/* $Id: heapoffset.cpp 44528 2013-02-04 14:27:54Z vboxsync $ */ /** @file * IPRT - An Offset Based Heap. */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP RTLOGGROUP_DEFAULT #include #include "internal/iprt.h" #include #include #include #include #include #include #include "internal/magics.h" /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** Pointer to the heap anchor block. */ typedef struct RTHEAPOFFSETINTERNAL *PRTHEAPOFFSETINTERNAL; /** Pointer to a heap block. */ typedef struct RTHEAPOFFSETBLOCK *PRTHEAPOFFSETBLOCK; /** Pointer to a free heap block. */ typedef struct RTHEAPOFFSETFREE *PRTHEAPOFFSETFREE; /** * Structure describing a block in an offset based heap. * * If this block is allocated, it is followed by the user data. * If this block is free, see RTHEAPOFFSETFREE. */ typedef struct RTHEAPOFFSETBLOCK { /** The next block in the global block list. */ uint32_t /*PRTHEAPOFFSETBLOCK*/ offNext; /** The previous block in the global block list. */ uint32_t /*PRTHEAPOFFSETBLOCK*/ offPrev; /** Offset into the heap of this block. Used to locate the anchor block. */ uint32_t /*PRTHEAPOFFSETINTERNAL*/ offSelf; /** Flags + magic. */ uint32_t fFlags; } RTHEAPOFFSETBLOCK; AssertCompileSize(RTHEAPOFFSETBLOCK, 16); /** The block is free if this flag is set. When cleared it's allocated. */ #define RTHEAPOFFSETBLOCK_FLAGS_FREE (RT_BIT_32(0)) /** The magic value. */ #define RTHEAPOFFSETBLOCK_FLAGS_MAGIC (UINT32_C(0xabcdef00)) /** The mask that needs to be applied to RTHEAPOFFSETBLOCK::fFlags to obtain the magic value. */ #define RTHEAPOFFSETBLOCK_FLAGS_MAGIC_MASK (~RT_BIT_32(0)) /** * Checks if the specified block is valid or not. * @returns boolean answer. * @param pBlock Pointer to a RTHEAPOFFSETBLOCK structure. */ #define RTHEAPOFFSETBLOCK_IS_VALID(pBlock) \ ( ((pBlock)->fFlags & RTHEAPOFFSETBLOCK_FLAGS_MAGIC_MASK) == RTHEAPOFFSETBLOCK_FLAGS_MAGIC ) /** * Checks if the specified block is valid and in use. * @returns boolean answer. * @param pBlock Pointer to a RTHEAPOFFSETBLOCK structure. */ #define RTHEAPOFFSETBLOCK_IS_VALID_USED(pBlock) \ ( ((pBlock)->fFlags & (RTHEAPOFFSETBLOCK_FLAGS_MAGIC_MASK | RTHEAPOFFSETBLOCK_FLAGS_FREE)) \ == RTHEAPOFFSETBLOCK_FLAGS_MAGIC ) /** * Checks if the specified block is valid and free. * @returns boolean answer. * @param pBlock Pointer to a RTHEAPOFFSETBLOCK structure. */ #define RTHEAPOFFSETBLOCK_IS_VALID_FREE(pBlock) \ ( ((pBlock)->fFlags & (RTHEAPOFFSETBLOCK_FLAGS_MAGIC_MASK | RTHEAPOFFSETBLOCK_FLAGS_FREE)) \ == (RTHEAPOFFSETBLOCK_FLAGS_MAGIC | RTHEAPOFFSETBLOCK_FLAGS_FREE) ) /** * Checks if the specified block is free or not. * @returns boolean answer. * @param pBlock Pointer to a valid RTHEAPOFFSETBLOCK structure. */ #define RTHEAPOFFSETBLOCK_IS_FREE(pBlock) (!!((pBlock)->fFlags & RTHEAPOFFSETBLOCK_FLAGS_FREE)) /** * A free heap block. * This is an extended version of RTHEAPOFFSETBLOCK that takes the unused * user data to store free list pointers and a cached size value. */ typedef struct RTHEAPOFFSETFREE { /** Core stuff. */ RTHEAPOFFSETBLOCK Core; /** Pointer to the next free block. */ uint32_t /*PRTHEAPOFFSETFREE*/ offNext; /** Pointer to the previous free block. */ uint32_t /*PRTHEAPOFFSETFREE*/ offPrev; /** The size of the block (excluding the RTHEAPOFFSETBLOCK part). */ uint32_t cb; /** An alignment filler to make it a multiple of 16 bytes. */ uint32_t Alignment; } RTHEAPOFFSETFREE; AssertCompileSize(RTHEAPOFFSETFREE, 