VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/checksum/alt-sha256.cpp@ 51885

Last change on this file since 51885 was 51885, checked in by vboxsync, 10 years ago

Documented another bswap experiment.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 23.4 KB
Line 
1/* $Id: alt-sha256.cpp 51885 2014-07-06 18:09:40Z vboxsync $ */
2/** @file
3 * IPRT - SHA-256 and SHA-224 hash functions, Alternative Implementation.
4 */
5
6/*
7 * Copyright (C) 2009-2014 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Defined Constants And Macros *
30*******************************************************************************/
31/** The SHA-256 block size (in bytes). */
32#define RTSHA256_BLOCK_SIZE 64U
33
34/** Enables the unrolled code. */
35#define RTSHA256_UNROLLED 1
36
37
38/*******************************************************************************
39* Header Files *
40*******************************************************************************/
41#include "internal/iprt.h"
42#include <iprt/types.h>
43#include <iprt/assert.h>
44#include <iprt/asm.h>
45#include <iprt/string.h>
46
47
48/** Our private context structure. */
49typedef struct RTSHA256ALTPRIVATECTX
50{
51 /** The W array.
52 * Buffering happens in the first 16 words, converted from big endian to host
53 * endian immediately before processing. The amount of buffered data is kept
54 * in the 6 least significant bits of cbMessage. */
55 uint32_t auW[64];
56 /** The message length (in bytes). */
57 uint64_t cbMessage;
58 /** The 8 hash values. */
59 uint32_t auH[8];
60} RTSHA256ALTPRIVATECTX;
61
62#define RT_SHA256_PRIVATE_ALT_CONTEXT
63#include <iprt/sha.h>
64
65
66AssertCompile(RT_SIZEOFMEMB(RTSHA256CONTEXT, abPadding) >= RT_SIZEOFMEMB(RTSHA256CONTEXT, AltPrivate));
67AssertCompileMemberSize(RTSHA256ALTPRIVATECTX, auH, RTSHA256_HASH_SIZE);
68
69
70/*******************************************************************************
71* Global Variables *
72*******************************************************************************/
73#ifndef RTSHA256_UNROLLED
74/** The K constants */
75static uint32_t const g_auKs[] =
76{
77 UINT32_C(0x428a2f98), UINT32_C(0x71374491), UINT32_C(0xb5c0fbcf), UINT32_C(0xe9b5dba5),
78 UINT32_C(0x3956c25b), UINT32_C(0x59f111f1), UINT32_C(0x923f82a4), UINT32_C(0xab1c5ed5),
79 UINT32_C(0xd807aa98), UINT32_C(0x12835b01), UINT32_C(0x243185be), UINT32_C(0x550c7dc3),
80 UINT32_C(0x72be5d74), UINT32_C(0x80deb1fe), UINT32_C(0x9bdc06a7), UINT32_C(0xc19bf174),
81 UINT32_C(0xe49b69c1), UINT32_C(0xefbe4786), UINT32_C(0x0fc19dc6), UINT32_C(0x240ca1cc),
82 UINT32_C(0x2de92c6f), UINT32_C(0x4a7484aa), UINT32_C(0x5cb0a9dc), UINT32_C(0x76f988da),
83 UINT32_C(0x983e5152), UINT32_C(0xa831c66d), UINT32_C(0xb00327c8), UINT32_C(0xbf597fc7),
84 UINT32_C(0xc6e00bf3), UINT32_C(0xd5a79147), UINT32_C(0x06ca6351), UINT32_C(0x14292967),
85 UINT32_C(0x27b70a85), UINT32_C(0x2e1b2138), UINT32_C(0x4d2c6dfc), UINT32_C(0x53380d13),
86 UINT32_C(0x650a7354), UINT32_C(0x766a0abb), UINT32_C(0x81c2c92e), UINT32_C(0x92722c85),
87 UINT32_C(0xa2bfe8a1), UINT32_C(0xa81a664b), UINT32_C(0xc24b8b70), UINT32_C(0xc76c51a3),
88 UINT32_C(0xd192e819), UINT32_C(0xd6990624), UINT32_C(0xf40e3585), UINT32_C(0x106aa070),
89 UINT32_C(0x19a4c116), UINT32_C(0x1e376c08), UINT32_C(0x2748774c), UINT32_C(0x34b0bcb5),
90 UINT32_C(0x391c0cb3), UINT32_C(0x4ed8aa4a), UINT32_C(0x5b9cca4f), UINT32_C(0x682e6ff3),
91 UINT32_C(0x748f82ee), UINT32_C(0x78a5636f), UINT32_C(0x84c87814), UINT32_C(0x8cc70208),
92 UINT32_C(0x90befffa), UINT32_C(0xa4506ceb), UINT32_C(0xbef9a3f7), UINT32_C(0xc67178f2),
93};
94#endif /* !RTSHA256_UNROLLED */
95
96
97
98RTDECL(void) RTSha256Init(PRTSHA256CONTEXT pCtx)
99{
100 pCtx->AltPrivate.cbMessage = 0;
101 pCtx->AltPrivate.auH[0] = UINT32_C(0x6a09e667);
102 pCtx->AltPrivate.auH[1] = UINT32_C(0xbb67ae85);
103 pCtx->AltPrivate.auH[2] = UINT32_C(0x3c6ef372);
104 pCtx->AltPrivate.auH[3] = UINT32_C(0xa54ff53a);
105 pCtx->AltPrivate.auH[4] = UINT32_C(0x510e527f);
106 pCtx->AltPrivate.auH[5] = UINT32_C(0x9b05688c);
107 pCtx->AltPrivate.auH[6] = UINT32_C(0x1f83d9ab);
108 pCtx->AltPrivate.auH[7] = UINT32_C(0x5be0cd19);
109}
110RT_EXPORT_SYMBOL(RTSha256Init);
111
112
113/** Function 4.2. */
114DECL_FORCE_INLINE(uint32_t) rtSha256Ch(uint32_t uX, uint32_t uY, uint32_t uZ)
115{
116#if 1
117 /* Optimization that saves one operation and probably a temporary variable. */
118 uint32_t uResult = uY;
119 uResult ^= uZ;
120 uResult &= uX;
121 uResult ^= uZ;
122 return uResult;
123#else
124 /* The original. */
125 uint32_t uResult = uX & uY;
126 uResult ^= ~uX & uZ;
127 return uResult;
128#endif
129}
130
131
132/** Function 4.3. */
133DECL_FORCE_INLINE(uint32_t) rtSha256Maj(uint32_t uX, uint32_t uY, uint32_t uZ)
134{
135#if 1
136 /* Optimization that save one operation and probably a temporary variable. */
137 uint32_t uResult = uY;
138 uResult ^= uZ;
139 uResult &= uX;
140 uResult ^= uY & uZ;
141 return uResult;
142#else
143 /* The original. */
144 uint32_t uResult = uX & uY;
145 uResult ^= uX & uZ;
146 uResult ^= uY & uZ;
147 return uResult;
148#endif
149}
150
151
152/** Function 4.4. */
153DECL_FORCE_INLINE(uint32_t) rtSha256CapitalSigma0(uint32_t uX)
154{
155 uint32_t uResult = uX = ASMRotateRightU32(uX, 2);
156 uX = ASMRotateRightU32(uX, 13 - 2);
157 uResult ^= uX;
158 uX = ASMRotateRightU32(uX, 22 - 13);
159 uResult ^= uX;
160 return uResult;
161}
162
163
164/** Function 4.5. */
165DECL_FORCE_INLINE(uint32_t) rtSha256CapitalSigma1(uint32_t uX)
166{
167 uint32_t uResult = uX = ASMRotateRightU32(uX, 6);
168 uX = ASMRotateRightU32(uX, 11 - 6);
169 uResult ^= uX;
170 uX = ASMRotateRightU32(uX, 25 - 11);
171 uResult ^= uX;
172 return uResult;
173}
174
175
176/** Function 4.6. */
177DECL_FORCE_INLINE(uint32_t) rtSha256SmallSigma0(uint32_t uX)
178{
179 uint32_t uResult = uX >> 3;
180 uX = ASMRotateRightU32(uX, 7);
181 uResult ^= uX;
182 uX = ASMRotateRightU32(uX, 18 - 7);
183 uResult ^= uX;
184 return uResult;
185}
186
187
188/** Function 4.7. */
189DECL_FORCE_INLINE(uint32_t) rtSha256SmallSigma1(uint32_t uX)
190{
191 uint32_t uResult = uX >> 10;
192 uX = ASMRotateRightU32(uX, 17);
193 uResult ^= uX;
194 uX = ASMRotateRightU32(uX, 19 - 17);
195 uResult ^= uX;
196 return uResult;
197}
198
199
200/**
201 * Initializes the auW array from the specfied input block.
