VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/misc/acpi.cpp@ 106454

Last change on this file since 106454 was 106344, checked in by vboxsync, 4 months ago

Runtime: Add ACPI table builder API to dynamically generate a DSDT/SSDT, bugref:10733 [doxygen fix]

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 47.6 KB
Line 
1/* $Id: acpi.cpp 106344 2024-10-16 09:06:04Z vboxsync $ */
2/** @file
3 * IPRT - Advanced Configuration and Power Interface (ACPI) Table generation API.
4 */
5
6/*
7 * Copyright (C) 2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * The contents of this file may alternatively be used under the terms
26 * of the Common Development and Distribution License Version 1.0
27 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
28 * in the VirtualBox distribution, in which case the provisions of the
29 * CDDL are applicable instead of those of the GPL.
30 *
31 * You may elect to license modified versions of this file under the
32 * terms and conditions of either the GPL or the CDDL or both.
33 *
34 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
35 */
36
37
38/*********************************************************************************************************************************
39* Header Files *
40*********************************************************************************************************************************/
41#define LOG_GROUP RTLOGGROUP_ACPI
42#include <iprt/acpi.h>
43#include <iprt/file.h>
44#include <iprt/mem.h>
45#include <iprt/string.h>
46
47#include <iprt/formats/acpi-aml.h>
48#include <iprt/formats/acpi-resources.h>
49
50
51/*********************************************************************************************************************************
52* Defined Constants And Macros *
53*********************************************************************************************************************************/
54
55
56
57/*********************************************************************************************************************************
58* Structures and Typedefs *
59*********************************************************************************************************************************/
60
61/**
62 * Package stack element.
63 */
64typedef struct RTACPITBLSTACKELEM
65{
66 /** Pointer to the table buffer memory where the PkgLength object starts. */
67 uint8_t *pbPkgLength;
68 /** Current size of the package in bytes, without the PkgLength object. */
69 uint32_t cbPkg;
70 /** The operator creating the package, UINT8_MAX denotes the special root operator. */
71 uint8_t bOp;
72} RTACPITBLSTACKELEM;
73/** Pointer to a package stack element. */
74typedef RTACPITBLSTACKELEM *PRTACPITBLSTACKELEM;
75/** Pointer to a const package stack element. */
76typedef const RTACPITBLSTACKELEM *PCRTACPITBLSTACKELEM;
77
78
79/**
80 * ACPI table generator instance.
81 */
82typedef struct RTACPITBLINT
83{
84 /** Pointer to the ACPI table header, needed when finalizing the table. */
85 PACPITBLHDR pHdr;
86 /** Byte buffer holding the actual table. */
87 uint8_t *pbTblBuf;
88 /** Size of the table buffer. */
89 uint32_t cbTblBuf;
90 /** Current offset into the table buffer. */
91 uint32_t offTblBuf;
92 /** Flag whether the table is finalized. */
93 bool fFinalized;
94 /** First error code encountered. */
95 int rcErr;
96 /** Pointer to the package element stack. */
97 PRTACPITBLSTACKELEM paPkgStack;
98 /** Number of elements the package stack can hold. */
99 uint32_t cPkgStackElems;
100 /** Index of the current package in the package stack. */
101 uint32_t idxPkgStackElem;
102} RTACPITBLINT;
103/** Pointer to an ACPI table generator instance. */
104typedef RTACPITBLINT *PRTACPITBLINT;
105
106
107/**
108 * ACPI resource builder instance.
109 */
110typedef struct RTACPIRESINT
111{
112 /** Byte buffer holding the resource. */
113 uint8_t *pbResBuf;
114 /** Size of the resource buffer. */
115 size_t cbResBuf;
116 /** Current offset into the resource buffer. */
117 uint32_t offResBuf;
118 /** Flag whether the resource is sealed. */
119 bool fSealed;
120 /** First error code encountered. */
121 int rcErr;
122} RTACPIRESINT;
123/** Pointer to an ACPI resource builder instance. */
124typedef RTACPIRESINT *PRTACPIRESINT;
125
126
127/*********************************************************************************************************************************
128* Global Variables *
129*********************************************************************************************************************************/
130
131
132/*********************************************************************************************************************************
133* Internal Functions *
134*********************************************************************************************************************************/
135
136
137/**
138 * Copies the given string into the given buffer padding the remainder with the given character.
139 *
140 * @param pbId The destination to copy the string to.
141 * @param cbId Size of the buffer in bytes.
142 * @param pszStr The string to copy.
143 * @param chPad The character to pad with.
144 */
145static void rtAcpiTblCopyStringPadWith(uint8_t *pbId, size_t cbId, const char *pszStr, char chPad)
146{
147 Assert(strlen(pszStr) <= cbId);
148
149 uint32_t idx = 0;
150 while (*pszStr != '\0')
151 pbId[idx++] = (uint8_t)*pszStr++;
152
153 while (idx < cbId)
154 pbId[idx++] = chPad;
155}
156
157
158/**
159 * Updates the package length of the current package in the stack
160 *
161 * @param pThis The ACPI table instance.
162 * @param cbAdd How many bytes to add to the package length.
163 */
164DECL_FORCE_INLINE(void) rtAcpiTblUpdatePkgLength(PRTACPITBLINT pThis, uint32_t cbAdd)
165{
166 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
167 pPkgElem->cbPkg += cbAdd;
168}
169
170
171/**
172 * Ensures there is the given amount of room in the ACPI table buffer returning the pointer.
173 *
174 * @returns The pointer to the free space on success or NULL if out of memory.
175 * @param pThis The ACPI table instance.
176 * @param cbReq Amount of bytes requested.
