1 | /* $Id: shacrypt-512.cpp.h 102488 2023-12-05 23:53:09Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Crypto - SHA-crypt, code template for SHA-512 core.
|
---|
4 | *
|
---|
5 | * This is almost identical to shacrypt-256.cpp.h, fixes generally applies to
|
---|
6 | * both. Diff the files after updates!
|
---|
7 | */
|
---|
8 |
|
---|
9 | /*
|
---|
10 | * Copyright (C) 2023 Oracle and/or its affiliates.
|
---|
11 | *
|
---|
12 | * This file is part of VirtualBox base platform packages, as
|
---|
13 | * available from https://www.virtualbox.org.
|
---|
14 | *
|
---|
15 | * This program is free software; you can redistribute it and/or
|
---|
16 | * modify it under the terms of the GNU General Public License
|
---|
17 | * as published by the Free Software Foundation, in version 3 of the
|
---|
18 | * License.
|
---|
19 | *
|
---|
20 | * This program is distributed in the hope that it will be useful, but
|
---|
21 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
22 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
23 | * General Public License for more details.
|
---|
24 | *
|
---|
25 | * You should have received a copy of the GNU General Public License
|
---|
26 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
27 | *
|
---|
28 | * The contents of this file may alternatively be used under the terms
|
---|
29 | * of the Common Development and Distribution License Version 1.0
|
---|
30 | * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
|
---|
31 | * in the VirtualBox distribution, in which case the provisions of the
|
---|
32 | * CDDL are applicable instead of those of the GPL.
|
---|
33 | *
|
---|
34 | * You may elect to license modified versions of this file under the
|
---|
35 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
36 | *
|
---|
37 | * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
|
---|
38 | */
|
---|
39 |
|
---|
40 |
|
---|
41 | RTDECL(int) RTCrShaCrypt512(const char *pszPhrase, const char *pszSalt, uint32_t cRounds, char *pszString, size_t cbString)
|
---|
42 | {
|
---|
43 | uint8_t abHash[RTSHA512_HASH_SIZE];
|
---|
44 | int rc = RTCrShaCrypt512Ex(pszPhrase, pszSalt, cRounds, abHash);
|
---|
45 | if (RT_SUCCESS(rc))
|
---|
46 | rc = RTCrShaCrypt512ToString(abHash, pszSalt, cRounds, pszString, cbString);
|
---|
47 | return rc;
|
---|
48 | }
|
---|
49 |
|
---|
50 |
|
---|
51 |
|
---|
52 | RTR3DECL(int) RTCrShaCrypt512Ex(const char *pszPhrase, const char *pszSalt, uint32_t cRounds, uint8_t pabHash[RTSHA512_HASH_SIZE])
|
---|
53 | {
|
---|
54 | /*
|
---|
55 | * Validate and adjust input.
|
---|
56 | */
|
---|
57 | AssertPtrReturn(pszPhrase, VERR_INVALID_POINTER);
|
---|
58 | size_t const cchPhrase = strlen(pszPhrase);
|
---|
59 | AssertReturn(cchPhrase, VERR_INVALID_PARAMETER);
|
---|
60 |
|
---|
61 | AssertPtrReturn(pszSalt, VERR_INVALID_POINTER);
|
---|
62 | size_t cchSalt;
|
---|
63 | pszSalt = rtCrShaCryptExtractSaltAndRounds(pszSalt, &cchSalt, &cRounds);
|
---|
64 | AssertReturn(pszSalt != NULL, VERR_INVALID_PARAMETER);
|
---|
65 | AssertReturn(cchSalt >= RT_SHACRYPT_SALT_MIN_LEN, VERR_BUFFER_UNDERFLOW);
|
---|
66 | AssertReturn(cchSalt <= RT_SHACRYPT_SALT_MAX_LEN, VERR_TOO_MUCH_DATA);
|
---|
67 | AssertReturn(cRounds >= RT_SHACRYPT_ROUNDS_MIN && cRounds <= RT_SHACRYPT_ROUNDS_MAX, VERR_OUT_OF_RANGE);
|
---|
68 |
|
---|
69 | /*
|
---|
70 | * Get started...