16+16); /** * The heap anchor block. * This structure is placed at the head of the memory block specified to RTHeapOffsetInit(), * which means that the first RTHEAPOFFSETBLOCK appears immediately after this structure. */ typedef struct RTHEAPOFFSETINTERNAL { /** The typical magic (RTHEAPOFFSET_MAGIC). */ uint32_t u32Magic; /** The heap size. (This structure is included!) */ uint32_t cbHeap; /** The amount of free memory in the heap. */ uint32_t cbFree; /** Free head pointer. */ uint32_t /*PRTHEAPOFFSETFREE*/ offFreeHead; /** Free tail pointer. */ uint32_t /*PRTHEAPOFFSETFREE*/ offFreeTail; /** Make the size of this structure 32 bytes. */ uint32_t au32Alignment[3]; } RTHEAPOFFSETINTERNAL; AssertCompileSize(RTHEAPOFFSETINTERNAL, 32); /** The minimum allocation size. */ #define RTHEAPOFFSET_MIN_BLOCK (sizeof(RTHEAPOFFSETBLOCK)) AssertCompile(RTHEAPOFFSET_MIN_BLOCK >= sizeof(RTHEAPOFFSETBLOCK)); AssertCompile(RTHEAPOFFSET_MIN_BLOCK >= sizeof(RTHEAPOFFSETFREE) - sizeof(RTHEAPOFFSETBLOCK)); /** The minimum and default alignment. */ #define RTHEAPOFFSET_ALIGNMENT (sizeof(RTHEAPOFFSETBLOCK)) /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ #ifdef RT_STRICT # define RTHEAPOFFSET_STRICT 1 #endif /** * Converts RTHEAPOFFSETBLOCK::offSelf into a heap anchor block pointer. * * @returns Pointer of given type. * @param pBlock The block to find the heap anchor block for. */ #define RTHEAPOFF_GET_ANCHOR(pBlock) ( (PRTHEAPOFFSETINTERNAL)((uint8_t *)(pBlock) - (pBlock)->offSelf ) ) /** * Converts an offset to a pointer. * * All offsets are relative to the heap to make life simple. * * @returns Pointer of given type. * @param pHeapInt Pointer to the heap anchor block. * @param off The offset to convert. * @param type The desired type. */ #ifdef RTHEAPOFFSET_STRICT # define RTHEAPOFF_TO_PTR_N(pHeapInt, off, type) ( (type)rtHeapOffCheckedOffToPtr(pHeapInt, off, true /*fNull*/) ) #else # define RTHEAPOFF_TO_PTR_N(pHeapInt, off, type) ( (type)((off) ? (uint8_t *)(pHeapInt) + (off) : NULL) ) #endif /** * Converts an offset to a pointer. * * All offsets are relative to the heap to make life simple. * * @returns Pointer of given type. * @param pHeapInt Pointer to the heap anchor block. * @param off The offset to convert. * @param type The desired type. */ #ifdef RTHEAPOFFSET_STRICT # define RTHEAPOFF_TO_PTR(pHeapInt, off, type) ( (type)rtHeapOffCheckedOffToPtr(pHeapInt, off, false /*fNull*/) ) #else # define RTHEAPOFF_TO_PTR(pHeapInt, off, type) ( (type)((uint8_t *)(pHeapInt) + (off)) ) #endif /** * Converts a pointer to an offset. * * All offsets are relative to the heap to make life simple. * * @returns Offset into the heap. * @param pHeapInt Pointer to the heap anchor block. * @param ptr The pointer to convert. */ #ifdef RTHEAPOFFSET_STRICT # define RTHEAPOFF_TO_OFF(pHeapInt, ptr) rtHeapOffCheckedPtrToOff(pHeapInt, ptr) #else # define RTHEAPOFF_TO_OFF(pHeapInt, ptr) ( (uint32_t)((ptr) ? (uintptr_t)(ptr) - (uintptr_t)(pHeapInt) : UINT32_C(0)) ) #endif #define ASSERT_L(a, b) AssertMsg((a) < (b), ("a=%08x b=%08x\n", (a), (b))) #define ASSERT_LE(a, b) AssertMsg((a) <= (b), ("a=%08x b=%08x\n", (a), (b))) #define ASSERT_G(a, b) AssertMsg((a) > (b), ("a=%08x b=%08x\n", (a), (b))) #define ASSERT_GE(a, b) AssertMsg((a) >= (b), ("a=%08x b=%08x\n", (a), (b))) #define ASSERT_ALIGN(a) AssertMsg(!((uintptr_t)(a) & (RTHEAPOFFSET_ALIGNMENT - 1)), ("a=%p\n", (uintptr_t)(a))) #define ASSERT_PREV(pHeapInt, pBlock) \ do { ASSERT_ALIGN((pBlock)->offPrev); \ if ((pBlock)->offPrev) \ { \ ASSERT_L((pBlock)->offPrev, RTHEAPOFF_TO_OFF(pHeapInt, pBlock)); \ ASSERT_GE((pBlock)->offPrev, sizeof(RTHEAPOFFSETINTERNAL)); \ } \ else \ Assert((pBlock) == (PRTHEAPOFFSETBLOCK)((pHeapInt) + 1)); \ } while (0) #define ASSERT_NEXT(pHeap, pBlock) \ do { ASSERT_ALIGN((pBlock)->offNext); \ if ((pBlock)->offNext) \ { \ ASSERT_L((pBlock)->offNext, (pHeapInt)->cbHeap); \ ASSERT_G((pBlock)->offNext, RTHEAPOFF_TO_OFF(pHeapInt, pBlock)); \ } \ } while (0) #define ASSERT_BLOCK(pHeapInt, pBlock) \ do { AssertMsg(RTHEAPOFFSETBLOCK_IS_VALID(pBlock), ("%#x\n", (pBlock)->fFlags)); \ AssertMsg(RTHEAPOFF_GET_ANCHOR(pBlock) == (pHeapInt), ("%p != %p\n", RTHEAPOFF_GET_ANCHOR(pBlock), (pHeapInt))); \ ASSERT_GE(RTHEAPOFF_TO_OFF(pHeapInt, pBlock), sizeof(RTHEAPOFFSETINTERNAL)); \ ASSERT_L( RTHEAPOFF_TO_OFF(pHeapInt, pBlock), (pHeapInt)->cbHeap); \ ASSERT_NEXT(pHeapInt, pBlock); \ ASSERT_PREV(pHeapInt, pBlock); \ } while (0) #define ASSERT_BLOCK_USED(pHeapInt, pBlock) \ do { AssertMsg(RTHEAPOFFSETBLOCK_IS_VALID_USED((pBlock)), ("%#x\n", (pBlock)->fFlags)); \ AssertMsg(RTHEAPOFF_GET_ANCHOR(pBlock) == (pHeapInt), ("%p != %p\n", RTHEAPOFF_GET_ANCHOR(pBlock), (pHeapInt))); \ ASSERT_GE(RTHEAPOFF_TO_OFF(pHeapInt, pBlock), sizeof(RTHEAPOFFSETINTERNAL)); \ ASSERT_L( RTHEAPOFF_TO_OFF(pHeapInt, pBlock), (pHeapInt)->cbHeap); \ ASSERT_NEXT(pHeapInt, pBlock); \ ASSERT_PREV(pHeapInt, pBlock); \ } while (0) #define ASSERT_FREE_PREV(pHeapInt, pBlock) \ do { ASSERT_ALIGN((pBlock)->offPrev); \ if ((pBlock)->offPrev) \ { \ ASSERT_GE((pBlock)->offPrev, (pHeapInt)->offFreeHead); \ ASSERT_L((pBlock)->offPrev, RTHEAPOFF_TO_OFF(pHeapInt, pBlock)); \ ASSERT_LE((pBlock)->offPrev, (pBlock)->Core.offPrev); \ } \ else \ Assert((pBlock) == RTHEAPOFF_TO_PTR(pHeapInt, (pHeapInt)->offFreeHead, PRTHEAPOFFSETFREE) ); \ } while (0) #define ASSERT_FREE_NEXT(pHeapInt, pBlock) \ do { ASSERT_ALIGN((pBlock)->offNext); \ if ((pBlock)->offNext) \ { \ ASSERT_LE((pBlock)->offNext, (pHeapInt)->offFreeTail); \ ASSERT_G((pBlock)->offNext, RTHEAPOFF_TO_OFF(pHeapInt, pBlock)); \ ASSERT_GE((pBlock)->offNext, (pBlock)->Core.offNext); \ } \ else \ Assert((pBlock) == RTHEAPOFF_TO_PTR(pHeapInt, (pHeapInt)->offFreeTail, PRTHEAPOFFSETFREE)); \ } while (0) #ifdef RTHEAPOFFSET_STRICT # define ASSERT_FREE_CB(pHeapInt, pBlock) \ do { size_t cbCalc = ((pBlock)->Core.offNext ? (pBlock)->Core.offNext : (pHeapInt)->cbHeap) \ - RTHEAPOFF_TO_OFF((pHeapInt), (pBlock)) - sizeof(RTHEAPOFFSETBLOCK); \ AssertMsg((pBlock)->cb == cbCalc, ("cb=%#zx cbCalc=%#zx\n", (pBlock)->cb, cbCalc)); \ } while (0) #else # define ASSERT_FREE_CB(pHeapInt, pBlock) do {} while (0) #endif /** Asserts that a free block is valid. */ #define ASSERT_BLOCK_FREE(pHeapInt, pBlock) \ do { ASSERT_BLOCK(pHeapInt, &(pBlock)->Core); \ Assert(RTHEAPOFFSETBLOCK_IS_VALID_FREE(&(pBlock)->Core)); \ ASSERT_GE(RTHEAPOFF_TO_OFF(pHeapInt, pBlock), (pHeapInt)->offFreeHead); \ ASSERT_LE(RTHEAPOFF_TO_OFF(pHeapInt, pBlock), (pHeapInt)->offFreeTail); \ ASSERT_FREE_NEXT(pHeapInt, pBlock); \ ASSERT_FREE_PREV(pHeapInt, pBlock); \ ASSERT_FREE_CB(pHeapInt, pBlock); \ } while (0) /** Asserts that the heap anchor block is ok. */ #define ASSERT_ANCHOR(pHeapInt) \ do { AssertPtr(pHeapInt);\ Assert((pHeapInt)->u32Magic == RTHEAPOFFSET_MAGIC); \ } while (0) /******************************************************************************* * Internal Functions * *******************************************************************************/ #ifdef RTHEAPOFFSET_STRICT static void rtHeapOffsetAssertAll(PRTHEAPOFFSETINTERNAL pHeapInt); #endif static PRTHEAPOFFSETBLOCK rtHeapOffsetAllocBlock(PRTHEAPOFFSETINTERNAL pHeapInt, size_t cb, size_t uAlignment); static void rtHeapOffsetFreeBlock(PRTHEAPOFFSETINTERNAL pHeapInt, PRTHEAPOFFSETBLOCK pBlock); #ifdef RTHEAPOFFSET_STRICT /** Checked version of RTHEAPOFF_TO_PTR and RTHEAPOFF_TO_PTR_N. */ DECLINLINE(void *) rtHeapOffCheckedOffToPtr(PRTHEAPOFFSETINTERNAL pHeapInt, uint32_t off, bool fNull) { Assert(off || fNull); if (!off) return NULL; AssertMsg(off < pHeapInt->cbHeap, ("%#x %#x\n", off, pHeapInt->cbHeap)); AssertMsg(off >= sizeof(*pHeapInt), ("%#x %#x\n", off, sizeof(*pHeapInt))); return (uint8_t *)pHeapInt + off; } /** Checked version of RTHEAPOFF_TO_OFF. */ DECLINLINE(uint32_t) rtHeapOffCheckedPtrToOff(PRTHEAPOFFSETINTERNAL pHeapInt, void *pv) { if (!pv) return 0; uintptr_t off = (uintptr_t)pv - (uintptr_t)pHeapInt; AssertMsg(off < pHeapInt->cbHeap, ("%#x %#x\n", off, pHeapInt->cbHeap)); AssertMsg(off >= sizeof(*pHeapInt), ("%#x %#x\n", off, sizeof(*pHeapInt))); return (uint32_t)off; } #endif /* RTHEAPOFFSET_STRICT */ RTDECL(int) RTHeapOffsetInit(PRTHEAPOFFSET phHeap, void *pvMemory, size_t cbMemory) { PRTHEAPOFFSETINTERNAL pHeapInt; PRTHEAPOFFSETFREE pFree; unsigned i; /* * Validate input. The imposed minimum heap size is just a convenient value. */ AssertReturn(cbMemory >= PAGE_SIZE, VERR_INVALID_PARAMETER); AssertReturn(cbMemory < UINT32_MAX, VERR_INVALID_PARAMETER); AssertPtrReturn(pvMemory, VERR_INVALID_POINTER); AssertReturn((uintptr_t)pvMemory + (cbMemory - 1) > (uintptr_t)cbMemory, VERR_INVALID_PARAMETER); /* * Place the heap anchor block at the start of the heap memory, * enforce 32 byte alignment of it. Also align the heap size correctly. */ pHeapInt = (PRTHEAPOFFSETINTERNAL)pvMemory; if ((uintptr_t)pvMemory & 31) { const uintptr_t off = 32 - ((uintptr_t)pvMemory & 31); cbMemory -= off; pHeapInt = (PRTHEAPOFFSETINTERNAL)((uintptr_t)pvMemory + off); } cbMemory &= ~(RTHEAPOFFSET_ALIGNMENT - 1); /* Init the heap anchor block. */ pHeapInt->u32Magic = RTHEAPOFFSET_MAGIC; pHeapInt->cbHeap = (uint32_t)cbMemory; pHeapInt->cbFree = (uint32_t)cbMemory - sizeof(RTHEAPOFFSETBLOCK) - sizeof(RTHEAPOFFSETINTERNAL); pHeapInt->offFreeTail = pHeapInt->offFreeHead = sizeof(*pHeapInt); for (i = 0; i < RT_ELEMENTS(pHeapInt->au32Alignment); i++) pHeapInt->au32Alignment[i] = UINT32_MAX; /* Init the single free block. */ pFree = RTHEAPOFF_TO_PTR(pHeapInt, pHeapInt->offFreeHead, PRTHEAPOFFSETFREE); pFree->Core.offNext = 0; pFree->Core.offPrev = 0; pFree->Core.offSelf = pHeapInt->offFreeHead; pFree->Core.fFlags = RTHEAPOFFSETBLOCK_FLAGS_MAGIC | RTHEAPOFFSETBLOCK_FLAGS_FREE; pFree->offNext = 0; pFree->offPrev = 0; pFree->cb = pHeapInt->cbFree; *phHeap = pHeapInt; #ifdef RTHEAPOFFSET_STRICT rtHeapOffsetAssertAll(pHeapInt); #endif return VINF_SUCCESS; } RT_EXPORT_SYMBOL(RTHeapOffsetInit); RTDECL(void *) RTHeapOffsetAlloc(RTHEAPOFFSET hHeap, size_t cb, size_t cbAlignment) { PRTHEAPOFFSETINTERNAL pHeapInt = hHeap; PRTHEAPOFFSETBLOCK pBlock; /* * Validate and adjust the input. */ AssertPtrReturn(pHeapInt, NULL); if (cb < RTHEAPOFFSET_MIN_BLOCK) cb = RTHEAPOFFSET_MIN_BLOCK; else cb = RT_ALIGN_Z(cb, RTHEAPOFFSET_ALIGNMENT); if (!cbAlignment) cbAlignment = RTHEAPOFFSET_ALIGNMENT; else { Assert(!