177 */
178static uint8_t *rtAcpiTblBufEnsureSpace(PRTACPITBLINT pThis, uint32_t cbReq)
179{
180 if (RT_LIKELY(pThis->cbTblBuf - pThis->offTblBuf >= cbReq))
181 {
182 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
183 pThis->offTblBuf += cbReq;
184 return pb;
185 }
186
187 uint32_t const cbNew = RT_ALIGN_32(pThis->cbTblBuf + cbReq, _4K);
188 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbTblBuf, cbNew);
189 if (RT_UNLIKELY(!pbNew))
190 {
191 pThis->rcErr = VERR_NO_MEMORY;
192 return NULL;
193 }
194
195 pThis->pbTblBuf = pbNew;
196 pThis->cbTblBuf = cbNew;
197
198 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
199 pThis->offTblBuf += cbReq;
200 return pb;
201}
202
203
204/**
205 * Appends a new package in the given ACPI table instance package stack.
206 *
207 * @returns IPRT status code.
208 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
209 * @param pThis The ACPI table instance.
210 * @param bOp The opcode byte the package starts with (for verification purposes when finalizing the package).
211 * @param pbPkgBuf The Start of the package buffer.
212 */
213static int rtAcpiTblPkgAppendEx(PRTACPITBLINT pThis, uint8_t bOp, uint8_t *pbPkgBuf)
214{
215 /* Get a new stack element. */
216 if (pThis->idxPkgStackElem + 1 == pThis->cPkgStackElems)
217 {
218 uint32_t const cPkgElemsNew = pThis->cPkgStackElems + 8;
219 PRTACPITBLSTACKELEM paPkgStackNew = (PRTACPITBLSTACKELEM)RTMemRealloc(pThis->paPkgStack, cPkgElemsNew * sizeof(*paPkgStackNew));
220 if (!paPkgStackNew)
221 {
222 pThis->rcErr = VERR_NO_MEMORY;
223 return VERR_NO_MEMORY;
224 }
225
226 pThis->paPkgStack = paPkgStackNew;
227 pThis->cPkgStackElems = cPkgElemsNew;
228 }
229
230 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[++pThis->idxPkgStackElem];
231 pStackElem->pbPkgLength = pbPkgBuf;
232 pStackElem->cbPkg = 0;
233 pStackElem->bOp = bOp;
234 return VINF_SUCCESS;
235}
236
237
238/**
239 * Starts a new ACPI package in the given ACPI table instance.
240 *
241 * @returns IPRT status code.
242 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
243 * @param pThis The ACPI table instance.
244 * @param bOp The opcode byte identifying the package content.
245 */
246static int rtAcpiTblPkgStart(PRTACPITBLINT pThis, uint8_t bOp)
247{
248 /*
249 * Allocate 1 byte for opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
250 * This will be corrected when the package is finalized.
251 */
252 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 5);
253 if (!pbPkg)
254 {
255 pThis->rcErr = VERR_NO_MEMORY;
256 return VERR_NO_MEMORY;
257 }
258
259 *pbPkg = bOp;
260 /*
261 * Update the package length of the outer package for the opcode,
262 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
263 */
264 rtAcpiTblUpdatePkgLength(pThis, sizeof(bOp));
265 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 1);
266}
267
268
269/**
270 * Starts a new ACPI package in the given ACPI table instance. This is for opcodes prefixed with
271 * ACPI_AML_BYTE_CODE_PREFIX_EXT_O, which will be added automatically.
272 *
273 * @returns IPRT status code.
274 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
275 * @param pThis The ACPI table instance.
276 * @param bOp The opcode byte identifying the package content.
277 */
278static int rtAcpiTblPkgStartExt(PRTACPITBLINT pThis, uint8_t bOp)
279{
280 /*
281 * Allocate 2 bytes for ExtOpPrefix opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
282 * This will be corrected when the package is finalized.
283 */
284 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 6);
285 if (!pbPkg)
286 {
287 pThis->rcErr = VERR_NO_MEMORY;
288 return VERR_NO_MEMORY;
289 }
290
291 pbPkg[0] = ACPI_AML_BYTE_CODE_PREFIX_EXT_OP;
292 pbPkg[1] = bOp;
293
294 /*
295 * Update the package length of the outer package for the opcode,
296 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
297 */
298 rtAcpiTblUpdatePkgLength(pThis, sizeof(uint8_t) + sizeof(bOp));
299 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 2);
300}
301
302
303/**
304 * Finishes the current package on the top of the package stack, setting the
305 * package length accordingly.
306 *
307 * @returns IPRT status code.
308 * @retval VERR_INVALID_STATE if bOp doesn't match the opcode the package was started with (asserted in debug builds).
309 * @retval VERR_BUFFER_OVERFLOW if the package length exceeds what can be encoded in the package length field.
310 * @param pThis The ACPI table instance.
311 * @param bOp The opcode byte identifying the package content the package was started with.
312 */
313static int rtAcpiTblPkgFinish(PRTACPITBLINT pThis, uint8_t bOp)
314{
315 /* Ensure the op matches what is current on the top of the stack. */
316 AssertReturn(pThis->paPkgStack[pThis->idxPkgStackElem].bOp == bOp, VERR_INVALID_STATE);
317
318 /* Pop the topmost stack element from the stack. */
319 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem--];
320
321 /*
322 * Determine how many bytes we actually need for the PkgLength and re-arrange the ACPI table.
323 *
324 * Note! PkgLength will also include its own length.
