = 0;
2452
2453 char *pszSuff = RTPathSuffix(pStrDstPath->c_str());
2454 if (pszSuff != NULL)
2455 {
2456 /*
2457 * Figure out which format the user like to have. Default is VMDK
2458 * or it can be VDI if according command-line option is set
2459 */
2460
2461 /*
2462 * We need a proper target format
2463 * if target format has been changed by user via GUI import wizard
2464 * or via VBoxManage import command (option --importtovdi)
2465 * then we need properly process such format like ISO
2466 * Because there is no conversion ISO to VDI
2467 */
2468 trgFormat = pSysProps->i_mediumFormatFromExtension(++pszSuff);
2469 if (trgFormat.isNull())
2470 throw setError(E_FAIL, tr("Unsupported medium format for disk image '%s'"), di.strHref.c_str());
2471
2472 rc = trgFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
2473 if (FAILED(rc)) throw rc;
2474
2475 strTrgFormat = Utf8Str(bstrFormatName);
2476
2477 if ( m->optListImport.contains(ImportOptions_ImportToVDI)
2478 && strTrgFormat.compare("RAW", Utf8Str::CaseInsensitive) != 0)
2479 {
2480 /* change the target extension */
2481 strTrgFormat = "vdi";
2482 trgFormat = pSysProps->i_mediumFormatFromExtension(strTrgFormat);
2483 *pStrDstPath = pStrDstPath->stripSuffix();
2484 *pStrDstPath = pStrDstPath->append(".");
2485 *pStrDstPath = pStrDstPath->append(strTrgFormat.c_str());
2486 }
2487
2488 /* Check the capabilities. We need create capabilities. */
2489 lCabs = 0;
2490 com::SafeArray <MediumFormatCapabilities_T> mediumFormatCap;
2491 rc = trgFormat->COMGETTER(Capabilities)(ComSafeArrayAsOutParam(mediumFormatCap));
2492
2493 if (FAILED(rc))
2494 throw rc;
2495
2496 for (ULONG j = 0; j < mediumFormatCap.size(); j++)
2497 lCabs |= mediumFormatCap[j];
2498
2499 if ( !(lCabs & MediumFormatCapabilities_CreateFixed)
2500 && !(lCabs & MediumFormatCapabilities_CreateDynamic) )
2501 throw setError(VBOX_E_NOT_SUPPORTED,
2502 tr("Could not find a valid medium format for the target disk '%s'"),
2503 pStrDstPath->c_str());
2504 }
2505 else
2506 {
2507 throw setError(VBOX_E_FILE_ERROR,
2508 tr("The target disk '%s' has no extension "),
2509 pStrDstPath->c_str(), VERR_INVALID_NAME);
2510 }
2511
2512 /* Create an IMedium object. */
2513 pTargetHD.createObject();
2514
2515 /*CD/DVD case*/
2516 if (strTrgFormat.compare("RAW", Utf8Str::CaseInsensitive) == 0)
2517 {
2518 try
2519 {
2520 if (fGzipped)
2521 i_importDecompressFile(stack, strSrcFilePath, *pStrDstPath, strSourceOVF.c_str());
2522 else
2523 i_importCopyFile(stack, strSrcFilePath, *pStrDstPath, strSourceOVF.c_str());
2524 }
2525 catch (HRESULT /*arc*/)
2526 {
2527 throw;
2528 }
2529
2530 /* Advance to the next operation. */
2531 /* operation's weight, as set up with the IProgress originally */
2532 stack.pProgress->SetNextOperation(BstrFmt(tr("Importing virtual disk image '%s'"),
2533 RTPathFilename(strSourceOVF.c_str())).raw(),
2534 di.ulSuggestedSizeMB);
2535 }
2536 else/* HDD case*/
2537 {
2538 rc = pTargetHD->init(mVirtualBox,
2539 strTrgFormat,
2540 *pStrDstPath,
2541 Guid::Empty /* media registry: none yet */,
2542 DeviceType_HardDisk);
2543 if (FAILED(rc)) throw rc;
2544
2545 /* Now create an empty hard disk. */
2546 rc = mVirtualBox->CreateMedium(Bstr(strTrgFormat).raw(),
2547 Bstr(*pStrDstPath).raw(),
2548 AccessMode_ReadWrite, DeviceType_HardDisk,
2549 ComPtr<IMedium>(pTargetHD).asOutParam());
2550 if (FAILED(rc)) throw rc;
2551
2552 /* If strHref is empty we have to create a new file. */
2553 if (strSourceOVF.isEmpty())
2554 {
2555 com::SafeArray<MediumVariant_T> mediumVariant;
2556 mediumVariant.push_back(MediumVariant_Standard);
2557
2558 /* Kick of the creation of a dynamic growing disk image with the given capacity. */
2559 rc = pTargetHD->CreateBaseStorage(di.iCapacity / _1M,
2560 ComSafeArrayAsInParam(mediumVariant),
2561 ComPtr<IProgress>(pProgress).asOutParam());
2562 if (FAILED(rc)) throw rc;
2563
2564 /* Advance to the next operation. */
2565 /* operation's weight, as set up with the IProgress originally */
2566 stack.pProgress->SetNextOperation(BstrFmt(tr("Creating disk image '%s'"),
2567 pStrDstPath->c_str()).raw(),
2568 di.ulSuggestedSizeMB);
2569 }
2570 else
2571 {
2572 /* We need a proper source format description */
2573 /* Which format to use? */
2574 ComObjPtr<MediumFormat> srcFormat;
2575 rc = i_findMediumFormatFromDiskImage(di, srcFormat);
2576 if (FAILED(rc))
2577 throw setError(VBOX_E_NOT_SUPPORTED,
2578 tr("Could not find a valid medium format for the source disk '%s' "
2579 "Check correctness of the image format URL in the OVF description file "
2580 "or extension of the image"),
2581 RTPathFilename(strSourceOVF.c_str()));
2582
2583 /* If gzipped, decompress the GZIP file and save a new file in the target path */
2584 if (fGzipped)
2585 {
2586 Utf8Str strTargetFilePath(*pStrDstPath);
2587 strTargetFilePath.stripFilename();
2588 strTargetFilePath.append(RTPATH_SLASH_STR);
2589 strTargetFilePath.append("temp_");
2590 strTargetFilePath.append(RTPathFilename(strSrcFilePath.c_str()));
2591 strDeleteTemp = strTargetFilePath;
2592
2593 i_importDecompressFile(stack, strSrcFilePath, strTargetFilePath, strSourceOVF.c_str());
2594
2595 /* Correct the source and the target with the actual values */
2596 strSrcFilePath = strTargetFilePath;
2597
2598 /* Open the new source file. */
2599 vrc = RTVfsIoStrmOpenNormal(strSrcFilePath.c_str(), RTFILE_O_READ | RTFILE_O_DENY_NONE | RTFILE_O_OPEN,
2600 &hVfsIosSrc);
2601 if (RT_FAILURE(vrc))
2602 throw setErrorVrc(vrc, tr("Error opening decompressed image file '%s' (%Rrc)"),
2603 strSrcFilePath.c_str(), vrc);
2604 }
2605 else
2606 hVfsIosSrc = i_importOpenSourceFile(stack, strSrcFilePath, strSourceOVF.c_str());
2607
2608 /* Add a read ahead thread to try speed things up with concurrent reads and
2609 writes going on in different threads. */
2610 RTVFSIOSTREAM hVfsIosReadAhead;
2611 vrc = RTVfsCreateReadAheadForIoStream(hVfsIosSrc, 0 /*fFlags*/, 0 /*cBuffers=default*/,
2612 0 /*cbBuffers=default*/, &hVfsIosReadAhead);
2613 RTVfsIoStrmRelease(hVfsIosSrc);
2614 if (RT_FAILURE(vrc))
2615 throw setErrorVrc(vrc, tr("Error initializing read ahead thread for '%s' (%Rrc)"),
2616 strSrcFilePath.c_str(), vrc);
2617
2618 /* Start the source image cloning operation. */
2619 ComObjPtr<Medium> nullParent;
2620 rc = pTargetHD->i_importFile(strSrcFilePath.c_str(),
2621 srcFormat,
2622 MediumVariant_Standard,
2623 hVfsIosReadAhead,
2624 nullParent,
2625 pProgress);
2626 RTVfsIoStrmRelease(hVfsIosReadAhead);
2627 hVfsIosSrc = NIL_RTVFSIOSTREAM;
2628 if (FAILED(rc))
2629 throw rc;
2630
2631 /* Advance to the next operation. */
2632 /* operation's weight, as set up with the IProgress originally */
2633 stack.pProgress->SetNextOperation(BstrFmt(tr("Importing virtual disk image '%s'"),
2634 RTPathFilename(strSourceOVF.c_str())).raw(),
2635 di.ulSuggestedSizeMB);
2636 }
2637
2638 /* Now wait for the background disk operation to complete; this throws
2639 * HRESULTs on error. */
2640 ComPtr<IProgress> pp(pProgress);
2641 i_waitForAsyncProgress(stack.pProgress, pp);
2642 }
2643 }
2644 catch (...)
2645 {
2646 if (strDeleteTemp.isNotEmpty())
2647 RTFileDelete(strDeleteTemp.c_str());
2648 throw;
2649 }
2650
2651 /* Make sure the source file is closed. */
2652 if (hVfsIosSrc != NIL_RTVFSIOSTREAM)
2653 RTVfsIoStrmRelease(hVfsIosSrc);
2654
2655 /*
2656 * Delete the temp gunzip result, if any.
2657 */
2658 if (strDeleteTemp.isNotEmpty())
2659 {
2660 vrc = RTFileDelete(strSrcFilePath.c_str());
2661 if (RT_FAILURE(vrc))
2662 setWarning(VBOX_E_FILE_ERROR,
2663 tr("Failed to delete the temporary file '%s' (%Rrc)"), strSrcFilePath.c_str(), vrc);
2664 }
2665 }
2666}
2667
2668/**
2669 * Imports one OVF virtual system (described by the given ovf::VirtualSystem and VirtualSystemDescription)
2670 * into VirtualBox by creating an IMachine instance, which is returned.
2671 *
2672 * This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean
2673 * up any leftovers from this function. For this, the given ImportStack instance has received information
2674 * about what needs cleaning up (to support rollback).
2675 *
2676 * @param vsysThis OVF virtual system (machine) to import.
2677 * @param vsdescThis Matching virtual system description (machine) to import.
2678 * @param pNewMachine out: Newly created machine.
2679 * @param stack Cleanup stack for when this throws.
2680 */
2681void Appliance::i_importMachineGeneric(const ovf::VirtualSystem &vsysThis,
2682 ComObjPtr<VirtualSystemDescription> &vsdescThis,
2683 ComPtr<IMachine> &pNewMachine,
2684 ImportStack &stack)
2685{
2686 LogFlowFuncEnter();
2687 HRESULT rc;
2688
2689 // Get the instance of IGuestOSType which matches our string guest OS type so we
2690 // can use recommended defaults for the new machine where OVF doesn't provide any
2691 ComPtr<IGuestOSType> osType;
2692 rc = mVirtualBox->GetGuestOSType(Bstr(stack.strOsTypeVBox).raw(), osType.asOutParam());
2693 if (FAILED(rc)) throw rc;
2694
2695 /* Create the machine */
2696 SafeArray<BSTR> groups; /* no groups */
2697 rc = mVirtualBox->CreateMachine(NULL, /* machine name: use default */
2698 Bstr(stack.strNameVBox).raw(),
2699 ComSafeArrayAsInParam(groups),
2700 Bstr(stack.strOsTypeVBox).raw(),
2701 NULL, /* aCreateFlags */
2702 pNewMachine.asOutParam());
2703 if (FAILED(rc)) throw rc;
2704
2705 // set the description
2706 if (!stack.strDescription.isEmpty())
2707 {
2708 rc = pNewMachine->COMSETTER(Description)(Bstr(stack.strDescription).raw());
2709 if (FAILED(rc)) throw rc;
2710 }
2711
2712 // CPU count
2713 rc = pNewMachine->COMSETTER(CPUCount)(stack.cCPUs);
2714 if (FAILED(rc)) throw rc;
2715
2716 if (stack.fForceHWVirt)
2717 {
2718 rc = pNewMachine->SetHWVirtExProperty(HWVirtExPropertyType_Enabled, TRUE);
2719 if (FAILED(rc)) throw rc;
2720 }
2721
2722 // RAM
2723 rc = pNewMachine->COMSETTER(MemorySize)(stack.ulMemorySizeMB);
2724 if (FAILED(rc)) throw rc;
2725
2726 /* VRAM */
2727 /* Get the recommended VRAM for this guest OS type */
2728 ULONG vramVBox;
2729 rc = osType->COMGETTER(RecommendedVRAM)(&vramVBox);
2730 if (FAILED(rc)) throw rc;
2731
2732 /* Set the VRAM */
2733 rc = pNewMachine->COMSETTER(VRAMSize)(vramVBox);
2734 if (FAILED(rc)) throw rc;
2735
2736 // I/O APIC: Generic OVF has no setting for this. Enable it if we
2737 // import a Windows VM because if if Windows was installed without IOAPIC,
2738 // it will not mind finding an one later on, but if Windows was installed
2739 // _with_ an IOAPIC, it will bluescreen if it's not found
2740 if (!stack.fForceIOAPIC)
2741 {
2742 Bstr bstrFamilyId;
2743 rc = osType->COMGETTER(FamilyId)(bstrFamilyId.asOutParam());
2744 if (FAILED(rc)) throw rc;
2745 if (bstrFamilyId == "Windows")
2746 stack.fForceIOAPIC = true;
2747 }
2748
2749 if (stack.fForceIOAPIC)
2750 {
2751 ComPtr<IBIOSSettings> pBIOSSettings;
2752 rc = pNewMachine->COMGETTER(BIOSSettings)(pBIOSSettings.asOutParam());
2753 if (FAILED(rc)) throw rc;
2754
2755 rc = pBIOSSettings->COMSETTER(IOAPICEnabled)(TRUE);
2756 if (FAILED(rc)) throw rc;
2757 }
2758
2759 if (!stack.strAudioAdapter.isEmpty())
2760 if (stack.strAudioAdapter.compare("null", Utf8Str::CaseInsensitive) != 0)
2761 {
2762 uint32_t audio = RTStrToUInt32(stack.strAudioAdapter.c_str()); // should be 0 for AC97
2763 ComPtr<IAudioAdapter> audioAdapter;
2764 rc = pNewMachine->COMGETTER(AudioAdapter)(audioAdapter.asOutParam());
2765 if (FAILED(rc)) throw rc;
2766 rc = audioAdapter->COMSETTER(Enabled)(true);
2767 if (FAILED(rc)) throw rc;
2768 rc = audioAdapter->COMSETTER(AudioController)(static_cast<AudioControllerType_T>(audio));
2769 if (FAILED(rc)) throw rc;
2770 }
2771
2772#ifdef VBOX_WITH_USB
2773 /* USB Controller */
2774 if (stack.fUSBEnabled)
2775 {
2776 ComPtr<IUSBController> usbController;
2777 rc = pNewMachine->AddUSBController(Bstr("OHCI").raw(), USBControllerType_OHCI, usbController.asOutParam());
2778 if (FAILED(rc)) throw rc;
2779 }
2780#endif /* VBOX_WITH_USB */
2781
2782 /* Change the network adapters */
2783 uint32_t maxNetworkAdapters = Global::getMaxNetworkAdapters(ChipsetType_PIIX3);
2784
2785 std::list<VirtualSystemDescriptionEntry*> vsdeNW = vsdescThis->i_findByType(VirtualSystemDescriptionType_NetworkAdapter);
2786 if (vsdeNW.empty())
2787 {
2788 /* No network adapters, so we have to disable our default one */
2789 ComPtr<INetworkAdapter> nwVBox;
2790 rc = pNewMachine->GetNetworkAdapter(0, nwVBox.asOutParam());
2791 if (FAILED(rc)) throw rc;
2792 rc = nwVBox->COMSETTER(Enabled)(false);
2793 if (FAILED(rc)) throw rc;
2794 }
2795 else if (vsdeNW.size() > maxNetworkAdapters)
2796 throw setError(VBOX_E_FILE_ERROR,
2797 tr("Too many network adapters: OVF requests %d network adapters, "
2798 "but VirtualBox only supports %d"),
2799 vsdeNW.size(), maxNetworkAdapters);
2800 else
2801 {
2802 list<VirtualSystemDescriptionEntry*>::const_iterator nwIt;
2803 size_t a = 0;
2804 for (nwIt = vsdeNW.begin();
2805 nwIt != vsdeNW.end();
2806 ++nwIt, ++a)
2807 {
2808 const VirtualSystemDescriptionEntry* pvsys = *nwIt;
2809
2810 const Utf8Str &nwTypeVBox = pvsys->strVBoxCurrent;
2811 uint32_t tt1 = RTStrToUInt32(nwTypeVBox.c_str());
2812 ComPtr<INetworkAdapter> pNetworkAdapter;
2813 rc = pNewMachine->GetNetworkAdapter((ULONG)a, pNetworkAdapter.asOutParam());
2814 if (FAILED(rc)) throw rc;
2815 /* Enable the network card & set the adapter type */
2816 rc = pNetworkAdapter->COMSETTER(Enabled)(true);
2817 if (FAILED(rc)) throw rc;
2818 rc = pNetworkAdapter->COMSETTER(AdapterType)(static_cast<NetworkAdapterType_T>(tt1));
2819 if (FAILED(rc)) throw rc;
2820
2821 // default is NAT; change to "bridged" if extra conf says so
2822 if (pvsys->strExtraConfigCurrent.endsWith("type=Bridged", Utf8Str::CaseInsensitive))
2823 {
2824 /* Attach to the right interface */
2825 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_Bridged);
2826 if (FAILED(rc)) throw rc;
2827 ComPtr<IHost> host;
2828 rc = mVirtualBox->COMGETTER(Host)(host.asOutParam());
2829 if (FAILED(rc)) throw rc;
2830 com::SafeIfaceArray<IHostNetworkInterface> nwInterfaces;
2831 rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces));
2832 if (FAILED(rc)) throw rc;
2833 // We search for the first host network interface which
2834 // is usable for bridged networking
2835 for (size_t j = 0;
2836 j < nwInterfaces.size();
2837 ++j)
2838 {
2839 HostNetworkInterfaceType_T itype;
2840 rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype);
2841 if (FAILED(rc)) throw rc;
2842 if (itype == HostNetworkInterfaceType_Bridged)
2843 {
2844 Bstr name;
2845 rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam());
2846 if (FAILED(rc)) throw rc;
2847 /* Set the interface name to attach to */
2848 rc = pNetworkAdapter->COMSETTER(BridgedInterface)(name.raw());
2849 if (FAILED(rc)) throw rc;
2850 break;
2851 }
2852 }
2853 }
2854 /* Next test for host only interfaces */
2855 else if (pvsys->strExtraConfigCurrent.endsWith("type=HostOnly", Utf8Str::CaseInsensitive))
2856 {
2857 /* Attach to the right interface */
2858 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_HostOnly);
2859 if (FAILED(rc)) throw rc;
2860 ComPtr<IHost> host;
2861 rc = mVirtualBox->COMGETTER(Host)(host.asOutParam());
2862 if (FAILED(rc)) throw rc;
2863 com::SafeIfaceArray<IHostNetworkInterface> nwInterfaces;
2864 rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces));
2865 if (FAILED(rc)) throw rc;
2866 // We search for the first host network interface which
2867 // is usable for host only networking
2868 for (size_t j = 0;
2869 j < nwInterfaces.size();
2870 ++j)
2871 {
2872 HostNetworkInterfaceType_T itype;
2873 rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype);
2874 if (FAILED(rc)) throw rc;
2875 if (itype == HostNetworkInterfaceType_HostOnly)
2876 {
2877 Bstr name;
2878 rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam());
2879 if (FAILED(rc)) throw rc;
2880 /* Set the interface name to attach to */
2881 rc = pNetworkAdapter->COMSETTER(HostOnlyInterface)(name.raw());
2882 if (FAILED(rc)) throw rc;
2883 break;
2884 }
2885 }
2886 }
2887 /* Next test for internal interfaces */
2888 else if (pvsys->strExtraConfigCurrent.endsWith("type=Internal", Utf8Str::CaseInsensitive))
2889 {
2890 /* Attach to the right interface */
2891 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_Internal);
2892 if (FAILED(rc)) throw rc;
2893 }
2894 /* Next test for Generic interfaces */
2895 else if (pvsys->strExtraConfigCurrent.endsWith("type=Generic", Utf8Str::CaseInsensitive))
2896 {
2897 /* Attach to the right interface */
2898 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_Generic);
2899 if (FAILED(rc)) throw rc;
2900 }
2901
2902 /* Next test for NAT network interfaces */
2903 else if (pvsys->strExtraConfigCurrent.endsWith("type=NATNetwork", Utf8Str::CaseInsensitive))
2904 {
2905 /* Attach to the right interface */
2906 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_NATNetwork);
2907 if (FAILED(rc)) throw rc;
2908 com::SafeIfaceArray<INATNetwork> nwNATNetworks;
2909 rc = mVirtualBox->COMGETTER(NATNetworks)(ComSafeArrayAsOutParam(nwNATNetworks));
2910 if (FAILED(rc)) throw rc;
2911 // Pick the first NAT network (if there is any)
2912 if (nwNATNetworks.size())
2913 {
2914 Bstr name;
2915 rc = nwNATNetworks[0]->COMGETTER(NetworkName)(name.asOutParam());
2916 if (FAILED(rc)) throw rc;
2917 /* Set the NAT network name to attach to */
2918 rc = pNetworkAdapter->COMSETTER(NATNetwork)(name.raw());
2919 if (FAILED(rc)) throw rc;
2920 break;
2921 }
2922 }
2923 }
2924 }
2925
2926 // IDE Hard disk controller
2927 std::list<VirtualSystemDescriptionEntry*> vsdeHDCIDE =
2928 vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskControllerIDE);
2929 /*
2930 * In OVF (at least VMware's version of it), an IDE controller has two ports,
2931 * so VirtualBox's single IDE controller with two channels and two ports each counts as
2932 * two OVF IDE controllers -- so we accept one or two such IDE controllers
2933 */
2934 size_t cIDEControllers = vsdeHDCIDE.size();
2935 if (cIDEControllers > 2)
2936 throw setError(VBOX_E_FILE_ERROR,
2937 tr("Too many IDE controllers in OVF; import facility only supports two"));
2938 if (!vsdeHDCIDE.empty())
2939 {
2940 // one or two IDE controllers present in OVF: add one VirtualBox controller
2941 ComPtr<IStorageController> pController;
2942 rc = pNewMachine->AddStorageController(Bstr("IDE Controller").raw(), StorageBus_IDE, pController.asOutParam());
2943 if (FAILED(rc)) throw rc;
2944
2945 const char *pcszIDEType = vsdeHDCIDE.front()->strVBoxCurrent.c_str();
2946 if (!strcmp(pcszIDEType, "PIIX3"))
2947 rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX3);
2948 else if (!strcmp(pcszIDEType, "PIIX4"))
2949 rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX4);
2950 else if (!strcmp(pcszIDEType, "ICH6"))
2951 rc = pController->COMSETTER(ControllerType)(StorageControllerType_ICH6);
2952 else
2953 throw setError(VBOX_E_FILE_ERROR,
2954 tr("Invalid IDE controller type \"%s\""),
2955 pcszIDEType);
2956 if (FAILED(rc)) throw rc;
2957 }
2958
2959 /* Hard disk controller SATA */
2960 std::list<VirtualSystemDescriptionEntry*> vsdeHDCSATA =
2961 vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskControllerSATA);
2962 if (vsdeHDCSATA.size() > 1)
2963 throw setError(VBOX_E_FILE_ERROR,
2964 tr("Too many SATA controllers in OVF; import facility only supports one"));
2965 if (!vsdeHDCSATA.empty())
2966 {
2967 ComPtr<IStorageController> pController;
2968 const Utf8Str &hdcVBox = vsdeHDCSATA.front()->strVBoxCurrent;
2969 if (hdcVBox == "AHCI")
2970 {
2971 rc = pNewMachine->AddStorageController(Bstr("SATA Controller").raw(),
2972 StorageBus_SATA,
2973 pController.asOutParam());
2974 if (FAILED(rc)) throw rc;
2975 }
2976 else
2977 throw setError(VBOX_E_FILE_ERROR,
2978 tr("Invalid SATA controller type \"%s\""),
2979 hdcVBox.c_str());
2980 }
2981
2982 /* Hard disk controller SCSI */
2983 std::list<VirtualSystemDescriptionEntry*> vsdeHDCSCSI =
2984 vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskControllerSCSI);
2985 if (vsdeHDCSCSI.size() > 1)
2986 throw setError(VBOX_E_FILE_ERROR,
2987 tr("Too many SCSI controllers in OVF; import facility only supports one"));
2988 if (!vsdeHDCSCSI.empty())
2989 {
2990 ComPtr<IStorageController> pController;
2991 Bstr bstrName(L"SCSI Controller");
2992 StorageBus_T busType = StorageBus_SCSI;
2993 StorageControllerType_T controllerType;
2994 const Utf8Str &hdcVBox = vsdeHDCSCSI.front()->strVBoxCurrent;
2995 if (hdcVBox == "LsiLogic")
2996 controllerType = StorageControllerType_LsiLogic;
2997 else if (hdcVBox == "LsiLogicSas")
2998 {
2999 // OVF treats LsiLogicSas as a SCSI controller but VBox considers it a class of its own
3000 bstrName = L"SAS Controller";
3001 busType = StorageBus_SAS;
3002 controllerType = StorageControllerType_LsiLogicSas;
3003 }
3004 else if (hdcVBox == "BusLogic")
3005 controllerType = StorageControllerType_BusLogic;
3006 else
3007 throw setError(VBOX_E_FILE_ERROR,
3008 tr("Invalid SCSI controller type \"%s\""),
3009 hdcVBox.c_str());
3010
3011 rc = pNewMachine->AddStorageController(bstrName.raw(), busType, pController.asOutParam());
3012 if (FAILED(rc)) throw rc;
3013 rc = pController->COMSETTER(ControllerType)(controllerType);
3014 if (FAILED(rc)) throw rc;
3015 }
3016
3017 /* Hard disk controller SAS */
3018 std::list<VirtualSystemDescriptionEntry*> vsdeHDCSAS =
3019 vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskControllerSAS);
3020 if (vsdeHDCSAS.size() > 1)
3021 throw setError(VBOX_E_FILE_ERROR,
3022 tr("Too many SAS controllers in OVF; import facility only supports one"));
3023 if (!vsdeHDCSAS.empty())
3024 {
3025 ComPtr<IStorageController> pController;
3026 rc = pNewMachine->AddStorageController(Bstr(L"SAS Controller").raw(),
3027 StorageBus_SAS,
3028 pController.asOutParam());
3029 if (FAILED(rc)) throw rc;
3030 rc = pController->COMSETTER(ControllerType)(StorageControllerType_LsiLogicSas);
3031 if (FAILED(rc)) throw rc;
3032 }
3033
3034 /* Now its time to register the machine before we add any hard disks */
3035 rc = mVirtualBox->RegisterMachine(pNewMachine);
3036 if (FAILED(rc)) throw rc;
3037
3038 // store new machine for roll-back in case of errors
3039 Bstr bstrNewMachineId;
3040 rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam());
3041 if (FAILED(rc)) throw rc;
3042 Guid uuidNewMachine(bstrNewMachineId);
3043 m->llGuidsMachinesCreated.push_back(uuidNewMachine);
3044
3045 // Add floppies and CD-ROMs to the appropriate controllers.
3046 std::list<VirtualSystemDescriptionEntry*> vsdeFloppy = vsdescThis->i_findByType(VirtualSystemDescriptionType_Floppy);
3047 if (vsdeFloppy.size() > 1)
3048 throw setError(VBOX_E_FILE_ERROR,
3049 tr("Too many floppy controllers in OVF; import facility only supports one"));
3050 std::list<VirtualSystemDescriptionEntry*> vsdeCDROM = vsdescThis->i_findByType(VirtualSystemDescriptionType_CDROM);
3051 if ( !vsdeFloppy.empty()
3052 || !vsdeCDROM.empty()
3053 )
3054 {
3055 // If there's an error here we need to close the session, so
3056 // we need another try/catch block.
3057
3058 try
3059 {
3060 // to attach things we need to open a session for the new machine
3061 rc = pNewMachine->LockMachine(stack.pSession, LockType_Write);
3062 if (FAILED(rc)) throw rc;
3063 stack.fSessionOpen = true;
3064
3065 ComPtr<IMachine> sMachine;
3066 rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam());
3067 if (FAILED(rc)) throw rc;
3068
3069 // floppy first
3070 if (vsdeFloppy.size() == 1)
3071 {
3072 ComPtr<IStorageController> pController;
3073 rc = sMachine->AddStorageController(Bstr("Floppy Controller").raw(),
3074 StorageBus_Floppy,
3075 pController.asOutParam());
3076 if (FAILED(rc)) throw rc;
3077
3078 Bstr bstrName;
3079 rc = pController->COMGETTER(Name)(bstrName.asOutParam());
3080 if (FAILED(rc)) throw rc;
3081
3082 // this is for rollback later
3083 MyHardDiskAttachment mhda;
3084 mhda.pMachine = pNewMachine;
3085 mhda.controllerType = bstrName;
3086 mhda.lControllerPort = 0;
3087 mhda.lDevice = 0;
3088
3089 Log(("Attaching floppy\n"));
3090
3091 rc = sMachine->AttachDevice(mhda.controllerType.raw(),
3092 mhda.lControllerPort,
3093 mhda.lDevice,
3094 DeviceType_Floppy,
3095 NULL);
3096 if (FAILED(rc)) throw rc;
3097
3098 stack.llHardDiskAttachments.push_back(mhda);
3099 }
3100
3101 rc = sMachine->SaveSettings();
3102 if (FAILED(rc)) throw rc;
3103
3104 // only now that we're done with all disks, close the session
3105 rc = stack.pSession->UnlockMachine();
3106 if (FAILED(rc)) throw rc;
3107 stack.fSessionOpen = false;
3108 }
3109 catch(HRESULT aRC)
3110 {
3111 com::ErrorInfo info;
3112
3113 if (stack.fSessionOpen)
3114 stack.pSession->UnlockMachine();
3115
3116 if (info.isFullAvailable())
3117 throw setError(aRC, Utf8Str(info.getText()).c_str());
3118 else
3119 throw setError(aRC, "Unknown error during OVF import");
3120 }
3121 }
3122
3123 // create the hard disks & connect them to the appropriate controllers
3124 std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskImage);
3125 if (!avsdeHDs.empty())
3126 {
3127 // If there's an error here we need to close the session, so
3128 // we need another try/catch block.
3129 try
3130 {
3131#ifdef LOG_ENABLED
3132 if (LogIsEnabled())
3133 {
3134 size_t i = 0;
3135 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3136 itHD != avsdeHDs.end(); ++itHD, i++)
3137 Log(("avsdeHDs[%zu]: strRef=%s strOvf=%s\n", i, (*itHD)->strRef.c_str(), (*itHD)->strOvf.c_str()));
3138 i = 0;
3139 for (ovf::DiskImagesMap::const_iterator itDisk = stack.mapDisks.begin(); itDisk != stack.mapDisks.end(); ++itDisk)
3140 Log(("mapDisks[%zu]: strDiskId=%s strHref=%s\n",
3141 i, itDisk->second.strDiskId.c_str(), itDisk->second.strHref.c_str()));
3142
3143 }
3144#endif
3145
3146 // to attach things we need to open a session for the new machine
3147 rc = pNewMachine->LockMachine(stack.pSession, LockType_Write);
3148 if (FAILED(rc)) throw rc;
3149 stack.fSessionOpen = true;
3150
3151 /* get VM name from virtual system description. Only one record is possible (size of list is equal 1). */
3152 std::list<VirtualSystemDescriptionEntry*> vmName = vsdescThis->i_findByType(VirtualSystemDescriptionType_Name);
3153 std::list<VirtualSystemDescriptionEntry*>::iterator vmNameIt = vmName.begin();
3154 VirtualSystemDescriptionEntry* vmNameEntry = *vmNameIt;
3155
3156
3157 ovf::DiskImagesMap::const_iterator oit = stack.mapDisks.begin();
3158 std::set<RTCString> disksResolvedNames;
3159
3160 uint32_t cImportedDisks = 0;
3161
3162 while (oit != stack.mapDisks.end() && cImportedDisks != avsdeHDs.size())
3163 {
3164/** @todo r=bird: Most of the code here is duplicated in the other machine
3165 * import method, factor out. */
3166 ovf::DiskImage diCurrent = oit->second;
3167
3168 Log(("diCurrent.strDiskId=%s diCurrent.strHref=%s\n", diCurrent.strDiskId.c_str(), diCurrent.strHref.c_str()));
3169 /* Iterate over all given disk images of the virtual system
3170 * disks description. We need to find the target disk path,
3171 * which could be changed by the user. */
3172 VirtualSystemDescriptionEntry *vsdeTargetHD = NULL;
3173 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3174 itHD != avsdeHDs.end();
3175 ++itHD)
3176 {
3177 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
3178 if (vsdeHD->strRef == diCurrent.strDiskId)
3179 {
3180 vsdeTargetHD = vsdeHD;
3181 break;
3182 }
3183 }
3184 if (!vsdeTargetHD)
3185 {
3186 /* possible case if a disk image belongs to other virtual system (OVF package with multiple VMs inside) */
3187 Log1Warning(("OVA/OVF import: Disk image %s was missed during import of VM %s\n",
3188 oit->first.c_str(), vmNameEntry->strOvf.c_str()));
3189 NOREF(vmNameEntry);
3190 ++oit;
3191 continue;
3192 }
3193
3194 //diCurrent.strDiskId contains the disk identifier (e.g. "vmdisk1"), which should exist
3195 //in the virtual system's disks map under that ID and also in the global images map
3196 ovf::VirtualDisksMap::const_iterator itVDisk = vsysThis.mapVirtualDisks.find(diCurrent.strDiskId);
3197 if (itVDisk == vsysThis.mapVirtualDisks.end())
3198 throw setError(E_FAIL,
3199 tr("Internal inconsistency looking up disk image '%s'"),
3200 diCurrent.strHref.c_str());
3201
3202 /*
3203 * preliminary check availability of the image
3204 * This step is useful if image is placed in the OVA (TAR) package
3205 */
3206 if (stack.hVfsFssOva != NIL_RTVFSFSSTREAM)
3207 {
3208 /* It means that we possibly have imported the storage earlier on the previous loop steps*/
3209 std::set<RTCString>::const_iterator h = disksResolvedNames.find(diCurrent.strHref);
3210 if (h != disksResolvedNames.end())
3211 {
3212 /* Yes, disk name was found, we can skip it*/
3213 ++oit;
3214 continue;
3215 }
3216l_skipped:
3217 rc = i_preCheckImageAvailability(stack);
3218 if (SUCCEEDED(rc))
3219 {
3220 /* current opened file isn't the same as passed one */
3221 if (RTStrICmp(diCurrent.strHref.c_str(), stack.pszOvaLookAheadName) != 0)
3222 {
3223 /* availableImage contains the disk file reference (e.g. "disk1.vmdk"), which should
3224 * exist in the global images map.
3225 * And find the disk from the OVF's disk list */
3226 ovf::DiskImagesMap::const_iterator itDiskImage;
3227 for (itDiskImage = stack.mapDisks.begin();
3228 itDiskImage != stack.mapDisks.end();
3229 itDiskImage++)
3230 if (itDiskImage->second.strHref.compare(stack.pszOvaLookAheadName,
3231 Utf8Str::CaseInsensitive) == 0)
3232 break;
3233 if (itDiskImage == stack.mapDisks.end())
3234 {
3235 LogFunc(("Skipping '%s'\n", stack.pszOvaLookAheadName));
3236 RTVfsIoStrmRelease(stack.claimOvaLookAHead());
3237 goto l_skipped;
3238 }
3239
3240 /* replace with a new found disk image */
3241 diCurrent = *(&itDiskImage->second);
3242
3243 /*
3244 * Again iterate over all given disk images of the virtual system
3245 * disks description using the found disk image
3246 */
3247 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3248 itHD != avsdeHDs.end();
3249 ++itHD)
3250 {
3251 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
3252 if (vsdeHD->strRef == diCurrent.strDiskId)
3253 {
3254 vsdeTargetHD = vsdeHD;
3255 break;
3256 }
3257 }
3258
3259 /*
3260 * in this case it's an error because something is wrong with the OVF description file.
3261 * May be VBox imports OVA package with wrong file sequence inside the archive.
3262 */
3263 if (!vsdeTargetHD)
3264 throw setError(E_FAIL,
3265 tr("Internal inconsistency looking up disk image '%s'"),
3266 diCurrent.strHref.c_str());
3267
3268 itVDisk = vsysThis.mapVirtualDisks.find(diCurrent.strDiskId);
3269 if (itVDisk == vsysThis.mapVirtualDisks.end())
3270 throw setError(E_FAIL,
3271 tr("Internal inconsistency looking up disk image '%s'"),
3272 diCurrent.strHref.c_str());
3273 }
3274 else
3275 {
3276 ++oit;
3277 }
3278 }
3279 else
3280 {
3281 ++oit;
3282 continue;
3283 }
3284 }
3285 else
3286 {
3287 /* just continue with normal files*/
3288 ++oit;
3289 }
3290
3291 /* very important to store disk name for the next checks */
3292 disksResolvedNames.insert(diCurrent.strHref);
3293////// end of duplicated code.
3294 const ovf::VirtualDisk &ovfVdisk = itVDisk->second;
3295
3296 ComObjPtr<Medium> pTargetHD;
3297
3298 Utf8Str savedVBoxCurrent = vsdeTargetHD->strVBoxCurrent;
3299
3300 i_importOneDiskImage(diCurrent,
3301 &vsdeTargetHD->strVBoxCurrent,
3302 pTargetHD,
3303 stack);
3304
3305 // now use the new uuid to attach the disk image to our new machine
3306 ComPtr<IMachine> sMachine;
3307 rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam());
3308 if (FAILED(rc))
3309 throw rc;
3310
3311 // find the hard disk controller to which we should attach
3312 ovf::HardDiskController hdc = (*vsysThis.mapControllers.find(ovfVdisk.idController)).second;
3313
3314 // this is for rollback later
3315 MyHardDiskAttachment mhda;
3316 mhda.pMachine = pNewMachine;
3317
3318 i_convertDiskAttachmentValues(hdc,
3319 ovfVdisk.ulAddressOnParent,
3320 mhda.controllerType, // Bstr
3321 mhda.lControllerPort,
3322 mhda.lDevice);
3323
3324 Log(("Attaching disk %s to port %d on device %d\n",
3325 vsdeTargetHD->strVBoxCurrent.c_str(), mhda.lControllerPort, mhda.lDevice));
3326
3327 ComObjPtr<MediumFormat> mediumFormat;
3328 rc = i_findMediumFormatFromDiskImage(diCurrent, mediumFormat);
3329 if (FAILED(rc))
3330 throw rc;
3331
3332 Bstr bstrFormatName;
3333 rc = mediumFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
3334 if (FAILED(rc))
3335 throw rc;
3336
3337 Utf8Str vdf = Utf8Str(bstrFormatName);
3338
3339 if (vdf.compare("RAW", Utf8Str::CaseInsensitive) == 0)
3340 {
3341 ComPtr<IMedium> dvdImage(pTargetHD);
3342
3343 rc = mVirtualBox->OpenMedium(Bstr(vsdeTargetHD->strVBoxCurrent).raw(),
3344 DeviceType_DVD,
3345 AccessMode_ReadWrite,
3346 false,
3347 dvdImage.asOutParam());
3348
3349 if (FAILED(rc))
3350 throw rc;
3351
3352 rc = sMachine->AttachDevice(mhda.controllerType.raw(),// wstring name
3353 mhda.lControllerPort, // long controllerPort
3354 mhda.lDevice, // long device
3355 DeviceType_DVD, // DeviceType_T type
3356 dvdImage);
3357 if (FAILED(rc))
3358 throw rc;
3359 }
3360 else
3361 {
3362 rc = sMachine->AttachDevice(mhda.controllerType.raw(),// wstring name
3363 mhda.lControllerPort, // long controllerPort
3364 mhda.lDevice, // long device
3365 DeviceType_HardDisk, // DeviceType_T type
3366 pTargetHD);
3367
3368 if (FAILED(rc))
3369 throw rc;
3370 }
3371
3372 stack.llHardDiskAttachments.push_back(mhda);
3373
3374 rc = sMachine->SaveSettings();
3375 if (FAILED(rc))
3376 throw rc;
3377
3378 /* restore */
3379 vsdeTargetHD->strVBoxCurrent = savedVBoxCurrent;
3380
3381 ++cImportedDisks;
3382
3383 } // end while(oit != stack.mapDisks.end())
3384
3385 /*
3386 * quantity of the imported disks isn't equal to the size of the avsdeHDs list.
3387 */
3388 if(cImportedDisks < avsdeHDs.size())
3389 {
3390 Log1Warning(("Not all disk images were imported for VM %s. Check OVF description file.",
3391 vmNameEntry->strOvf.c_str()));
3392 }
3393
3394 // only now that we're done with all disks, close the session
3395 rc = stack.pSession->UnlockMachine();
3396 if (FAILED(rc))
3397 throw rc;
3398 stack.fSessionOpen = false;
3399 }
3400 catch(HRESULT aRC)
3401 {
3402 com::ErrorInfo info;
3403 if (stack.fSessionOpen)
3404 stack.pSession->UnlockMachine();
3405
3406 if (info.isFullAvailable())
3407 throw setError(aRC, Utf8Str(info.getText()).c_str());
3408 else
3409 throw setError(aRC, "Unknown error during OVF import");
3410 }
3411 }
3412 LogFlowFuncLeave();
3413}
3414
3415/**
3416 * Imports one OVF virtual system (described by a vbox:Machine tag represented by the given config
3417 * structure) into VirtualBox by creating an IMachine instance, which is returned.
3418 *
3419 * This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean
3420 * up any leftovers from this function. For this, the given ImportStack instance has received information
3421 * about what needs cleaning up (to support rollback).
3422 *
3423 * The machine config stored in the settings::MachineConfigFile structure contains the UUIDs of
3424 * the disk attachments used by the machine when it was exported. We also add vbox:uuid attributes
3425 * to the OVF disks sections so we can look them up. While importing these UUIDs into a second host
3426 * will most probably work, reimporting them into the same host will cause conflicts, so we always
3427 * generate new ones on import. This involves the following:
3428 *
3429 * 1) Scan the machine config for disk attachments.
3430 *
3431 * 2) For each disk attachment found, look up the OVF disk image from the disk references section
3432 * and import the disk into VirtualBox, which creates a new UUID for it. In the machine config,
3433 * replace the old UUID with the new one.
3434 *
3435 * 3) Change the machine config according to the OVF virtual system descriptions, in case the
3436 * caller has modified them using setFinalValues().
3437 *
3438 * 4) Create the VirtualBox machine with the modfified machine config.
3439 *
3440 * @param config
3441 * @param pNewMachine
3442 * @param stack
3443 */
3444void Appliance::i_importVBoxMachine(ComObjPtr<VirtualSystemDescription> &vsdescThis,
3445 ComPtr<IMachine> &pReturnNewMachine,
3446 ImportStack &stack)
3447{
3448 LogFlowFuncEnter();
3449 Assert(vsdescThis->m->pConfig);
3450
3451 HRESULT rc = S_OK;
3452
3453 settings::MachineConfigFile &config = *vsdescThis->m->pConfig;
3454
3455 /*
3456 * step 1): modify machine config according to OVF config, in case the user
3457 * has modified them using setFinalValues()
3458 */
3459
3460 /* OS Type */
3461 config.machineUserData.strOsType = stack.strOsTypeVBox;
3462 /* Description */
3463 config.machineUserData.strDescription = stack.strDescription;
3464 /* CPU count & extented attributes */
3465 config.hardwareMachine.cCPUs = stack.cCPUs;
3466 if (stack.fForceIOAPIC)
3467 config.hardwareMachine.fHardwareVirt = true;
3468 if (stack.fForceIOAPIC)
3469 config.hardwareMachine.biosSettings.fIOAPICEnabled = true;
3470 /* RAM size */
3471 config.hardwareMachine.ulMemorySizeMB = stack.ulMemorySizeMB;
3472
3473/*
3474 <const name="HardDiskControllerIDE" value="14" />
3475 <const name="HardDiskControllerSATA" value="15" />
3476 <const name="HardDiskControllerSCSI" value="16" />
3477 <const name="HardDiskControllerSAS" value="17" />
3478*/
3479
3480#ifdef VBOX_WITH_USB
3481 /* USB controller */
3482 if (stack.fUSBEnabled)
3483 {
3484 /** @todo r=klaus add support for arbitrary USB controller types, this can't handle
3485 * multiple controllers due to its design anyway */
3486 /* usually the OHCI controller is enabled already, need to check */
3487 bool fOHCIEnabled = false;
3488 settings::USBControllerList &llUSBControllers = config.hardwareMachine.usbSettings.llUSBControllers;
3489 settings::USBControllerList::iterator it;
3490 for (it = llUSBControllers.begin(); it != llUSBControllers.end(); ++it)
3491 {
3492 if (it->enmType == USBControllerType_OHCI)
3493 {
3494 fOHCIEnabled = true;
3495 break;
3496 }
3497 }
3498
3499 if (!fOHCIEnabled)
3500 {
3501 settings::USBController ctrl;
3502 ctrl.strName = "OHCI";
3503 ctrl.enmType = USBControllerType_OHCI;
3504
3505 llUSBControllers.push_back(ctrl);
3506 }
3507 }
3508 else
3509 config.hardwareMachine.usbSettings.llUSBControllers.clear();
3510#endif
3511 /* Audio adapter */
3512 if (stack.strAudioAdapter.isNotEmpty())
3513 {
3514 config.hardwareMachine.audioAdapter.fEnabled = true;
3515 config.hardwareMachine.audioAdapter.controllerType = (AudioControllerType_T)stack.strAudioAdapter.toUInt32();
3516 }
3517 else
3518 config.hardwareMachine.audioAdapter.fEnabled = false;
3519 /* Network adapter */
3520 settings::NetworkAdaptersList &llNetworkAdapters = config.hardwareMachine.llNetworkAdapters;
3521 /* First disable all network cards, they will be enabled below again. */
3522 settings::NetworkAdaptersList::iterator it1;
3523 bool fKeepAllMACs = m->optListImport.contains(ImportOptions_KeepAllMACs);
3524 bool fKeepNATMACs = m->optListImport.contains(ImportOptions_KeepNATMACs);
3525 for (it1 = llNetworkAdapters.begin(); it1 != llNetworkAdapters.end(); ++it1)
3526 {
3527 it1->fEnabled = false;
3528 if (!( fKeepAllMACs
3529 || (fKeepNATMACs && it1->mode == NetworkAttachmentType_NAT)
3530 || (fKeepNATMACs && it1->mode == NetworkAttachmentType_NATNetwork)))
3531 Host::i_generateMACAddress(it1->strMACAddress);
3532 }
3533 /* Now iterate over all network entries. */
3534 std::list<VirtualSystemDescriptionEntry*> avsdeNWs = vsdescThis->i_findByType(VirtualSystemDescriptionType_NetworkAdapter);
3535 if (!avsdeNWs.empty())
3536 {
3537 /* Iterate through all network adapter entries and search for the
3538 * corresponding one in the machine config. If one is found, configure
3539 * it based on the user settings. */
3540 list<VirtualSystemDescriptionEntry*>::const_iterator itNW;
3541 for (itNW = avsdeNWs.begin();
3542 itNW != avsdeNWs.end();
3543 ++itNW)
3544 {
3545 VirtualSystemDescriptionEntry *vsdeNW = *itNW;
3546 if ( vsdeNW->strExtraConfigCurrent.startsWith("slot=", Utf8Str::CaseInsensitive)
3547 && vsdeNW->strExtraConfigCurrent.length() > 6)
3548 {
3549 uint32_t iSlot = vsdeNW->strExtraConfigCurrent.substr(5, 1).toUInt32();
3550 /* Iterate through all network adapters in the machine config. */
3551 for (it1 = llNetworkAdapters.begin();
3552 it1 != llNetworkAdapters.end();
3553 ++it1)
3554 {
3555 /* Compare the slots. */
3556 if (it1->ulSlot == iSlot)
3557 {
3558 it1->fEnabled = true;
3559 it1->type = (NetworkAdapterType_T)vsdeNW->strVBoxCurrent.toUInt32();
3560 break;
3561 }
3562 }
3563 }
3564 }
3565 }
3566
3567 /* Floppy controller */
3568 bool fFloppy = vsdescThis->i_findByType(VirtualSystemDescriptionType_Floppy).size() > 0;
3569 /* DVD controller */
3570 bool fDVD = vsdescThis->i_findByType(VirtualSystemDescriptionType_CDROM).size() > 0;
3571 /* Iterate over all storage controller check the attachments and remove
3572 * them when necessary. Also detect broken configs with more than one
3573 * attachment. Old VirtualBox versions (prior to 3.2.10) had all disk
3574 * attachments pointing to the last hard disk image, which causes import
3575 * failures. A long fixed bug, however the OVF files are long lived. */
3576 settings::StorageControllersList &llControllers = config.storageMachine.llStorageControllers;
3577 Guid hdUuid;
3578 uint32_t cDisks = 0;
3579 bool fInconsistent = false;
3580 bool fRepairDuplicate = false;
3581 settings::StorageControllersList::iterator it3;
3582 for (it3 = llControllers.begin();
3583 it3 != llControllers.end();
3584 ++it3)
3585 {
3586 settings::AttachedDevicesList &llAttachments = it3->llAttachedDevices;
3587 settings::AttachedDevicesList::iterator it4 = llAttachments.begin();
3588 while (it4 != llAttachments.end())
3589 {
3590 if ( ( !fDVD
3591 && it4->deviceType == DeviceType_DVD)
3592 ||
3593 ( !fFloppy
3594 && it4->deviceType == DeviceType_Floppy))
3595 {
3596 it4 = llAttachments.erase(it4);
3597 continue;
3598 }
3599 else if (it4->deviceType == DeviceType_HardDisk)
3600 {
3601 const Guid &thisUuid = it4->uuid;
3602 cDisks++;
3603 if (cDisks == 1)
3604 {
3605 if (hdUuid.isZero())
3606 hdUuid = thisUuid;
3607 else
3608 fInconsistent = true;
3609 }
3610 else
3611 {
3612 if (thisUuid.isZero())
3613 fInconsistent = true;
3614 else if (thisUuid == hdUuid)
3615 fRepairDuplicate = true;
3616 }
3617 }
3618 ++it4;
3619 }
3620 }
3621 /* paranoia... */
3622 if (fInconsistent || cDisks == 1)
3623 fRepairDuplicate = false;
3624
3625 /*
3626 * step 2: scan the machine config for media attachments
3627 */
3628 /* get VM name from virtual system description. Only one record is possible (size of list is equal 1). */
3629 std::list<VirtualSystemDescriptionEntry*> vmName = vsdescThis->i_findByType(VirtualSystemDescriptionType_Name);
3630 std::list<VirtualSystemDescriptionEntry*>::iterator vmNameIt = vmName.begin();
3631 VirtualSystemDescriptionEntry* vmNameEntry = *vmNameIt;
3632
3633 /* Get all hard disk descriptions. */
3634 std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskImage);
3635 std::list<VirtualSystemDescriptionEntry*>::iterator avsdeHDsIt = avsdeHDs.begin();
3636 /* paranoia - if there is no 1:1 match do not try to repair. */
3637 if (cDisks != avsdeHDs.size())
3638 fRepairDuplicate = false;
3639
3640 // there must be an image in the OVF disk structs with the same UUID
3641
3642 ovf::DiskImagesMap::const_iterator oit = stack.mapDisks.begin();
3643 std::set<RTCString> disksResolvedNames;
3644
3645 uint32_t cImportedDisks = 0;
3646
3647 while (oit != stack.mapDisks.end() && cImportedDisks != avsdeHDs.size())
3648 {
3649/** @todo r=bird: Most of the code here is duplicated in the other machine
3650 * import method, factor out. */
3651 ovf::DiskImage diCurrent = oit->second;
3652
3653 Log(("diCurrent.strDiskId=%s diCurrent.strHref=%s\n", diCurrent.strDiskId.c_str(), diCurrent.strHref.c_str()));
3654
3655 /* Iterate over all given disk images of the virtual system
3656 * disks description. We need to find the target disk path,
3657 * which could be changed by the user. */
3658 VirtualSystemDescriptionEntry *vsdeTargetHD = NULL;
3659 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3660 itHD != avsdeHDs.end();
3661 ++itHD)
3662 {
3663 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
3664 if (vsdeHD->strRef == oit->first)
3665 {
3666 vsdeTargetHD = vsdeHD;
3667 break;
3668 }
3669 }
3670 if (!vsdeTargetHD)
3671 {
3672 /* possible case if a disk image belongs to other virtual system (OVF package with multiple VMs inside) */
3673 Log1Warning(("OVA/OVF import: Disk image %s was missed during import of VM %s\n",
3674 oit->first.c_str(), vmNameEntry->strOvf.c_str()));
3675 NOREF(vmNameEntry);
3676 ++oit;
3677 continue;
3678 }
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688 /*
3689 * preliminary check availability of the image
3690 * This step is useful if image is placed in the OVA (TAR) package
3691 */
3692 if (stack.hVfsFssOva != NIL_RTVFSFSSTREAM)
3693 {
3694 /* It means that we possibly have imported the storage earlier on a previous loop step. */
3695 std::set<RTCString>::const_iterator h = disksResolvedNames.find(diCurrent.strHref);
3696 if (h != disksResolvedNames.end())
3697 {
3698 /* Yes, disk name was found, we can skip it*/
3699 ++oit;
3700 continue;
3701 }
3702l_skipped:
3703 rc = i_preCheckImageAvailability(stack);
3704 if (SUCCEEDED(rc))
3705 {
3706 /* current opened file isn't the same as passed one */
3707 if (RTStrICmp(diCurrent.strHref.c_str(), stack.pszOvaLookAheadName) != 0)
3708 {
3709 // availableImage contains the disk identifier (e.g. "vmdisk1"), which should exist
3710 // in the virtual system's disks map under that ID and also in the global images map
3711 // and find the disk from the OVF's disk list
3712 ovf::DiskImagesMap::const_iterator itDiskImage;
3713 for (itDiskImage = stack.mapDisks.begin();
3714 itDiskImage != stack.mapDisks.end();
3715 itDiskImage++)
3716 if (itDiskImage->second.strHref.compare(stack.pszOvaLookAheadName,
3717 Utf8Str::CaseInsensitive) == 0)
3718 break;
3719 if (itDiskImage == stack.mapDisks.end())
3720 {
3721 LogFunc(("Skipping '%s'\n", stack.pszOvaLookAheadName));
3722 RTVfsIoStrmRelease(stack.claimOvaLookAHead());
3723 goto l_skipped;
3724 }
3725 //throw setError(E_FAIL,
3726 // tr("Internal inconsistency looking up disk image '%s'. "
3727 // "Check compliance OVA package structure and file names "
3728 // "references in the section <References> in the OVF file."),
3729 // stack.pszOvaLookAheadName);
3730
3731 /* replace with a new found disk image */
3732 diCurrent = *(&itDiskImage->second);
3733
3734 /*
3735 * Again iterate over all given disk images of the virtual system
3736 * disks description using the found disk image
3737 */
3738 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3739 itHD != avsdeHDs.end();
3740 ++itHD)
3741 {
3742 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
3743 if (vsdeHD->strRef == diCurrent.strDiskId)
3744 {
3745 vsdeTargetHD = vsdeHD;
3746 break;
3747 }
3748 }
3749
3750 /*
3751 * in this case it's an error because something is wrong with the OVF description file.
3752 * May be VBox imports OVA package with wrong file sequence inside the archive.
3753 */
3754 if (!vsdeTargetHD)
3755 throw setError(E_FAIL,
3756 tr("Internal inconsistency looking up disk image '%s'"),
3757 diCurrent.strHref.c_str());
3758
3759
3760
3761
3762
3763 }
3764 else
3765 {
3766 ++oit;
3767 }
3768 }
3769 else
3770 {
3771 ++oit;
3772 continue;
3773 }
3774 }
3775 else
3776 {
3777 /* just continue with normal files*/
3778 ++oit;
3779 }
3780
3781 /* Important! to store disk name for the next checks */
3782 disksResolvedNames.insert(diCurrent.strHref);
3783////// end of duplicated code.
3784 // there must be an image in the OVF disk structs with the same UUID
3785 bool fFound = false;
3786 Utf8Str strUuid;
3787
3788 // for each storage controller...
3789 for (settings::StorageControllersList::iterator sit = config.storageMachine.llStorageControllers.begin();
3790 sit != config.storageMachine.llStorageControllers.end();
3791 ++sit)
3792 {
3793 settings::StorageController &sc = *sit;
3794
3795 // find the OVF virtual system description entry for this storage controller
3796 switch (sc.storageBus)
3797 {
3798 case StorageBus_SATA:
3799 break;
3800 case StorageBus_SCSI:
3801 break;
3802 case StorageBus_IDE:
3803 break;
3804 case StorageBus_SAS:
3805 break;
3806 }
3807
3808 // for each medium attachment to this controller...
3809 for (settings::AttachedDevicesList::iterator dit = sc.llAttachedDevices.begin();
3810 dit != sc.llAttachedDevices.end();
3811 ++dit)
3812 {
3813 settings::AttachedDevice &d = *dit;
3814
3815 if (d.uuid.isZero())
3816 // empty DVD and floppy media
3817 continue;
3818
3819 // When repairing a broken VirtualBox xml config section (written
3820 // by VirtualBox versions earlier than 3.2.10) assume the disks
3821 // show up in the same order as in the OVF description.
3822 if (fRepairDuplicate)
3823 {
3824 VirtualSystemDescriptionEntry *vsdeHD = *avsdeHDsIt;
3825 ovf::DiskImagesMap::const_iterator itDiskImage = stack.mapDisks.find(vsdeHD->strRef);
3826 if (itDiskImage != stack.mapDisks.end())
3827 {
3828 const ovf::DiskImage &di = itDiskImage->second;
3829 d.uuid = Guid(di.uuidVBox);
3830 }
3831 ++avsdeHDsIt;
3832 }
3833
3834 // convert the Guid to string
3835 strUuid = d.uuid.toString();
3836
3837 if (diCurrent.uuidVBox != strUuid)
3838 {
3839 continue;
3840 }
3841
3842 /*
3843 * step 3: import disk
3844 */
3845 Utf8Str savedVBoxCurrent = vsdeTargetHD->strVBoxCurrent;
3846 ComObjPtr<Medium> pTargetHD;
3847
3848 i_importOneDiskImage(diCurrent,
3849 &vsdeTargetHD->strVBoxCurrent,
3850 pTargetHD,
3851 stack);
3852
3853 Bstr hdId;
3854
3855 ComObjPtr<MediumFormat> mediumFormat;
3856 rc = i_findMediumFormatFromDiskImage(diCurrent, mediumFormat);
3857 if (FAILED(rc))
3858 throw rc;
3859
3860 Bstr bstrFormatName;
3861 rc = mediumFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
3862 if (FAILED(rc))
3863 throw rc;
3864
3865 Utf8Str vdf = Utf8Str(bstrFormatName);
3866
3867 if (vdf.compare("RAW", Utf8Str::CaseInsensitive) == 0)
3868 {
3869 ComPtr<IMedium> dvdImage(pTargetHD);
3870
3871 rc = mVirtualBox->OpenMedium(Bstr(vsdeTargetHD->strVBoxCurrent).raw(),
3872 DeviceType_DVD,
3873 AccessMode_ReadWrite,
3874 false,
3875 dvdImage.asOutParam());
3876
3877 if (FAILED(rc)) throw rc;
3878
3879 // ... and replace the old UUID in the machine config with the one of
3880 // the imported disk that was just created
3881 rc = dvdImage->COMGETTER(Id)(hdId.asOutParam());
3882 if (FAILED(rc)) throw rc;
3883 }
3884 else
3885 {
3886 // ... and replace the old UUID in the machine config with the one of
3887 // the imported disk that was just created
3888 rc = pTargetHD->COMGETTER(Id)(hdId.asOutParam());
3889 if (FAILED(rc)) throw rc;
3890 }
3891
3892 /* restore */
3893 vsdeTargetHD->strVBoxCurrent = savedVBoxCurrent;
3894
3895 /*
3896 * 1. saving original UUID for restoring in case of failure.
3897 * 2. replacement of original UUID by new UUID in the current VM config (settings::MachineConfigFile).
3898 */
3899 {
3900 rc = stack.saveOriginalUUIDOfAttachedDevice(d, Utf8Str(hdId));
3901 d.uuid = hdId;
3902 }
3903
3904 fFound = true;
3905 break;
3906 } // for (settings::AttachedDevicesList::const_iterator dit = sc.llAttachedDevices.begin();
3907 } // for (settings::StorageControllersList::const_iterator sit = config.storageMachine.llStorageControllers.begin();
3908
3909 // no disk with such a UUID found:
3910 if (!fFound)
3911 throw setError(E_FAIL,
3912 tr("<vbox:Machine> element in OVF contains a medium attachment for the disk image %s "
3913 "but the OVF describes no such image"),
3914 strUuid.c_str());
3915
3916 ++cImportedDisks;
3917
3918 }// while(oit != stack.mapDisks.end())
3919
3920
3921 /*
3922 * quantity of the imported disks isn't equal to the size of the avsdeHDs list.
3923 */
3924 if(cImportedDisks < avsdeHDs.size())
3925 {
3926 Log1Warning(("Not all disk images were imported for VM %s. Check OVF description file.",
3927 vmNameEntry->strOvf.c_str()));
3928 }
3929
3930 /*
3931 * step 4): create the machine and have it import the config
3932 */
3933
3934 ComObjPtr<Machine> pNewMachine;
3935 rc = pNewMachine.createObject();
3936 if (FAILED(rc)) throw rc;
3937
3938 // this magic constructor fills the new machine object with the MachineConfig
3939 // instance that we created from the vbox:Machine
3940 rc = pNewMachine->init(mVirtualBox,
3941 stack.strNameVBox,// name from OVF preparations; can be suffixed to avoid duplicates
3942 config); // the whole machine config
3943 if (FAILED(rc)) throw rc;
3944
3945 pReturnNewMachine = ComPtr<IMachine>(pNewMachine);
3946
3947 // and register it
3948 rc = mVirtualBox->RegisterMachine(pNewMachine);
3949 if (FAILED(rc)) throw rc;
3950
3951 // store new machine for roll-back in case of errors
3952 Bstr bstrNewMachineId;
3953 rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam());
3954 if (FAILED(rc)) throw rc;
3955 m->llGuidsMachinesCreated.push_back(Guid(bstrNewMachineId));
3956
3957 LogFlowFuncLeave();
3958}
3959
3960/**
3961 * @throws HRESULT errors.
3962 */
3963void Appliance::i_importMachines(ImportStack &stack)
3964{
3965 // this is safe to access because this thread only gets started
3966 const ovf::OVFReader &reader = *m->pReader;
3967
3968 // create a session for the machine + disks we manipulate below
3969 HRESULT rc = stack.pSession.createInprocObject(CLSID_Session);
3970 ComAssertComRCThrowRC(rc);
3971
3972 list<ovf::VirtualSystem>::const_iterator it;
3973 list< ComObjPtr<VirtualSystemDescription> >::const_iterator it1;
3974 /* Iterate through all virtual systems of that appliance */
3975 size_t i = 0;
3976 for (it = reader.m_llVirtualSystems.begin(), it1 = m->virtualSystemDescriptions.begin();
3977 it != reader.m_llVirtualSystems.end() && it1 != m->virtualSystemDescriptions.end();
3978 ++it, ++it1, ++i)
3979 {
3980 const ovf::VirtualSystem &vsysThis = *it;
3981 ComObjPtr<VirtualSystemDescription> vsdescThis = (*it1);
3982
3983 ComPtr<IMachine> pNewMachine;
3984
3985 // there are two ways in which we can create a vbox machine from OVF:
3986 // -- either this OVF was written by vbox 3.2 or later, in which case there is a <vbox:Machine> element
3987 // in the <VirtualSystem>; then the VirtualSystemDescription::Data has a settings::MachineConfigFile
3988 // with all the machine config pretty-parsed;
3989 // -- or this is an OVF from an older vbox or an external source, and then we need to translate the
3990 // VirtualSystemDescriptionEntry and do import work
3991
3992 // Even for the vbox:Machine case, there are a number of configuration items that will be taken from
3993 // the OVF because otherwise the "override import parameters" mechanism in the GUI won't work.
3994
3995 // VM name
3996 std::list<VirtualSystemDescriptionEntry*> vsdeName = vsdescThis->i_findByType(VirtualSystemDescriptionType_Name);
3997 if (vsdeName.size() < 1)
3998 throw setError(VBOX_E_FILE_ERROR,
3999 tr("Missing VM name"));
4000 stack.strNameVBox = vsdeName.front()->strVBoxCurrent;
4001
4002 // have VirtualBox suggest where the filename would be placed so we can
4003 // put the disk images in the same directory
4004 Bstr bstrMachineFilename;
4005 rc = mVirtualBox->ComposeMachineFilename(Bstr(stack.strNameVBox).raw(),
4006 NULL /* aGroup */,
4007 NULL /* aCreateFlags */,
4008 NULL /* aBaseFolder */,
4009 bstrMachineFilename.asOutParam());
4010 if (FAILED(rc)) throw rc;
4011 // and determine the machine folder from that
4012 stack.strMachineFolder = bstrMachineFilename;
4013 stack.strMachineFolder.stripFilename();
4014 LogFunc(("i=%zu strName=%s bstrMachineFilename=%ls\n", i, stack.strNameVBox.c_str(), bstrMachineFilename.raw()));
4015
4016 // guest OS type
4017 std::list<VirtualSystemDescriptionEntry*> vsdeOS;
4018 vsdeOS = vsdescThis->i_findByType(VirtualSystemDescriptionType_OS);
4019 if (vsdeOS.size() < 1)
4020 throw setError(VBOX_E_FILE_ERROR,
4021 tr("Missing guest OS type"));
4022 stack.strOsTypeVBox = vsdeOS.front()->strVBoxCurrent;
4023
4024 // CPU count
4025 std::list<VirtualSystemDescriptionEntry*> vsdeCPU = vsdescThis->i_findByType(VirtualSystemDescriptionType_CPU);
4026 if (vsdeCPU.size() != 1)
4027 throw setError(VBOX_E_FILE_ERROR, tr("CPU count missing"));
4028
4029 stack.cCPUs = vsdeCPU.front()->strVBoxCurrent.toUInt32();
4030 // We need HWVirt & IO-APIC if more than one CPU is requested
4031 if (stack.cCPUs > 1)
4032 {
4033 stack.fForceHWVirt = true;
4034 stack.fForceIOAPIC = true;
4035 }
4036
4037 // RAM
4038 std::list<VirtualSystemDescriptionEntry*> vsdeRAM = vsdescThis->i_findByType(VirtualSystemDescriptionType_Memory);
4039 if (vsdeRAM.size() != 1)
4040 throw setError(VBOX_E_FILE_ERROR, tr("RAM size missing"));
4041 stack.ulMemorySizeMB = (ULONG)vsdeRAM.front()->strVBoxCurrent.toUInt64();
4042
4043#ifdef VBOX_WITH_USB
4044 // USB controller
4045 std::list<VirtualSystemDescriptionEntry*> vsdeUSBController =
4046 vsdescThis->i_findByType(VirtualSystemDescriptionType_USBController);
4047 // USB support is enabled if there's at least one such entry; to disable USB support,
4048 // the type of the USB item would have been changed to "ignore"
4049 stack.fUSBEnabled = !vsdeUSBController.empty();
4050#endif
4051 // audio adapter
4052 std::list<VirtualSystemDescriptionEntry*> vsdeAudioAdapter =
4053 vsdescThis->i_findByType(VirtualSystemDescriptionType_SoundCard);
4054 /* @todo: we support one audio adapter only */
4055 if (!vsdeAudioAdapter.empty())
4056 stack.strAudioAdapter = vsdeAudioAdapter.front()->strVBoxCurrent;
4057
4058 // for the description of the new machine, always use the OVF entry, the user may have changed it in the import config
4059 std::list<VirtualSystemDescriptionEntry*> vsdeDescription =
4060 vsdescThis->i_findByType(VirtualSystemDescriptionType_Description);
4061 if (!vsdeDescription.empty())
4062 stack.strDescription = vsdeDescription.front()->strVBoxCurrent;
4063
4064 // import vbox:machine or OVF now
4065 if (vsdescThis->m->pConfig)
4066 // vbox:Machine config
4067 i_importVBoxMachine(vsdescThis, pNewMachine, stack);
4068 else
4069 // generic OVF config
4070 i_importMachineGeneric(vsysThis, vsdescThis, pNewMachine, stack);
4071
4072 } // for (it = pAppliance->m->llVirtualSystems.begin() ...
4073}
4074
4075HRESULT Appliance::ImportStack::saveOriginalUUIDOfAttachedDevice(settings::AttachedDevice &device,
4076 const Utf8Str &newlyUuid)
4077{
4078 HRESULT rc = S_OK;
4079
4080 /* save for restoring */
4081 mapNewUUIDsToOriginalUUIDs.insert(std::make_pair(newlyUuid, device.uuid.toString()));
4082
4083 return rc;
4084}
4085
4086HRESULT Appliance::ImportStack::restoreOriginalUUIDOfAttachedDevice(settings::MachineConfigFile *config)
4087{
4088 HRESULT rc = S_OK;
4089
4090 settings::StorageControllersList &llControllers = config->storageMachine.llStorageControllers;
4091 settings::StorageControllersList::iterator itscl;
4092 for (itscl = llControllers.begin();
4093 itscl != llControllers.end();
4094 ++itscl)
4095 {
4096 settings::AttachedDevicesList &llAttachments = itscl->llAttachedDevices;
4097 settings::AttachedDevicesList::iterator itadl = llAttachments.begin();
4098 while (itadl != llAttachments.end())
4099 {
4100 std::map<Utf8Str , Utf8Str>::iterator it =
4101 mapNewUUIDsToOriginalUUIDs.find(itadl->uuid.toString());
4102 if(it!=mapNewUUIDsToOriginalUUIDs.end())
4103 {
4104 Utf8Str uuidOriginal = it->second;
4105 itadl->uuid = Guid(uuidOriginal);
4106 mapNewUUIDsToOriginalUUIDs.erase(it->first);
4107 }
4108 ++itadl;
4109 }
4110 }
4111
4112 return rc;
4113}
4114
4115/**
4116 * @throws Nothing
4117 */
4118RTVFSIOSTREAM Appliance::ImportStack::claimOvaLookAHead(void)
4119{
4120 RTVFSIOSTREAM hVfsIos = this->hVfsIosOvaLookAhead;
4121 this->hVfsIosOvaLookAhead = NIL_RTVFSIOSTREAM;
4122 /* We don't free the name since it may be referenced in error messages and such. */
4123 return hVfsIos;
4124}
4125
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette