VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/misc/acpi.cpp@ 106486

Last change on this file since 106486 was 106486, checked in by vboxsync, 5 months ago

Runtime/acpi.cpp: Hopefully fix building on sparc64, bugref:10733

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 47.6 KB
Line 
1/* $Id: acpi.cpp 106486 2024-10-18 16:42:19Z vboxsync $ */
2/** @file
3 * IPRT - Advanced Configuration and Power Interface (ACPI) Table generation API.
4 */
5
6/*
7 * Copyright (C) 2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * The contents of this file may alternatively be used under the terms
26 * of the Common Development and Distribution License Version 1.0
27 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
28 * in the VirtualBox distribution, in which case the provisions of the
29 * CDDL are applicable instead of those of the GPL.
30 *
31 * You may elect to license modified versions of this file under the
32 * terms and conditions of either the GPL or the CDDL or both.
33 *
34 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
35 */
36
37
38/*********************************************************************************************************************************
39* Header Files *
40*********************************************************************************************************************************/
41#define LOG_GROUP RTLOGGROUP_ACPI
42#include <iprt/acpi.h>
43#include <iprt/asm.h>
44#include <iprt/file.h>
45#include <iprt/mem.h>
46#include <iprt/string.h>
47
48#include <iprt/formats/acpi-aml.h>
49#include <iprt/formats/acpi-resources.h>
50
51
52/*********************************************************************************************************************************
53* Defined Constants And Macros *
54*********************************************************************************************************************************/
55
56
57
58/*********************************************************************************************************************************
59* Structures and Typedefs *
60*********************************************************************************************************************************/
61
62/**
63 * Package stack element.
64 */
65typedef struct RTACPITBLSTACKELEM
66{
67 /** Pointer to the table buffer memory where the PkgLength object starts. */
68 uint8_t *pbPkgLength;
69 /** Current size of the package in bytes, without the PkgLength object. */
70 uint32_t cbPkg;
71 /** The operator creating the package, UINT8_MAX denotes the special root operator. */
72 uint8_t bOp;
73} RTACPITBLSTACKELEM;
74/** Pointer to a package stack element. */
75typedef RTACPITBLSTACKELEM *PRTACPITBLSTACKELEM;
76/** Pointer to a const package stack element. */
77typedef const RTACPITBLSTACKELEM *PCRTACPITBLSTACKELEM;
78
79
80/**
81 * ACPI table generator instance.
82 */
83typedef struct RTACPITBLINT
84{
85 /** Pointer to the ACPI table header, needed when finalizing the table. */
86 PACPITBLHDR pHdr;
87 /** Byte buffer holding the actual table. */
88 uint8_t *pbTblBuf;
89 /** Size of the table buffer. */
90 uint32_t cbTblBuf;
91 /** Current offset into the table buffer. */
92 uint32_t offTblBuf;
93 /** Flag whether the table is finalized. */
94 bool fFinalized;
95 /** First error code encountered. */
96 int rcErr;
97 /** Pointer to the package element stack. */
98 PRTACPITBLSTACKELEM paPkgStack;
99 /** Number of elements the package stack can hold. */
100 uint32_t cPkgStackElems;
101 /** Index of the current package in the package stack. */
102 uint32_t idxPkgStackElem;
103} RTACPITBLINT;
104/** Pointer to an ACPI table generator instance. */
105typedef RTACPITBLINT *PRTACPITBLINT;
106
107
108/**
109 * ACPI resource builder instance.
110 */
111typedef struct RTACPIRESINT
112{
113 /** Byte buffer holding the resource. */
114 uint8_t *pbResBuf;
115 /** Size of the resource buffer. */
116 size_t cbResBuf;
117 /** Current offset into the resource buffer. */
118 uint32_t offResBuf;
119 /** Flag whether the resource is sealed. */
120 bool fSealed;
121 /** First error code encountered. */
122 int rcErr;
123} RTACPIRESINT;
124/** Pointer to an ACPI resource builder instance. */
125typedef RTACPIRESINT *PRTACPIRESINT;
126
127
128/*********************************************************************************************************************************
129* Global Variables *
130*********************************************************************************************************************************/
131
132
133/*********************************************************************************************************************************
134* Internal Functions *
135*********************************************************************************************************************************/
136
137
138/**
139 * Copies the given string into the given buffer padding the remainder with the given character.
140 *
141 * @param pbId The destination to copy the string to.
142 * @param cbId Size of the buffer in bytes.
143 * @param pszStr The string to copy.
144 * @param chPad The character to pad with.
145 */
146static void rtAcpiTblCopyStringPadWith(uint8_t *pbId, size_t cbId, const char *pszStr, char chPad)
147{
148 Assert(strlen(pszStr) <= cbId);
149
150 uint32_t idx = 0;
151 while (*pszStr != '\0')
152 pbId[idx++] = (uint8_t)*pszStr++;
153
154 while (idx < cbId)
155 pbId[idx++] = chPad;
156}
157
158
159/**
160 * Updates the package length of the current package in the stack
161 *
162 * @param pThis The ACPI table instance.
163 * @param cbAdd How many bytes to add to the package length.
164 */
165DECL_FORCE_INLINE(void) rtAcpiTblUpdatePkgLength(PRTACPITBLINT pThis, uint32_t cbAdd)
166{
167 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
168 pPkgElem->cbPkg += cbAdd;
169}
170
171
172/**
173 * Ensures there is the given amount of room in the ACPI table buffer returning the pointer.
174 *
175 * @returns The pointer to the free space on success or NULL if out of memory.
176 * @param pThis The ACPI table instance.
177 * @param cbReq Amount of bytes requested.
178 */
179static uint8_t *rtAcpiTblBufEnsureSpace(PRTACPITBLINT pThis, uint32_t cbReq)
180{
181 if (RT_LIKELY(pThis->cbTblBuf - pThis->offTblBuf >= cbReq))
182 {
183 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
184 pThis->offTblBuf += cbReq;
185 return pb;
186 }
187
188 uint32_t const cbNew = RT_ALIGN_32(pThis->cbTblBuf + cbReq, _4K);
189 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbTblBuf, cbNew);
190 if (RT_UNLIKELY(!pbNew))
191 {
192 pThis->rcErr = VERR_NO_MEMORY;
193 return NULL;
194 }
195
196 pThis->pbTblBuf = pbNew;
197 pThis->cbTblBuf = cbNew;
198
199 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
200 pThis->offTblBuf += cbReq;
201 return pb;
202}
203
204
205/**
206 * Appends a new package in the given ACPI table instance package stack.
207 *
208 * @returns IPRT status code.
209 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
210 * @param pThis The ACPI table instance.
211 * @param bOp The opcode byte the package starts with (for verification purposes when finalizing the package).
212 * @param pbPkgBuf The Start of the package buffer.
213 */
214static int rtAcpiTblPkgAppendEx(PRTACPITBLINT pThis, uint8_t bOp, uint8_t *pbPkgBuf)
215{
216 /* Get a new stack element. */
217 if (pThis->idxPkgStackElem + 1 == pThis->cPkgStackElems)
218 {
219 uint32_t const cPkgElemsNew = pThis->cPkgStackElems + 8;
220 PRTACPITBLSTACKELEM paPkgStackNew = (PRTACPITBLSTACKELEM)RTMemRealloc(pThis->paPkgStack, cPkgElemsNew * sizeof(*paPkgStackNew));
221 if (!paPkgStackNew)
222 {
223 pThis->rcErr = VERR_NO_MEMORY;
224 return VERR_NO_MEMORY;
225 }
226
227 pThis->paPkgStack = paPkgStackNew;
228 pThis->cPkgStackElems = cPkgElemsNew;
229 }
230
231 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[++pThis->idxPkgStackElem];
232 pStackElem->pbPkgLength = pbPkgBuf;
233 pStackElem->cbPkg = 0;
234 pStackElem->bOp = bOp;
235 return VINF_SUCCESS;
236}
237
238
239/**
240 * Starts a new ACPI package in the given ACPI table instance.
241 *
242 * @returns IPRT status code.
243 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
244 * @param pThis The ACPI table instance.
245 * @param bOp The opcode byte identifying the package content.
246 */
247static int rtAcpiTblPkgStart(PRTACPITBLINT pThis, uint8_t bOp)
248{
249 /*
250 * Allocate 1 byte for opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
251 * This will be corrected when the package is finalized.
252 */
253 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 5);
254 if (!pbPkg)
255 {
256 pThis->rcErr = VERR_NO_MEMORY;
257 return VERR_NO_MEMORY;
258 }
259
260 *pbPkg = bOp;
261 /*
262 * Update the package length of the outer package for the opcode,
263 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
264 */
265 rtAcpiTblUpdatePkgLength(pThis, sizeof(bOp));
266 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 1);
267}
268
269
270/**
271 * Starts a new ACPI package in the given ACPI table instance. This is for opcodes prefixed with
272 * ACPI_AML_BYTE_CODE_PREFIX_EXT_O, which will be added automatically.
273 *
274 * @returns IPRT status code.
275 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
276 * @param pThis The ACPI table instance.
277 * @param bOp The opcode byte identifying the package content.
278 */
279static int rtAcpiTblPkgStartExt(PRTACPITBLINT pThis, uint8_t bOp)
280{
281 /*
282 * Allocate 2 bytes for ExtOpPrefix opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
283 * This will be corrected when the package is finalized.
284 */
285 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 6);
286 if (!pbPkg)
287 {
288 pThis->rcErr = VERR_NO_MEMORY;
289 return VERR_NO_MEMORY;
290 }
291
292 pbPkg[0] = ACPI_AML_BYTE_CODE_PREFIX_EXT_OP;
293 pbPkg[1] = bOp;
294
295 /*
296 * Update the package length of the outer package for the opcode,
297 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
298 */
299 rtAcpiTblUpdatePkgLength(pThis, sizeof(uint8_t) + sizeof(bOp));
300 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 2);
301}
302
303
304/**
305 * Finishes the current package on the top of the package stack, setting the
306 * package length accordingly.
307 *
308 * @returns IPRT status code.
309 * @retval VERR_INVALID_STATE if bOp doesn't match the opcode the package was started with (asserted in debug builds).
310 * @retval VERR_BUFFER_OVERFLOW if the package length exceeds what can be encoded in the package length field.
311 * @param pThis The ACPI table instance.
312 * @param bOp The opcode byte identifying the package content the package was started with.
313 */
314static int rtAcpiTblPkgFinish(PRTACPITBLINT pThis, uint8_t bOp)
315{
316 /* Ensure the op matches what is current on the top of the stack. */
317 AssertReturn(pThis->paPkgStack[pThis->idxPkgStackElem].bOp == bOp, VERR_INVALID_STATE);
318
319 /* Pop the topmost stack element from the stack. */
320 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem--];
321
322 /*
323 * Determine how many bytes we actually need for the PkgLength and re-arrange the ACPI table.
324 *
325 * Note! PkgLength will also include its own length.
326 */
327 uint8_t *pbPkgLength = pPkgElem->pbPkgLength;
328 uint32_t cbThisPkg = pPkgElem->cbPkg;
329 if (cbThisPkg + 1 <= 63)
330 {
331 /* Remove the gap. */
332 memmove(pbPkgLength + 1, pbPkgLength + 4, cbThisPkg);
333 pThis->offTblBuf -= 3;
334
335 /* PkgLength only consists of the package lead byte. */
336 cbThisPkg += 1;
337 *pbPkgLength = (cbThisPkg & 0x3f);
338 }
339 else if (cbThisPkg + 2 < RT_BIT_32(12))
340 {
341 /* Remove the gap. */
342 memmove(pbPkgLength + 2, pbPkgLength + 4, cbThisPkg);
343 pThis->offTblBuf -= 2;
344
345 cbThisPkg += 2;
346 pbPkgLength[0] = (1 << 6) | (cbThisPkg & 0xf);
347 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
348 }
349 else if (cbThisPkg + 3 < RT_BIT_32(20))
350 {
351 /* Remove the gap. */
352 memmove(pbPkgLength + 3, pbPkgLength + 4, cbThisPkg);
353 pThis->offTblBuf -= 1;
354
355 cbThisPkg += 3;
356 pbPkgLength[0] = (2 << 6) | (cbThisPkg & 0xf);
357 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
358 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
359 }
360 else if (cbThisPkg + 4 < RT_BIT_32(28))
361 {
362 cbThisPkg += 4;
363 pbPkgLength[0] = (3 << 6) | (cbThisPkg & 0xf);
364 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
365 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
366 pbPkgLength[3] = (cbThisPkg >> 20) & 0xff;
367 }
368 else
369 return VERR_BUFFER_OVERFLOW;
370
371 /* Update the size of the outer package. */
372 pThis->paPkgStack[pThis->idxPkgStackElem].cbPkg += cbThisPkg;
373
374 return VINF_SUCCESS;
375}
376
377
378/**
379 * Appends the given byte to the ACPI table, updating the package length of the current package.
380 *
381 * @param pThis The ACPI table instance.
382 * @param bData The byte data to append.
383 */
384DECLINLINE(void) rtAcpiTblAppendByte(PRTACPITBLINT pThis, uint8_t bData)
385{
386 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, sizeof(bData));
387 if (pb)
388 {
389 *pb = bData;
390 rtAcpiTblUpdatePkgLength(pThis, sizeof(bData));
391 }
392}
393
394
395/**
396 * Appends the given date to the ACPI table, updating the package length of the current package.
397 *
398 * @param pThis The ACPI table instance.
399 * @param pvData The data to append.
400 * @param cbData Size of the data in bytes.
401 */
402DECLINLINE(void) rtAcpiTblAppendData(PRTACPITBLINT pThis, const void *pvData, uint32_t cbData)
403{
404 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbData);
405 if (pb)
406 {
407 memcpy(pb, pvData, cbData);
408 rtAcpiTblUpdatePkgLength(pThis, cbData);
409 }
410}
411
412
413/**
414 * Appends the given namestring to the ACPI table, updating the package length of the current package
415 * and padding the name with _ if too short.
416 *
417 * @param pThis The ACPI table instance.
418 * @param pszName The name to append, maximum is 4 bytes (or 5 if \\ is the first character).
419 */
420DECLINLINE(void) rtAcpiTblAppendNameString(PRTACPITBLINT pThis, const char *pszName)
421{
422 uint32_t cbName = *pszName == '\\' ? 5 : 4;
423 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbName);
424 if (pb)
425 {
426 rtAcpiTblCopyStringPadWith(pb, cbName, pszName, '_');
427 rtAcpiTblUpdatePkgLength(pThis, cbName);
428 }
429}
430
431
432RTDECL(uint8_t) RTAcpiChecksumGenerate(const void *pvData, size_t cbData)
433{
434 uint8_t const *pbSrc = (uint8_t const *)pvData;
435 uint8_t bSum = 0;
436 for (size_t i = 0; i < cbData; ++i)
437 bSum += pbSrc[i];
438
439 return -bSum;
440}
441
442
443RTDECL(void) RTAcpiTblHdrChecksumGenerate(PACPITBLHDR pTbl, size_t cbTbl)
444{
445 pTbl->bChkSum = 0;
446 pTbl->bChkSum = RTAcpiChecksumGenerate(pTbl, cbTbl);
447}
448
449
450RTDECL(int) RTAcpiTblCreate(PRTACPITBL phAcpiTbl, uint32_t u32TblSig, uint8_t bRevision, const char *pszOemId,
451 const char *pszOemTblId, uint32_t u32OemRevision, const char *pszCreatorId,
452 uint32_t u32CreatorRevision)
453{
454 AssertPtrReturn(phAcpiTbl, VERR_INVALID_POINTER);
455 AssertPtrReturn(pszOemId, VERR_INVALID_POINTER);
456 AssertPtrReturn(pszOemTblId, VERR_INVALID_POINTER);
457 AssertReturn(strlen(pszOemId) <= 6, VERR_INVALID_PARAMETER);
458 AssertReturn(strlen(pszOemTblId) <= 8, VERR_INVALID_PARAMETER);
459 AssertReturn(!pszCreatorId || strlen(pszCreatorId) <= 4, VERR_INVALID_PARAMETER);
460
461 PRTACPITBLINT pThis = (PRTACPITBLINT)RTMemAllocZ(sizeof(*pThis));
462 if (pThis)
463 {
464 pThis->pbTblBuf = (uint8_t *)RTMemAlloc(_4K);
465 if (pThis->pbTblBuf)
466 {
467 pThis->pHdr = (PACPITBLHDR)pThis->pbTblBuf;
468 pThis->offTblBuf = sizeof(*pThis->pHdr);
469 pThis->cbTblBuf = _4K;
470 pThis->fFinalized = false;
471 pThis->rcErr = VINF_SUCCESS;
472 pThis->paPkgStack = NULL;
473 pThis->cPkgStackElems = 0;
474 pThis->idxPkgStackElem = 0;
475
476 /* Add the root stack element for the table, aka DefinitionBlock() in ASL. */
477 uint32_t const cPkgElemsInitial = 8;
478 pThis->paPkgStack = (PRTACPITBLSTACKELEM)RTMemAlloc(cPkgElemsInitial * sizeof(*pThis->paPkgStack));
479 if (pThis->paPkgStack)
480 {
481 pThis->cPkgStackElems = cPkgElemsInitial;
482
483 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
484 pStackElem->pbPkgLength = pThis->pbTblBuf; /* Starts with the header. */
485 pStackElem->cbPkg = sizeof(*pThis->pHdr);
486 pStackElem->bOp = UINT8_MAX;
487
488 /* Init the table header with static things. */
489 pThis->pHdr->u32Signature = u32TblSig;
490 pThis->pHdr->bRevision = bRevision;
491 pThis->pHdr->u32OemRevision = RT_H2LE_U32(u32OemRevision);
492 pThis->pHdr->u32CreatorRevision = RT_H2LE_U32(u32CreatorRevision);
493
494 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemId[0], sizeof(pThis->pHdr->abOemId), pszOemId, ' ');
495 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemTblId[0], sizeof(pThis->pHdr->abOemTblId), pszOemTblId, ' ');
496 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abCreatorId[0], sizeof(pThis->pHdr->abCreatorId),
497 pszCreatorId ? pszCreatorId : "IPRT", ' ');
498
499 *phAcpiTbl = pThis;
500 return VINF_SUCCESS;
501 }
502
503 RTMemFree(pThis->pbTblBuf);
504 }
505
506 RTMemFree(pThis);
507 }
508
509 return VERR_NO_MEMORY;
510}
511
512
513RTDECL(void) RTAcpiTblDestroy(RTACPITBL hAcpiTbl)
514{
515 PRTACPITBLINT pThis = hAcpiTbl;
516 AssertPtrReturnVoid(pThis);
517
518 RTMemFree(pThis->paPkgStack);
519 RTMemFree(pThis->pbTblBuf);
520 pThis->pHdr = NULL;
521 pThis->pbTblBuf = NULL;
522 pThis->cbTblBuf = 0;
523 pThis->offTblBuf = 0;
524 pThis->paPkgStack = NULL;
525 pThis->cPkgStackElems = 0;
526 pThis->idxPkgStackElem = 0;
527 RTMemFree(pThis);
528}
529
530
531RTDECL(int) RTAcpiTblFinalize(RTACPITBL hAcpiTbl)
532{
533 PRTACPITBLINT pThis = hAcpiTbl;
534 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
535 AssertRCReturn(pThis->rcErr, pThis->rcErr);
536 AssertReturn(!pThis->fFinalized, VERR_INVALID_PARAMETER);
537 AssertReturn(pThis->idxPkgStackElem == 0, VERR_INVALID_STATE); /** @todo Better status code. */
538 AssertReturn(pThis->paPkgStack[0].bOp == UINT8_MAX, VERR_INVALID_STATE);
539
540 pThis->pHdr->cbTbl = RT_H2LE_U32(pThis->paPkgStack[0].cbPkg);
541 RTAcpiTblHdrChecksumGenerate(pThis->pHdr, pThis->paPkgStack[0].cbPkg);
542
543 pThis->fFinalized = true;
544 return VINF_SUCCESS;
545}
546
547
548RTDECL(uint32_t) RTAcpiTblGetSize(RTACPITBL hAcpiTbl)
549{
550 PRTACPITBLINT pThis = hAcpiTbl;
551 AssertPtrReturn(pThis, 0);
552 AssertRCReturn(pThis->rcErr, 0);
553 AssertReturn(pThis->fFinalized, 0);
554
555 return pThis->paPkgStack[0].cbPkg;
556}
557
558
559RTDECL(int) RTAcpiTblDumpToVfsIoStrm(RTACPITBL hAcpiTbl, RTVFSIOSTREAM hVfsIos)
560{
561 PRTACPITBLINT pThis = hAcpiTbl;
562 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
563 AssertRCReturn(pThis->rcErr, 0);
564
565 return RTVfsIoStrmWrite(hVfsIos, pThis->pbTblBuf, pThis->paPkgStack[0].cbPkg,
566 true /*fBlocking*/, NULL /*pcbWritten*/);
567}
568
569
570RTDECL(int) RTAcpiTblDumpToFile(RTACPITBL hAcpiTbl, const char *pszFilename)
571{
572 RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM;
573 int rc = RTVfsChainOpenIoStream(pszFilename, RTFILE_O_WRITE | RTFILE_O_CREATE | RTFILE_O_DENY_NONE,
574 &hVfsIos, NULL /*poffError*/, NULL);
575 if (RT_FAILURE(rc))
576 return rc;
577
578 rc = RTAcpiTblDumpToVfsIoStrm(hAcpiTbl, hVfsIos);
579 RTVfsIoStrmRelease(hVfsIos);
580 return rc;
581}
582
583
584RTDECL(int) RTAcpiTblScopeFinalize(RTACPITBL hAcpiTbl)
585{
586 PRTACPITBLINT pThis = hAcpiTbl;
587 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
588
589 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
590}
591
592
593RTDECL(int) RTAcpiTblScopeStart(RTACPITBL hAcpiTbl, const char *pszName)
594{
595 PRTACPITBLINT pThis = hAcpiTbl;
596 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
597
598 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
599 rtAcpiTblAppendNameString(pThis, pszName);
600 return pThis->rcErr;
601}
602
603
604RTDECL(int) RTAcpiTblPackageStart(RTACPITBL hAcpiTbl, uint8_t cElements)
605{
606 PRTACPITBLINT pThis = hAcpiTbl;
607 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
608
609 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
610 rtAcpiTblAppendByte(pThis, cElements);
611 return pThis->rcErr;
612}
613
614
615RTDECL(int) RTAcpiTblPackageFinalize(RTACPITBL hAcpiTbl)
616{
617 PRTACPITBLINT pThis = hAcpiTbl;
618 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
619
620 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
621}
622
623
624RTDECL(int) RTAcpiTblDeviceStart(RTACPITBL hAcpiTbl, const char *pszName)
625{
626 PRTACPITBLINT pThis = hAcpiTbl;
627 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
628
629 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
630 rtAcpiTblAppendNameString(pThis, pszName);
631 return pThis->rcErr;
632}
633
634
635RTDECL(int) RTAcpiTblDeviceStartF(RTACPITBL hAcpiTbl, const char *pszNameFmt, ...)
636{
637 va_list va;
638 va_start(va, pszNameFmt);
639 int rc = RTAcpiTblDeviceStartV(hAcpiTbl, pszNameFmt, va);
640 va_end(va);
641 return rc;
642}
643
644
645RTDECL(int) RTAcpiTblDeviceStartV(RTACPITBL hAcpiTbl, const char *pszNameFmt, va_list va)
646{
647 char szName[5];
648 ssize_t cch = RTStrPrintf2V(&szName[0], sizeof(szName), pszNameFmt, va);
649 if (cch <= 0)
650 return VERR_BUFFER_OVERFLOW;
651
652 return RTAcpiTblDeviceStart(hAcpiTbl, &szName[0]);
653}
654
655
656RTDECL(int) RTAcpiTblDeviceFinalize(RTACPITBL hAcpiTbl)
657{
658 PRTACPITBLINT pThis = hAcpiTbl;
659 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
660
661 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
662}
663
664
665RTDECL(int) RTAcpiTblMethodStart(RTACPITBL hAcpiTbl, const char *pszName, uint8_t cArgs, uint32_t fFlags, uint8_t uSyncLvl)
666{
667 PRTACPITBLINT pThis = hAcpiTbl;
668 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
669 AssertReturn(cArgs < 8, VERR_INVALID_PARAMETER);
670 AssertReturn(uSyncLvl < 0x10, VERR_INVALID_PARAMETER);
671
672 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
673 rtAcpiTblAppendNameString(pThis, pszName);
674
675 uint8_t bFlags = cArgs;
676 bFlags |= fFlags & RTACPI_METHOD_F_SERIALIZED ? RT_BIT(3) : 0;
677 bFlags |= uSyncLvl << 4;
678
679 rtAcpiTblAppendByte(pThis, bFlags);
680 return pThis->rcErr;
681}
682
683
684RTDECL(int) RTAcpiTblMethodFinalize(RTACPITBL hAcpiTbl)
685{
686 PRTACPITBLINT pThis = hAcpiTbl;
687 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
688
689 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
690}
691
692
693RTDECL(int) RTAcpiTblNameAppend(RTACPITBL hAcpiTbl, const char *pszName)
694{
695 PRTACPITBLINT pThis = hAcpiTbl;
696 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
697
698 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_NAME);
699 rtAcpiTblAppendNameString(pThis, pszName);
700 return pThis->rcErr;
701}
702
703
704RTDECL(int) RTAcpiTblStringAppend(RTACPITBL hAcpiTbl, const char *psz)
705{
706 PRTACPITBLINT pThis = hAcpiTbl;
707 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
708
709 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_STRING);
710 rtAcpiTblAppendData(pThis, psz, (uint32_t)strlen(psz) + 1);
711 return pThis->rcErr;
712}
713
714
715RTDECL(int) RTAcpiTblIntegerAppend(RTACPITBL hAcpiTbl, uint64_t u64)
716{
717 PRTACPITBLINT pThis = hAcpiTbl;
718 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
719
720 if (!u64)
721 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ZERO);
722 else if (u64 == 1)
723 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ONE);
724 else if (u64 <= UINT8_MAX)
725 {
726 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_BYTE);
727 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
728 }
729 else if (u64 <= UINT16_MAX)
730 {
731 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_WORD);
732 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
733 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
734 }
735 else if (u64 <= UINT32_MAX)
736 {
737 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_DWORD);
738 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
739 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
740 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
741 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
742 }
743 else
744 {
745 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_QWORD);
746 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
747 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
748 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
749 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
750 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 32));
751 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 40));
752 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 48));
753 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 56));
754 }
755 return pThis->rcErr;
756}
757
758
759RTDECL(int) RTAcpiTblBufferAppend(RTACPITBL hAcpiTbl, const void *pvBuf, size_t cbBuf)
760{
761 PRTACPITBLINT pThis = hAcpiTbl;
762 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
763 AssertReturn(!cbBuf || RT_VALID_PTR(pvBuf), VERR_INVALID_PARAMETER);
764 AssertReturn(cbBuf <= UINT32_MAX, VERR_BUFFER_OVERFLOW);
765
766 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
767 RTAcpiTblIntegerAppend(hAcpiTbl, cbBuf);
768 if (pvBuf)
769 rtAcpiTblAppendData(pThis, pvBuf, (uint32_t)cbBuf);
770 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
771}
772
773
774RTDECL(int) RTAcpiTblResourceAppend(RTACPITBL hAcpiTbl, RTACPIRES hAcpiRes)
775{
776 PRTACPITBLINT pThis = hAcpiTbl;
777 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
778 AssertRCReturn(pThis->rcErr, pThis->rcErr);
779
780 const void *pvRes = NULL;
781 size_t cbRes = 0;
782 int rc = RTAcpiResourceQueryBuffer(hAcpiRes, &pvRes, &cbRes);
783 if (RT_SUCCESS(rc))
784 rc = RTAcpiTblBufferAppend(pThis, pvRes, cbRes);
785
786 return rc;
787}
788
789
790RTDECL(int) RTAcpiTblStmtSimpleAppend(RTACPITBL hAcpiTbl, RTACPISTMT enmStmt)
791{
792 PRTACPITBLINT pThis = hAcpiTbl;
793 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
794
795 uint8_t bOp;
796 switch (enmStmt)
797 {
798 case kAcpiStmt_Return: bOp = ACPI_AML_BYTE_CODE_OP_RETURN; break;
799 case kAcpiStmt_Breakpoint: bOp = ACPI_AML_BYTE_CODE_OP_BREAK_POINT; break;
800 case kAcpiStmt_Nop: bOp = ACPI_AML_BYTE_CODE_OP_NOOP; break;
801 case kAcpiStmt_Break: bOp = ACPI_AML_BYTE_CODE_OP_BREAK; break;
802 case kAcpiStmt_Continue: bOp = ACPI_AML_BYTE_CODE_OP_CONTINUE; break;
803 default:
804 AssertFailedReturn(VERR_INVALID_PARAMETER);
805 }
806 rtAcpiTblAppendByte(pThis, bOp);
807 return pThis->rcErr;
808}
809
810
811/**
812 * Ensures there is at least the given amount of space in the given ACPI resource.
813 *
814 * @returns Pointer to the free buffer space or NULL if out of memory.
815 * @param pThis The ACPI resource instance.
816 * @param cbReq Number of free bytes required.
817 */
818static uint8_t *rtAcpiResBufEnsureSpace(PRTACPIRESINT pThis, uint32_t cbReq)
819{
820 if (RT_LIKELY(pThis->cbResBuf - pThis->offResBuf >= cbReq))
821 {
822 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
823 pThis->offResBuf += cbReq;
824 return pb;
825 }
826
827 size_t const cbNew = RT_ALIGN_Z(pThis->cbResBuf + cbReq, _4K);
828 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbResBuf, cbNew);
829 if (RT_UNLIKELY(!pbNew))
830 {
831 pThis->rcErr = VERR_NO_MEMORY;
832 return NULL;
833 }
834
835 pThis->pbResBuf = pbNew;
836 pThis->cbResBuf = cbNew;
837
838 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
839 pThis->offResBuf += cbReq;
840 return pb;
841}
842
843
844/**
845 * Encodes an ACPI 16-bit integer in the given byte buffer.
846 *
847 * @returns Pointer to after the encoded integer.
848 * @param pb Where to encode the integer into.
849 * @param u16 The 16-bit unsigned integere to encode.
850 */
851DECLINLINE(uint8_t *) rtAcpiResEncode16BitInteger(uint8_t *pb, uint16_t u16)
852{
853 *pb++ = (uint8_t)u16;
854 *pb++ = (uint8_t)(u16 >> 8);
855 return pb;
856}
857
858
859/**
860 * Encodes an ACPI 32-bit integer in the given byte buffer.
861 *
862 * @returns Pointer to after the encoded integer.
863 * @param pb Where to encode the integer into.
864 * @param u32 The 32-bit unsigned integere to encode.
865 */
866DECLINLINE(uint8_t *) rtAcpiResEncode32BitInteger(uint8_t *pb, uint32_t u32)
867{
868 *pb++ = (uint8_t)u32;
869 *pb++ = (uint8_t)(u32 >> 8);
870 *pb++ = (uint8_t)(u32 >> 16);
871 *pb++ = (uint8_t)(u32 >> 24);
872 return pb;
873}
874
875/**
876 * Encodes an ACPI 64-bit integer in the given byte buffer.
877 *
878 * @returns Pointer to after the encoded integer.
879 * @param pb Where to encode the integer into.
880 * @param u64 The 64-bit unsigned integere to encode.
881 */
882
883DECLINLINE(uint8_t *) rtAcpiResEncode64BitInteger(uint8_t *pb, uint64_t u64)
884{
885 *pb++ = (uint8_t)u64;
886 *pb++ = (uint8_t)(u64 >> 8);
887 *pb++ = (uint8_t)(u64 >> 16);
888 *pb++ = (uint8_t)(u64 >> 24);
889 *pb++ = (uint8_t)(u64 >> 32);
890 *pb++ = (uint8_t)(u64 >> 40);
891 *pb++ = (uint8_t)(u64 >> 48);
892 *pb++ = (uint8_t)(u64 >> 56);
893 return pb;
894}
895
896
897RTDECL(int) RTAcpiResourceCreate(PRTACPIRES phAcpiRes)
898{
899 AssertPtrReturn(phAcpiRes, VERR_INVALID_POINTER);
900
901 PRTACPIRESINT pThis = (PRTACPIRESINT)RTMemAllocZ(sizeof(*pThis));
902 if (pThis)
903 {
904 pThis->pbResBuf = (uint8_t *)RTMemAlloc(64);
905 if (pThis->pbResBuf)
906 {
907 pThis->offResBuf = 0;
908 pThis->cbResBuf = 64;
909 pThis->fSealed = false;
910 pThis->rcErr = VINF_SUCCESS;
911
912 *phAcpiRes = pThis;
913 return VINF_SUCCESS;
914 }
915
916 RTMemFree(pThis);
917 }
918
919 return VERR_NO_MEMORY;
920}
921
922
923RTDECL(void) RTAcpiResourceDestroy(RTACPIRES hAcpiRes)
924{
925 PRTACPIRESINT pThis = hAcpiRes;
926 AssertPtrReturnVoid(pThis);
927
928 RTMemFree(pThis->pbResBuf);
929 pThis->pbResBuf = NULL;
930 pThis->cbResBuf = 0;
931 pThis->offResBuf = 0;
932 RTMemFree(pThis);
933}
934
935
936RTDECL(void) RTAcpiResourceReset(RTACPIRES hAcpiRes)
937{
938 PRTACPIRESINT pThis = hAcpiRes;
939 AssertPtrReturnVoid(pThis);
940
941 pThis->offResBuf = 0;
942 pThis->fSealed = false;
943 pThis->rcErr = VINF_SUCCESS;
944}
945
946
947RTDECL(int) RTAcpiResourceSeal(RTACPIRES hAcpiRes)
948{
949 PRTACPIRESINT pThis = hAcpiRes;
950 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
951 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
952 AssertRCReturn(pThis->rcErr, pThis->rcErr);
953
954 /* Add the end tag. */
955 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 2);
956 if (!pb)
957 return VERR_NO_MEMORY;
958
959 *pb++ = ACPI_RSRCS_TAG_END;
960 /*
961 * Generate checksum, we could just write 0 here which will be treated as checksum operation succeeded,
962 * but having this might catch some bugs.
963 *
964 * Checksum algorithm is the same as with the ACPI tables.
965 */
966 *pb = RTAcpiChecksumGenerate(pThis->pbResBuf, pThis->offResBuf - 1); /* Exclude the checksum field. */
967
968 pThis->fSealed = true;
969 return VINF_SUCCESS;
970}
971
972
973RTDECL(int) RTAcpiResourceQueryBuffer(RTACPIRES hAcpiRes, const void **ppvRes, size_t *pcbRes)
974{
975 PRTACPIRESINT pThis = hAcpiRes;
976 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
977 AssertReturn(pThis->fSealed, VERR_INVALID_STATE);
978 AssertRCReturn(pThis->rcErr, pThis->rcErr);
979
980 *ppvRes = pThis->pbResBuf;
981 *pcbRes = pThis->offResBuf;
982 return VINF_SUCCESS;
983}
984
985
986RTDECL(int) RTAcpiResourceAdd32BitFixedMemoryRange(RTACPIRES hAcpiRes, uint32_t u32AddrBase, uint32_t cbRange,
987 bool fRw)
988{
989 PRTACPIRESINT pThis = hAcpiRes;
990 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
991 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
992 AssertRCReturn(pThis->rcErr, pThis->rcErr);
993
994 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 12);
995 if (!pb)
996 return VERR_NO_MEMORY;
997
998 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_32BIT_FIXED_MEMORY_RANGE; /* Tag */
999 pb[1] = 9; /* Length[7:0] */
1000 pb[2] = 0; /* Length[15:8] */
1001 pb[3] = fRw ? 1 : 0; /* Information */
1002 rtAcpiResEncode32BitInteger(&pb[4], u32AddrBase);
1003 rtAcpiResEncode32BitInteger(&pb[8], cbRange);
1004 return VINF_SUCCESS;
1005}
1006
1007
1008RTDECL(int) RTAcpiResourceAddExtendedInterrupt(RTACPIRES hAcpiRes, bool fConsumer, bool fEdgeTriggered, bool fActiveLow, bool fShared,
1009 bool fWakeCapable, uint8_t cIntrs, uint32_t *pau32Intrs)
1010{
1011 PRTACPIRESINT pThis = hAcpiRes;
1012 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1013 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1014 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1015
1016 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 2 + cIntrs * sizeof(uint32_t));
1017 if (!pb)
1018 return VERR_NO_MEMORY;
1019
1020 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_EXTENDED_INTERRUPT; /* Tag */
1021 rtAcpiResEncode16BitInteger(&pb[1], 2 + cIntrs * sizeof(uint32_t)); /* Length[15:0] */
1022 pb[3] = (fConsumer ? ACPI_RSRCS_EXT_INTR_VEC_F_CONSUMER : ACPI_RSRCS_EXT_INTR_VEC_F_PRODUCER)
1023 | (fEdgeTriggered ? ACPI_RSRCS_EXT_INTR_VEC_F_EDGE_TRIGGERED : ACPI_RSRCS_EXT_INTR_VEC_F_LEVEL_TRIGGERED)
1024 | (fActiveLow ? ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_LOW : ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_HIGH)
1025 | (fShared ? ACPI_RSRCS_EXT_INTR_VEC_F_SHARED : ACPI_RSRCS_EXT_INTR_VEC_F_EXCLUSIVE)
1026 | (fWakeCapable ? ACPI_RSRCS_EXT_INTR_VEC_F_WAKE_CAP : ACPI_RSRCS_EXT_INTR_VEC_F_NOT_WAKE_CAP);
1027 pb[4] = cIntrs;
1028 pb = &pb[5];
1029 for (uint32_t i = 0; i < cIntrs; i++)
1030 pb = rtAcpiResEncode32BitInteger(pb, pau32Intrs[i]);
1031
1032 return VINF_SUCCESS;
1033}
1034
1035
1036/**
1037 * Common worker for encoding a new quad word (64-bit) address range.
1038 *
1039 * @returns IPRT status code
1040 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1041 * @param pThis The ACPI resource instance.
1042 * @param bType The ACPI address range type.
1043 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1044 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1045 * @param u64AddrMin The start address of the memory range.
1046 * @param u64AddrMax Last valid address of the range.
1047 * @param u64OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1048 * @param u64Granularity The access granularity of the range in bytes.
1049 * @param u64Length Length of the memory range in bytes.
1050 */
1051static int rtAcpiResourceAddQWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1052 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1053 uint64_t u64Granularity, uint64_t u64Length)
1054{
1055 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 43);
1056 if (!pb)
1057 return VERR_NO_MEMORY;
1058
1059 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_QWORD_ADDR_SPACE; /* Tag */
1060 pb[1] = 43; /* Length[7:0] */
1061 pb[2] = 0; /* Length[15:8] */
1062 pb[3] = bType;
1063 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1064 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1065 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1066 pb[5] = fType;
1067
1068 pb = rtAcpiResEncode64BitInteger(&pb[6], u64Granularity);
1069 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMin);
1070 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMax);
1071 pb = rtAcpiResEncode64BitInteger(pb, u64OffTrans);
1072 rtAcpiResEncode64BitInteger(pb, u64Length);
1073 return VINF_SUCCESS;
1074}
1075
1076
1077/**
1078 * Common worker for encoding a new double word (32-bit) address range.
1079 *
1080 * @returns IPRT status code
1081 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1082 * @param pThis The ACPI resource instance.
1083 * @param bType The ACPI address range type.
1084 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1085 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1086 * @param u32AddrMin The start address of the memory range.
1087 * @param u32AddrMax Last valid address of the range.
1088 * @param u32OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1089 * @param u32Granularity The access granularity of the range in bytes.
1090 * @param u32Length Length of the memory range in bytes.
1091 */
1092static int rtAcpiResourceAddDWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1093 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1094 uint32_t u32Granularity, uint32_t u32Length)
1095{
1096 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 23);
1097 if (!pb)
1098 return VERR_NO_MEMORY;
1099
1100 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_DWORD_ADDR_SPACE; /* Tag */
1101 pb[1] = 23; /* Length[7:0] */
1102 pb[2] = 0; /* Length[15:8] */
1103 pb[3] = bType;
1104 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1105 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1106 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1107 pb[5] = fType;
1108
1109 pb = rtAcpiResEncode32BitInteger(&pb[6], u32Granularity);
1110 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMin);
1111 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMax);
1112 pb = rtAcpiResEncode32BitInteger(pb, u32OffTrans);
1113 rtAcpiResEncode32BitInteger(pb, u32Length);
1114 return VINF_SUCCESS;
1115}
1116
1117
1118/**
1119 * Converts the given cacheability, range type and R/W flag to the ACPI resource flags.
1120 *
1121 * @returns Converted ACPI resource flags.
1122 * @param enmCacheability The cacheability enum to convert.
1123 * @param enmType THe memory range type enum to convert.
1124 * @param fRw The read/write flag.
1125 */
1126DECLINLINE(uint8_t) rtAcpiResourceMemoryRangeToTypeFlags(RTACPIRESMEMRANGECACHEABILITY enmCacheability, RTACPIRESMEMRANGETYPE enmType,
1127 bool fRw)
1128{
1129 uint8_t fType = fRw ? ACPI_RSRCS_ADDR_SPACE_MEM_F_RW : ACPI_RSRCS_ADDR_SPACE_MEM_F_RO;
1130
1131 switch (enmCacheability)
1132 {
1133 case kAcpiResMemRangeCacheability_NonCacheable:
1134 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_NON_CACHEABLE;
1135 break;
1136 case kAcpiResMemRangeCacheability_Cacheable:
1137 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE;
1138 break;
1139 case kAcpiResMemRangeCacheability_CacheableWriteCombining:
1140 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_WR_COMB;
1141 break;
1142 case kAcpiResMemRangeCacheability_CacheablePrefetchable:
1143 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_PREFETCHABLE;
1144 break;
1145 case kAcpiResMemRangeCacheability_Invalid:
1146 default:
1147 AssertFailedReturn(0);
1148 }
1149
1150 switch (enmType)
1151 {
1152 case kAcpiResMemType_Memory:
1153 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_MEMORY;
1154 break;
1155 case kAcpiResMemType_Reserved:
1156 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_RESERVED;
1157 break;
1158 case kAcpiResMemType_Acpi:
1159 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_ACPI;
1160 break;
1161 case kAcpiResMemType_Nvs:
1162 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_NVS;
1163 break;
1164 case kAcpiResMemType_Invalid:
1165 default:
1166 AssertFailedReturn(0);
1167 }
1168
1169 return fType;
1170}
1171
1172
1173RTDECL(int) RTAcpiResourceAddQWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1174 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1175 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1176 uint64_t u64Granularity, uint64_t u64Length)
1177{
1178 PRTACPIRESINT pThis = hAcpiRes;
1179 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1180 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1181 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1182 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1183 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1184 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1185
1186 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1187 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1188 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1189}
1190
1191
1192RTDECL(int) RTAcpiResourceAddDWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1193 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1194 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1195 uint32_t u32Granularity, uint32_t u32Length)
1196{
1197 PRTACPIRESINT pThis = hAcpiRes;
1198 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1199 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1200 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1201 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1202 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1203 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1204
1205 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1206 return rtAcpiResourceAddDWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1207 u32AddrMin, u32AddrMax, u32OffTrans, u32Granularity, u32Length);
1208}
1209
1210
1211RTDECL(int) RTAcpiResourceAddQWordIoRange(RTACPIRES hAcpiRes, RTACPIRESIORANGETYPE enmIoType, RTACPIRESIORANGE enmIoRange,
1212 uint32_t fAddrSpace, uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1213 uint64_t u64Granularity, uint64_t u64Length)
1214{
1215 PRTACPIRESINT pThis = hAcpiRes;
1216 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1217 AssertReturn(enmIoType != kAcpiResIoRangeType_Invalid, VERR_INVALID_PARAMETER);
1218 AssertReturn(enmIoRange != kAcpiResIoRange_Invalid, VERR_INVALID_PARAMETER);
1219 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1220 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1221 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1222
1223 uint8_t fType = 0;
1224 switch (enmIoType)
1225 {
1226 case kAcpiResIoRangeType_Static:
1227 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_STATIC;
1228 break;
1229 case kAcpiResIoRangeType_Translation_Sparse:
1230 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_SPARSE;
1231 break;
1232 case kAcpiResIoRangeType_Translation_Dense:
1233 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_DENSE;
1234 break;
1235 case kAcpiResIoRangeType_Invalid:
1236 default:
1237 AssertFailedReturn(VERR_INVALID_PARAMETER);
1238 }
1239
1240 switch (enmIoRange)
1241 {
1242 case kAcpiResIoRange_NonIsaOnly:
1243 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_NON_ISA_ONLY;
1244 break;
1245 case kAcpiResIoRange_IsaOnly:
1246 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_ISA_ONLY;
1247 break;
1248 case kAcpiResIoRange_Whole:
1249 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_WHOLE;
1250 break;
1251 case kAcpiResIoRange_Invalid:
1252 default:
1253 AssertFailedReturn(VERR_INVALID_PARAMETER);
1254 }
1255
1256 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_IO, fAddrSpace, fType,
1257 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1258}
1259
1260
1261RTDECL(int) RTAcpiResourceAddWordBusNumber(RTACPIRES hAcpiRes, uint32_t fAddrSpace, uint16_t u16BusMin, uint16_t u16BusMax,
1262 uint16_t u16OffTrans, uint16_t u16Granularity, uint16_t u16Length)
1263{
1264 PRTACPIRESINT pThis = hAcpiRes;
1265 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1266 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1267 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1268 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1269
1270 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 13);
1271 if (!pb)
1272 return VERR_NO_MEMORY;
1273
1274 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_WORD_ADDR_SPACE; /* Tag */
1275 pb[1] = 13; /* Length[7:0] */
1276 pb[2] = 0; /* Length[15:8] */
1277 pb[3] = ACPI_RSRCS_ADDR_SPACE_TYPE_BUS_NUM_RANGE;
1278 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1279 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1280 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1281 pb[5] = 0;
1282
1283 pb = rtAcpiResEncode16BitInteger(&pb[6], u16Granularity);
1284 pb = rtAcpiResEncode16BitInteger(pb, u16BusMin);
1285 pb = rtAcpiResEncode16BitInteger(pb, u16BusMax);
1286 pb = rtAcpiResEncode16BitInteger(pb, u16OffTrans);
1287 rtAcpiResEncode16BitInteger(pb, u16Length);
1288 return VINF_SUCCESS;
1289
1290}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette