/* $Id: dvmgpt.cpp 85894 2020-08-26 20:50:52Z vboxsync $ */ /** @file * IPRT Disk Volume Management API (DVM) - GPT format backend. */ /* * Copyright (C) 2011-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include "internal/dvm.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** The GPT signature. */ #define RTDVM_GPT_SIGNATURE "EFI PART" /** * GPT on disk header. */ typedef struct GPTHDR { /** 0x00: Signature ("EFI PART"). */ char abSignature[8]; /** 0x08: Revision. */ uint32_t u32Revision; /** 0x0c: Header size. */ uint32_t cbHeader; /** 0x10: CRC of header. */ uint32_t u32Crc; } GPTHDR; /** Pointer to a GPT header. */ typedef struct GPTHDR *PGPTHDR; AssertCompileSize(GPTHDR, 20); /** * Complete GPT table header for revision 1.0. */ #pragma pack(1) typedef struct GPTHDRREV1 { /** 0x00: Header. */ GPTHDR Hdr; /** 0x14: Reserved. */ uint32_t u32Reserved; /** 0x18: Current LBA. */ uint64_t u64LbaCurrent; /** 0x20: Backup LBA. */ uint64_t u64LbaBackup; /** 0x28:First usable LBA for partitions. */ uint64_t u64LbaFirstPartition; /** 0x30: Last usable LBA for partitions. */ uint64_t u64LbaLastPartition; /** 0x38: Disk UUID. */ RTUUID DiskUuid; /** 0x48: LBA of first partition entry. */ uint64_t u64LbaPartitionEntries; /** 0x50: Number of partition entries. */ uint32_t cPartitionEntries; /** 0x54: Partition entry size. */ uint32_t cbPartitionEntry; /** 0x58: CRC of partition entries. */ uint32_t u32CrcPartitionEntries; } GPTHDRREV1; /** Pointer to a revision 1.0 GPT header. */ typedef GPTHDRREV1 *PGPTHDRREV1; #pragma pack() AssertCompileSize(GPTHDRREV1, 92); /** * GPT partition table entry. */ typedef struct GPTENTRY { /** 0x00: Partition type UUID. */ RTUUID UuidType; /** 0x10: Partition UUID. */ RTUUID UuidPartition; /** 0x20: First LBA. */ uint64_t u64LbaFirst; /** 0x28: Last LBA. */ uint64_t u64LbaLast; /** 0x30: Attribute flags. */ uint64_t u64Flags; /** 0x38: Partition name (UTF-16LE code units). */ RTUTF16 aPartitionName[36]; } GPTENTRY; /** Pointer to a GPT entry. */ typedef struct GPTENTRY *PGPTENTRY; AssertCompileSize(GPTENTRY, 128); /** Partition flags - System partition. */ #define RTDVM_GPT_ENTRY_SYSTEM RT_BIT_64(0) /** Partition flags - Partition is readonly. */ #define RTDVM_GPT_ENTRY_READONLY RT_BIT_64(60) /** Partition flags - Partition is hidden. */ #define RTDVM_GPT_ENTRY_HIDDEN RT_BIT_64(62) /** Partition flags - Don't automount this partition. */ #define RTDVM_GPT_ENTRY_NO_AUTOMOUNT RT_BIT_64(63) /** * GPT volume manager data. */ typedef struct RTDVMFMTINTERNAL { /** Pointer to the underlying disk. */ PCRTDVMDISK pDisk; /** GPT header. */ GPTHDRREV1 HdrRev1; /** GPT array. */ PGPTENTRY paGptEntries; /** Number of occupied partition entries. */ uint32_t cPartitions; } RTDVMFMTINTERNAL; /** Pointer to the MBR volume manager. */ typedef RTDVMFMTINTERNAL *PRTDVMFMTINTERNAL; /** * GPT volume data. */ typedef struct RTDVMVOLUMEFMTINTERNAL { /** Pointer to the volume manager. */ PRTDVMFMTINTERNAL pVolMgr; /** Partition table entry index. */ uint32_t idxEntry; /** Start offset of the volume. */ uint64_t offStart; /** Size of the volume. */ uint64_t cbVolume; /** Pointer to the GPT entry in the array. */ PGPTENTRY pGptEntry; } RTDVMVOLUMEFMTINTERNAL; /** Pointer to an MBR volume. */ typedef RTDVMVOLUMEFMTINTERNAL *PRTDVMVOLUMEFMTINTERNAL; /** * GPT partition type to DVM volume type mapping entry. */ typedef struct RTDVMGPTPARTTYPE2VOLTYPE { /** Type UUID. */ const char *pcszUuid; /** DVM volume type. */ RTDVMVOLTYPE enmVolType; } RTDVMGPTPARTTYPE2VOLTYPE; /** Pointer to a MBR FS Type to volume type mapping entry. */ typedef RTDVMGPTPARTTYPE2VOLTYPE *PRTDVMGPTPARTTYPE2VOLTYPE; /** Converts a LBA number to the byte offset. */ #define RTDVM_GPT_LBA2BYTE(lba, disk) ((lba) * (disk)->cbSector) /** Converts a Byte offset to the LBA number. */ #define RTDVM_GPT_BYTE2LBA(lba, disk) ((lba) / (disk)->cbSector) /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** * Mapping of partition types to DVM volume types. * * From http://en.wikipedia.org/wiki/GUID_Partition_Table */ static const RTDVMGPTPARTTYPE2VOLTYPE g_aPartType2DvmVolTypes[] = { { "C12A7328-F81F-11D2-BA4B-00A0C93EC93B", RTDVMVOLTYPE_EFI_SYSTEM }, { "EBD0A0A2-B9E5-4433-87C0-68B6B72699C7", RTDVMVOLTYPE_WIN_BASIC }, { "E3C9E316-0B5C-4DB8-817D-F92DF00215AE", RTDVMVOLTYPE_WIN_MSR }, { "5808C8AA-7E8F-42E0-85D2-E1E90434CFB3", RTDVMVOLTYPE_WIN_LDM_META }, { "AF9B60A0-1431-4F62-BC68-3311714A69AD", RTDVMVOLTYPE_WIN_LDM_DATA }, { "DE94BBA4-06D1-4D40-A16A-BFD50179D6AC", RTDVMVOLTYPE_WIN_RECOVERY }, { "E75CAF8F-F680-4CEE-AFA3-B001E56EFC2D", RTDVMVOLTYPE_WIN_STORAGE_SPACES }, { "0657FD6D-A4AB-43C4-84E5-0933C84B4F4F", RTDVMVOLTYPE_LINUX_SWAP }, { "0FC63DAF-8483-4772-8E79-3D69D8477DE4", RTDVMVOLTYPE_LINUX_NATIVE }, { "44479540-F297-41B2-9AF7-D131D5F0458A", RTDVMVOLTYPE_LINUX_NATIVE }, /* x86 root */ { "4F68BCE3-E8CD-4DB1-96E7-FBCAF984B709", RTDVMVOLTYPE_LINUX_NATIVE }, /* AMD64 root */ { "69DAD710-2CE4-4E3C-B16C-21A1D49ABED3", RTDVMVOLTYPE_LINUX_NATIVE }, /* ARM32 root */ { "B921B045-1DF0-41C3-AF44-4C6F280D3FAE", RTDVMVOLTYPE_LINUX_NATIVE }, /* ARM64 root */ { "E6D6D379-F507-44C2-A23C-238F2A3DF928", RTDVMVOLTYPE_LINUX_LVM }, { "A19D880F-05FC-4D3B-A006-743F0F84911E", RTDVMVOLTYPE_LINUX_SOFTRAID }, { "83BD6B9D-7F41-11DC-BE0B-001560B84F0F", RTDVMVOLTYPE_FREEBSD }, /* Boot */ { "516E7CB4-6ECF-11D6-8FF8-00022D09712B", RTDVMVOLTYPE_FREEBSD }, /* Data */ { "516E7CB5-6ECF-11D6-8FF8-00022D09712B", RTDVMVOLTYPE_FREEBSD }, /* Swap */ { "516E7CB6-6ECF-11D6-8FF8-00022D09712B", RTDVMVOLTYPE_FREEBSD }, /* UFS */ { "516E7CB8-6ECF-11D6-8FF8-00022D09712B", RTDVMVOLTYPE_FREEBSD }, /* Vinum */ { "516E7CBA-6ECF-11D6-8FF8-00022D09712B", RTDVMVOLTYPE_FREEBSD }, /* ZFS */ { "49F48D32-B10E-11DC-B99B-0019D1879648", RTDVMVOLTYPE_NETBSD }, /* Swap */ { "49F48D5A-B10E-11DC-B99B-0019D1879648", RTDVMVOLTYPE_NETBSD }, /* FFS */ { "49F48D82-B10E-11DC-B99B-0019D1879648", RTDVMVOLTYPE_NETBSD }, /* LFS */ { "49F48DAA-B10E-11DC-B99B-0019D1879648", RTDVMVOLTYPE_NETBSD }, /* Raid */ { "2DB519C4-B10F-11DC-B99B-0019D1879648", RTDVMVOLTYPE_NETBSD }, /* Concatenated */ { "2DB519EC-B10F-11DC-B99B-0019D1879648", RTDVMVOLTYPE_NETBSD }, /* Encrypted */ { "48465300-0000-11AA-AA11-00306543ECAC", RTDVMVOLTYPE_DARWIN_HFS }, { "7C3457EF-0000-11AA-AA11-00306543ECAC", RTDVMVOLTYPE_DARWIN_APFS }, { "6A82CB45-1DD2-11B2-99A6-080020736631", RTDVMVOLTYPE_SOLARIS }, /* Boot */ { "6A85CF4D-1DD2-11B2-99A6-080020736631", RTDVMVOLTYPE_SOLARIS }, /* Root */ { "6A87C46F-1DD2-11B2-99A6-080020736631", RTDVMVOLTYPE_SOLARIS }, /* Swap */ { "6A8B642B-1DD2-11B2-99A6-080020736631", RTDVMVOLTYPE_SOLARIS }, /* Backup */ { "6A898CC3-1DD2-11B2-99A6-080020736631", RTDVMVOLTYPE_SOLARIS }, /* /usr */ { "6A8EF2E9-1DD2-11B2-99A6-080020736631", RTDVMVOLTYPE_SOLARIS }, /* /var */ { "6A90BA39-1DD2-11B2-99A6-080020736631", RTDVMVOLTYPE_SOLARIS }, /* /home */ { "6A9283A5-1DD2-11B2-99A6-080020736631", RTDVMVOLTYPE_SOLARIS }, /* Alternate sector */ { "37AFFC90-EF7D-4E96-91C3-2D7AE055B174", RTDVMVOLTYPE_IBM_GPFS }, }; static DECLCALLBACK(int) rtDvmFmtGptProbe(PCRTDVMDISK pDisk, uint32_t *puScore) { int rc = VINF_SUCCESS; GPTHDR Hdr; *puScore = RTDVM_MATCH_SCORE_UNSUPPORTED; if (rtDvmDiskGetSectors(pDisk) >= 2) { /* Read from the disk and check for the signature. */ rc = rtDvmDiskReadUnaligned(pDisk, RTDVM_GPT_LBA2BYTE(1, pDisk), &Hdr, sizeof(GPTHDR)); if ( RT_SUCCESS(rc) && !strncmp(&Hdr.abSignature[0], RTDVM_GPT_SIGNATURE, RT_ELEMENTS(Hdr.abSignature)) && RT_LE2H_U32(Hdr.u32Revision) == 0x00010000 && RT_LE2H_U32(Hdr.cbHeader) == sizeof(GPTHDRREV1)) *puScore = RTDVM_MATCH_SCORE_PERFECT; } return rc; } static DECLCALLBACK(int) rtDvmFmtGptOpen(PCRTDVMDISK pDisk, PRTDVMFMT phVolMgrFmt) { int rc = VINF_SUCCESS; PRTDVMFMTINTERNAL pThis = NULL; pThis = (PRTDVMFMTINTERNAL)RTMemAllocZ(sizeof(RTDVMFMTINTERNAL)); if (pThis) { pThis->pDisk = pDisk; pThis->cPartitions = 0; /* Read the complete GPT header and convert to host endianess. */ rc = rtDvmDiskReadUnaligned(pDisk, RTDVM_GPT_LBA2BYTE(1, pDisk), &pThis->HdrRev1, sizeof(pThis->HdrRev1)); if (RT_SUCCESS(rc)) { pThis->HdrRev1.Hdr.u32Revision = RT_LE2H_U32(pThis->HdrRev1.Hdr.u32Revision); pThis->HdrRev1.Hdr.cbHeader = RT_LE2H_U32(pThis->HdrRev1.Hdr.cbHeader); pThis->HdrRev1.Hdr.u32Crc = RT_LE2H_U32(pThis->HdrRev1.Hdr.u32Crc); pThis->HdrRev1.u64LbaCurrent = RT_LE2H_U64(pThis->HdrRev1.u64LbaCurrent); pThis->HdrRev1.u64LbaBackup = RT_LE2H_U64(pThis->HdrRev1.u64LbaBackup); pThis->HdrRev1.u64LbaFirstPartition = RT_LE2H_U64(pThis->HdrRev1.u64LbaFirstPartition); pThis->HdrRev1.u64LbaLastPartition = RT_LE2H_U64(pThis->HdrRev1.u64LbaLastPartition); /** @todo Disk UUID */ pThis->HdrRev1.u64LbaPartitionEntries = RT_LE2H_U64(pThis->HdrRev1.u64LbaPartitionEntries); pThis->HdrRev1.cPartitionEntries = RT_LE2H_U32(pThis->HdrRev1.cPartitionEntries); pThis->HdrRev1.cbPartitionEntry = RT_LE2H_U32(pThis->HdrRev1.cbPartitionEntry); pThis->HdrRev1.u32CrcPartitionEntries = RT_LE2H_U32(pThis->HdrRev1.u32CrcPartitionEntries); if (pThis->HdrRev1.cbPartitionEntry == sizeof(GPTENTRY)) { size_t cbAlignedGptEntries = RT_ALIGN_Z(pThis->HdrRev1.cPartitionEntries * pThis->HdrRev1.cbPartitionEntry, pDisk->cbSector); pThis->paGptEntries = (PGPTENTRY)RTMemAllocZ(cbAlignedGptEntries); if (pThis->paGptEntries) { rc = rtDvmDiskRead(pDisk, RTDVM_GPT_LBA2BYTE(pThis->HdrRev1.u64LbaPartitionEntries, pDisk), pThis->paGptEntries, cbAlignedGptEntries); if (RT_SUCCESS(rc)) { /* Count the occupied entries. */ for (unsigned i = 0; i < pThis->HdrRev1.cPartitionEntries; i++) if (!RTUuidIsNull(&pThis->paGptEntries[i].UuidType)) { /* Convert to host endianess. */ /** @todo Uuids */ pThis->paGptEntries[i].u64LbaFirst = RT_LE2H_U64(pThis->paGptEntries[i].u64LbaFirst); pThis->paGptEntries[i].u64LbaLast = RT_LE2H_U64(pThis->paGptEntries[i].u64LbaLast); pThis->paGptEntries[i].u64Flags = RT_LE2H_U64(pThis->paGptEntries[i].u64Flags); for (unsigned cwc = 0; cwc < RT_ELEMENTS(pThis->paGptEntries[i].aPartitionName); cwc++) pThis->paGptEntries[i].aPartitionName[cwc] = RT_LE2H_U16(pThis->paGptEntries[i].aPartitionName[cwc]); pThis->cPartitions++; } if (RT_SUCCESS(rc)) { *phVolMgrFmt = pThis; return rc; } } RTMemFree(pThis->paGptEntries); } else rc = VERR_NO_MEMORY; } else rc = VERR_NOT_SUPPORTED; } RTMemFree(pThis); } else rc = VERR_NO_MEMORY; return rc; } static DECLCALLBACK(int) rtDvmFmtGptInitialize(PCRTDVMDISK pDisk, PRTDVMFMT phVolMgrFmt) { NOREF(pDisk); NOREF(phVolMgrFmt); return VERR_NOT_IMPLEMENTED; } static