(cbAlignment & (cbAlignment - 1))); Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment); if (cbAlignment < RTHEAPOFFSET_ALIGNMENT) cbAlignment = RTHEAPOFFSET_ALIGNMENT; } /* * Do the allocation. */ pBlock = rtHeapOffsetAllocBlock(pHeapInt, cb, cbAlignment); if (RT_LIKELY(pBlock)) { void *pv = pBlock + 1; return pv; } return NULL; } RT_EXPORT_SYMBOL(RTHeapOffsetAlloc); RTDECL(void *) RTHeapOffsetAllocZ(RTHEAPOFFSET hHeap, size_t cb, size_t cbAlignment) { PRTHEAPOFFSETINTERNAL pHeapInt = hHeap; PRTHEAPOFFSETBLOCK pBlock; /* * Validate and adjust the input. */ AssertPtrReturn(pHeapInt, NULL); if (cb < RTHEAPOFFSET_MIN_BLOCK) cb = RTHEAPOFFSET_MIN_BLOCK; else cb = RT_ALIGN_Z(cb, RTHEAPOFFSET_ALIGNMENT); if (!cbAlignment) cbAlignment = RTHEAPOFFSET_ALIGNMENT; else { Assert(!(cbAlignment & (cbAlignment - 1))); Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment); if (cbAlignment < RTHEAPOFFSET_ALIGNMENT) cbAlignment = RTHEAPOFFSET_ALIGNMENT; } /* * Do the allocation. */ pBlock = rtHeapOffsetAllocBlock(pHeapInt, cb, cbAlignment); if (RT_LIKELY(pBlock)) { void *pv = pBlock + 1; memset(pv, 0, cb); return pv; } return NULL; } RT_EXPORT_SYMBOL(RTHeapOffsetAllocZ); /** * Allocates a block of memory from the specified heap. * * No parameter validation or adjustment is performed. * * @returns Pointer to the allocated block. * @returns NULL on failure. * * @param pHeapInt The heap. * @param cb Size of the memory block to allocate. * @param uAlignment The alignment specifications for the allocated block. */ static PRTHEAPOFFSETBLOCK rtHeapOffsetAllocBlock(PRTHEAPOFFSETINTERNAL pHeapInt, size_t cb, size_t uAlignment) { PRTHEAPOFFSETBLOCK pRet = NULL; PRTHEAPOFFSETFREE pFree; AssertReturn((pHeapInt)->u32Magic == RTHEAPOFFSET_MAGIC, NULL); #ifdef RTHEAPOFFSET_STRICT rtHeapOffsetAssertAll(pHeapInt); #endif /* * Search for a fitting block from the lower end of the heap. */ for (pFree = RTHEAPOFF_TO_PTR_N(pHeapInt, pHeapInt->offFreeHead, PRTHEAPOFFSETFREE); pFree; pFree = RTHEAPOFF_TO_PTR_N(pHeapInt, pFree->offNext, PRTHEAPOFFSETFREE)) { uintptr_t offAlign; ASSERT_BLOCK_FREE(pHeapInt, pFree); /* * Match for size and alignment. */ if (pFree->cb < cb) continue; offAlign = (uintptr_t)(&pFree->Core + 1) & (uAlignment - 1); if (offAlign) { PRTHEAPOFFSETFREE pPrev; offAlign = (uintptr_t)(&pFree[1].Core + 1) & (uAlignment - 1); offAlign = uAlignment - offAlign; if (pFree->cb < cb + offAlign + sizeof(RTHEAPOFFSETFREE)) continue; /* * Split up the free block into two, so that the 2nd is aligned as * per specification. */ pPrev = pFree; pFree = (PRTHEAPOFFSETFREE)((uintptr_t)(pFree + 1) + offAlign); pFree->Core.offPrev = pPrev->Core.offSelf; pFree->Core.offNext = pPrev->Core.offNext; pFree->Core.offSelf = RTHEAPOFF_TO_OFF(pHeapInt, pFree); pFree->Core.fFlags = RTHEAPOFFSETBLOCK_FLAGS_MAGIC | RTHEAPOFFSETBLOCK_FLAGS_FREE; pFree->offPrev = pPrev->Core.offSelf; pFree->offNext = pPrev->offNext; pFree->cb = (pFree->Core.offNext ? pFree->Core.offNext : pHeapInt->cbHeap) - pFree->Core.offSelf - sizeof(RTHEAPOFFSETBLOCK); pPrev->Core.offNext = pFree->Core.offSelf; pPrev->offNext = pFree->Core.offSelf; pPrev->cb = pFree->Core.offSelf - pPrev->Core.offSelf - sizeof(RTHEAPOFFSETBLOCK); if (pFree->Core.offNext) RTHEAPOFF_TO_PTR(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETBLOCK)->offPrev = pFree->Core.offSelf; if (pFree->offNext) RTHEAPOFF_TO_PTR(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETFREE)->offPrev = pFree->Core.offSelf; else pHeapInt->offFreeTail = pFree->Core.offSelf; pHeapInt->cbFree -= sizeof(RTHEAPOFFSETBLOCK); ASSERT_BLOCK_FREE(pHeapInt, pPrev); ASSERT_BLOCK_FREE(pHeapInt, pFree); } /* * Split off a new FREE block? */ if (pFree->cb >= cb + RT_ALIGN_Z(sizeof(RTHEAPOFFSETFREE), RTHEAPOFFSET_ALIGNMENT)) { /* * Create a new FREE block at then end of this one. */ PRTHEAPOFFSETFREE pNew = (PRTHEAPOFFSETFREE)((uintptr_t)&pFree->Core + cb + sizeof(RTHEAPOFFSETBLOCK)); pNew->Core.offSelf = RTHEAPOFF_TO_OFF(pHeapInt, pNew); pNew->Core.offNext = pFree->Core.offNext; if (pFree->Core.offNext) RTHEAPOFF_TO_PTR(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETBLOCK)->offPrev = pNew->Core.offSelf; pNew->Core.offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree); pNew->Core.fFlags = RTHEAPOFFSETBLOCK_FLAGS_MAGIC | RTHEAPOFFSETBLOCK_FLAGS_FREE; pNew->offNext = pFree->offNext; if (pNew->offNext) RTHEAPOFF_TO_PTR(pHeapInt, pNew->offNext, PRTHEAPOFFSETFREE)->offPrev = pNew->Core.offSelf; else pHeapInt->offFreeTail = pNew->Core.offSelf; pNew->offPrev = pFree->offPrev; if (pNew->offPrev) RTHEAPOFF_TO_PTR(pHeapInt, pNew->offPrev, PRTHEAPOFFSETFREE)->offNext = pNew->Core.offSelf; else pHeapInt->offFreeHead = pNew->Core.offSelf; pNew->cb = (pNew->Core.offNext ? pNew->Core.offNext : pHeapInt->cbHeap) \ - pNew->Core.offSelf - sizeof(RTHEAPOFFSETBLOCK); ASSERT_BLOCK_FREE(pHeapInt, pNew); /* * Adjust and convert the old FREE node into a USED node. */ pFree->Core.fFlags &= ~RTHEAPOFFSETBLOCK_FLAGS_FREE; pFree->Core.offNext = pNew->Core.offSelf; pHeapInt->cbFree -= pFree->cb; pHeapInt->cbFree += pNew->cb; pRet = &pFree->Core; ASSERT_BLOCK_USED(pHeapInt, pRet); } else { /* * Link it out of the free list. */ if (pFree->offNext) RTHEAPOFF_TO_PTR(pHeapInt, pFree->offNext, PRTHEAPOFFSETFREE)->offPrev = pFree->offPrev; else pHeapInt->offFreeTail = pFree->offPrev; if (pFree->offPrev) RTHEAPOFF_TO_PTR(pHeapInt, pFree->offPrev, PRTHEAPOFFSETFREE)->offNext = pFree->offNext; else pHeapInt->offFreeHead = pFree->offNext; /* * Convert it to a used block. */ pHeapInt->cbFree -= pFree->cb; pFree->Core.fFlags &= ~RTHEAPOFFSETBLOCK_FLAGS_FREE; pRet = &pFree->Core; ASSERT_BLOCK_USED(pHeapInt, pRet); } break; } #ifdef RTHEAPOFFSET_STRICT rtHeapOffsetAssertAll(pHeapInt); #endif return pRet; } RTDECL(void) RTHeapOffsetFree(RTHEAPOFFSET hHeap, void *pv) { PRTHEAPOFFSETINTERNAL pHeapInt; PRTHEAPOFFSETBLOCK pBlock; /* * Validate input. */ if (!pv) return; AssertPtr(pv); Assert(RT_ALIGN_P(pv, RTHEAPOFFSET_ALIGNMENT) == pv); /* * Get the block and heap. If in strict mode, validate these. */ pBlock = (PRTHEAPOFFSETBLOCK)pv - 1; pHeapInt = RTHEAPOFF_GET_ANCHOR(pBlock); ASSERT_BLOCK_USED(pHeapInt, pBlock); ASSERT_ANCHOR(pHeapInt); Assert(pHeapInt == (PRTHEAPOFFSETINTERNAL)hHeap || !hHeap); #ifdef RTHEAPOFFSET_FREE_POISON /* * Poison the block. */ const size_t cbBlock = (pBlock->pNext ? (uintptr_t)pBlock->pNext : (uintptr_t)pHeapInt->pvEnd) - (uintptr_t)pBlock - sizeof(RTHEAPOFFSETBLOCK); memset(pBlock + 1, RTHEAPOFFSET_FREE_POISON, cbBlock); #endif /* * Call worker which does the actual job. */ rtHeapOffsetFreeBlock(pHeapInt, pBlock); } RT_EXPORT_SYMBOL(RTHeapOffsetFree); /** * Free a memory block. * * @param pHeapInt The heap. * @param pBlock The memory block to free. */ static