1 | /* $Id: bignum.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Big Integer Numbers.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2019 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*********************************************************************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *********************************************************************************************************************************/
|
---|
31 | /*#ifdef IN_RING3
|
---|
32 | # define RTMEM_WRAP_TO_EF_APIS
|
---|
33 | #endif*/
|
---|
34 | #include "internal/iprt.h"
|
---|
35 | #include <iprt/bignum.h>
|
---|
36 |
|
---|
37 | #include <iprt/asm.h>
|
---|
38 | #include <iprt/asm-math.h>
|
---|
39 | #include <iprt/err.h>
|
---|
40 | #include <iprt/mem.h>
|
---|
41 | #include <iprt/memsafer.h>
|
---|
42 | #include <iprt/string.h>
|
---|
43 | #if RTBIGNUM_ELEMENT_BITS == 64
|
---|
44 | # include <iprt/uint128.h>
|
---|
45 | #endif
|
---|
46 |
|
---|
47 |
|
---|
48 | /*********************************************************************************************************************************
|
---|
49 | * Defined Constants And Macros *
|
---|
50 | *********************************************************************************************************************************/
|
---|
51 | /** Allocation alignment in elements. */
|
---|
52 | #ifndef RTMEM_WRAP_TO_EF_APIS
|
---|
53 | # define RTBIGNUM_ALIGNMENT 4U
|
---|
54 | #else
|
---|
55 | # define RTBIGNUM_ALIGNMENT 1U
|
---|
56 | #endif
|
---|
57 |
|
---|
58 | /** The max size (in bytes) of an elements array. */
|
---|
59 | #define RTBIGNUM_MAX_SIZE _4M
|
---|
60 |
|
---|
61 |
|
---|
62 | /** Assert the validity of a big number structure pointer in strict builds. */
|
---|
63 | #ifdef RT_STRICT
|
---|
64 | # define RTBIGNUM_ASSERT_VALID(a_pBigNum) \
|
---|
65 | do { \
|
---|
66 | AssertPtr(a_pBigNum); \
|
---|
67 | Assert(!(a_pBigNum)->fCurScrambled); \
|
---|
68 | Assert( (a_pBigNum)->cUsed == (a_pBigNum)->cAllocated \
|
---|
69 | || ASMMemIsZero(&(a_pBigNum)->pauElements[(a_pBigNum)->cUsed], \
|
---|
70 | ((a_pBigNum)->cAllocated - (a_pBigNum)->cUsed) * RTBIGNUM_ELEMENT_SIZE)); \
|
---|
71 | } while (0)
|
---|
72 | #else
|
---|
73 | # define RTBIGNUM_ASSERT_VALID(a_pBigNum) do {} while (0)
|
---|
74 | #endif
|
---|
75 |
|
---|
76 |
|
---|
77 | /** Enable assembly optimizations. */
|
---|
78 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
79 | # define IPRT_BIGINT_WITH_ASM
|
---|
80 | #endif
|
---|
81 |
|
---|
82 |
|
---|
83 | /** @def RTBIGNUM_ZERO_ALIGN
|
---|
84 | * For calculating the rtBigNumEnsureExtraZeroElements argument from cUsed.
|
---|
85 | * This has to do with 64-bit assembly instruction operating as RTBIGNUMELEMENT
|
---|
86 | * was 64-bit on some hosts.
|
---|
87 | */
|
---|
88 | #if defined(IPRT_BIGINT_WITH_ASM) && ARCH_BITS == 64 && RTBIGNUM_ELEMENT_SIZE == 4 && defined(RT_LITTLE_ENDIAN)
|
---|
89 | # define RTBIGNUM_ZERO_ALIGN(a_cUsed) RT_ALIGN_32(a_cUsed, 2)
|
---|
90 | #elif defined(IPRT_BIGINT_WITH_ASM)
|
---|
91 | # define RTBIGNUM_ZERO_ALIGN(a_cUsed) (a_cUsed)
|
---|
92 | #else
|
---|
93 | # define RTBIGNUM_ZERO_ALIGN(a_cUsed) (a_cUsed)
|
---|
94 | #endif
|
---|
95 |
|
---|
96 | #define RTBIGNUMELEMENT_HALF_MASK ( ((RTBIGNUMELEMENT)1 << (RTBIGNUM_ELEMENT_BITS / 2)) - (RTBIGNUMELEMENT)1)
|
---|
97 | #define RTBIGNUMELEMENT_LO_HALF(a_uElement) ( (RTBIGNUMELEMENT_HALF_MASK) & (a_uElement) )
|
---|
98 | #define RTBIGNUMELEMENT_HI_HALF(a_uElement) ( (a_uElement) >> (RTBIGNUM_ELEMENT_BITS / 2) )
|
---|
99 |
|
---|
100 |
|
---|
101 | /*********************************************************************************************************************************
|
---|
102 | * Structures and Typedefs *
|
---|
103 | *********************************************************************************************************************************/
|
---|
104 | /** Type the size of two elements. */
|
---|
105 | #if RTBIGNUM_ELEMENT_BITS == 64
|
---|
106 | typedef RTUINT128U RTBIGNUMELEMENT2X;
|
---|
107 | #else
|
---|
108 | typedef RTUINT64U RTBIGNUMELEMENT2X;
|
---|
109 | #endif
|
---|
110 |
|
---|
111 |
|
---|
112 | /*********************************************************************************************************************************
|
---|
113 | * Internal Functions *
|
---|
114 | *********************************************************************************************************************************/
|
---|
115 | DECLINLINE(int) rtBigNumSetUsed(PRTBIGNUM pBigNum, uint32_t cNewUsed);
|
---|
116 |
|
---|
117 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
118 | /* bignum-amd64-x86.asm: */
|
---|
119 | DECLASM(void) rtBigNumMagnitudeSubAssemblyWorker(RTBIGNUMELEMENT *pauResult, RTBIGNUMELEMENT const *pauMinuend,
|
---|
120 | RTBIGNUMELEMENT const *pauSubtrahend, uint32_t cUsed);
|
---|
121 | DECLASM(void) rtBigNumMagnitudeSubThisAssemblyWorker(RTBIGNUMELEMENT *pauMinuendResult, RTBIGNUMELEMENT const *pauSubtrahend,
|
---|
122 | uint32_t cUsed);
|
---|
123 | DECLASM(RTBIGNUMELEMENT) rtBigNumMagnitudeShiftLeftOneAssemblyWorker(RTBIGNUMELEMENT *pauElements, uint32_t cUsed,
|
---|
124 | RTBIGNUMELEMENT uCarry);
|
---|
125 | DECLASM(void) rtBigNumElement2xDiv2xBy1x(RTBIGNUMELEMENT2X *puQuotient, RTBIGNUMELEMENT *puRemainder,
|
---|
126 | RTBIGNUMELEMENT uDividendHi, RTBIGNUMELEMENT uDividendLo, RTBIGNUMELEMENT uDivisor);
|
---|
127 | DECLASM(void) rtBigNumMagnitudeMultiplyAssemblyWorker(PRTBIGNUMELEMENT pauResult,
|
---|
128 | PCRTBIGNUMELEMENT pauMultiplier, uint32_t cMultiplier,
|
---|
129 | PCRTBIGNUMELEMENT pauMultiplicand, uint32_t cMultiplicand);
|
---|
130 | #endif
|
---|
131 |
|
---|
132 |
|
---|
133 |
|
---|
134 |
|
---|
135 |
|
---|
136 | /** @name Functions working on one element.
|
---|
137 | * @{ */
|
---|
138 |
|
---|
139 | DECLINLINE(uint32_t) rtBigNumElementBitCount(RTBIGNUMELEMENT uElement)
|
---|
140 | {
|
---|
141 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
142 | if (uElement >> 32)
|
---|
143 | return ASMBitLastSetU32((uint32_t)(uElement >> 32)) + 32;
|
---|
144 | return ASMBitLastSetU32((uint32_t)uElement);
|
---|
145 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
146 | return ASMBitLastSetU32(uElement);
|
---|
147 | #else
|
---|
148 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
149 | #endif
|
---|
150 | }
|
---|
151 |
|
---|
152 |
|
---|
153 | /**
|
---|
154 | * Does addition with carry.
|
---|
155 | *
|
---|
156 | * This is a candidate for inline assembly on some platforms.
|
---|
157 | *
|
---|
158 | * @returns The result (the sum)
|
---|
159 | * @param uAugend What to add to.
|
---|
160 | * @param uAddend What to add to it.
|
---|
161 | * @param pfCarry Where to read the input carry and return the output
|
---|
162 | * carry.
|
---|
163 | */
|
---|
164 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumElementAddWithCarry(RTBIGNUMELEMENT uAugend, RTBIGNUMELEMENT uAddend,
|
---|
165 | RTBIGNUMELEMENT *pfCarry)
|
---|
166 | {
|
---|
167 | RTBIGNUMELEMENT uRet = uAugend + uAddend;
|
---|
168 | if (!*pfCarry)
|
---|
169 | *pfCarry = uRet < uAugend;
|
---|
170 | else
|
---|
171 | {
|
---|
172 | uRet += 1;
|
---|
173 | *pfCarry = uRet <= uAugend;
|
---|
174 | }
|
---|
175 | return uRet;
|
---|
176 | }
|
---|
177 |
|
---|
178 |
|
---|
179 | #if !defined(IPRT_BIGINT_WITH_ASM) || defined(RT_STRICT)
|
---|
180 | /**
|
---|
181 | * Does addition with borrow.
|
---|
182 | *
|
---|
183 | * This is a candidate for inline assembly on some platforms.
|
---|
184 | *
|
---|
185 | * @returns The result (the sum)
|
---|
186 | * @param uMinuend What to subtract from.
|
---|
187 | * @param uSubtrahend What to subtract.
|
---|
188 | * @param pfBorrow Where to read the input borrow and return the output
|
---|
189 | * borrow.
|
---|
190 | */
|
---|
191 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumElementSubWithBorrow(RTBIGNUMELEMENT uMinuend, RTBIGNUMELEMENT uSubtrahend,
|
---|
192 | RTBIGNUMELEMENT *pfBorrow)
|
---|
193 | {
|
---|
194 | RTBIGNUMELEMENT uRet = uMinuend - uSubtrahend - *pfBorrow;
|
---|
195 |
|
---|
196 | /* Figure out if we borrowed. */
|
---|
197 | *pfBorrow = !*pfBorrow ? uMinuend < uSubtrahend : uMinuend <= uSubtrahend;
|
---|
198 | return uRet;
|
---|
199 | }
|
---|
200 | #endif
|
---|
201 |
|
---|
202 | /** @} */
|
---|
203 |
|
---|
204 |
|
---|
205 |
|
---|
206 |
|
---|
207 | /** @name Double element primitives.
|
---|
208 | * @{ */
|
---|
209 |
|
---|
210 | static int rtBigNumElement2xCopyToMagnitude(RTBIGNUMELEMENT2X const *pValue2x, PRTBIGNUM pDst)
|
---|
211 | {
|
---|
212 | int rc;
|
---|
213 | if (pValue2x->s.Hi)
|
---|
214 | {
|
---|
215 | rc = rtBigNumSetUsed(pDst, 2);
|
---|
216 | if (RT_SUCCESS(rc))
|
---|
217 | {
|
---|
218 | pDst->pauElements[0] = pValue2x->s.Lo;
|
---|
219 | pDst->pauElements[1] = pValue2x->s.Hi;
|
---|
220 | }
|
---|
221 | }
|
---|
222 | else if (pValue2x->s.Lo)
|
---|
223 | {
|
---|
224 | rc = rtBigNumSetUsed(pDst, 1);
|
---|
225 | if (RT_SUCCESS(rc))
|
---|
226 | pDst->pauElements[0] = pValue2x->s.Lo;
|
---|
227 | }
|
---|
228 | else
|
---|
229 | rc = rtBigNumSetUsed(pDst, 0);
|
---|
230 | return rc;
|
---|
231 | }
|
---|
232 |
|
---|
233 | static void rtBigNumElement2xDiv(RTBIGNUMELEMENT2X *puQuotient, RTBIGNUMELEMENT2X *puRemainder,
|
---|
234 | RTBIGNUMELEMENT uDividendHi, RTBIGNUMELEMENT uDividendLo,
|
---|
235 | RTBIGNUMELEMENT uDivisorHi, RTBIGNUMELEMENT uDivisorLo)
|
---|
236 | {
|
---|
237 | RTBIGNUMELEMENT2X uDividend;
|
---|
238 | uDividend.s.Lo = uDividendLo;
|
---|
239 | uDividend.s.Hi = uDividendHi;
|
---|
240 |
|
---|
241 | RTBIGNUMELEMENT2X uDivisor;
|
---|
242 | uDivisor.s.Lo = uDivisorLo;
|
---|
243 | uDivisor.s.Hi = uDivisorHi;
|
---|
244 |
|
---|
245 | #if RTBIGNUM_ELEMENT_BITS == 64
|
---|
246 | RTUInt128DivRem(puQuotient, puRemainder, &uDividend, &uDivisor);
|
---|
247 | #else
|
---|
248 | puQuotient->u = uDividend.u / uDivisor.u;
|
---|
249 | puRemainder->u = uDividend.u % uDivisor.u;
|
---|
250 | #endif
|
---|
251 | }
|
---|
252 |
|
---|
253 | #ifndef IPRT_BIGINT_WITH_ASM
|
---|
254 | static void rtBigNumElement2xDiv2xBy1x(RTBIGNUMELEMENT2X *puQuotient, RTBIGNUMELEMENT *puRemainder,
|
---|
255 | RTBIGNUMELEMENT uDividendHi, RTBIGNUMELEMENT uDividendLo, RTBIGNUMELEMENT uDivisor)
|
---|
256 | {
|
---|
257 | RTBIGNUMELEMENT2X uDividend;
|
---|
258 | uDividend.s.Lo = uDividendLo;
|
---|
259 | uDividend.s.Hi = uDividendHi;
|
---|
260 |
|
---|
261 | # if RTBIGNUM_ELEMENT_BITS == 64
|
---|
262 | RTBIGNUMELEMENT2X uRemainder2x;
|
---|
263 | RTBIGNUMELEMENT2X uDivisor2x;
|
---|
264 | uDivisor2x.s.Hi = 0;
|
---|
265 | uDivisor2x.s.Lo = uDivisor;
|
---|
266 | /** @todo optimize this. */
|
---|
267 | RTUInt128DivRem(puQuotient, &uRemainder2x, &uDividend, &uDivisor2x);
|
---|
268 | *puRemainder = uRemainder2x.s.Lo;
|
---|
269 | # else
|
---|
270 | puQuotient->u = uDividend.u / uDivisor;
|
---|
271 | puRemainder->u = uDividend.u % uDivisor;
|
---|
272 | # endif
|
---|
273 | }
|
---|
274 | #endif
|
---|
275 |
|
---|
276 | DECLINLINE(void) rtBigNumElement2xDec(RTBIGNUMELEMENT2X *puValue)
|
---|
277 | {
|
---|
278 | #if RTBIGNUM_ELEMENT_BITS == 64
|
---|
279 | if (puValue->s.Lo-- == 0)
|
---|
280 | puValue->s.Hi--;
|
---|
281 | #else
|
---|
282 | puValue->u -= 1;
|
---|
283 | #endif
|
---|
284 | }
|
---|
285 |
|
---|
286 | #if 0 /* unused */
|
---|
287 | DECLINLINE(void) rtBigNumElement2xAdd1x(RTBIGNUMELEMENT2X *puValue, RTBIGNUMELEMENT uAdd)
|
---|
288 | {
|
---|
289 | #if RTBIGNUM_ELEMENT_BITS == 64
|
---|
290 | RTUInt128AssignAddU64(puValue, uAdd);
|
---|
291 | #else
|
---|
292 | puValue->u += uAdd;
|
---|
293 | #endif
|
---|
294 | }
|
---|
295 | #endif /* unused */
|
---|
296 |
|
---|
297 | /** @} */
|
---|
298 |
|
---|
299 |
|
---|
300 |
|
---|
301 |
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * Scrambles a big number if required.
|
---|
305 | *
|
---|
306 | * @param pBigNum The big number.
|
---|
307 | */
|
---|
308 | DECLINLINE(void) rtBigNumScramble(PRTBIGNUM pBigNum)
|
---|
309 | {
|
---|
310 | if (pBigNum->fSensitive)
|
---|
311 | {
|
---|
312 | AssertReturnVoid(!pBigNum->fCurScrambled);
|
---|
313 | if (pBigNum->pauElements)
|
---|
314 | {
|
---|
315 | int rc = RTMemSaferScramble(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); AssertRC(rc);
|
---|
316 | pBigNum->fCurScrambled = RT_SUCCESS(rc);
|
---|
317 | }
|
---|
318 | else
|
---|
319 | pBigNum->fCurScrambled = true;
|
---|
320 | }
|
---|
321 | }
|
---|
322 |
|
---|
323 |
|
---|
324 | /**
|
---|
325 | * Unscrambles a big number if required.
|
---|
326 | *
|
---|
327 | * @returns IPRT status code.
|
---|
328 | * @param pBigNum The big number.
|
---|
329 | */
|
---|
330 | DECLINLINE(int) rtBigNumUnscramble(PRTBIGNUM pBigNum)
|
---|
331 | {
|
---|
332 | if (pBigNum->fSensitive)
|
---|
333 | {
|
---|
334 | AssertReturn(pBigNum->fCurScrambled, VERR_INTERNAL_ERROR_2);
|
---|
335 | if (pBigNum->pauElements)
|
---|
336 | {
|
---|
337 | int rc = RTMemSaferUnscramble(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); AssertRC(rc);
|
---|
338 | pBigNum->fCurScrambled = !RT_SUCCESS(rc);
|
---|
339 | return rc;
|
---|
340 | }
|
---|
341 | else
|
---|
342 | pBigNum->fCurScrambled = false;
|
---|
343 | }
|
---|
344 | return VINF_SUCCESS;
|
---|
345 | }
|
---|
346 |
|
---|
347 |
|
---|
348 | /**
|
---|
349 | * Getter function for pauElements which extends the array to infinity.
|
---|
350 | *
|
---|
351 | * @returns The element value.
|
---|
352 | * @param pBigNum The big number.
|
---|
353 | * @param iElement The element index.
|
---|
354 | */
|
---|
355 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumGetElement(PCRTBIGNUM pBigNum, uint32_t iElement)
|
---|
356 | {
|
---|
357 | if (iElement < pBigNum->cUsed)
|
---|
358 | return pBigNum->pauElements[iElement];
|
---|
359 | return 0;
|
---|
360 | }
|
---|
361 |
|
---|
362 |
|
---|
363 | /**
|
---|
364 | * Grows the pauElements array so it can fit at least @a cNewUsed entries.
|
---|
365 | *
|
---|
366 | * @returns IPRT status code.
|
---|
367 | * @param pBigNum The big number.
|
---|
368 | * @param cNewUsed The new cUsed value.
|
---|
369 | * @param cMinElements The minimum number of elements.
|
---|
370 | */
|
---|
371 | static int rtBigNumGrow(PRTBIGNUM pBigNum, uint32_t cNewUsed, uint32_t cMinElements)
|
---|
372 | {
|
---|
373 | Assert(cMinElements >= cNewUsed);
|
---|
374 | uint32_t const cbOld = pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE;
|
---|
375 | uint32_t const cNew = RT_ALIGN_32(cMinElements, RTBIGNUM_ALIGNMENT);
|
---|
376 | uint32_t const cbNew = cNew * RTBIGNUM_ELEMENT_SIZE;
|
---|
377 | Assert(cbNew > cbOld);
|
---|
378 | if (cbNew <= RTBIGNUM_MAX_SIZE && cbNew > cbOld)
|
---|
379 | {
|
---|
380 | void *pvNew;
|
---|
381 | if (pBigNum->fSensitive)
|
---|
382 | pvNew = RTMemSaferReallocZ(cbOld, pBigNum->pauElements, cbNew);
|
---|
383 | else
|
---|
384 | pvNew = RTMemRealloc(pBigNum->pauElements, cbNew);
|
---|
385 | if (RT_LIKELY(pvNew))
|
---|
386 | {
|
---|
387 | if (cbNew > cbOld)
|
---|
388 | RT_BZERO((char *)pvNew + cbOld, cbNew - cbOld);
|
---|
389 | if (pBigNum->cUsed > cNewUsed)
|
---|
390 | RT_BZERO((RTBIGNUMELEMENT *)pvNew + cNewUsed, (pBigNum->cUsed - cNewUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
391 |
|
---|
392 | pBigNum->pauElements = (RTBIGNUMELEMENT *)pvNew;
|
---|
393 | pBigNum->cUsed = cNewUsed;
|
---|
394 | pBigNum->cAllocated = cNew;
|
---|
395 | return VINF_SUCCESS;
|
---|
396 | }
|
---|
397 | return VERR_NO_MEMORY;
|
---|
398 | }
|
---|
399 | return VERR_OUT_OF_RANGE;
|
---|
400 | }
|
---|
401 |
|
---|
402 |
|
---|
403 | /**
|
---|
404 | * Changes the cUsed member, growing the pauElements array if necessary.
|
---|
405 | *
|
---|
406 | * Any elements added to the array will be initialized to zero.
|
---|
407 | *
|
---|
408 | * @returns IPRT status code.
|
---|
409 | * @param pBigNum The big number.
|
---|
410 | * @param cNewUsed The new cUsed value.
|
---|
411 | */
|
---|
412 | DECLINLINE(int) rtBigNumSetUsed(PRTBIGNUM pBigNum, uint32_t cNewUsed)
|
---|
413 | {
|
---|
414 | if (pBigNum->cAllocated >= cNewUsed)
|
---|
415 | {
|
---|
416 | if (pBigNum->cUsed > cNewUsed)
|
---|
417 | RT_BZERO(&pBigNum->pauElements[cNewUsed], (pBigNum->cUsed - cNewUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
418 | #ifdef RT_STRICT
|
---|
419 | else if (pBigNum->cUsed != cNewUsed)
|
---|
420 | Assert(ASMMemIsZero(&pBigNum->pauElements[pBigNum->cUsed], (cNewUsed - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE));
|
---|
421 | #endif
|
---|
422 | pBigNum->cUsed = cNewUsed;
|
---|
423 | return VINF_SUCCESS;
|
---|
424 | }
|
---|
425 | return rtBigNumGrow(pBigNum, cNewUsed, cNewUsed);
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | /**
|
---|
430 | * Extended version of rtBigNumSetUsed that also allow specifying the number of
|
---|
431 | * zero elements required.
|
---|
432 | *
|
---|
433 | * @returns IPRT status code.
|
---|
434 | * @param pBigNum The big number.
|
---|
435 | * @param cNewUsed The new cUsed value.
|
---|
436 | * @param cMinElements The minimum number of elements allocated. The
|
---|
437 | * difference between @a cNewUsed and @a cMinElements
|
---|
438 | * is initialized to zero because all free elements are
|
---|
439 | * zero.
|
---|
440 | */
|
---|
441 | DECLINLINE(int) rtBigNumSetUsedEx(PRTBIGNUM pBigNum, uint32_t cNewUsed, uint32_t cMinElements)
|
---|
442 | {
|
---|
443 | if (pBigNum->cAllocated >= cMinElements)
|
---|
444 | {
|
---|
445 | if (pBigNum->cUsed > cNewUsed)
|
---|
446 | RT_BZERO(&pBigNum->pauElements[cNewUsed], (pBigNum->cUsed - cNewUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
447 | #ifdef RT_STRICT
|
---|
448 | else if (pBigNum->cUsed != cNewUsed)
|
---|
449 | Assert(ASMMemIsZero(&pBigNum->pauElements[pBigNum->cUsed], (cNewUsed - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE));
|
---|
450 | #endif
|
---|
451 | pBigNum->cUsed = cNewUsed;
|
---|
452 | return VINF_SUCCESS;
|
---|
453 | }
|
---|
454 | return rtBigNumGrow(pBigNum, cNewUsed, cMinElements);
|
---|
455 | }
|
---|
456 |
|
---|
457 |
|
---|
458 | /**
|
---|
459 | * For ensuring zero padding of pauElements for sub/add with carry assembly
|
---|
460 | * operations.
|
---|
461 | *
|
---|
462 | * @returns IPRT status code.
|
---|
463 | * @param pBigNum The big number.
|
---|
464 | * @param cElements The number of elements that must be in the elements
|
---|
465 | * array array, where those after pBigNum->cUsed must
|
---|
466 | * be zero.
|
---|
467 | */
|
---|
468 | DECLINLINE(int) rtBigNumEnsureExtraZeroElements(PRTBIGNUM pBigNum, uint32_t cElements)
|
---|
469 | {
|
---|
470 | if (pBigNum->cAllocated >= cElements)
|
---|
471 | {
|
---|
472 | Assert( pBigNum->cAllocated == pBigNum->cUsed
|
---|
473 | || ASMMemIsZero(&pBigNum->pauElements[pBigNum->cUsed],
|
---|
474 | (pBigNum->cAllocated - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE));
|
---|
475 | return VINF_SUCCESS;
|
---|
476 | }
|
---|
477 | return rtBigNumGrow(pBigNum, pBigNum->cUsed, cElements);
|
---|
478 | }
|
---|
479 |
|
---|
480 |
|
---|
481 | /**
|
---|
482 | * The slow part of rtBigNumEnsureElementPresent where we need to do actual zero
|
---|
483 | * extending.
|
---|
484 | *
|
---|
485 | * @returns IPRT status code.
|
---|
486 | * @param pBigNum The big number.
|
---|
487 | * @param iElement The element we wish to access.
|
---|
488 | */
|
---|
489 | static int rtBigNumEnsureElementPresentSlow(PRTBIGNUM pBigNum, uint32_t iElement)
|
---|
490 | {
|
---|
491 | uint32_t const cOldUsed = pBigNum->cUsed;
|
---|
492 | int rc = rtBigNumSetUsed(pBigNum, iElement + 1);
|
---|
493 | if (RT_SUCCESS(rc))
|
---|
494 | {
|
---|
495 | RT_BZERO(&pBigNum->pauElements[cOldUsed], (iElement + 1 - cOldUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
496 | return VINF_SUCCESS;
|
---|
497 | }
|
---|
498 | return rc;
|
---|
499 | }
|
---|
500 |
|
---|
501 |
|
---|
502 | /**
|
---|
503 | * Zero extends the element array to make sure a the specified element index is
|
---|
504 | * accessible.
|
---|
505 | *
|
---|
506 | * This is typically used with bit operations and self modifying methods. Any
|
---|
507 | * new elements added will be initialized to zero. The caller is responsible
|
---|
508 | * for there not being any trailing zero elements.
|
---|
509 | *
|
---|
510 | * The number must be unscrambled.
|
---|
511 | *
|
---|
512 | * @returns IPRT status code.
|
---|
513 | * @param pBigNum The big number.
|
---|
514 | * @param iElement The element we wish to access.
|
---|
515 | */
|
---|
516 | DECLINLINE(int) rtBigNumEnsureElementPresent(PRTBIGNUM pBigNum, uint32_t iElement)
|
---|
517 | {
|
---|
518 | if (iElement < pBigNum->cUsed)
|
---|
519 | return VINF_SUCCESS;
|
---|
520 | return rtBigNumEnsureElementPresentSlow(pBigNum, iElement);
|
---|
521 | }
|
---|
522 |
|
---|
523 |
|
---|
524 | /**
|
---|
525 | * Strips zero elements from the magnitude value.
|
---|
526 | *
|
---|
527 | * @param pBigNum The big number to strip.
|
---|
528 | */
|
---|
529 | static void rtBigNumStripTrailingZeros(PRTBIGNUM pBigNum)
|
---|
530 | {
|
---|
531 | uint32_t i = pBigNum->cUsed;
|
---|
532 | while (i > 0 && pBigNum->pauElements[i - 1] == 0)
|
---|
533 | i--;
|
---|
534 | pBigNum->cUsed = i;
|
---|
535 | }
|
---|
536 |
|
---|
537 |
|
---|
538 | /**
|
---|
539 | * Initialize the big number to zero.
|
---|
540 | *
|
---|
541 | * @returns @a pBigNum
|
---|
542 | * @param pBigNum The big number.
|
---|
543 | * @param fFlags The flags.
|
---|
544 | * @internal
|
---|
545 | */
|
---|
546 | DECLINLINE(PRTBIGNUM) rtBigNumInitZeroInternal(PRTBIGNUM pBigNum, uint32_t fFlags)
|
---|
547 | {
|
---|
548 | RT_ZERO(*pBigNum);
|
---|
549 | pBigNum->fSensitive = RT_BOOL(fFlags & RTBIGNUMINIT_F_SENSITIVE);
|
---|
550 | return pBigNum;
|
---|
551 | }
|
---|
552 |
|
---|
553 |
|
---|
554 | /**
|
---|
555 | * Initialize the big number to zero from a template variable.
|
---|
556 | *
|
---|
557 | * @returns @a pBigNum
|
---|
558 | * @param pBigNum The big number.
|
---|
559 | * @param pTemplate The template big number.
|
---|
560 | * @internal
|
---|
561 | */
|
---|
562 | DECLINLINE(PRTBIGNUM) rtBigNumInitZeroTemplate(PRTBIGNUM pBigNum, PCRTBIGNUM pTemplate)
|
---|
563 | {
|
---|
564 | RT_ZERO(*pBigNum);
|
---|
565 | pBigNum->fSensitive = pTemplate->fSensitive;
|
---|
566 | return pBigNum;
|
---|
567 | }
|
---|
568 |
|
---|
569 |
|
---|
570 | RTDECL(int) RTBigNumInit(PRTBIGNUM pBigNum, uint32_t fFlags, void const *pvRaw, size_t cbRaw)
|
---|
571 | {
|
---|
572 | /*
|
---|
573 | * Validate input.
|
---|
574 | */
|
---|
575 | AssertPtrReturn(pBigNum, VERR_INVALID_POINTER);
|
---|
576 | AssertReturn(RT_BOOL(fFlags & RTBIGNUMINIT_F_ENDIAN_BIG) ^ RT_BOOL(fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE),
|
---|
577 | VERR_INVALID_PARAMETER);
|
---|
578 | AssertReturn(RT_BOOL(fFlags & RTBIGNUMINIT_F_UNSIGNED) ^ RT_BOOL(fFlags & RTBIGNUMINIT_F_SIGNED), VERR_INVALID_PARAMETER);
|
---|
579 | if (cbRaw)
|
---|
580 | AssertPtrReturn(pvRaw, VERR_INVALID_POINTER);
|
---|
581 |
|
---|
582 | /*
|
---|
583 | * Initalize the big number to zero.
|
---|
584 | */
|
---|
585 | rtBigNumInitZeroInternal(pBigNum, fFlags);
|
---|
586 |
|
---|
587 | /*
|
---|
588 | * Strip the input and figure the sign flag.
|
---|
589 | */
|
---|
590 | uint8_t const *pb = (uint8_t const *)pvRaw;
|
---|
591 | if (cbRaw)
|
---|
592 | {
|
---|
593 | if (fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE)
|
---|
594 | {
|
---|
595 | if (fFlags & RTBIGNUMINIT_F_UNSIGNED)
|
---|
596 | {
|
---|
597 | while (cbRaw > 0 && pb[cbRaw - 1] == 0)
|
---|
598 | cbRaw--;
|
---|
599 | }
|
---|
600 | else
|
---|
601 | {
|
---|
602 | if (pb[cbRaw - 1] >> 7)
|
---|
603 | {
|
---|
604 | pBigNum->fNegative = 1;
|
---|
605 | while (cbRaw > 1 && pb[cbRaw - 1] == 0xff)
|
---|
606 | cbRaw--;
|
---|
607 | }
|
---|
608 | else
|
---|
609 | while (cbRaw > 0 && pb[cbRaw - 1] == 0)
|
---|
610 | cbRaw--;
|
---|
611 | }
|
---|
612 | }
|
---|
613 | else
|
---|
614 | {
|
---|
615 | if (fFlags & RTBIGNUMINIT_F_UNSIGNED)
|
---|
616 | {
|
---|
617 | while (cbRaw > 0 && *pb == 0)
|
---|
618 | pb++, cbRaw--;
|
---|
619 | }
|
---|
620 | else
|
---|
621 | {
|
---|
622 | if (*pb >> 7)
|
---|
623 | {
|
---|
624 | pBigNum->fNegative = 1;
|
---|
625 | while (cbRaw > 1 && *pb == 0xff)
|
---|
626 | pb++, cbRaw--;
|
---|
627 | }
|
---|
628 | else
|
---|
629 | while (cbRaw > 0 && *pb == 0)
|
---|
630 | pb++, cbRaw--;
|
---|
631 | }
|
---|
632 | }
|
---|
633 | }
|
---|
634 |
|
---|
635 | /*
|
---|
636 | * Allocate memory for the elements.
|
---|
637 | */
|
---|
638 | size_t cbAligned = RT_ALIGN_Z(cbRaw, RTBIGNUM_ELEMENT_SIZE);
|
---|
639 | if (RT_UNLIKELY(cbAligned >= RTBIGNUM_MAX_SIZE))
|
---|
640 | return VERR_OUT_OF_RANGE;
|
---|
641 | pBigNum->cUsed = (uint32_t)cbAligned / RTBIGNUM_ELEMENT_SIZE;
|
---|
642 | if (pBigNum->cUsed)
|
---|
643 | {
|
---|
644 | pBigNum->cAllocated = RT_ALIGN_32(pBigNum->cUsed, RTBIGNUM_ALIGNMENT);
|
---|
645 | if (pBigNum->fSensitive)
|
---|
646 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemSaferAllocZ(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
647 | else
|
---|
648 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemAlloc(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
649 | if (RT_UNLIKELY(!pBigNum->pauElements))
|
---|
650 | return VERR_NO_MEMORY;
|
---|
651 |
|
---|
652 | /*
|
---|
653 | * Initialize the array.
|
---|
654 | */
|
---|
655 | uint32_t i = 0;
|
---|
656 | if (fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE)
|
---|
657 | {
|
---|
658 | while (cbRaw >= RTBIGNUM_ELEMENT_SIZE)
|
---|
659 | {
|
---|
660 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
661 | pBigNum->pauElements[i] = RT_MAKE_U64_FROM_U8(pb[0], pb[1], pb[2], pb[3], pb[4], pb[5], pb[6], pb[7]);
|
---|
662 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
663 | pBigNum->pauElements[i] = RT_MAKE_U32_FROM_U8(pb[0], pb[1], pb[2], pb[3]);
|
---|
664 | #else
|
---|
665 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
666 | #endif
|
---|
667 | i++;
|
---|
668 | pb += RTBIGNUM_ELEMENT_SIZE;
|
---|
669 | cbRaw -= RTBIGNUM_ELEMENT_SIZE;
|
---|
670 | }
|
---|
671 |
|
---|
672 | if (cbRaw > 0)
|
---|
673 | {
|
---|
674 | RTBIGNUMELEMENT uLast = pBigNum->fNegative ? ~(RTBIGNUMELEMENT)0 : 0;
|
---|
675 | switch (cbRaw)
|
---|
676 | {
|
---|
677 | default: AssertFailed();
|
---|
678 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
679 | RT_FALL_THRU();
|
---|
680 | case 7: uLast = (uLast << 8) | pb[6]; RT_FALL_THRU();
|
---|
681 | case 6: uLast = (uLast << 8) | pb[5]; RT_FALL_THRU();
|
---|
682 | case 5: uLast = (uLast << 8) | pb[4]; RT_FALL_THRU();
|
---|
683 | case 4: uLast = (uLast << 8) | pb[3];
|
---|
684 | #endif
|
---|
685 | RT_FALL_THRU();
|
---|
686 | case 3: uLast = (uLast << 8) | pb[2]; RT_FALL_THRU();
|
---|
687 | case 2: uLast = (uLast << 8) | pb[1]; RT_FALL_THRU();
|
---|
688 | case 1: uLast = (uLast << 8) | pb[0];
|
---|
689 | }
|
---|
690 | pBigNum->pauElements[i] = uLast;
|
---|
691 | }
|
---|
692 | }
|
---|
693 | else
|
---|
694 | {
|
---|
695 | pb += cbRaw;
|
---|
696 | while (cbRaw >= RTBIGNUM_ELEMENT_SIZE)
|
---|
697 | {
|
---|
698 | pb -= RTBIGNUM_ELEMENT_SIZE;
|
---|
699 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
700 | pBigNum->pauElements[i] = RT_MAKE_U64_FROM_U8(pb[7], pb[6], pb[5], pb[4], pb[3], pb[2], pb[1], pb[0]);
|
---|
701 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
702 | pBigNum->pauElements[i] = RT_MAKE_U32_FROM_U8(pb[3], pb[2], pb[1], pb[0]);
|
---|
703 | #else
|
---|
704 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
705 | #endif
|
---|
706 | i++;
|
---|
707 | cbRaw -= RTBIGNUM_ELEMENT_SIZE;
|
---|
708 | }
|
---|
709 |
|
---|
710 | if (cbRaw > 0)
|
---|
711 | {
|
---|
712 | RTBIGNUMELEMENT uLast = pBigNum->fNegative ? ~(RTBIGNUMELEMENT)0 : 0;
|
---|
713 | pb -= cbRaw;
|
---|
714 | switch (cbRaw)
|
---|
715 | {
|
---|
716 | default: AssertFailed();
|
---|
717 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
718 | RT_FALL_THRU();
|
---|
719 | case 7: uLast = (uLast << 8) | *pb++; RT_FALL_THRU();
|
---|
720 | case 6: uLast = (uLast << 8) | *pb++; RT_FALL_THRU();
|
---|
721 | case 5: uLast = (uLast << 8) | *pb++; RT_FALL_THRU();
|
---|
722 | case 4: uLast = (uLast << 8) | *pb++;
|
---|
723 | #endif
|
---|
724 | RT_FALL_THRU();
|
---|
725 | case 3: uLast = (uLast << 8) | *pb++; RT_FALL_THRU();
|
---|
726 | case 2: uLast = (uLast << 8) | *pb++; RT_FALL_THRU();
|
---|
727 | case 1: uLast = (uLast << 8) | *pb++;
|
---|
728 | }
|
---|
729 | pBigNum->pauElements[i] = uLast;
|
---|
730 | }
|
---|
731 | }
|
---|
732 |
|
---|
733 | /*
|
---|
734 | * If negative, negate it so we get a positive magnitude value in pauElements.
|
---|
735 | */
|
---|
736 | if (pBigNum->fNegative)
|
---|
737 | {
|
---|
738 | pBigNum->pauElements[0] = 0U - pBigNum->pauElements[0];
|
---|
739 | for (i = 1; i < pBigNum->cUsed; i++)
|
---|
740 | pBigNum->pauElements[i] = 0U - pBigNum->pauElements[i] - 1U;
|
---|
741 | }
|
---|
742 |
|
---|
743 | /*
|
---|
744 | * Clear unused elements.
|
---|
745 | */
|
---|
746 | if (pBigNum->cUsed != pBigNum->cAllocated)
|
---|
747 | {
|
---|
748 | RTBIGNUMELEMENT *puUnused = &pBigNum->pauElements[pBigNum->cUsed];
|
---|
749 | AssertCompile(RTBIGNUM_ALIGNMENT <= 4);
|
---|
750 | switch (pBigNum->cAllocated - pBigNum->cUsed)
|
---|
751 | {
|
---|
752 | default: AssertFailed(); RT_FALL_THRU();
|
---|
753 | case 3: *puUnused++ = 0; RT_FALL_THRU();
|
---|
754 | case 2: *puUnused++ = 0; RT_FALL_THRU();
|
---|
755 | case 1: *puUnused++ = 0;
|
---|
756 | }
|
---|
757 | }
|
---|
758 | RTBIGNUM_ASSERT_VALID(pBigNum);
|
---|
759 | }
|
---|
760 |
|
---|
761 | rtBigNumScramble(pBigNum);
|
---|
762 | return VINF_SUCCESS;
|
---|
763 | }
|
---|
764 |
|
---|
765 |
|
---|
766 | RTDECL(int) RTBigNumInitZero(PRTBIGNUM pBigNum, uint32_t fFlags)
|
---|
767 | {
|
---|
768 | AssertReturn(!(fFlags & ~RTBIGNUMINIT_F_SENSITIVE), VERR_INVALID_PARAMETER);
|
---|
769 | AssertPtrReturn(pBigNum, VERR_INVALID_POINTER);
|
---|
770 |
|
---|
771 | rtBigNumInitZeroInternal(pBigNum, fFlags);
|
---|
772 | rtBigNumScramble(pBigNum);
|
---|
773 | return VINF_SUCCESS;
|
---|
774 | }
|
---|
775 |
|
---|
776 |
|
---|
777 | /**
|
---|
778 | * Internal clone function that assumes the caller takes care of scrambling.
|
---|
779 | *
|
---|
780 | * @returns IPRT status code.
|
---|
781 | * @param pBigNum The target number.
|
---|
782 | * @param pSrc The source number.
|
---|
783 | */
|
---|
784 | static int rtBigNumCloneInternal(PRTBIGNUM pBigNum, PCRTBIGNUM pSrc)
|
---|
785 | {
|
---|
786 | Assert(!pSrc->fCurScrambled);
|
---|
787 | int rc = VINF_SUCCESS;
|
---|
788 |
|
---|
789 | /*
|
---|
790 | * Copy over the data.
|
---|
791 | */
|
---|
792 | RT_ZERO(*pBigNum);
|
---|
793 | pBigNum->fNegative = pSrc->fNegative;
|
---|
794 | pBigNum->fSensitive = pSrc->fSensitive;
|
---|
795 | pBigNum->cUsed = pSrc->cUsed;
|
---|
796 | if (pSrc->cUsed)
|
---|
797 | {
|
---|
798 | /* Duplicate the element array. */
|
---|
799 | pBigNum->cAllocated = RT_ALIGN_32(pBigNum->cUsed, RTBIGNUM_ALIGNMENT);
|
---|
800 | if (pBigNum->fSensitive)
|
---|
801 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemSaferAllocZ(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
802 | else
|
---|
803 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemAlloc(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
804 | if (RT_LIKELY(pBigNum->pauElements))
|
---|
805 | {
|
---|
806 | memcpy(pBigNum->pauElements, pSrc->pauElements, pBigNum->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
807 | if (pBigNum->cUsed != pBigNum->cAllocated)
|
---|
808 | RT_BZERO(&pBigNum->pauElements[pBigNum->cUsed], (pBigNum->cAllocated - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
809 | }
|
---|
810 | else
|
---|
811 | {
|
---|
812 | RT_ZERO(*pBigNum);
|
---|
813 | rc = VERR_NO_MEMORY;
|
---|
814 | }
|
---|
815 | }
|
---|
816 | return rc;
|
---|
817 | }
|
---|
818 |
|
---|
819 |
|
---|
820 | RTDECL(int) RTBigNumClone(PRTBIGNUM pBigNum, PCRTBIGNUM pSrc)
|
---|
821 | {
|
---|
822 | int rc = rtBigNumUnscramble((PRTBIGNUM)pSrc);
|
---|
823 | if (RT_SUCCESS(rc))
|
---|
824 | {
|
---|
825 | RTBIGNUM_ASSERT_VALID(pSrc);
|
---|
826 | rc = rtBigNumCloneInternal(pBigNum, pSrc);
|
---|
827 | if (RT_SUCCESS(rc))
|
---|
828 | rtBigNumScramble(pBigNum);
|
---|
829 | rtBigNumScramble((PRTBIGNUM)pSrc);
|
---|
830 | }
|
---|
831 | return rc;
|
---|
832 | }
|
---|
833 |
|
---|
834 |
|
---|
835 | RTDECL(int) RTBigNumDestroy(PRTBIGNUM pBigNum)
|
---|
836 | {
|
---|
837 | if (pBigNum)
|
---|
838 | {
|
---|
839 | if (pBigNum->pauElements)
|
---|
840 | {
|
---|
841 | Assert(pBigNum->cAllocated > 0);
|
---|
842 | if (!pBigNum->fSensitive)
|
---|
843 | RTMemFree(pBigNum->pauElements);
|
---|
844 | else
|
---|
845 | {
|
---|
846 | RTMemSaferFree(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
847 | RT_ZERO(*pBigNum);
|
---|
848 | }
|
---|
849 | pBigNum->pauElements = NULL;
|
---|
850 | }
|
---|
851 | }
|
---|
852 | return VINF_SUCCESS;
|
---|
853 | }
|
---|
854 |
|
---|
855 |
|
---|
856 | RTDECL(int) RTBigNumAssign(PRTBIGNUM pDst, PCRTBIGNUM pSrc)
|
---|
857 | {
|
---|
858 | AssertReturn(pDst->fSensitive >= pSrc->fSensitive, VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
859 | int rc = rtBigNumUnscramble(pDst);
|
---|
860 | if (RT_SUCCESS(rc))
|
---|
861 | {
|
---|
862 | RTBIGNUM_ASSERT_VALID(pDst);
|
---|
863 | rc = rtBigNumUnscramble((PRTBIGNUM)pSrc);
|
---|
864 | if (RT_SUCCESS(rc))
|
---|
865 | {
|
---|
866 | RTBIGNUM_ASSERT_VALID(pSrc);
|
---|
867 | if ( pDst->fSensitive == pSrc->fSensitive
|
---|
868 | || pDst->fSensitive)
|
---|
869 | {
|
---|
870 | if (pDst->cAllocated >= pSrc->cUsed)
|
---|
871 | {
|
---|
872 | if (pDst->cUsed > pSrc->cUsed)
|
---|
873 | RT_BZERO(&pDst->pauElements[pSrc->cUsed], (pDst->cUsed - pSrc->cUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
874 | pDst->cUsed = pSrc->cUsed;
|
---|
875 | pDst->fNegative = pSrc->fNegative;
|
---|
876 | memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
877 | }
|
---|
878 | else
|
---|
879 | {
|
---|
880 | rc = rtBigNumGrow(pDst, pSrc->cUsed, pSrc->cUsed);
|
---|
881 | if (RT_SUCCESS(rc))
|
---|
882 | {
|
---|
883 | pDst->fNegative = pSrc->fNegative;
|
---|
884 | memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
885 | }
|
---|
886 | }
|
---|
887 | }
|
---|
888 | else
|
---|
889 | rc = VERR_BIGNUM_SENSITIVE_INPUT;
|
---|
890 | rtBigNumScramble((PRTBIGNUM)pSrc);
|
---|
891 | }
|
---|
892 | rtBigNumScramble(pDst);
|
---|
893 | }
|
---|
894 | return rc;
|
---|
895 | }
|
---|
896 |
|
---|
897 |
|
---|
898 | /**
|
---|
899 | * Same as RTBigNumBitWidth, except that it ignore the signed bit.
|
---|
900 | *
|
---|
901 | * The number must be unscrambled.
|
---|
902 | *
|
---|
903 | * @returns The effective width of the magnitude, in bits. Returns 0 if the
|
---|
904 | * value is zero.
|
---|
905 | * @param pBigNum The bit number.
|
---|
906 | */
|
---|
907 | static uint32_t rtBigNumMagnitudeBitWidth(PCRTBIGNUM pBigNum)
|
---|
908 | {
|
---|
909 | uint32_t idxLast = pBigNum->cUsed;
|
---|
910 | if (idxLast)
|
---|
911 | {
|
---|
912 | idxLast--;
|
---|
913 | RTBIGNUMELEMENT uLast = pBigNum->pauElements[idxLast]; Assert(uLast);
|
---|
914 | return rtBigNumElementBitCount(uLast) + idxLast * RTBIGNUM_ELEMENT_BITS;
|
---|
915 | }
|
---|
916 | return 0;
|
---|
917 | }
|
---|
918 |
|
---|
919 |
|
---|
920 | RTDECL(uint32_t) RTBigNumBitWidth(PCRTBIGNUM pBigNum)
|
---|
921 | {
|
---|
922 | uint32_t idxLast = pBigNum->cUsed;
|
---|
923 | if (idxLast)
|
---|
924 | {
|
---|
925 | idxLast--;
|
---|
926 | rtBigNumUnscramble((PRTBIGNUM)pBigNum);
|
---|
927 | RTBIGNUMELEMENT uLast = pBigNum->pauElements[idxLast]; Assert(uLast);
|
---|
928 | rtBigNumScramble((PRTBIGNUM)pBigNum);
|
---|
929 | return rtBigNumElementBitCount(uLast) + idxLast * RTBIGNUM_ELEMENT_BITS + pBigNum->fNegative;
|
---|
930 | }
|
---|
931 | return 0;
|
---|
932 | }
|
---|
933 |
|
---|
934 |
|
---|
935 | RTDECL(uint32_t) RTBigNumByteWidth(PCRTBIGNUM pBigNum)
|
---|
936 | {
|
---|
937 | uint32_t cBits = RTBigNumBitWidth(pBigNum);
|
---|
938 | return (cBits + 7) / 8;
|
---|
939 | }
|
---|
940 |
|
---|
941 |
|
---|
942 | RTDECL(int) RTBigNumToBytesBigEndian(PCRTBIGNUM pBigNum, void *pvBuf, size_t cbWanted)
|
---|
943 | {
|
---|
944 | AssertPtrReturn(pvBuf, VERR_INVALID_POINTER);
|
---|
945 | AssertReturn(cbWanted > 0, VERR_INVALID_PARAMETER);
|
---|
946 |
|
---|
947 | int rc = rtBigNumUnscramble((PRTBIGNUM)pBigNum);
|
---|
948 | if (RT_SUCCESS(rc))
|
---|
949 | {
|
---|
950 | RTBIGNUM_ASSERT_VALID(pBigNum);
|
---|
951 | rc = VINF_SUCCESS;
|
---|
952 | if (pBigNum->cUsed != 0)
|
---|
953 | {
|
---|
954 | uint8_t *pbDst = (uint8_t *)pvBuf;
|
---|
955 | pbDst += cbWanted - 1;
|
---|
956 | for (uint32_t i = 0; i < pBigNum->cUsed; i++)
|
---|
957 | {
|
---|
958 | RTBIGNUMELEMENT uElement = pBigNum->pauElements[i];
|
---|
959 | if (pBigNum->fNegative)
|
---|
960 | uElement = (RTBIGNUMELEMENT)0 - uElement - (i > 0);
|
---|
961 | if (cbWanted >= sizeof(uElement))
|
---|
962 | {
|
---|
963 | *pbDst-- = (uint8_t)uElement;
|
---|
964 | uElement >>= 8;
|
---|
965 | *pbDst-- = (uint8_t)uElement;
|
---|
966 | uElement >>= 8;
|
---|
967 | *pbDst-- = (uint8_t)uElement;
|
---|
968 | uElement >>= 8;
|
---|
969 | *pbDst-- = (uint8_t)uElement;
|
---|
970 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
971 | uElement >>= 8;
|
---|
972 | *pbDst-- = (uint8_t)uElement;
|
---|
973 | uElement >>= 8;
|
---|
974 | *pbDst-- = (uint8_t)uElement;
|
---|
975 | uElement >>= 8;
|
---|
976 | *pbDst-- = (uint8_t)uElement;
|
---|
977 | uElement >>= 8;
|
---|
978 | *pbDst-- = (uint8_t)uElement;
|
---|
979 | #elif RTBIGNUM_ELEMENT_SIZE != 4
|
---|
980 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
981 | #endif
|
---|
982 | cbWanted -= sizeof(uElement);
|
---|
983 | }
|
---|
984 | else
|
---|
985 | {
|
---|
986 |
|
---|
987 | uint32_t cBitsLeft = RTBIGNUM_ELEMENT_BITS;
|
---|
988 | while (cbWanted > 0)
|
---|
989 | {
|
---|
990 | *pbDst-- = (uint8_t)uElement;
|
---|
991 | uElement >>= 8;
|
---|
992 | cBitsLeft -= 8;
|
---|
993 | cbWanted--;
|
---|
994 | }
|
---|
995 | Assert(cBitsLeft > 0); Assert(cBitsLeft < RTBIGNUM_ELEMENT_BITS);
|
---|
996 | if ( i + 1 < pBigNum->cUsed
|
---|
997 | || ( !pBigNum->fNegative
|
---|
998 | ? uElement != 0
|
---|
999 | : uElement != ((RTBIGNUMELEMENT)1 << cBitsLeft) - 1U ) )
|
---|
1000 | rc = VERR_BUFFER_OVERFLOW;
|
---|
1001 | break;
|
---|
1002 | }
|
---|
1003 | }
|
---|
1004 |
|
---|
1005 | /* Sign extend the number to the desired output size. */
|
---|
1006 | if (cbWanted > 0)
|
---|
1007 | memset(pbDst - cbWanted, pBigNum->fNegative ? 0 : 0xff, cbWanted);
|
---|
1008 | }
|
---|
1009 | else
|
---|
1010 | RT_BZERO(pvBuf, cbWanted);
|
---|
1011 | rtBigNumScramble((PRTBIGNUM)pBigNum);
|
---|
1012 | }
|
---|
1013 | return rc;
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 |
|
---|
1017 | RTDECL(int) RTBigNumCompare(PRTBIGNUM pLeft, PRTBIGNUM pRight)
|
---|
1018 | {
|
---|
1019 | int rc = rtBigNumUnscramble(pLeft);
|
---|
1020 | if (RT_SUCCESS(rc))
|
---|
1021 | {
|
---|
1022 | RTBIGNUM_ASSERT_VALID(pLeft);
|
---|
1023 | rc = rtBigNumUnscramble(pRight);
|
---|
1024 | if (RT_SUCCESS(rc))
|
---|
1025 | {
|
---|
1026 | RTBIGNUM_ASSERT_VALID(pRight);
|
---|
1027 | if (pLeft->fNegative == pRight->fNegative)
|
---|
1028 | {
|
---|
1029 | if (pLeft->cUsed == pRight->cUsed)
|
---|
1030 | {
|
---|
1031 | rc = 0;
|
---|
1032 | uint32_t i = pLeft->cUsed;
|
---|
1033 | while (i-- > 0)
|
---|
1034 | if (pLeft->pauElements[i] != pRight->pauElements[i])
|
---|
1035 | {
|
---|
1036 | rc = pLeft->pauElements[i] < pRight->pauElements[i] ? -1 : 1;
|
---|
1037 | break;
|
---|
1038 | }
|
---|
1039 | if (pLeft->fNegative)
|
---|
1040 | rc = -rc;
|
---|
1041 | }
|
---|
1042 | else
|
---|
1043 | rc = !pLeft->fNegative
|
---|
1044 | ? pLeft->cUsed < pRight->cUsed ? -1 : 1
|
---|
1045 | : pLeft->cUsed < pRight->cUsed ? 1 : -1;
|
---|
1046 | }
|
---|
1047 | else
|
---|
1048 | rc = pLeft->fNegative ? -1 : 1;
|
---|
1049 |
|
---|
1050 | rtBigNumScramble(pRight);
|
---|
1051 | }
|
---|
1052 | rtBigNumScramble(pLeft);
|
---|
1053 | }
|
---|
1054 | return rc;
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 |
|
---|
1058 | RTDECL(int) RTBigNumCompareWithU64(PRTBIGNUM pLeft, uint64_t uRight)
|
---|
1059 | {
|
---|
1060 | int rc = rtBigNumUnscramble(pLeft);
|
---|
1061 | if (RT_SUCCESS(rc))
|
---|
1062 | {
|
---|
1063 | RTBIGNUM_ASSERT_VALID(pLeft);
|
---|
1064 | if (!pLeft->fNegative)
|
---|
1065 | {
|
---|
1066 | if (pLeft->cUsed * RTBIGNUM_ELEMENT_SIZE <= sizeof(uRight))
|
---|
1067 | {
|
---|
1068 | if (pLeft->cUsed == 0)
|
---|
1069 | rc = uRight == 0 ? 0 : -1;
|
---|
1070 | else
|
---|
1071 | {
|
---|
1072 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
1073 | uint64_t uLeft = rtBigNumGetElement(pLeft, 0);
|
---|
1074 | if (uLeft < uRight)
|
---|
1075 | rc = -1;
|
---|
1076 | else
|
---|
1077 | rc = uLeft == uRight ? 0 : 1;
|
---|
1078 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
1079 | uint32_t uSubLeft = rtBigNumGetElement(pLeft, 1);
|
---|
1080 | uint32_t uSubRight = uRight >> 32;
|
---|
1081 | if (uSubLeft == uSubRight)
|
---|
1082 | {
|
---|
1083 | uSubLeft = rtBigNumGetElement(pLeft, 0);
|
---|
1084 | uSubRight = (uint32_t)uRight;
|
---|
1085 | }
|
---|
1086 | if (uSubLeft < uSubRight)
|
---|
1087 | rc = -1;
|
---|
1088 | else
|
---|
1089 | rc = uSubLeft == uSubRight ? 0 : 1;
|
---|
1090 | #else
|
---|
1091 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
1092 | #endif
|
---|
1093 | }
|
---|
1094 | }
|
---|
1095 | else
|
---|
1096 | rc = 1;
|
---|
1097 | }
|
---|
1098 | else
|
---|
1099 | rc = -1;
|
---|
1100 | rtBigNumScramble(pLeft);
|
---|
1101 | }
|
---|
1102 | return rc;
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 |
|
---|
1106 | RTDECL(int) RTBigNumCompareWithS64(PRTBIGNUM pLeft, int64_t iRight)
|
---|
1107 | {
|
---|
1108 | int rc = rtBigNumUnscramble(pLeft);
|
---|
1109 | if (RT_SUCCESS(rc))
|
---|
1110 | {
|
---|
1111 | RTBIGNUM_ASSERT_VALID(pLeft);
|
---|
1112 | if (pLeft->fNegative == (unsigned)(iRight < 0)) /* (unsigned cast is for MSC weirdness) */
|
---|
1113 | {
|
---|
1114 | AssertCompile(RTBIGNUM_ELEMENT_SIZE <= sizeof(iRight));
|
---|
1115 | if (pLeft->cUsed * RTBIGNUM_ELEMENT_SIZE <= sizeof(iRight))
|
---|
1116 | {
|
---|
1117 | uint64_t uRightMagn = !pLeft->fNegative ? (uint64_t)iRight : (uint64_t)-iRight;
|
---|
1118 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
1119 | uint64_t uLeft = rtBigNumGetElement(pLeft, 0);
|
---|
1120 | if (uLeft < uRightMagn)
|
---|
1121 | rc = -1;
|
---|
1122 | else
|
---|
1123 | rc = uLeft == (uint64_t)uRightMagn ? 0 : 1;
|
---|
1124 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
1125 | uint32_t uSubLeft = rtBigNumGetElement(pLeft, 1);
|
---|
1126 | uint32_t uSubRight = uRightMagn >> 32;
|
---|
1127 | if (uSubLeft == uSubRight)
|
---|
1128 | {
|
---|
1129 | uSubLeft = rtBigNumGetElement(pLeft, 0);
|
---|
1130 | uSubRight = (uint32_t)uRightMagn;
|
---|
1131 | }
|
---|
1132 | if (uSubLeft < uSubRight)
|
---|
1133 | rc = -1;
|
---|
1134 | else
|
---|
1135 | rc = uSubLeft == uSubRight ? 0 : 1;
|
---|
1136 | #else
|
---|
1137 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
1138 | #endif
|
---|
1139 | if (pLeft->fNegative)
|
---|
1140 | rc = -rc;
|
---|
1141 | }
|
---|
1142 | else
|
---|
1143 | rc = pLeft->fNegative ? -1 : 1;
|
---|
1144 | }
|
---|
1145 | else
|
---|
1146 | rc = pLeft->fNegative ? -1 : 1;
|
---|
1147 | rtBigNumScramble(pLeft);
|
---|
1148 | }
|
---|
1149 | return rc;
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 |
|
---|
1153 | /**
|
---|
1154 | * Compares the magnitude values of two big numbers.
