1 | /* $Id: shacrypt.cpp 102294 2023-11-24 13:40:35Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Crypto - SHA-crypt.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2023 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * The contents of this file may alternatively be used under the terms
|
---|
26 | * of the Common Development and Distribution License Version 1.0
|
---|
27 | * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
|
---|
28 | * in the VirtualBox distribution, in which case the provisions of the
|
---|
29 | * CDDL are applicable instead of those of the GPL.
|
---|
30 | *
|
---|
31 | * You may elect to license modified versions of this file under the
|
---|
32 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
33 | *
|
---|
34 | * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
|
---|
35 | */
|
---|
36 |
|
---|
37 |
|
---|
38 | /*********************************************************************************************************************************
|
---|
39 | * Header Files *
|
---|
40 | *********************************************************************************************************************************/
|
---|
41 |
|
---|
42 | #include <iprt/crypto/shacrypt.h>
|
---|
43 | #include <iprt/types.h>
|
---|
44 | #include <iprt/mem.h>
|
---|
45 | #include <iprt/sha.h>
|
---|
46 | #include <iprt/string.h>
|
---|
47 |
|
---|
48 |
|
---|
49 |
|
---|
50 | RTR3DECL(int) RTShaCrypt256(const char *pszKey, const char *pszSalt, uint32_t cRounds, uint8_t abHash[RTSHA256_HASH_SIZE])
|
---|
51 | {
|
---|
52 | AssertPtrReturn(pszKey, VERR_INVALID_POINTER);
|
---|
53 | AssertPtrReturn(pszSalt, VERR_INVALID_POINTER);
|
---|
54 | AssertReturn (cRounds, VERR_INVALID_PARAMETER);
|
---|
55 |
|
---|
56 | size_t const cbKey = strlen(pszKey);
|
---|
57 | AssertReturn(cbKey, VERR_INVALID_PARAMETER);
|
---|
58 | size_t const cbSalt = strlen(pszSalt);
|
---|
59 | AssertMsgReturn(cbSalt >= RT_SHACRYPT_MIN_SALT_LEN && cbSalt <= RT_SHACRYPT_MAX_SALT_LEN, ("len=%zu\n", cbSalt),
|
---|
60 | VERR_INVALID_PARAMETER);
|
---|
61 |
|
---|
62 | uint8_t abDigest[RTSHA256_HASH_SIZE];
|
---|
63 | uint8_t abDigestTemp[RTSHA256_HASH_SIZE];
|
---|
64 |
|
---|
65 | RTSHA256CONTEXT Ctx;
|
---|
66 | RTSha256Init(&Ctx); /* Step 1. */
|
---|
67 | RTSha256Update(&Ctx, pszKey, cbKey); /* Step 2. */
|
---|
68 | RTSha256Update(&Ctx, pszSalt, cbSalt); /* Step 3. */
|
---|
69 |
|
---|
70 | RTSHA256CONTEXT CtxAlt;
|
---|
71 | RTSha256Init(&CtxAlt); /* Step 4. */
|
---|
72 | RTSha256Update(&CtxAlt, pszKey, cbKey); /* Step 5. */
|
---|
73 | RTSha256Update(&CtxAlt, pszSalt, cbSalt); /* Step 6. */
|
---|
74 | RTSha256Update(&CtxAlt, pszKey, cbKey); /* Step 7. */
|
---|
75 | RTSha256Final(&CtxAlt, abDigest); /* Step 8. */
|
---|
76 |
|
---|
77 | size_t i = cbKey;
|
---|
78 | for (; i > RTSHA256_HASH_SIZE; i -= RTSHA256_HASH_SIZE) /* Step 9. */
|
---|
79 | RTSha256Update(&Ctx, abDigest, sizeof(abDigest));
|
---|
80 | RTSha256Update(&Ctx, abDigest, i); /* Step 10. */
|
---|
81 |
|
---|
82 | size_t keyBits = cbKey;
|
---|
83 | while (keyBits) /* Step 11. */
|
---|
84 | {
|
---|
85 | if ((keyBits & 1) != 0)
|
---|
86 | RTSha256Update(&Ctx, abDigest, sizeof(abDigest)); /* a) */
|
---|
87 | else
|
---|
88 | RTSha256Update(&Ctx, pszKey, cbKey); /* b) */
|
---|
89 | keyBits >>= 1;
|
---|
90 | }
|
---|
91 |
|
---|
92 | RTSha256Final(&Ctx, abDigest); /* Step 12. */
|
---|
93 |
|
---|
94 | RTSha256Init(&CtxAlt); /* Step 13. */
|
---|
95 | for (i = 0; i < cbKey; i++) /* Step 14. */
|
---|
96 | RTSha256Update(&CtxAlt, pszKey, cbKey);
|
---|
97 | RTSha256Final(&CtxAlt, abDigestTemp); /* Step 15. */
|
---|
98 |
|
---|
99 | /*
|
---|
100 | * Byte sequence P (= password).
|
---|
101 | */
|
---|
102 | size_t const cbSeqP = cbKey;
|
---|
103 | uint8_t *pabSeqP = (uint8_t *)RTMemDup(pszKey, cbSeqP);
|
---|
104 | uint8_t *p = pabSeqP;
|
---|
105 | AssertPtrReturn(pabSeqP, VERR_NO_MEMORY);
|
---|
106 |
|
---|
107 | for (i = cbSeqP; i > RTSHA256_HASH_SIZE; i -= RTSHA256_HASH_SIZE) /* Step 16. */
|
---|
108 | {
|
---|
109 | memcpy(p, (void *)abDigestTemp, sizeof(abDigestTemp)); /* a) */
|
---|
110 | p += RTSHA256_HASH_SIZE;
|
---|
111 | }
|
---|
112 | memcpy(p, abDigestTemp, i); /* b) */
|
---|
113 |
|
---|
114 | RTSha256Init(&CtxAlt); /* Step 17. */
|
---|
115 |
|
---|
116 | for (i = 0; i < 16 + (unsigned)abDigest[0]; i++) /* Step 18. */
|
---|
117 | RTSha256Update(&CtxAlt, pszSalt, cbSalt);
|
---|
118 |
|
---|
119 | RTSha256Final(&CtxAlt, abDigestTemp); /* Step 19. */
|
---|
120 |
|
---|
121 | /*
|
---|
122 | * Byte sequence S (= salt).
|
---|
123 | */
|
---|
124 | size_t const cbSeqS = cbSalt;
|
---|
125 | uint8_t *pabSeqS = (uint8_t *)RTMemDup(pszSalt, cbSeqS);
|
---|
126 | p = pabSeqS;
|
---|
127 | AssertPtrReturn(pabSeqS, VERR_NO_MEMORY);
|
---|
128 |
|
---|
129 | for (i = cbSeqS; i > RTSHA256_HASH_SIZE; i -= RTSHA256_HASH_SIZE) /* Step 20. */
|
---|
130 | {
|
---|
131 | memcpy(p, (void *)abDigestTemp, sizeof(abDigestTemp)); /* a) */
|
---|
132 | p += RTSHA256_HASH_SIZE;
|
---|
133 | }
|
---|
134 | memcpy(p, abDigestTemp, i); /* b) */
|
---|
135 |
|
---|
136 | /* Step 21. */
|
---|
137 | for (uint32_t r = 0; r < cRounds; r++)
|
---|
138 | {
|
---|
139 | RTSHA256CONTEXT CtxC;
|
---|
140 | RTSha256Init(&CtxC); /* a) */
|
---|
141 |
|
---|
142 | if ((r & 1) != 0)
|
---|
143 | RTSha256Update(&CtxC, pabSeqP, cbSeqP); /* b) */
|
---|
144 | else
|
---|
145 | RTSha256Update(&CtxC, abDigest, sizeof(abDigest)); /* c) */
|
---|
146 |
|
---|
147 | if (r % 3 != 0) /* d) */
|
---|
148 | RTSha256Update(&CtxC, pabSeqS, cbSeqS);
|
---|
149 |
|
---|
150 | if (r % 7 != 0)
|
---|
151 | RTSha256Update(&CtxC, pabSeqP, cbSeqP); /* e) */
|
---|
152 |
|
---|
153 | if ((r & 1) != 0)
|
---|
154 | RTSha256Update(&CtxC, abDigest, sizeof(abDigest)); /* f) */
|
---|
155 | else
|
---|
156 | RTSha256Update(&CtxC, pabSeqP, cbSeqP); /* g) */
|
---|
157 |
|
---|
158 | RTSha256Final(&CtxC, abDigest); /* h) */
|
---|
159 | }
|
---|
160 |
|
---|
161 | memcpy(abHash, abDigest, RTSHA256_HASH_SIZE);
|
---|
162 |
|
---|
163 | RTMemWipeThoroughly(abDigestTemp, RTSHA256_HASH_SIZE, 3);
|
---|
164 | RTMemWipeThoroughly(pabSeqP, cbSeqP, 3);
|
---|
165 | RTMemWipeThoroughly(pabSeqP, cbSeqP, 3);
|
---|
166 | RTMemFree(pabSeqP);
|
---|
167 | RTMemWipeThoroughly(pabSeqS, cbSeqS, 3);
|
---|
168 | RTMemFree(pabSeqS);
|
---|
169 |
|
---|
170 | return VINF_SUCCESS;
|
---|
171 | }
|
---|
172 |
|
---|
173 |
|
---|
174 | RTR3DECL(int) RTShaCrypt256ToString(uint8_t abHash[RTSHA256_HASH_SIZE], const char *pszSalt, uint32_t cRounds,
|
---|
175 | char *pszString, size_t cbString)
|
---|
176 | {
|
---|
177 | AssertPtrReturn(pszSalt, VERR_INVALID_POINTER);
|
---|
178 | AssertReturn (cRounds, VERR_INVALID_PARAMETER);
|
---|
179 | AssertReturn (cbString, VERR_INVALID_PARAMETER);
|
---|
180 | AssertPtrReturn(pszString, VERR_INVALID_POINTER);
|
---|
181 |
|
---|
182 | char *psz = pszString;
|
---|
183 | size_t cch = cbString;
|
---|
184 |
|
---|
185 | *psz = '\0';
|
---|
186 | if (cRounds == RT_SHACRYPT_DEFAULT_ROUNDS)
|
---|
187 | psz += RTStrPrintf2(psz, cch, "$5$%s$", pszSalt);
|
---|
188 | else
|
---|
189 | psz += RTStrPrintf2(psz, cch, "$5$rounds=%RU32$%s$", cRounds, pszSalt);
|
---|
190 |
|
---|
191 | static const char acBase64[64 + 1] =
|
---|
192 | "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
---|
193 |
|
---|
194 | #define BASE64_ENCODE(a_Val2, a_Val1, a_Val0, a_Cnt) \
|
---|
195 | do { \
|
---|
196 | unsigned int w = ((a_Val2) << 16) | ((a_Val1) << 8) | (a_Val0); \
|
---|
197 | int n = (a_Cnt); \
|
---|
198 | while (n-- > 0 && cch > 0) \
|
---|
199 | { \
|
---|
200 | *psz++ = acBase64[w & 0x3f]; \
|
---|
201 | --cch; \
|
---|
202 | w >>= 6; \
|
---|
203 | } \
|
---|
204 | } while (0)
|
---|
205 |
|
---|
206 | BASE64_ENCODE(abHash[0], abHash[10], abHash[20], 4);
|
---|
207 | BASE64_ENCODE(abHash[21], abHash[1], abHash[11], 4);
|
---|
208 | BASE64_ENCODE(abHash[12], abHash[22], abHash[2], 4);
|
---|
209 | BASE64_ENCODE(abHash[3], abHash[13], abHash[23], 4);
|
---|
210 | BASE64_ENCODE(abHash[24], abHash[4], abHash[14], 4);
|
---|
211 | BASE64_ENCODE(abHash[15], abHash[25], abHash[5], 4);
|
---|
212 | BASE64_ENCODE(abHash[6], abHash[16], abHash[26], 4);
|
---|
213 | BASE64_ENCODE(abHash[27], abHash[7], abHash[17], 4);
|
---|
214 | BASE64_ENCODE(abHash[18], abHash[28], abHash[8], 4);
|
---|
215 | BASE64_ENCODE(abHash[9], abHash[19], abHash[29], 4);
|
---|
216 | BASE64_ENCODE(0, abHash[31], abHash[30], 3);
|
---|
217 |
|
---|
218 | #undef BASE64_ENCODE
|
---|
219 |
|
---|
220 | return VINF_SUCCESS;
|
---|
221 | }
|
---|
222 |
|
---|
223 |
|
---|
224 | RTR3DECL(int) RTShaCrypt512(const char *pszKey, const char *pszSalt, uint32_t cRounds, uint8_t abHash[RTSHA512_HASH_SIZE])
|
---|
225 | {
|
---|
226 | AssertPtrReturn(pszKey, VERR_INVALID_POINTER);
|
---|
227 | AssertPtrReturn(pszSalt, VERR_INVALID_POINTER);
|
---|
228 | AssertReturn (cRounds, VERR_INVALID_PARAMETER);
|
---|
229 |
|
---|
230 | size_t const cbKey = strlen(pszKey);
|
---|
231 | AssertReturn(cbKey, VERR_INVALID_PARAMETER);
|
---|
232 | size_t const cbSalt = strlen(pszSalt);
|
---|
233 | AssertMsgReturn(cbSalt >= RT_SHACRYPT_MIN_SALT_LEN && cbSalt <= RT_SHACRYPT_MAX_SALT_LEN, ("len=%zu\n", cbSalt),
|
---|
234 | VERR_INVALID_PARAMETER);
|
---|
235 |
|
---|
236 | uint8_t abDigest[RTSHA512_HASH_SIZE];
|
---|
237 | uint8_t abDigestTemp[RTSHA512_HASH_SIZE];
|
---|
238 |
|
---|
239 | RTSHA512CONTEXT Ctx;
|
---|
240 | RTSha512Init(&Ctx); /* Step 1. */
|
---|
241 | RTSha512Update(&Ctx, pszKey, cbKey); /* Step 2. */
|
---|
242 | RTSha512Update(&Ctx, pszSalt, cbSalt); /* Step 3. */
|
---|
243 |
|
---|
244 | RTSHA512CONTEXT CtxAlt;
|
---|
245 | RTSha512Init(&CtxAlt); /* Step 4. */
|
---|
246 | RTSha512Update(&CtxAlt, pszKey, cbKey); /* Step 5. */
|
---|
247 | RTSha512Update(&CtxAlt, pszSalt, cbSalt); /* Step 6. */
|
---|
248 | RTSha512Update(&CtxAlt, pszKey, cbKey); /* Step 7. */
|
---|
249 | RTSha512Final(&CtxAlt, abDigest); /* Step 8. */
|
---|
250 |
|
---|
251 | size_t i = cbKey;
|
---|
252 | for (; i > RTSHA512_HASH_SIZE; i -= RTSHA512_HASH_SIZE) /* Step 9. */
|
---|
253 | RTSha512Update(&Ctx, abDigest, sizeof(abDigest));
|
---|
254 | RTSha512Update(&Ctx, abDigest, i); /* Step 10. */
|
---|
255 |
|
---|
256 | size_t keyBits = cbKey;
|
---|
257 | while (keyBits) /* Step 11. */
|
---|
258 | {
|
---|
259 | if ((keyBits & 1) != 0)
|
---|
260 | RTSha512Update(&Ctx, abDigest, sizeof(abDigest)); /* a) */
|
---|
261 | else
|
---|
262 | RTSha512Update(&Ctx, pszKey, cbKey); /* b) */
|
---|
263 | keyBits >>= 1;
|
---|
264 | }
|
---|
265 |
|
---|
266 | RTSha512Final(&Ctx, abDigest); /* Step 12. */
|
---|
267 |
|
---|
268 | RTSha512Init(&CtxAlt); /* Step 13. */
|
---|
269 | for (i = 0; i < cbKey; i++) /* Step 14. */
|
---|
270 | RTSha512Update(&CtxAlt, pszKey, cbKey);
|
---|
271 | RTSha512Final(&CtxAlt, abDigestTemp); /* Step 15. */
|
---|
272 |
|
---|
273 | /*
|
---|
274 | * Byte sequence P (= password).
|
---|
275 | */
|
---|
276 | size_t const cbSeqP = cbKey;
|
---|
277 | uint8_t *pabSeqP = (uint8_t *)RTMemDup(pszKey, cbSeqP);
|
---|
278 | uint8_t *p = pabSeqP;
|
---|
279 | AssertPtrReturn(pabSeqP, VERR_NO_MEMORY);
|
---|
280 |
|
---|
281 | for (i = cbSeqP; i > RTSHA512_HASH_SIZE; i -= RTSHA512_HASH_SIZE) /* Step 16. */
|
---|
282 | {
|
---|
283 | memcpy(p, (void *)abDigestTemp, sizeof(abDigestTemp)); /* a) */
|
---|
284 | p += RTSHA512_HASH_SIZE;
|
---|
285 | }
|
---|
286 | memcpy(p, abDigestTemp, i); /* b) */
|
---|
287 |
|
---|
288 | RTSha512Init(&CtxAlt); /* Step 17. */
|
---|
289 |
|
---|
290 | for (i = 0; i < 16 + (unsigned)abDigest[0]; i++) /* Step 18. */
|
---|
291 | RTSha512Update(&CtxAlt, pszSalt, cbSalt);
|
---|
292 |
|
---|
293 | RTSha512Final(&CtxAlt, abDigestTemp); /* Step 19. */
|
---|
294 |
|
---|
295 | /*
|
---|
296 | * Byte sequence S (= salt).
|
---|
297 | */
|
---|
298 | size_t const cbSeqS = cbSalt;
|
---|
299 | uint8_t *pabSeqS = (uint8_t *)RTMemDup(pszSalt, cbSeqS);
|
---|
300 | p = pabSeqS;
|
---|
301 | AssertPtrReturn(pabSeqS, VERR_NO_MEMORY);
|
---|
302 |
|
---|
303 | for (i = cbSeqS; i > RTSHA512_HASH_SIZE; i -= RTSHA512_HASH_SIZE) /* Step 20. */
|
---|
304 | {
|
---|
305 | memcpy(p, (void *)abDigestTemp, sizeof(abDigestTemp)); /* a) */
|
---|
306 | p += RTSHA512_HASH_SIZE;
|
---|
307 | }
|
---|
308 | memcpy(p, abDigestTemp, i); /* b) */
|
---|
309 |
|
---|
310 | /* Step 21. */
|
---|
311 | for (uint32_t r = 0; r < cRounds; r++)
|
---|
312 | {
|
---|
313 | RTSHA512CONTEXT CtxC;
|
---|
314 | RTSha512Init(&CtxC); /* a) */
|
---|
315 |
|
---|
316 | if ((r & 1) != 0)
|
---|
317 | RTSha512Update(&CtxC, pabSeqP, cbSeqP); /* b) */
|
---|
318 | else
|
---|
319 | RTSha512Update(&CtxC, abDigest, sizeof(abDigest)); /* c) */
|
---|
320 |
|
---|
321 | if (r % 3 != 0) /* d) */
|
---|
322 | RTSha512Update(&CtxC, pabSeqS, cbSeqS);
|
---|
323 |
|
---|
324 | if (r % 7 != 0)
|
---|
325 | RTSha512Update(&CtxC, pabSeqP, cbSeqP); /* e) */
|
---|
326 |
|
---|
327 | if ((r & 1) != 0)
|
---|
328 | RTSha512Update(&CtxC, abDigest, sizeof(abDigest)); /* f) */
|
---|
329 | else
|
---|
330 | RTSha512Update(&CtxC, pabSeqP, cbSeqP); /* g) */
|
---|
331 |
|
---|
332 | RTSha512Final(&CtxC, abDigest); /* h) */
|
---|
333 | }
|
---|
334 |
|
---|
335 | memcpy(abHash, abDigest, RTSHA512_HASH_SIZE);
|
---|
336 |
|
---|
337 | RTMemWipeThoroughly(abDigestTemp, RTSHA512_HASH_SIZE, 3);
|
---|
338 | RTMemWipeThoroughly(pabSeqP, cbSeqP, 3);
|
---|
339 | RTMemWipeThoroughly(pabSeqP, cbSeqP, 3);
|
---|
340 | RTMemFree(pabSeqP);
|
---|
341 | RTMemWipeThoroughly(pabSeqS, cbSeqS, 3);
|
---|
342 | RTMemFree(pabSeqS);
|
---|
343 |
|
---|
344 | return VINF_SUCCESS;
|
---|
345 | }
|
---|
346 |
|
---|
347 |
|
---|
348 | RTR3DECL(int) RTShaCrypt512ToString(uint8_t abHash[RTSHA512_HASH_SIZE], const char *pszSalt, uint32_t cRounds,
|
---|
349 | char *pszString, size_t cbString)
|
---|
350 | {
|
---|
351 | AssertPtrReturn(pszSalt, VERR_INVALID_POINTER);
|
---|
352 | AssertReturn (cRounds, VERR_INVALID_PARAMETER);
|
---|
353 | AssertReturn (cbString, VERR_INVALID_PARAMETER);
|
---|
354 | AssertPtrReturn(pszString, VERR_INVALID_POINTER);
|
---|
355 |
|
---|
356 | char *psz = pszString;
|
---|
357 | size_t cch = cbString;
|
---|
358 |
|
---|
359 | *psz = '\0';
|
---|
360 | if (cRounds == RT_SHACRYPT_DEFAULT_ROUNDS)
|
---|
361 | psz += RTStrPrintf2(psz, cch, "$6$%s$", pszSalt);
|
---|
362 | else
|
---|
363 | psz += RTStrPrintf2(psz, cch, "$6$rounds=%RU32$%s$", cRounds, pszSalt);
|
---|
364 |
|
---|
365 | static const char acBase64[64 + 1] =
|
---|
366 | "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
---|
367 |
|
---|
368 | #define BASE64_ENCODE(a_Val2, a_Val1, a_Val0, a_Cnt) \
|
---|
369 | do { \
|
---|
370 | unsigned int w = ((a_Val2) << 16) | ((a_Val1) << 8) | (a_Val0); \
|
---|
371 | int n = (a_Cnt); \
|
---|
372 | while (n-- > 0 && cch > 0) \
|
---|
373 | { \
|
---|
374 | *psz++ = acBase64[w & 0x3f]; \
|
---|
375 | --cch; \
|
---|
376 | w >>= 6; \
|
---|
377 | } \
|
---|
378 | } while (0)
|
---|
379 |
|
---|
380 | BASE64_ENCODE(abHash[0], abHash[21], abHash[42], 4);
|
---|
381 | BASE64_ENCODE(abHash[22], abHash[43], abHash[1], 4);
|
---|
382 | BASE64_ENCODE(abHash[44], abHash[2], abHash[23], 4);
|
---|
383 | BASE64_ENCODE(abHash[3], abHash[24], abHash[45], 4);
|
---|
384 | BASE64_ENCODE(abHash[25], abHash[46], abHash[4], 4);
|
---|
385 | BASE64_ENCODE(abHash[47], abHash[5], abHash[26], 4);
|
---|
386 | BASE64_ENCODE(abHash[6], abHash[27], abHash[48], 4);
|
---|
387 | BASE64_ENCODE(abHash[28], abHash[49], abHash[7], 4);
|
---|
388 | BASE64_ENCODE(abHash[50], abHash[8], abHash[29], 4);
|
---|
389 | BASE64_ENCODE(abHash[9], abHash[30], abHash[51], 4);
|
---|
390 | BASE64_ENCODE(abHash[31], abHash[52], abHash[10], 4);
|
---|
391 | BASE64_ENCODE(abHash[53], abHash[11], abHash[32], 4);
|
---|
392 | BASE64_ENCODE(abHash[12], abHash[33], abHash[54], 4);
|
---|
393 | BASE64_ENCODE(abHash[34], abHash[55], abHash[13], 4);
|
---|
394 | BASE64_ENCODE(abHash[56], abHash[14], abHash[35], 4);
|
---|
395 | BASE64_ENCODE(abHash[15], abHash[36], abHash[57], 4);
|
---|
396 | BASE64_ENCODE(abHash[37], abHash[58], abHash[16], 4);
|
---|
397 | BASE64_ENCODE(abHash[59], abHash[17], abHash[38], 4);
|
---|
398 | BASE64_ENCODE(abHash[18], abHash[39], abHash[60], 4);
|
---|
399 | BASE64_ENCODE(abHash[40], abHash[61], abHash[19], 4);
|
---|
400 | BASE64_ENCODE(abHash[62], abHash[20], abHash[41], 4);
|
---|
401 | BASE64_ENCODE(0, 0, abHash[63], 2);
|
---|
402 |
|
---|
403 | #undef BASE64_ENCODE
|
---|
404 |
|
---|
405 | return VINF_SUCCESS;
|
---|
406 | }
|
---|
407 |
|
---|