DECLCALLBACK(void) rtDvmFmtGptClose(RTDVMFMT hVolMgrFmt) { PRTDVMFMTINTERNAL pThis = hVolMgrFmt; pThis->pDisk = NULL; RT_ZERO(pThis->HdrRev1); RTMemFree(pThis->paGptEntries); pThis->paGptEntries = NULL; RTMemFree(pThis); } static DECLCALLBACK(int) rtDvmFmtGptQueryRangeUse(RTDVMFMT hVolMgrFmt, uint64_t off, uint64_t cbRange, bool *pfUsed) { PRTDVMFMTINTERNAL pThis = hVolMgrFmt; NOREF(cbRange); if (off < 33*pThis->pDisk->cbSector) *pfUsed = true; else *pfUsed = false; return VINF_SUCCESS; } /** @copydoc RTDVMFMTOPS::pfnQueryDiskUuid */ static DECLCALLBACK(int) rtDvmFmtGptQueryDiskUuid(RTDVMFMT hVolMgrFmt, PRTUUID pUuid) { PRTDVMFMTINTERNAL pThis = hVolMgrFmt; *pUuid = pThis->HdrRev1.DiskUuid; return VINF_SUCCESS; } static DECLCALLBACK(uint32_t) rtDvmFmtGptGetValidVolumes(RTDVMFMT hVolMgrFmt) { PRTDVMFMTINTERNAL pThis = hVolMgrFmt; return pThis->cPartitions; } static DECLCALLBACK(uint32_t) rtDvmFmtGptGetMaxVolumes(RTDVMFMT hVolMgrFmt) { PRTDVMFMTINTERNAL pThis = hVolMgrFmt; return pThis->HdrRev1.cPartitionEntries; } /** * Creates a new volume. * * @returns IPRT status code. * @param pThis The MBR volume manager data. * @param pGptEntry The GPT entry. * @param idx The index in the partition array. * @param phVolFmt Where to store the volume data on success. */ static int rtDvmFmtMbrVolumeCreate(PRTDVMFMTINTERNAL pThis, PGPTENTRY pGptEntry, uint32_t idx, PRTDVMVOLUMEFMT phVolFmt) { int rc = VINF_SUCCESS; PRTDVMVOLUMEFMTINTERNAL pVol = (PRTDVMVOLUMEFMTINTERNAL)RTMemAllocZ(sizeof(RTDVMVOLUMEFMTINTERNAL)); if (pVol) { pVol->pVolMgr = pThis; pVol->idxEntry = idx; pVol->pGptEntry = pGptEntry; pVol->offStart = RTDVM_GPT_LBA2BYTE(pGptEntry->u64LbaFirst, pThis->pDisk); pVol->cbVolume = RTDVM_GPT_LBA2BYTE(pGptEntry->u64LbaLast - pGptEntry->u64LbaFirst + 1, pThis->pDisk); *phVolFmt = pVol; } else rc = VERR_NO_MEMORY; return rc; } static DECLCALLBACK(int) rtDvmFmtGptQueryFirstVolume(RTDVMFMT hVolMgrFmt, PRTDVMVOLUMEFMT phVolFmt) { PRTDVMFMTINTERNAL pThis = hVolMgrFmt; if (pThis->cPartitions != 0) { PGPTENTRY pGptEntry = &pThis->paGptEntries[0]; /* Search for the first non empty entry. */ for (unsigned i = 0; i < pThis->HdrRev1.cPartitionEntries; i++) { if (!RTUuidIsNull(&pGptEntry->UuidType)) return rtDvmFmtMbrVolumeCreate(pThis, pGptEntry, i, phVolFmt); pGptEntry++; } AssertFailed(); } return VERR_DVM_MAP_EMPTY; } static DECLCALLBACK(int) rtDvmFmtGptQueryNextVolume(RTDVMFMT hVolMgrFmt, RTDVMVOLUMEFMT hVolFmt, PRTDVMVOLUMEFMT phVolFmtNext) { PRTDVMFMTINTERNAL pThis = hVolMgrFmt; PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; PGPTENTRY pGptEntry = pVol->pGptEntry + 1; for (unsigned i = pVol->idxEntry + 1; i < pThis->HdrRev1.cPartitionEntries; i++) { if (!RTUuidIsNull(&pGptEntry->UuidType)) return rtDvmFmtMbrVolumeCreate(pThis, pGptEntry, i, phVolFmtNext); pGptEntry++; } return VERR_DVM_MAP_NO_VOLUME; } /** @copydoc RTDVMFMTOPS::pfnQueryTableLocations */ static DECLCALLBACK(int) rtDvmFmtGptQueryTableLocations(RTDVMFMT hVolMgrFmt, uint32_t fFlags, PRTDVMTABLELOCATION paLocations, size_t cLocations, size_t *pcActual) { PRTDVMFMTINTERNAL pThis = hVolMgrFmt; /* * The MBR if requested. */ int rc = VINF_SUCCESS; size_t iLoc = 0; if (fFlags & RTDVMMAPQTABLOC_F_INCLUDE_LEGACY) { if (cLocations > 0) { paLocations[iLoc].off = 0; paLocations[iLoc].cb = RTDVM_GPT_LBA2BYTE(1, pThis->pDisk); paLocations[iLoc].cbPadding = 0; } else rc = VERR_BUFFER_OVERFLOW; iLoc++; } /* * The GPT. */ if (cLocations > iLoc) { uint64_t const offEnd = (pThis->HdrRev1.cPartitionEntries * pThis->HdrRev1.cbPartitionEntry + pThis->pDisk->cbSector - 1) / pThis->pDisk->cbSector * pThis->pDisk->cbSector; paLocations[iLoc].off = RTDVM_GPT_LBA2BYTE(1, pThis->pDisk); paLocations[iLoc].cb = offEnd - paLocations[iLoc].off; uint64_t uLbaFirstPart = pThis->pDisk->cbDisk / pThis->pDisk->cbSector; for (unsigned i = 0; i < pThis->HdrRev1.cPartitionEntries; i++) if ( pThis->paGptEntries[i].u64LbaFirst < uLbaFirstPart && !RTUuidIsNull(&pThis->paGptEntries[i].UuidType)) uLbaFirstPart = pThis->paGptEntries[i].u64LbaFirst; paLocations[iLoc].cbPadding = RTDVM_GPT_LBA2BYTE(uLbaFirstPart, pThis->pDisk); if (paLocations[iLoc].cbPadding > offEnd) paLocations[iLoc].cbPadding -= offEnd; else AssertFailedStmt(paLocations[iLoc].cbPadding = 0); } else rc = VERR_BUFFER_OVERFLOW; iLoc++; /* * Return values. */ if (pcActual) *pcActual = iLoc; else if (cLocations != iLoc && RT_SUCCESS(rc)) { RT_BZERO(&paLocations[iLoc], (cLocations - iLoc) * sizeof(paLocations[0])); rc = VERR_BUFFER_UNDERFLOW; } return rc; } static DECLCALLBACK(void) rtDvmFmtGptVolumeClose(RTDVMVOLUMEFMT hVolFmt) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; pVol->pVolMgr = NULL; pVol->offStart = 0; pVol->cbVolume = 0; pVol->pGptEntry = NULL; RTMemFree(pVol); } static DECLCALLBACK(uint64_t) rtDvmFmtGptVolumeGetSize(RTDVMVOLUMEFMT hVolFmt) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; return pVol->cbVolume; } static DECLCALLBACK(int) rtDvmFmtGptVolumeQueryName(RTDVMVOLUMEFMT hVolFmt, char **ppszVolName) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; *ppszVolName = NULL; return RTUtf16ToUtf8Ex(&pVol->pGptEntry->aPartitionName[0], RT_ELEMENTS(pVol->pGptEntry->aPartitionName), ppszVolName, 0, NULL); } static DECLCALLBACK(RTDVMVOLTYPE) rtDvmFmtGptVolumeGetType(RTDVMVOLUMEFMT hVolFmt) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; for (unsigned i = 0; i < RT_ELEMENTS(g_aPartType2DvmVolTypes); i++) if (!RTUuidCompareStr(&pVol->pGptEntry->UuidType, g_aPartType2DvmVolTypes[i].pcszUuid)) return g_aPartType2DvmVolTypes[i].enmVolType; return RTDVMVOLTYPE_UNKNOWN; } static DECLCALLBACK(uint64_t) rtDvmFmtGptVolumeGetFlags(RTDVMVOLUMEFMT hVolFmt) { NOREF(hVolFmt); return DVMVOLUME_F_CONTIGUOUS; } static DECLCALLBACK(int) rtDvmFmtGptVolumeQueryRange(RTDVMVOLUMEFMT hVolFmt, uint64_t *poffStart, uint64_t *poffLast) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; *poffStart = pVol->offStart; *poffLast = pVol->offStart + pVol->cbVolume - 1; return VINF_SUCCESS; } static DECLCALLBACK(bool) rtDvmFmtGptVolumeIsRangeIntersecting(RTDVMVOLUMEFMT hVolFmt, uint64_t offStart, size_t cbRange, uint64_t *poffVol, uint64_t *pcbIntersect) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; if (RTDVM_RANGE_IS_INTERSECTING(pVol->offStart, pVol->cbVolume, offStart)) { *poffVol = offStart - pVol->offStart; *pcbIntersect = RT_MIN(cbRange, pVol->offStart + pVol->cbVolume - offStart); return true; } return false; } /** @copydoc RTDVMFMTOPS::pfnVolumeQueryTableLocation */ static DECLCALLBACK(int) rtDvmFmtGptVolumeQueryTableLocation(RTDVMVOLUMEFMT hVolFmt, uint64_t *poffTable, uint64_t *pcbTable) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; PRTDVMFMTINTERNAL pVolMgr = pVol->pVolMgr; *poffTable = RTDVM_GPT_LBA2BYTE(1, pVolMgr->pDisk); *pcbTable = RTDVM_GPT_LBA2BYTE(pVolMgr->HdrRev1.u64LbaPartitionEntries, pVolMgr->pDisk) + RT_ALIGN_Z(pVolMgr->HdrRev1.cPartitionEntries * pVolMgr->HdrRev1.cbPartitionEntry, pVolMgr->pDisk->cbSector) - *poffTable; return VINF_SUCCESS; } /** @copydoc RTDVMFMTOPS::pfnVolumeGetIndex */ static DECLCALLBACK(uint32_t) rtDvmFmtGptVolumeGetIndex(RTDVMVOLUMEFMT hVolFmt, RTDVMVOLIDX enmIndex) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; switch (enmIndex) { case RTDVMVOLIDX_USER_VISIBLE: case RTDVMVOLIDX_ALL: case RTDVMVOLIDX_LINUX: return pVol->idxEntry + 1; case RTDVMVOLIDX_IN_TABLE: return pVol->idxEntry; case RTDVMVOLIDX_INVALID: case RTDVMVOLIDX_HOST: case RTDVMVOLIDX_END: case RTDVMVOLIDX_32BIT_HACK: break; /* no default! */ } AssertFailed(); return UINT32_MAX; } /** @copydoc RTDVMFMTOPS::pfnVolumeQueryProp */ static DECLCALLBACK(int) rtDvmFmtGptVolumeQueryProp(RTDVMVOLUMEFMT hVolFmt, RTDVMVOLPROP enmProperty, void *pvBuf, size_t cbBuf, size_t *pcbBuf) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; switch (enmProperty) { case RTDVMVOLPROP_MBR_FIRST_CYLINDER: case RTDVMVOLPROP_MBR_FIRST_HEAD: case RTDVMVOLPROP_MBR_FIRST_SECTOR: case RTDVMVOLPROP_MBR_LAST_CYLINDER: case RTDVMVOLPROP_MBR_LAST_HEAD: case RTDVMVOLPROP_MBR_LAST_SECTOR: case RTDVMVOLPROP_MBR_TYPE: return VERR_NOT_SUPPORTED; case RTDVMVOLPROP_GPT_TYPE: *pcbBuf = sizeof(RTUUID); Assert(cbBuf >= *pcbBuf); *(PRTUUID)pvBuf = pVol->pGptEntry->UuidType; return VINF_SUCCESS; case RTDVMVOLPROP_GPT_UUID: *pcbBuf = sizeof(RTUUID); Assert(cbBuf >= *pcbBuf); *(PRTUUID)pvBuf = pVol->pGptEntry->UuidPartition; return VINF_SUCCESS; case RTDVMVOLPROP_INVALID: case RTDVMVOLPROP_END: case RTDVMVOLPROP_32BIT_HACK: break; /* not default! */ } AssertFailed(); RT_NOREF(cbBuf); return VERR_NOT_SUPPORTED; } static DECLCALLBACK(int) rtDvmFmtGptVolumeRead(RTDVMVOLUMEFMT hVolFmt, uint64_t off, void *pvBuf, size_t cbRead) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; AssertReturn(off + cbRead <= pVol->cbVolume, VERR_INVALID_PARAMETER); return rtDvmDiskRead(pVol->pVolMgr->pDisk, pVol->offStart + off, pvBuf, cbRead); } static DECLCALLBACK(int) rtDvmFmtGptVolumeWrite(RTDVMVOLUMEFMT hVolFmt, uint64_t off, const void *pvBuf, size_t cbWrite) { PRTDVMVOLUMEFMTINTERNAL pVol = hVolFmt; AssertReturn(off + cbWrite <= pVol->cbVolume, VERR_INVALID_PARAMETER); return rtDvmDiskWrite(pVol->pVolMgr->pDisk, pVol->offStart + off, pvBuf, cbWrite); } DECL_HIDDEN_CONST(const RTDVMFMTOPS) g_rtDvmFmtGpt = { /* pszFmt */ "GPT", /* enmFormat, */ RTDVMFORMATTYPE_GPT, /* pfnProbe */ rtDvmFmtGptProbe, /* pfnOpen */ rtDvmFmtGptOpen, /* pfnInitialize */ rtDvmFmtGptInitialize, /* pfnClose */ rtDvmFmtGptClose, /* pfnQueryRangeUse */ rtDvmFmtGptQueryRangeUse, /* pfnQueryDiskUuid */ rtDvmFmtGptQueryDiskUuid, /* pfnGetValidVolumes */ rtDvmFmtGptGetValidVolumes, /* pfnGetMaxVolumes */ rtDvmFmtGptGetMaxVolumes, /* pfnQueryFirstVolume */ rtDvmFmtGptQueryFirstVolume, /* pfnQueryNextVolume */ rtDvmFmtGptQueryNextVolume, /* pfnQueryTableLocations */ rtDvmFmtGptQueryTableLocations, /* pfnVolumeClose */ rtDvmFmtGptVolumeClose, /* pfnVolumeGetSize */ rtDvmFmtGptVolumeGetSize, /* pfnVolumeQueryName */ rtDvmFmtGptVolumeQueryName, /* pfnVolumeGetType */ rtDvmFmtGptVolumeGetType, /* pfnVolumeGetFlags */ rtDvmFmtGptVolumeGetFlags, /* pfnVolumeQueryRange */ rtDvmFmtGptVolumeQueryRange, /* pfnVolumeIsRangeIntersecting */ rtDvmFmtGptVolumeIsRangeIntersecting, /* pfnVolumeQueryTableLocation */ rtDvmFmtGptVolumeQueryTableLocation, /* pfnVolumeGetIndex */ rtDvmFmtGptVolumeGetIndex, /* pfnVolumeQueryProp */ rtDvmFmtGptVolumeQueryProp, /* pfnVolumeRead */ rtDvmFmtGptVolumeRead, /* pfnVolumeWrite */ rtDvmFmtGptVolumeWrite };