|
---|
1155 | *
|
---|
1156 | * @retval -1 if pLeft is smaller than pRight.
|
---|
1157 | * @retval 0 if pLeft is equal to pRight.
|
---|
1158 | * @retval 1 if pLeft is larger than pRight.
|
---|
1159 | * @param pLeft The left side number.
|
---|
1160 | * @param pRight The right side number.
|
---|
1161 | */
|
---|
1162 | static int rtBigNumMagnitudeCompare(PCRTBIGNUM pLeft, PCRTBIGNUM pRight)
|
---|
1163 | {
|
---|
1164 | Assert(!pLeft->fCurScrambled); Assert(!pRight->fCurScrambled);
|
---|
1165 | int rc;
|
---|
1166 | uint32_t i = pLeft->cUsed;
|
---|
1167 | if (i == pRight->cUsed)
|
---|
1168 | {
|
---|
1169 | rc = 0;
|
---|
1170 | while (i-- > 0)
|
---|
1171 | if (pLeft->pauElements[i] != pRight->pauElements[i])
|
---|
1172 | {
|
---|
1173 | rc = pLeft->pauElements[i] < pRight->pauElements[i] ? -1 : 1;
|
---|
1174 | break;
|
---|
1175 | }
|
---|
1176 | }
|
---|
1177 | else
|
---|
1178 | rc = i < pRight->cUsed ? -1 : 1;
|
---|
1179 | return rc;
|
---|
1180 | }
|
---|
1181 |
|
---|
1182 |
|
---|
1183 | /**
|
---|
1184 | * Copies the magnitude of on number (@a pSrc) to another (@a pBigNum).
|
---|
1185 | *
|
---|
1186 | * The variables must be unscrambled. The sign flag is not considered nor
|
---|
1187 | * touched.
|
---|
1188 | *
|
---|
1189 | * @returns IPRT status code.
|
---|
1190 | * @param pDst The destination number.
|
---|
1191 | * @param pSrc The source number.
|
---|
1192 | */
|
---|
1193 | DECLINLINE(int) rtBigNumMagnitudeCopy(PRTBIGNUM pDst, PCRTBIGNUM pSrc)
|
---|
1194 | {
|
---|
1195 | int rc = rtBigNumSetUsed(pDst, pSrc->cUsed);
|
---|
1196 | if (RT_SUCCESS(rc))
|
---|
1197 | memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
1198 | return rc;
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 |
|
---|
1202 |
|
---|
1203 | /**
|
---|
1204 | * Adds two magnitudes and stores them into a third.
|
---|
1205 | *
|
---|
1206 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1207 | * touched.
|
---|
1208 | *
|
---|
1209 | * @returns IPRT status code.
|
---|
1210 | * @param pResult The resultant.
|
---|
1211 | * @param pAugend To whom it shall be addede.
|
---|
1212 | * @param pAddend The nombre to addede.
|
---|
1213 | */
|
---|
1214 | static int rtBigNumMagnitudeAdd(PRTBIGNUM pResult, PCRTBIGNUM pAugend, PCRTBIGNUM pAddend)
|
---|
1215 | {
|
---|
1216 | Assert(!pResult->fCurScrambled); Assert(!pAugend->fCurScrambled); Assert(!pAddend->fCurScrambled);
|
---|
1217 | Assert(pResult != pAugend); Assert(pResult != pAddend);
|
---|
1218 |
|
---|
1219 | uint32_t cElements = RT_MAX(pAugend->cUsed, pAddend->cUsed);
|
---|
1220 | int rc = rtBigNumSetUsed(pResult, cElements);
|
---|
1221 | if (RT_SUCCESS(rc))
|
---|
1222 | {
|
---|
1223 | /*
|
---|
1224 | * The primitive way, requires at least two additions for each entry
|
---|
1225 | * without machine code help.
|
---|
1226 | */
|
---|
1227 | RTBIGNUMELEMENT fCarry = 0;
|
---|
1228 | for (uint32_t i = 0; i < cElements; i++)
|
---|
1229 | pResult->pauElements[i] = rtBigNumElementAddWithCarry(rtBigNumGetElement(pAugend, i),
|
---|
1230 | rtBigNumGetElement(pAddend, i),
|
---|
1231 | &fCarry);
|
---|
1232 | if (fCarry)
|
---|
1233 | {
|
---|
1234 | rc = rtBigNumSetUsed(pResult, cElements + 1);
|
---|
1235 | if (RT_SUCCESS(rc))
|
---|
1236 | pResult->pauElements[cElements++] = 1;
|
---|
1237 | }
|
---|
1238 | Assert(pResult->cUsed == cElements || RT_FAILURE_NP(rc));
|
---|
1239 | }
|
---|
1240 |
|
---|
1241 | return rc;
|
---|
1242 | }
|
---|
1243 |
|
---|
1244 |
|
---|
1245 | /**
|
---|
1246 | * Substracts a smaller (or equal) magnitude from another one and stores it into
|
---|
1247 | * a third.
|
---|
1248 | *
|
---|
1249 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1250 | * touched. For this reason, the @a pMinuend must be larger or equal to @a
|
---|
1251 | * pSubtrahend.
|
---|
1252 | *
|
---|
1253 | * @returns IPRT status code.
|
---|
1254 | * @param pResult There to store the result.
|
---|
1255 | * @param pMinuend What to subtract from.
|
---|
1256 | * @param pSubtrahend What to subtract.
|
---|
1257 | */
|
---|
1258 | static int rtBigNumMagnitudeSub(PRTBIGNUM pResult, PCRTBIGNUM pMinuend, PCRTBIGNUM pSubtrahend)
|
---|
1259 | {
|
---|
1260 | Assert(!pResult->fCurScrambled); Assert(!pMinuend->fCurScrambled); Assert(!pSubtrahend->fCurScrambled);
|
---|
1261 | Assert(pResult != pMinuend); Assert(pResult != pSubtrahend);
|
---|
1262 | Assert(pMinuend->cUsed >= pSubtrahend->cUsed);
|
---|
1263 |
|
---|
1264 | int rc;
|
---|
1265 | if (pSubtrahend->cUsed)
|
---|
1266 | {
|
---|
1267 | /*
|
---|
1268 | * Resize the result. In the assembly case, ensure that all three arrays
|
---|
1269 | * has the same number of used entries, possibly with an extra zero
|
---|
1270 | * element on 64-bit systems.
|
---|
1271 | */
|
---|
1272 | rc = rtBigNumSetUsedEx(pResult, pMinuend->cUsed, RTBIGNUM_ZERO_ALIGN(pMinuend->cUsed));
|
---|
1273 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
1274 | if (RT_SUCCESS(rc))
|
---|
1275 | rc = rtBigNumEnsureExtraZeroElements((PRTBIGNUM)pMinuend, RTBIGNUM_ZERO_ALIGN(pMinuend->cUsed));
|
---|
1276 | if (RT_SUCCESS(rc))
|
---|
1277 | rc = rtBigNumEnsureExtraZeroElements((PRTBIGNUM)pSubtrahend, RTBIGNUM_ZERO_ALIGN(pMinuend->cUsed));
|
---|
1278 | #endif
|
---|
1279 | if (RT_SUCCESS(rc))
|
---|
1280 | {
|
---|
1281 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
1282 | /*
|
---|
1283 | * Call assembly to do the work.
|
---|
1284 | */
|
---|
1285 | rtBigNumMagnitudeSubAssemblyWorker(pResult->pauElements, pMinuend->pauElements,
|
---|
1286 | pSubtrahend->pauElements, pMinuend->cUsed);
|
---|
1287 | # ifdef RT_STRICT
|
---|
1288 | RTBIGNUMELEMENT fBorrow = 0;
|
---|
1289 | for (uint32_t i = 0; i < pMinuend->cUsed; i++)
|
---|
1290 | {
|
---|
1291 | RTBIGNUMELEMENT uCorrect = rtBigNumElementSubWithBorrow(pMinuend->pauElements[i], rtBigNumGetElement(pSubtrahend, i), &fBorrow);
|
---|
1292 | AssertMsg(pResult->pauElements[i] == uCorrect, ("[%u]=%#x, expected %#x\n", i, pResult->pauElements[i], uCorrect));
|
---|
1293 | }
|
---|
1294 | # endif
|
---|
1295 | #else
|
---|
1296 | /*
|
---|
1297 | * The primitive C way.
|
---|
1298 | */
|
---|
1299 | RTBIGNUMELEMENT fBorrow = 0;
|
---|
1300 | for (uint32_t i = 0; i < pMinuend->cUsed; i++)
|
---|
1301 | pResult->pauElements[i] = rtBigNumElementSubWithBorrow(pMinuend->pauElements[i],
|
---|
1302 | rtBigNumGetElement(pSubtrahend, i),
|
---|
1303 | &fBorrow);
|
---|
1304 | Assert(fBorrow == 0);
|
---|
1305 | #endif
|
---|
1306 |
|
---|
1307 | /*
|
---|
1308 | * Trim the result.
|
---|
1309 | */
|
---|
1310 | rtBigNumStripTrailingZeros(pResult);
|
---|
1311 | }
|
---|
1312 | }
|
---|
1313 | /*
|
---|
1314 | * Special case: Subtrahend is zero.
|
---|
1315 | */
|
---|
1316 | else
|
---|
1317 | rc = rtBigNumMagnitudeCopy(pResult, pMinuend);
|
---|
1318 |
|
---|
1319 | return rc;
|
---|
1320 | }
|
---|
1321 |
|
---|
1322 |
|
---|
1323 | /**
|
---|
1324 | * Substracts a smaller (or equal) magnitude from another one and stores the
|
---|
1325 | * result into the first.
|
---|
1326 | *
|
---|
1327 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1328 | * touched. For this reason, the @a pMinuendResult must be larger or equal to
|
---|
1329 | * @a pSubtrahend.
|
---|
1330 | *
|
---|
1331 | * @returns IPRT status code (memory alloc error).
|
---|
1332 | * @param pMinuendResult What to subtract from and return as result.
|
---|
1333 | * @param pSubtrahend What to subtract.
|
---|
1334 | */
|
---|
1335 | static int rtBigNumMagnitudeSubThis(PRTBIGNUM pMinuendResult, PCRTBIGNUM pSubtrahend)
|
---|
1336 | {
|
---|
1337 | Assert(!pMinuendResult->fCurScrambled); Assert(!pSubtrahend->fCurScrambled);
|
---|
1338 | Assert(pMinuendResult != pSubtrahend);
|
---|
1339 | Assert(pMinuendResult->cUsed >= pSubtrahend->cUsed);
|
---|
1340 |
|
---|
1341 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
1342 | /*
|
---|
1343 | * Use the assembly worker. Requires same sized element arrays, so zero extend them.
|
---|
1344 | */
|
---|
1345 | int rc = rtBigNumEnsureExtraZeroElements(pMinuendResult, RTBIGNUM_ZERO_ALIGN(pMinuendResult->cUsed));
|
---|
1346 | if (RT_SUCCESS(rc))
|
---|
1347 | rc = rtBigNumEnsureExtraZeroElements((PRTBIGNUM)pSubtrahend, RTBIGNUM_ZERO_ALIGN(pMinuendResult->cUsed));
|
---|
1348 | if (RT_FAILURE(rc))
|
---|
1349 | return rc;
|
---|
1350 | rtBigNumMagnitudeSubThisAssemblyWorker(pMinuendResult->pauElements, pSubtrahend->pauElements, pMinuendResult->cUsed);
|
---|
1351 | #else
|
---|
1352 | /*
|
---|
1353 | * The primitive way, as usual.
|
---|
1354 | */
|
---|
1355 | RTBIGNUMELEMENT fBorrow = 0;
|
---|
1356 | for (uint32_t i = 0; i < pMinuendResult->cUsed; i++)
|
---|
1357 | pMinuendResult->pauElements[i] = rtBigNumElementSubWithBorrow(pMinuendResult->pauElements[i],
|
---|
1358 | rtBigNumGetElement(pSubtrahend, i),
|
---|
1359 | &fBorrow);
|
---|
1360 | Assert(fBorrow == 0);
|
---|
1361 | #endif
|
---|
1362 |
|
---|
1363 | /*
|
---|
1364 | * Trim the result.
|
---|
1365 | */
|
---|
1366 | rtBigNumStripTrailingZeros(pMinuendResult);
|
---|
1367 |
|
---|
1368 | return VINF_SUCCESS;
|
---|
1369 | }
|
---|
1370 |
|
---|
1371 |
|
---|
1372 | RTDECL(int) RTBigNumAdd(PRTBIGNUM pResult, PCRTBIGNUM pAugend, PCRTBIGNUM pAddend)
|
---|
1373 | {
|
---|
1374 | Assert(pResult != pAugend); Assert(pResult != pAddend);
|
---|
1375 | AssertReturn(pResult->fSensitive >= (pAugend->fSensitive | pAddend->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1376 |
|
---|
1377 | int rc = rtBigNumUnscramble(pResult);
|
---|
1378 | if (RT_SUCCESS(rc))
|
---|
1379 | {
|
---|
1380 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
1381 | rc = rtBigNumUnscramble((PRTBIGNUM)pAugend);
|
---|
1382 | if (RT_SUCCESS(rc))
|
---|
1383 | {
|
---|
1384 | RTBIGNUM_ASSERT_VALID(pAugend);
|
---|
1385 | rc = rtBigNumUnscramble((PRTBIGNUM)pAddend);
|
---|
1386 | if (RT_SUCCESS(rc))
|
---|
1387 | {
|
---|
1388 | RTBIGNUM_ASSERT_VALID(pAddend);
|
---|
1389 |
|
---|
1390 | /*
|
---|
1391 | * Same sign: Add magnitude, keep sign.
|
---|
1392 | * 1 + 1 = 2
|
---|
1393 | * (-1) + (-1) = -2
|
---|
1394 | */
|
---|
1395 | if (pAugend->fNegative == pAddend->fNegative)
|
---|
1396 | {
|
---|
1397 | pResult->fNegative = pAugend->fNegative;
|
---|
1398 | rc = rtBigNumMagnitudeAdd(pResult, pAugend, pAddend);
|
---|
1399 | }
|
---|
1400 | /*
|
---|
1401 | * Different sign: Subtract smaller from larger, keep sign of larger.
|
---|
1402 | * (-5) + 3 = -2
|
---|
1403 | * 5 + (-3) = 2
|
---|
1404 | * (-1) + 3 = 2
|
---|
1405 | * 1 + (-3) = -2
|
---|
1406 | */
|
---|
1407 | else if (rtBigNumMagnitudeCompare(pAugend, pAddend) >= 0)
|
---|
1408 | {
|
---|
1409 | pResult->fNegative = pAugend->fNegative;
|
---|
1410 | rc = rtBigNumMagnitudeSub(pResult, pAugend, pAddend);
|
---|
1411 | if (!pResult->cUsed)
|
---|
1412 | pResult->fNegative = 0;
|
---|
1413 | }
|
---|
1414 | else
|
---|
1415 | {
|
---|
1416 | pResult->fNegative = pAddend->fNegative;
|
---|
1417 | rc = rtBigNumMagnitudeSub(pResult, pAddend, pAugend);
|
---|
1418 | }
|
---|
1419 | rtBigNumScramble((PRTBIGNUM)pAddend);
|
---|
1420 | }
|
---|
1421 | rtBigNumScramble((PRTBIGNUM)pAugend);
|
---|
1422 | }
|
---|
1423 | rtBigNumScramble(pResult);
|
---|
1424 | }
|
---|
1425 | return rc;
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 |
|
---|
1429 | RTDECL(int) RTBigNumSubtract(PRTBIGNUM pResult, PCRTBIGNUM pMinuend, PCRTBIGNUM pSubtrahend)
|
---|
1430 | {
|
---|
1431 | Assert(pResult != pMinuend); Assert(pResult != pSubtrahend);
|
---|
1432 | AssertReturn(pResult->fSensitive >= (pMinuend->fSensitive | pSubtrahend->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1433 |
|
---|
1434 | int rc = rtBigNumUnscramble(pResult);
|
---|
1435 | if (RT_SUCCESS(rc))
|
---|
1436 | {
|
---|
1437 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
1438 | if (pMinuend != pSubtrahend)
|
---|
1439 | {
|
---|
1440 | rc = rtBigNumUnscramble((PRTBIGNUM)pMinuend);
|
---|
1441 | if (RT_SUCCESS(rc))
|
---|
1442 | {
|
---|
1443 | RTBIGNUM_ASSERT_VALID(pMinuend);
|
---|
1444 | rc = rtBigNumUnscramble((PRTBIGNUM)pSubtrahend);
|
---|
1445 | if (RT_SUCCESS(rc))
|
---|
1446 | {
|
---|
1447 | RTBIGNUM_ASSERT_VALID(pSubtrahend);
|
---|
1448 |
|
---|
1449 | /*
|
---|
1450 | * Different sign: Add magnitude, keep sign of first.
|
---|
1451 | * 1 - (-2) == 3
|
---|
1452 | * -1 - 2 == -3
|
---|
1453 | */
|
---|
1454 | if (pMinuend->fNegative != pSubtrahend->fNegative)
|
---|
1455 | {
|
---|
1456 | pResult->fNegative = pMinuend->fNegative;
|
---|
1457 | rc = rtBigNumMagnitudeAdd(pResult, pMinuend, pSubtrahend);
|
---|
1458 | }
|
---|
1459 | /*
|
---|
1460 | * Same sign, minuend has greater or equal absolute value: Subtract, keep sign of first.
|
---|
1461 | * 10 - 7 = 3
|
---|
1462 | */
|
---|
1463 | else if (rtBigNumMagnitudeCompare(pMinuend, pSubtrahend) >= 0)
|
---|
1464 | {
|
---|
1465 | pResult->fNegative = pMinuend->fNegative;
|
---|
1466 | rc = rtBigNumMagnitudeSub(pResult, pMinuend, pSubtrahend);
|
---|
1467 | }
|
---|
1468 | /*
|
---|
1469 | * Same sign, subtrahend is larger: Reverse and subtract, invert sign of first.
|
---|
1470 | * 7 - 10 = -3
|
---|
1471 | * -1 - (-3) = 2
|
---|
1472 | */
|
---|
1473 | else
|
---|
1474 | {
|
---|
1475 | pResult->fNegative = !pMinuend->fNegative;
|
---|
1476 | rc = rtBigNumMagnitudeSub(pResult, pSubtrahend, pMinuend);
|
---|
1477 | }
|
---|
1478 | rtBigNumScramble((PRTBIGNUM)pSubtrahend);
|
---|
1479 | }
|
---|
1480 | rtBigNumScramble((PRTBIGNUM)pMinuend);
|
---|
1481 | }
|
---|
1482 | }
|
---|
1483 | else
|
---|
1484 | {
|
---|
1485 | /* zero. */
|
---|
1486 | pResult->fNegative = 0;
|
---|
1487 | rtBigNumSetUsed(pResult, 0);
|
---|
1488 | }
|
---|
1489 | rtBigNumScramble(pResult);
|
---|
1490 | }
|
---|
1491 | return rc;
|
---|
1492 | }
|
---|
1493 |
|
---|
1494 |
|
---|
1495 | RTDECL(int) RTBigNumNegateThis(PRTBIGNUM pThis)
|
---|
1496 | {
|
---|
1497 | pThis->fNegative = !pThis->fNegative;
|
---|
1498 | return VINF_SUCCESS;
|
---|
1499 | }
|
---|
1500 |
|
---|
1501 |
|
---|
1502 | RTDECL(int) RTBigNumNegate(PRTBIGNUM pResult, PCRTBIGNUM pBigNum)
|
---|
1503 | {
|
---|
1504 | int rc = RTBigNumAssign(pResult, pBigNum);
|
---|
1505 | if (RT_SUCCESS(rc))
|
---|
1506 | rc = RTBigNumNegateThis(pResult);
|
---|
1507 | return rc;
|
---|
1508 | }
|
---|
1509 |
|
---|
1510 |
|
---|
1511 | /**
|
---|
1512 | * Multiplies the magnitudes of two values, letting the caller care about the
|
---|
1513 | * sign bit.
|
---|
1514 | *
|
---|
1515 | * @returns IPRT status code.
|
---|
1516 | * @param pResult Where to store the result.
|
---|
1517 | * @param pMultiplicand The first value.
|
---|
1518 | * @param pMultiplier The second value.
|
---|
1519 | */
|
---|
1520 | static int rtBigNumMagnitudeMultiply(PRTBIGNUM pResult, PCRTBIGNUM pMultiplicand, PCRTBIGNUM pMultiplier)
|
---|
1521 | {
|
---|
1522 | Assert(pResult != pMultiplicand); Assert(pResult != pMultiplier);
|
---|
1523 | Assert(!pResult->fCurScrambled); Assert(!pMultiplicand->fCurScrambled); Assert(!pMultiplier->fCurScrambled);
|
---|
1524 |
|
---|
1525 | /*
|
---|
1526 | * Multiplication involving zero is zero.
|
---|
1527 | */
|
---|
1528 | if (!pMultiplicand->cUsed || !pMultiplier->cUsed)
|
---|
1529 | {
|
---|
1530 | pResult->fNegative = 0;
|
---|
1531 | rtBigNumSetUsed(pResult, 0);
|
---|
1532 | return VINF_SUCCESS;
|
---|
1533 | }
|
---|
1534 |
|
---|
1535 | /*
|
---|
1536 | * Allocate a result array that is the sum of the two factors, initialize
|
---|
1537 | * it to zero.
|
---|
1538 | */
|
---|
1539 | uint32_t cMax = pMultiplicand->cUsed + pMultiplier->cUsed;
|
---|
1540 | int rc = rtBigNumSetUsed(pResult, cMax);
|
---|
1541 | if (RT_SUCCESS(rc))
|
---|
1542 | {
|
---|
1543 | RT_BZERO(pResult->pauElements, pResult->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
1544 |
|
---|
1545 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
1546 | rtBigNumMagnitudeMultiplyAssemblyWorker(pResult->pauElements,
|
---|
1547 | pMultiplier->pauElements, pMultiplier->cUsed,
|
---|
1548 | pMultiplicand->pauElements, pMultiplicand->cUsed);
|
---|
1549 | #else
|
---|
1550 | for (uint32_t i = 0; i < pMultiplier->cUsed; i++)
|
---|
1551 | {
|
---|
1552 | RTBIGNUMELEMENT uMultiplier = pMultiplier->pauElements[i];
|
---|
1553 | for (uint32_t j = 0; j < pMultiplicand->cUsed; j++)
|
---|
1554 | {
|
---|
1555 | RTBIGNUMELEMENT uHi;
|
---|
1556 | RTBIGNUMELEMENT uLo;
|
---|
1557 | #if RTBIGNUM_ELEMENT_SIZE == 4
|
---|
1558 | uint64_t u64 = ASMMult2xU32RetU64(pMultiplicand->pauElements[j], uMultiplier);
|
---|
1559 | uLo = (uint32_t)u64;
|
---|
1560 | uHi = u64 >> 32;
|
---|
1561 | #elif RTBIGNUM_ELEMENT_SIZE == 8
|
---|
1562 | uLo = ASMMult2xU64Ret2xU64(pMultiplicand->pauElements[j], uMultiplier, &uHi);
|
---|
1563 | #else
|
---|
1564 | # error "Invalid RTBIGNUM_ELEMENT_SIZE value"
|
---|
1565 | #endif
|
---|
1566 | RTBIGNUMELEMENT fCarry = 0;
|
---|
1567 | uint64_t k = i + j;
|
---|
1568 | pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], uLo, &fCarry);
|
---|
1569 | k++;
|
---|
1570 | pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], uHi, &fCarry);
|
---|
1571 | while (fCarry)
|
---|
1572 | {
|
---|
1573 | k++;
|
---|
1574 | pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], 0, &fCarry);
|
---|
1575 | }
|
---|
1576 | Assert(k < cMax);
|
---|
1577 | }
|
---|
1578 | }
|
---|
1579 | #endif
|
---|
1580 |
|
---|
1581 | /* It's possible we overestimated the output size by 1 element. */
|
---|
1582 | rtBigNumStripTrailingZeros(pResult);
|
---|
1583 | }
|
---|
1584 | return rc;
|
---|
1585 | }
|
---|
1586 |
|
---|
1587 |
|
---|
1588 | RTDECL(int) RTBigNumMultiply(PRTBIGNUM pResult, PCRTBIGNUM pMultiplicand, PCRTBIGNUM pMultiplier)
|
---|
1589 | {
|
---|
1590 | Assert(pResult != pMultiplicand); Assert(pResult != pMultiplier);
|
---|
1591 | AssertReturn(pResult->fSensitive >= (pMultiplicand->fSensitive | pMultiplier->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1592 |
|
---|
1593 | int rc = rtBigNumUnscramble(pResult);
|
---|
1594 | if (RT_SUCCESS(rc))
|
---|
1595 | {
|
---|
1596 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
1597 | rc = rtBigNumUnscramble((PRTBIGNUM)pMultiplicand);
|
---|
1598 | if (RT_SUCCESS(rc))
|
---|
1599 | {
|
---|
1600 | RTBIGNUM_ASSERT_VALID(pMultiplicand);
|
---|
1601 | rc = rtBigNumUnscramble((PRTBIGNUM)pMultiplier);
|
---|
1602 | if (RT_SUCCESS(rc))
|
---|
1603 | {
|
---|
1604 | RTBIGNUM_ASSERT_VALID(pMultiplier);
|
---|
1605 |
|
---|
1606 | /*
|
---|
1607 | * The sign values follow XOR rules:
|
---|
1608 | * -1 * 1 = -1; 1 ^ 0 = 1
|
---|
1609 | * 1 * -1 = -1; 1 ^ 0 = 1
|
---|
1610 | * -1 * -1 = 1; 1 ^ 1 = 0
|
---|
1611 | * 1 * 1 = 1; 0 ^ 0 = 0
|
---|
1612 | */
|
---|
1613 | pResult->fNegative = pMultiplicand->fNegative ^ pMultiplier->fNegative;
|
---|
1614 | rc = rtBigNumMagnitudeMultiply(pResult, pMultiplicand, pMultiplier);
|
---|
1615 |
|
---|
1616 | rtBigNumScramble((PRTBIGNUM)pMultiplier);
|
---|
1617 | }
|
---|
1618 | rtBigNumScramble((PRTBIGNUM)pMultiplicand);
|
---|
1619 | }
|
---|
1620 | rtBigNumScramble(pResult);
|
---|
1621 | }
|
---|
1622 | return rc;
|
---|
1623 | }
|
---|
1624 |
|
---|
1625 |
|
---|
1626 | #if 0 /* unused */
|
---|
1627 | /**
|
---|
1628 | * Clears a bit in the magnitude of @a pBigNum.
|
---|
1629 | *
|
---|
1630 | * The variables must be unscrambled.
|
---|
1631 | *
|
---|
1632 | * @param pBigNum The big number.
|
---|
1633 | * @param iBit The bit to clear (0-based).
|
---|
1634 | */
|
---|
1635 | DECLINLINE(void) rtBigNumMagnitudeClearBit(PRTBIGNUM pBigNum, uint32_t iBit)
|
---|
1636 | {
|
---|
1637 | uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS;
|
---|
1638 | if (iElement < pBigNum->cUsed)
|
---|
1639 | {
|
---|
1640 | iBit &= RTBIGNUM_ELEMENT_BITS - 1;
|
---|
1641 | pBigNum->pauElements[iElement] &= ~RTBIGNUM_ELEMENT_BIT(iBit);
|
---|
1642 | if (iElement + 1 == pBigNum->cUsed && !pBigNum->pauElements[iElement])
|
---|
1643 | rtBigNumStripTrailingZeros(pBigNum);
|
---|
1644 | }
|
---|
1645 | }
|
---|
1646 | #endif /* unused */
|
---|
1647 |
|
---|
1648 |
|
---|
1649 | /**
|
---|
1650 | * Sets a bit in the magnitude of @a pBigNum.
|
---|
1651 | *
|
---|
1652 | * The variables must be unscrambled.
|
---|
1653 | *
|
---|
1654 | * @returns IPRT status code.
|
---|
1655 | * @param pBigNum The big number.
|
---|
1656 | * @param iBit The bit to clear (0-based).
|
---|
1657 | */
|
---|
1658 | DECLINLINE(int) rtBigNumMagnitudeSetBit(PRTBIGNUM pBigNum, uint32_t iBit)
|
---|
1659 | {
|
---|
1660 | uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS;
|
---|
1661 | int rc = rtBigNumEnsureElementPresent(pBigNum, iElement);
|
---|
1662 | if (RT_SUCCESS(rc))
|
---|
1663 | {
|
---|
1664 | iBit &= RTBIGNUM_ELEMENT_BITS - 1;
|
---|
1665 | pBigNum->pauElements[iElement] |= RTBIGNUM_ELEMENT_BIT(iBit);
|
---|
1666 | return VINF_SUCCESS;
|
---|
1667 | }
|
---|
1668 | return rc;
|
---|
1669 | }
|
---|
1670 |
|
---|
1671 |
|
---|
1672 | #if 0 /* unused */
|
---|
1673 | /**
|
---|
1674 | * Writes a bit in the magnitude of @a pBigNum.
|
---|
1675 | *
|
---|
1676 | * The variables must be unscrambled.
|
---|
1677 | *
|
---|
1678 | * @returns IPRT status code.
|
---|
1679 | * @param pBigNum The big number.
|
---|
1680 | * @param iBit The bit to write (0-based).
|
---|
1681 | * @param fValue The bit value.
|
---|
1682 | */
|
---|
1683 | DECLINLINE(int) rtBigNumMagnitudeWriteBit(PRTBIGNUM pBigNum, uint32_t iBit, bool fValue)
|
---|
1684 | {
|
---|
1685 | if (fValue)
|
---|
1686 | return rtBigNumMagnitudeSetBit(pBigNum, iBit);
|
---|
1687 | rtBigNumMagnitudeClearBit(pBigNum, iBit);
|
---|
1688 | return VINF_SUCCESS;
|
---|
1689 | }
|
---|
1690 | #endif
|
---|
1691 |
|
---|
1692 |
|
---|
1693 | /**
|
---|
1694 | * Returns the given magnitude bit.
|
---|
1695 | *
|
---|
1696 | * The variables must be unscrambled.
|
---|
1697 | *
|
---|
1698 | * @returns The bit value (1 or 0).
|
---|
1699 | * @param pBigNum The big number.
|
---|
1700 | * @param iBit The bit to return (0-based).
|
---|
1701 | */
|
---|
1702 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumMagnitudeGetBit(PCRTBIGNUM pBigNum, uint32_t iBit)
|
---|
1703 | {
|
---|
1704 | uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS;
|
---|
1705 | if (iElement < pBigNum->cUsed)
|
---|
1706 | {
|
---|
1707 | iBit &= RTBIGNUM_ELEMENT_BITS - 1;
|
---|
1708 | return (pBigNum->pauElements[iElement] >> iBit) & 1;
|
---|
1709 | }
|
---|
1710 | return 0;
|
---|
1711 | }
|
---|
1712 |
|
---|
1713 |
|
---|
1714 | /**
|
---|
1715 | * Shifts the magnitude left by one.
|
---|
1716 | *
|
---|
1717 | * The variables must be unscrambled.
|
---|
1718 | *
|
---|
1719 | * @returns IPRT status code.
|
---|
1720 | * @param pBigNum The big number.
|
---|
1721 | * @param uCarry The value to shift in at the bottom.
|
---|
1722 | */
|
---|
1723 | DECLINLINE(int) rtBigNumMagnitudeShiftLeftOne(PRTBIGNUM pBigNum, RTBIGNUMELEMENT uCarry)
|
---|
1724 | {
|
---|
1725 | Assert(uCarry <= 1);
|
---|
1726 |
|
---|
1727 | /* Do the shifting. */
|
---|
1728 | uint32_t cUsed = pBigNum->cUsed;
|
---|
1729 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
1730 | uCarry = rtBigNumMagnitudeShiftLeftOneAssemblyWorker(pBigNum->pauElements, cUsed, uCarry);
|
---|
1731 | #else
|
---|
1732 | for (uint32_t i = 0; i < cUsed; i++)
|
---|
1733 | {
|
---|
1734 | RTBIGNUMELEMENT uTmp = pBigNum->pauElements[i];
|
---|
1735 | pBigNum->pauElements[i] = (uTmp << 1) | uCarry;
|
---|
1736 | uCarry = uTmp >> (RTBIGNUM_ELEMENT_BITS - 1);
|
---|
1737 | }
|
---|
1738 | #endif
|
---|
1739 |
|
---|
1740 | /* If we still carry a bit, we need to increase the size. */
|
---|
1741 | if (uCarry)
|
---|
1742 | {
|
---|
1743 | int rc = rtBigNumSetUsed(pBigNum, cUsed + 1);
|
---|
1744 | AssertRCReturn(rc, rc);
|
---|
1745 | pBigNum->pauElements[cUsed] = uCarry;
|
---|
1746 | }
|
---|
1747 |
|
---|
1748 | return VINF_SUCCESS;
|
---|
1749 | }
|
---|
1750 |
|
---|
1751 |
|
---|
1752 | /**
|
---|
1753 | * Shifts the magnitude left by @a cBits.
|
---|
1754 | *
|
---|
1755 | * The variables must be unscrambled.
|
---|
1756 | *
|
---|
1757 | * @returns IPRT status code.
|
---|
1758 | * @param pResult Where to store the result.
|
---|
1759 | * @param pValue The value to shift.
|
---|
1760 | * @param cBits The shift count.
|
---|
1761 | */
|
---|
1762 | static int rtBigNumMagnitudeShiftLeft(PRTBIGNUM pResult, PCRTBIGNUM pValue, uint32_t cBits)
|
---|
1763 | {
|
---|
1764 | int rc;
|
---|
1765 | if (cBits)
|
---|
1766 | {
|
---|
1767 | uint32_t cBitsNew = rtBigNumMagnitudeBitWidth(pValue);
|
---|
1768 | if (cBitsNew > 0)
|
---|
1769 | {
|
---|
1770 | if (cBitsNew + cBits > cBitsNew)
|
---|
1771 | {
|
---|
1772 | cBitsNew += cBits;
|
---|
1773 | rc = rtBigNumSetUsedEx(pResult, 0, RT_ALIGN_32(cBitsNew, RTBIGNUM_ELEMENT_BITS) / RTBIGNUM_ELEMENT_BITS);
|
---|
1774 | if (RT_SUCCESS(rc))
|
---|
1775 | rc = rtBigNumSetUsed(pResult, RT_ALIGN_32(cBitsNew, RTBIGNUM_ELEMENT_BITS) / RTBIGNUM_ELEMENT_BITS);
|
---|
1776 | if (RT_SUCCESS(rc))
|
---|
1777 | {
|
---|
1778 | uint32_t const cLeft = pValue->cUsed;
|
---|
1779 | PCRTBIGNUMELEMENT pauSrc = pValue->pauElements;
|
---|
1780 | PRTBIGNUMELEMENT pauDst = pResult->pauElements;
|
---|
1781 |
|
---|
1782 | Assert(ASMMemIsZero(pauDst, (cBits / RTBIGNUM_ELEMENT_BITS) * RTBIGNUM_ELEMENT_SIZE));
|
---|
1783 | pauDst += cBits / RTBIGNUM_ELEMENT_BITS;
|
---|
1784 |
|
---|
1785 | cBits &= RTBIGNUM_ELEMENT_BITS - 1;
|
---|
1786 | if (cBits)
|
---|
1787 | {
|
---|
1788 | RTBIGNUMELEMENT uPrev = 0;
|
---|
1789 | for (uint32_t i = 0; i < cLeft; i++)
|
---|
1790 | {
|
---|
1791 | RTBIGNUMELEMENT uCur = pauSrc[i];
|
---|
1792 | pauDst[i] = (uCur << cBits) | (uPrev >> (RTBIGNUM_ELEMENT_BITS - cBits));
|
---|
1793 | uPrev = uCur;
|
---|
1794 | }
|
---|
1795 | uPrev >>= RTBIGNUM_ELEMENT_BITS - cBits;
|
---|
1796 | if (uPrev)
|
---|
1797 | pauDst[pValue->cUsed] = uPrev;
|
---|
1798 | }
|
---|
1799 | else
|
---|
1800 | memcpy(pauDst, pauSrc, cLeft * RTBIGNUM_ELEMENT_SIZE);
|
---|
1801 | }
|
---|
1802 | }
|
---|
1803 | else
|
---|
1804 | rc = VERR_OUT_OF_RANGE;
|
---|
1805 | }
|
---|
1806 | /* Shifting zero always yields a zero result. */
|
---|
1807 | else
|
---|
1808 | rc = rtBigNumSetUsed(pResult, 0);
|
---|
1809 | }
|
---|
1810 | else
|
---|
1811 | rc = rtBigNumMagnitudeCopy(pResult, pValue);
|
---|
1812 | return rc;
|
---|
1813 | }
|
---|
1814 |
|
---|
1815 |
|
---|
1816 | RTDECL(int) RTBigNumShiftLeft(PRTBIGNUM pResult, PCRTBIGNUM pValue, uint32_t cBits)
|
---|
1817 | {
|
---|
1818 | Assert(pResult != pValue);
|
---|
1819 | AssertReturn(pResult->fSensitive >= pValue->fSensitive, VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1820 |
|
---|
1821 | int rc = rtBigNumUnscramble(pResult);
|
---|
1822 | if (RT_SUCCESS(rc))
|
---|
1823 | {
|
---|
1824 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
1825 | rc = rtBigNumUnscramble((PRTBIGNUM)pValue);
|
---|
1826 | if (RT_SUCCESS(rc))
|
---|
1827 | {
|
---|
1828 | RTBIGNUM_ASSERT_VALID(pValue);
|
---|
1829 |
|
---|
1830 | pResult->fNegative = pValue->fNegative;
|
---|
1831 | rc = rtBigNumMagnitudeShiftLeft(pResult, pValue, cBits);
|
---|
1832 |
|
---|
1833 | rtBigNumScramble((PRTBIGNUM)pValue);
|
---|
1834 | }
|
---|
1835 | rtBigNumScramble(pResult);
|
---|
1836 | }
|
---|
1837 | return rc;
|
---|
1838 | }
|
---|
1839 |
|
---|
1840 |
|
---|
1841 | /**
|
---|
1842 | * Shifts the magnitude right by @a cBits.
|
---|
1843 | *
|
---|
1844 | * The variables must be unscrambled.
|
---|
1845 | *
|
---|
1846 | * @returns IPRT status code.
|
---|
1847 | * @param pResult Where to store the result.
|
---|
1848 | * @param pValue The value to shift.
|
---|
1849 | * @param cBits The shift count.
|
---|
1850 | */
|
---|
1851 | static int rtBigNumMagnitudeShiftRight(PRTBIGNUM pResult, PCRTBIGNUM pValue, uint32_t cBits)
|
---|
1852 | {
|
---|
1853 | int rc;
|
---|
1854 | if (cBits)
|
---|
1855 | {
|
---|
1856 | uint32_t cBitsNew = rtBigNumMagnitudeBitWidth(pValue);
|
---|
1857 | if (cBitsNew > cBits)
|
---|
1858 | {
|
---|
1859 | cBitsNew -= cBits;
|
---|
1860 | uint32_t cElementsNew = RT_ALIGN_32(cBitsNew, RTBIGNUM_ELEMENT_BITS) / RTBIGNUM_ELEMENT_BITS;
|
---|
1861 | rc = rtBigNumSetUsed(pResult, cElementsNew);
|
---|
1862 | if (RT_SUCCESS(rc))
|
---|
1863 | {
|
---|
1864 | uint32_t i = cElementsNew;
|
---|
1865 | PCRTBIGNUMELEMENT pauSrc = pValue->pauElements;
|
---|
1866 | PRTBIGNUMELEMENT pauDst = pResult->pauElements;
|
---|
1867 |
|
---|
1868 | pauSrc += cBits / RTBIGNUM_ELEMENT_BITS;
|
---|
1869 |
|
---|
1870 | cBits &= RTBIGNUM_ELEMENT_BITS - 1;
|
---|
1871 | if (cBits)
|
---|
1872 | {
|
---|
1873 | RTBIGNUMELEMENT uPrev = &pauSrc[i] == &pValue->pauElements[pValue->cUsed] ? 0 : pauSrc[i];
|
---|
1874 | while (i-- > 0)
|
---|
1875 | {
|
---|
1876 | RTBIGNUMELEMENT uCur = pauSrc[i];
|
---|
1877 | pauDst[i] = (uCur >> cBits) | (uPrev << (RTBIGNUM_ELEMENT_BITS - cBits));
|
---|
1878 | uPrev = uCur;
|
---|
1879 | }
|
---|
1880 | }
|
---|
1881 | else
|
---|
1882 | memcpy(pauDst, pauSrc, i * RTBIGNUM_ELEMENT_SIZE);
|
---|
1883 | }
|
---|
1884 | }
|
---|
1885 | else
|
---|
1886 | rc = rtBigNumSetUsed(pResult, 0);
|
---|
1887 | }
|
---|
1888 | else
|
---|
1889 | rc = rtBigNumMagnitudeCopy(pResult, pValue);
|
---|
1890 | return rc;
|
---|
1891 | }
|
---|
1892 |
|
---|
1893 |
|
---|
1894 | RTDECL(int) RTBigNumShiftRight(PRTBIGNUM pResult, PCRTBIGNUM pValue, uint32_t cBits)
|
---|
1895 | {
|
---|
1896 | Assert(pResult != pValue);
|
---|
1897 | AssertReturn(pResult->fSensitive >= pValue->fSensitive, VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1898 |
|
---|
1899 | int rc = rtBigNumUnscramble(pResult);
|
---|
1900 | if (RT_SUCCESS(rc))
|
---|
1901 | {
|
---|
1902 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
1903 | rc = rtBigNumUnscramble((PRTBIGNUM)pValue);
|
---|
1904 | if (RT_SUCCESS(rc))
|
---|
1905 | {
|
---|
1906 | RTBIGNUM_ASSERT_VALID(pValue);
|
---|
1907 |
|
---|
1908 | pResult->fNegative = pValue->fNegative;
|
---|
1909 | rc = rtBigNumMagnitudeShiftRight(pResult, pValue, cBits);
|
---|
1910 | if (!pResult->cUsed)
|
---|
1911 | pResult->fNegative = 0;
|
---|
1912 |
|
---|
1913 | rtBigNumScramble((PRTBIGNUM)pValue);
|
---|
1914 | }
|
---|
1915 | rtBigNumScramble(pResult);
|
---|
1916 | }
|
---|
1917 | return rc;
|
---|
1918 | }
|
---|
1919 |
|
---|
1920 |
|
---|
1921 | /**
|
---|
1922 | * Implements the D3 test for Qhat decrementation.
|
---|
1923 | *
|
---|
1924 | * @returns True if Qhat should be decremented.
|
---|
1925 | * @param puQhat Pointer to Qhat.
|
---|
1926 | * @param uRhat The remainder.
|
---|
1927 | * @param uDivisorY The penultimate divisor element.
|
---|
1928 | * @param uDividendJMinus2 The j-2 dividend element.
|
---|
1929 | */
|
---|
1930 | DECLINLINE(bool) rtBigNumKnuthD3_ShouldDecrementQhat(RTBIGNUMELEMENT2X const *puQhat, RTBIGNUMELEMENT uRhat,
|
---|
1931 | RTBIGNUMELEMENT uDivisorY, RTBIGNUMELEMENT uDividendJMinus2)
|
---|
1932 | {
|
---|
1933 | if (puQhat->s.Lo == RTBIGNUM_ELEMENT_MAX && puQhat->s.Hi == 0)
|
---|
1934 | return true;
|
---|
1935 | #if RTBIGNUM_ELEMENT_BITS == 64
|
---|
1936 | RTBIGNUMELEMENT2X TmpLeft;
|
---|
1937 | RTUInt128MulByU64(&TmpLeft, puQhat, uDivisorY);
|
---|
1938 |
|
---|
1939 | RTBIGNUMELEMENT2X TmpRight;
|
---|
1940 | TmpRight.s.Lo = 0;
|
---|
1941 | TmpRight.s.Hi = uRhat;
|
---|
1942 | RTUInt128AssignAddU64(&TmpRight, uDividendJMinus2);
|
---|
1943 |
|
---|
1944 | if (RTUInt128Compare(&TmpLeft, &TmpRight) > 0)
|
---|
1945 | return true;
|
---|
1946 | #else
|
---|
1947 | if (puQhat->u * uDivisorY > ((uint64_t)uRhat << 32) + uDividendJMinus2)
|
---|
1948 | return true;
|
---|
1949 | #endif
|
---|
1950 | return false;
|
---|
1951 | }
|
---|
1952 |
|
---|
1953 |
|
---|
1954 | /**
|
---|
1955 | * C implementation of the D3 step of Knuth's division algorithm.
|
---|
1956 | *
|
---|
1957 | * This estimates a value Qhat that will be used as quotient "digit" (element)
|
---|
1958 | * at the current level of the division (j).
|
---|
1959 | *
|
---|
1960 | * @returns The Qhat value we've estimated.
|
---|
1961 | * @param pauDividendJN Pointer to the j+n (normalized) dividend element.
|
---|
1962 | * Will access up to two elements prior to this.
|
---|
1963 | * @param uDivZ The last element in the (normalized) divisor.
|
---|
1964 | * @param uDivY The penultimate element in the (normalized) divisor.
|
---|
1965 | */
|
---|
1966 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumKnuthD3_EstimateQhat(PCRTBIGNUMELEMENT pauDividendJN,
|
---|
1967 | RTBIGNUMELEMENT uDivZ, RTBIGNUMELEMENT uDivY)
|
---|
1968 | {
|
---|
1969 | RTBIGNUMELEMENT2X uQhat;
|
---|
1970 | RTBIGNUMELEMENT uRhat;
|
---|
1971 | RTBIGNUMELEMENT uDividendJN = pauDividendJN[0];
|
---|
1972 | Assert(uDividendJN <= uDivZ);
|
---|
1973 | if (uDividendJN != uDivZ)
|
---|
1974 | rtBigNumElement2xDiv2xBy1x(&uQhat, &uRhat, uDividendJN, pauDividendJN[-1], uDivZ);
|
---|
1975 | else
|
---|
1976 | {
|
---|
1977 | /*
|
---|
1978 | * This is the case where we end up with an initial Qhat that's all Fs.
|
---|
1979 | */
|
---|
1980 | /* Calc the remainder for max Qhat value. */
|
---|
1981 | RTBIGNUMELEMENT2X uTmp1; /* (v[j+n] << bits) + v[J+N-1] */
|
---|
1982 | uTmp1.s.Hi = uDivZ;
|
---|
1983 | uTmp1.s.Lo = pauDividendJN[-1];
|
---|
1984 |
|
---|
1985 | RTBIGNUMELEMENT2X uTmp2; /* uQhat * uDividendJN */
|
---|
1986 | uTmp2.s.Hi = uDivZ - 1;
|
---|
1987 | uTmp2.s.Lo = 0 - uDivZ;
|
---|
1988 | #if RTBIGNUM_ELEMENT_BITS == 64
|
---|
1989 | RTUInt128AssignSub(&uTmp1, &uTmp2);
|
---|
1990 | #else
|
---|
1991 | uTmp1.u -= uTmp2.u;
|
---|
1992 | #endif
|
---|
1993 | /* If we overflowed the remainder, don't bother trying to adjust. */
|
---|
1994 | if (uTmp1.s.Hi)
|
---|
1995 | return RTBIGNUM_ELEMENT_MAX;
|
---|
1996 |
|
---|
1997 | uRhat = uTmp1.s.Lo;
|
---|
1998 | uQhat.s.Lo = RTBIGNUM_ELEMENT_MAX;
|
---|
1999 | uQhat.s.Hi = 0;
|
---|
2000 | }
|
---|
2001 |
|
---|
2002 | /*
|
---|
2003 | * Adjust Q to eliminate all cases where it's two to large and most cases
|
---|
2004 | * where it's one too large.
|
---|
2005 | */
|
---|
2006 | while (rtBigNumKnuthD3_ShouldDecrementQhat(&uQhat, uRhat, uDivY, pauDividendJN[-2]))
|
---|
2007 | {
|
---|
2008 | rtBigNumElement2xDec(&uQhat);
|
---|
2009 | uRhat += uDivZ;
|
---|
2010 | if (uRhat < uDivZ /* overflow */ || uRhat == RTBIGNUM_ELEMENT_MAX)
|
---|
2011 | break;
|
---|
2012 | }
|
---|
2013 |
|
---|
2014 | return uQhat.s.Lo;
|
---|
2015 | }
|
---|
2016 |
|
---|
2017 |
|
---|
2018 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
2019 | DECLASM(bool) rtBigNumKnuthD4_MulSub(PRTBIGNUMELEMENT pauDividendJ, PRTBIGNUMELEMENT pauDivisor,
|
---|
2020 | uint32_t cDivisor, RTBIGNUMELEMENT uQhat);
|
---|
2021 | #else
|
---|
2022 | /**
|
---|
2023 | * C implementation of the D4 step of Knuth's division algorithm.
|
---|
2024 | *
|
---|
2025 | * This subtracts Divisor * Qhat from the dividend at the current J index.
|
---|
2026 | *
|
---|
2027 | * @returns true if negative result (unlikely), false if positive.
|
---|
2028 | * @param pauDividendJ Pointer to the j-th (normalized) dividend element.
|
---|
2029 | * Will access up to two elements prior to this.
|
---|
2030 | * @param uDivZ The last element in the (normalized) divisor.
|
---|
2031 | * @param uDivY The penultimate element in the (normalized) divisor.
|
---|
2032 | */
|
---|
2033 | DECLINLINE(bool) rtBigNumKnuthD4_MulSub(PRTBIGNUMELEMENT pauDividendJ, PRTBIGNUMELEMENT pauDivisor,
|
---|
2034 | uint32_t cDivisor, RTBIGNUMELEMENT uQhat)
|
---|
2035 | {
|
---|
2036 | uint32_t i;
|
---|
2037 | bool fBorrow = false;
|
---|
2038 | RTBIGNUMELEMENT uMulCarry = 0;
|
---|
2039 | for (i = 0; i < cDivisor; i++)
|
---|
2040 | {
|
---|
2041 | RTBIGNUMELEMENT2X uSub;
|
---|
2042 | # if RTBIGNUM_ELEMENT_BITS == 64
|
---|
2043 | RTUInt128MulU64ByU64(&uSub, uQhat, pauDivisor[i]);
|
---|
2044 | RTUInt128AssignAddU64(&uSub, uMulCarry);
|
---|
2045 | # else
|
---|
2046 | uSub.u = (uint64_t)uQhat * pauDivisor[i] + uMulCarry;
|
---|
2047 | # endif
|
---|
2048 | uMulCarry = uSub.s.Hi;
|
---|
2049 |
|
---|
2050 | RTBIGNUMELEMENT uDividendI = pauDividendJ[i];
|
---|
2051 | if (!fBorrow)
|
---|
2052 | {
|
---|
2053 | fBorrow = uDividendI < uSub.s.Lo;
|
---|
2054 | uDividendI -= uSub.s.Lo;
|
---|
2055 | }
|
---|
2056 | else
|
---|
2057 | {
|
---|
2058 | fBorrow = uDividendI <= uSub.s.Lo;
|
---|
2059 | uDividendI -= uSub.s.Lo + 1;
|
---|
2060 | }
|
---|
2061 | pauDividendJ[i] = uDividendI;
|
---|
2062 | }
|
---|
2063 |
|
---|
2064 | /* Carry and borrow into the final dividend element. */
|
---|
2065 | RTBIGNUMELEMENT uDividendI = pauDividendJ[i];
|
---|
2066 | if (!fBorrow)
|
---|
2067 | {
|
---|
2068 | fBorrow = uDividendI < uMulCarry;
|
---|
2069 | pauDividendJ[i] = uDividendI - uMulCarry;
|
---|
2070 | }
|
---|
2071 | else
|
---|
2072 | {
|
---|
2073 | fBorrow = uDividendI <= uMulCarry;
|
---|
2074 | pauDividendJ[i] = uDividendI - uMulCarry - 1;
|
---|
2075 | }
|
---|
2076 |
|
---|
2077 | return fBorrow;
|
---|
2078 | }
|
---|
2079 | #endif /* !IPRT_BIGINT_WITH_ASM */
|
---|
2080 |
|
---|
2081 |
|
---|
2082 | /**
|
---|
2083 | * C implementation of the D6 step of Knuth's division algorithm.
|
---|
2084 | *
|
---|
2085 | * This adds the divisor to the dividend to undo the negative value step D4
|
---|
2086 | * produced. This is not very frequent occurence.
|
---|
2087 | *
|
---|
2088 | * @param pauDividendJ Pointer to the j-th (normalized) dividend element.
|
---|
2089 | * Will access up to two elements prior to this.
|
---|
2090 | * @param pauDivisor The last element in the (normalized) divisor.
|
---|
2091 | * @param cDivisor The penultimate element in the (normalized) divisor.
|
---|
2092 | */
|
---|
2093 | DECLINLINE(void) rtBigNumKnuthD6_AddBack(PRTBIGNUMELEMENT pauDividendJ, PRTBIGNUMELEMENT pauDivisor, uint32_t cDivisor)
|
---|
2094 | {
|
---|
2095 | RTBIGNUMELEMENT2X uTmp;
|
---|
2096 | uTmp.s.Lo = 0;
|
---|
2097 |
|
---|
2098 | uint32_t i;
|
---|
2099 | for (i = 0; i < cDivisor; i++)
|
---|
2100 | {
|
---|
2101 | uTmp.s.Hi = 0;
|
---|
2102 | #if RTBIGNUM_ELEMENT_BITS == 64
|
---|
2103 | RTUInt128AssignAddU64(&uTmp, pauDivisor[i]);
|
---|
2104 | RTUInt128AssignAddU64(&uTmp, pauDividendJ[i]);
|
---|
2105 | #else
|
---|
2106 | uTmp.u += pauDivisor[i];
|
---|
2107 | uTmp.u += pauDividendJ[i];
|
---|
2108 | #endif
|
---|
2109 | pauDividendJ[i] = uTmp.s.Lo;
|
---|
2110 | uTmp.s.Lo = uTmp.s.Hi;
|
---|
2111 | }
|
---|
2112 |
|
---|
2113 | /* The final dividend entry. */
|
---|
2114 | Assert(pauDividendJ[i] + uTmp.s.Lo < uTmp.s.Lo);
|
---|
2115 | pauDividendJ[i] += uTmp.s.Lo;
|
---|
2116 | }
|
---|
2117 |
|
---|
2118 |
|
---|
2119 | /**
|
---|
2120 | * Knuth's division (core).
|
---|
2121 | *
|
---|
2122 | * @returns IPRT status code.
|
---|
2123 | * @param pQuotient Where to return the quotient. Can be NULL.
|
---|
2124 | * @param pRemainder Where to return the remainder.
|
---|
2125 | * @param pDividend What to divide.
|
---|
2126 | * @param pDivisor What to divide by.
|
---|
2127 | */
|
---|
2128 | static int rtBigNumMagnitudeDivideKnuth(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
2129 | {
|
---|
2130 | Assert(pDivisor->cUsed > 1);
|
---|
2131 | uint32_t const cDivisor = pDivisor->cUsed;
|
---|
2132 | Assert(pDividend->cUsed >= cDivisor);
|
---|
2133 |
|
---|
2134 | /*
|
---|
2135 | * Make sure we've got enough space in the quotient, so we can build it
|
---|
2136 | * without any trouble come step D5.
|
---|
2137 | */
|
---|
2138 | int rc;
|
---|
2139 | if (pQuotient)
|
---|
2140 | {
|
---|
2141 | rc = rtBigNumSetUsedEx(pQuotient, 0, pDividend->cUsed - cDivisor + 1);
|
---|
2142 | if (RT_SUCCESS(rc))
|
---|
2143 | rc = rtBigNumSetUsed(pQuotient, pDividend->cUsed - cDivisor + 1);
|
---|
2144 | if (RT_FAILURE(rc))
|
---|
2145 | return rc;
|
---|
2146 | }
|
---|
2147 |
|
---|
2148 | /*
|
---|
2149 | * D1. Normalize. The goal here is to make sure the last element in the
|
---|
2150 | * divisor is greater than RTBIGNUMELEMENTS_MAX/2. We must also make sure
|
---|
2151 | * we can access element pDividend->cUsed of the normalized dividend.
|
---|
2152 | */
|
---|
2153 | RTBIGNUM NormDividend;
|
---|
2154 | RTBIGNUM NormDivisor;
|
---|
2155 | PCRTBIGNUM pNormDivisor = &NormDivisor;
|
---|
2156 | rtBigNumInitZeroTemplate(&NormDivisor, pDividend);
|
---|
2157 |
|
---|
2158 | uint32_t cNormShift = (RTBIGNUM_ELEMENT_BITS - rtBigNumMagnitudeBitWidth(pDivisor)) & (RTBIGNUM_ELEMENT_BITS - 1);
|
---|
2159 | if (cNormShift)
|
---|
2160 | {
|
---|
2161 | rtBigNumInitZeroTemplate(&NormDividend, pDividend);
|
---|
2162 | rc = rtBigNumMagnitudeShiftLeft(&NormDividend, pDividend, cNormShift);
|
---|
2163 | if (RT_SUCCESS(rc))
|
---|
2164 | rc = rtBigNumMagnitudeShiftLeft(&NormDivisor, pDivisor, cNormShift);
|
---|
2165 | }
|
---|
2166 | else
|
---|
2167 | {
|
---|
2168 | pNormDivisor = pDivisor;
|
---|
2169 | rc = rtBigNumCloneInternal(&NormDividend, pDividend);
|
---|
2170 | }
|
---|
2171 | if (RT_SUCCESS(rc) && pDividend->cUsed == NormDividend.cUsed)
|
---|
2172 | rc = rtBigNumEnsureExtraZeroElements(&NormDividend, NormDividend.cUsed + 1);
|
---|
2173 | if (RT_SUCCESS(rc))
|
---|
2174 | {
|
---|
2175 | /*
|
---|
2176 | * D2. Initialize the j index so we can loop thru the elements in the
|
---|
2177 | * dividend that makes it larger than the divisor.
|
---|
2178 | */
|
---|
2179 | uint32_t j = pDividend->cUsed - cDivisor;
|
---|
2180 |
|
---|
2181 | RTBIGNUMELEMENT const DivZ = pNormDivisor->pauElements[cDivisor - 1];
|
---|
2182 | RTBIGNUMELEMENT const DivY = pNormDivisor->pauElements[cDivisor - 2];
|
---|
2183 | for (;;)
|
---|
2184 | {
|
---|
2185 | /*
|
---|
2186 | * D3. Estimate a Q' by dividing the j and j-1 dividen elements by
|
---|
2187 | * the last divisor element, then adjust against the next elements.
|
---|
2188 | */
|
---|
2189 | RTBIGNUMELEMENT uQhat = rtBigNumKnuthD3_EstimateQhat(&NormDividend.pauElements[j + cDivisor], DivZ, DivY);
|
---|
2190 |
|
---|
2191 | /*
|
---|
2192 | * D4. Multiply and subtract.
|
---|
2193 | */
|
---|
2194 | bool fNegative = rtBigNumKnuthD4_MulSub(&NormDividend.pauElements[j], pNormDivisor->pauElements, cDivisor, uQhat);
|
---|
2195 |
|
---|
2196 | /*
|
---|
2197 | * D5. Test remainder.
|
---|
2198 | * D6. Add back.
|
---|
2199 | */
|
---|
2200 | if (fNegative)
|
---|
2201 | {
|
---|
2202 | //__debugbreak();
|
---|
2203 | rtBigNumKnuthD6_AddBack(&NormDividend.pauElements[j], pNormDivisor->pauElements, cDivisor);
|
---|
2204 | uQhat--;
|
---|
2205 | }
|
---|
2206 |
|
---|
2207 | if (pQuotient)
|
---|
2208 | pQuotient->pauElements[j] = uQhat;
|
---|
2209 |
|
---|
2210 | /*
|
---|
2211 | * D7. Loop on j.
|
---|
2212 | */
|
---|
2213 | if (j == 0)
|
---|
2214 | break;
|
---|
2215 | j--;
|
---|
2216 | }
|
---|
2217 |
|
---|
2218 | /*
|
---|
2219 | * D8. Unnormalize the remainder.
|
---|
2220 | */
|
---|
2221 | rtBigNumStripTrailingZeros(&NormDividend);
|
---|
2222 | if (cNormShift)
|
---|
2223 | rc = rtBigNumMagnitudeShiftRight(pRemainder, &NormDividend, cNormShift);
|
---|
2224 | else
|
---|
2225 | rc = rtBigNumMagnitudeCopy(pRemainder, &NormDividend);
|
---|
2226 | if (pQuotient)
|
---|
2227 | rtBigNumStripTrailingZeros(pQuotient);
|
---|
2228 | }
|
---|
2229 |
|
---|
2230 | /*
|
---|
2231 | * Delete temporary variables.
|
---|
2232 | */
|
---|
2233 | RTBigNumDestroy(&NormDividend);
|
---|
2234 | if (pDivisor == &NormDivisor)
|
---|
2235 | RTBigNumDestroy(&NormDivisor);
|
---|
2236 | return rc;
|
---|
2237 | }
|
---|
2238 |
|
---|
2239 |
|
---|
2240 | static int rtBigNumMagnitudeDivideSlowLong(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
2241 | {
|
---|
2242 | /*
|
---|
2243 | * Do very simple long division. This ain't fast, but it does the trick.
|
---|
2244 | */
|
---|
2245 | int rc = VINF_SUCCESS;
|
---|
2246 | uint32_t iBit = rtBigNumMagnitudeBitWidth(pDividend);
|
---|
2247 | while (iBit-- > 0)
|
---|
2248 | {
|
---|
2249 | rc = rtBigNumMagnitudeShiftLeftOne(pRemainder, rtBigNumMagnitudeGetBit(pDividend, iBit));
|
---|
2250 | AssertRCBreak(rc);
|
---|
2251 | int iDiff = rtBigNumMagnitudeCompare(pRemainder, pDivisor);
|
---|
2252 | if (iDiff >= 0)
|
---|
2253 | {
|
---|
2254 | if (iDiff != 0)
|
---|
2255 | {
|
---|
2256 | rc = rtBigNumMagnitudeSubThis(pRemainder, pDivisor);
|
---|
2257 | AssertRCBreak(rc);
|
---|
2258 | }
|
---|
2259 | else
|
---|
2260 | rtBigNumSetUsed(pRemainder, 0);
|
---|
2261 | rc = rtBigNumMagnitudeSetBit(pQuotient, iBit);
|
---|
2262 | AssertRCBreak(rc);
|
---|
2263 | }
|
---|
2264 | }
|
---|
2265 |
|
---|
2266 | /* This shouldn't be necessary. */
|
---|
2267 | rtBigNumStripTrailingZeros(pQuotient);
|
---|
2268 | rtBigNumStripTrailingZeros(pRemainder);
|
---|
2269 |
|
---|
2270 | return rc;
|
---|
2271 | }
|
---|
2272 |
|
---|
2273 |
|
---|
2274 | /**
|
---|
2275 | * Divides the magnitudes of two values, letting the caller care about the sign
|
---|
2276 | * bit.
|
---|
2277 | *
|
---|
2278 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
2279 | * touched, this means the caller have to check for zero outputs.
|
---|
2280 | *
|
---|
2281 | * @returns IPRT status code.
|
---|
2282 | * @param pQuotient Where to return the quotient.
|
---|
2283 | * @param pRemainder Where to return the remainder.
|
---|
2284 | * @param pDividend What to divide.
|
---|
2285 | * @param pDivisor What to divide by.
|
---|
2286 | * @param fForceLong Force long division.
|
---|
2287 | */
|
---|
2288 | static int rtBigNumMagnitudeDivide(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor,
|
---|
2289 | bool fForceLong)
|
---|
2290 | {
|
---|
2291 | Assert(pQuotient != pDividend); Assert(pQuotient != pDivisor); Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); Assert(pRemainder != pQuotient);
|
---|
2292 | Assert(!pQuotient->fCurScrambled); Assert(!pRemainder->fCurScrambled); Assert(!pDividend->fCurScrambled); Assert(!pDivisor->fCurScrambled);
|
---|
2293 |
|
---|
2294 | /*
|
---|
2295 | * Just set both output values to zero as that's the return for several
|
---|
2296 | * special case and the initial state of the general case.
|
---|
2297 | */
|
---|
2298 | rtBigNumSetUsed(pQuotient, 0);
|
---|
2299 | rtBigNumSetUsed(pRemainder, 0);
|
---|
2300 |
|
---|
2301 | /*
|
---|
2302 | * Dividing something by zero is undefined.
|
---|
2303 | * Diving zero by something is zero, unless the divsor is also zero.
|
---|
2304 | */
|
---|
2305 | if (!pDivisor->cUsed || !pDividend->cUsed)
|
---|
2306 | return pDivisor->cUsed ? VINF_SUCCESS : VERR_BIGNUM_DIV_BY_ZERO;
|
---|
2307 |
|
---|
2308 | /*
|
---|
2309 | * Dividing by one? Quotient = dividend, no remainder.
|
---|
2310 | */
|
---|
2311 | if (pDivisor->cUsed == 1 && pDivisor->pauElements[0] == 1)
|
---|
2312 | return rtBigNumMagnitudeCopy(pQuotient, pDividend);
|
---|
2313 |
|
---|
2314 | /*
|
---|
2315 | * Dividend smaller than the divisor. Zero quotient, all divisor.
|
---|
2316 | */
|
---|
2317 | int iDiff = rtBigNumMagnitudeCompare(pDividend, pDivisor);
|
---|
2318 | if (iDiff < 0)
|
---|
2319 | return rtBigNumMagnitudeCopy(pRemainder, pDividend);
|
---|
2320 |
|
---|
2321 | /*
|
---|
2322 | * Since we already have done the compare, check if the two values are the
|
---|
2323 | * same. The result is 1 and no remainder then.
|
---|
2324 | */
|
---|
2325 | if (iDiff == 0)
|
---|
2326 | {
|
---|
2327 | int rc = rtBigNumSetUsed(pQuotient, 1);
|
---|
2328 | if (RT_SUCCESS(rc))
|
---|
2329 | pQuotient->pauElements[0] = 1;
|
---|
2330 | return rc;
|
---|
2331 | }
|
---|
2332 |
|
---|
2333 | /*
|
---|
2334 | * Sort out special cases before going to the preferred or select algorithm.
|
---|
2335 | */
|
---|
2336 | int rc;
|
---|
2337 | if (pDividend->cUsed <= 2 && !fForceLong)
|
---|
2338 | {
|
---|
2339 | if (pDividend->cUsed < 2)
|
---|
2340 | {
|
---|
2341 | /*
|
---|
2342 | * Single element division.
|
---|
2343 | */
|
---|
2344 | RTBIGNUMELEMENT uQ = pDividend->pauElements[0] / pDivisor->pauElements[0];
|
---|
2345 | RTBIGNUMELEMENT uR = pDividend->pauElements[0] % pDivisor->pauElements[0];
|
---|
2346 | rc = VINF_SUCCESS;
|
---|
2347 | if (uQ)
|
---|
2348 | {
|
---|
2349 | rc = rtBigNumSetUsed(pQuotient, 1);
|
---|
2350 | if (RT_SUCCESS(rc))
|
---|
2351 | pQuotient->pauElements[0] = uQ;
|
---|
2352 | }
|
---|
2353 | if (uR && RT_SUCCESS(rc))
|
---|
2354 | {
|
---|
2355 | rc = rtBigNumSetUsed(pRemainder, 1);
|
---|
2356 | if (RT_SUCCESS(rc))
|
---|
2357 | pRemainder->pauElements[0] = uR;
|
---|
2358 | }
|
---|
2359 | }
|
---|
2360 | else
|
---|
2361 | {
|
---|
2362 | /*
|
---|
2363 | * Two elements dividend by a one or two element divisor.
|
---|
2364 | */
|
---|
2365 | RTBIGNUMELEMENT2X uQ, uR;
|
---|
2366 | if (pDivisor->cUsed == 1)
|
---|
2367 | {
|
---|
2368 | rtBigNumElement2xDiv2xBy1x(&uQ, &uR.s.Lo, pDividend->pauElements[1], pDividend->pauElements[0],
|
---|
2369 | pDivisor->pauElements[0]);
|
---|
2370 | uR.s.Hi = 0;
|
---|
2371 | }
|
---|
2372 | else
|
---|
2373 | rtBigNumElement2xDiv(&uQ, &uR, pDividend->pauElements[1], pDividend->pauElements[0],
|
---|
2374 | pDivisor->pauElements[1], pDivisor->pauElements[0]);
|
---|
2375 | rc = rtBigNumElement2xCopyToMagnitude(&uQ, pQuotient);
|
---|
2376 | if (RT_SUCCESS(rc))
|
---|
2377 | rc = rtBigNumElement2xCopyToMagnitude(&uR, pRemainder);
|
---|
2378 | }
|
---|
2379 | }
|
---|
2380 | /*
|
---|
2381 | * Decide upon which algorithm to use. Knuth requires a divisor that's at
|
---|
2382 | * least 2 elements big.
|
---|
2383 | */
|
---|
2384 | else if (pDivisor->cUsed < 2 || fForceLong)
|
---|
2385 | rc = rtBigNumMagnitudeDivideSlowLong(pQuotient, pRemainder, pDividend, pDivisor);
|
---|
2386 | else
|
---|
2387 | rc = rtBigNumMagnitudeDivideKnuth(pQuotient, pRemainder, pDividend, pDivisor);
|
---|
2388 | return rc;
|
---|
2389 | }
|
---|
2390 |
|
---|
2391 |
|
---|
2392 | static int rtBigNumDivideCommon(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder,
|
---|
2393 | PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor, bool fForceLong)
|
---|
2394 | {
|
---|
2395 | Assert(pQuotient != pDividend); Assert(pQuotient != pDivisor); Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); Assert(pRemainder != pQuotient);
|
---|
2396 | AssertReturn(pQuotient->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
2397 | AssertReturn(pRemainder->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
2398 |
|
---|
2399 | int rc = rtBigNumUnscramble(pQuotient);
|
---|
2400 | if (RT_SUCCESS(rc))
|
---|
2401 | {
|
---|
2402 | RTBIGNUM_ASSERT_VALID(pQuotient);
|
---|
2403 | rc = rtBigNumUnscramble(pRemainder);
|
---|
2404 | if (RT_SUCCESS(rc))
|
---|
2405 | {
|
---|
2406 | RTBIGNUM_ASSERT_VALID(pRemainder);
|
---|
2407 | rc = rtBigNumUnscramble((PRTBIGNUM)pDividend);
|
---|
2408 | if (RT_SUCCESS(rc))
|
---|
2409 | {
|
---|
2410 | RTBIGNUM_ASSERT_VALID(pDividend);
|
---|
2411 | rc = rtBigNumUnscramble((PRTBIGNUM)pDivisor);
|
---|
2412 | if (RT_SUCCESS(rc))
|
---|
2413 | {
|
---|
2414 | RTBIGNUM_ASSERT_VALID(pDivisor);
|
---|
2415 |
|
---|
2416 | /*
|
---|
2417 | * The sign value of the remainder is the same as the dividend.
|
---|
2418 | * The sign values of the quotient follow XOR rules, just like multiplication:
|
---|
2419 | * -3 / 2 = -1; r=-1; 1 ^ 0 = 1
|
---|
2420 | * 3 / -2 = -1; r= 1; 1 ^ 0 = 1
|
---|
2421 | * -3 / -2 = 1; r=-1; 1 ^ 1 = 0
|
---|
2422 | * 3 / 2 = 1; r= 1; 0 ^ 0 = 0
|
---|
2423 | */
|
---|
2424 | pQuotient->fNegative = pDividend->fNegative ^ pDivisor->fNegative;
|
---|
2425 | pRemainder->fNegative = pDividend->fNegative;
|
---|
2426 |
|
---|
2427 | rc = rtBigNumMagnitudeDivide(pQuotient, pRemainder, pDividend, pDivisor, fForceLong);
|
---|
2428 |
|
---|
2429 | if (pQuotient->cUsed == 0)
|
---|
2430 | pQuotient->fNegative = 0;
|
---|
2431 | if (pRemainder->cUsed == 0)
|
---|
2432 | pRemainder->fNegative = 0;
|
---|
2433 |
|
---|
2434 | rtBigNumScramble((PRTBIGNUM)pDivisor);
|
---|
2435 | }
|
---|
2436 | rtBigNumScramble((PRTBIGNUM)pDividend);
|
---|
2437 | }
|
---|
2438 | rtBigNumScramble(pRemainder);
|
---|
2439 | }
|
---|
2440 | rtBigNumScramble(pQuotient);
|
---|
2441 | }
|
---|
2442 | return rc;
|
---|
2443 | }
|
---|
2444 |
|
---|
2445 |
|
---|
2446 | RTDECL(int) RTBigNumDivide(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
2447 | {
|
---|
2448 | return rtBigNumDivideCommon(pQuotient, pRemainder, pDividend, pDivisor, false /*fForceLong*/);
|
---|
2449 | }
|
---|
2450 |
|
---|
2451 |
|
---|
2452 | RTDECL(int) RTBigNumDivideLong(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
2453 | {
|
---|
2454 | return rtBigNumDivideCommon(pQuotient, pRemainder, pDividend, pDivisor, true /*fForceLong*/);
|
---|
2455 | }
|
---|
2456 |
|
---|
2457 |
|
---|
2458 | /**
|
---|
2459 | * Calculates the modulus of a magnitude value, leaving the sign bit to the
|
---|
2460 | * caller.
|
---|
2461 | *
|
---|
2462 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
2463 | * touched, this means the caller have to check for zero outputs.
|
---|
2464 | *
|
---|
2465 | * @returns IPRT status code.
|
---|
2466 | * @param pRemainder Where to return the remainder.
|
---|
2467 | * @param pDividend What to divide.
|
---|
2468 | * @param pDivisor What to divide by.
|
---|
2469 | */
|
---|
2470 | static int rtBigNumMagnitudeModulo(PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
2471 | {
|
---|
2472 | Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor);
|
---|
2473 | Assert(!pRemainder->fCurScrambled); Assert(!pDividend->fCurScrambled); Assert(!pDivisor->fCurScrambled);
|
---|
2474 |
|
---|
2475 | /*
|
---|
2476 | * Just set the output value to zero as that's the return for several
|
---|
2477 | * special case and the initial state of the general case.
|
---|
2478 | */
|
---|
2479 | rtBigNumSetUsed(pRemainder, 0);
|
---|
2480 |
|
---|
2481 | /*
|
---|
2482 | * Dividing something by zero is undefined.
|
---|
2483 | * Diving zero by something is zero, unless the divsor is also zero.
|
---|
2484 | */
|
---|
2485 | if (!pDivisor->cUsed || !pDividend->cUsed)
|
---|
2486 | return pDivisor->cUsed ? VINF_SUCCESS : VERR_BIGNUM_DIV_BY_ZERO;
|
---|
2487 |
|
---|
2488 | /*
|
---|
2489 | * Dividing by one? Quotient = dividend, no remainder.
|
---|
2490 | */
|
---|
2491 | if (pDivisor->cUsed == 1 && pDivisor->pauElements[0] == 1)
|
---|
2492 | return VINF_SUCCESS;
|
---|
2493 |
|
---|
2494 | /*
|
---|
2495 | * Dividend smaller than the divisor. Zero quotient, all divisor.
|
---|
2496 | */
|
---|
2497 | int iDiff = rtBigNumMagnitudeCompare(pDividend, pDivisor);
|
---|
2498 | if (iDiff < 0)
|
---|
2499 | return rtBigNumMagnitudeCopy(pRemainder, pDividend);
|
---|
2500 |
|
---|
2501 | /*
|
---|
2502 | * Since we already have done the compare, check if the two values are the
|
---|
2503 | * same. The result is 1 and no remainder then.
|
---|
2504 | */
|
---|
2505 | if (iDiff == 0)
|
---|
2506 | return VINF_SUCCESS;
|
---|
2507 |
|
---|
2508 | /** @todo optimize small numbers. */
|
---|
2509 | int rc = VINF_SUCCESS;
|
---|
2510 | if (pDivisor->cUsed < 2)
|
---|
2511 | {
|
---|
2512 | /*
|
---|
2513 | * Do very simple long division. This ain't fast, but it does the trick.
|
---|
2514 | */
|
---|
2515 | uint32_t iBit = rtBigNumMagnitudeBitWidth(pDividend);
|
---|
2516 | while (iBit-- > 0)
|
---|
2517 | {
|
---|
2518 | rc = rtBigNumMagnitudeShiftLeftOne(pRemainder, rtBigNumMagnitudeGetBit(pDividend, iBit));
|
---|
2519 | AssertRCBreak(rc);
|
---|
2520 | iDiff = rtBigNumMagnitudeCompare(pRemainder, pDivisor);
|
---|
2521 | if (iDiff >= 0)
|
---|
2522 | {
|
---|
2523 | if (iDiff != 0)
|
---|
2524 | {
|
---|
2525 | rc = rtBigNumMagnitudeSubThis(pRemainder, pDivisor);
|
---|
2526 | AssertRCBreak(rc);
|
---|
2527 | }
|
---|
2528 | else
|
---|
2529 | rtBigNumSetUsed(pRemainder, 0);
|
---|
2530 | }
|
---|
2531 | }
|
---|
2532 | }
|
---|
2533 | else
|
---|
2534 | {
|
---|
2535 | /*
|
---|
2536 | * Join paths with division.
|
---|
2537 | */
|
---|
2538 | rc = rtBigNumMagnitudeDivideKnuth(NULL, pRemainder, pDividend, pDivisor);
|
---|
2539 | }
|
---|
2540 |
|
---|
2541 | /* This shouldn't be necessary. */
|
---|
2542 | rtBigNumStripTrailingZeros(pRemainder);
|
---|
2543 | return rc;
|
---|
2544 | }
|
---|
2545 |
|
---|
2546 |
|
---|
2547 | RTDECL(int) RTBigNumModulo(PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
2548 | {
|
---|
2549 | Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor);
|
---|
2550 | AssertReturn(pRemainder->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
2551 |
|
---|
2552 | int rc = rtBigNumUnscramble(pRemainder);
|
---|
2553 | if (RT_SUCCESS(rc))
|
---|
2554 | {
|
---|
2555 | RTBIGNUM_ASSERT_VALID(pRemainder);
|
---|
2556 | rc = rtBigNumUnscramble((PRTBIGNUM)pDividend);
|
---|
2557 | if (RT_SUCCESS(rc))
|
---|
2558 | {
|
---|
2559 | RTBIGNUM_ASSERT_VALID(pDividend);
|
---|
2560 | rc = rtBigNumUnscramble((PRTBIGNUM)pDivisor);
|
---|
2561 | if (RT_SUCCESS(rc))
|
---|
2562 | {
|
---|
2563 | RTBIGNUM_ASSERT_VALID(pDivisor);
|
---|
2564 |
|
---|
2565 | /*
|
---|
2566 | * The sign value of the remainder is the same as the dividend.
|
---|
2567 | */
|
---|
2568 | pRemainder->fNegative = pDividend->fNegative;
|
---|
2569 |
|
---|
2570 | rc = rtBigNumMagnitudeModulo(pRemainder, pDividend, pDivisor);
|
---|
2571 |
|
---|
2572 | if (pRemainder->cUsed == 0)
|
---|
2573 | pRemainder->fNegative = 0;
|
---|
2574 |
|
---|
2575 | rtBigNumScramble((PRTBIGNUM)pDivisor);
|
---|
2576 | }
|
---|
2577 | rtBigNumScramble((PRTBIGNUM)pDividend);
|
---|
2578 | }
|
---|
2579 | rtBigNumScramble(pRemainder);
|
---|
2580 | }
|
---|
2581 | return rc;
|
---|
2582 | }
|
---|
2583 |
|
---|
2584 |
|
---|
2585 |
|
---|
2586 | /**
|
---|
2587 | * Exponentiate the magnitude.
|
---|
2588 | *
|
---|
2589 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
2590 | * touched, this means the caller have to reject negative exponents.
|
---|
2591 | *
|
---|
2592 | * @returns IPRT status code.
|
---|
2593 | * @param pResult Where to return power.
|
---|
2594 | * @param pBase The base value.
|
---|
2595 | * @param pExponent The exponent (assumed positive or zero).
|
---|
2596 | */
|
---|
2597 | static int rtBigNumMagnitudeExponentiate(PRTBIGNUM pResult, PCRTBIGNUM pBase, PCRTBIGNUM pExponent)
|
---|
2598 | {
|
---|
2599 | Assert(pResult != pBase); Assert(pResult != pExponent);
|
---|
2600 | Assert(!pResult->fCurScrambled); Assert(!pBase->fCurScrambled); Assert(!pExponent->fCurScrambled);
|
---|
2601 |
|
---|
2602 | /*
|
---|
2603 | * A couple of special cases.
|
---|
2604 | */
|
---|
2605 | int rc;
|
---|
2606 | /* base ^ 0 => 1. */
|
---|
2607 | if (pExponent->cUsed == 0)
|
---|
2608 | {
|
---|
2609 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
2610 | if (RT_SUCCESS(rc))
|
---|
2611 | pResult->pauElements[0] = 1;
|
---|
2612 | return rc;
|
---|
2613 | }
|
---|
2614 |
|
---|
2615 | /* base ^ 1 => base. */
|
---|
2616 | if (pExponent->cUsed == 1 && pExponent->pauElements[0] == 1)
|
---|
2617 | return rtBigNumMagnitudeCopy(pResult, pBase);
|
---|
2618 |
|
---|
2619 | /*
|
---|
2620 | * Set up.
|
---|
2621 | */
|
---|
2622 | /* Init temporary power-of-two variable to base. */
|
---|
2623 | RTBIGNUM Pow2;
|
---|
2624 | rc = rtBigNumCloneInternal(&Pow2, pBase);
|
---|
2625 | if (RT_SUCCESS(rc))
|
---|
2626 | {
|
---|
2627 | /* Init result to 1. */
|
---|
2628 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
2629 | if (RT_SUCCESS(rc))
|
---|
2630 | {
|
---|
2631 | pResult->pauElements[0] = 1;
|
---|
2632 |
|
---|
2633 | /* Make a temporary variable that we can use for temporary storage of the result. */
|
---|
2634 | RTBIGNUM TmpMultiplicand;
|
---|
2635 | rc = rtBigNumCloneInternal(&TmpMultiplicand, pResult);
|
---|
2636 | if (RT_SUCCESS(rc))
|
---|
2637 | {
|
---|
2638 | /*
|
---|
2639 | * Exponentiation by squaring. Reduces the number of
|
---|
2640 | * multiplications to: NumBitsSet(Exponent) + BitWidth(Exponent).
|
---|
2641 | */
|
---|
2642 | uint32_t const cExpBits = rtBigNumMagnitudeBitWidth(pExponent);
|
---|
2643 | uint32_t iBit = 0;
|
---|
2644 | for (;;)
|
---|
2645 | {
|
---|
2646 | if (rtBigNumMagnitudeGetBit(pExponent, iBit) != 0)
|
---|
2647 | {
|
---|
2648 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, pResult);
|
---|
2649 | if (RT_SUCCESS(rc))
|
---|
2650 | rc = rtBigNumMagnitudeMultiply(pResult, &TmpMultiplicand, &Pow2);
|
---|
2651 | if (RT_FAILURE(rc))
|
---|
2652 | break;
|
---|
2653 | }
|
---|
2654 |
|
---|
2655 | /* Done? */
|
---|
2656 | iBit++;
|
---|
2657 | if (iBit >= cExpBits)
|
---|
2658 | break;
|
---|
2659 |
|
---|
2660 | /* Not done yet, square the base again. */
|
---|
2661 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, &Pow2);
|
---|
2662 | if (RT_SUCCESS(rc))
|
---|
2663 | rc = rtBigNumMagnitudeMultiply(&Pow2, &TmpMultiplicand, &TmpMultiplicand);
|
---|
2664 | if (RT_FAILURE(rc))
|
---|
2665 | break;
|
---|
2666 | }
|
---|
2667 | }
|
---|
2668 | }
|
---|
2669 | RTBigNumDestroy(&Pow2);
|
---|
2670 | }
|
---|
2671 | return rc;
|
---|
2672 | }
|
---|
2673 |
|
---|
2674 |
|
---|
2675 | RTDECL(int) RTBigNumExponentiate(PRTBIGNUM pResult, PCRTBIGNUM pBase, PCRTBIGNUM pExponent)
|
---|
2676 | {
|
---|
2677 | Assert(pResult != pBase); Assert(pResult != pExponent);
|
---|
2678 | AssertReturn(pResult->fSensitive >= (pBase->fSensitive | pExponent->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
2679 |
|
---|
2680 | int rc = rtBigNumUnscramble(pResult);
|
---|
2681 | if (RT_SUCCESS(rc))
|
---|
2682 | {
|
---|
2683 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
2684 | rc = rtBigNumUnscramble((PRTBIGNUM)pBase);
|
---|
2685 | if (RT_SUCCESS(rc))
|
---|
2686 | {
|
---|
2687 | RTBIGNUM_ASSERT_VALID(pBase);
|
---|
2688 | rc = rtBigNumUnscramble((PRTBIGNUM)pExponent);
|
---|
2689 | if (RT_SUCCESS(rc))
|
---|
2690 | {
|
---|
2691 | RTBIGNUM_ASSERT_VALID(pExponent);
|
---|
2692 | if (!pExponent->fNegative)
|
---|
2693 | {
|
---|
2694 | pResult->fNegative = pBase->fNegative; /* sign unchanged. */
|
---|
2695 | rc = rtBigNumMagnitudeExponentiate(pResult, pBase, pExponent);
|
---|
2696 | }
|
---|
2697 | else
|
---|
2698 | rc = VERR_BIGNUM_NEGATIVE_EXPONENT;
|
---|
2699 |
|
---|
2700 | rtBigNumScramble((PRTBIGNUM)pExponent);
|
---|
2701 | }
|
---|
2702 | rtBigNumScramble((PRTBIGNUM)pBase);
|
---|
2703 | }
|
---|
2704 | rtBigNumScramble(pResult);
|
---|
2705 | }
|
---|
2706 | return rc;
|
---|
2707 | }
|
---|
2708 |
|
---|
2709 |
|
---|
2710 | /**
|
---|
2711 | * Modular exponentiation, magnitudes only.
|
---|
2712 | *
|
---|
2713 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
2714 | * touched, this means the caller have to reject negative exponents and do any
|
---|
2715 | * other necessary sign bit fiddling.
|
---|
2716 | *
|
---|
2717 | * @returns IPRT status code.
|
---|
2718 | * @param pResult Where to return the remainder of the power.
|
---|
2719 | * @param pBase The base value.
|
---|
2720 | * @param pExponent The exponent (assumed positive or zero).
|
---|
2721 | * @param pModulus The modulus value (or divisor if you like).
|
---|
2722 | */
|
---|
2723 | static int rtBigNumMagnitudeModExp(PRTBIGNUM pResult, PRTBIGNUM pBase, PRTBIGNUM pExponent, PRTBIGNUM pModulus)
|
---|
2724 | {
|
---|
2725 | Assert(pResult != pBase); Assert(pResult != pBase); Assert(pResult != pExponent); Assert(pResult != pModulus);
|
---|
2726 | Assert(!pResult->fCurScrambled); Assert(!pBase->fCurScrambled); Assert(!pExponent->fCurScrambled); Assert(!pModulus->fCurScrambled);
|
---|
2727 | int rc;
|
---|
2728 |
|
---|
2729 | /*
|
---|
2730 | * Check some special cases to get them out of the way.
|
---|
2731 | */
|
---|
2732 | /* Div by 0 => invalid. */
|
---|
2733 | if (pModulus->cUsed == 0)
|
---|
2734 | return VERR_BIGNUM_DIV_BY_ZERO;
|
---|
2735 |
|
---|
2736 | /* Div by 1 => no remainder. */
|
---|
2737 | if (pModulus->cUsed == 1 && pModulus->pauElements[0] == 1)
|
---|
2738 | {
|
---|
2739 | rtBigNumSetUsed(pResult, 0);
|
---|
2740 | return VINF_SUCCESS;
|
---|
2741 | }
|
---|
2742 |
|
---|
2743 | /* base ^ 0 => 1. */
|
---|
2744 | if (pExponent->cUsed == 0)
|
---|
2745 | {
|
---|
2746 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
2747 | if (RT_SUCCESS(rc))
|
---|
2748 | pResult->pauElements[0] = 1;
|
---|
2749 | return rc;
|
---|
2750 | }
|
---|
2751 |
|
---|
2752 | /* base ^ 1 => base. */
|
---|
2753 | if (pExponent->cUsed == 1 && pExponent->pauElements[0] == 1)
|
---|
2754 | return rtBigNumMagnitudeModulo(pResult, pBase, pModulus);
|
---|
2755 |
|
---|
2756 | /*
|
---|
2757 | * Set up.
|
---|
2758 | */
|
---|
2759 | /* Result = 1; preallocate space for the result while at it. */
|
---|
2760 | rc = rtBigNumSetUsed(pResult, pModulus->cUsed + 1);
|
---|
2761 | if (RT_SUCCESS(rc))
|
---|
2762 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
2763 | if (RT_SUCCESS(rc))
|
---|
2764 | {
|
---|
2765 | pResult->pauElements[0] = 1;
|
---|
2766 |
|
---|
2767 | /* ModBase = pBase or pBase % pModulus depending on the difference in size. */
|
---|
2768 | RTBIGNUM Pow2;
|
---|
2769 | if (pBase->cUsed <= pModulus->cUsed + pModulus->cUsed / 2)
|
---|
2770 | rc = rtBigNumCloneInternal(&Pow2, pBase);
|
---|
2771 | else
|
---|
2772 | rc = rtBigNumMagnitudeModulo(rtBigNumInitZeroTemplate(&Pow2, pBase), pBase, pModulus);
|
---|
2773 |
|
---|
2774 | /* Need a couple of temporary variables. */
|
---|
2775 | RTBIGNUM TmpMultiplicand;
|
---|
2776 | rtBigNumInitZeroTemplate(&TmpMultiplicand, pResult);
|
---|
2777 |
|
---|
2778 | RTBIGNUM TmpProduct;
|
---|
2779 | rtBigNumInitZeroTemplate(&TmpProduct, pResult);
|
---|
2780 |
|
---|
2781 | /*
|
---|
2782 | * We combine the exponentiation by squaring with the fact that:
|
---|
2783 | * (a*b) mod n = ( (a mod n) * (b mod n) ) mod n
|
---|
2784 | *
|
---|
2785 | * Thus, we can reduce the size of intermediate results by mod'ing them
|
---|
2786 | * in each step.
|
---|
2787 | */
|
---|
2788 | uint32_t const cExpBits = rtBigNumMagnitudeBitWidth(pExponent);
|
---|
2789 | uint32_t iBit = 0;
|
---|
2790 | for (;;)
|
---|
2791 | {
|
---|
2792 | if (rtBigNumMagnitudeGetBit(pExponent, iBit) != 0)
|
---|
2793 | {
|
---|
2794 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, pResult);
|
---|
2795 | if (RT_SUCCESS(rc))
|
---|
2796 | rc = rtBigNumMagnitudeMultiply(&TmpProduct, &TmpMultiplicand, &Pow2);
|
---|
2797 | if (RT_SUCCESS(rc))
|
---|
2798 | rc = rtBigNumMagnitudeModulo(pResult, &TmpProduct, pModulus);
|
---|
2799 | if (RT_FAILURE(rc))
|
---|
2800 | break;
|
---|
2801 | }
|
---|
2802 |
|
---|
2803 | /* Done? */
|
---|
2804 | iBit++;
|
---|
2805 | if (iBit >= cExpBits)
|
---|
2806 | break;
|
---|
2807 |
|
---|
2808 | /* Not done yet, square and mod the base again. */
|
---|
2809 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, &Pow2);
|
---|
2810 | if (RT_SUCCESS(rc))
|
---|
2811 | rc = rtBigNumMagnitudeMultiply(&TmpProduct, &TmpMultiplicand, &TmpMultiplicand);
|
---|
2812 | if (RT_SUCCESS(rc))
|
---|
2813 | rc = rtBigNumMagnitudeModulo(&Pow2, &TmpProduct, pModulus);
|
---|
2814 | if (RT_FAILURE(rc))
|
---|
2815 | break;
|
---|
2816 | }
|
---|
2817 |
|
---|
2818 | RTBigNumDestroy(&TmpMultiplicand);
|
---|
2819 | RTBigNumDestroy(&TmpProduct);
|
---|
2820 | RTBigNumDestroy(&Pow2);
|
---|
2821 | }
|
---|
2822 | return rc;
|
---|
2823 | }
|
---|
2824 |
|
---|
2825 |
|
---|
2826 | RTDECL(int) RTBigNumModExp(PRTBIGNUM pResult, PRTBIGNUM pBase, PRTBIGNUM pExponent, PRTBIGNUM pModulus)
|
---|
2827 | {
|
---|
2828 | Assert(pResult != pBase); Assert(pResult != pBase); Assert(pResult != pExponent); Assert(pResult != pModulus);
|
---|
2829 | AssertReturn(pResult->fSensitive >= (pBase->fSensitive | pExponent->fSensitive | pModulus->fSensitive),
|
---|
2830 | VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
2831 |
|
---|
2832 | int rc = rtBigNumUnscramble(pResult);
|
---|
2833 | if (RT_SUCCESS(rc))
|
---|
2834 | {
|
---|
2835 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
2836 | rc = rtBigNumUnscramble((PRTBIGNUM)pBase);
|
---|
2837 | if (RT_SUCCESS(rc))
|
---|
2838 | {
|
---|
2839 | RTBIGNUM_ASSERT_VALID(pBase);
|
---|
2840 | rc = rtBigNumUnscramble((PRTBIGNUM)pExponent);
|
---|
2841 | if (RT_SUCCESS(rc))
|
---|
2842 | {
|
---|
2843 | RTBIGNUM_ASSERT_VALID(pExponent);
|
---|
2844 | rc = rtBigNumUnscramble((PRTBIGNUM)pModulus);
|
---|
2845 | if (RT_SUCCESS(rc))
|
---|
2846 | {
|
---|
2847 | RTBIGNUM_ASSERT_VALID(pModulus);
|
---|
2848 | if (!pExponent->fNegative)
|
---|
2849 | {
|
---|
2850 | pResult->fNegative = pModulus->fNegative; /* pBase ^ pExponent / pModulus; result = remainder. */
|
---|
2851 | rc = rtBigNumMagnitudeModExp(pResult, pBase, pExponent, pModulus);
|
---|
2852 | }
|
---|
2853 | else
|
---|
2854 | rc = VERR_BIGNUM_NEGATIVE_EXPONENT;
|
---|
2855 | rtBigNumScramble((PRTBIGNUM)pModulus);
|
---|
2856 | }
|
---|
2857 | rtBigNumScramble((PRTBIGNUM)pExponent);
|
---|
2858 | }
|
---|
2859 | rtBigNumScramble((PRTBIGNUM)pBase);
|
---|
2860 | }
|
---|
2861 | rtBigNumScramble(pResult);
|
---|
2862 | }
|
---|
2863 | return rc;
|
---|
2864 | }
|
---|
2865 |
|
---|