325 */
326 uint8_t *pbPkgLength = pPkgElem->pbPkgLength;
327 uint32_t cbThisPkg = pPkgElem->cbPkg;
328 if (cbThisPkg + 1 <= 63)
329 {
330 /* Remove the gap. */
331 memmove(pbPkgLength + 1, pbPkgLength + 4, cbThisPkg);
332 pThis->offTblBuf -= 3;
333
334 /* PkgLength only consists of the package lead byte. */
335 cbThisPkg += 1;
336 *pbPkgLength = (cbThisPkg & 0x3f);
337 }
338 else if (cbThisPkg + 2 < RT_BIT_32(12))
339 {
340 /* Remove the gap. */
341 memmove(pbPkgLength + 2, pbPkgLength + 4, cbThisPkg);
342 pThis->offTblBuf -= 2;
343
344 cbThisPkg += 2;
345 pbPkgLength[0] = (1 << 6) | (cbThisPkg & 0xf);
346 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
347 }
348 else if (cbThisPkg + 3 < RT_BIT_32(20))
349 {
350 /* Remove the gap. */
351 memmove(pbPkgLength + 3, pbPkgLength + 4, cbThisPkg);
352 pThis->offTblBuf -= 1;
353
354 cbThisPkg += 3;
355 pbPkgLength[0] = (2 << 6) | (cbThisPkg & 0xf);
356 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
357 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
358 }
359 else if (cbThisPkg + 4 < RT_BIT_32(28))
360 {
361 cbThisPkg += 4;
362 pbPkgLength[0] = (3 << 6) | (cbThisPkg & 0xf);
363 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
364 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
365 pbPkgLength[3] = (cbThisPkg >> 20) & 0xff;
366 }
367 else
368 return VERR_BUFFER_OVERFLOW;
369
370 /* Update the size of the outer package. */
371 pThis->paPkgStack[pThis->idxPkgStackElem].cbPkg += cbThisPkg;
372
373 return VINF_SUCCESS;
374}
375
376
377/**
378 * Appends the given byte to the ACPI table, updating the package length of the current package.
379 *
380 * @param pThis The ACPI table instance.
381 * @param bData The byte data to append.
382 */
383DECLINLINE(void) rtAcpiTblAppendByte(PRTACPITBLINT pThis, uint8_t bData)
384{
385 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, sizeof(bData));
386 if (pb)
387 {
388 *pb = bData;
389 rtAcpiTblUpdatePkgLength(pThis, sizeof(bData));
390 }
391}
392
393
394/**
395 * Appends the given date to the ACPI table, updating the package length of the current package.
396 *
397 * @param pThis The ACPI table instance.
398 * @param pvData The data to append.
399 * @param cbData Size of the data in bytes.
400 */
401DECLINLINE(void) rtAcpiTblAppendData(PRTACPITBLINT pThis, const void *pvData, uint32_t cbData)
402{
403 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbData);
404 if (pb)
405 {
406 memcpy(pb, pvData, cbData);
407 rtAcpiTblUpdatePkgLength(pThis, cbData);
408 }
409}
410
411
412/**
413 * Appends the given namestring to the ACPI table, updating the package length of the current package
414 * and padding the name with _ if too short.
415 *
416 * @param pThis The ACPI table instance.
417 * @param pszName The name to append, maximum is 4 bytes (or 5 if \\ is the first character).
418 */
419DECLINLINE(void) rtAcpiTblAppendNameString(PRTACPITBLINT pThis, const char *pszName)
420{
421 uint32_t cbName = *pszName == '\\' ? 5 : 4;
422 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbName);
423 if (pb)
424 {
425 rtAcpiTblCopyStringPadWith(pb, cbName, pszName, '_');
426 rtAcpiTblUpdatePkgLength(pThis, cbName);
427 }
428}
429
430
431RTDECL(uint8_t) RTAcpiChecksumGenerate(const void *pvData, size_t cbData)
432{
433 uint8_t const *pbSrc = (uint8_t const *)pvData;
434 uint8_t bSum = 0;
435 for (size_t i = 0; i < cbData; ++i)
436 bSum += pbSrc[i];
437
438 return -bSum;
439}
440
441
442RTDECL(void) RTAcpiTblHdrChecksumGenerate(PACPITBLHDR pTbl, size_t cbTbl)
443{
444 pTbl->bChkSum = 0;
445 pTbl->bChkSum = RTAcpiChecksumGenerate(pTbl, cbTbl);
446}
447
448
449RTDECL(int) RTAcpiTblCreate(PRTACPITBL phAcpiTbl, uint32_t u32TblSig, uint8_t bRevision, const char *pszOemId,
450 const char *pszOemTblId, uint32_t u32OemRevision, const char *pszCreatorId,
451 uint32_t u32CreatorRevision)
452{
453 AssertPtrReturn(phAcpiTbl, VERR_INVALID_POINTER);
454 AssertPtrReturn(pszOemId, VERR_INVALID_POINTER);
455 AssertPtrReturn(pszOemTblId, VERR_INVALID_POINTER);
456 AssertReturn(strlen(pszOemId) <= 6, VERR_INVALID_PARAMETER);
457 AssertReturn(strlen(pszOemTblId) <= 8, VERR_INVALID_PARAMETER);
458 AssertReturn(!pszCreatorId || strlen(pszCreatorId) <= 4, VERR_INVALID_PARAMETER);
459
460 PRTACPITBLINT pThis = (PRTACPITBLINT)RTMemAllocZ(sizeof(*pThis));
461 if (pThis)
462 {
463 pThis->pbTblBuf = (uint8_t *)RTMemAlloc(_4K);
464 if (pThis->pbTblBuf)
465 {
466 pThis->pHdr = (PACPITBLHDR)pThis->pbTblBuf;
467 pThis->offTblBuf = sizeof(*pThis->pHdr);
468 pThis->cbTblBuf = _4K;
469 pThis->fFinalized = false;
470 pThis->rcErr = VINF_SUCCESS;
471 pThis->paPkgStack = NULL;
472 pThis->cPkgStackElems = 0;
473 pThis->idxPkgStackElem = 0;
474
475 /* Add the root stack element for the table, aka DefinitionBlock() in ASL. */
476 uint32_t const cPkgElemsInitial = 8;
477 pThis->paPkgStack = (PRTACPITBLSTACKELEM)RTMemAlloc(cPkgElemsInitial * sizeof(*pThis->paPkgStack));