202 *
203 * @param pCtx The SHA-256 context.
204 * @param pbBlock The block. Must be arch-bit-width aligned.
205 */
206DECLINLINE(void) rtSha256BlockInit(PRTSHA256CONTEXT pCtx, uint8_t const *pbBlock)
207{
208#ifdef RTSHA256_UNROLLED
209 /* Copy and byte-swap the block. Initializing the rest of the Ws are done
210 in the processing loop. */
211# ifdef RT_LITTLE_ENDIAN
212# if 0 /* Just an idea... very little gain as this isn't the expensive code. */
213 __m128i const uBSwapConst = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 };
214 __m128i const *puSrc = (__m128i const *)pbBlock;
215 __m128i *puDst = (__m128i *)&pCtx->AltPrivate.auW[0];
216
217 _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++;
218 _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++;
219 _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++;
220 _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++;
221
222# elif ARCH_BITS == 64
223 uint64_t const *puSrc = (uint64_t const *)pbBlock;
224 uint64_t *puW = (uint64_t *)&pCtx->AltPrivate.auW[0];
225 Assert(!((uintptr_t)puSrc & 7));
226 Assert(!((uintptr_t)puW & 7));
227
228 /* b0 b1 b2 b3 b4 b5 b6 b7 --bwap--> b7 b6 b5 b4 b3 b2 b1 b0 --ror--> b3 b2 b1 b0 b7 b6 b5 b4; */
229 *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
230 *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
231 *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
232 *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
233
234 *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
235 *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
236 *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
237 *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32);
238
239# else
240 uint32_t const *puSrc = (uint32_t const *)pbBlock;
241 uint32_t *puW = &pCtx->AltPrivate.auW[0];
242 Assert(!((uintptr_t)puSrc & 3));
243 Assert(!((uintptr_t)puW & 3));
244
245 *puW++ = ASMByteSwapU32(*puSrc++);
246 *puW++ = ASMByteSwapU32(*puSrc++);
247 *puW++ = ASMByteSwapU32(*puSrc++);
248 *puW++ = ASMByteSwapU32(*puSrc++);
249
250 *puW++ = ASMByteSwapU32(*puSrc++);
251 *puW++ = ASMByteSwapU32(*puSrc++);
252 *puW++ = ASMByteSwapU32(*puSrc++);
253 *puW++ = ASMByteSwapU32(*puSrc++);
254
255 *puW++ = ASMByteSwapU32(*puSrc++);
256 *puW++ = ASMByteSwapU32(*puSrc++);
257 *puW++ = ASMByteSwapU32(*puSrc++);
258 *puW++ = ASMByteSwapU32(*puSrc++);
259
260 *puW++ = ASMByteSwapU32(*puSrc++);
261 *puW++ = ASMByteSwapU32(*puSrc++);
262 *puW++ = ASMByteSwapU32(*puSrc++);
263 *puW++ = ASMByteSwapU32(*puSrc++);
264# endif
265# else /* RT_BIG_ENDIAN */
266 memcpy(&pCtx->AltPrivate.auW[0], pbBlock, RTSHA256_BLOCK_SIZE);
267# endif /* RT_BIG_ENDIAN */
268
269#else /* !RTSHA256_UNROLLED */
270 uint32_t const *pu32Block = (uint32_t const *)pbBlock;
271 Assert(!((uintptr_t)pu32Block & 3));
272
273 unsigned iWord;
274 for (iWord = 0; iWord < 16; iWord++)
275 pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pu32Block[iWord]);
276
277 for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
278 {
279 uint32_t u32 = rtSha256SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]);
280 u32 += rtSha256SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]);
281 u32 += pCtx->AltPrivate.auW[iWord - 7];
282 u32 += pCtx->AltPrivate.auW[iWord - 16];
283 pCtx->AltPrivate.auW[iWord] = u32;
284 }
285#endif /* !RTSHA256_UNROLLED */
286}
287
288
289/**
290 * Initializes the auW array from data buffered in the first part of the array.
291 *
292 * @param pCtx The SHA-256 context.
293 */
294DECLINLINE(void) rtSha256BlockInitBuffered(PRTSHA256CONTEXT pCtx)
295{
296#ifdef RTSHA256_UNROLLED
297 /* Do the byte swap if necessary. Initializing the rest of the Ws are done
298 in the processing loop. */
299# ifdef RT_LITTLE_ENDIAN
300# if ARCH_BITS == 64
301 uint64_t *puW = (uint64_t *)&pCtx->AltPrivate.auW[0];
302 Assert(!((uintptr_t)puW & 7));
303 /* b0 b1 b2 b3 b4 b5 b6 b7 --bwap--> b7 b6 b5 b4 b3 b2 b1 b0 --ror--> b3 b2 b1 b0 b7 b6 b5 b4; */
304 *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
305 *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
306 *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
307 *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
308
309 *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
310 *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
311 *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
312 *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++;
313
314# else
315 uint32_t *puW = &pCtx->AltPrivate.auW[0];
316 Assert(!((uintptr_t)puW & 3));
317
318 *puW = ASMByteSwapU32(*puW); puW++;
319 *puW = ASMByteSwapU32(*puW); puW++;
320 *puW = ASMByteSwapU32(*puW); puW++;
321 *puW = ASMByteSwapU32(*puW); puW++;
322
323 *puW = ASMByteSwapU32(*puW); puW++;
324 *puW = ASMByteSwapU32(*puW); puW++;
325 *puW = ASMByteSwapU32(*puW); puW++;
326 *puW = ASMByteSwapU32(*puW); puW++;
327
328 *puW = ASMByteSwapU32(*puW); puW++;
329 *puW = ASMByteSwapU32(*puW); puW++;
330 *puW = ASMByteSwapU32(*puW); puW++;
331 *puW = ASMByteSwapU32(*puW); puW++;
332
333 *puW = ASMByteSwapU32(*puW); puW++;
334 *puW = ASMByteSwapU32(*puW); puW++;
335 *puW = ASMByteSwapU32(*puW); puW++;
336 *puW = ASMByteSwapU32(*puW); puW++;
337# endif
338# endif
339
340#else /* !RTSHA256_UNROLLED */
341 unsigned iWord;
342 for (iWord = 0; iWord < 16; iWord++)
343 pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pCtx->AltPrivate.auW[iWord]);
344
345 for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
346 {
347 uint32_t u32 = rtSha256SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]);
348 u32 += rtSha256SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]);
349 u32 += pCtx->AltPrivate.auW[iWord - 7];
350 u32 += pCtx->AltPrivate.auW[iWord - 16];
351 pCtx->AltPrivate.auW[iWord] = u32;
352 }
353#endif /* !RTSHA256_UNROLLED */
354}
355
356
357/**
358 * Process the current block.
359 *
360 * Requires one of the rtSha256BlockInit functions to be called first.