void rtHeapOffsetFreeBlock(PRTHEAPOFFSETINTERNAL pHeapInt, PRTHEAPOFFSETBLOCK pBlock) { PRTHEAPOFFSETFREE pFree = (PRTHEAPOFFSETFREE)pBlock; PRTHEAPOFFSETFREE pLeft; PRTHEAPOFFSETFREE pRight; #ifdef RTHEAPOFFSET_STRICT rtHeapOffsetAssertAll(pHeapInt); #endif /* * Look for the closest free list blocks by walking the blocks right * of us (both lists are sorted by address). */ pLeft = NULL; pRight = NULL; if (pHeapInt->offFreeTail) { pRight = RTHEAPOFF_TO_PTR_N(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETFREE); while (pRight && !RTHEAPOFFSETBLOCK_IS_FREE(&pRight->Core)) { ASSERT_BLOCK(pHeapInt, &pRight->Core); pRight = RTHEAPOFF_TO_PTR_N(pHeapInt, pRight->Core.offNext, PRTHEAPOFFSETFREE); } if (!pRight) pLeft = RTHEAPOFF_TO_PTR_N(pHeapInt, pHeapInt->offFreeTail, PRTHEAPOFFSETFREE); else { ASSERT_BLOCK_FREE(pHeapInt, pRight); pLeft = RTHEAPOFF_TO_PTR_N(pHeapInt, pRight->offPrev, PRTHEAPOFFSETFREE); } if (pLeft) ASSERT_BLOCK_FREE(pHeapInt, pLeft); } AssertMsgReturnVoid(pLeft != pFree, ("Freed twice! pv=%p (pBlock=%p)\n", pBlock + 1, pBlock)); ASSERT_L(RTHEAPOFF_TO_OFF(pHeapInt, pLeft), RTHEAPOFF_TO_OFF(pHeapInt, pFree)); Assert(!pRight || (uintptr_t)pRight > (uintptr_t)pFree); Assert(!pLeft || RTHEAPOFF_TO_PTR_N(pHeapInt, pLeft->offNext, PRTHEAPOFFSETFREE) == pRight); /* * Insert at the head of the free block list? */ if (!pLeft) { Assert(pRight == RTHEAPOFF_TO_PTR_N(pHeapInt, pHeapInt->offFreeHead, PRTHEAPOFFSETFREE)); pFree->Core.fFlags |= RTHEAPOFFSETBLOCK_FLAGS_FREE; pFree->offPrev = 0; pFree->offNext = RTHEAPOFF_TO_OFF(pHeapInt, pRight); if (pRight) pRight->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree); else pHeapInt->offFreeTail = RTHEAPOFF_TO_OFF(pHeapInt, pFree); pHeapInt->offFreeHead = RTHEAPOFF_TO_OFF(pHeapInt, pFree); } else { /* * Can we merge with left hand free block? */ if (pLeft->Core.offNext == RTHEAPOFF_TO_OFF(pHeapInt, pFree)) { pLeft->Core.offNext = pFree->Core.offNext; if (pFree->Core.offNext) RTHEAPOFF_TO_PTR(pHeapInt, pFree->Core.offNext, PRTHEAPOFFSETBLOCK)->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pLeft); pHeapInt->cbFree -= pLeft->cb; pFree = pLeft; } /* * No, just link it into the free list then. */ else { pFree->Core.fFlags |= RTHEAPOFFSETBLOCK_FLAGS_FREE; pFree->offNext = RTHEAPOFF_TO_OFF(pHeapInt, pRight); pFree->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pLeft); pLeft->offNext = RTHEAPOFF_TO_OFF(pHeapInt, pFree); if (pRight) pRight->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree); else pHeapInt->offFreeTail = RTHEAPOFF_TO_OFF(pHeapInt, pFree); } } /* * Can we merge with right hand free block? */ if ( pRight && pRight->Core.offPrev == RTHEAPOFF_TO_OFF(pHeapInt, pFree)) { /* core */ pFree->Core.offNext = pRight->Core.offNext; if (pRight->Core.offNext) RTHEAPOFF_TO_PTR(pHeapInt, pRight->Core.offNext, PRTHEAPOFFSETBLOCK)->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree); /* free */ pFree->offNext = pRight->offNext; if (pRight->offNext) RTHEAPOFF_TO_PTR(pHeapInt, pRight->offNext, PRTHEAPOFFSETFREE)->offPrev = RTHEAPOFF_TO_OFF(pHeapInt, pFree); else pHeapInt->offFreeTail = RTHEAPOFF_TO_OFF(pHeapInt, pFree); pHeapInt->cbFree -= pRight->cb; } /* * Calculate the size and update free stats. */ pFree->cb = (pFree->Core.offNext ? pFree->Core.offNext : pHeapInt->cbHeap) - RTHEAPOFF_TO_OFF(pHeapInt, pFree) - sizeof(RTHEAPOFFSETBLOCK); pHeapInt->cbFree += pFree->cb; ASSERT_BLOCK_FREE(pHeapInt, pFree); #ifdef RTHEAPOFFSET_STRICT rtHeapOffsetAssertAll(pHeapInt); #endif } #ifdef RTHEAPOFFSET_STRICT /** * Internal consistency check (relying on assertions). * @param pHeapInt */ static void rtHeapOffsetAssertAll(PRTHEAPOFFSETINTERNAL pHeapInt) { PRTHEAPOFFSETFREE pPrev = NULL; PRTHEAPOFFSETFREE pPrevFree = NULL; PRTHEAPOFFSETFREE pBlock; for (pBlock = (PRTHEAPOFFSETFREE)(pHeapInt + 1); pBlock; pBlock = RTHEAPOFF_TO_PTR_N(pHeapInt, pBlock->Core.offNext, PRTHEAPOFFSETFREE)) { if (RTHEAPOFFSETBLOCK_IS_FREE(&pBlock->Core)) { ASSERT_BLOCK_FREE(pHeapInt, pBlock); Assert(pBlock->offPrev == RTHEAPOFF_TO_OFF(pHeapInt, pPrevFree)); Assert(pPrevFree || pHeapInt->offFreeHead == RTHEAPOFF_TO_OFF(pHeapInt, pBlock)); pPrevFree = pBlock; } else ASSERT_BLOCK_USED(pHeapInt, &pBlock->Core); Assert(!pPrev || RTHEAPOFF_TO_OFF(pHeapInt, pPrev) == pBlock->Core.offPrev); pPrev = pBlock; } Assert(pHeapInt->offFreeTail == RTHEAPOFF_TO_OFF(pHeapInt, pPrevFree)); } #endif RTDECL(size_t) RTHeapOffsetSize(RTHEAPOFFSET hHeap, void *pv) { PRTHEAPOFFSETINTERNAL pHeapInt; PRTHEAPOFFSETBLOCK pBlock; size_t cbBlock; /* * Validate input. */ if (!pv) return 0; AssertPtrReturn(pv, 0); AssertReturn(RT_ALIGN_P(pv, RTHEAPOFFSET_ALIGNMENT) == pv, 0); /* * Get the block and heap. If in strict mode, validate these. */ pBlock = (PRTHEAPOFFSETBLOCK)pv - 1; pHeapInt = RTHEAPOFF_GET_ANCHOR(pBlock); ASSERT_BLOCK_USED(pHeapInt, pBlock); ASSERT_ANCHOR(pHeapInt); Assert(pHeapInt == (PRTHEAPOFFSETINTERNAL)hHeap || !hHeap); /* * Calculate the block size. */ cbBlock = (pBlock->offNext ? pBlock->offNext : pHeapInt->cbHeap) - RTHEAPOFF_TO_OFF(pHeapInt, pBlock) - sizeof(RTHEAPOFFSETBLOCK); return cbBlock; } RT_EXPORT_SYMBOL(RTHeapOffsetSize); RTDECL(size_t) RTHeapOffsetGetHeapSize(RTHEAPOFFSET hHeap) { PRTHEAPOFFSETINTERNAL pHeapInt; if (hHeap == NIL_RTHEAPOFFSET) return 0; pHeapInt = hHeap; AssertPtrReturn(pHeapInt, 0); ASSERT_ANCHOR(pHeapInt); return pHeapInt->cbHeap; } RT_EXPORT_SYMBOL(RTHeapOffsetGetHeapSize); RTDECL(size_t) RTHeapOffsetGetFreeSize(RTHEAPOFFSET hHeap) { PRTHEAPOFFSETINTERNAL pHeapInt; if (hHeap == NIL_RTHEAPOFFSET) return 0; pHeapInt = hHeap; AssertPtrReturn(pHeapInt, 0); ASSERT_ANCHOR(pHeapInt); return pHeapInt->cbFree; } RT_EXPORT_SYMBOL(RTHeapOffsetGetFreeSize); RTDECL(void) RTHeapOffsetDump(RTHEAPOFFSET hHeap, PFNRTHEAPOFFSETPRINTF pfnPrintf) { PRTHEAPOFFSETINTERNAL pHeapInt = (PRTHEAPOFFSETINTERNAL)hHeap; PRTHEAPOFFSETFREE pBlock; pfnPrintf("**** Dumping Heap %p - cbHeap=%x cbFree=%x ****\n", hHeap, pHeapInt->cbHeap, pHeapInt->cbFree); for (pBlock = (PRTHEAPOFFSETFREE)(pHeapInt + 1); pBlock; pBlock = RTHEAPOFF_TO_PTR_N(pHeapInt, pBlock->Core.offNext, PRTHEAPOFFSETFREE)) { size_t cb = (pBlock->offNext ? pBlock->Core.offNext : pHeapInt->cbHeap) - RTHEAPOFF_TO_OFF(pHeapInt, pBlock) - sizeof(RTHEAPOFFSETBLOCK); if (RTHEAPOFFSETBLOCK_IS_FREE(&pBlock->Core)) pfnPrintf("%p %06x FREE offNext=%06x offPrev=%06x fFlags=%#x cb=%#06x : cb=%#06x offNext=%06x offPrev=%06x\n", pBlock, pBlock->Core.offSelf, pBlock->Core.offNext, pBlock->Core.offPrev, pBlock->Core.fFlags, cb, pBlock->cb, pBlock->offNext, pBlock->offPrev); else pfnPrintf("%p %06x USED offNext=%06x offPrev=%06x fFlags=%#x cb=%#06x\n", pBlock, pBlock->Core.offSelf, pBlock->Core.offNext, pBlock->Core.offPrev, pBlock->Core.fFlags, cb); } pfnPrintf("**** Done dumping Heap %p ****\n", hHeap); } RT_EXPORT_SYMBOL(RTHeapOffsetDump);