478 if (pThis->paPkgStack)
479 {
480 pThis->cPkgStackElems = cPkgElemsInitial;
481
482 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
483 pStackElem->pbPkgLength = pThis->pbTblBuf; /* Starts with the header. */
484 pStackElem->cbPkg = sizeof(*pThis->pHdr);
485 pStackElem->bOp = UINT8_MAX;
486
487 /* Init the table header with static things. */
488 pThis->pHdr->u32Signature = u32TblSig;
489 pThis->pHdr->bRevision = bRevision;
490 pThis->pHdr->u32OemRevision = RT_H2LE_U32(u32OemRevision);
491 pThis->pHdr->u32CreatorRevision = RT_H2LE_U32(u32CreatorRevision);
492
493 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemId[0], sizeof(pThis->pHdr->abOemId), pszOemId, ' ');
494 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemTblId[0], sizeof(pThis->pHdr->abOemTblId), pszOemTblId, ' ');
495 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abCreatorId[0], sizeof(pThis->pHdr->abCreatorId),
496 pszCreatorId ? pszCreatorId : "IPRT", ' ');
497
498 *phAcpiTbl = pThis;
499 return VINF_SUCCESS;
500 }
501
502 RTMemFree(pThis->pbTblBuf);
503 }
504
505 RTMemFree(pThis);
506 }
507
508 return VERR_NO_MEMORY;
509}
510
511
512RTDECL(void) RTAcpiTblDestroy(RTACPITBL hAcpiTbl)
513{
514 PRTACPITBLINT pThis = hAcpiTbl;
515 AssertPtrReturnVoid(pThis);
516
517 RTMemFree(pThis->paPkgStack);
518 RTMemFree(pThis->pbTblBuf);
519 pThis->pHdr = NULL;
520 pThis->pbTblBuf = NULL;
521 pThis->cbTblBuf = 0;
522 pThis->offTblBuf = 0;
523 pThis->paPkgStack = NULL;
524 pThis->cPkgStackElems = 0;
525 pThis->idxPkgStackElem = 0;
526 RTMemFree(pThis);
527}
528
529
530RTDECL(int) RTAcpiTblFinalize(RTACPITBL hAcpiTbl)
531{
532 PRTACPITBLINT pThis = hAcpiTbl;
533 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
534 AssertRCReturn(pThis->rcErr, pThis->rcErr);
535 AssertReturn(!pThis->fFinalized, VERR_INVALID_PARAMETER);
536 AssertReturn(pThis->idxPkgStackElem == 0, VERR_INVALID_STATE); /** @todo Better status code. */
537 AssertReturn(pThis->paPkgStack[0].bOp == UINT8_MAX, VERR_INVALID_STATE);
538
539 pThis->pHdr->cbTbl = RT_H2LE_U32(pThis->paPkgStack[0].cbPkg);
540 RTAcpiTblHdrChecksumGenerate(pThis->pHdr, pThis->paPkgStack[0].cbPkg);
541
542 pThis->fFinalized = true;
543 return VINF_SUCCESS;
544}
545
546
547RTDECL(uint32_t) RTAcpiTblGetSize(RTACPITBL hAcpiTbl)
548{
549 PRTACPITBLINT pThis = hAcpiTbl;
550 AssertPtrReturn(pThis, 0);
551 AssertRCReturn(pThis->rcErr, 0);
552 AssertReturn(pThis->fFinalized, 0);
553
554 return pThis->paPkgStack[0].cbPkg;
555}
556
557
558RTDECL(int) RTAcpiTblDumpToVfsIoStrm(RTACPITBL hAcpiTbl, RTVFSIOSTREAM hVfsIos)
559{
560 PRTACPITBLINT pThis = hAcpiTbl;
561 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
562 AssertRCReturn(pThis->rcErr, 0);
563
564 return RTVfsIoStrmWrite(hVfsIos, pThis->pbTblBuf, pThis->paPkgStack[0].cbPkg,
565 true /*fBlocking*/, NULL /*pcbWritten*/);
566}
567
568
569RTDECL(int) RTAcpiTblDumpToFile(RTACPITBL hAcpiTbl, const char *pszFilename)
570{
571 RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM;
572 int rc = RTVfsChainOpenIoStream(pszFilename, RTFILE_O_WRITE | RTFILE_O_CREATE | RTFILE_O_DENY_NONE,
573 &hVfsIos, NULL /*poffError*/, NULL);
574 if (RT_FAILURE(rc))
575 return rc;
576
577 rc = RTAcpiTblDumpToVfsIoStrm(hAcpiTbl, hVfsIos);
578 RTVfsIoStrmRelease(hVfsIos);
579 return rc;
580}
581
582
583RTDECL(int) RTAcpiTblScopeFinalize(RTACPITBL hAcpiTbl)
584{
585 PRTACPITBLINT pThis = hAcpiTbl;
586 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
587
588 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
589}
590
591
592RTDECL(int) RTAcpiTblScopeStart(RTACPITBL hAcpiTbl, const char *pszName)
593{
594 PRTACPITBLINT pThis = hAcpiTbl;
595 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
596
597 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
598 rtAcpiTblAppendNameString(pThis, pszName);
599 return pThis->rcErr;
600}
601
602
603RTDECL(int) RTAcpiTblPackageStart(RTACPITBL hAcpiTbl, uint8_t cElements)
604{
605 PRTACPITBLINT pThis = hAcpiTbl;
606 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
607
608 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
609 rtAcpiTblAppendByte(pThis, cElements);
610 return pThis->rcErr;
611}
612
613
614RTDECL(int) RTAcpiTblPackageFinalize(RTACPITBL hAcpiTbl)
615{
616 PRTACPITBLINT pThis = hAcpiTbl;
617 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
618
619 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
620}
621
622
623RTDECL(int) RTAcpiTblDeviceStart(RTACPITBL hAcpiTbl, const char *pszName)
624{
625 PRTACPITBLINT pThis = hAcpiTbl;
626 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
627
628 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
629 rtAcpiTblAppendNameString(pThis, pszName);
630 return pThis->rcErr;
631}
632
633
634RTDECL(int) RTAcpiTblDeviceStartF(RTACPITBL hAcpiTbl, const char *pszNameFmt, ...)
635{
636 va_list va;
637 va_start(va, pszNameFmt);
638 int rc = RTAcpiTblDeviceStartV(hAcpiTbl, pszNameFmt, va);
639 va_end(va);
640 return rc;
641}
642
643
644RTDECL(int) RTAcpiTblDeviceStartV(RTACPITBL hAcpiTbl, const char *pszNameFmt, va_list va)
645{
646 char szName[5];
647 ssize_t cch = RTStrPrintf2V(&szName[0], sizeof(szName), pszNameFmt, va);
648 if (cch <= 0)
649 return VERR_BUFFER_OVERFLOW;
650
651 return RTAcpiTblDeviceStart(hAcpiTbl, &szName[0]);
652}
653
654
655RTDECL(int) RTAcpiTblDeviceFinalize(RTACPITBL hAcpiTbl)
656{
657 PRTACPITBLINT pThis = hAcpiTbl;
658 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
659
660 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
661}
662
663
664RTDECL(int) RTAcpiTblMethodStart(RTACPITBL hAcpiTbl, const char *pszName, uint8_t cArgs, uint32_t fFlags, uint8_t uSyncLvl)
665{
666 PRTACPITBLINT pThis = hAcpiTbl;
667 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
668 AssertReturn(cArgs < 8, VERR_INVALID_PARAMETER);
669 AssertReturn(uSyncLvl < 0x10, VERR_INVALID_PARAMETER);
670
671 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
672 rtAcpiTblAppendNameString(pThis, pszName);
673
674 uint8_t bFlags = cArgs;
675 bFlags |= fFlags & RTACPI_METHOD_F_SERIALIZED ? RT_BIT(3) : 0;
676 bFlags |= uSyncLvl << 4;
677
678 rtAcpiTblAppendByte(pThis, bFlags);
679 return pThis->rcErr;
680}
681
682
683RTDECL(int) RTAcpiTblMethodFinalize(RTACPITBL hAcpiTbl)
684{
685 PRTACPITBLINT pThis = hAcpiTbl;
686 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
687
688 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
689}
690
691
692RTDECL(int) RTAcpiTblNameAppend(RTACPITBL hAcpiTbl, const char *pszName)
693{
694 PRTACPITBLINT pThis = hAcpiTbl;
695 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
696
697 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_NAME);
698 rtAcpiTblAppendNameString(pThis, pszName);
699 return pThis->rcErr;
700}
701
702
703RTDECL(int) RTAcpiTblStringAppend(RTACPITBL hAcpiTbl, const char *psz)
704{
705 PRTACPITBLINT pThis = hAcpiTbl;
706 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
707
708 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_STRING);
709 rtAcpiTblAppendData(pThis, psz, (uint32_t)strlen(psz) + 1);
710 return pThis->rcErr;
711}
712
713
714RTDECL(int) RTAcpiTblIntegerAppend(RTACPITBL hAcpiTbl, uint64_t u64)
715{
716 PRTACPITBLINT pThis = hAcpiTbl;
717 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
718
719 if (!u64)
720 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ZERO);
721 else if (u64 == 1)
722 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ONE);
723 else if (u64 <= UINT8_MAX)
724 {
725 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_BYTE);
726 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
727 }
728 else if (u64 <= UINT16_MAX)
729 {
730 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_WORD);
731 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
732 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
733 }
734 else if (u64 <= UINT32_MAX)
735 {
736 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_DWORD);
737 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
738 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
739 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
740 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
741 }
742 else
743 {
744 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_QWORD);
745 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
746 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
747 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
748 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
749 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 32));
750 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 40));
751 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 48));
752 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 56));
753 }
754 return pThis->rcErr;
755}
756
757
758RTDECL(int) RTAcpiTblBufferAppend(RTACPITBL hAcpiTbl, const void *pvBuf, size_t cbBuf)
759{
760 PRTACPITBLINT pThis = hAcpiTbl;
761 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
762 AssertReturn(!cbBuf || RT_VALID_PTR(pvBuf), VERR_INVALID_PARAMETER);
763 AssertReturn(cbBuf <= UINT32_MAX, VERR_BUFFER_OVERFLOW);
764
765 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
766 RTAcpiTblIntegerAppend(hAcpiTbl, cbBuf);
767 if (pvBuf)
768 rtAcpiTblAppendData(pThis, pvBuf, (uint32_t)cbBuf);
769 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
770}
771
772
773RTDECL(int) RTAcpiTblResourceAppend(RTACPITBL hAcpiTbl, RTACPIRES hAcpiRes)
774{
775 PRTACPITBLINT pThis = hAcpiTbl;
776 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
777 AssertRCReturn(pThis->rcErr, pThis->rcErr);
778
779 const void *pvRes = NULL;
780 size_t cbRes = 0;
781 int rc = RTAcpiResourceQueryBuffer(hAcpiRes, &pvRes, &cbRes);
782 if (RT_SUCCESS(rc))
783 rc = RTAcpiTblBufferAppend(pThis, pvRes, cbRes);
784
785 return rc;
786}
787
788
789RTDECL(int) RTAcpiTblStmtSimpleAppend(RTACPITBL hAcpiTbl, RTACPISTMT enmStmt)
790{
791 PRTACPITBLINT pThis = hAcpiTbl;
792 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
793
794 uint8_t bOp;
795 switch (enmStmt)
796 {
797 case kAcpiStmt_Return: bOp = ACPI_AML_BYTE_CODE_OP_RETURN; break;
798 case kAcpiStmt_Breakpoint: bOp = ACPI_AML_BYTE_CODE_OP_BREAK_POINT; break;
799 case kAcpiStmt_Nop: bOp = ACPI_AML_BYTE_CODE_OP_NOOP; break;
800 case kAcpiStmt_Break: bOp = ACPI_AML_BYTE_CODE_OP_BREAK; break;
801 case kAcpiStmt_Continue: bOp = ACPI_AML_BYTE_CODE_OP_CONTINUE; break;
802 default:
803 AssertFailedReturn(VERR_INVALID_PARAMETER);
804 }
805 rtAcpiTblAppendByte(pThis, bOp);
806 return pThis->rcErr;
807}
808
809
810/**
811 * Ensures there is at least the given amount of space in the given ACPI resource.
812 *
813 * @returns Pointer to the free buffer space or NULL if out of memory.
814 * @param pThis The ACPI resource instance.