361 *
362 * @param pCtx The SHA-256 context.
363 */
364static void rtSha256BlockProcess(PRTSHA256CONTEXT pCtx)
365{
366 uint32_t uA = pCtx->AltPrivate.auH[0];
367 uint32_t uB = pCtx->AltPrivate.auH[1];
368 uint32_t uC = pCtx->AltPrivate.auH[2];
369 uint32_t uD = pCtx->AltPrivate.auH[3];
370 uint32_t uE = pCtx->AltPrivate.auH[4];
371 uint32_t uF = pCtx->AltPrivate.auH[5];
372 uint32_t uG = pCtx->AltPrivate.auH[6];
373 uint32_t uH = pCtx->AltPrivate.auH[7];
374
375#ifdef RTSHA256_UNROLLED
376 uint32_t *puW = &pCtx->AltPrivate.auW[0];
377# define RTSHA256_BODY(a_iWord, a_uK, a_uA, a_uB, a_uC, a_uD, a_uE, a_uF, a_uG, a_uH) \
378 do { \
379 if ((a_iWord) < 16) \
380 a_uH += *puW++; \
381 else \
382 { \
383 uint32_t u32 = puW[-16]; \
384 u32 += rtSha256SmallSigma0(puW[-15]); \
385 u32 += puW[-7]; \
386 u32 += rtSha256SmallSigma1(puW[-2]); \
387 if (a_iWord < 64-2) *puW++ = u32; else puW++; \
388 a_uH += u32; \
389 } \
390 \
391 a_uH += rtSha256CapitalSigma1(a_uE); \
392 a_uH += a_uK; \
393 a_uH += rtSha256Ch(a_uE, a_uF, a_uG); \
394 a_uD += a_uH; \
395 \
396 a_uH += rtSha256CapitalSigma0(a_uA); \
397 a_uH += rtSha256Maj(a_uA, a_uB, a_uC); \
398 } while (0)
399# define RTSHA256_EIGHT(a_uK0, a_uK1, a_uK2, a_uK3, a_uK4, a_uK5, a_uK6, a_uK7, a_iFirst) \
400 do { \
401 RTSHA256_BODY(a_iFirst + 0, a_uK0, uA, uB, uC, uD, uE, uF, uG, uH); \
402 RTSHA256_BODY(a_iFirst + 1, a_uK1, uH, uA, uB, uC, uD, uE, uF, uG); \
403 RTSHA256_BODY(a_iFirst + 2, a_uK2, uG, uH, uA, uB, uC, uD, uE, uF); \
404 RTSHA256_BODY(a_iFirst + 3, a_uK3, uF, uG, uH, uA, uB, uC, uD, uE); \
405 RTSHA256_BODY(a_iFirst + 4, a_uK4, uE, uF, uG, uH, uA, uB, uC, uD); \
406 RTSHA256_BODY(a_iFirst + 5, a_uK5, uD, uE, uF, uG, uH, uA, uB, uC); \
407 RTSHA256_BODY(a_iFirst + 6, a_uK6, uC, uD, uE, uF, uG, uH, uA, uB); \
408 RTSHA256_BODY(a_iFirst + 7, a_uK7, uB, uC, uD, uE, uF, uG, uH, uA); \
409 } while (0)
410 RTSHA256_EIGHT(UINT32_C(0x428a2f98), UINT32_C(0x71374491), UINT32_C(0xb5c0fbcf), UINT32_C(0xe9b5dba5),
411 UINT32_C(0x3956c25b), UINT32_C(0x59f111f1), UINT32_C(0x923f82a4), UINT32_C(0xab1c5ed5), 0);
412 RTSHA256_EIGHT(UINT32_C(0xd807aa98), UINT32_C(0x12835b01), UINT32_C(0x243185be), UINT32_C(0x550c7dc3),
413 UINT32_C(0x72be5d74), UINT32_C(0x80deb1fe), UINT32_C(0x9bdc06a7), UINT32_C(0xc19bf174), 8);
414 RTSHA256_EIGHT(UINT32_C(0xe49b69c1), UINT32_C(0xefbe4786), UINT32_C(0x0fc19dc6), UINT32_C(0x240ca1cc),
415 UINT32_C(0x2de92c6f), UINT32_C(0x4a7484aa), UINT32_C(0x5cb0a9dc), UINT32_C(0x76f988da), 16);
416 RTSHA256_EIGHT(UINT32_C(0x983e5152), UINT32_C(0xa831c66d), UINT32_C(0xb00327c8), UINT32_C(0xbf597fc7),
417 UINT32_C(0xc6e00bf3), UINT32_C(0xd5a79147), UINT32_C(0x06ca6351), UINT32_C(0x14292967), 24);
418 RTSHA256_EIGHT(UINT32_C(0x27b70a85), UINT32_C(0x2e1b2138), UINT32_C(0x4d2c6dfc), UINT32_C(0x53380d13),
419 UINT32_C(0x650a7354), UINT32_C(0x766a0abb), UINT32_C(0x81c2c92e), UINT32_C(0x92722c85), 32);
420 RTSHA256_EIGHT(UINT32_C(0xa2bfe8a1), UINT32_C(0xa81a664b), UINT32_C(0xc24b8b70), UINT32_C(0xc76c51a3),
421 UINT32_C(0xd192e819), UINT32_C(0xd6990624), UINT32_C(0xf40e3585), UINT32_C(0x106aa070), 40);
422 RTSHA256_EIGHT(UINT32_C(0x19a4c116), UINT32_C(0x1e376c08), UINT32_C(0x2748774c), UINT32_C(0x34b0bcb5),
423 UINT32_C(0x391c0cb3), UINT32_C(0x4ed8aa4a), UINT32_C(0x5b9cca4f), UINT32_C(0x682e6ff3), 48);
424 RTSHA256_EIGHT(UINT32_C(0x748f82ee), UINT32_C(0x78a5636f), UINT32_C(0x84c87814), UINT32_C(0x8cc70208),
425 UINT32_C(0x90befffa), UINT32_C(0xa4506ceb), UINT32_C(0xbef9a3f7), UINT32_C(0xc67178f2), 56);
426
427#else /* !RTSHA256_UNROLLED */
428 for (unsigned iWord = 0; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
429 {
430 uint32_t uT1 = uH;
431 uT1 += rtSha256CapitalSigma1(uE);
432 uT1 += rtSha256Ch(uE, uF, uG);
433 uT1 += g_auKs[iWord];
434 uT1 += pCtx->AltPrivate.auW[iWord];
435
436 uint32_t uT2 = rtSha256CapitalSigma0(uA);
437 uT2 += rtSha256Maj(uA, uB, uC);
438
439 uH = uG;
440 uG = uF;
441 uF = uE;
442 uE = uD + uT1;
443 uD = uC;
444 uC = uB;
445 uB = uA;
446 uA = uT1 + uT2;
447 }
448#endif /* !RTSHA256_UNROLLED */
449
450 pCtx->AltPrivate.auH[0] += uA;
451 pCtx->AltPrivate.auH[1] += uB;
452 pCtx->AltPrivate.auH[2] += uC;
453 pCtx->AltPrivate.auH[3] += uD;
454 pCtx->AltPrivate.auH[4] += uE;
455 pCtx->AltPrivate.auH[5] += uF;
456 pCtx->AltPrivate.auH[6] += uG;
457 pCtx->AltPrivate.auH[7] += uH;
458}
459
460
461RTDECL(void) RTSha256Update(PRTSHA256CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
462{
463 Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 8);
464 uint8_t const *pbBuf = (uint8_t const *)pvBuf;
465
466 /*
467 * Deal with buffered bytes first.