|
---|
71 | */
|
---|
72 | RTSHA512CONTEXT CtxA;
|
---|
73 | RTSha512Init(&CtxA); /* Step 1. */
|
---|
74 | RTSha512Update(&CtxA, pszPhrase, cchPhrase); /* Step 2. */
|
---|
75 | RTSha512Update(&CtxA, pszSalt, cchSalt); /* Step 3. */
|
---|
76 |
|
---|
77 | RTSHA512CONTEXT CtxB;
|
---|
78 | RTSha512Init(&CtxB); /* Step 4. */
|
---|
79 | RTSha512Update(&CtxB, pszPhrase, cchPhrase); /* Step 5. */
|
---|
80 | RTSha512Update(&CtxB, pszSalt, cchSalt); /* Step 6. */
|
---|
81 | RTSha512Update(&CtxB, pszPhrase, cchPhrase); /* Step 7. */
|
---|
82 | uint8_t abDigest[RTSHA512_HASH_SIZE];
|
---|
83 | RTSha512Final(&CtxB, abDigest); /* Step 8. */
|
---|
84 |
|
---|
85 | size_t i = cchPhrase;
|
---|
86 | for (; i > RTSHA512_HASH_SIZE; i -= RTSHA512_HASH_SIZE) /* Step 9. */
|
---|
87 | RTSha512Update(&CtxA, abDigest, sizeof(abDigest));
|
---|
88 | RTSha512Update(&CtxA, abDigest, i); /* Step 10. */
|
---|
89 |
|
---|
90 | size_t iPhraseBit = cchPhrase;
|
---|
91 | while (iPhraseBit) /* Step 11. */
|
---|
92 | {
|
---|
93 | if ((iPhraseBit & 1) != 0)
|
---|
94 | RTSha512Update(&CtxA, abDigest, sizeof(abDigest)); /* a) */
|
---|
95 | else
|
---|
96 | RTSha512Update(&CtxA, pszPhrase, cchPhrase); /* b) */
|
---|
97 | iPhraseBit >>= 1;
|
---|
98 | }
|
---|
99 |
|
---|
100 | RTSha512Final(&CtxA, abDigest); /* Step 12. */
|
---|
101 |
|
---|
102 | RTSha512Init(&CtxB); /* Step 13. */
|
---|
103 | for (i = 0; i < cchPhrase; i++) /* Step 14. */
|
---|
104 | RTSha512Update(&CtxB, pszPhrase, cchPhrase);
|
---|
105 |
|
---|
106 | uint8_t abDigestTemp[RTSHA512_HASH_SIZE];
|
---|
107 | RTSha512Final(&CtxB, abDigestTemp); /* Step 15. */
|
---|
108 |
|
---|
109 | /*
|
---|
110 | * Byte sequence P (= password).
|
---|
111 | */
|
---|
112 | size_t const cbSeqP = cchPhrase;
|
---|
113 | uint8_t *pabSeqP = (uint8_t *)RTMemDup(pszPhrase, cbSeqP + 1); /* +1 because the password may be empty */
|
---|
114 | uint8_t *pb = pabSeqP;
|
---|
115 | AssertPtrReturn(pabSeqP, VERR_NO_MEMORY);
|
---|
116 |
|
---|
117 | for (i = cbSeqP; i > RTSHA512_HASH_SIZE; i -= RTSHA512_HASH_SIZE) /* Step 16. */
|
---|
118 | {
|
---|
119 | memcpy(pb, abDigestTemp, sizeof(abDigestTemp)); /* a) */
|
---|
120 | pb += RTSHA512_HASH_SIZE;
|
---|
121 | }
|
---|
122 | memcpy(pb, abDigestTemp, i); /* b) */
|
---|
123 |
|
---|
124 | RTSha512Init(&CtxB); /* Step 17. */
|
---|
125 |
|
---|
126 | for (i = 0; i < 16 + (unsigned)abDigest[0]; i++) /* Step 18. */
|
---|
127 | RTSha512Update(&CtxB, pszSalt, cchSalt);
|
---|
128 |
|
---|
129 | RTSha512Final(&CtxB, abDigestTemp); /* Step 19. */
|
---|
130 |
|
---|
131 | /*
|
---|
132 | * Byte sequence S (= salt).
|
---|
133 | */
|
---|
134 | /* Step 20. */
|
---|
135 | size_t const cbSeqS = cchSalt;
|
---|
136 | #if 0 /* Given that the salt has a fixed range (8 thru 16 bytes), and SHA-512
|
---|
137 | * producing 64 bytes, we can safely skip the loop part here (a) and go
|
---|
138 | * straight for step (b). Further, we can drop the whole memory allocation,
|
---|
139 | * let alone duplication (it's all overwritten!), and use an uninitalized
|
---|
140 | * stack buffer. */
|
---|
141 | uint8_t * const pabSeqS = (uint8_t *)RTMemDup(pszSalt, cbSeqS + 1);
|
---|
142 | AssertPtrReturn(pabSeqS, VERR_NO_MEMORY);
|
---|
143 |
|
---|
144 | pb = pabSeqS;
|
---|
145 | for (i = cbSeqS; i > RTSHA512_HASH_SIZE; i -= RTSHA512_HASH_SIZE)
|
---|
146 | {
|
---|
147 | memcpy(pb, (void *)abDigestTemp, sizeof(abDigestTemp)); /* a) */
|
---|
148 | pb += RTSHA512_HASH_SIZE;
|
---|
149 | }
|
---|
150 | memcpy(pb, abDigestTemp, i); /* b) */
|
---|
151 | #else
|
---|
152 | AssertCompile(RT_SHACRYPT_SALT_MAX_LEN < RTSHA512_HASH_SIZE);
|
---|
153 | uint8_t abSeqS[RT_SHACRYPT_SALT_MAX_LEN + 2];
|
---|
154 | uint8_t * const pabSeqS = abSeqS;
|
---|
155 | memcpy(abSeqS, abDigestTemp, cbSeqS); /* b) */
|
---|
156 | #endif
|
---|
157 |
|
---|
158 | /* Step 21. */
|
---|
159 | for (uint32_t iRound = 0; iRound < cRounds; iRound++)
|
---|
160 | {
|
---|
161 | RTSHA512CONTEXT CtxC;
|
---|
162 | RTSha512Init(&CtxC); /* a) */
|
---|
163 |
|
---|
164 | if ((iRound & 1) != 0)
|
---|
165 | RTSha512Update(&CtxC, pabSeqP, cbSeqP); /* b) */
|
---|
166 | else
|
---|
167 | RTSha512Update(&CtxC, abDigest, sizeof(abDigest)); /* c) */
|
---|
168 |
|
---|
169 | if (iRound % 3 != 0) /* d) */
|
---|
170 | RTSha512Update(&CtxC, pabSeqS, cbSeqS);
|
---|
171 |
|
---|
172 | if (iRound % 7 != 0)
|
---|
173 | RTSha512Update(&CtxC, pabSeqP, cbSeqP); /* e) */
|
---|
174 |
|
---|
175 | if ((iRound & 1) != 0)
|
---|
176 | RTSha512Update(&CtxC, abDigest, sizeof(abDigest)); /* f) */
|
---|
177 | else
|
---|
178 | RTSha512Update(&CtxC, pabSeqP, cbSeqP); /* g) */
|
---|
179 |
|
---|
180 | RTSha512Final(&CtxC, abDigest); /* h) */
|
---|
181 | }
|
---|
182 |
|
---|
183 | /*
|
---|
184 | * Done.
|
---|
185 | */
|
---|
186 | memcpy(pabHash, abDigest, RTSHA512_HASH_SIZE);
|
---|
187 |
|
---|
188 | /*
|
---|
189 | * Cleanup.
|
---|
190 | */
|
---|
191 | RTMemWipeThoroughly(abDigestTemp, RTSHA512_HASH_SIZE, 3);
|
---|
192 | RTMemWipeThoroughly(pabSeqP, cbSeqP, 3);
|
---|
193 | RTMemFree(pabSeqP);
|
---|
194 | #if 0
|
---|
195 | RTMemWipeThoroughly(pabSeqS, cbSeqS, 3);
|
---|
196 | RTMemFree(pabSeqS);
|
---|
197 | #else
|
---|
198 | RTMemWipeThoroughly(abSeqS, sizeof(abSeqS), 3);
|
---|
199 | #endif
|
---|
200 |
|
---|
201 | return VINF_SUCCESS;
|
---|
202 | }
|
---|
203 |
|
---|
204 |
|
---|
205 | RTR3DECL(int) RTCrShaCrypt512ToString(uint8_t const pabHash[RTSHA512_HASH_SIZE], const char *pszSalt, uint32_t cRounds,
|
---|
206 | char *pszString, size_t cbString)
|
---|
207 | {
|
---|
208 | /*
|
---|
209 | * Validate and adjust input.
|
---|
210 | */
|
---|
211 | AssertPtrReturn(pszSalt, VERR_INVALID_POINTER);
|
---|
212 | size_t cchSalt;
|
---|
213 | pszSalt = rtCrShaCryptExtractSaltAndRounds(pszSalt, &cchSalt, &cRounds);
|
---|
214 | AssertReturn(pszSalt != NULL, VERR_INVALID_PARAMETER);
|
---|
215 | AssertReturn(cchSalt >= RT_SHACRYPT_SALT_MIN_LEN, VERR_BUFFER_UNDERFLOW);
|
---|
216 | AssertReturn(cchSalt <= RT_SHACRYPT_SALT_MAX_LEN, VERR_TOO_MUCH_DATA);
|
---|
217 | AssertReturn(cRounds >= RT_SHACRYPT_ROUNDS_MIN && cRounds <= RT_SHACRYPT_ROUNDS_MAX, VERR_OUT_OF_RANGE);
|
---|
218 |
|
---|
219 | AssertPtrReturn(pszString, VERR_INVALID_POINTER);
|
---|
220 |
|
---|
221 | /*
|
---|
222 | * Calc the necessary buffer space and check that the caller supplied enough.
|
---|
223 | */
|
---|
224 | char szRounds[64];
|
---|
225 | ssize_t cchRounds = 0;
|
---|
226 | if (cRounds != RT_SHACRYPT_ROUNDS_DEFAULT)
|
---|
227 | {
|
---|
228 | cchRounds = RTStrFormatU32(szRounds, sizeof(szRounds), cRounds, 10, 0, 0, 0);
|
---|
229 | Assert(cchRounds > 0 && cchRounds <= 9);
|
---|
230 | }
|
---|
231 |
|
---|
232 | size_t const cchNeeded = sizeof(RT_SHACRYPT_ID_STR_512) - 1
|
---|
233 | + (cRounds != RT_SHACRYPT_ROUNDS_DEFAULT ? cchRounds + sizeof("rounds=$") - 1 : 0)
|
---|
234 | + cchSalt + 1
|
---|
235 | + RTSHA512_HASH_SIZE * 4 / 3
|
---|
236 | + 1;
|
---|
237 | AssertReturn(cbString > cchNeeded, VERR_BUFFER_OVERFLOW);
|
---|
238 |
|
---|
239 | /*
|
---|
240 | * Do the formatting.
|
---|
241 | */
|
---|
242 | memcpy(pszString, RT_STR_TUPLE(RT_SHACRYPT_ID_STR_512));
|
---|
243 | size_t off = sizeof(RT_SHACRYPT_ID_STR_512) - 1;
|
---|
244 |
|
---|
245 | if (cRounds != RT_SHACRYPT_ROUNDS_DEFAULT)
|
---|
246 | {
|
---|
247 | memcpy(&pszString[off], RT_STR_TUPLE("rounds="));
|
---|
248 | off += sizeof("rounds=") - 1;
|
---|
249 |
|
---|
250 | memcpy(&pszString[off], szRounds, cchRounds);
|
---|
251 | off += cchRounds;
|
---|
252 | pszString[off++] = '$';
|
---|
253 | }
|
---|
254 |
|
---|
255 | memcpy(&pszString[off], pszSalt, cchSalt);
|
---|
256 | off += cchSalt;
|
---|
257 | pszString[off++] = '$';
|
---|
258 |
|
---|
259 | BASE64_ENCODE(pszString, off, pabHash[ 0], pabHash[21], pabHash[42], 4);
|
---|
260 | BASE64_ENCODE(pszString, off, pabHash[22], pabHash[43], pabHash[ 1], 4);
|
---|
261 | BASE64_ENCODE(pszString, off, pabHash[44], pabHash[ 2], pabHash[23], 4);
|
---|
262 | BASE64_ENCODE(pszString, off, pabHash[ 3], pabHash[24], pabHash[45], 4);
|
---|
263 | BASE64_ENCODE(pszString, off, pabHash[25], pabHash[46], pabHash[ 4], 4);
|
---|
264 | BASE64_ENCODE(pszString, off, pabHash[47], pabHash[ 5], pabHash[26], 4);
|
---|
265 | BASE64_ENCODE(pszString, off, pabHash[ 6], pabHash[27], pabHash[48], 4);
|
---|
266 | BASE64_ENCODE(pszString, off, pabHash[28], pabHash[49], pabHash[ 7], 4);
|
---|
267 | BASE64_ENCODE(pszString, off, pabHash[50], pabHash[ 8], pabHash[29], 4);
|
---|
268 | BASE64_ENCODE(pszString, off, pabHash[ 9], pabHash[30], pabHash[51], 4);
|
---|
269 | BASE64_ENCODE(pszString, off, pabHash[31], pabHash[52], pabHash[10], 4);
|
---|
270 | BASE64_ENCODE(pszString, off, pabHash[53], pabHash[11], pabHash[32], 4);
|
---|
271 | BASE64_ENCODE(pszString, off, pabHash[12], pabHash[33], pabHash[54], 4);
|
---|
272 | BASE64_ENCODE(pszString, off, pabHash[34], pabHash[55], pabHash[13], 4);
|
---|
273 | BASE64_ENCODE(pszString, off, pabHash[56], pabHash[14], pabHash[35], 4);
|
---|
274 | BASE64_ENCODE(pszString, off, pabHash[15], pabHash[36], pabHash[57], 4);
|
---|
275 | BASE64_ENCODE(pszString, off, pabHash[37], pabHash[58], pabHash[16], 4);
|
---|
276 | BASE64_ENCODE(pszString, off, pabHash[59], pabHash[17], pabHash[38], 4);
|
---|
277 | BASE64_ENCODE(pszString, off, pabHash[18], pabHash[39], pabHash[60], 4);
|
---|
278 | BASE64_ENCODE(pszString, off, pabHash[40], pabHash[61], pabHash[19], 4);
|
---|
279 | BASE64_ENCODE(pszString, off, pabHash[62], pabHash[20], pabHash[41], 4);
|
---|
280 | BASE64_ENCODE(pszString, off, 0, 0, pabHash[63], 2);
|
---|
281 |
|
---|
282 | pszString[off] = '\0';
|
---|
283 | Assert(off < cbString);
|
---|
284 |
|
---|
285 | return VINF_SUCCESS;
|
---|
286 | }
|
---|
287 |
|
---|