815 * @param cbReq Number of free bytes required.
816 */
817static uint8_t *rtAcpiResBufEnsureSpace(PRTACPIRESINT pThis, uint32_t cbReq)
818{
819 if (RT_LIKELY(pThis->cbResBuf - pThis->offResBuf >= cbReq))
820 {
821 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
822 pThis->offResBuf += cbReq;
823 return pb;
824 }
825
826 size_t const cbNew = RT_ALIGN_Z(pThis->cbResBuf + cbReq, _4K);
827 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbResBuf, cbNew);
828 if (RT_UNLIKELY(!pbNew))
829 {
830 pThis->rcErr = VERR_NO_MEMORY;
831 return NULL;
832 }
833
834 pThis->pbResBuf = pbNew;
835 pThis->cbResBuf = cbNew;
836
837 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
838 pThis->offResBuf += cbReq;
839 return pb;
840}
841
842
843/**
844 * Encodes an ACPI 16-bit integer in the given byte buffer.
845 *
846 * @returns Pointer to after the encoded integer.
847 * @param pb Where to encode the integer into.
848 * @param u16 The 16-bit unsigned integere to encode.
849 */
850DECLINLINE(uint8_t *) rtAcpiResEncode16BitInteger(uint8_t *pb, uint16_t u16)
851{
852 *pb++ = (uint8_t)u16;
853 *pb++ = (uint8_t)(u16 >> 8);
854 return pb;
855}
856
857
858/**
859 * Encodes an ACPI 32-bit integer in the given byte buffer.
860 *
861 * @returns Pointer to after the encoded integer.
862 * @param pb Where to encode the integer into.
863 * @param u32 The 32-bit unsigned integere to encode.
864 */
865DECLINLINE(uint8_t *) rtAcpiResEncode32BitInteger(uint8_t *pb, uint32_t u32)
866{
867 *pb++ = (uint8_t)u32;
868 *pb++ = (uint8_t)(u32 >> 8);
869 *pb++ = (uint8_t)(u32 >> 16);
870 *pb++ = (uint8_t)(u32 >> 24);
871 return pb;
872}
873
874/**
875 * Encodes an ACPI 64-bit integer in the given byte buffer.
876 *
877 * @returns Pointer to after the encoded integer.
878 * @param pb Where to encode the integer into.
879 * @param u64 The 64-bit unsigned integere to encode.
880 */
881
882DECLINLINE(uint8_t *) rtAcpiResEncode64BitInteger(uint8_t *pb, uint64_t u64)
883{
884 *pb++ = (uint8_t)u64;
885 *pb++ = (uint8_t)(u64 >> 8);
886 *pb++ = (uint8_t)(u64 >> 16);
887 *pb++ = (uint8_t)(u64 >> 24);
888 *pb++ = (uint8_t)(u64 >> 32);
889 *pb++ = (uint8_t)(u64 >> 40);
890 *pb++ = (uint8_t)(u64 >> 48);
891 *pb++ = (uint8_t)(u64 >> 56);
892 return pb;
893}
894
895
896RTDECL(int) RTAcpiResourceCreate(PRTACPIRES phAcpiRes)
897{
898 AssertPtrReturn(phAcpiRes, VERR_INVALID_POINTER);
899
900 PRTACPIRESINT pThis = (PRTACPIRESINT)RTMemAllocZ(sizeof(*pThis));
901 if (pThis)
902 {
903 pThis->pbResBuf = (uint8_t *)RTMemAlloc(64);
904 if (pThis->pbResBuf)
905 {
906 pThis->offResBuf = 0;
907 pThis->cbResBuf = 64;
908 pThis->fSealed = false;
909 pThis->rcErr = VINF_SUCCESS;
910
911 *phAcpiRes = pThis;
912 return VINF_SUCCESS;
913 }
914
915 RTMemFree(pThis);
916 }
917
918 return VERR_NO_MEMORY;
919}
920
921
922RTDECL(void) RTAcpiResourceDestroy(RTACPIRES hAcpiRes)
923{
924 PRTACPIRESINT pThis = hAcpiRes;
925 AssertPtrReturnVoid(pThis);
926
927 RTMemFree(pThis->pbResBuf);
928 pThis->pbResBuf = NULL;
929 pThis->cbResBuf = 0;
930 pThis->offResBuf = 0;
931 RTMemFree(pThis);
932}
933
934
935RTDECL(void) RTAcpiResourceReset(RTACPIRES hAcpiRes)
936{
937 PRTACPIRESINT pThis = hAcpiRes;
938 AssertPtrReturnVoid(pThis);
939
940 pThis->offResBuf = 0;
941 pThis->fSealed = false;
942 pThis->rcErr = VINF_SUCCESS;
943}
944
945
946RTDECL(int) RTAcpiResourceSeal(RTACPIRES hAcpiRes)
947{
948 PRTACPIRESINT pThis = hAcpiRes;
949 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
950 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
951 AssertRCReturn(pThis->rcErr, pThis->rcErr);
952
953 /* Add the end tag. */
954 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 2);
955 if (!pb)
956 return VERR_NO_MEMORY;
957
958 *pb++ = ACPI_RSRCS_TAG_END;
959 /*
960 * Generate checksum, we could just write 0 here which will be treated as checksum operation succeeded,
961 * but having this might catch some bugs.
962 *
963 * Checksum algorithm is the same as with the ACPI tables.
