VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/ldr/ldrELFRelocatable.cpp.h@ 76066

Last change on this file since 76066 was 75235, checked in by vboxsync, 6 years ago

IPRT: Starting to get somewhere with DWARF unwinding. bugref:3897

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 78.0 KB
Line 
1/* $Id: ldrELFRelocatable.cpp.h 75235 2018-11-02 21:01:36Z vboxsync $ */
2/** @file
3 * IPRT - Binary Image Loader, Template for ELF Relocatable Images.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Defined Constants And Macros *
30*******************************************************************************/
31#if ELF_MODE == 32
32#define RTLDRELF_NAME(name) rtldrELF32##name
33#define RTLDRELF_SUFF(name) name##32
34#define RTLDRELF_MID(pre,suff) pre##32##suff
35#define FMT_ELF_ADDR "%08RX32"
36#define FMT_ELF_HALF "%04RX16"
37#define FMT_ELF_OFF "%08RX32"
38#define FMT_ELF_SIZE "%08RX32"
39#define FMT_ELF_SWORD "%RI32"
40#define FMT_ELF_WORD "%08RX32"
41#define FMT_ELF_XWORD "%08RX32"
42#define FMT_ELF_SXWORD "%RI32"
43
44#elif ELF_MODE == 64
45#define RTLDRELF_NAME(name) rtldrELF64##name
46#define RTLDRELF_SUFF(name) name##64
47#define RTLDRELF_MID(pre,suff) pre##64##suff
48#define FMT_ELF_ADDR "%016RX64"
49#define FMT_ELF_HALF "%04RX16"
50#define FMT_ELF_SHALF "%RI16"
51#define FMT_ELF_OFF "%016RX64"
52#define FMT_ELF_SIZE "%016RX64"
53#define FMT_ELF_SWORD "%RI32"
54#define FMT_ELF_WORD "%08RX32"
55#define FMT_ELF_XWORD "%016RX64"
56#define FMT_ELF_SXWORD "%RI64"
57#endif
58
59#define Elf_Ehdr RTLDRELF_MID(Elf,_Ehdr)
60#define Elf_Phdr RTLDRELF_MID(Elf,_Phdr)
61#define Elf_Shdr RTLDRELF_MID(Elf,_Shdr)
62#define Elf_Sym RTLDRELF_MID(Elf,_Sym)
63#define Elf_Rel RTLDRELF_MID(Elf,_Rel)
64#define Elf_Rela RTLDRELF_MID(Elf,_Rela)
65#define Elf_Nhdr RTLDRELF_MID(Elf,_Nhdr)
66#define Elf_Dyn RTLDRELF_MID(Elf,_Dyn)
67#define Elf_Addr RTLDRELF_MID(Elf,_Addr)
68#define Elf_Half RTLDRELF_MID(Elf,_Half)
69#define Elf_Off RTLDRELF_MID(Elf,_Off)
70#define Elf_Size RTLDRELF_MID(Elf,_Size)
71#define Elf_Sword RTLDRELF_MID(Elf,_Sword)
72#define Elf_Word RTLDRELF_MID(Elf,_Word)
73
74#define RTLDRMODELF RTLDRELF_MID(RTLDRMODELF,RT_NOTHING)
75#define PRTLDRMODELF RTLDRELF_MID(PRTLDRMODELF,RT_NOTHING)
76
77#define ELF_R_SYM(info) RTLDRELF_MID(ELF,_R_SYM)(info)
78#define ELF_R_TYPE(info) RTLDRELF_MID(ELF,_R_TYPE)(info)
79#define ELF_R_INFO(sym, type) RTLDRELF_MID(ELF,_R_INFO)(sym, type)
80
81#define ELF_ST_BIND(info) RTLDRELF_MID(ELF,_ST_BIND)(info)
82
83
84
85/*******************************************************************************
86* Structures and Typedefs *
87*******************************************************************************/
88/**
89 * The ELF loader structure.
90 */
91typedef struct RTLDRMODELF
92{
93 /** Core module structure. */
94 RTLDRMODINTERNAL Core;
95 /** Pointer to readonly mapping of the image bits.
96 * This mapping is provided by the pReader. */
97 const void *pvBits;
98
99 /** The ELF header. */
100 Elf_Ehdr Ehdr;
101 /** Pointer to our copy of the section headers with sh_addr as RVAs.
102 * The virtual addresses in this array is the 0 based assignments we've given the image.
103 * Not valid if the image is DONE. */
104 Elf_Shdr *paShdrs;
105 /** Unmodified section headers (allocated after paShdrs, so no need to free).
106 * Not valid if the image is DONE. */
107 Elf_Shdr const *paOrgShdrs;
108 /** The size of the loaded image. */
109 size_t cbImage;
110
111 /** The image base address if it's an EXEC or DYN image. */
112 Elf_Addr LinkAddress;
113
114 /** The symbol section index. */
115 unsigned iSymSh;
116 /** Number of symbols in the table. */
117 unsigned cSyms;
118 /** Pointer to symbol table within RTLDRMODELF::pvBits. */
119 const Elf_Sym *paSyms;
120
121 /** The string section index. */
122 unsigned iStrSh;
123 /** Size of the string table. */
124 unsigned cbStr;
125 /** Pointer to string table within RTLDRMODELF::pvBits. */
126 const char *pStr;
127
128 /** Size of the section header string table. */
129 unsigned cbShStr;
130 /** Pointer to section header string table within RTLDRMODELF::pvBits. */
131 const char *pShStr;
132
133 /** The '.eh_frame' section index. Zero if not searched for, ~0U if not found. */
134 unsigned iShEhFrame;
135 /** The '.eh_frame_hdr' section index. Zero if not searched for, ~0U if not found. */
136 unsigned iShEhFrameHdr;
137} RTLDRMODELF, *PRTLDRMODELF;
138
139
140/**
141 * Maps the image bits into memory and resolve pointers into it.
142 *
143 * @returns iprt status code.
144 * @param pModElf The ELF loader module instance data.
145 * @param fNeedsBits Set if we actually need the pvBits member.
146 * If we don't, we can simply read the string and symbol sections, thus saving memory.
147 */
148static int RTLDRELF_NAME(MapBits)(PRTLDRMODELF pModElf, bool fNeedsBits)
149{
150 NOREF(fNeedsBits);
151 if (pModElf->pvBits)
152 return VINF_SUCCESS;
153 int rc = pModElf->Core.pReader->pfnMap(pModElf->Core.pReader, &pModElf->pvBits);
154 if (RT_SUCCESS(rc))
155 {
156 const uint8_t *pu8 = (const uint8_t *)pModElf->pvBits;
157 if (pModElf->iSymSh != ~0U)
158 pModElf->paSyms = (const Elf_Sym *)(pu8 + pModElf->paShdrs[pModElf->iSymSh].sh_offset);
159 if (pModElf->iStrSh != ~0U)
160 pModElf->pStr = (const char *)(pu8 + pModElf->paShdrs[pModElf->iStrSh].sh_offset);
161 pModElf->pShStr = (const char *)(pu8 + pModElf->paShdrs[pModElf->Ehdr.e_shstrndx].sh_offset);
162 }
163 return rc;
164}
165
166
167/*
168 *
169 * EXEC & DYN.
170 * EXEC & DYN.
171 * EXEC & DYN.
172 * EXEC & DYN.
173 * EXEC & DYN.
174 *
175 */
176
177
178/**
179 * Applies the fixups for a section in an executable image.
180 *
181 * @returns iprt status code.
182 * @param pModElf The ELF loader module instance data.
183 * @param BaseAddr The base address which the module is being fixedup to.
184 * @param pfnGetImport The callback function to use to resolve imports (aka unresolved externals).
185 * @param pvUser User argument to pass to the callback.
186 * @param SecAddr The section address. This is the address the relocations are relative to.
187 * @param cbSec The section size. The relocations must be inside this.
188 * @param pu8SecBaseR Where we read section bits from.
189 * @param pu8SecBaseW Where we write section bits to.
190 * @param pvRelocs Pointer to where we read the relocations from.
191 * @param cbRelocs Size of the relocations.
192 */
193static int RTLDRELF_NAME(RelocateSectionExecDyn)(PRTLDRMODELF pModElf, Elf_Addr BaseAddr,
194 PFNRTLDRIMPORT pfnGetImport, void *pvUser,
195 const Elf_Addr SecAddr, Elf_Size cbSec,
196 const uint8_t *pu8SecBaseR, uint8_t *pu8SecBaseW,
197 const void *pvRelocs, Elf_Size cbRelocs)
198{
199#if ELF_MODE != 32
200 NOREF(pu8SecBaseR);
201#endif
202
203 /*
204 * Iterate the relocations.
205 * The relocations are stored in an array of Elf32_Rel records and covers the entire relocation section.
206 */
207 const Elf_Addr offDelta = BaseAddr - pModElf->LinkAddress;
208 const Elf_Reloc *paRels = (const Elf_Reloc *)pvRelocs;
209 const unsigned iRelMax = (unsigned)(cbRelocs / sizeof(paRels[0]));
210 AssertMsgReturn(iRelMax == cbRelocs / sizeof(paRels[0]), (FMT_ELF_SIZE "\n", cbRelocs / sizeof(paRels[0])),
211 VERR_IMAGE_TOO_BIG);
212 for (unsigned iRel = 0; iRel < iRelMax; iRel++)
213 {
214 /*
215 * Skip R_XXX_NONE entries early to avoid confusion in the symbol
216 * getter code.
217 */
218#if ELF_MODE == 32
219 if (ELF_R_TYPE(paRels[iRel].r_info) == R_386_NONE)
220 continue;
221#elif ELF_MODE == 64
222 if (ELF_R_TYPE(paRels[iRel].r_info) == R_X86_64_NONE)
223 continue;
224#endif
225
226 /*
227 * Validate and find the symbol, resolve undefined ones.
228 */
229 Elf_Size iSym = ELF_R_SYM(paRels[iRel].r_info);
230 if (iSym >= pModElf->cSyms)
231 {
232 AssertMsgFailed(("iSym=%d is an invalid symbol index!\n", iSym));
233 return VERR_LDRELF_INVALID_SYMBOL_INDEX;
234 }
235 const Elf_Sym *pSym = &pModElf->paSyms[iSym];
236 if (pSym->st_name >= pModElf->cbStr)
237 {
238 AssertMsgFailed(("iSym=%d st_name=%d str sh_size=%d\n", iSym, pSym->st_name, pModElf->cbStr));
239 return VERR_LDRELF_INVALID_SYMBOL_NAME_OFFSET;
240 }
241
242 Elf_Addr SymValue = 0;
243 if (pSym->st_shndx == SHN_UNDEF)
244 {
245 /* Try to resolve the symbol. */
246 const char *pszName = ELF_STR(pModElf, pSym->st_name);
247 RTUINTPTR ExtValue;
248 int rc = pfnGetImport(&pModElf->Core, "", pszName, ~0U, &ExtValue, pvUser);
249 AssertMsgRCReturn(rc, ("Failed to resolve '%s' rc=%Rrc\n", pszName, rc), rc);
250 SymValue = (Elf_Addr)ExtValue;
251 AssertMsgReturn((RTUINTPTR)SymValue == ExtValue, ("Symbol value overflowed! '%s'\n", pszName),
252 VERR_SYMBOL_VALUE_TOO_BIG);
253 Log2(("rtldrELF: #%-3d - UNDEF " FMT_ELF_ADDR " '%s'\n", iSym, SymValue, pszName));
254 }
255 else
256 {
257 AssertMsgReturn(pSym->st_shndx < pModElf->Ehdr.e_shnum || pSym->st_shndx == SHN_ABS, ("%#x\n", pSym->st_shndx),
258 VERR_LDRELF_INVALID_RELOCATION_OFFSET);
259#if ELF_MODE == 64
260 SymValue = pSym->st_value;
261#endif
262 }
263
264#if ELF_MODE == 64
265 /* Calc the value (indexes checked above; assumes SHN_UNDEF == 0). */
266 Elf_Addr Value;
267 if (pSym->st_shndx < pModElf->Ehdr.e_shnum)
268 Value = SymValue + offDelta;
269 else /* SHN_ABS: */
270 Value = SymValue + paRels[iRel].r_addend;
271#endif
272
273 /*
274 * Apply the fixup.
275 */
276 AssertMsgReturn(paRels[iRel].r_offset < cbSec, (FMT_ELF_ADDR " " FMT_ELF_SIZE "\n", paRels[iRel].r_offset, cbSec), VERR_LDRELF_INVALID_RELOCATION_OFFSET);
277#if ELF_MODE == 32
278 const Elf_Addr *pAddrR = (const Elf_Addr *)(pu8SecBaseR + paRels[iRel].r_offset); /* Where to read the addend. */
279#endif
280 Elf_Addr *pAddrW = (Elf_Addr *)(pu8SecBaseW + paRels[iRel].r_offset); /* Where to write the fixup. */
281 switch (ELF_R_TYPE(paRels[iRel].r_info))
282 {
283#if ELF_MODE == 32
284 /*
285 * Absolute addressing.
286 */
287 case R_386_32:
288 {
289 Elf_Addr Value;
290 if (pSym->st_shndx < pModElf->Ehdr.e_shnum)
291 Value = *pAddrR + offDelta; /* Simplified. */
292 else if (pSym->st_shndx == SHN_ABS)
293 continue; /* Internal fixup, no need to apply it. */
294 else if (pSym->st_shndx == SHN_UNDEF)
295 Value = SymValue + *pAddrR;
296 else
297 AssertFailedReturn(VERR_LDR_GENERAL_FAILURE); /** @todo SHN_COMMON */
298 *(uint32_t *)pAddrW = Value;
299 Log4((FMT_ELF_ADDR": R_386_32 Value=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value));
300 break;
301 }
302
303 /*
304 * PC relative addressing.
305 */
306 case R_386_PC32:
307 {
308 Elf_Addr Value;
309 if (pSym->st_shndx < pModElf->Ehdr.e_shnum)
310 continue; /* Internal fixup, no need to apply it. */
311 else if (pSym->st_shndx == SHN_ABS)
312 Value = *pAddrR + offDelta; /* Simplified. */
313 else if (pSym->st_shndx == SHN_UNDEF)
314 {
315 const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */
316 Value = SymValue + *(uint32_t *)pAddrR - SourceAddr;
317 *(uint32_t *)pAddrW = Value;
318 }
319 else
320 AssertFailedReturn(VERR_LDR_GENERAL_FAILURE); /** @todo SHN_COMMON */
321 Log4((FMT_ELF_ADDR": R_386_PC32 Value=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value));
322 break;
323 }
324
325#elif ELF_MODE == 64
326
327 /*
328 * Absolute addressing
329 */
330 case R_X86_64_64:
331 {
332 *(uint64_t *)pAddrW = Value;
333 Log4((FMT_ELF_ADDR": R_X86_64_64 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
334 SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
335 break;
336 }
337
338 /*
339 * Truncated 32-bit value (zero-extendedable to the 64-bit value).
340 */
341 case R_X86_64_32:
342 {
343 *(uint32_t *)pAddrW = (uint32_t)Value;
344 Log4((FMT_ELF_ADDR": R_X86_64_32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
345 SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
346 AssertMsgReturn((Elf_Addr)*(uint32_t *)pAddrW == SymValue, ("Value=" FMT_ELF_ADDR "\n", SymValue),
347 VERR_SYMBOL_VALUE_TOO_BIG);
348 break;
349 }
350
351 /*
352 * Truncated 32-bit value (sign-extendedable to the 64-bit value).
353 */
354 case R_X86_64_32S:
355 {
356 *(int32_t *)pAddrW = (int32_t)Value;
357 Log4((FMT_ELF_ADDR": R_X86_64_32S Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
358 SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
359 AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */
360 break;
361 }
362
363 /*
364 * PC relative addressing.
365 */
366 case R_X86_64_PC32:
367 case R_X86_64_PLT32: /* binutils commit 451875b4f976a527395e9303224c7881b65e12ed feature/regression. */
368 {
369 const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */
370 Value -= SourceAddr;
371 *(int32_t *)pAddrW = (int32_t)Value;
372 Log4((FMT_ELF_ADDR": R_X86_64_PC32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
373 SourceAddr, Value, SymValue));
374 AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */
375 break;
376 }
377#endif
378
379 default:
380 AssertMsgFailed(("Unknown relocation type: %d (iRel=%d iRelMax=%d)\n",
381 ELF_R_TYPE(paRels[iRel].r_info), iRel, iRelMax));
382 return VERR_LDRELF_RELOCATION_NOT_SUPPORTED;
383 }
384 }
385
386 return VINF_SUCCESS;
387}
388
389
390
391/*
392 *
393 * REL
394 * REL
395 * REL
396 * REL
397 * REL
398 *
399 */
400
401/**
402 * Get the symbol and symbol value.
403 *
404 * @returns iprt status code.
405 * @param pModElf The ELF loader module instance data.
406 * @param BaseAddr The base address which the module is being fixedup to.
407 * @param pfnGetImport The callback function to use to resolve imports (aka unresolved externals).
408 * @param pvUser User argument to pass to the callback.
409 * @param iSym The symbol to get.
410 * @param ppSym Where to store the symbol pointer on success. (read only)
411 * @param pSymValue Where to store the symbol value on success.
412 */
413static int RTLDRELF_NAME(Symbol)(PRTLDRMODELF pModElf, Elf_Addr BaseAddr, PFNRTLDRIMPORT pfnGetImport, void *pvUser,
414 Elf_Size iSym, const Elf_Sym **ppSym, Elf_Addr *pSymValue)
415{
416 /*
417 * Validate and find the symbol.
418 */
419 if (iSym >= pModElf->cSyms)
420 {
421 AssertMsgFailed(("iSym=%d is an invalid symbol index!\n", iSym));
422 return VERR_LDRELF_INVALID_SYMBOL_INDEX;
423 }
424 const Elf_Sym *pSym = &pModElf->paSyms[iSym];
425 *ppSym = pSym;
426
427 if (pSym->st_name >= pModElf->cbStr)
428 {
429 AssertMsgFailed(("iSym=%d st_name=%d str sh_size=%d\n", iSym, pSym->st_name, pModElf->cbStr));
430 return VERR_LDRELF_INVALID_SYMBOL_NAME_OFFSET;
431 }
432 const char *pszName = ELF_STR(pModElf, pSym->st_name);
433
434 /*
435 * Determine the symbol value.
436 *
437 * Symbols needs different treatment depending on which section their are in.
438 * Undefined and absolute symbols goes into special non-existing sections.
439 */
440 switch (pSym->st_shndx)
441 {
442 /*
443 * Undefined symbol, needs resolving.
444 *
445 * Since ELF has no generic concept of importing from specific module (the OS/2 ELF format
446 * has but that's a OS extension and only applies to programs and dlls), we'll have to ask
447 * the resolver callback to do a global search.
448 */
449 case SHN_UNDEF:
450 {
451 /* Try to resolve the symbol. */
452 RTUINTPTR Value;
453 int rc = pfnGetImport(&pModElf->Core, "", pszName, ~0U, &Value, pvUser);
454 if (RT_FAILURE(rc))
455 {
456 AssertMsgFailed(("Failed to resolve '%s' rc=%Rrc\n", pszName, rc));
457 return rc;
458 }
459 *pSymValue = (Elf_Addr)Value;
460 if ((RTUINTPTR)*pSymValue != Value)
461 {
462 AssertMsgFailed(("Symbol value overflowed! '%s'\n", pszName));
463 return VERR_SYMBOL_VALUE_TOO_BIG;
464 }
465
466 Log2(("rtldrELF: #%-3d - UNDEF " FMT_ELF_ADDR " '%s'\n", iSym, *pSymValue, pszName));
467 break;
468 }
469
470 /*
471 * Absolute symbols needs no fixing since they are, well, absolute.
472 */
473 case SHN_ABS:
474 *pSymValue = pSym->st_value;
475 Log2(("rtldrELF: #%-3d - ABS " FMT_ELF_ADDR " '%s'\n", iSym, *pSymValue, pszName));
476 break;
477
478 /*
479 * All other symbols are addressed relative to their section and need to be fixed up.
480 */
481 default:
482 if (pSym->st_shndx >= pModElf->Ehdr.e_shnum)
483 {
484 /* what about common symbols? */
485 AssertMsg(pSym->st_shndx < pModElf->Ehdr.e_shnum,
486 ("iSym=%d st_shndx=%d e_shnum=%d pszName=%s\n", iSym, pSym->st_shndx, pModElf->Ehdr.e_shnum, pszName));
487 return VERR_BAD_EXE_FORMAT;
488 }
489 *pSymValue = pSym->st_value + pModElf->paShdrs[pSym->st_shndx].sh_addr + BaseAddr;
490 Log2(("rtldrELF: #%-3d - %5d " FMT_ELF_ADDR " '%s'\n", iSym, pSym->st_shndx, *pSymValue, pszName));
491 break;
492 }
493
494 return VINF_SUCCESS;
495}
496
497
498/**
499 * Applies the fixups for a sections.
500 *
501 * @returns iprt status code.
502 * @param pModElf The ELF loader module instance data.
503 * @param BaseAddr The base address which the module is being fixedup to.
504 * @param pfnGetImport The callback function to use to resolve imports (aka unresolved externals).
505 * @param pvUser User argument to pass to the callback.
506 * @param SecAddr The section address. This is the address the relocations are relative to.
507 * @param cbSec The section size. The relocations must be inside this.
508 * @param pu8SecBaseR Where we read section bits from.
509 * @param pu8SecBaseW Where we write section bits to.
510 * @param pvRelocs Pointer to where we read the relocations from.
511 * @param cbRelocs Size of the relocations.
512 */
513static int RTLDRELF_NAME(RelocateSection)(PRTLDRMODELF pModElf, Elf_Addr BaseAddr, PFNRTLDRIMPORT pfnGetImport, void *pvUser,
514 const Elf_Addr SecAddr, Elf_Size cbSec, const uint8_t *pu8SecBaseR, uint8_t *pu8SecBaseW,
515 const void *pvRelocs, Elf_Size cbRelocs)
516{
517#if ELF_MODE != 32
518 NOREF(pu8SecBaseR);
519#endif
520
521 /*
522 * Iterate the relocations.
523 * The relocations are stored in an array of Elf32_Rel records and covers the entire relocation section.
524 */
525 const Elf_Reloc *paRels = (const Elf_Reloc *)pvRelocs;
526 const unsigned iRelMax = (unsigned)(cbRelocs / sizeof(paRels[0]));
527 AssertMsgReturn(iRelMax == cbRelocs / sizeof(paRels[0]), (FMT_ELF_SIZE "\n", cbRelocs / sizeof(paRels[0])), VERR_IMAGE_TOO_BIG);
528 for (unsigned iRel = 0; iRel < iRelMax; iRel++)
529 {
530 /*
531 * Skip R_XXX_NONE entries early to avoid confusion in the symbol
532 * getter code.
533 */
534#if ELF_MODE == 32
535 if (ELF_R_TYPE(paRels[iRel].r_info) == R_386_NONE)
536 continue;
537#elif ELF_MODE == 64
538 if (ELF_R_TYPE(paRels[iRel].r_info) == R_X86_64_NONE)
539 continue;
540#endif
541
542
543 /*
544 * Get the symbol.
545 */
546 const Elf_Sym *pSym = NULL; /* shut up gcc */
547 Elf_Addr SymValue = 0; /* shut up gcc-4 */
548 int rc = RTLDRELF_NAME(Symbol)(pModElf, BaseAddr, pfnGetImport, pvUser, ELF_R_SYM(paRels[iRel].r_info), &pSym, &SymValue);
549 if (RT_FAILURE(rc))
550 return rc;
551
552 Log3(("rtldrELF: " FMT_ELF_ADDR " %02x %06x - " FMT_ELF_ADDR " %3d %02x %s\n",
553 paRels[iRel].r_offset, ELF_R_TYPE(paRels[iRel].r_info), (unsigned)ELF_R_SYM(paRels[iRel].r_info),
554 SymValue, (unsigned)pSym->st_shndx, pSym->st_info, ELF_STR(pModElf, pSym->st_name)));
555
556 /*
557 * Apply the fixup.
558 */
559 AssertMsgReturn(paRels[iRel].r_offset < cbSec, (FMT_ELF_ADDR " " FMT_ELF_SIZE "\n", paRels[iRel].r_offset, cbSec), VERR_LDRELF_INVALID_RELOCATION_OFFSET);
560#if ELF_MODE == 32
561 const Elf_Addr *pAddrR = (const Elf_Addr *)(pu8SecBaseR + paRels[iRel].r_offset); /* Where to read the addend. */
562#endif
563 Elf_Addr *pAddrW = (Elf_Addr *)(pu8SecBaseW + paRels[iRel].r_offset); /* Where to write the fixup. */
564 switch (ELF_R_TYPE(paRels[iRel].r_info))
565 {
566#if ELF_MODE == 32
567 /*
568 * Absolute addressing.
569 */
570 case R_386_32:
571 {
572 const Elf_Addr Value = SymValue + *pAddrR;
573 *(uint32_t *)pAddrW = Value;
574 Log4((FMT_ELF_ADDR": R_386_32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
575 SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
576 break;
577 }
578
579 /*
580 * PC relative addressing.
581 */
582 case R_386_PC32:
583 {
584 const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */
585 const Elf_Addr Value = SymValue + *(uint32_t *)pAddrR - SourceAddr;
586 *(uint32_t *)pAddrW = Value;
587 Log4((FMT_ELF_ADDR": R_386_PC32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
588 SourceAddr, Value, SymValue));
589 break;
590 }
591
592 /* ignore */
593 case R_386_NONE:
594 break;
595
596#elif ELF_MODE == 64
597
598 /*
599 * Absolute addressing
600 */
601 case R_X86_64_64:
602 {
603 const Elf_Addr Value = SymValue + paRels[iRel].r_addend;
604 *(uint64_t *)pAddrW = Value;
605 Log4((FMT_ELF_ADDR": R_X86_64_64 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
606 SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
607 break;
608 }
609
610 /*
611 * Truncated 32-bit value (zero-extendedable to the 64-bit value).
612 */
613 case R_X86_64_32:
614 {
615 const Elf_Addr Value = SymValue + paRels[iRel].r_addend;
616 *(uint32_t *)pAddrW = (uint32_t)Value;
617 Log4((FMT_ELF_ADDR": R_X86_64_32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
618 SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
619 AssertMsgReturn((Elf_Addr)*(uint32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG);
620 break;
621 }
622
623 /*
624 * Truncated 32-bit value (sign-extendedable to the 64-bit value).
625 */
626 case R_X86_64_32S:
627 {
628 const Elf_Addr Value = SymValue + paRels[iRel].r_addend;
629 *(int32_t *)pAddrW = (int32_t)Value;
630 Log4((FMT_ELF_ADDR": R_X86_64_32S Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
631 SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue));
632 AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */
633 break;
634 }
635
636 /*
637 * PC relative addressing.
638 */
639 case R_X86_64_PC32:
640 case R_X86_64_PLT32: /* binutils commit 451875b4f976a527395e9303224c7881b65e12ed feature/regression. */
641 {
642 const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */
643 const Elf_Addr Value = SymValue + paRels[iRel].r_addend - SourceAddr;
644 *(int32_t *)pAddrW = (int32_t)Value;
645 Log4((FMT_ELF_ADDR": R_X86_64_PC32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n",
646 SourceAddr, Value, SymValue));
647 AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */
648 break;
649 }
650
651 /* ignore */
652 case R_X86_64_NONE:
653 break;
654#endif
655
656 default:
657 AssertMsgFailed(("Unknown relocation type: %d (iRel=%d iRelMax=%d)\n",
658 ELF_R_TYPE(paRels[iRel].r_info), iRel, iRelMax));
659 return VERR_LDRELF_RELOCATION_NOT_SUPPORTED;
660 }
661 }
662
663 return VINF_SUCCESS;
664}
665
666
667
668/** @copydoc RTLDROPS::pfnClose */
669static DECLCALLBACK(int) RTLDRELF_NAME(Close)(PRTLDRMODINTERNAL pMod)
670{
671 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
672
673 if (pModElf->paShdrs)
674 {
675 RTMemFree(pModElf->paShdrs);
676 pModElf->paShdrs = NULL;
677 }
678
679 pModElf->pvBits = NULL;
680
681 return VINF_SUCCESS;
682}
683
684
685/** @copydoc RTLDROPS::Done */
686static DECLCALLBACK(int) RTLDRELF_NAME(Done)(PRTLDRMODINTERNAL pMod)
687{
688 NOREF(pMod); /*PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;*/
689 /** @todo Have to think more about this .... */
690 return -1;
691}
692
693
694/** @copydoc RTLDROPS::EnumSymbols */
695static DECLCALLBACK(int) RTLDRELF_NAME(EnumSymbols)(PRTLDRMODINTERNAL pMod, unsigned fFlags, const void *pvBits, RTUINTPTR BaseAddress,
696 PFNRTLDRENUMSYMS pfnCallback, void *pvUser)
697{
698 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
699 NOREF(pvBits);
700
701 /*
702 * Validate the input.
703 */
704 Elf_Addr BaseAddr = (Elf_Addr)BaseAddress;
705 AssertMsgReturn((RTUINTPTR)BaseAddr == BaseAddress, ("%RTptr", BaseAddress), VERR_IMAGE_BASE_TOO_HIGH);
706
707 /*
708 * Make sure we've got the string and symbol tables. (We don't need the pvBits.)
709 */
710 int rc = RTLDRELF_NAME(MapBits)(pModElf, false);
711 if (RT_FAILURE(rc))
712 return rc;
713
714 /*
715 * Enumerate the symbol table.
716 */
717 const Elf_Sym *paSyms = pModElf->paSyms;
718 unsigned cSyms = pModElf->cSyms;
719 for (unsigned iSym = 1; iSym < cSyms; iSym++)
720 {
721 /*
722 * Skip imports (undefined).
723 */
724 if (paSyms[iSym].st_shndx != SHN_UNDEF)
725 {
726 /*
727 * Calc value and get name.
728 */
729 Elf_Addr Value;
730 if (paSyms[iSym].st_shndx == SHN_ABS)
731 /* absolute symbols are not subject to any relocation. */
732 Value = paSyms[iSym].st_value;
733 else if (paSyms[iSym].st_shndx < pModElf->Ehdr.e_shnum)
734 {
735 if (pModElf->Ehdr.e_type == ET_REL)
736 /* relative to the section. */
737 Value = BaseAddr + paSyms[iSym].st_value + pModElf->paShdrs[paSyms[iSym].st_shndx].sh_addr;
738 else /* Fixed up for link address. */
739 Value = BaseAddr + paSyms[iSym].st_value - pModElf->LinkAddress;
740 }
741 else
742 {
743 AssertMsgFailed(("Arg! paSyms[%u].st_shndx=" FMT_ELF_HALF "\n", iSym, paSyms[iSym].st_shndx));
744 return VERR_BAD_EXE_FORMAT;
745 }
746 const char *pszName = ELF_STR(pModElf, paSyms[iSym].st_name);
747 if ( (pszName && *pszName)
748 && ( (fFlags & RTLDR_ENUM_SYMBOL_FLAGS_ALL)
749 || ELF_ST_BIND(paSyms[iSym].st_info) == STB_GLOBAL)
750 )
751 {
752 /*
753 * Call back.
754 */
755 AssertMsgReturn(Value == (RTUINTPTR)Value, (FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG);
756 rc = pfnCallback(pMod, pszName, ~0U, (RTUINTPTR)Value, pvUser);
757 if (rc)
758 return rc;
759 }
760 }
761 }
762
763 return VINF_SUCCESS;
764}
765
766
767/** @copydoc RTLDROPS::GetImageSize */
768static DECLCALLBACK(size_t) RTLDRELF_NAME(GetImageSize)(PRTLDRMODINTERNAL pMod)
769{
770 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
771
772 return pModElf->cbImage;
773}
774
775
776/** @copydoc RTLDROPS::GetBits */
777static DECLCALLBACK(int) RTLDRELF_NAME(GetBits)(PRTLDRMODINTERNAL pMod, void *pvBits, RTUINTPTR BaseAddress, PFNRTLDRIMPORT pfnGetImport, void *pvUser)
778{
779 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
780
781 /*
782 * This operation is currently only available on relocatable images.
783 */
784 switch (pModElf->Ehdr.e_type)
785 {
786 case ET_REL:
787 break;
788 case ET_EXEC:
789 Log(("RTLdrELF: %s: Executable images are not supported yet!\n", pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader)));
790 return VERR_LDRELF_EXEC;
791 case ET_DYN:
792 Log(("RTLdrELF: %s: Dynamic images are not supported yet!\n", pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader)));
793 return VERR_LDRELF_DYN;
794 default: AssertFailedReturn(VERR_BAD_EXE_FORMAT);
795 }
796
797 /*
798 * Load the bits into pvBits.
799 */
800 const Elf_Shdr *paShdrs = pModElf->paShdrs;
801 for (unsigned iShdr = 0; iShdr < pModElf->Ehdr.e_shnum; iShdr++)
802 {
803 if (paShdrs[iShdr].sh_flags & SHF_ALLOC)
804 {
805 AssertMsgReturn((size_t)paShdrs[iShdr].sh_size == (size_t)paShdrs[iShdr].sh_size, (FMT_ELF_SIZE "\n", paShdrs[iShdr].sh_size), VERR_IMAGE_TOO_BIG);
806 switch (paShdrs[iShdr].sh_type)
807 {
808 case SHT_NOBITS:
809 memset((uint8_t *)pvBits + paShdrs[iShdr].sh_addr, 0, (size_t)paShdrs[iShdr].sh_size);
810 break;
811
812 case SHT_PROGBITS:
813 default:
814 {
815 int rc = pModElf->Core.pReader->pfnRead(pModElf->Core.pReader, (uint8_t *)pvBits + paShdrs[iShdr].sh_addr,
816 (size_t)paShdrs[iShdr].sh_size, paShdrs[iShdr].sh_offset);
817 if (RT_FAILURE(rc))
818 {
819 Log(("RTLdrELF: %s: Read error when reading " FMT_ELF_SIZE " bytes at " FMT_ELF_OFF ", iShdr=%d\n",
820 pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader),
821 paShdrs[iShdr].sh_size, paShdrs[iShdr].sh_offset, iShdr));
822 return rc;
823 }
824 }
825 }
826 }
827 }
828
829 /*
830 * Relocate the image.
831 */
832 return pModElf->Core.pOps->pfnRelocate(pMod, pvBits, BaseAddress, ~(RTUINTPTR)0, pfnGetImport, pvUser);
833}
834
835
836/** @copydoc RTLDROPS::Relocate */
837static DECLCALLBACK(int) RTLDRELF_NAME(Relocate)(PRTLDRMODINTERNAL pMod, void *pvBits, RTUINTPTR NewBaseAddress,
838 RTUINTPTR OldBaseAddress, PFNRTLDRIMPORT pfnGetImport, void *pvUser)
839{
840 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
841#ifdef LOG_ENABLED
842 const char *pszLogName = pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader);
843#endif
844 NOREF(OldBaseAddress);
845
846 /*
847 * This operation is currently only available on relocatable images.
848 */
849 switch (pModElf->Ehdr.e_type)
850 {
851 case ET_REL:
852 break;
853 case ET_EXEC:
854 Log(("RTLdrELF: %s: Executable images are not supported yet!\n", pszLogName));
855 return VERR_LDRELF_EXEC;
856 case ET_DYN:
857 Log(("RTLdrELF: %s: Dynamic images are not supported yet!\n", pszLogName));
858 return VERR_LDRELF_DYN;
859 default: AssertFailedReturn(VERR_BAD_EXE_FORMAT);
860 }
861
862 /*
863 * Validate the input.
864 */
865 Elf_Addr BaseAddr = (Elf_Addr)NewBaseAddress;
866 AssertMsgReturn((RTUINTPTR)BaseAddr == NewBaseAddress, ("%RTptr", NewBaseAddress), VERR_IMAGE_BASE_TOO_HIGH);
867
868 /*
869 * Map the image bits if not already done and setup pointer into it.
870 */
871 int rc = RTLDRELF_NAME(MapBits)(pModElf, true);
872 if (RT_FAILURE(rc))
873 return rc;
874
875 /*
876 * Iterate the sections looking for interesting SHT_REL[A] sections.
877 * SHT_REL[A] sections have the section index of the section they contain fixups
878 * for in the sh_info member.
879 */
880 const Elf_Shdr *paShdrs = pModElf->paShdrs;
881 Log2(("rtLdrElf: %s: Fixing up image\n", pszLogName));
882 for (unsigned iShdr = 0; iShdr < pModElf->Ehdr.e_shnum; iShdr++)
883 {
884 const Elf_Shdr *pShdrRel = &paShdrs[iShdr];
885
886 /*
887 * Skip sections without interest to us.
888 */
889#if ELF_MODE == 32
890 if (pShdrRel->sh_type != SHT_REL)
891#else
892 if (pShdrRel->sh_type != SHT_RELA)
893#endif
894 continue;
895 if (pShdrRel->sh_info >= pModElf->Ehdr.e_shnum)
896 continue;
897 const Elf_Shdr *pShdr = &paShdrs[pShdrRel->sh_info]; /* the section to fixup. */
898 if (!(pShdr->sh_flags & SHF_ALLOC))
899 continue;
900
901 /*
902 * Relocate the section.
903 */
904 Log2(("rtldrELF: %s: Relocation records for #%d [%s] (sh_info=%d sh_link=%d) found in #%d [%s] (sh_info=%d sh_link=%d)\n",
905 pszLogName, (int)pShdrRel->sh_info, ELF_SH_STR(pModElf, pShdr->sh_name), (int)pShdr->sh_info, (int)pShdr->sh_link,
906 iShdr, ELF_SH_STR(pModElf, pShdrRel->sh_name), (int)pShdrRel->sh_info, (int)pShdrRel->sh_link));
907
908 /** @todo Make RelocateSection a function pointer so we can select the one corresponding to the machine when opening the image. */
909 if (pModElf->Ehdr.e_type == ET_REL)
910 rc = RTLDRELF_NAME(RelocateSection)(pModElf, BaseAddr, pfnGetImport, pvUser,
911 pShdr->sh_addr,
912 pShdr->sh_size,
913 (const uint8_t *)pModElf->pvBits + pShdr->sh_offset,
914 (uint8_t *)pvBits + pShdr->sh_addr,
915 (const uint8_t *)pModElf->pvBits + pShdrRel->sh_offset,
916 pShdrRel->sh_size);
917 else
918 rc = RTLDRELF_NAME(RelocateSectionExecDyn)(pModElf, BaseAddr, pfnGetImport, pvUser,
919 pShdr->sh_addr,
920 pShdr->sh_size,
921 (const uint8_t *)pModElf->pvBits + pShdr->sh_offset,
922 (uint8_t *)pvBits + pShdr->sh_addr,
923 (const uint8_t *)pModElf->pvBits + pShdrRel->sh_offset,
924 pShdrRel->sh_size);
925 if (RT_FAILURE(rc))
926 return rc;
927 }
928 return VINF_SUCCESS;
929}
930
931
932/**
933 * Worker for pfnGetSymbolEx.
934 */
935static int RTLDRELF_NAME(ReturnSymbol)(PRTLDRMODELF pThis, const Elf_Sym *pSym, Elf_Addr uBaseAddr, PRTUINTPTR pValue)
936{
937 Elf_Addr Value;
938 if (pSym->st_shndx == SHN_ABS)
939 /* absolute symbols are not subject to any relocation. */
940 Value = pSym->st_value;
941 else if (pSym->st_shndx < pThis->Ehdr.e_shnum)
942 {
943 if (pThis->Ehdr.e_type == ET_REL)
944 /* relative to the section. */
945 Value = uBaseAddr + pSym->st_value + pThis->paShdrs[pSym->st_shndx].sh_addr;
946 else /* Fixed up for link address. */
947 Value = uBaseAddr + pSym->st_value - pThis->LinkAddress;
948 }
949 else
950 {
951 AssertMsgFailed(("Arg! pSym->st_shndx=%d\n", pSym->st_shndx));
952 return VERR_BAD_EXE_FORMAT;
953 }
954 AssertMsgReturn(Value == (RTUINTPTR)Value, (FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG);
955 *pValue = (RTUINTPTR)Value;
956 return VINF_SUCCESS;
957}
958
959
960/** @copydoc RTLDROPS::pfnGetSymbolEx */
961static DECLCALLBACK(int) RTLDRELF_NAME(GetSymbolEx)(PRTLDRMODINTERNAL pMod, const void *pvBits, RTUINTPTR BaseAddress,
962 uint32_t iOrdinal, const char *pszSymbol, RTUINTPTR *pValue)
963{
964 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
965 NOREF(pvBits);
966
967 /*
968 * Validate the input.
969 */
970 Elf_Addr uBaseAddr = (Elf_Addr)BaseAddress;
971 AssertMsgReturn((RTUINTPTR)uBaseAddr == BaseAddress, ("%RTptr", BaseAddress), VERR_IMAGE_BASE_TOO_HIGH);
972
973 /*
974 * Map the image bits if not already done and setup pointer into it.
975 */
976 int rc = RTLDRELF_NAME(MapBits)(pModElf, true);
977 if (RT_FAILURE(rc))
978 return rc;
979
980 /*
981 * Calc all kinds of pointers before we start iterating the symbol table.
982 */
983 const Elf_Sym *paSyms = pModElf->paSyms;
984 unsigned cSyms = pModElf->cSyms;
985 if (iOrdinal == UINT32_MAX)
986 {
987 const char *pStr = pModElf->pStr;
988 for (unsigned iSym = 1; iSym < cSyms; iSym++)
989 {
990 /* Undefined symbols are not exports, they are imports. */
991 if ( paSyms[iSym].st_shndx != SHN_UNDEF
992 && ( ELF_ST_BIND(paSyms[iSym].st_info) == STB_GLOBAL
993 || ELF_ST_BIND(paSyms[iSym].st_info) == STB_WEAK))
994 {
995 /* Validate the name string and try match with it. */
996 if (paSyms[iSym].st_name < pModElf->cbStr)
997 {
998 if (!strcmp(pszSymbol, pStr + paSyms[iSym].st_name))
999 {
1000 /* matched! */
1001 return RTLDRELF_NAME(ReturnSymbol)(pModElf, &paSyms[iSym], uBaseAddr, pValue);
1002 }
1003 }
1004 else
1005 {
1006 AssertMsgFailed(("String outside string table! iSym=%d paSyms[iSym].st_name=%#x\n", iSym, paSyms[iSym].st_name));
1007 return VERR_LDRELF_INVALID_SYMBOL_NAME_OFFSET;
1008 }
1009 }
1010 }
1011 }
1012 else if (iOrdinal < cSyms)
1013 {
1014 if ( paSyms[iOrdinal].st_shndx != SHN_UNDEF
1015 && ( ELF_ST_BIND(paSyms[iOrdinal].st_info) == STB_GLOBAL
1016 || ELF_ST_BIND(paSyms[iOrdinal].st_info) == STB_WEAK))
1017 return RTLDRELF_NAME(ReturnSymbol)(pModElf, &paSyms[iOrdinal], uBaseAddr, pValue);
1018 }
1019
1020 return VERR_SYMBOL_NOT_FOUND;
1021}
1022
1023
1024/** @copydoc RTLDROPS::pfnEnumDbgInfo */
1025static DECLCALLBACK(int) RTLDRELF_NAME(EnumDbgInfo)(PRTLDRMODINTERNAL pMod, const void *pvBits,
1026 PFNRTLDRENUMDBG pfnCallback, void *pvUser)
1027{
1028 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
1029 RT_NOREF_PV(pvBits);
1030
1031 /*
1032 * Map the image bits if not already done and setup pointer into it.
1033 */
1034 int rc = RTLDRELF_NAME(MapBits)(pModElf, true);
1035 if (RT_FAILURE(rc))
1036 return rc;
1037
1038 /*
1039 * Do the enumeration.
1040 */
1041 const Elf_Shdr *paShdrs = pModElf->paOrgShdrs;
1042 for (unsigned iShdr = 0; iShdr < pModElf->Ehdr.e_shnum; iShdr++)
1043 {
1044 /* Debug sections are expected to be PROGBITS and not allocated. */
1045 if (paShdrs[iShdr].sh_type != SHT_PROGBITS)
1046 continue;
1047 if (paShdrs[iShdr].sh_flags & SHF_ALLOC)
1048 continue;
1049
1050 RTLDRDBGINFO DbgInfo;
1051 const char *pszSectName = ELF_SH_STR(pModElf, paShdrs[iShdr].sh_name);
1052 if ( !strncmp(pszSectName, RT_STR_TUPLE(".debug_"))
1053 || !strcmp(pszSectName, ".WATCOM_references") )
1054 {
1055 RT_ZERO(DbgInfo.u);
1056 DbgInfo.enmType = RTLDRDBGINFOTYPE_DWARF;
1057 DbgInfo.pszExtFile = NULL;
1058 DbgInfo.offFile = paShdrs[iShdr].sh_offset;
1059 DbgInfo.cb = paShdrs[iShdr].sh_size;
1060 DbgInfo.u.Dwarf.pszSection = pszSectName;
1061 }
1062 else if (!strcmp(pszSectName, ".gnu_debuglink"))
1063 {
1064 if ((paShdrs[iShdr].sh_size & 3) || paShdrs[iShdr].sh_size < 8)
1065 return VERR_BAD_EXE_FORMAT;
1066
1067 RT_ZERO(DbgInfo.u);
1068 DbgInfo.enmType = RTLDRDBGINFOTYPE_DWARF_DWO;
1069 DbgInfo.pszExtFile = (const char *)((uintptr_t)pModElf->pvBits + (uintptr_t)paShdrs[iShdr].sh_offset);
1070 if (!RTStrEnd(DbgInfo.pszExtFile, paShdrs[iShdr].sh_size))
1071 return VERR_BAD_EXE_FORMAT;
1072 DbgInfo.u.Dwo.uCrc32 = *(uint32_t *)((uintptr_t)DbgInfo.pszExtFile + (uintptr_t)paShdrs[iShdr].sh_size
1073 - sizeof(uint32_t));
1074 DbgInfo.offFile = -1;
1075 DbgInfo.cb = 0;
1076 }
1077 else
1078 continue;
1079
1080 DbgInfo.LinkAddress = NIL_RTLDRADDR;
1081 DbgInfo.iDbgInfo = iShdr - 1;
1082
1083 rc = pfnCallback(pMod, &DbgInfo, pvUser);
1084 if (rc != VINF_SUCCESS)
1085 return rc;
1086
1087 }
1088
1089 return VINF_SUCCESS;
1090}
1091
1092
1093/**
1094 * Helper that locates the first allocated section.
1095 *
1096 * @returns Pointer to the section header if found, NULL if none.
1097 * @param pShdr The section header to start searching at.
1098 * @param cLeft The number of section headers left to search. Can be 0.
1099 */
1100static const Elf_Shdr *RTLDRELF_NAME(GetFirstAllocatedSection)(const Elf_Shdr *pShdr, unsigned cLeft)
1101{
1102 while (cLeft-- > 0)
1103 {
1104 if (pShdr->sh_flags & SHF_ALLOC)
1105 return pShdr;
1106 pShdr++;
1107 }
1108 return NULL;
1109}
1110
1111/** @copydoc RTLDROPS::pfnEnumSegments. */
1112static DECLCALLBACK(int) RTLDRELF_NAME(EnumSegments)(PRTLDRMODINTERNAL pMod, PFNRTLDRENUMSEGS pfnCallback, void *pvUser)
1113{
1114 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
1115
1116 /*
1117 * Map the image bits if not already done and setup pointer into it.
1118 */
1119 int rc = RTLDRELF_NAME(MapBits)(pModElf, true);
1120 if (RT_FAILURE(rc))
1121 return rc;
1122
1123 /*
1124 * Do the enumeration.
1125 */
1126 char szName[32];
1127 Elf_Addr uPrevMappedRva = 0;
1128 const Elf_Shdr *paShdrs = pModElf->paShdrs;
1129 const Elf_Shdr *paOrgShdrs = pModElf->paOrgShdrs;
1130 for (unsigned iShdr = 1; iShdr < pModElf->Ehdr.e_shnum; iShdr++)
1131 {
1132 RTLDRSEG Seg;
1133 Seg.pszName = ELF_SH_STR(pModElf, paShdrs[iShdr].sh_name);
1134 Seg.cchName = (uint32_t)strlen(Seg.pszName);
1135 if (Seg.cchName == 0)
1136 {
1137 Seg.pszName = szName;
1138 Seg.cchName = (uint32_t)RTStrPrintf(szName, sizeof(szName), "UnamedSect%02u", iShdr);
1139 }
1140 Seg.SelFlat = 0;
1141 Seg.Sel16bit = 0;
1142 Seg.fFlags = 0;
1143 Seg.fProt = RTMEM_PROT_READ;
1144 if (paShdrs[iShdr].sh_flags & SHF_WRITE)
1145 Seg.fProt |= RTMEM_PROT_WRITE;
1146 if (paShdrs[iShdr].sh_flags & SHF_EXECINSTR)
1147 Seg.fProt |= RTMEM_PROT_EXEC;
1148 Seg.cb = paShdrs[iShdr].sh_size;
1149 Seg.Alignment = paShdrs[iShdr].sh_addralign;
1150 if (paShdrs[iShdr].sh_flags & SHF_ALLOC)
1151 {
1152 Seg.LinkAddress = paOrgShdrs[iShdr].sh_addr;
1153 Seg.RVA = paShdrs[iShdr].sh_addr;
1154 const Elf_Shdr *pShdr2 = RTLDRELF_NAME(GetFirstAllocatedSection)(&paShdrs[iShdr + 1],
1155 pModElf->Ehdr.e_shnum - iShdr - 1);
1156 if ( pShdr2
1157 && pShdr2->sh_addr >= paShdrs[iShdr].sh_addr
1158 && Seg.RVA >= uPrevMappedRva)
1159 Seg.cbMapped = pShdr2->sh_addr - paShdrs[iShdr].sh_addr;
1160 else
1161 Seg.cbMapped = RT_MAX(paShdrs[iShdr].sh_size, paShdrs[iShdr].sh_addralign);
1162 uPrevMappedRva = Seg.RVA;
1163 }
1164 else
1165 {
1166 Seg.LinkAddress = NIL_RTLDRADDR;
1167 Seg.RVA = NIL_RTLDRADDR;
1168 Seg.cbMapped = NIL_RTLDRADDR;
1169 }
1170 if (paShdrs[iShdr].sh_type != SHT_NOBITS)
1171 {
1172 Seg.offFile = paShdrs[iShdr].sh_offset;
1173 Seg.cbFile = paShdrs[iShdr].sh_size;
1174 }
1175 else
1176 {
1177 Seg.offFile = -1;
1178 Seg.cbFile = 0;
1179 }
1180
1181 rc = pfnCallback(pMod, &Seg, pvUser);
1182 if (rc != VINF_SUCCESS)
1183 return rc;
1184 }
1185
1186 return VINF_SUCCESS;
1187}
1188
1189
1190/** @copydoc RTLDROPS::pfnLinkAddressToSegOffset. */
1191static DECLCALLBACK(int) RTLDRELF_NAME(LinkAddressToSegOffset)(PRTLDRMODINTERNAL pMod, RTLDRADDR LinkAddress,
1192 uint32_t *piSeg, PRTLDRADDR poffSeg)
1193{
1194 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
1195
1196 const Elf_Shdr *pShdrEnd = NULL;
1197 unsigned cLeft = pModElf->Ehdr.e_shnum - 1;
1198 const Elf_Shdr *pShdr = &pModElf->paOrgShdrs[cLeft];
1199 while (cLeft-- > 0)
1200 {
1201 if (pShdr->sh_flags & SHF_ALLOC)
1202 {
1203 RTLDRADDR offSeg = LinkAddress - pShdr->sh_addr;
1204 if (offSeg < pShdr->sh_size)
1205 {
1206 *poffSeg = offSeg;
1207 *piSeg = cLeft;
1208 return VINF_SUCCESS;
1209 }
1210 if (offSeg == pShdr->sh_size)
1211 pShdrEnd = pShdr;
1212 }
1213 pShdr--;
1214 }
1215
1216 if (pShdrEnd)
1217 {
1218 *poffSeg = pShdrEnd->sh_size;
1219 *piSeg = pShdrEnd - pModElf->paOrgShdrs - 1;
1220 return VINF_SUCCESS;
1221 }
1222
1223 return VERR_LDR_INVALID_LINK_ADDRESS;
1224}
1225
1226
1227/** @copydoc RTLDROPS::pfnLinkAddressToRva. */
1228static DECLCALLBACK(int) RTLDRELF_NAME(LinkAddressToRva)(PRTLDRMODINTERNAL pMod, RTLDRADDR LinkAddress, PRTLDRADDR pRva)
1229{
1230 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
1231 uint32_t iSeg;
1232 RTLDRADDR offSeg;
1233 int rc = RTLDRELF_NAME(LinkAddressToSegOffset)(pMod, LinkAddress, &iSeg, &offSeg);
1234 if (RT_SUCCESS(rc))
1235 *pRva = pModElf->paShdrs[iSeg + 1].sh_addr + offSeg;
1236 return rc;
1237}
1238
1239
1240/** @copydoc RTLDROPS::pfnSegOffsetToRva. */
1241static DECLCALLBACK(int) RTLDRELF_NAME(SegOffsetToRva)(PRTLDRMODINTERNAL pMod, uint32_t iSeg, RTLDRADDR offSeg,
1242 PRTLDRADDR pRva)
1243{
1244 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
1245 if (iSeg >= pModElf->Ehdr.e_shnum - 1U)
1246 return VERR_LDR_INVALID_SEG_OFFSET;
1247
1248 iSeg++; /* skip section 0 */
1249 if (offSeg > pModElf->paShdrs[iSeg].sh_size)
1250 {
1251 const Elf_Shdr *pShdr2 = RTLDRELF_NAME(GetFirstAllocatedSection)(&pModElf->paShdrs[iSeg + 1],
1252 pModElf->Ehdr.e_shnum - iSeg - 1);
1253 if ( !pShdr2
1254 || offSeg > (pShdr2->sh_addr - pModElf->paShdrs[iSeg].sh_addr))
1255 return VERR_LDR_INVALID_SEG_OFFSET;
1256 }
1257
1258 if (!(pModElf->paShdrs[iSeg].sh_flags & SHF_ALLOC))
1259 return VERR_LDR_INVALID_SEG_OFFSET;
1260
1261 *pRva = pModElf->paShdrs[iSeg].sh_addr;
1262 return VINF_SUCCESS;
1263}
1264
1265
1266/** @copydoc RTLDROPS::pfnRvaToSegOffset. */
1267static DECLCALLBACK(int) RTLDRELF_NAME(RvaToSegOffset)(PRTLDRMODINTERNAL pMod, RTLDRADDR Rva,
1268 uint32_t *piSeg, PRTLDRADDR poffSeg)
1269{
1270 PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;
1271
1272 Elf_Addr PrevAddr = 0;
1273 unsigned cLeft = pModElf->Ehdr.e_shnum - 1;
1274 const Elf_Shdr *pShdr = &pModElf->paShdrs[cLeft];
1275 while (cLeft-- > 0)
1276 {
1277 if (pShdr->sh_flags & SHF_ALLOC)
1278 {
1279 Elf_Addr cbSeg = PrevAddr ? PrevAddr - pShdr->sh_addr : pShdr->sh_size;
1280 RTLDRADDR offSeg = Rva - pShdr->sh_addr;
1281 if (offSeg <= cbSeg)
1282 {
1283 *poffSeg = offSeg;
1284 *piSeg = cLeft;
1285 return VINF_SUCCESS;
1286 }
1287 PrevAddr = pShdr->sh_addr;
1288 }
1289 pShdr--;
1290 }
1291
1292 return VERR_LDR_INVALID_RVA;
1293}
1294
1295
1296/** @callback_method_impl{FNRTLDRIMPORT, Stub used by ReadDbgInfo.} */
1297static DECLCALLBACK(int) RTLDRELF_NAME(GetImportStubCallback)(RTLDRMOD hLdrMod, const char *pszModule, const char *pszSymbol,
1298 unsigned uSymbol, PRTLDRADDR pValue, void *pvUser)
1299{
1300 RT_NOREF_PV(hLdrMod); RT_NOREF_PV(pszModule); RT_NOREF_PV(pszSymbol);
1301 RT_NOREF_PV(uSymbol); RT_NOREF_PV(pValue); RT_NOREF_PV(pvUser);
1302 return VERR_SYMBOL_NOT_FOUND;
1303}
1304
1305
1306/** @copydoc RTLDROPS::pfnReadDbgInfo. */
1307static DECLCALLBACK(int) RTLDRELF_NAME(ReadDbgInfo)(PRTLDRMODINTERNAL pMod, uint32_t iDbgInfo, RTFOFF off,
1308 size_t cb, void *pvBuf)
1309{
1310 PRTLDRMODELF pThis = (PRTLDRMODELF)pMod;
1311 LogFlow(("%s: iDbgInfo=%#x off=%RTfoff cb=%#zu\n", __FUNCTION__, iDbgInfo, off, cb));
1312
1313 /*
1314 * Input validation.
1315 */
1316 AssertReturn(iDbgInfo < pThis->Ehdr.e_shnum && iDbgInfo + 1 < pThis->Ehdr.e_shnum, VERR_INVALID_PARAMETER);
1317 iDbgInfo++;
1318 AssertReturn(!(pThis->paShdrs[iDbgInfo].sh_flags & SHF_ALLOC), VERR_INVALID_PARAMETER);
1319 AssertReturn(pThis->paShdrs[iDbgInfo].sh_type == SHT_PROGBITS, VERR_INVALID_PARAMETER);
1320 AssertReturn(pThis->paShdrs[iDbgInfo].sh_offset == (uint64_t)off, VERR_INVALID_PARAMETER);
1321 AssertReturn(pThis->paShdrs[iDbgInfo].sh_size == cb, VERR_INVALID_PARAMETER);
1322 RTFOFF cbRawImage = pThis->Core.pReader->pfnSize(pThis->Core.pReader);
1323 AssertReturn(cbRawImage >= 0, VERR_INVALID_PARAMETER);
1324 AssertReturn(off >= 0 && cb <= (uint64_t)cbRawImage && (uint64_t)off + cb <= (uint64_t)cbRawImage, VERR_INVALID_PARAMETER);
1325
1326 /*
1327 * Read it from the file and look for fixup sections.
1328 */
1329 int rc;
1330 if (pThis->pvBits)
1331 memcpy(pvBuf, (const uint8_t *)pThis->pvBits + (size_t)off, cb);
1332 else
1333 {
1334 rc = pThis->Core.pReader->pfnRead(pThis->Core.pReader, pvBuf, cb, off);
1335 if (RT_FAILURE(rc))
1336 return rc;
1337 }
1338
1339 uint32_t iRelocs = iDbgInfo + 1;
1340 if ( iRelocs >= pThis->Ehdr.e_shnum
1341 || pThis->paShdrs[iRelocs].sh_info != iDbgInfo
1342 || ( pThis->paShdrs[iRelocs].sh_type != SHT_REL
1343 && pThis->paShdrs[iRelocs].sh_type != SHT_RELA) )
1344 {
1345 iRelocs = 0;
1346 while ( iRelocs < pThis->Ehdr.e_shnum
1347 && ( pThis->paShdrs[iRelocs].sh_info != iDbgInfo
1348 || ( pThis->paShdrs[iRelocs].sh_type != SHT_REL
1349 && pThis->paShdrs[iRelocs].sh_type != SHT_RELA)) )
1350 iRelocs++;
1351 }
1352 if ( iRelocs < pThis->Ehdr.e_shnum
1353 && pThis->paShdrs[iRelocs].sh_size > 0)
1354 {
1355 /*
1356 * Load the relocations.
1357 */
1358 uint8_t *pbRelocsBuf = NULL;
1359 const uint8_t *pbRelocs;
1360 if (pThis->pvBits)
1361 pbRelocs = (const uint8_t *)pThis->pvBits + pThis->paShdrs[iRelocs].sh_offset;
1362 else
1363 {
1364 pbRelocs = pbRelocsBuf = (uint8_t *)RTMemTmpAlloc(pThis->paShdrs[iRelocs].sh_size);
1365 if (!pbRelocsBuf)
1366 return VERR_NO_TMP_MEMORY;
1367 rc = pThis->Core.pReader->pfnRead(pThis->Core.pReader, pbRelocsBuf,
1368 pThis->paShdrs[iRelocs].sh_size,
1369 pThis->paShdrs[iRelocs].sh_offset);
1370 if (RT_FAILURE(rc))
1371 {
1372 RTMemTmpFree(pbRelocsBuf);
1373 return rc;
1374 }
1375 }
1376
1377 /*
1378 * Apply the relocations.
1379 */
1380 if (pThis->Ehdr.e_type == ET_REL)
1381 rc = RTLDRELF_NAME(RelocateSection)(pThis, pThis->LinkAddress,
1382 RTLDRELF_NAME(GetImportStubCallback), NULL /*pvUser*/,
1383 pThis->paShdrs[iDbgInfo].sh_addr,
1384 pThis->paShdrs[iDbgInfo].sh_size,
1385 (const uint8_t *)pvBuf,
1386 (uint8_t *)pvBuf,
1387 pbRelocs,
1388 pThis->paShdrs[iRelocs].sh_size);
1389 else
1390 rc = RTLDRELF_NAME(RelocateSectionExecDyn)(pThis, pThis->LinkAddress,
1391 RTLDRELF_NAME(GetImportStubCallback), NULL /*pvUser*/,
1392 pThis->paShdrs[iDbgInfo].sh_addr,
1393 pThis->paShdrs[iDbgInfo].sh_size,
1394 (const uint8_t *)pvBuf,
1395 (uint8_t *)pvBuf,
1396 pbRelocs,
1397 pThis->paShdrs[iRelocs].sh_size);
1398
1399 RTMemTmpFree(pbRelocsBuf);
1400 }
1401 else
1402 rc = VINF_SUCCESS;
1403 return rc;
1404}
1405
1406
1407/**
1408 * @interface_method_impl{RTLDROPS,pfnUnwindFrame}
1409 */
1410static DECLCALLBACK(int)
1411RTLDRELF_NAME(UnwindFrame)(PRTLDRMODINTERNAL pMod, void const *pvBits, uint32_t iSeg, RTUINTPTR off, PRTDBGUNWINDSTATE pState)
1412{
1413 PRTLDRMODELF pThis = (PRTLDRMODELF)pMod;
1414 LogFlow(("%s: iSeg=%#x off=%RTptr\n", __FUNCTION__, iSeg, off));
1415
1416 /*
1417 * Process the input address, making us both RVA and proper seg:offset out of it.
1418 */
1419 int rc;
1420 RTLDRADDR uRva = off;
1421 if (iSeg == UINT32_MAX)
1422 rc = RTLDRELF_NAME(RvaToSegOffset)(pMod, uRva, &iSeg, &off);
1423 else
1424 rc = RTLDRELF_NAME(SegOffsetToRva)(pMod, iSeg, off, &uRva);
1425 AssertRCReturn(rc, rc);
1426
1427 /*
1428 * Map the image bits if not already done and setup pointer into it.
1429 */
1430 RT_NOREF(pvBits); /** @todo Try use passed in pvBits? */
1431 rc = RTLDRELF_NAME(MapBits)(pThis, true);
1432 if (RT_FAILURE(rc))
1433 return rc;
1434
1435 /*
1436 * Do we need to search for .eh_frame and .eh_frame_hdr?
1437 */
1438 if (pThis->iShEhFrame == 0)
1439 {
1440 pThis->iShEhFrame = ~0U;
1441 pThis->iShEhFrameHdr = ~0U;
1442 unsigned cLeft = 2;
1443 for (unsigned iShdr = 1; iShdr < pThis->Ehdr.e_shnum; iShdr++)
1444 {
1445 const char *pszName = ELF_SH_STR(pThis, pThis->paShdrs[iShdr].sh_name);
1446 if ( pszName[0] == '.'
1447 && pszName[1] == 'e'
1448 && pszName[2] == 'h'
1449 && pszName[3] == '_'
1450 && pszName[4] == 'f'
1451 && pszName[5] == 'r'
1452 && pszName[6] == 'a'
1453 && pszName[7] == 'm'
1454 && pszName[8] == 'e')
1455 {
1456 if (pszName[9] == '\0')
1457 pThis->iShEhFrame = iShdr;
1458 else if ( pszName[9] == '_'
1459 && pszName[10] == 'h'
1460 && pszName[11] == 'd'
1461 && pszName[12] == 'r'
1462 && pszName[13] == '\0')
1463 pThis->iShEhFrameHdr = iShdr;
1464 else
1465 continue;
1466 if (--cLeft == 0)
1467 break;
1468 }
1469 }
1470 }
1471
1472 /*
1473 * Any info present?
1474 */
1475 unsigned iShdr = pThis->iShEhFrame;
1476 if ( iShdr != ~0U
1477 && pThis->paShdrs[iShdr].sh_size > 0)
1478 {
1479 if (pThis->paShdrs[iShdr].sh_flags & SHF_ALLOC)
1480 return rtDwarfUnwind_EhData((uint8_t const *)pThis->pvBits + pThis->paShdrs[iShdr].sh_addr,
1481 pThis->paShdrs[iShdr].sh_size, pThis->paShdrs[iShdr].sh_addr,
1482 iSeg, off, uRva, pState, pThis->Core.enmArch);
1483 }
1484 return VERR_DBG_NO_UNWIND_INFO;
1485}
1486
1487
1488/**
1489 * The ELF module operations.
1490 */
1491static RTLDROPS RTLDRELF_MID(s_rtldrElf,Ops) =
1492{
1493#if ELF_MODE == 32
1494 "elf32",
1495#elif ELF_MODE == 64
1496 "elf64",
1497#endif
1498 RTLDRELF_NAME(Close),
1499 NULL, /* Get Symbol */
1500 RTLDRELF_NAME(Done),
1501 RTLDRELF_NAME(EnumSymbols),
1502 /* ext: */
1503 RTLDRELF_NAME(GetImageSize),
1504 RTLDRELF_NAME(GetBits),
1505 RTLDRELF_NAME(Relocate),
1506 RTLDRELF_NAME(GetSymbolEx),
1507 NULL /*pfnQueryForwarderInfo*/,
1508 RTLDRELF_NAME(EnumDbgInfo),
1509 RTLDRELF_NAME(EnumSegments),
1510 RTLDRELF_NAME(LinkAddressToSegOffset),
1511 RTLDRELF_NAME(LinkAddressToRva),
1512 RTLDRELF_NAME(SegOffsetToRva),
1513 RTLDRELF_NAME(RvaToSegOffset),
1514 RTLDRELF_NAME(ReadDbgInfo),
1515 NULL /*pfnQueryProp*/,
1516 NULL /*pfnVerifySignature*/,
1517 NULL /*pfnHashImage*/,
1518 RTLDRELF_NAME(UnwindFrame),
1519 42
1520};
1521
1522
1523
1524/**
1525 * Validates the ELF header.
1526 *
1527 * @returns iprt status code.
1528 * @param pEhdr Pointer to the ELF header.
1529 * @param pszLogName The log name.
1530 * @param cbRawImage The size of the raw image.
1531 */
1532static int RTLDRELF_NAME(ValidateElfHeader)(const Elf_Ehdr *pEhdr, const char *pszLogName, uint64_t cbRawImage,
1533 PRTLDRARCH penmArch)
1534{
1535 Log3(("RTLdrELF: e_ident: %.*Rhxs\n"
1536 "RTLdrELF: e_type: " FMT_ELF_HALF "\n"
1537 "RTLdrELF: e_version: " FMT_ELF_HALF "\n"
1538 "RTLdrELF: e_entry: " FMT_ELF_ADDR "\n"
1539 "RTLdrELF: e_phoff: " FMT_ELF_OFF "\n"
1540 "RTLdrELF: e_shoff: " FMT_ELF_OFF "\n"
1541 "RTLdrELF: e_flags: " FMT_ELF_WORD "\n"
1542 "RTLdrELF: e_ehsize: " FMT_ELF_HALF "\n"
1543 "RTLdrELF: e_phentsize: " FMT_ELF_HALF "\n"
1544 "RTLdrELF: e_phnum: " FMT_ELF_HALF "\n"
1545 "RTLdrELF: e_shentsize: " FMT_ELF_HALF "\n"
1546 "RTLdrELF: e_shnum: " FMT_ELF_HALF "\n"
1547 "RTLdrELF: e_shstrndx: " FMT_ELF_HALF "\n",
1548 RT_ELEMENTS(pEhdr->e_ident), &pEhdr->e_ident[0], pEhdr->e_type, pEhdr->e_version,
1549 pEhdr->e_entry, pEhdr->e_phoff, pEhdr->e_shoff,pEhdr->e_flags, pEhdr->e_ehsize, pEhdr->e_phentsize,
1550 pEhdr->e_phnum, pEhdr->e_shentsize, pEhdr->e_shnum, pEhdr->e_shstrndx));
1551
1552 if ( pEhdr->e_ident[EI_MAG0] != ELFMAG0
1553 || pEhdr->e_ident[EI_MAG1] != ELFMAG1
1554 || pEhdr->e_ident[EI_MAG2] != ELFMAG2
1555 || pEhdr->e_ident[EI_MAG3] != ELFMAG3
1556 )
1557 {
1558 Log(("RTLdrELF: %s: Invalid ELF magic (%.*Rhxs)\n", pszLogName, sizeof(pEhdr->e_ident), pEhdr->e_ident)); NOREF(pszLogName);
1559 return VERR_BAD_EXE_FORMAT;
1560 }
1561 if (pEhdr->e_ident[EI_CLASS] != RTLDRELF_SUFF(ELFCLASS))
1562 {
1563 Log(("RTLdrELF: %s: Invalid ELF class (%.*Rhxs)\n", pszLogName, sizeof(pEhdr->e_ident), pEhdr->e_ident));
1564 return VERR_BAD_EXE_FORMAT;
1565 }
1566 if (pEhdr->e_ident[EI_DATA] != ELFDATA2LSB)
1567 {
1568 Log(("RTLdrELF: %s: ELF endian %x is unsupported\n", pszLogName, pEhdr->e_ident[EI_DATA]));
1569 return VERR_LDRELF_ODD_ENDIAN;
1570 }
1571 if (pEhdr->e_version != EV_CURRENT)
1572 {
1573 Log(("RTLdrELF: %s: ELF version %x is unsupported\n", pszLogName, pEhdr->e_version));
1574 return VERR_LDRELF_VERSION;
1575 }
1576
1577 if (sizeof(Elf_Ehdr) != pEhdr->e_ehsize)
1578 {
1579 Log(("RTLdrELF: %s: Elf header e_ehsize is %d expected %d!\n",
1580 pszLogName, pEhdr->e_ehsize, sizeof(Elf_Ehdr)));
1581 return VERR_BAD_EXE_FORMAT;
1582 }
1583 if ( sizeof(Elf_Phdr) != pEhdr->e_phentsize
1584 && ( pEhdr->e_phnum != 0
1585 || pEhdr->e_type == ET_DYN))
1586 {
1587 Log(("RTLdrELF: %s: Elf header e_phentsize is %d expected %d!\n",
1588 pszLogName, pEhdr->e_phentsize, sizeof(Elf_Phdr)));
1589 return VERR_BAD_EXE_FORMAT;
1590 }
1591 if (sizeof(Elf_Shdr) != pEhdr->e_shentsize)
1592 {
1593 Log(("RTLdrELF: %s: Elf header e_shentsize is %d expected %d!\n",
1594 pszLogName, pEhdr->e_shentsize, sizeof(Elf_Shdr)));
1595 return VERR_BAD_EXE_FORMAT;
1596 }
1597
1598 switch (pEhdr->e_type)
1599 {
1600 case ET_REL:
1601 case ET_EXEC:
1602 case ET_DYN:
1603 break;
1604 default:
1605 Log(("RTLdrELF: %s: image type %#x is not supported!\n", pszLogName, pEhdr->e_type));
1606 return VERR_BAD_EXE_FORMAT;
1607 }
1608
1609 switch (pEhdr->e_machine)
1610 {
1611#if ELF_MODE == 32
1612 case EM_386:
1613 case EM_486:
1614 *penmArch = RTLDRARCH_X86_32;
1615 break;
1616#elif ELF_MODE == 64
1617 case EM_X86_64:
1618 *penmArch = RTLDRARCH_AMD64;
1619 break;
1620#endif
1621 default:
1622 Log(("RTLdrELF: %s: machine type %u is not supported!\n", pszLogName, pEhdr->e_machine));
1623 return VERR_LDRELF_MACHINE;
1624 }
1625
1626 if ( pEhdr->e_phoff < pEhdr->e_ehsize
1627 && !(pEhdr->e_phoff && pEhdr->e_phnum)
1628 && pEhdr->e_phnum)
1629 {
1630 Log(("RTLdrELF: %s: The program headers overlap with the ELF header! e_phoff=" FMT_ELF_OFF "\n",
1631 pszLogName, pEhdr->e_phoff));
1632 return VERR_BAD_EXE_FORMAT;
1633 }
1634 if ( pEhdr->e_phoff + pEhdr->e_phnum * pEhdr->e_phentsize > cbRawImage
1635 || pEhdr->e_phoff + pEhdr->e_phnum * pEhdr->e_phentsize < pEhdr->e_phoff)
1636 {
1637 Log(("RTLdrELF: %s: The program headers extends beyond the file! e_phoff=" FMT_ELF_OFF " e_phnum=" FMT_ELF_HALF "\n",
1638 pszLogName, pEhdr->e_phoff, pEhdr->e_phnum));
1639 return VERR_BAD_EXE_FORMAT;
1640 }
1641
1642
1643 if ( pEhdr->e_shoff < pEhdr->e_ehsize
1644 && !(pEhdr->e_shoff && pEhdr->e_shnum))
1645 {
1646 Log(("RTLdrELF: %s: The section headers overlap with the ELF header! e_shoff=" FMT_ELF_OFF "\n",
1647 pszLogName, pEhdr->e_shoff));
1648 return VERR_BAD_EXE_FORMAT;
1649 }
1650 if ( pEhdr->e_shoff + pEhdr->e_shnum * pEhdr->e_shentsize > cbRawImage
1651 || pEhdr->e_shoff + pEhdr->e_shnum * pEhdr->e_shentsize < pEhdr->e_shoff)
1652 {
1653 Log(("RTLdrELF: %s: The section headers extends beyond the file! e_shoff=" FMT_ELF_OFF " e_shnum=" FMT_ELF_HALF "\n",
1654 pszLogName, pEhdr->e_shoff, pEhdr->e_shnum));
1655 return VERR_BAD_EXE_FORMAT;
1656 }
1657
1658 if (pEhdr->e_shstrndx == 0 || pEhdr->e_shstrndx > pEhdr->e_shnum)
1659 {
1660 Log(("RTLdrELF: %s: The section headers string table is out of bounds! e_shstrndx=" FMT_ELF_HALF " e_shnum=" FMT_ELF_HALF "\n",
1661 pszLogName, pEhdr->e_shstrndx, pEhdr->e_shnum));
1662 return VERR_BAD_EXE_FORMAT;
1663 }
1664
1665 return VINF_SUCCESS;
1666}
1667
1668/**
1669 * Gets the section header name.
1670 *
1671 * @returns pszName.
1672 * @param pEhdr The elf header.
1673 * @param offName The offset of the section header name.
1674 * @param pszName Where to store the name.
1675 * @param cbName The size of the buffer pointed to by pszName.
1676 */
1677const char *RTLDRELF_NAME(GetSHdrName)(PRTLDRMODELF pModElf, Elf_Word offName, char *pszName, size_t cbName)
1678{
1679 RTFOFF off = pModElf->paShdrs[pModElf->Ehdr.e_shstrndx].sh_offset + offName;
1680 int rc = pModElf->Core.pReader->pfnRead(pModElf->Core.pReader, pszName, cbName - 1, off);
1681 if (RT_FAILURE(rc))
1682 {
1683 /* read by for byte. */
1684 for (unsigned i = 0; i < cbName; i++, off++)
1685 {
1686 rc = pModElf->Core.pReader->pfnRead(pModElf->Core.pReader, pszName + i, 1, off);
1687 if (RT_FAILURE(rc))
1688 {
1689 pszName[i] = '\0';
1690 break;
1691 }
1692 }
1693 }
1694
1695 pszName[cbName - 1] = '\0';
1696 return pszName;
1697}
1698
1699
1700/**
1701 * Validates a section header.
1702 *
1703 * @returns iprt status code.
1704 * @param pModElf Pointer to the module structure.
1705 * @param iShdr The index of section header which should be validated.
1706 * The section headers are found in the pModElf->paShdrs array.
1707 * @param pszLogName The log name.
1708 * @param cbRawImage The size of the raw image.
1709 */
1710static int RTLDRELF_NAME(ValidateSectionHeader)(PRTLDRMODELF pModElf, unsigned iShdr, const char *pszLogName, RTFOFF cbRawImage)
1711{
1712 const Elf_Shdr *pShdr = &pModElf->paShdrs[iShdr];
1713 char szSectionName[80]; NOREF(szSectionName);
1714 Log3(("RTLdrELF: Section Header #%d:\n"
1715 "RTLdrELF: sh_name: " FMT_ELF_WORD " - %s\n"
1716 "RTLdrELF: sh_type: " FMT_ELF_WORD " (%s)\n"
1717 "RTLdrELF: sh_flags: " FMT_ELF_XWORD "\n"
1718 "RTLdrELF: sh_addr: " FMT_ELF_ADDR "\n"
1719 "RTLdrELF: sh_offset: " FMT_ELF_OFF "\n"
1720 "RTLdrELF: sh_size: " FMT_ELF_XWORD "\n"
1721 "RTLdrELF: sh_link: " FMT_ELF_WORD "\n"
1722 "RTLdrELF: sh_info: " FMT_ELF_WORD "\n"
1723 "RTLdrELF: sh_addralign: " FMT_ELF_XWORD "\n"
1724 "RTLdrELF: sh_entsize: " FMT_ELF_XWORD "\n",
1725 iShdr,
1726 pShdr->sh_name, RTLDRELF_NAME(GetSHdrName)(pModElf, pShdr->sh_name, szSectionName, sizeof(szSectionName)),
1727 pShdr->sh_type, rtldrElfGetShdrType(pShdr->sh_type), pShdr->sh_flags, pShdr->sh_addr,
1728 pShdr->sh_offset, pShdr->sh_size, pShdr->sh_link, pShdr->sh_info, pShdr->sh_addralign,
1729 pShdr->sh_entsize));
1730
1731 if (iShdr == 0)
1732 {
1733 if ( pShdr->sh_name != 0
1734 || pShdr->sh_type != SHT_NULL
1735 || pShdr->sh_flags != 0
1736 || pShdr->sh_addr != 0
1737 || pShdr->sh_size != 0
1738 || pShdr->sh_offset != 0
1739 || pShdr->sh_link != SHN_UNDEF
1740 || pShdr->sh_addralign != 0
1741 || pShdr->sh_entsize != 0 )
1742 {
1743 Log(("RTLdrELF: %s: Bad #0 section: %.*Rhxs\n", pszLogName, sizeof(*pShdr), pShdr ));
1744 return VERR_BAD_EXE_FORMAT;
1745 }
1746 return VINF_SUCCESS;
1747 }
1748
1749 if (pShdr->sh_name >= pModElf->cbShStr)
1750 {
1751 Log(("RTLdrELF: %s: Shdr #%d: sh_name (%d) is beyond the end of the section header string table (%d)!\n",
1752 pszLogName, iShdr, pShdr->sh_name, pModElf->cbShStr)); NOREF(pszLogName);
1753 return VERR_BAD_EXE_FORMAT;
1754 }
1755
1756 if (pShdr->sh_link >= pModElf->Ehdr.e_shnum)
1757 {
1758 Log(("RTLdrELF: %s: Shdr #%d: sh_link (%d) is beyond the end of the section table (%d)!\n",
1759 pszLogName, iShdr, pShdr->sh_link, pModElf->Ehdr.e_shnum)); NOREF(pszLogName);
1760 return VERR_BAD_EXE_FORMAT;
1761 }
1762
1763 switch (pShdr->sh_type)
1764 {
1765 /** @todo find specs and check up which sh_info fields indicates section table entries */
1766 case 12301230:
1767 if (pShdr->sh_info >= pModElf->Ehdr.e_shnum)
1768 {
1769 Log(("RTLdrELF: %s: Shdr #%d: sh_info (%d) is beyond the end of the section table (%d)!\n",
1770 pszLogName, iShdr, pShdr->sh_link, pModElf->Ehdr.e_shnum));
1771 return VERR_BAD_EXE_FORMAT;
1772 }
1773 break;
1774
1775 case SHT_NULL:
1776 break;
1777 case SHT_PROGBITS:
1778 case SHT_SYMTAB:
1779 case SHT_STRTAB:
1780 case SHT_RELA:
1781 case SHT_HASH:
1782 case SHT_DYNAMIC:
1783 case SHT_NOTE:
1784 case SHT_NOBITS:
1785 case SHT_REL:
1786 case SHT_SHLIB:
1787 case SHT_DYNSYM:
1788 /*
1789 * For these types sh_info doesn't have any special meaning, or anything which
1790 * we need/can validate now.
1791 */
1792 break;
1793
1794
1795 default:
1796 Log(("RTLdrELF: %s: Warning, unknown type %d!\n", pszLogName, pShdr->sh_type));
1797 break;
1798 }
1799
1800 if ( pShdr->sh_type != SHT_NOBITS
1801 && pShdr->sh_size)
1802 {
1803 RTFOFF offEnd = pShdr->sh_offset + pShdr->sh_size;
1804 if ( offEnd > cbRawImage
1805 || offEnd < (RTFOFF)pShdr->sh_offset)
1806 {
1807 Log(("RTLdrELF: %s: Shdr #%d: sh_offset (" FMT_ELF_OFF ") + sh_size (" FMT_ELF_XWORD " = %RTfoff) is beyond the end of the file (%RTfoff)!\n",
1808 pszLogName, iShdr, pShdr->sh_offset, pShdr->sh_size, offEnd, cbRawImage));
1809 return VERR_BAD_EXE_FORMAT;
1810 }
1811 if (pShdr->sh_offset < sizeof(Elf_Ehdr))
1812 {
1813 Log(("RTLdrELF: %s: Shdr #%d: sh_offset (" FMT_ELF_OFF ") + sh_size (" FMT_ELF_XWORD ") is starting in the ELF header!\n",
1814 pszLogName, iShdr, pShdr->sh_offset, pShdr->sh_size));
1815 return VERR_BAD_EXE_FORMAT;
1816 }
1817 }
1818
1819 return VINF_SUCCESS;
1820}
1821
1822
1823
1824/**
1825 * Opens an ELF image, fixed bitness.
1826 *
1827 * @returns iprt status code.
1828 * @param pReader The loader reader instance which will provide the raw image bits.
1829 * @param fFlags Reserved, MBZ.
1830 * @param enmArch Architecture specifier.
1831 * @param phLdrMod Where to store the handle.
1832 */
1833static int RTLDRELF_NAME(Open)(PRTLDRREADER pReader, uint32_t fFlags, RTLDRARCH enmArch, PRTLDRMOD phLdrMod)
1834{
1835 const char *pszLogName = pReader->pfnLogName(pReader);
1836 RTFOFF cbRawImage = pReader->pfnSize(pReader);
1837 RT_NOREF_PV(fFlags);
1838
1839 /*
1840 * Create the loader module instance.
1841 */
1842 PRTLDRMODELF pModElf = (PRTLDRMODELF)RTMemAllocZ(sizeof(*pModElf));
1843 if (!pModElf)
1844 return VERR_NO_MEMORY;
1845
1846 pModElf->Core.u32Magic = RTLDRMOD_MAGIC;
1847 pModElf->Core.eState = LDR_STATE_INVALID;
1848 pModElf->Core.pReader = pReader;
1849 pModElf->Core.enmFormat = RTLDRFMT_ELF;
1850 pModElf->Core.enmType = RTLDRTYPE_OBJECT;
1851 pModElf->Core.enmEndian = RTLDRENDIAN_LITTLE;
1852#if ELF_MODE == 32
1853 pModElf->Core.enmArch = RTLDRARCH_X86_32;
1854#else
1855 pModElf->Core.enmArch = RTLDRARCH_AMD64;
1856#endif
1857 //pModElf->pvBits = NULL;
1858 //pModElf->Ehdr = {0};
1859 //pModElf->paShdrs = NULL;
1860 //pModElf->paSyms = NULL;
1861 pModElf->iSymSh = ~0U;
1862 //pModElf->cSyms = 0;
1863 pModElf->iStrSh = ~0U;
1864 //pModElf->cbStr = 0;
1865 //pModElf->cbImage = 0;
1866 //pModElf->LinkAddress = 0;
1867 //pModElf->pStr = NULL;
1868 //pModElf->cbShStr = 0;
1869 //pModElf->pShStr = NULL;
1870 //pModElf->iShEhFrame = 0;
1871 //pModElf->iShEhFrameHdr = 0;
1872
1873 /*
1874 * Read and validate the ELF header and match up the CPU architecture.
1875 */
1876 int rc = pReader->pfnRead(pReader, &pModElf->Ehdr, sizeof(pModElf->Ehdr), 0);
1877 if (RT_SUCCESS(rc))
1878 {
1879 RTLDRARCH enmArchImage = RTLDRARCH_INVALID; /* shut up gcc */
1880 rc = RTLDRELF_NAME(ValidateElfHeader)(&pModElf->Ehdr, pszLogName, cbRawImage, &enmArchImage);
1881 if (RT_SUCCESS(rc))
1882 {
1883 if ( enmArch != RTLDRARCH_WHATEVER
1884 && enmArch != enmArchImage)
1885 rc = VERR_LDR_ARCH_MISMATCH;
1886 }
1887 }
1888 if (RT_SUCCESS(rc))
1889 {
1890 /*
1891 * Read the section headers, keeping a prestine copy for the module
1892 * introspection methods.
1893 */
1894 size_t const cbShdrs = pModElf->Ehdr.e_shnum * sizeof(Elf_Shdr);
1895 Elf_Shdr *paShdrs = (Elf_Shdr *)RTMemAlloc(cbShdrs * 2);
1896 if (paShdrs)
1897 {
1898 pModElf->paShdrs = paShdrs;
1899 rc = pReader->pfnRead(pReader, paShdrs, cbShdrs, pModElf->Ehdr.e_shoff);
1900 if (RT_SUCCESS(rc))
1901 {
1902 memcpy(&paShdrs[pModElf->Ehdr.e_shnum], paShdrs, cbShdrs);
1903 pModElf->paOrgShdrs = &paShdrs[pModElf->Ehdr.e_shnum];
1904
1905 pModElf->cbShStr = paShdrs[pModElf->Ehdr.e_shstrndx].sh_size;
1906
1907 /*
1908 * Validate the section headers and find relevant sections.
1909 */
1910 Elf_Addr uNextAddr = 0;
1911 for (unsigned i = 0; i < pModElf->Ehdr.e_shnum; i++)
1912 {
1913 rc = RTLDRELF_NAME(ValidateSectionHeader)(pModElf, i, pszLogName, cbRawImage);
1914 if (RT_FAILURE(rc))
1915 break;
1916
1917 /* We're looking for symbol tables. */
1918 if (paShdrs[i].sh_type == SHT_SYMTAB)
1919 {
1920 if (pModElf->iSymSh != ~0U)
1921 {
1922 Log(("RTLdrElf: %s: Multiple symbol tabs! iSymSh=%d i=%d\n", pszLogName, pModElf->iSymSh, i));
1923 rc = VERR_LDRELF_MULTIPLE_SYMTABS;
1924 break;
1925 }
1926 pModElf->iSymSh = i;
1927 pModElf->cSyms = (unsigned)(paShdrs[i].sh_size / sizeof(Elf_Sym));
1928 AssertReturn(pModElf->cSyms == paShdrs[i].sh_size / sizeof(Elf_Sym), VERR_IMAGE_TOO_BIG);
1929 pModElf->iStrSh = paShdrs[i].sh_link;
1930 pModElf->cbStr = (unsigned)paShdrs[pModElf->iStrSh].sh_size;
1931 AssertReturn(pModElf->cbStr == paShdrs[pModElf->iStrSh].sh_size, VERR_IMAGE_TOO_BIG);
1932 }
1933
1934 /* Special checks for the section string table. */
1935 if (i == pModElf->Ehdr.e_shstrndx)
1936 {
1937 if (paShdrs[i].sh_type != SHT_STRTAB)
1938 {
1939 Log(("RTLdrElf: Section header string table is not a SHT_STRTAB: %#x\n", paShdrs[i].sh_type));
1940 rc = VERR_BAD_EXE_FORMAT;
1941 break;
1942 }
1943 if (paShdrs[i].sh_size == 0)
1944 {
1945 Log(("RTLdrElf: Section header string table is empty\n"));
1946 rc = VERR_BAD_EXE_FORMAT;
1947 break;
1948 }
1949 }
1950
1951 /* Kluge for the .data..percpu segment in 64-bit linux kernels. */
1952 if (paShdrs[i].sh_flags & SHF_ALLOC)
1953 {
1954 if ( paShdrs[i].sh_addr == 0
1955 && paShdrs[i].sh_addr < uNextAddr)
1956 {
1957 Elf_Addr uAddr = RT_ALIGN_T(uNextAddr, paShdrs[i].sh_addralign, Elf_Addr);
1958 Log(("RTLdrElf: Out of order section #%d; adjusting sh_addr from " FMT_ELF_ADDR " to " FMT_ELF_ADDR "\n",
1959 i, paShdrs[i].sh_addr, uAddr));
1960 paShdrs[i].sh_addr = uAddr;
1961 }
1962 uNextAddr = paShdrs[i].sh_addr + paShdrs[i].sh_size;
1963 }
1964 } /* for each section header */
1965
1966 /*
1967 * Calculate the image base address if the image isn't relocatable.
1968 */
1969 if (RT_SUCCESS(rc) && pModElf->Ehdr.e_type != ET_REL)
1970 {
1971 pModElf->LinkAddress = ~(Elf_Addr)0;
1972 for (unsigned i = 0; i < pModElf->Ehdr.e_shnum; i++)
1973 if ( (paShdrs[i].sh_flags & SHF_ALLOC)
1974 && paShdrs[i].sh_addr < pModElf->LinkAddress)
1975 pModElf->LinkAddress = paShdrs[i].sh_addr;
1976 if (pModElf->LinkAddress == ~(Elf_Addr)0)
1977 {
1978 AssertFailed();
1979 rc = VERR_LDR_GENERAL_FAILURE;
1980 }
1981 if (pModElf->Ehdr.e_type == ET_DYN && pModElf->LinkAddress < 0x1000)
1982 pModElf->LinkAddress = 0;
1983 }
1984
1985 /*
1986 * Perform allocations / RVA calculations, determine the image size.
1987 */
1988 if (RT_SUCCESS(rc))
1989 for (unsigned i = 0; i < pModElf->Ehdr.e_shnum; i++)
1990 if (paShdrs[i].sh_flags & SHF_ALLOC)
1991 {
1992 if (pModElf->Ehdr.e_type == ET_REL)
1993 paShdrs[i].sh_addr = paShdrs[i].sh_addralign
1994 ? RT_ALIGN_T(pModElf->cbImage, paShdrs[i].sh_addralign, Elf_Addr)
1995 : (Elf_Addr)pModElf->cbImage;
1996 else
1997 paShdrs[i].sh_addr -= pModElf->LinkAddress;
1998 Elf_Addr EndAddr = paShdrs[i].sh_addr + paShdrs[i].sh_size;
1999 if (pModElf->cbImage < EndAddr)
2000 {
2001 pModElf->cbImage = (size_t)EndAddr;
2002 AssertMsgReturn(pModElf->cbImage == EndAddr, (FMT_ELF_ADDR "\n", EndAddr), VERR_IMAGE_TOO_BIG);
2003 }
2004 Log2(("RTLdrElf: %s: Assigned " FMT_ELF_ADDR " to section #%d\n", pszLogName, paShdrs[i].sh_addr, i));
2005 }
2006
2007 Log2(("RTLdrElf: iSymSh=%u cSyms=%u iStrSh=%u cbStr=%u rc=%Rrc cbImage=%#zx LinkAddress=" FMT_ELF_ADDR "\n",
2008 pModElf->iSymSh, pModElf->cSyms, pModElf->iStrSh, pModElf->cbStr, rc,
2009 pModElf->cbImage, pModElf->LinkAddress));
2010 if (RT_SUCCESS(rc))
2011 {
2012 pModElf->Core.pOps = &RTLDRELF_MID(s_rtldrElf,Ops);
2013 pModElf->Core.eState = LDR_STATE_OPENED;
2014 *phLdrMod = &pModElf->Core;
2015
2016 LogFlow(("%s: %s: returns VINF_SUCCESS *phLdrMod=%p\n", __FUNCTION__, pszLogName, *phLdrMod));
2017 return VINF_SUCCESS;
2018 }
2019 }
2020
2021 RTMemFree(paShdrs);
2022 }
2023 else
2024 rc = VERR_NO_MEMORY;
2025 }
2026
2027 RTMemFree(pModElf);
2028 LogFlow(("%s: returns %Rrc\n", __FUNCTION__, rc));
2029 return rc;
2030}
2031
2032
2033
2034
2035/*******************************************************************************
2036* Cleanup Constants And Macros *
2037*******************************************************************************/
2038#undef RTLDRELF_NAME
2039#undef RTLDRELF_SUFF
2040#undef RTLDRELF_MID
2041
2042#undef FMT_ELF_ADDR
2043#undef FMT_ELF_HALF
2044#undef FMT_ELF_SHALF
2045#undef FMT_ELF_OFF
2046#undef FMT_ELF_SIZE
2047#undef FMT_ELF_SWORD
2048#undef FMT_ELF_WORD
2049#undef FMT_ELF_XWORD
2050#undef FMT_ELF_SXWORD
2051
2052#undef Elf_Ehdr
2053#undef Elf_Phdr
2054#undef Elf_Shdr
2055#undef Elf_Sym
2056#undef Elf_Rel
2057#undef Elf_Rela
2058#undef Elf_Reloc
2059#undef Elf_Nhdr
2060#undef Elf_Dyn
2061
2062#undef Elf_Addr
2063#undef Elf_Half
2064#undef Elf_Off
2065#undef Elf_Size
2066#undef Elf_Sword
2067#undef Elf_Word
2068
2069#undef RTLDRMODELF
2070#undef PRTLDRMODELF
2071
2072#undef ELF_R_SYM
2073#undef ELF_R_TYPE
2074#undef ELF_R_INFO
2075
2076#undef ELF_ST_BIND
2077
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette