1 | ; $Id: sinf.asm 96407 2022-08-22 17:43:14Z vboxsync $
|
---|
2 | ;; @file
|
---|
3 | ; IPRT - No-CRT sinf - AMD64 & X86.
|
---|
4 | ;
|
---|
5 |
|
---|
6 | ;
|
---|
7 | ; Copyright (C) 2006-2022 Oracle and/or its affiliates.
|
---|
8 | ;
|
---|
9 | ; This file is part of VirtualBox base platform packages, as
|
---|
10 | ; available from https://www.virtualbox.org.
|
---|
11 | ;
|
---|
12 | ; This program is free software; you can redistribute it and/or
|
---|
13 | ; modify it under the terms of the GNU General Public License
|
---|
14 | ; as published by the Free Software Foundation, in version 3 of the
|
---|
15 | ; License.
|
---|
16 | ;
|
---|
17 | ; This program is distributed in the hope that it will be useful, but
|
---|
18 | ; WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | ; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | ; General Public License for more details.
|
---|
21 | ;
|
---|
22 | ; You should have received a copy of the GNU General Public License
|
---|
23 | ; along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | ;
|
---|
25 | ; The contents of this file may alternatively be used under the terms
|
---|
26 | ; of the Common Development and Distribution License Version 1.0
|
---|
27 | ; (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
|
---|
28 | ; in the VirtualBox distribution, in which case the provisions of the
|
---|
29 | ; CDDL are applicable instead of those of the GPL.
|
---|
30 | ;
|
---|
31 | ; You may elect to license modified versions of this file under the
|
---|
32 | ; terms and conditions of either the GPL or the CDDL or both.
|
---|
33 | ;
|
---|
34 | ; SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
|
---|
35 | ;
|
---|
36 |
|
---|
37 |
|
---|
38 | %define RT_ASM_WITH_SEH64
|
---|
39 | %include "iprt/asmdefs.mac"
|
---|
40 | %include "iprt/x86.mac"
|
---|
41 |
|
---|
42 |
|
---|
43 | BEGINCODE
|
---|
44 |
|
---|
45 |
|
---|
46 | ;;
|
---|
47 | ; Compute the sine of rd, measured in radians.
|
---|
48 | ;
|
---|
49 | ; @returns st(0) / xmm0
|
---|
50 | ; @param rd [rbp + xCB*2] / xmm0
|
---|
51 | ;
|
---|
52 | RT_NOCRT_BEGINPROC sinf
|
---|
53 | push xBP
|
---|
54 | SEH64_PUSH_xBP
|
---|
55 | mov xBP, xSP
|
---|
56 | SEH64_SET_FRAME_xBP 0
|
---|
57 | sub xSP, 20h
|
---|
58 | SEH64_ALLOCATE_STACK 20h
|
---|
59 | SEH64_END_PROLOGUE
|
---|
60 |
|
---|
61 | %ifdef RT_OS_WINDOWS
|
---|
62 | ;
|
---|
63 | ; Make sure we use full precision and not the windows default of 53 bits.
|
---|
64 | ;
|
---|
65 | fnstcw [xBP - 20h]
|
---|
66 | mov ax, [xBP - 20h]
|
---|
67 | or ax, X86_FCW_PC_64 ; includes both bits, so no need to clear the mask.
|
---|
68 | mov [xBP - 1ch], ax
|
---|
69 | fldcw [xBP - 1ch]
|
---|
70 | %endif
|
---|
71 |
|
---|
72 | ;
|
---|
73 | ; Load the input into st0.
|
---|
74 | ;
|
---|
75 | %ifdef RT_ARCH_AMD64
|
---|
76 | movss [xBP - 10h], xmm0
|
---|
77 | fld dword [xBP - 10h]
|
---|
78 | %else
|
---|
79 | fld dword [xBP + xCB*2]
|
---|
80 | %endif
|
---|
81 |
|
---|
82 | ;
|
---|
83 | ; We examin the input and weed out non-finit numbers first.
|
---|
84 | ;
|
---|
85 | fxam
|
---|
86 | fnstsw ax
|
---|
87 | and ax, X86_FSW_C3 | X86_FSW_C2 | X86_FSW_C0
|
---|
88 | cmp ax, X86_FSW_C2 ; Normal finite number (excluding zero)
|
---|
89 | je .finite
|
---|
90 | cmp ax, X86_FSW_C3 ; Zero
|
---|
91 | je .zero
|
---|
92 | cmp ax, X86_FSW_C3 | X86_FSW_C2 ; Denormals - treat them as zero.
|
---|
93 | je .zero
|
---|
94 | cmp ax, X86_FSW_C0 ; NaN - must handle it special,
|
---|
95 | je .nan
|
---|
96 |
|
---|
97 | ; Pass infinities and unsupported inputs to fsin, assuming it does the right thing.
|
---|
98 | .do_sin:
|
---|
99 | fsin
|
---|
100 | jmp .return_val
|
---|
101 |
|
---|
102 | ;
|
---|
103 | ; Finite number.
|
---|
104 | ;
|
---|
105 | .finite:
|
---|
106 | ; For very tiny numbers, 0 < abs(input) < 2**-25, we can return the
|
---|
107 | ; input value directly.
|
---|
108 | fld st0 ; duplicate st0
|
---|
109 | fabs ; make it an absolute (positive) value.
|
---|
110 | fld qword [.s_r64Tiny xWrtRIP]
|
---|
111 | fcomip st1 ; compare s_r64Tiny and fabs(input)
|
---|
112 | ja .return_tiny_number_as_is ; jump if fabs(input) is smaller
|
---|
113 |
|
---|
114 | ; FSIN is documented to be reasonable for the range ]-3pi/4,3pi/4[, so
|
---|
115 | ; while we have fabs(input) loaded already, check for that here and
|
---|
116 | ; allow rtNoCrtMathSinCore to assume it won't see values very close to
|
---|
117 | ; zero, except by cos -> sin conversion where they won't be relevant to
|
---|
118 | ; any assumpttions about precision approximation.
|
---|
119 | fld qword [.s_r64FSinOkay xWrtRIP]
|
---|
120 | fcomip st1
|
---|
121 | ffreep st0 ; drop the fabs(input) value
|
---|
122 | ja .do_sin
|
---|
123 |
|
---|
124 | ;
|
---|
125 | ; Call common sine/cos worker.
|
---|
126 | ;
|
---|
127 | mov ecx, 0 ; float
|
---|
128 | extern NAME(rtNoCrtMathSinCore)
|
---|
129 | call NAME(rtNoCrtMathSinCore)
|
---|
130 |
|
---|
131 | ;
|
---|
132 | ; Run st0.
|
---|
133 | ;
|
---|
134 | .return_val:
|
---|
135 | %ifdef RT_ARCH_AMD64
|
---|
136 | fstp dword [xBP - 10h]
|
---|
137 | movss xmm0, [xBP - 10h]
|
---|
138 | %endif
|
---|
139 | %ifdef RT_OS_WINDOWS
|
---|
140 | fldcw [xBP - 20h] ; restore original
|
---|
141 | %endif
|
---|
142 | .return:
|
---|
143 | leave
|
---|
144 | ret
|
---|
145 |
|
---|
146 | ;
|
---|
147 | ; As explained already, we can return tiny numbers directly too as the
|
---|
148 | ; output from sinf(input) = input given our precision.
|
---|
149 | ; We can skip the st0 -> xmm0 translation here, so follow the same path
|
---|
150 | ; as .zero & .nan, after we've removed the fabs(input) value.
|
---|
151 | ;
|
---|
152 | .return_tiny_number_as_is:
|
---|
153 | ffreep st0
|
---|
154 |
|
---|
155 | ;
|
---|
156 | ; sinf(+/-0.0) = +/-0.0 (preserve the sign)
|
---|
157 | ; We can skip the st0 -> xmm0 translation here, so follow the .nan code path.
|
---|
158 | ;
|
---|
159 | .zero:
|
---|
160 |
|
---|
161 | ;
|
---|
162 | ; Input is NaN, output it unmodified as far as we can (FLD changes SNaN
|
---|
163 | ; to QNaN when masked).
|
---|
164 | ;
|
---|
165 | .nan:
|
---|
166 | %ifdef RT_ARCH_AMD64
|
---|
167 | ffreep st0
|
---|
168 | %endif
|
---|
169 | jmp .return
|
---|
170 |
|
---|
171 | ALIGNCODE(8)
|
---|
172 | ; Ca. 2**-26, absolute value. Inputs closer to zero than this can be
|
---|
173 | ; returns directly as the sinf(input) value should be basically the same
|
---|
174 | ; given the precision we're working with and FSIN probably won't even
|
---|
175 | ; manage that.
|
---|
176 | ;; @todo experiment when FSIN gets better than this.
|
---|
177 | .s_r64Tiny:
|
---|
178 | dq 1.49011612e-8
|
---|
179 | ; The absolute limit of FSIN "good" range.
|
---|
180 | .s_r64FSinOkay:
|
---|
181 | dq 2.356194490192344928845 ; 3pi/4
|
---|
182 | ;dq 1.57079632679489661923 ; pi/2 - alternative.
|
---|
183 |
|
---|
184 | ENDPROC RT_NOCRT(sinf)
|
---|
185 |
|
---|