964 */
965 *pb = RTAcpiChecksumGenerate(pThis->pbResBuf, pThis->offResBuf - 1); /* Exclude the checksum field. */
966
967 pThis->fSealed = true;
968 return VINF_SUCCESS;
969}
970
971
972RTDECL(int) RTAcpiResourceQueryBuffer(RTACPIRES hAcpiRes, const void **ppvRes, size_t *pcbRes)
973{
974 PRTACPIRESINT pThis = hAcpiRes;
975 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
976 AssertReturn(pThis->fSealed, VERR_INVALID_STATE);
977 AssertRCReturn(pThis->rcErr, pThis->rcErr);
978
979 *ppvRes = pThis->pbResBuf;
980 *pcbRes = pThis->offResBuf;
981 return VINF_SUCCESS;
982}
983
984
985RTDECL(int) RTAcpiResourceAdd32BitFixedMemoryRange(RTACPIRES hAcpiRes, uint32_t u32AddrBase, uint32_t cbRange,
986 bool fRw)
987{
988 PRTACPIRESINT pThis = hAcpiRes;
989 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
990 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
991 AssertRCReturn(pThis->rcErr, pThis->rcErr);
992
993 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 12);
994 if (!pb)
995 return VERR_NO_MEMORY;
996
997 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_32BIT_FIXED_MEMORY_RANGE; /* Tag */
998 pb[1] = 9; /* Length[7:0] */
999 pb[2] = 0; /* Length[15:8] */
1000 pb[3] = fRw ? 1 : 0; /* Information */
1001 rtAcpiResEncode32BitInteger(&pb[4], u32AddrBase);
1002 rtAcpiResEncode32BitInteger(&pb[8], cbRange);
1003 return VINF_SUCCESS;
1004}
1005
1006
1007RTDECL(int) RTAcpiResourceAddExtendedInterrupt(RTACPIRES hAcpiRes, bool fConsumer, bool fEdgeTriggered, bool fActiveLow, bool fShared,
1008 bool fWakeCapable, uint8_t cIntrs, uint32_t *pau32Intrs)
1009{
1010 PRTACPIRESINT pThis = hAcpiRes;
1011 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1012 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1013 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1014
1015 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 2 + cIntrs * sizeof(uint32_t));
1016 if (!pb)
1017 return VERR_NO_MEMORY;
1018
1019 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_EXTENDED_INTERRUPT; /* Tag */
1020 rtAcpiResEncode16BitInteger(&pb[1], 2 + cIntrs * sizeof(uint32_t)); /* Length[15:0] */
1021 pb[3] = (fConsumer ? ACPI_RSRCS_EXT_INTR_VEC_F_CONSUMER : ACPI_RSRCS_EXT_INTR_VEC_F_PRODUCER)
1022 | (fEdgeTriggered ? ACPI_RSRCS_EXT_INTR_VEC_F_EDGE_TRIGGERED : ACPI_RSRCS_EXT_INTR_VEC_F_LEVEL_TRIGGERED)
1023 | (fActiveLow ? ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_LOW : ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_HIGH)
1024 | (fShared ? ACPI_RSRCS_EXT_INTR_VEC_F_SHARED : ACPI_RSRCS_EXT_INTR_VEC_F_EXCLUSIVE)
1025 | (fWakeCapable ? ACPI_RSRCS_EXT_INTR_VEC_F_WAKE_CAP : ACPI_RSRCS_EXT_INTR_VEC_F_NOT_WAKE_CAP);
1026 pb[4] = cIntrs;
1027 pb = &pb[5];
1028 for (uint32_t i = 0; i < cIntrs; i++)
1029 pb = rtAcpiResEncode32BitInteger(pb, pau32Intrs[i]);
1030
1031 return VINF_SUCCESS;
1032}
1033
1034
1035/**
1036 * Common worker for encoding a new quad word (64-bit) address range.
1037 *
1038 * @returns IPRT status code
1039 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1040 * @param pThis The ACPI resource instance.
1041 * @param bType The ACPI address range type.
1042 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1043 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1044 * @param u64AddrMin The start address of the memory range.
1045 * @param u64AddrMax Last valid address of the range.
1046 * @param u64OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1047 * @param u64Granularity The access granularity of the range in bytes.
1048 * @param u64Length Length of the memory range in bytes.
1049 */
1050static int rtAcpiResourceAddQWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1051 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1052 uint64_t u64Granularity, uint64_t u64Length)
1053{
1054 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 43);
1055 if (!pb)
1056 return VERR_NO_MEMORY;
1057
1058 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_QWORD_ADDR_SPACE; /* Tag */
1059 pb[1] = 43; /* Length[7:0] */
1060 pb[2] = 0; /* Length[15:8] */
1061 pb[3] = bType;
1062 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1063 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1064 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1065 pb[5] = fType;
1066
1067 pb = rtAcpiResEncode64BitInteger(&pb[6], u64Granularity);
1068 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMin);
1069 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMax);
1070 pb = rtAcpiResEncode64BitInteger(pb, u64OffTrans);
1071 rtAcpiResEncode64BitInteger(pb, u64Length);
1072 return VINF_SUCCESS;
1073}
1074
1075
1076/**
1077 * Common worker for encoding a new double word (32-bit) address range.
1078 *
1079 * @returns IPRT status code
1080 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1081 * @param pThis The ACPI resource instance.
1082 * @param bType The ACPI address range type.
1083 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1084 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1085 * @param u32AddrMin The start address of the memory range.
1086 * @param u32AddrMax Last valid address of the range.
1087 * @param u32OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1088 * @param u32Granularity The access granularity of the range in bytes.
1089 * @param u32Length Length of the memory range in bytes.
1090 */
1091static int rtAcpiResourceAddDWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1092 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1093 uint32_t u32Granularity, uint32_t u32Length)
1094{
1095 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 23);
1096 if (!pb)
1097 return VERR_NO_MEMORY;
1098
1099 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_DWORD_ADDR_SPACE; /* Tag */
1100 pb[1] = 23; /* Length[7:0] */
1101 pb[2] = 0; /* Length[15:8] */
1102 pb[3] = bType;
1103 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1104 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1105 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1106 pb[5] = fType;
1107
1108 pb = rtAcpiResEncode32BitInteger(&pb[6], u32Granularity);
1109 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMin);
1110 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMax);
1111 pb = rtAcpiResEncode32BitInteger(pb, u32OffTrans);
1112 rtAcpiResEncode32BitInteger(pb, u32Length);
1113 return VINF_SUCCESS;
1114}
1115
1116
1117/**
1118 * Converts the given cacheability, range type and R/W flag to the ACPI resource flags.
1119 *
1120 * @returns Converted ACPI resource flags.
1121 * @param enmCacheability The cacheability enum to convert.
1122 * @param enmType THe memory range type enum to convert.
1123 * @param fRw The read/write flag.
1124 */
1125DECLINLINE(uint8_t) rtAcpiResourceMemoryRangeToTypeFlags(RTACPIRESMEMRANGECACHEABILITY enmCacheability, RTACPIRESMEMRANGETYPE enmType,
1126 bool fRw)
1127{
1128 uint8_t fType = fRw ? ACPI_RSRCS_ADDR_SPACE_MEM_F_RW : ACPI_RSRCS_ADDR_SPACE_MEM_F_RO;
1129
1130 switch (enmCacheability)
1131 {
1132 case kAcpiResMemRangeCacheability_NonCacheable:
1133 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_NON_CACHEABLE;
1134 break;
1135 case kAcpiResMemRangeCacheability_Cacheable:
1136 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE;
1137 break;
1138 case kAcpiResMemRangeCacheability_CacheableWriteCombining:
1139 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_WR_COMB;
1140 break;
1141 case kAcpiResMemRangeCacheability_CacheablePrefetchable:
1142 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_PREFETCHABLE;
1143 break;
1144 case kAcpiResMemRangeCacheability_Invalid:
1145 default:
1146 AssertFailedReturn(0);
1147 }
1148
1149 switch (enmType)
1150 {
1151 case kAcpiResMemType_Memory:
1152 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_MEMORY;
1153 break;
1154 case kAcpiResMemType_Reserved:
1155 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_RESERVED;
1156 break;
1157 case kAcpiResMemType_Acpi:
1158 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_ACPI;
1159 break;
1160 case kAcpiResMemType_Nvs:
1161 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_NVS;
1162 break;
1163 case kAcpiResMemType_Invalid:
1164 default:
1165 AssertFailedReturn(0);
1166 }
1167
1168 return fType;
1169}
1170
1171
1172RTDECL(int) RTAcpiResourceAddQWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1173 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1174 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1175 uint64_t u64Granularity, uint64_t u64Length)
1176{
1177 PRTACPIRESINT pThis = hAcpiRes;
1178 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1179 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1180 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1181 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1182 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1183 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1184
1185 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1186 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1187 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1188}
1189
1190
1191RTDECL(int) RTAcpiResourceAddDWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1192 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1193 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1194 uint32_t u32Granularity, uint32_t u32Length)
1195{
1196 PRTACPIRESINT pThis = hAcpiRes;
1197 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1198 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1199 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1200 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1201 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1202 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1203
1204 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1205 return rtAcpiResourceAddDWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1206 u32AddrMin, u32AddrMax, u32OffTrans, u32Granularity, u32Length);
1207}
1208
1209
1210RTDECL(int) RTAcpiResourceAddQWordIoRange(RTACPIRES hAcpiRes, RTACPIRESIORANGETYPE enmIoType, RTACPIRESIORANGE enmIoRange,
1211 uint32_t fAddrSpace, uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1212 uint64_t u64Granularity, uint64_t u64Length)
1213{
1214 PRTACPIRESINT pThis = hAcpiRes;
1215 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1216 AssertReturn(enmIoType != kAcpiResIoRangeType_Invalid, VERR_INVALID_PARAMETER);
1217 AssertReturn(enmIoRange != kAcpiResIoRange_Invalid, VERR_INVALID_PARAMETER);
1218 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1219 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1220 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1221
1222 uint8_t fType = 0;
1223 switch (enmIoType)
1224 {
1225 case kAcpiResIoRangeType_Static:
1226 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_STATIC;
1227 break;
1228 case kAcpiResIoRangeType_Translation_Sparse:
1229 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_SPARSE;
1230 break;
1231 case kAcpiResIoRangeType_Translation_Dense:
1232 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_DENSE;
1233 break;
1234 case kAcpiResIoRangeType_Invalid:
1235 default:
1236 AssertFailedReturn(VERR_INVALID_PARAMETER);
1237 }
1238
1239 switch (enmIoRange)
1240 {
1241 case kAcpiResIoRange_NonIsaOnly:
1242 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_NON_ISA_ONLY;
1243 break;
1244 case kAcpiResIoRange_IsaOnly:
1245 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_ISA_ONLY;
1246 break;
1247 case kAcpiResIoRange_Whole:
1248 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_WHOLE;
1249 break;
1250 case kAcpiResIoRange_Invalid:
1251 default:
1252 AssertFailedReturn(VERR_INVALID_PARAMETER);
1253 }
1254
1255 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_IO, fAddrSpace, fType,
1256 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1257}
1258
1259
1260RTDECL(int) RTAcpiResourceAddWordBusNumber(RTACPIRES hAcpiRes, uint32_t fAddrSpace, uint16_t u16BusMin, uint16_t u16BusMax,
1261 uint16_t u16OffTrans, uint16_t u16Granularity, uint16_t u16Length)
1262{
1263 PRTACPIRESINT pThis = hAcpiRes;
1264 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1265 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1266 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1267 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1268
1269 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 13);
1270 if (!pb)
1271 return VERR_NO_MEMORY;
1272
1273 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_WORD_ADDR_SPACE; /* Tag */
1274 pb[1] = 13; /* Length[7:0] */
1275 pb[2] = 0; /* Length[15:8] */
1276 pb[3] = ACPI_RSRCS_ADDR_SPACE_TYPE_BUS_NUM_RANGE;
1277 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1278 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1279 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1280 pb[5] = 0;
1281
1282 pb = rtAcpiResEncode16BitInteger(&pb[6], u16Granularity);
1283 pb = rtAcpiResEncode16BitInteger(pb, u16BusMin);
1284 pb = rtAcpiResEncode16BitInteger(pb, u16BusMax);
1285 pb = rtAcpiResEncode16BitInteger(pb, u16OffTrans);
1286 rtAcpiResEncode16BitInteger(pb, u16Length);
1287 return VINF_SUCCESS;
1288
1289}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette