/* $Id: PerformanceSolaris.cpp 73097 2018-07-12 21:06:33Z vboxsync $ */ /** @file * * VBox Solaris-specific Performance Classes implementation. */ /* * Copyright (C) 2008-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ #undef _FILE_OFFSET_BITS #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Logging.h" #include "Performance.h" #include #include #include #include namespace pm { typedef libzfs_handle_t *(*PFNZFSINIT)(void); typedef void (*PFNZFSFINI)(libzfs_handle_t *); typedef zfs_handle_t *(*PFNZFSOPEN)(libzfs_handle_t *, const char *, int); typedef void (*PFNZFSCLOSE)(zfs_handle_t *); typedef uint64_t (*PFNZFSPROPGETINT)(zfs_handle_t *, zfs_prop_t); typedef zpool_handle_t *(*PFNZPOOLOPEN)(libzfs_handle_t *, const char *); typedef void (*PFNZPOOLCLOSE)(zpool_handle_t *); typedef nvlist_t *(*PFNZPOOLGETCONFIG)(zpool_handle_t *, nvlist_t **); typedef char *(*PFNZPOOLVDEVNAME)(libzfs_handle_t *, zpool_handle_t *, nvlist_t *, boolean_t); typedef std::map FsMap; class CollectorSolaris : public CollectorHAL { public: CollectorSolaris(); virtual ~CollectorSolaris(); virtual int getHostMemoryUsage(ULONG *total, ULONG *used, ULONG *available); virtual int getHostFilesystemUsage(const char *name, ULONG *total, ULONG *used, ULONG *available); virtual int getHostDiskSize(const char *name, uint64_t *size); virtual int getProcessMemoryUsage(RTPROCESS process, ULONG *used); virtual int getRawHostCpuLoad(uint64_t *user, uint64_t *kernel, uint64_t *idle); virtual int getRawHostNetworkLoad(const char *name, uint64_t *rx, uint64_t *tx); virtual int getRawHostDiskLoad(const char *name, uint64_t *disk_ms, uint64_t *total_ms); virtual int getRawProcessCpuLoad(RTPROCESS process, uint64_t *user, uint64_t *kernel, uint64_t *total); virtual int getDiskListByFs(const char *name, DiskList& listUsage, DiskList& listLoad); private: static uint32_t getInstance(const char *pszIfaceName, char *pszDevName); uint64_t getZfsTotal(uint64_t cbTotal, const char *szFsType, const char *szFsName); void updateFilesystemMap(void); RTCString physToInstName(const char *pcszPhysName); RTCString pathToInstName(const char *pcszDevPathName); uint64_t wrapCorrection(uint32_t cur, uint64_t prev, const char *name); uint64_t wrapDetection(uint64_t cur, uint64_t prev, const char *name); kstat_ctl_t *mKC; kstat_t *mSysPages; kstat_t *mZFSCache; void *mZfsSo; libzfs_handle_t *mZfsLib; PFNZFSINIT mZfsInit; PFNZFSFINI mZfsFini; PFNZFSOPEN mZfsOpen; PFNZFSCLOSE mZfsClose; PFNZFSPROPGETINT mZfsPropGetInt; PFNZPOOLOPEN mZpoolOpen; PFNZPOOLCLOSE mZpoolClose; PFNZPOOLGETCONFIG mZpoolGetConfig; PFNZPOOLVDEVNAME mZpoolVdevName; FsMap mFsMap; uint32_t mCpus; ULONG totalRAM; }; CollectorHAL *createHAL() { return new CollectorSolaris(); } // Collector HAL for Solaris CollectorSolaris::CollectorSolaris() : mKC(0), mSysPages(0), mZFSCache(0), mZfsLib(0), mCpus(0) { if ((mKC = kstat_open()) == 0) { Log(("kstat_open() -> %d\n", errno)); return; } if ((mSysPages = kstat_lookup(mKC, (char *)"unix", 0, (char *)"system_pages")) == 0) { Log(("kstat_lookup(system_pages) -> %d\n", errno)); return; } if ((mZFSCache = kstat_lookup(mKC, (char *)"zfs", 0, (char *)"arcstats")) == 0) { Log(("kstat_lookup(system_pages) -> %d\n", errno)); } /* Try to load libzfs dynamically, it may be missing. */ mZfsSo = dlopen("libzfs.so", RTLD_LAZY); if (mZfsSo) { mZfsInit = (PFNZFSINIT)(uintptr_t)dlsym(mZfsSo, "libzfs_init"); mZfsFini = (PFNZFSFINI)(uintptr_t)dlsym(mZfsSo, "libzfs_fini"); mZfsOpen = (PFNZFSOPEN)(uintptr_t)dlsym(mZfsSo, "zfs_open"); mZfsClose = (PFNZFSCLOSE)(uintptr_t)dlsym(mZfsSo, "zfs_close"); mZfsPropGetInt = (PFNZFSPROPGETINT)(uintptr_t)dlsym(mZfsSo, "zfs_prop_get_int"); mZpoolOpen = (PFNZPOOLOPEN)(uintptr_t)dlsym(mZfsSo, "zpool_open"); mZpoolClose = (PFNZPOOLCLOSE)(uintptr_t)dlsym(mZfsSo, "zpool_close"); mZpoolGetConfig = (PFNZPOOLGETCONFIG)(uintptr_t)dlsym(mZfsSo, "zpool_get_config"); mZpoolVdevName = (PFNZPOOLVDEVNAME)(uintptr_t)dlsym(mZfsSo, "zpool_vdev_name"); if ( mZfsInit && mZfsOpen && mZfsClose && mZfsPropGetInt && mZpoolOpen && mZpoolClose && mZpoolGetConfig && mZpoolVdevName) mZfsLib = mZfsInit(); else LogRel(("Incompatible libzfs? libzfs_init=%p zfs_open=%p zfs_close=%p zfs_prop_get_int=%p\n", mZfsInit, mZfsOpen, mZfsClose, mZfsPropGetInt)); } updateFilesystemMap(); /* Notice that mCpus member will be initialized by HostCpuLoadRaw::init() */ uint64_t cb; int rc = RTSystemQueryTotalRam(&cb); if (RT_FAILURE(rc)) totalRAM = 0; else totalRAM = (ULONG)(cb / 1024); } CollectorSolaris::~CollectorSolaris() { if (mKC) kstat_close(mKC); /* Not calling libzfs_fini() causes file descriptor leaks (#6788). */ if (mZfsFini && mZfsLib) mZfsFini(mZfsLib); if (mZfsSo) dlclose(mZfsSo); } int CollectorSolaris::getRawHostCpuLoad(uint64_t *user, uint64_t *kernel, uint64_t *idle) { int rc = VINF_SUCCESS; kstat_t *ksp; uint64_t tmpUser, tmpKernel, tmpIdle; int cpus; cpu_stat_t cpu_stats; if (mKC == 0) return VERR_INTERNAL_ERROR; tmpUser = tmpKernel = tmpIdle = cpus = 0; for (ksp = mKC->kc_chain; ksp != NULL; ksp = ksp->ks_next) { if (strcmp(ksp->ks_module, "cpu_stat") == 0) { if (kstat_read(mKC, ksp, &cpu_stats) == -1) { Log(("kstat_read() -> %d\n", errno)); return VERR_INTERNAL_ERROR; } ++cpus; tmpUser += cpu_stats.cpu_sysinfo.cpu[CPU_USER]; tmpKernel += cpu_stats.cpu_sysinfo.cpu[CPU_KERNEL]; tmpIdle += cpu_stats.cpu_sysinfo.cpu[CPU_IDLE]; } } if (cpus == 0) { Log(("no cpu stats found!\n")); return VERR_INTERNAL_ERROR; } else mCpus = cpus; if (user) *user = tmpUser; if (kernel) *kernel = tmpKernel; if (idle) *idle = tmpIdle; return rc; } int CollectorSolaris::getRawProcessCpuLoad(RTPROCESS process, uint64_t *user, uint64_t *kernel, uint64_t *total) { int rc = VINF_SUCCESS; char *pszName; prusage_t prusage; RTStrAPrintf(&pszName, "/proc/%d/usage", process); Log(("Opening %s...\n", pszName)); int h = open(pszName, O_RDONLY); RTStrFree(pszName); if (h != -1) { if (read(h, &prusage, sizeof(prusage)) == sizeof(prusage)) { //Assert((pid_t)process == pstatus.pr_pid); //Log(("user=%u kernel=%u total=%u\n", prusage.pr_utime.tv_sec, prusage.pr_stime.tv_sec, prusage.pr_tstamp.tv_sec)); /* * The CPU time spent must be adjusted by the number of cores for compatibility with * other platforms (see @bugref{6345}). */ Assert(mCpus); if (mCpus) { *user = ((uint64_t)prusage.pr_utime.tv_sec * 1000000000 + prusage.pr_utime.tv_nsec) / mCpus; *kernel = ((uint64_t)prusage.pr_stime.tv_sec * 1000000000 + prusage.pr_stime.tv_nsec) / mCpus; } else *user = *kernel = 0; *total = (uint64_t)prusage.pr_tstamp.tv_sec * 1000000000 + prusage.pr_tstamp.tv_nsec; //Log(("user=%llu kernel=%llu total=%llu\n", *user, *kernel, *total)); } else { Log(("read() -> %d\n", errno)); rc = VERR_FILE_IO_ERROR; } close(h); } else { Log(("open() -> %d\n", errno)); rc = VERR_ACCESS_DENIED; } return rc; } int CollectorSolaris::getHostMemoryUsage(ULONG *total, ULONG *used, ULONG *available) { AssertReturn(totalRAM, VERR_INTERNAL_ERROR); uint64_t cb; int rc = RTSystemQueryAvailableRam(&cb); if (RT_SUCCESS(rc)) { *total = totalRAM; *available = cb / 1024; *used = *total - *available; } return rc; } int CollectorSolaris::getProcessMemoryUsage(RTPROCESS process, ULONG *used) { int rc = VINF_SUCCESS; char *pszName = NULL; psinfo_t psinfo; RTStrAPrintf(&pszName, "/proc/%d/psinfo", process); Log(("Opening %s...\n", pszName)); int h = open(pszName, O_RDONLY); RTStrFree(pszName); if (h != -1) { /* psinfo_t keeps growing, so only read what we need to maximize * cross-version compatibility. The structures are compatible. */ ssize_t cb = RT_UOFFSETOF(psinfo_t, pr_rssize) + RT_SIZEOFMEMB(psinfo_t, pr_rssize); AssertCompile(RTASSERT_OFFSET_OF(psinfo_t, pr_rssize) > RTASSERT_OFFSET_OF(psinfo_t, pr_pid)); if (read(h, &psinfo, cb) == cb) { Assert((pid_t)process == psinfo.pr_pid); *used = psinfo.pr_rssize; } else { Log(("read() -> %d\n", errno)); rc = VERR_FILE_IO_ERROR; } close(h); } else { Log(("open() -> %d\n", errno)); rc = VERR_ACCESS_DENIED; } return rc; } uint32_t CollectorSolaris::getInstance(const char *pszIfaceName, char *pszDevName) { /* * Get the instance number from the interface name, then clip it off. */ int cbInstance = 0; int cbIface = strlen(pszIfaceName); const char *pszEnd = pszIfaceName + cbIface - 1; for (int i = 0; i < cbIface - 1; i++) { if (!RT_C_IS_DIGIT(*pszEnd)) break; cbInstance++; pszEnd--; } uint32_t uInstance = RTStrToUInt32(pszEnd + 1); strncpy(pszDevName, pszIfaceName, cbIface - cbInstance); pszDevName[cbIface - cbInstance] = '\0'; return uInstance; } uint64_t CollectorSolaris::wrapCorrection(uint32_t cur, uint64_t prev, const char *name) { NOREF(name); uint64_t corrected = (prev & 0xffffffff00000000) + cur; if (cur < (prev & 0xffffffff)) { /* wrap has occurred */ corrected += 0x100000000; LogFlowThisFunc(("Corrected wrap on %s (%u < %u), returned %llu.\n", name, cur, (uint32_t)prev, corrected)); } return corrected; } uint64_t CollectorSolaris::wrapDetection(uint64_t cur, uint64_t prev, const char *name) { static bool fNotSeen = true; if (fNotSeen && cur < prev) { fNotSeen = false; LogRel(("Detected wrap on %s (%llu < %llu).\n", name, cur, prev)); } return cur; } /* * WARNING! This function expects the previous values of rx and tx counter to * be passed in as well as returnes new values in the same parameters. This is * needed to provide a workaround for 32-bit counter wrapping. */ int CollectorSolaris::getRawHostNetworkLoad(const char *name, uint64_t *rx, uint64_t *tx) { static bool g_fNotReported = true; AssertReturn(strlen(name) < KSTAT_STRLEN, VERR_INVALID_PARAMETER); LogFlowThisFunc(("m=%s i=%d n=%s\n", "link", -1, name)); kstat_t *ksAdapter = kstat_lookup(mKC, (char *)"link", -1, (char *)name); if (ksAdapter == 0) { char szModule[KSTAT_STRLEN]; uint32_t uInstance = getInstance(name, szModule); LogFlowThisFunc(("m=%s i=%u n=%s\n", szModule, uInstance, "phys")); ksAdapter = kstat_lookup(mKC, szModule, uInstance, (char *)"phys"); if (ksAdapter == 0) { LogFlowThisFunc(("m=%s i=%u n=%s\n", szModule, uInstance, name)); ksAdapter = kstat_lookup(mKC, szModule, uInstance, (char *)name); if (ksAdapter == 0) { static uint32_t s_tsLogRelLast; uint32_t tsNow = RTTimeProgramSecTS(); if ( tsNow < RT_SEC_1HOUR || (tsNow - s_tsLogRelLast >= 60)) { s_tsLogRelLast = tsNow; LogRel(("Failed to get network statistics for %s. Max one msg/min.\n", name)); } return VERR_INTERNAL_ERROR; } } } if (kstat_read(mKC, ksAdapter, 0) == -1) { LogRel(("kstat_read(adapter) -> %d\n", errno)); return VERR_INTERNAL_ERROR; } kstat_named_t *kn; if ((kn = (kstat_named_t *)kstat_data_lookup(ksAdapter, (char *)"rbytes64")) == 0) { if (g_fNotReported) { g_fNotReported = false; LogRel(("Failed to locate rbytes64, falling back to 32-bit counters...\n")); } if ((kn = (kstat_named_t *)kstat_data_lookup(ksAdapter, (char *)"rbytes")) == 0) { LogRel(("kstat_data_lookup(rbytes) -> %d, name=%s\n", errno, name)); return VERR_INTERNAL_ERROR; } *rx = wrapCorrection(kn->value.ul, *rx, "rbytes"); } else *rx = wrapDetection(kn->value.ull, *rx, "rbytes64"); if ((kn = (kstat_named_t *)kstat_data_lookup(ksAdapter, (char *)"obytes64")) == 0) { if (g_fNotReported) { g_fNotReported = false; LogRel(("Failed to locate obytes64, falling back to 32-bit counters...\n")); } if ((kn = (kstat_named_t *)kstat_data_lookup(ksAdapter, (char *)"obytes")) == 0) { LogRel(("kstat_data_lookup(obytes) -> %d\n", errno)); return VERR_INTERNAL_ERROR; } *tx = wrapCorrection(kn->value.ul, *tx, "obytes"); } else *tx = wrapDetection(kn->value.ull, *tx, "obytes64"); return VINF_SUCCESS; } int CollectorSolaris::getRawHostDiskLoad(const char *name, uint64_t *disk_ms, uint64_t *total_ms) { int rc = VINF_SUCCESS; AssertReturn(strlen(name) < KSTAT_STRLEN, VERR_INVALID_PARAMETER); LogFlowThisFunc(("n=%s\n", name)); kstat_t *ksDisk = kstat_lookup(mKC, NULL, -1, (char *)name); if (ksDisk != 0) { if (kstat_read(mKC, ksDisk, 0) == -1) { LogRel(("kstat_read(%s) -> %d\n", name, errno)); rc = VERR_INTERNAL_ERROR; } else { kstat_io_t *ksIo = KSTAT_IO_PTR(ksDisk); /* * We do not care for wrap possibility here, although we may * reconsider in about 300 years (9223372036854775807 ns). */ *disk_ms = ksIo->rtime / 1000000; *total_ms = ksDisk->ks_snaptime / 1000000; } } else { LogRel(("kstat_lookup(%s) -> %d\n", name, errno)); rc = VERR_INTERNAL_ERROR; } return rc; } uint64_t CollectorSolaris::getZfsTotal(uint64_t cbTotal, const char *szFsType, const char *szFsName) { if (strcmp(szFsType, "zfs")) return cbTotal; FsMap::iterator it = mFsMap.find(szFsName); if (it == mFsMap.end()) return cbTotal; char *pszDataset = strdup(it->second.c_str()); char *pszEnd = pszDataset + strlen(pszDataset); uint64_t uAvail = 0; while (pszEnd) { zfs_handle_t *hDataset; *pszEnd = 0; hDataset = mZfsOpen(mZfsLib, pszDataset, ZFS_TYPE_DATASET); if (!hDataset) break; if (uAvail == 0) { uAvail = mZfsPropGetInt(hDataset, ZFS_PROP_REFQUOTA); if (uAvail == 0) uAvail = UINT64_MAX; } uint64_t uQuota = mZfsPropGetInt(hDataset, ZFS_PROP_QUOTA); if (uQuota && uAvail > uQuota) uAvail = uQuota; pszEnd = strrchr(pszDataset, '/'); if (!pszEnd) { uint64_t uPoolSize = mZfsPropGetInt(hDataset, ZFS_PROP_USED) + mZfsPropGetInt(hDataset, ZFS_PROP_AVAILABLE); if (uAvail > uPoolSize) uAvail = uPoolSize; } mZfsClose(hDataset); } free(pszDataset); return uAvail ? uAvail : cbTotal; } int CollectorSolaris::getHostFilesystemUsage(const char *path, ULONG *total, ULONG *used, ULONG *available) { struct statvfs64 stats; if (statvfs64(path, &stats) == -1) { LogRel(("Failed to collect %s filesystem usage: errno=%d.\n", path, errno)); return VERR_ACCESS_DENIED; } uint64_t cbBlock = stats.f_frsize ? stats.f_frsize : stats.f_bsize; *total = (ULONG)(getZfsTotal(cbBlock * stats.f_blocks, stats.f_basetype, path) / _1M); LogFlowThisFunc(("f_blocks=%llu.\n", stats.f_blocks)); *used = (ULONG)(cbBlock * (stats.f_blocks - stats.f_bfree) / _1M); *available = (ULONG)(cbBlock * stats.f_bavail / _1M); return VINF_SUCCESS; } int CollectorSolaris::getHostDiskSize(const char *name, uint64_t *size) { int rc = VINF_SUCCESS; AssertReturn(strlen(name) + 5 < KSTAT_STRLEN, VERR_INVALID_PARAMETER); LogFlowThisFunc(("n=%s\n", name)); char szName[KSTAT_STRLEN]; strcpy(szName, name); strcat(szName, ",err"); kstat_t *ksDisk = kstat_lookup(mKC, NULL, -1, szName); if (ksDisk != 0) { if (kstat_read(mKC, ksDisk, 0) == -1) { LogRel(("kstat_read(%s) -> %d\n", name, errno)); rc = VERR_INTERNAL_ERROR; } else { kstat_named_t *kn; if ((kn = (kstat_named_t *)kstat_data_lookup(ksDisk, (char *)"Size")) == 0) { LogRel(("kstat_data_lookup(rbytes) -> %d, name=%s\n", errno, name)); return VERR_INTERNAL_ERROR; } *size = kn->value.ull; } } else { LogRel(("kstat_lookup(%s) -> %d\n", szName, errno)); rc = VERR_INTERNAL_ERROR; } return rc; } RTCString CollectorSolaris::physToInstName(const char *pcszPhysName) { FILE *fp = fopen("/etc/path_to_inst", "r"); if (!fp) return RTCString(); RTCString strInstName; size_t cbName = strlen(pcszPhysName); char szBuf[RTPATH_MAX]; while (fgets(szBuf, sizeof(szBuf), fp)) { if (szBuf[0] == '"' && strncmp(szBuf + 1, pcszPhysName, cbName) == 0) { char *pszDriver, *pszInstance; pszDriver = strrchr(szBuf, '"'); if (pszDriver) { *pszDriver = '\0'; pszDriver = strrchr(szBuf, '"'); if (pszDriver) { *pszDriver++ = '\0'; pszInstance = strrchr(szBuf, ' '); if (pszInstance) { *pszInstance = '\0'; pszInstance = strrchr(szBuf, ' '); if (pszInstance) { *pszInstance++ = '\0'; strInstName = pszDriver; strInstName += pszInstance; break; } } } } } } fclose(fp); return strInstName; } RTCString CollectorSolaris::pathToInstName(const char *pcszDevPathName) { char szLink[RTPATH_MAX]; if (readlink(pcszDevPathName, szLink, sizeof(szLink)) != -1) { char *pszStart, *pszEnd; pszStart = strstr(szLink, "/devices/"); pszEnd = strrchr(szLink, ':'); if (pszStart && pszEnd) { pszStart += 8; // Skip "/devices" *pszEnd = '\0'; // Trim partition return physToInstName(pszStart); } } return RTCString(pcszDevPathName); } int CollectorSolaris::getDiskListByFs(const char *name, DiskList& listUsage, DiskList& listLoad) { FsMap::iterator it = mFsMap.find(name); if (it == mFsMap.end()) return VERR_INVALID_PARAMETER; RTCString strName = it->second.substr(0, it->second.find("/")); if (mZpoolOpen && mZpoolClose && mZpoolGetConfig && !strName.isEmpty()) { zpool_handle_t *zh = mZpoolOpen(mZfsLib, strName.c_str()); if (zh) { unsigned int cChildren = 0; nvlist_t **nvChildren = NULL; nvlist_t *nvRoot = NULL; nvlist_t *nvConfig = mZpoolGetConfig(zh, NULL); if ( !nvlist_lookup_nvlist(nvConfig, ZPOOL_CONFIG_VDEV_TREE, &nvRoot) && !nvlist_lookup_nvlist_array(nvRoot, ZPOOL_CONFIG_CHILDREN, &nvChildren, &cChildren)) { for (unsigned int i = 0; i < cChildren; ++i) { uint64_t fHole = 0; uint64_t fLog = 0; nvlist_lookup_uint64(nvChildren[i], ZPOOL_CONFIG_IS_HOLE, &fHole); nvlist_lookup_uint64(nvChildren[i], ZPOOL_CONFIG_IS_LOG, &fLog); if (!fHole && !fLog) { char *pszChildName = mZpoolVdevName(mZfsLib, zh, nvChildren[i], _B_FALSE); Assert(pszChildName); RTCString strDevPath("/dev/dsk/"); strDevPath += pszChildName; char szLink[RTPATH_MAX]; if (readlink(strDevPath.c_str(), szLink, sizeof(szLink)) != -1) { char *pszStart, *pszEnd; pszStart = strstr(szLink, "/devices/"); pszEnd = strrchr(szLink, ':'); if (pszStart && pszEnd) { pszStart += 8; // Skip "/devices" *pszEnd = '\0'; // Trim partition listUsage.push_back(physToInstName(pszStart)); } } free(pszChildName); } } } mZpoolClose(zh); } } else listUsage.push_back(pathToInstName(it->second.c_str())); listLoad = listUsage; return VINF_SUCCESS; } void CollectorSolaris::updateFilesystemMap(void) { FILE *fp = fopen("/etc/mnttab", "r"); if (fp) { struct mnttab Entry; int rc = 0; resetmnttab(fp); while ((rc = getmntent(fp, &Entry)) == 0) mFsMap[Entry.mnt_mountp] = Entry.mnt_special; fclose(fp); if (rc != -1) LogRel(("Error while reading mnttab: %d\n", rc)); } } }