468 */
469 size_t cbBuffered = (size_t)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U);
470 if (cbBuffered)
471 {
472 size_t cbMissing = RTSHA256_BLOCK_SIZE - cbBuffered;
473 if (cbBuf >= cbMissing)
474 {
475 memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbMissing);
476 pCtx->AltPrivate.cbMessage += cbMissing;
477 pbBuf += cbMissing;
478 cbBuf -= cbMissing;
479
480 rtSha256BlockInitBuffered(pCtx);
481 rtSha256BlockProcess(pCtx);
482 }
483 else
484 {
485 memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbBuf);
486 pCtx->AltPrivate.cbMessage += cbBuf;
487 return;
488 }
489 }
490
491 if (!((uintptr_t)pbBuf & (sizeof(void *) - 1)))
492 {
493 /*
494 * Process full blocks directly from the input buffer.
495 */
496 while (cbBuf >= RTSHA256_BLOCK_SIZE)
497 {
498 rtSha256BlockInit(pCtx, pbBuf);
499 rtSha256BlockProcess(pCtx);
500
501 pCtx->AltPrivate.cbMessage += RTSHA256_BLOCK_SIZE;
502 pbBuf += RTSHA256_BLOCK_SIZE;
503 cbBuf -= RTSHA256_BLOCK_SIZE;
504 }
505 }
506 else
507 {
508 /*
509 * Unaligned input, so buffer it.
510 */
511 while (cbBuf >= RTSHA256_BLOCK_SIZE)
512 {
513 memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, RTSHA256_BLOCK_SIZE);
514 rtSha256BlockInitBuffered(pCtx);
515 rtSha256BlockProcess(pCtx);
516
517 pCtx->AltPrivate.cbMessage += RTSHA256_BLOCK_SIZE;
518 pbBuf += RTSHA256_BLOCK_SIZE;
519 cbBuf -= RTSHA256_BLOCK_SIZE;
520 }
521 }
522
523 /*
524 * Stash any remaining bytes into the context buffer.
525 */
526 if (cbBuf > 0)
527 {
528 memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, cbBuf);
529 pCtx->AltPrivate.cbMessage += cbBuf;
530 }
531}
532RT_EXPORT_SYMBOL(RTSha256Update);
533
534
535/**
536 * Internal worker for RTSha256Final and RTSha224Final that finalizes the
537 * computation but does not copy out the hash value.
538 *
539 * @param pCtx The SHA-256 context.
540 */
541static void rtSha256FinalInternal(PRTSHA256CONTEXT pCtx)
542{
543 Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 8);
544
545 /*
546 * Complete the message by adding a single bit (0x80), padding till
547 * the next 448-bit boundrary, the add the message length.
548 */
549 uint64_t const cMessageBits = pCtx->AltPrivate.cbMessage * 8;
550
551 unsigned cbMissing = RTSHA256_BLOCK_SIZE - ((unsigned)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U));
552 static uint8_t const s_abSingleBitAndSomePadding[12] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
553 if (cbMissing < 1U + 8U)
554 /* Less than 64+8 bits left in the current block, force a new block. */
555 RTSha256Update(pCtx, &s_abSingleBitAndSomePadding, sizeof(s_abSingleBitAndSomePadding));
556 else
557 RTSha256Update(pCtx, &s_abSingleBitAndSomePadding, 1);
558
559 unsigned cbBuffered = (unsigned)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U);
560 cbMissing = RTSHA256_BLOCK_SIZE - cbBuffered;
561 Assert(cbMissing >= 8);
562 memset((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, 0, cbMissing - 8);
563
564 *(uint64_t *)&pCtx->AltPrivate.auW[14] = RT_H2BE_U64(cMessageBits);
565
566 /*
567 * Process the last buffered block constructed/completed above.
568 */
569 rtSha256BlockInitBuffered(pCtx);
570 rtSha256BlockProcess(pCtx);
571
572 /*
573 * Convert the byte order of the hash words and we're done.
574 */
575 pCtx->AltPrivate.auH[0] = RT_H2BE_U32(pCtx->AltPrivate.auH[0]);
576 pCtx->AltPrivate.auH[1] = RT_H2BE_U32(pCtx->AltPrivate.auH[1]);
577 pCtx->AltPrivate.auH[2] = RT_H2BE_U32(pCtx->AltPrivate.auH[2]);
578 pCtx->AltPrivate.auH[3] = RT_H2BE_U32(pCtx->AltPrivate.auH[3]);
579 pCtx->AltPrivate.auH[4] = RT_H2BE_U32(pCtx->AltPrivate.auH[4]);
580 pCtx->AltPrivate.auH[5] = RT_H2BE_U32(pCtx->AltPrivate.auH[5]);
581 pCtx->AltPrivate.auH[6] = RT_H2BE_U32(pCtx->AltPrivate.auH[6]);
582 pCtx->AltPrivate.auH[7] = RT_H2BE_U32(pCtx->AltPrivate.auH[7]);
583
584 RT_ZERO(pCtx->AltPrivate.auW);
585 pCtx->AltPrivate.cbMessage = UINT64_MAX;
586}
587RT_EXPORT_SYMBOL(RTSha256Final);
588
589
590RTDECL(void) RTSha256Final(PRTSHA256CONTEXT pCtx, uint8_t pabDigest[RTSHA256_HASH_SIZE])
591{
592 rtSha256FinalInternal(pCtx);
593 memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA256_HASH_SIZE);
594 RT_ZERO(pCtx->AltPrivate.auH);
595}
596RT_EXPORT_SYMBOL(RTSha256Final);
597
598
599RTDECL(void) RTSha256(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA256_HASH_SIZE])
600{
601 RTSHA256CONTEXT Ctx;
602 RTSha256Init(&Ctx);
603 RTSha256Update(&Ctx, pvBuf, cbBuf);
604 RTSha256Final(&Ctx, pabDigest);
605}
606RT_EXPORT_SYMBOL(RTSha256);
607
608
609
610/*
611 * SHA-224 is just SHA-256 with different initial values an a truncated result.
612 */
613
614RTDECL(void) RTSha224Init(PRTSHA224CONTEXT pCtx)
615{
616 pCtx->AltPrivate.cbMessage = 0;
617 pCtx->AltPrivate.auH[0] = UINT32_C(0xc1059ed8);
618 pCtx->AltPrivate.auH[1] = UINT32_C(0x367cd507);
619 pCtx->AltPrivate.auH[2] = UINT32_C(0x3070dd17);
620 pCtx->AltPrivate.auH[3] = UINT32_C(0xf70e5939);
621 pCtx->AltPrivate.auH[4] = UINT32_C(0xffc00b31);
622 pCtx->AltPrivate.auH[5] = UINT32_C(0x68581511);
623 pCtx->AltPrivate.auH[6] = UINT32_C(0x64f98fa7);
624 pCtx->AltPrivate.auH[7] = UINT32_C(0xbefa4fa4);
625}
626RT_EXPORT_SYMBOL(RTSha224Init);
627
628
629RTDECL(void) RTSha224Update(PRTSHA224CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
630{
631 RTSha256Update(pCtx, pvBuf, cbBuf);
632}
633RT_EXPORT_SYMBOL(RTSha224Update);
634
635
636RTDECL(void) RTSha224Final(PRTSHA224CONTEXT pCtx, uint8_t pabDigest[RTSHA224_HASH_SIZE])
637{
638 rtSha256FinalInternal(pCtx);
639 memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA224_HASH_SIZE);
640 RT_ZERO(pCtx->AltPrivate.auH);
641}
642RT_EXPORT_SYMBOL(RTSha224Final);
643
644
645RTDECL(void) RTSha224(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA224_HASH_SIZE])
646{
647 RTSHA224CONTEXT Ctx;
648 RTSha224Init(&Ctx);
649 RTSha224Update(&Ctx, pvBuf, cbBuf);
650 RTSha224Final(&Ctx, pabDigest);
651}
652RT_EXPORT_SYMBOL(RTSha224);
653
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette