VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/acpi/acpi.cpp@ 108015

Last change on this file since 108015 was 108015, checked in by vboxsync, 3 weeks ago

Runtime/acpi: Some re-arrangement and start with an ASL compiler, bugref:10733

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 59.3 KB
Line 
1/* $Id: acpi.cpp 108015 2025-02-01 19:21:10Z vboxsync $ */
2/** @file
3 * IPRT - Advanced Configuration and Power Interface (ACPI) Table generation API.
4 */
5
6/*
7 * Copyright (C) 2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * The contents of this file may alternatively be used under the terms
26 * of the Common Development and Distribution License Version 1.0
27 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
28 * in the VirtualBox distribution, in which case the provisions of the
29 * CDDL are applicable instead of those of the GPL.
30 *
31 * You may elect to license modified versions of this file under the
32 * terms and conditions of either the GPL or the CDDL or both.
33 *
34 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
35 */
36
37
38/*********************************************************************************************************************************
39* Header Files *
40*********************************************************************************************************************************/
41#define LOG_GROUP RTLOGGROUP_ACPI
42#include <iprt/acpi.h>
43#include <iprt/asm.h>
44#include <iprt/file.h>
45#include <iprt/mem.h>
46#include <iprt/string.h>
47#include <iprt/uuid.h>
48
49#include <iprt/formats/acpi-aml.h>
50#include <iprt/formats/acpi-resources.h>
51
52#include "internal/acpi.h"
53
54
55/*********************************************************************************************************************************
56* Defined Constants And Macros *
57*********************************************************************************************************************************/
58
59
60
61/*********************************************************************************************************************************
62* Structures and Typedefs *
63*********************************************************************************************************************************/
64
65/**
66 * Package stack element.
67 */
68typedef struct RTACPITBLSTACKELEM
69{
70 /** Pointer to the table buffer memory where the PkgLength object starts. */
71 uint8_t *pbPkgLength;
72 /** Current size of the package in bytes, without the PkgLength object. */
73 uint32_t cbPkg;
74 /** The operator creating the package, UINT8_MAX denotes the special root operator. */
75 uint8_t bOp;
76} RTACPITBLSTACKELEM;
77/** Pointer to a package stack element. */
78typedef RTACPITBLSTACKELEM *PRTACPITBLSTACKELEM;
79/** Pointer to a const package stack element. */
80typedef const RTACPITBLSTACKELEM *PCRTACPITBLSTACKELEM;
81
82
83/**
84 * ACPI table generator instance.
85 */
86typedef struct RTACPITBLINT
87{
88 /** Pointer to the ACPI table header, needed when finalizing the table. */
89 PACPITBLHDR pHdr;
90 /** Byte buffer holding the actual table. */
91 uint8_t *pbTblBuf;
92 /** Size of the table buffer. */
93 uint32_t cbTblBuf;
94 /** Current offset into the table buffer. */
95 uint32_t offTblBuf;
96 /** Flag whether the table is finalized. */
97 bool fFinalized;
98 /** First error code encountered. */
99 int rcErr;
100 /** Pointer to the package element stack. */
101 PRTACPITBLSTACKELEM paPkgStack;
102 /** Number of elements the package stack can hold. */
103 uint32_t cPkgStackElems;
104 /** Index of the current package in the package stack. */
105 uint32_t idxPkgStackElem;
106} RTACPITBLINT;
107/** Pointer to an ACPI table generator instance. */
108typedef RTACPITBLINT *PRTACPITBLINT;
109
110
111/**
112 * ACPI resource builder instance.
113 */
114typedef struct RTACPIRESINT
115{
116 /** Byte buffer holding the resource. */
117 uint8_t *pbResBuf;
118 /** Size of the resource buffer. */
119 size_t cbResBuf;
120 /** Current offset into the resource buffer. */
121 uint32_t offResBuf;
122 /** Flag whether the resource is sealed. */
123 bool fSealed;
124 /** First error code encountered. */
125 int rcErr;
126} RTACPIRESINT;
127/** Pointer to an ACPI resource builder instance. */
128typedef RTACPIRESINT *PRTACPIRESINT;
129
130
131/*********************************************************************************************************************************
132* Global Variables *
133*********************************************************************************************************************************/
134
135
136/*********************************************************************************************************************************
137* Internal Functions *
138*********************************************************************************************************************************/
139
140
141/**
142 * Copies the given string into the given buffer padding the remainder with the given character.
143 *
144 * @param pbId The destination to copy the string to.
145 * @param cbId Size of the buffer in bytes.
146 * @param pszStr The string to copy.
147 * @param chPad The character to pad with.
148 */
149static void rtAcpiTblCopyStringPadWith(uint8_t *pbId, size_t cbId, const char *pszStr, char chPad)
150{
151 Assert(strlen(pszStr) <= cbId);
152
153 uint32_t idx = 0;
154 while (*pszStr != '\0')
155 pbId[idx++] = (uint8_t)*pszStr++;
156
157 while (idx < cbId)
158 pbId[idx++] = chPad;
159}
160
161
162/**
163 * Updates the package length of the current package in the stack
164 *
165 * @param pThis The ACPI table instance.
166 * @param cbAdd How many bytes to add to the package length.
167 */
168DECL_FORCE_INLINE(void) rtAcpiTblUpdatePkgLength(PRTACPITBLINT pThis, uint32_t cbAdd)
169{
170 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
171 pPkgElem->cbPkg += cbAdd;
172}
173
174
175/**
176 * Ensures there is the given amount of room in the ACPI table buffer returning the pointer.
177 *
178 * @returns The pointer to the free space on success or NULL if out of memory.
179 * @param pThis The ACPI table instance.
180 * @param cbReq Amount of bytes requested.
181 */
182static uint8_t *rtAcpiTblBufEnsureSpace(PRTACPITBLINT pThis, uint32_t cbReq)
183{
184 if (RT_LIKELY(pThis->cbTblBuf - pThis->offTblBuf >= cbReq))
185 {
186 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
187 pThis->offTblBuf += cbReq;
188 return pb;
189 }
190
191 uint32_t const cbNew = RT_ALIGN_32(pThis->cbTblBuf + cbReq, _4K);
192 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbTblBuf, cbNew);
193 if (RT_UNLIKELY(!pbNew))
194 {
195 pThis->rcErr = VERR_NO_MEMORY;
196 return NULL;
197 }
198
199 pThis->pbTblBuf = pbNew;
200 pThis->cbTblBuf = cbNew;
201
202 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
203 pThis->offTblBuf += cbReq;
204 return pb;
205}
206
207
208/**
209 * Appends a new package in the given ACPI table instance package stack.
210 *
211 * @returns IPRT status code.
212 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
213 * @param pThis The ACPI table instance.
214 * @param bOp The opcode byte the package starts with (for verification purposes when finalizing the package).
215 * @param pbPkgBuf The Start of the package buffer.
216 */
217static int rtAcpiTblPkgAppendEx(PRTACPITBLINT pThis, uint8_t bOp, uint8_t *pbPkgBuf)
218{
219 /* Get a new stack element. */
220 if (pThis->idxPkgStackElem + 1 == pThis->cPkgStackElems)
221 {
222 uint32_t const cPkgElemsNew = pThis->cPkgStackElems + 8;
223 PRTACPITBLSTACKELEM paPkgStackNew = (PRTACPITBLSTACKELEM)RTMemRealloc(pThis->paPkgStack, cPkgElemsNew * sizeof(*paPkgStackNew));
224 if (!paPkgStackNew)
225 {
226 pThis->rcErr = VERR_NO_MEMORY;
227 return VERR_NO_MEMORY;
228 }
229
230 pThis->paPkgStack = paPkgStackNew;
231 pThis->cPkgStackElems = cPkgElemsNew;
232 }
233
234 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[++pThis->idxPkgStackElem];
235 pStackElem->pbPkgLength = pbPkgBuf;
236 pStackElem->cbPkg = 0;
237 pStackElem->bOp = bOp;
238 return VINF_SUCCESS;
239}
240
241
242/**
243 * Starts a new ACPI package in the given ACPI table instance.
244 *
245 * @returns IPRT status code.
246 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
247 * @param pThis The ACPI table instance.
248 * @param bOp The opcode byte identifying the package content.
249 */
250static int rtAcpiTblPkgStart(PRTACPITBLINT pThis, uint8_t bOp)
251{
252 /*
253 * Allocate 1 byte for opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
254 * This will be corrected when the package is finalized.
255 */
256 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 5);
257 if (!pbPkg)
258 {
259 pThis->rcErr = VERR_NO_MEMORY;
260 return VERR_NO_MEMORY;
261 }
262
263 *pbPkg = bOp;
264 /*
265 * Update the package length of the outer package for the opcode,
266 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
267 */
268 rtAcpiTblUpdatePkgLength(pThis, sizeof(bOp));
269 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 1);
270}
271
272
273/**
274 * Starts a new ACPI package in the given ACPI table instance. This is for opcodes prefixed with
275 * ACPI_AML_BYTE_CODE_PREFIX_EXT_O, which will be added automatically.
276 *
277 * @returns IPRT status code.
278 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
279 * @param pThis The ACPI table instance.
280 * @param bOp The opcode byte identifying the package content.
281 */
282static int rtAcpiTblPkgStartExt(PRTACPITBLINT pThis, uint8_t bOp)
283{
284 /*
285 * Allocate 2 bytes for ExtOpPrefix opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
286 * This will be corrected when the package is finalized.
287 */
288 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 6);
289 if (!pbPkg)
290 {
291 pThis->rcErr = VERR_NO_MEMORY;
292 return VERR_NO_MEMORY;
293 }
294
295 pbPkg[0] = ACPI_AML_BYTE_CODE_PREFIX_EXT_OP;
296 pbPkg[1] = bOp;
297
298 /*
299 * Update the package length of the outer package for the opcode,
300 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
301 */
302 rtAcpiTblUpdatePkgLength(pThis, sizeof(uint8_t) + sizeof(bOp));
303 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 2);
304}
305
306
307/**
308 * Finishes the current package on the top of the package stack, setting the
309 * package length accordingly.
310 *
311 * @returns IPRT status code.
312 * @retval VERR_INVALID_STATE if bOp doesn't match the opcode the package was started with (asserted in debug builds).
313 * @retval VERR_BUFFER_OVERFLOW if the package length exceeds what can be encoded in the package length field.
314 * @param pThis The ACPI table instance.
315 * @param bOp The opcode byte identifying the package content the package was started with.
316 */
317static int rtAcpiTblPkgFinish(PRTACPITBLINT pThis, uint8_t bOp)
318{
319 /* Ensure the op matches what is current on the top of the stack. */
320 AssertReturn(pThis->paPkgStack[pThis->idxPkgStackElem].bOp == bOp, VERR_INVALID_STATE);
321
322 /* Pop the topmost stack element from the stack. */
323 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem--];
324
325 /*
326 * Determine how many bytes we actually need for the PkgLength and re-arrange the ACPI table.
327 *
328 * Note! PkgLength will also include its own length.
329 */
330 uint8_t *pbPkgLength = pPkgElem->pbPkgLength;
331 uint32_t cbThisPkg = pPkgElem->cbPkg;
332 if (cbThisPkg + 1 <= 63)
333 {
334 /* Remove the gap. */
335 memmove(pbPkgLength + 1, pbPkgLength + 4, cbThisPkg);
336 pThis->offTblBuf -= 3;
337
338 /* PkgLength only consists of the package lead byte. */
339 cbThisPkg += 1;
340 *pbPkgLength = (cbThisPkg & 0x3f);
341 }
342 else if (cbThisPkg + 2 < RT_BIT_32(12))
343 {
344 /* Remove the gap. */
345 memmove(pbPkgLength + 2, pbPkgLength + 4, cbThisPkg);
346 pThis->offTblBuf -= 2;
347
348 cbThisPkg += 2;
349 pbPkgLength[0] = (1 << 6) | (cbThisPkg & 0xf);
350 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
351 }
352 else if (cbThisPkg + 3 < RT_BIT_32(20))
353 {
354 /* Remove the gap. */
355 memmove(pbPkgLength + 3, pbPkgLength + 4, cbThisPkg);
356 pThis->offTblBuf -= 1;
357
358 cbThisPkg += 3;
359 pbPkgLength[0] = (2 << 6) | (cbThisPkg & 0xf);
360 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
361 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
362 }
363 else if (cbThisPkg + 4 < RT_BIT_32(28))
364 {
365 cbThisPkg += 4;
366 pbPkgLength[0] = (3 << 6) | (cbThisPkg & 0xf);
367 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
368 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
369 pbPkgLength[3] = (cbThisPkg >> 20) & 0xff;
370 }
371 else
372 return VERR_BUFFER_OVERFLOW;
373
374 /* Update the size of the outer package. */
375 pThis->paPkgStack[pThis->idxPkgStackElem].cbPkg += cbThisPkg;
376
377 return VINF_SUCCESS;
378}
379
380
381/**
382 * Appends the given byte to the ACPI table, updating the package length of the current package.
383 *
384 * @param pThis The ACPI table instance.
385 * @param bData The byte data to append.
386 */
387DECLINLINE(void) rtAcpiTblAppendByte(PRTACPITBLINT pThis, uint8_t bData)
388{
389 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, sizeof(bData));
390 if (pb)
391 {
392 *pb = bData;
393 rtAcpiTblUpdatePkgLength(pThis, sizeof(bData));
394 }
395}
396
397
398/**
399 * Appends the given date to the ACPI table, updating the package length of the current package.
400 *
401 * @param pThis The ACPI table instance.
402 * @param pvData The data to append.
403 * @param cbData Size of the data in bytes.
404 */
405DECLINLINE(void) rtAcpiTblAppendData(PRTACPITBLINT pThis, const void *pvData, uint32_t cbData)
406{
407 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbData);
408 if (pb)
409 {
410 memcpy(pb, pvData, cbData);
411 rtAcpiTblUpdatePkgLength(pThis, cbData);
412 }
413}
414
415
416/**
417 * Appends the given namestring to the ACPI table, updating the package length of the current package
418 * and padding the name with _ if too short.
419 *
420 * @param pThis The ACPI table instance.
421 * @param pszName The name to append, maximum is 4 bytes (or 5 if \\ is the first character).
422 */
423DECLINLINE(void) rtAcpiTblAppendNameString(PRTACPITBLINT pThis, const char *pszName)
424{
425 uint32_t cbName = *pszName == '\\' ? 5 : 4;
426 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbName);
427 if (pb)
428 {
429 rtAcpiTblCopyStringPadWith(pb, cbName, pszName, '_');
430 rtAcpiTblUpdatePkgLength(pThis, cbName);
431 }
432}
433
434
435/**
436 * Encodes a PkgLength item for the given number.
437 *
438 * @returns IPRT status code.
439 * @param pThis The ACPI table instance.
440 * @param u64Length The length to encode.
441 */
442DECLINLINE(int) rtAcpiTblEncodePkgLength(PRTACPITBLINT pThis, uint64_t u64Length)
443{
444 AssertReturn(u64Length < RT_BIT_32(28), VERR_BUFFER_OVERFLOW);
445
446 if (u64Length <= 63)
447 {
448 /* PkgLength only consists of the package lead byte. */
449 rtAcpiTblAppendByte(pThis, (u64Length & 0x3f));
450 }
451 else if (u64Length < RT_BIT_32(12))
452 {
453 uint8_t abData[2];
454 abData[0] = (1 << 6) | (u64Length & 0xf);
455 abData[1] = (u64Length >> 4) & 0xff;
456 rtAcpiTblAppendData(pThis, &abData[0], sizeof(abData));
457 }
458 else if (u64Length < RT_BIT_32(20))
459 {
460 uint8_t abData[3];
461 abData[0] = (2 << 6) | (u64Length & 0xf);
462 abData[1] = (u64Length >> 4) & 0xff;
463 abData[2] = (u64Length >> 12) & 0xff;
464 rtAcpiTblAppendData(pThis, &abData[0], sizeof(abData));
465 }
466 else if (u64Length < RT_BIT_32(28))
467 {
468 uint8_t abData[4];
469 abData[0] = (3 << 6) | (u64Length & 0xf);
470 abData[1] = (u64Length >> 4) & 0xff;
471 abData[2] = (u64Length >> 12) & 0xff;
472 abData[3] = (u64Length >> 20) & 0xff;
473 rtAcpiTblAppendData(pThis, &abData[0], sizeof(abData));
474 }
475 else
476 AssertReleaseFailed();
477
478 return VINF_SUCCESS;
479}
480
481
482RTDECL(uint8_t) RTAcpiChecksumGenerate(const void *pvData, size_t cbData)
483{
484 uint8_t const *pbSrc = (uint8_t const *)pvData;
485 uint8_t bSum = 0;
486 for (size_t i = 0; i < cbData; ++i)
487 bSum += pbSrc[i];
488
489 return -bSum;
490}
491
492
493RTDECL(void) RTAcpiTblHdrChecksumGenerate(PACPITBLHDR pTbl, size_t cbTbl)
494{
495 pTbl->bChkSum = 0;
496 pTbl->bChkSum = RTAcpiChecksumGenerate(pTbl, cbTbl);
497}
498
499
500RTDECL(int) RTAcpiTblCreate(PRTACPITBL phAcpiTbl, uint32_t u32TblSig, uint8_t bRevision, const char *pszOemId,
501 const char *pszOemTblId, uint32_t u32OemRevision, const char *pszCreatorId,
502 uint32_t u32CreatorRevision)
503{
504 AssertPtrReturn(phAcpiTbl, VERR_INVALID_POINTER);
505 AssertPtrReturn(pszOemId, VERR_INVALID_POINTER);
506 AssertPtrReturn(pszOemTblId, VERR_INVALID_POINTER);
507 AssertReturn(strlen(pszOemId) <= 6, VERR_INVALID_PARAMETER);
508 AssertReturn(strlen(pszOemTblId) <= 8, VERR_INVALID_PARAMETER);
509 AssertReturn(!pszCreatorId || strlen(pszCreatorId) <= 4, VERR_INVALID_PARAMETER);
510
511 PRTACPITBLINT pThis = (PRTACPITBLINT)RTMemAllocZ(sizeof(*pThis));
512 if (pThis)
513 {
514 pThis->pbTblBuf = (uint8_t *)RTMemAlloc(_4K);
515 if (pThis->pbTblBuf)
516 {
517 pThis->pHdr = (PACPITBLHDR)pThis->pbTblBuf;
518 pThis->offTblBuf = sizeof(*pThis->pHdr);
519 pThis->cbTblBuf = _4K;
520 pThis->fFinalized = false;
521 pThis->rcErr = VINF_SUCCESS;
522 pThis->paPkgStack = NULL;
523 pThis->cPkgStackElems = 0;
524 pThis->idxPkgStackElem = 0;
525
526 /* Add the root stack element for the table, aka DefinitionBlock() in ASL. */
527 uint32_t const cPkgElemsInitial = 8;
528 pThis->paPkgStack = (PRTACPITBLSTACKELEM)RTMemAlloc(cPkgElemsInitial * sizeof(*pThis->paPkgStack));
529 if (pThis->paPkgStack)
530 {
531 pThis->cPkgStackElems = cPkgElemsInitial;
532
533 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
534 pStackElem->pbPkgLength = pThis->pbTblBuf; /* Starts with the header. */
535 pStackElem->cbPkg = sizeof(*pThis->pHdr);
536 pStackElem->bOp = UINT8_MAX;
537
538 /* Init the table header with static things. */
539 pThis->pHdr->u32Signature = u32TblSig;
540 pThis->pHdr->bRevision = bRevision;
541 pThis->pHdr->u32OemRevision = RT_H2LE_U32(u32OemRevision);
542 pThis->pHdr->u32CreatorRevision = RT_H2LE_U32(u32CreatorRevision);
543
544 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemId[0], sizeof(pThis->pHdr->abOemId), pszOemId, ' ');
545 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemTblId[0], sizeof(pThis->pHdr->abOemTblId), pszOemTblId, ' ');
546 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abCreatorId[0], sizeof(pThis->pHdr->abCreatorId),
547 pszCreatorId ? pszCreatorId : "IPRT", ' ');
548
549 *phAcpiTbl = pThis;
550 return VINF_SUCCESS;
551 }
552
553 RTMemFree(pThis->pbTblBuf);
554 }
555
556 RTMemFree(pThis);
557 }
558
559 return VERR_NO_MEMORY;
560}
561
562
563RTDECL(void) RTAcpiTblDestroy(RTACPITBL hAcpiTbl)
564{
565 PRTACPITBLINT pThis = hAcpiTbl;
566 AssertPtrReturnVoid(pThis);
567
568 RTMemFree(pThis->paPkgStack);
569 RTMemFree(pThis->pbTblBuf);
570 pThis->pHdr = NULL;
571 pThis->pbTblBuf = NULL;
572 pThis->cbTblBuf = 0;
573 pThis->offTblBuf = 0;
574 pThis->paPkgStack = NULL;
575 pThis->cPkgStackElems = 0;
576 pThis->idxPkgStackElem = 0;
577 RTMemFree(pThis);
578}
579
580
581RTDECL(int) RTAcpiTblFinalize(RTACPITBL hAcpiTbl)
582{
583 PRTACPITBLINT pThis = hAcpiTbl;
584 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
585 AssertRCReturn(pThis->rcErr, pThis->rcErr);
586 AssertReturn(!pThis->fFinalized, VERR_INVALID_PARAMETER);
587 AssertReturn(pThis->idxPkgStackElem == 0, VERR_INVALID_STATE); /** @todo Better status code. */
588 AssertReturn(pThis->paPkgStack[0].bOp == UINT8_MAX, VERR_INVALID_STATE);
589
590 pThis->pHdr->cbTbl = RT_H2LE_U32(pThis->paPkgStack[0].cbPkg);
591 RTAcpiTblHdrChecksumGenerate(pThis->pHdr, pThis->paPkgStack[0].cbPkg);
592
593 pThis->fFinalized = true;
594 return VINF_SUCCESS;
595}
596
597
598RTDECL(uint32_t) RTAcpiTblGetSize(RTACPITBL hAcpiTbl)
599{
600 PRTACPITBLINT pThis = hAcpiTbl;
601 AssertPtrReturn(pThis, 0);
602 AssertRCReturn(pThis->rcErr, 0);
603 AssertReturn(pThis->fFinalized, 0);
604
605 return pThis->paPkgStack[0].cbPkg;
606}
607
608
609RTDECL(int) RTAcpiTblDumpToVfsIoStrm(RTACPITBL hAcpiTbl, RTACPITBLTYPE enmOutType, RTVFSIOSTREAM hVfsIos)
610{
611 PRTACPITBLINT pThis = hAcpiTbl;
612 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
613 AssertRCReturn(pThis->rcErr, 0);
614 AssertReturn(enmOutType == RTACPITBLTYPE_AML, VERR_NOT_SUPPORTED);
615
616 return RTVfsIoStrmWrite(hVfsIos, pThis->pbTblBuf, pThis->paPkgStack[0].cbPkg,
617 true /*fBlocking*/, NULL /*pcbWritten*/);
618}
619
620
621RTDECL(int) RTAcpiTblDumpToFile(RTACPITBL hAcpiTbl, RTACPITBLTYPE enmOutType, const char *pszFilename)
622{
623 RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM;
624 int rc = RTVfsChainOpenIoStream(pszFilename, RTFILE_O_WRITE | RTFILE_O_CREATE | RTFILE_O_DENY_NONE,
625 &hVfsIos, NULL /*poffError*/, NULL);
626 if (RT_FAILURE(rc))
627 return rc;
628
629 rc = RTAcpiTblDumpToVfsIoStrm(hAcpiTbl, enmOutType, hVfsIos);
630 RTVfsIoStrmRelease(hVfsIos);
631 return rc;
632}
633
634
635RTDECL(int) RTAcpiTblScopeFinalize(RTACPITBL hAcpiTbl)
636{
637 PRTACPITBLINT pThis = hAcpiTbl;
638 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
639
640 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
641}
642
643
644RTDECL(int) RTAcpiTblScopeStart(RTACPITBL hAcpiTbl, const char *pszName)
645{
646 PRTACPITBLINT pThis = hAcpiTbl;
647 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
648
649 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
650 rtAcpiTblAppendNameString(pThis, pszName);
651 return pThis->rcErr;
652}
653
654
655RTDECL(int) RTAcpiTblPackageStart(RTACPITBL hAcpiTbl, uint8_t cElements)
656{
657 PRTACPITBLINT pThis = hAcpiTbl;
658 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
659
660 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
661 rtAcpiTblAppendByte(pThis, cElements);
662 return pThis->rcErr;
663}
664
665
666RTDECL(int) RTAcpiTblPackageFinalize(RTACPITBL hAcpiTbl)
667{
668 PRTACPITBLINT pThis = hAcpiTbl;
669 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
670
671 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
672}
673
674
675RTDECL(int) RTAcpiTblDeviceStart(RTACPITBL hAcpiTbl, const char *pszName)
676{
677 PRTACPITBLINT pThis = hAcpiTbl;
678 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
679
680 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
681 rtAcpiTblAppendNameString(pThis, pszName);
682 return pThis->rcErr;
683}
684
685
686RTDECL(int) RTAcpiTblDeviceStartF(RTACPITBL hAcpiTbl, const char *pszNameFmt, ...)
687{
688 va_list va;
689 va_start(va, pszNameFmt);
690 int rc = RTAcpiTblDeviceStartV(hAcpiTbl, pszNameFmt, va);
691 va_end(va);
692 return rc;
693}
694
695
696RTDECL(int) RTAcpiTblDeviceStartV(RTACPITBL hAcpiTbl, const char *pszNameFmt, va_list va)
697{
698 char szName[5];
699 ssize_t cch = RTStrPrintf2V(&szName[0], sizeof(szName), pszNameFmt, va);
700 if (cch <= 0)
701 return VERR_BUFFER_OVERFLOW;
702
703 return RTAcpiTblDeviceStart(hAcpiTbl, &szName[0]);
704}
705
706
707RTDECL(int) RTAcpiTblDeviceFinalize(RTACPITBL hAcpiTbl)
708{
709 PRTACPITBLINT pThis = hAcpiTbl;
710 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
711
712 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
713}
714
715
716RTDECL(int) RTAcpiTblMethodStart(RTACPITBL hAcpiTbl, const char *pszName, uint8_t cArgs, uint32_t fFlags, uint8_t uSyncLvl)
717{
718 PRTACPITBLINT pThis = hAcpiTbl;
719 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
720 AssertReturn(cArgs < 8, VERR_INVALID_PARAMETER);
721 AssertReturn(uSyncLvl < 0x10, VERR_INVALID_PARAMETER);
722
723 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
724 rtAcpiTblAppendNameString(pThis, pszName);
725
726 uint8_t bFlags = cArgs;
727 bFlags |= fFlags & RTACPI_METHOD_F_SERIALIZED ? RT_BIT(3) : 0;
728 bFlags |= uSyncLvl << 4;
729
730 rtAcpiTblAppendByte(pThis, bFlags);
731 return pThis->rcErr;
732}
733
734
735RTDECL(int) RTAcpiTblMethodFinalize(RTACPITBL hAcpiTbl)
736{
737 PRTACPITBLINT pThis = hAcpiTbl;
738 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
739
740 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
741}
742
743
744RTDECL(int) RTAcpiTblNameAppend(RTACPITBL hAcpiTbl, const char *pszName)
745{
746 PRTACPITBLINT pThis = hAcpiTbl;
747 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
748
749 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_NAME);
750 rtAcpiTblAppendNameString(pThis, pszName);
751 return pThis->rcErr;
752}
753
754
755RTDECL(int) RTAcpiTblNullNameAppend(RTACPITBL hAcpiTbl)
756{
757 PRTACPITBLINT pThis = hAcpiTbl;
758 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
759
760 rtAcpiTblAppendByte(pThis, 0x00);
761 return pThis->rcErr;
762}
763
764
765RTDECL(int) RTAcpiTblNameStringAppend(RTACPITBL hAcpiTbl, const char *pszName)
766{
767 PRTACPITBLINT pThis = hAcpiTbl;
768 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
769
770 rtAcpiTblAppendNameString(pThis, pszName);
771 return pThis->rcErr;
772}
773
774
775RTDECL(int) RTAcpiTblStringAppend(RTACPITBL hAcpiTbl, const char *psz)
776{
777 PRTACPITBLINT pThis = hAcpiTbl;
778 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
779
780 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_STRING);
781 rtAcpiTblAppendData(pThis, psz, (uint32_t)strlen(psz) + 1);
782 return pThis->rcErr;
783}
784
785
786RTDECL(int) RTAcpiTblIntegerAppend(RTACPITBL hAcpiTbl, uint64_t u64)
787{
788 PRTACPITBLINT pThis = hAcpiTbl;
789 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
790
791 if (!u64)
792 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ZERO);
793 else if (u64 == 1)
794 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ONE);
795 else if (u64 <= UINT8_MAX)
796 {
797 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_BYTE);
798 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
799 }
800 else if (u64 <= UINT16_MAX)
801 {
802 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_WORD);
803 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
804 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
805 }
806 else if (u64 <= UINT32_MAX)
807 {
808 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_DWORD);
809 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
810 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
811 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
812 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
813 }
814 else
815 {
816 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_QWORD);
817 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
818 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
819 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
820 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
821 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 32));
822 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 40));
823 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 48));
824 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 56));
825 }
826 return pThis->rcErr;
827}
828
829
830RTDECL(int) RTAcpiTblBufferAppend(RTACPITBL hAcpiTbl, const void *pvBuf, size_t cbBuf)
831{
832 PRTACPITBLINT pThis = hAcpiTbl;
833 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
834 AssertReturn(!cbBuf || RT_VALID_PTR(pvBuf), VERR_INVALID_PARAMETER);
835 AssertReturn(cbBuf <= UINT32_MAX, VERR_BUFFER_OVERFLOW);
836
837 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
838 RTAcpiTblIntegerAppend(hAcpiTbl, cbBuf);
839 if (pvBuf)
840 rtAcpiTblAppendData(pThis, pvBuf, (uint32_t)cbBuf);
841 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
842}
843
844
845RTDECL(int) RTAcpiTblResourceAppend(RTACPITBL hAcpiTbl, RTACPIRES hAcpiRes)
846{
847 PRTACPITBLINT pThis = hAcpiTbl;
848 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
849 AssertRCReturn(pThis->rcErr, pThis->rcErr);
850
851 const void *pvRes = NULL;
852 size_t cbRes = 0;
853 int rc = RTAcpiResourceQueryBuffer(hAcpiRes, &pvRes, &cbRes);
854 if (RT_SUCCESS(rc))
855 rc = RTAcpiTblBufferAppend(pThis, pvRes, cbRes);
856
857 return rc;
858}
859
860
861RTDECL(int) RTAcpiTblStmtSimpleAppend(RTACPITBL hAcpiTbl, RTACPISTMT enmStmt)
862{
863 PRTACPITBLINT pThis = hAcpiTbl;
864 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
865
866 uint8_t bOp;
867 switch (enmStmt)
868 {
869 case kAcpiStmt_Return: bOp = ACPI_AML_BYTE_CODE_OP_RETURN; break;
870 case kAcpiStmt_Breakpoint: bOp = ACPI_AML_BYTE_CODE_OP_BREAK_POINT; break;
871 case kAcpiStmt_Nop: bOp = ACPI_AML_BYTE_CODE_OP_NOOP; break;
872 case kAcpiStmt_Break: bOp = ACPI_AML_BYTE_CODE_OP_BREAK; break;
873 case kAcpiStmt_Continue: bOp = ACPI_AML_BYTE_CODE_OP_CONTINUE; break;
874 case kAcpiStmt_Add: bOp = ACPI_AML_BYTE_CODE_OP_ADD; break;
875 case kAcpiStmt_Subtract: bOp = ACPI_AML_BYTE_CODE_OP_SUBTRACT; break;
876 case kAcpiStmt_And: bOp = ACPI_AML_BYTE_CODE_OP_AND; break;
877 case kAcpiStmt_Nand: bOp = ACPI_AML_BYTE_CODE_OP_NAND; break;
878 case kAcpiStmt_Or: bOp = ACPI_AML_BYTE_CODE_OP_OR; break;
879 case kAcpiStmt_Xor: bOp = ACPI_AML_BYTE_CODE_OP_XOR; break;
880 case kAcpiStmt_Not: bOp = ACPI_AML_BYTE_CODE_OP_NOT; break;
881 case kAcpiStmt_Store: bOp = ACPI_AML_BYTE_CODE_OP_STORE; break;
882 case kAcpiStmt_Index: bOp = ACPI_AML_BYTE_CODE_OP_INDEX; break;
883 case kAcpiStmt_DerefOf: bOp = ACPI_AML_BYTE_CODE_OP_DEREF_OF; break;
884 default:
885 AssertFailedReturn(VERR_INVALID_PARAMETER);
886 }
887 rtAcpiTblAppendByte(pThis, bOp);
888 return pThis->rcErr;
889}
890
891
892RTDECL(int) RTAcpiTblIfStart(RTACPITBL hAcpiTbl)
893{
894 PRTACPITBLINT pThis = hAcpiTbl;
895 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
896
897 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_IF);
898 return pThis->rcErr;
899}
900
901
902RTDECL(int) RTAcpiTblIfFinalize(RTACPITBL hAcpiTbl)
903{
904 PRTACPITBLINT pThis = hAcpiTbl;
905 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
906
907 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_IF);
908}
909
910
911RTDECL(int) RTAcpiTblElseStart(RTACPITBL hAcpiTbl)
912{
913 PRTACPITBLINT pThis = hAcpiTbl;
914 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
915
916 /* Makes only sense inside an IfOp package. */
917 AssertReturn(pThis->paPkgStack[pThis->idxPkgStackElem].bOp == ACPI_AML_BYTE_CODE_OP_IF, VERR_INVALID_STATE);
918
919 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_OP_ELSE);
920 return pThis->rcErr;
921}
922
923
924RTDECL(int) RTAcpiTblElseFinalize(RTACPITBL hAcpiTbl)
925{
926 PRTACPITBLINT pThis = hAcpiTbl;
927 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
928
929 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_ELSE);
930}
931
932
933RTDECL(int) RTAcpiTblBinaryOpAppend(RTACPITBL hAcpiTbl, RTACPIBINARYOP enmBinaryOp)
934{
935 PRTACPITBLINT pThis = hAcpiTbl;
936 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
937
938 uint8_t bOp;
939 switch (enmBinaryOp)
940 {
941 case kAcpiBinaryOp_LAnd: bOp = ACPI_AML_BYTE_CODE_OP_LAND; break;
942 case kAcpiBinaryOp_LEqual: bOp = ACPI_AML_BYTE_CODE_OP_LEQUAL; break;
943 case kAcpiBinaryOp_LGreater: bOp = ACPI_AML_BYTE_CODE_OP_LGREATER; break;
944 case kAcpiBinaryOp_LLess: bOp = ACPI_AML_BYTE_CODE_OP_LLESS; break;
945 case kAcpiBinaryOp_LGreaterEqual:
946 case kAcpiBinaryOp_LLessEqual:
947 case kAcpiBinaryOp_LNotEqual:
948 bOp = ACPI_AML_BYTE_CODE_OP_LNOT;
949 break;
950 default:
951 AssertFailedReturn(VERR_INVALID_PARAMETER);
952 }
953 rtAcpiTblAppendByte(pThis, bOp);
954 switch (enmBinaryOp)
955 {
956 case kAcpiBinaryOp_LGreaterEqual: bOp = ACPI_AML_BYTE_CODE_OP_LLESS; break;
957 case kAcpiBinaryOp_LLessEqual: bOp = ACPI_AML_BYTE_CODE_OP_LGREATER; break;
958 case kAcpiBinaryOp_LNotEqual: bOp = ACPI_AML_BYTE_CODE_OP_LEQUAL; break;
959 default:
960 bOp = 0x00;
961 }
962 if (bOp != 0x00)
963 rtAcpiTblAppendByte(pThis, bOp);
964 return pThis->rcErr;
965}
966
967
968RTDECL(int) RTAcpiTblArgOpAppend(RTACPITBL hAcpiTbl, uint8_t idArg)
969{
970 PRTACPITBLINT pThis = hAcpiTbl;
971 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
972 AssertReturn(idArg <= 6, VERR_INVALID_PARAMETER);
973
974 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ARG_0 + idArg);
975 return pThis->rcErr;
976}
977
978
979RTDECL(int) RTAcpiTblLocalOpAppend(RTACPITBL hAcpiTbl, uint8_t idLocal)
980{
981 PRTACPITBLINT pThis = hAcpiTbl;
982 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
983 AssertReturn(idLocal <= 7, VERR_INVALID_PARAMETER);
984
985 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_LOCAL_0 + idLocal);
986 return pThis->rcErr;
987}
988
989
990RTDECL(int) RTAcpiTblUuidAppend(RTACPITBL hAcpiTbl, PCRTUUID pUuid)
991{
992 /* UUIDs are stored as a buffer object. */
993 /** @todo Needs conversion on big endian machines. */
994 return RTAcpiTblBufferAppend(hAcpiTbl, &pUuid->au8[0], sizeof(*pUuid));
995}
996
997
998RTDECL(int) RTAcpiTblUuidAppendFromStr(RTACPITBL hAcpiTbl, const char *pszUuid)
999{
1000 PRTACPITBLINT pThis = hAcpiTbl;
1001 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1002
1003 RTUUID Uuid;
1004 pThis->rcErr = RTUuidFromStr(&Uuid, pszUuid);
1005 if (RT_SUCCESS(pThis->rcErr))
1006 return RTAcpiTblUuidAppend(pThis, &Uuid);
1007
1008 return pThis->rcErr;
1009}
1010
1011
1012RTDECL(int) RTAcpiTblOpRegionAppendEx(RTACPITBL hAcpiTbl, const char *pszName, RTACPIOPREGIONSPACE enmSpace)
1013{
1014 PRTACPITBLINT pThis = hAcpiTbl;
1015 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1016
1017 uint8_t abOp[2] = { ACPI_AML_BYTE_CODE_PREFIX_EXT_OP, ACPI_AML_BYTE_CODE_EXT_OP_OP_REGION };
1018 rtAcpiTblAppendData(pThis, &abOp[0], sizeof(abOp));
1019 rtAcpiTblAppendNameString(pThis, pszName);
1020
1021 uint8_t bRegionSpace = 0xff;
1022 switch (enmSpace)
1023 {
1024 case kAcpiOperationRegionSpace_SystemMemory: bRegionSpace = 0x00; break;
1025 case kAcpiOperationRegionSpace_SystemIo: bRegionSpace = 0x01; break;
1026 case kAcpiOperationRegionSpace_PciConfig: bRegionSpace = 0x02; break;
1027 case kAcpiOperationRegionSpace_EmbeddedControl: bRegionSpace = 0x03; break;
1028 case kAcpiOperationRegionSpace_SmBus: bRegionSpace = 0x04; break;
1029 case kAcpiOperationRegionSpace_SystemCmos: bRegionSpace = 0x05; break;
1030 case kAcpiOperationRegionSpace_PciBarTarget: bRegionSpace = 0x06; break;
1031 case kAcpiOperationRegionSpace_Ipmi: bRegionSpace = 0x07; break;
1032 case kAcpiOperationRegionSpace_Gpio: bRegionSpace = 0x08; break;
1033 case kAcpiOperationRegionSpace_GenericSerialBus: bRegionSpace = 0x09; break;
1034 case kAcpiOperationRegionSpace_Pcc: bRegionSpace = 0x0a; break;
1035 default:
1036 pThis->rcErr = VERR_INVALID_PARAMETER;
1037 AssertFailedReturn(pThis->rcErr);
1038 }
1039 rtAcpiTblAppendByte(pThis, bRegionSpace);
1040 return pThis->rcErr;
1041}
1042
1043
1044RTDECL(int) RTAcpiTblOpRegionAppend(RTACPITBL hAcpiTbl, const char *pszName, RTACPIOPREGIONSPACE enmSpace,
1045 uint64_t offRegion, uint64_t cbRegion)
1046{
1047 PRTACPITBLINT pThis = hAcpiTbl;
1048 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1049
1050 int rc = RTAcpiTblOpRegionAppendEx(pThis, pszName, enmSpace);
1051 if (RT_FAILURE(rc))
1052 return rc;
1053
1054 RTAcpiTblIntegerAppend(pThis, offRegion);
1055 RTAcpiTblIntegerAppend(pThis, cbRegion);
1056 return pThis->rcErr;
1057}
1058
1059
1060RTDECL(int) RTAcpiTblFieldAppend(RTACPITBL hAcpiTbl, const char *pszNameRef, RTACPIFIELDACC enmAcc,
1061 bool fLock, RTACPIFIELDUPDATE enmUpdate, PCRTACPIFIELDENTRY paFields,
1062 uint32_t cFields)
1063{
1064 PRTACPITBLINT pThis = hAcpiTbl;
1065 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1066
1067 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_EXT_OP_FIELD);
1068 rtAcpiTblAppendNameString(pThis, pszNameRef);
1069
1070 uint8_t fFlags = 0;
1071 switch (enmAcc)
1072 {
1073 case kAcpiFieldAcc_Any: fFlags = 0; break;
1074 case kAcpiFieldAcc_Byte: fFlags = 1; break;
1075 case kAcpiFieldAcc_Word: fFlags = 2; break;
1076 case kAcpiFieldAcc_DWord: fFlags = 3; break;
1077 case kAcpiFieldAcc_QWord: fFlags = 4; break;
1078 case kAcpiFieldAcc_Buffer: fFlags = 5; break;
1079 default:
1080 pThis->rcErr = VERR_INVALID_PARAMETER;
1081 AssertFailedReturn(pThis->rcErr);
1082 }
1083 if (fLock)
1084 fFlags |= RT_BIT(4);
1085 switch (enmUpdate)
1086 {
1087 case kAcpiFieldUpdate_Preserve: fFlags |= 0 << 5; break;
1088 case kAcpiFieldUpdate_WriteAsOnes: fFlags |= 1 << 5; break;
1089 case kAcpiFieldUpdate_WriteAsZeroes: fFlags |= 2 << 5; break;
1090 default:
1091 pThis->rcErr = VERR_INVALID_PARAMETER;
1092 AssertFailedReturn(pThis->rcErr);
1093 }
1094 rtAcpiTblAppendByte(pThis, fFlags);
1095
1096 for (uint32_t i = 0; i < cFields; i++)
1097 {
1098 rtAcpiTblAppendNameString(pThis, paFields[i].pszName);
1099 rtAcpiTblEncodePkgLength(pThis, paFields[i].cBits);
1100 }
1101
1102 rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_EXT_OP_FIELD);
1103 return pThis->rcErr;
1104}
1105
1106
1107RTDECL(int) RTAcpiTblCreateFromVfsIoStrm(PRTACPITBL phAcpiTbl, RTVFSIOSTREAM hVfsIos, RTACPITBLTYPE enmInType, PRTERRINFO pErrInfo)
1108{
1109 AssertPtrReturn(phAcpiTbl, VERR_INVALID_POINTER);
1110 AssertReturn(hVfsIos != NIL_RTVFSIOSTREAM, VERR_INVALID_HANDLE);
1111
1112 RT_NOREF(pErrInfo, enmInType);
1113#if 0
1114 if (enmInType == RTACPITBLTYPE_AML)
1115 return rtAcpiTblLoadAml(phAcpiTbl, hVfsIos, pErrInfo);
1116#endif
1117
1118 return VERR_NOT_IMPLEMENTED;
1119}
1120
1121
1122RTDECL(int) RTAcpiTblConvertFromVfsIoStrm(RTVFSIOSTREAM hVfsIosOut, RTACPITBLTYPE enmOutType,
1123 RTVFSIOSTREAM hVfsIosIn, RTACPITBLTYPE enmInType, PRTERRINFO pErrInfo)
1124{
1125 AssertReturn(hVfsIosOut != NIL_RTVFSIOSTREAM, VERR_INVALID_HANDLE);
1126 AssertReturn(hVfsIosIn != NIL_RTVFSIOSTREAM, VERR_INVALID_HANDLE);
1127
1128 if (enmInType == RTACPITBLTYPE_AML && enmOutType == RTACPITBLTYPE_ASL)
1129 return rtAcpiTblConvertFromAmlToAsl(hVfsIosOut, hVfsIosIn, pErrInfo);
1130 else if (enmInType == RTACPITBLTYPE_ASL && enmOutType == RTACPITBLTYPE_AML)
1131 return rtAcpiTblConvertFromAslToAml(hVfsIosOut, hVfsIosIn, pErrInfo);
1132
1133 return VERR_NOT_SUPPORTED;
1134}
1135
1136
1137RTDECL(int) RTAcpiTblCreateFromFile(PRTACPITBL phAcpiTbl, const char *pszFilename, RTACPITBLTYPE enmInType, PRTERRINFO pErrInfo)
1138{
1139 RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM;
1140 int rc = RTVfsChainOpenIoStream(pszFilename, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE,
1141 &hVfsIos, NULL /*poffError*/, pErrInfo);
1142 if (RT_FAILURE(rc))
1143 return rc;
1144
1145 rc = RTAcpiTblCreateFromVfsIoStrm(phAcpiTbl, hVfsIos, enmInType, pErrInfo);
1146 RTVfsIoStrmRelease(hVfsIos);
1147 return rc;
1148}
1149
1150
1151/**
1152 * Ensures there is at least the given amount of space in the given ACPI resource.
1153 *
1154 * @returns Pointer to the free buffer space or NULL if out of memory.
1155 * @param pThis The ACPI resource instance.
1156 * @param cbReq Number of free bytes required.
1157 */
1158static uint8_t *rtAcpiResBufEnsureSpace(PRTACPIRESINT pThis, uint32_t cbReq)
1159{
1160 if (RT_LIKELY(pThis->cbResBuf - pThis->offResBuf >= cbReq))
1161 {
1162 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
1163 pThis->offResBuf += cbReq;
1164 return pb;
1165 }
1166
1167 size_t const cbNew = RT_ALIGN_Z(pThis->cbResBuf + cbReq, _4K);
1168 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbResBuf, cbNew);
1169 if (RT_UNLIKELY(!pbNew))
1170 {
1171 pThis->rcErr = VERR_NO_MEMORY;
1172 return NULL;
1173 }
1174
1175 pThis->pbResBuf = pbNew;
1176 pThis->cbResBuf = cbNew;
1177
1178 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
1179 pThis->offResBuf += cbReq;
1180 return pb;
1181}
1182
1183
1184/**
1185 * Encodes an ACPI 16-bit integer in the given byte buffer.
1186 *
1187 * @returns Pointer to after the encoded integer.
1188 * @param pb Where to encode the integer into.
1189 * @param u16 The 16-bit unsigned integere to encode.
1190 */
1191DECLINLINE(uint8_t *) rtAcpiResEncode16BitInteger(uint8_t *pb, uint16_t u16)
1192{
1193 *pb++ = (uint8_t)u16;
1194 *pb++ = (uint8_t)(u16 >> 8);
1195 return pb;
1196}
1197
1198
1199/**
1200 * Encodes an ACPI 32-bit integer in the given byte buffer.
1201 *
1202 * @returns Pointer to after the encoded integer.
1203 * @param pb Where to encode the integer into.
1204 * @param u32 The 32-bit unsigned integere to encode.
1205 */
1206DECLINLINE(uint8_t *) rtAcpiResEncode32BitInteger(uint8_t *pb, uint32_t u32)
1207{
1208 *pb++ = (uint8_t)u32;
1209 *pb++ = (uint8_t)(u32 >> 8);
1210 *pb++ = (uint8_t)(u32 >> 16);
1211 *pb++ = (uint8_t)(u32 >> 24);
1212 return pb;
1213}
1214
1215/**
1216 * Encodes an ACPI 64-bit integer in the given byte buffer.
1217 *
1218 * @returns Pointer to after the encoded integer.
1219 * @param pb Where to encode the integer into.
1220 * @param u64 The 64-bit unsigned integere to encode.
1221 */
1222
1223DECLINLINE(uint8_t *) rtAcpiResEncode64BitInteger(uint8_t *pb, uint64_t u64)
1224{
1225 *pb++ = (uint8_t)u64;
1226 *pb++ = (uint8_t)(u64 >> 8);
1227 *pb++ = (uint8_t)(u64 >> 16);
1228 *pb++ = (uint8_t)(u64 >> 24);
1229 *pb++ = (uint8_t)(u64 >> 32);
1230 *pb++ = (uint8_t)(u64 >> 40);
1231 *pb++ = (uint8_t)(u64 >> 48);
1232 *pb++ = (uint8_t)(u64 >> 56);
1233 return pb;
1234}
1235
1236
1237RTDECL(int) RTAcpiResourceCreate(PRTACPIRES phAcpiRes)
1238{
1239 AssertPtrReturn(phAcpiRes, VERR_INVALID_POINTER);
1240
1241 PRTACPIRESINT pThis = (PRTACPIRESINT)RTMemAllocZ(sizeof(*pThis));
1242 if (pThis)
1243 {
1244 pThis->pbResBuf = (uint8_t *)RTMemAlloc(64);
1245 if (pThis->pbResBuf)
1246 {
1247 pThis->offResBuf = 0;
1248 pThis->cbResBuf = 64;
1249 pThis->fSealed = false;
1250 pThis->rcErr = VINF_SUCCESS;
1251
1252 *phAcpiRes = pThis;
1253 return VINF_SUCCESS;
1254 }
1255
1256 RTMemFree(pThis);
1257 }
1258
1259 return VERR_NO_MEMORY;
1260}
1261
1262
1263RTDECL(void) RTAcpiResourceDestroy(RTACPIRES hAcpiRes)
1264{
1265 PRTACPIRESINT pThis = hAcpiRes;
1266 AssertPtrReturnVoid(pThis);
1267
1268 RTMemFree(pThis->pbResBuf);
1269 pThis->pbResBuf = NULL;
1270 pThis->cbResBuf = 0;
1271 pThis->offResBuf = 0;
1272 RTMemFree(pThis);
1273}
1274
1275
1276RTDECL(void) RTAcpiResourceReset(RTACPIRES hAcpiRes)
1277{
1278 PRTACPIRESINT pThis = hAcpiRes;
1279 AssertPtrReturnVoid(pThis);
1280
1281 pThis->offResBuf = 0;
1282 pThis->fSealed = false;
1283 pThis->rcErr = VINF_SUCCESS;
1284}
1285
1286
1287RTDECL(int) RTAcpiResourceSeal(RTACPIRES hAcpiRes)
1288{
1289 PRTACPIRESINT pThis = hAcpiRes;
1290 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1291 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1292 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1293
1294 /* Add the end tag. */
1295 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 2);
1296 if (!pb)
1297 return VERR_NO_MEMORY;
1298
1299 *pb++ = ACPI_RSRCS_TAG_END;
1300 /*
1301 * Generate checksum, we could just write 0 here which will be treated as checksum operation succeeded,
1302 * but having this might catch some bugs.
1303 *
1304 * Checksum algorithm is the same as with the ACPI tables.
1305 */
1306 *pb = RTAcpiChecksumGenerate(pThis->pbResBuf, pThis->offResBuf - 1); /* Exclude the checksum field. */
1307
1308 pThis->fSealed = true;
1309 return VINF_SUCCESS;
1310}
1311
1312
1313RTDECL(int) RTAcpiResourceQueryBuffer(RTACPIRES hAcpiRes, const void **ppvRes, size_t *pcbRes)
1314{
1315 PRTACPIRESINT pThis = hAcpiRes;
1316 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1317 AssertReturn(pThis->fSealed, VERR_INVALID_STATE);
1318 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1319
1320 *ppvRes = pThis->pbResBuf;
1321 *pcbRes = pThis->offResBuf;
1322 return VINF_SUCCESS;
1323}
1324
1325
1326RTDECL(int) RTAcpiResourceAdd32BitFixedMemoryRange(RTACPIRES hAcpiRes, uint32_t u32AddrBase, uint32_t cbRange,
1327 bool fRw)
1328{
1329 PRTACPIRESINT pThis = hAcpiRes;
1330 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1331 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1332 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1333
1334 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 12);
1335 if (!pb)
1336 return VERR_NO_MEMORY;
1337
1338 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_32BIT_FIXED_MEMORY_RANGE; /* Tag */
1339 pb[1] = 9; /* Length[7:0] */
1340 pb[2] = 0; /* Length[15:8] */
1341 pb[3] = fRw ? 1 : 0; /* Information */
1342 rtAcpiResEncode32BitInteger(&pb[4], u32AddrBase);
1343 rtAcpiResEncode32BitInteger(&pb[8], cbRange);
1344 return VINF_SUCCESS;
1345}
1346
1347
1348RTDECL(int) RTAcpiResourceAddExtendedInterrupt(RTACPIRES hAcpiRes, bool fConsumer, bool fEdgeTriggered, bool fActiveLow, bool fShared,
1349 bool fWakeCapable, uint8_t cIntrs, uint32_t *pau32Intrs)
1350{
1351 PRTACPIRESINT pThis = hAcpiRes;
1352 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1353 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1354 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1355
1356 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 2 + cIntrs * sizeof(uint32_t));
1357 if (!pb)
1358 return VERR_NO_MEMORY;
1359
1360 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_EXTENDED_INTERRUPT; /* Tag */
1361 rtAcpiResEncode16BitInteger(&pb[1], 2 + cIntrs * sizeof(uint32_t)); /* Length[15:0] */
1362 pb[3] = (fConsumer ? ACPI_RSRCS_EXT_INTR_VEC_F_CONSUMER : ACPI_RSRCS_EXT_INTR_VEC_F_PRODUCER)
1363 | (fEdgeTriggered ? ACPI_RSRCS_EXT_INTR_VEC_F_EDGE_TRIGGERED : ACPI_RSRCS_EXT_INTR_VEC_F_LEVEL_TRIGGERED)
1364 | (fActiveLow ? ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_LOW : ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_HIGH)
1365 | (fShared ? ACPI_RSRCS_EXT_INTR_VEC_F_SHARED : ACPI_RSRCS_EXT_INTR_VEC_F_EXCLUSIVE)
1366 | (fWakeCapable ? ACPI_RSRCS_EXT_INTR_VEC_F_WAKE_CAP : ACPI_RSRCS_EXT_INTR_VEC_F_NOT_WAKE_CAP);
1367 pb[4] = cIntrs;
1368 pb = &pb[5];
1369 for (uint32_t i = 0; i < cIntrs; i++)
1370 pb = rtAcpiResEncode32BitInteger(pb, pau32Intrs[i]);
1371
1372 return VINF_SUCCESS;
1373}
1374
1375
1376/**
1377 * Common worker for encoding a new quad word (64-bit) address range.
1378 *
1379 * @returns IPRT status code
1380 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1381 * @param pThis The ACPI resource instance.
1382 * @param bType The ACPI address range type.
1383 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1384 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1385 * @param u64AddrMin The start address of the memory range.
1386 * @param u64AddrMax Last valid address of the range.
1387 * @param u64OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1388 * @param u64Granularity The access granularity of the range in bytes.
1389 * @param u64Length Length of the memory range in bytes.
1390 */
1391static int rtAcpiResourceAddQWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1392 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1393 uint64_t u64Granularity, uint64_t u64Length)
1394{
1395 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 43);
1396 if (!pb)
1397 return VERR_NO_MEMORY;
1398
1399 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_QWORD_ADDR_SPACE; /* Tag */
1400 pb[1] = 43; /* Length[7:0] */
1401 pb[2] = 0; /* Length[15:8] */
1402 pb[3] = bType;
1403 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1404 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1405 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1406 pb[5] = fType;
1407
1408 pb = rtAcpiResEncode64BitInteger(&pb[6], u64Granularity);
1409 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMin);
1410 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMax);
1411 pb = rtAcpiResEncode64BitInteger(pb, u64OffTrans);
1412 rtAcpiResEncode64BitInteger(pb, u64Length);
1413 return VINF_SUCCESS;
1414}
1415
1416
1417/**
1418 * Common worker for encoding a new double word (32-bit) address range.
1419 *
1420 * @returns IPRT status code
1421 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1422 * @param pThis The ACPI resource instance.
1423 * @param bType The ACPI address range type.
1424 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1425 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1426 * @param u32AddrMin The start address of the memory range.
1427 * @param u32AddrMax Last valid address of the range.
1428 * @param u32OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1429 * @param u32Granularity The access granularity of the range in bytes.
1430 * @param u32Length Length of the memory range in bytes.
1431 */
1432static int rtAcpiResourceAddDWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1433 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1434 uint32_t u32Granularity, uint32_t u32Length)
1435{
1436 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 23);
1437 if (!pb)
1438 return VERR_NO_MEMORY;
1439
1440 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_DWORD_ADDR_SPACE; /* Tag */
1441 pb[1] = 23; /* Length[7:0] */
1442 pb[2] = 0; /* Length[15:8] */
1443 pb[3] = bType;
1444 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1445 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1446 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1447 pb[5] = fType;
1448
1449 pb = rtAcpiResEncode32BitInteger(&pb[6], u32Granularity);
1450 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMin);
1451 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMax);
1452 pb = rtAcpiResEncode32BitInteger(pb, u32OffTrans);
1453 rtAcpiResEncode32BitInteger(pb, u32Length);
1454 return VINF_SUCCESS;
1455}
1456
1457
1458/**
1459 * Converts the given cacheability, range type and R/W flag to the ACPI resource flags.
1460 *
1461 * @returns Converted ACPI resource flags.
1462 * @param enmCacheability The cacheability enum to convert.
1463 * @param enmType THe memory range type enum to convert.
1464 * @param fRw The read/write flag.
1465 */
1466DECLINLINE(uint8_t) rtAcpiResourceMemoryRangeToTypeFlags(RTACPIRESMEMRANGECACHEABILITY enmCacheability, RTACPIRESMEMRANGETYPE enmType,
1467 bool fRw)
1468{
1469 uint8_t fType = fRw ? ACPI_RSRCS_ADDR_SPACE_MEM_F_RW : ACPI_RSRCS_ADDR_SPACE_MEM_F_RO;
1470
1471 switch (enmCacheability)
1472 {
1473 case kAcpiResMemRangeCacheability_NonCacheable:
1474 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_NON_CACHEABLE;
1475 break;
1476 case kAcpiResMemRangeCacheability_Cacheable:
1477 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE;
1478 break;
1479 case kAcpiResMemRangeCacheability_CacheableWriteCombining:
1480 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_WR_COMB;
1481 break;
1482 case kAcpiResMemRangeCacheability_CacheablePrefetchable:
1483 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_PREFETCHABLE;
1484 break;
1485 case kAcpiResMemRangeCacheability_Invalid:
1486 default:
1487 AssertFailedReturn(0);
1488 }
1489
1490 switch (enmType)
1491 {
1492 case kAcpiResMemType_Memory:
1493 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_MEMORY;
1494 break;
1495 case kAcpiResMemType_Reserved:
1496 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_RESERVED;
1497 break;
1498 case kAcpiResMemType_Acpi:
1499 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_ACPI;
1500 break;
1501 case kAcpiResMemType_Nvs:
1502 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_NVS;
1503 break;
1504 case kAcpiResMemType_Invalid:
1505 default:
1506 AssertFailedReturn(0);
1507 }
1508
1509 return fType;
1510}
1511
1512
1513RTDECL(int) RTAcpiResourceAddQWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1514 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1515 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1516 uint64_t u64Granularity, uint64_t u64Length)
1517{
1518 PRTACPIRESINT pThis = hAcpiRes;
1519 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1520 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1521 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1522 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1523 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1524 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1525
1526 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1527 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1528 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1529}
1530
1531
1532RTDECL(int) RTAcpiResourceAddDWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1533 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1534 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1535 uint32_t u32Granularity, uint32_t u32Length)
1536{
1537 PRTACPIRESINT pThis = hAcpiRes;
1538 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1539 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1540 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1541 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1542 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1543 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1544
1545 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1546 return rtAcpiResourceAddDWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1547 u32AddrMin, u32AddrMax, u32OffTrans, u32Granularity, u32Length);
1548}
1549
1550
1551RTDECL(int) RTAcpiResourceAddQWordIoRange(RTACPIRES hAcpiRes, RTACPIRESIORANGETYPE enmIoType, RTACPIRESIORANGE enmIoRange,
1552 uint32_t fAddrSpace, uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1553 uint64_t u64Granularity, uint64_t u64Length)
1554{
1555 PRTACPIRESINT pThis = hAcpiRes;
1556 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1557 AssertReturn(enmIoType != kAcpiResIoRangeType_Invalid, VERR_INVALID_PARAMETER);
1558 AssertReturn(enmIoRange != kAcpiResIoRange_Invalid, VERR_INVALID_PARAMETER);
1559 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1560 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1561 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1562
1563 uint8_t fType = 0;
1564 switch (enmIoType)
1565 {
1566 case kAcpiResIoRangeType_Static:
1567 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_STATIC;
1568 break;
1569 case kAcpiResIoRangeType_Translation_Sparse:
1570 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_SPARSE;
1571 break;
1572 case kAcpiResIoRangeType_Translation_Dense:
1573 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_DENSE;
1574 break;
1575 case kAcpiResIoRangeType_Invalid:
1576 default:
1577 AssertFailedReturn(VERR_INVALID_PARAMETER);
1578 }
1579
1580 switch (enmIoRange)
1581 {
1582 case kAcpiResIoRange_NonIsaOnly:
1583 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_NON_ISA_ONLY;
1584 break;
1585 case kAcpiResIoRange_IsaOnly:
1586 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_ISA_ONLY;
1587 break;
1588 case kAcpiResIoRange_Whole:
1589 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_WHOLE;
1590 break;
1591 case kAcpiResIoRange_Invalid:
1592 default:
1593 AssertFailedReturn(VERR_INVALID_PARAMETER);
1594 }
1595
1596 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_IO, fAddrSpace, fType,
1597 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1598}
1599
1600
1601RTDECL(int) RTAcpiResourceAddWordBusNumber(RTACPIRES hAcpiRes, uint32_t fAddrSpace, uint16_t u16BusMin, uint16_t u16BusMax,
1602 uint16_t u16OffTrans, uint16_t u16Granularity, uint16_t u16Length)
1603{
1604 PRTACPIRESINT pThis = hAcpiRes;
1605 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1606 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1607 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1608 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1609
1610 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 13);
1611 if (!pb)
1612 return VERR_NO_MEMORY;
1613
1614 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_WORD_ADDR_SPACE; /* Tag */
1615 pb[1] = 13; /* Length[7:0] */
1616 pb[2] = 0; /* Length[15:8] */
1617 pb[3] = ACPI_RSRCS_ADDR_SPACE_TYPE_BUS_NUM_RANGE;
1618 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1619 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1620 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1621 pb[5] = 0;
1622
1623 pb = rtAcpiResEncode16BitInteger(&pb[6], u16Granularity);
1624 pb = rtAcpiResEncode16BitInteger(pb, u16BusMin);
1625 pb = rtAcpiResEncode16BitInteger(pb, u16BusMax);
1626 pb = rtAcpiResEncode16BitInteger(pb, u16OffTrans);
1627 rtAcpiResEncode16BitInteger(pb, u16Length);
1628 return VINF_SUCCESS;
1629
1630}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette