VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/misc/acpi.cpp@ 107063

Last change on this file since 107063 was 107063, checked in by vboxsync, 4 months ago

Runtime/RTAcpi*: Some updates to the ACPI code generation, bugref:10733

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 55.9 KB
Line 
1/* $Id: acpi.cpp 107063 2024-11-20 17:22:16Z vboxsync $ */
2/** @file
3 * IPRT - Advanced Configuration and Power Interface (ACPI) Table generation API.
4 */
5
6/*
7 * Copyright (C) 2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * The contents of this file may alternatively be used under the terms
26 * of the Common Development and Distribution License Version 1.0
27 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
28 * in the VirtualBox distribution, in which case the provisions of the
29 * CDDL are applicable instead of those of the GPL.
30 *
31 * You may elect to license modified versions of this file under the
32 * terms and conditions of either the GPL or the CDDL or both.
33 *
34 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
35 */
36
37
38/*********************************************************************************************************************************
39* Header Files *
40*********************************************************************************************************************************/
41#define LOG_GROUP RTLOGGROUP_ACPI
42#include <iprt/acpi.h>
43#include <iprt/asm.h>
44#include <iprt/file.h>
45#include <iprt/mem.h>
46#include <iprt/string.h>
47#include <iprt/uuid.h>
48
49#include <iprt/formats/acpi-aml.h>
50#include <iprt/formats/acpi-resources.h>
51
52
53/*********************************************************************************************************************************
54* Defined Constants And Macros *
55*********************************************************************************************************************************/
56
57
58
59/*********************************************************************************************************************************
60* Structures and Typedefs *
61*********************************************************************************************************************************/
62
63/**
64 * Package stack element.
65 */
66typedef struct RTACPITBLSTACKELEM
67{
68 /** Pointer to the table buffer memory where the PkgLength object starts. */
69 uint8_t *pbPkgLength;
70 /** Current size of the package in bytes, without the PkgLength object. */
71 uint32_t cbPkg;
72 /** The operator creating the package, UINT8_MAX denotes the special root operator. */
73 uint8_t bOp;
74} RTACPITBLSTACKELEM;
75/** Pointer to a package stack element. */
76typedef RTACPITBLSTACKELEM *PRTACPITBLSTACKELEM;
77/** Pointer to a const package stack element. */
78typedef const RTACPITBLSTACKELEM *PCRTACPITBLSTACKELEM;
79
80
81/**
82 * ACPI table generator instance.
83 */
84typedef struct RTACPITBLINT
85{
86 /** Pointer to the ACPI table header, needed when finalizing the table. */
87 PACPITBLHDR pHdr;
88 /** Byte buffer holding the actual table. */
89 uint8_t *pbTblBuf;
90 /** Size of the table buffer. */
91 uint32_t cbTblBuf;
92 /** Current offset into the table buffer. */
93 uint32_t offTblBuf;
94 /** Flag whether the table is finalized. */
95 bool fFinalized;
96 /** First error code encountered. */
97 int rcErr;
98 /** Pointer to the package element stack. */
99 PRTACPITBLSTACKELEM paPkgStack;
100 /** Number of elements the package stack can hold. */
101 uint32_t cPkgStackElems;
102 /** Index of the current package in the package stack. */
103 uint32_t idxPkgStackElem;
104} RTACPITBLINT;
105/** Pointer to an ACPI table generator instance. */
106typedef RTACPITBLINT *PRTACPITBLINT;
107
108
109/**
110 * ACPI resource builder instance.
111 */
112typedef struct RTACPIRESINT
113{
114 /** Byte buffer holding the resource. */
115 uint8_t *pbResBuf;
116 /** Size of the resource buffer. */
117 size_t cbResBuf;
118 /** Current offset into the resource buffer. */
119 uint32_t offResBuf;
120 /** Flag whether the resource is sealed. */
121 bool fSealed;
122 /** First error code encountered. */
123 int rcErr;
124} RTACPIRESINT;
125/** Pointer to an ACPI resource builder instance. */
126typedef RTACPIRESINT *PRTACPIRESINT;
127
128
129/*********************************************************************************************************************************
130* Global Variables *
131*********************************************************************************************************************************/
132
133
134/*********************************************************************************************************************************
135* Internal Functions *
136*********************************************************************************************************************************/
137
138
139/**
140 * Copies the given string into the given buffer padding the remainder with the given character.
141 *
142 * @param pbId The destination to copy the string to.
143 * @param cbId Size of the buffer in bytes.
144 * @param pszStr The string to copy.
145 * @param chPad The character to pad with.
146 */
147static void rtAcpiTblCopyStringPadWith(uint8_t *pbId, size_t cbId, const char *pszStr, char chPad)
148{
149 Assert(strlen(pszStr) <= cbId);
150
151 uint32_t idx = 0;
152 while (*pszStr != '\0')
153 pbId[idx++] = (uint8_t)*pszStr++;
154
155 while (idx < cbId)
156 pbId[idx++] = chPad;
157}
158
159
160/**
161 * Updates the package length of the current package in the stack
162 *
163 * @param pThis The ACPI table instance.
164 * @param cbAdd How many bytes to add to the package length.
165 */
166DECL_FORCE_INLINE(void) rtAcpiTblUpdatePkgLength(PRTACPITBLINT pThis, uint32_t cbAdd)
167{
168 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
169 pPkgElem->cbPkg += cbAdd;
170}
171
172
173/**
174 * Ensures there is the given amount of room in the ACPI table buffer returning the pointer.
175 *
176 * @returns The pointer to the free space on success or NULL if out of memory.
177 * @param pThis The ACPI table instance.
178 * @param cbReq Amount of bytes requested.
179 */
180static uint8_t *rtAcpiTblBufEnsureSpace(PRTACPITBLINT pThis, uint32_t cbReq)
181{
182 if (RT_LIKELY(pThis->cbTblBuf - pThis->offTblBuf >= cbReq))
183 {
184 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
185 pThis->offTblBuf += cbReq;
186 return pb;
187 }
188
189 uint32_t const cbNew = RT_ALIGN_32(pThis->cbTblBuf + cbReq, _4K);
190 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbTblBuf, cbNew);
191 if (RT_UNLIKELY(!pbNew))
192 {
193 pThis->rcErr = VERR_NO_MEMORY;
194 return NULL;
195 }
196
197 pThis->pbTblBuf = pbNew;
198 pThis->cbTblBuf = cbNew;
199
200 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
201 pThis->offTblBuf += cbReq;
202 return pb;
203}
204
205
206/**
207 * Appends a new package in the given ACPI table instance package stack.
208 *
209 * @returns IPRT status code.
210 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
211 * @param pThis The ACPI table instance.
212 * @param bOp The opcode byte the package starts with (for verification purposes when finalizing the package).
213 * @param pbPkgBuf The Start of the package buffer.
214 */
215static int rtAcpiTblPkgAppendEx(PRTACPITBLINT pThis, uint8_t bOp, uint8_t *pbPkgBuf)
216{
217 /* Get a new stack element. */
218 if (pThis->idxPkgStackElem + 1 == pThis->cPkgStackElems)
219 {
220 uint32_t const cPkgElemsNew = pThis->cPkgStackElems + 8;
221 PRTACPITBLSTACKELEM paPkgStackNew = (PRTACPITBLSTACKELEM)RTMemRealloc(pThis->paPkgStack, cPkgElemsNew * sizeof(*paPkgStackNew));
222 if (!paPkgStackNew)
223 {
224 pThis->rcErr = VERR_NO_MEMORY;
225 return VERR_NO_MEMORY;
226 }
227
228 pThis->paPkgStack = paPkgStackNew;
229 pThis->cPkgStackElems = cPkgElemsNew;
230 }
231
232 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[++pThis->idxPkgStackElem];
233 pStackElem->pbPkgLength = pbPkgBuf;
234 pStackElem->cbPkg = 0;
235 pStackElem->bOp = bOp;
236 return VINF_SUCCESS;
237}
238
239
240/**
241 * Starts a new ACPI package in the given ACPI table instance.
242 *
243 * @returns IPRT status code.
244 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
245 * @param pThis The ACPI table instance.
246 * @param bOp The opcode byte identifying the package content.
247 */
248static int rtAcpiTblPkgStart(PRTACPITBLINT pThis, uint8_t bOp)
249{
250 /*
251 * Allocate 1 byte for opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
252 * This will be corrected when the package is finalized.
253 */
254 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 5);
255 if (!pbPkg)
256 {
257 pThis->rcErr = VERR_NO_MEMORY;
258 return VERR_NO_MEMORY;
259 }
260
261 *pbPkg = bOp;
262 /*
263 * Update the package length of the outer package for the opcode,
264 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
265 */
266 rtAcpiTblUpdatePkgLength(pThis, sizeof(bOp));
267 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 1);
268}
269
270
271/**
272 * Starts a new ACPI package in the given ACPI table instance. This is for opcodes prefixed with
273 * ACPI_AML_BYTE_CODE_PREFIX_EXT_O, which will be added automatically.
274 *
275 * @returns IPRT status code.
276 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
277 * @param pThis The ACPI table instance.
278 * @param bOp The opcode byte identifying the package content.
279 */
280static int rtAcpiTblPkgStartExt(PRTACPITBLINT pThis, uint8_t bOp)
281{
282 /*
283 * Allocate 2 bytes for ExtOpPrefix opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
284 * This will be corrected when the package is finalized.
285 */
286 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 6);
287 if (!pbPkg)
288 {
289 pThis->rcErr = VERR_NO_MEMORY;
290 return VERR_NO_MEMORY;
291 }
292
293 pbPkg[0] = ACPI_AML_BYTE_CODE_PREFIX_EXT_OP;
294 pbPkg[1] = bOp;
295
296 /*
297 * Update the package length of the outer package for the opcode,
298 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
299 */
300 rtAcpiTblUpdatePkgLength(pThis, sizeof(uint8_t) + sizeof(bOp));
301 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 2);
302}
303
304
305/**
306 * Finishes the current package on the top of the package stack, setting the
307 * package length accordingly.
308 *
309 * @returns IPRT status code.
310 * @retval VERR_INVALID_STATE if bOp doesn't match the opcode the package was started with (asserted in debug builds).
311 * @retval VERR_BUFFER_OVERFLOW if the package length exceeds what can be encoded in the package length field.
312 * @param pThis The ACPI table instance.
313 * @param bOp The opcode byte identifying the package content the package was started with.
314 */
315static int rtAcpiTblPkgFinish(PRTACPITBLINT pThis, uint8_t bOp)
316{
317 /* Ensure the op matches what is current on the top of the stack. */
318 AssertReturn(pThis->paPkgStack[pThis->idxPkgStackElem].bOp == bOp, VERR_INVALID_STATE);
319
320 /* Pop the topmost stack element from the stack. */
321 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem--];
322
323 /*
324 * Determine how many bytes we actually need for the PkgLength and re-arrange the ACPI table.
325 *
326 * Note! PkgLength will also include its own length.
327 */
328 uint8_t *pbPkgLength = pPkgElem->pbPkgLength;
329 uint32_t cbThisPkg = pPkgElem->cbPkg;
330 if (cbThisPkg + 1 <= 63)
331 {
332 /* Remove the gap. */
333 memmove(pbPkgLength + 1, pbPkgLength + 4, cbThisPkg);
334 pThis->offTblBuf -= 3;
335
336 /* PkgLength only consists of the package lead byte. */
337 cbThisPkg += 1;
338 *pbPkgLength = (cbThisPkg & 0x3f);
339 }
340 else if (cbThisPkg + 2 < RT_BIT_32(12))
341 {
342 /* Remove the gap. */
343 memmove(pbPkgLength + 2, pbPkgLength + 4, cbThisPkg);
344 pThis->offTblBuf -= 2;
345
346 cbThisPkg += 2;
347 pbPkgLength[0] = (1 << 6) | (cbThisPkg & 0xf);
348 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
349 }
350 else if (cbThisPkg + 3 < RT_BIT_32(20))
351 {
352 /* Remove the gap. */
353 memmove(pbPkgLength + 3, pbPkgLength + 4, cbThisPkg);
354 pThis->offTblBuf -= 1;
355
356 cbThisPkg += 3;
357 pbPkgLength[0] = (2 << 6) | (cbThisPkg & 0xf);
358 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
359 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
360 }
361 else if (cbThisPkg + 4 < RT_BIT_32(28))
362 {
363 cbThisPkg += 4;
364 pbPkgLength[0] = (3 << 6) | (cbThisPkg & 0xf);
365 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
366 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
367 pbPkgLength[3] = (cbThisPkg >> 20) & 0xff;
368 }
369 else
370 return VERR_BUFFER_OVERFLOW;
371
372 /* Update the size of the outer package. */
373 pThis->paPkgStack[pThis->idxPkgStackElem].cbPkg += cbThisPkg;
374
375 return VINF_SUCCESS;
376}
377
378
379/**
380 * Appends the given byte to the ACPI table, updating the package length of the current package.
381 *
382 * @param pThis The ACPI table instance.
383 * @param bData The byte data to append.
384 */
385DECLINLINE(void) rtAcpiTblAppendByte(PRTACPITBLINT pThis, uint8_t bData)
386{
387 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, sizeof(bData));
388 if (pb)
389 {
390 *pb = bData;
391 rtAcpiTblUpdatePkgLength(pThis, sizeof(bData));
392 }
393}
394
395
396/**
397 * Appends the given date to the ACPI table, updating the package length of the current package.
398 *
399 * @param pThis The ACPI table instance.
400 * @param pvData The data to append.
401 * @param cbData Size of the data in bytes.
402 */
403DECLINLINE(void) rtAcpiTblAppendData(PRTACPITBLINT pThis, const void *pvData, uint32_t cbData)
404{
405 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbData);
406 if (pb)
407 {
408 memcpy(pb, pvData, cbData);
409 rtAcpiTblUpdatePkgLength(pThis, cbData);
410 }
411}
412
413
414/**
415 * Appends the given namestring to the ACPI table, updating the package length of the current package
416 * and padding the name with _ if too short.
417 *
418 * @param pThis The ACPI table instance.
419 * @param pszName The name to append, maximum is 4 bytes (or 5 if \\ is the first character).
420 */
421DECLINLINE(void) rtAcpiTblAppendNameString(PRTACPITBLINT pThis, const char *pszName)
422{
423 uint32_t cbName = *pszName == '\\' ? 5 : 4;
424 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbName);
425 if (pb)
426 {
427 rtAcpiTblCopyStringPadWith(pb, cbName, pszName, '_');
428 rtAcpiTblUpdatePkgLength(pThis, cbName);
429 }
430}
431
432
433/**
434 * Encodes a PkgLength item for the given number.
435 *
436 * @returns IPRT status code.
437 * @param pThis The ACPI table instance.
438 * @param u64Length The length to encode.
439 */
440DECLINLINE(int) rtAcpiTblEncodePkgLength(PRTACPITBLINT pThis, uint64_t u64Length)
441{
442 AssertReturn(u64Length < RT_BIT_32(28), VERR_BUFFER_OVERFLOW);
443
444 if (u64Length <= 63)
445 {
446 /* PkgLength only consists of the package lead byte. */
447 rtAcpiTblAppendByte(pThis, (u64Length & 0x3f));
448 }
449 else if (u64Length < RT_BIT_32(12))
450 {
451 uint8_t abData[2];
452 abData[0] = (1 << 6) | (u64Length & 0xf);
453 abData[1] = (u64Length >> 4) & 0xff;
454 rtAcpiTblAppendData(pThis, &abData[0], sizeof(abData));
455 }
456 else if (u64Length < RT_BIT_32(20))
457 {
458 uint8_t abData[3];
459 abData[0] = (1 << 6) | (u64Length & 0xf);
460 abData[1] = (u64Length >> 4) & 0xff;
461 abData[2] = (u64Length >> 12) & 0xff;
462 rtAcpiTblAppendData(pThis, &abData[0], sizeof(abData));
463 }
464 else if (u64Length < RT_BIT_32(28))
465 {
466 uint8_t abData[4];
467 abData[0] = (1 << 6) | (u64Length & 0xf);
468 abData[1] = (u64Length >> 4) & 0xff;
469 abData[2] = (u64Length >> 12) & 0xff;
470 abData[3] = (u64Length >> 20) & 0xff;
471 rtAcpiTblAppendData(pThis, &abData[0], sizeof(abData));
472 }
473 else
474 AssertReleaseFailed();
475
476 return VINF_SUCCESS;
477}
478
479
480RTDECL(uint8_t) RTAcpiChecksumGenerate(const void *pvData, size_t cbData)
481{
482 uint8_t const *pbSrc = (uint8_t const *)pvData;
483 uint8_t bSum = 0;
484 for (size_t i = 0; i < cbData; ++i)
485 bSum += pbSrc[i];
486
487 return -bSum;
488}
489
490
491RTDECL(void) RTAcpiTblHdrChecksumGenerate(PACPITBLHDR pTbl, size_t cbTbl)
492{
493 pTbl->bChkSum = 0;
494 pTbl->bChkSum = RTAcpiChecksumGenerate(pTbl, cbTbl);
495}
496
497
498RTDECL(int) RTAcpiTblCreate(PRTACPITBL phAcpiTbl, uint32_t u32TblSig, uint8_t bRevision, const char *pszOemId,
499 const char *pszOemTblId, uint32_t u32OemRevision, const char *pszCreatorId,
500 uint32_t u32CreatorRevision)
501{
502 AssertPtrReturn(phAcpiTbl, VERR_INVALID_POINTER);
503 AssertPtrReturn(pszOemId, VERR_INVALID_POINTER);
504 AssertPtrReturn(pszOemTblId, VERR_INVALID_POINTER);
505 AssertReturn(strlen(pszOemId) <= 6, VERR_INVALID_PARAMETER);
506 AssertReturn(strlen(pszOemTblId) <= 8, VERR_INVALID_PARAMETER);
507 AssertReturn(!pszCreatorId || strlen(pszCreatorId) <= 4, VERR_INVALID_PARAMETER);
508
509 PRTACPITBLINT pThis = (PRTACPITBLINT)RTMemAllocZ(sizeof(*pThis));
510 if (pThis)
511 {
512 pThis->pbTblBuf = (uint8_t *)RTMemAlloc(_4K);
513 if (pThis->pbTblBuf)
514 {
515 pThis->pHdr = (PACPITBLHDR)pThis->pbTblBuf;
516 pThis->offTblBuf = sizeof(*pThis->pHdr);
517 pThis->cbTblBuf = _4K;
518 pThis->fFinalized = false;
519 pThis->rcErr = VINF_SUCCESS;
520 pThis->paPkgStack = NULL;
521 pThis->cPkgStackElems = 0;
522 pThis->idxPkgStackElem = 0;
523
524 /* Add the root stack element for the table, aka DefinitionBlock() in ASL. */
525 uint32_t const cPkgElemsInitial = 8;
526 pThis->paPkgStack = (PRTACPITBLSTACKELEM)RTMemAlloc(cPkgElemsInitial * sizeof(*pThis->paPkgStack));
527 if (pThis->paPkgStack)
528 {
529 pThis->cPkgStackElems = cPkgElemsInitial;
530
531 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
532 pStackElem->pbPkgLength = pThis->pbTblBuf; /* Starts with the header. */
533 pStackElem->cbPkg = sizeof(*pThis->pHdr);
534 pStackElem->bOp = UINT8_MAX;
535
536 /* Init the table header with static things. */
537 pThis->pHdr->u32Signature = u32TblSig;
538 pThis->pHdr->bRevision = bRevision;
539 pThis->pHdr->u32OemRevision = RT_H2LE_U32(u32OemRevision);
540 pThis->pHdr->u32CreatorRevision = RT_H2LE_U32(u32CreatorRevision);
541
542 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemId[0], sizeof(pThis->pHdr->abOemId), pszOemId, ' ');
543 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemTblId[0], sizeof(pThis->pHdr->abOemTblId), pszOemTblId, ' ');
544 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abCreatorId[0], sizeof(pThis->pHdr->abCreatorId),
545 pszCreatorId ? pszCreatorId : "IPRT", ' ');
546
547 *phAcpiTbl = pThis;
548 return VINF_SUCCESS;
549 }
550
551 RTMemFree(pThis->pbTblBuf);
552 }
553
554 RTMemFree(pThis);
555 }
556
557 return VERR_NO_MEMORY;
558}
559
560
561RTDECL(void) RTAcpiTblDestroy(RTACPITBL hAcpiTbl)
562{
563 PRTACPITBLINT pThis = hAcpiTbl;
564 AssertPtrReturnVoid(pThis);
565
566 RTMemFree(pThis->paPkgStack);
567 RTMemFree(pThis->pbTblBuf);
568 pThis->pHdr = NULL;
569 pThis->pbTblBuf = NULL;
570 pThis->cbTblBuf = 0;
571 pThis->offTblBuf = 0;
572 pThis->paPkgStack = NULL;
573 pThis->cPkgStackElems = 0;
574 pThis->idxPkgStackElem = 0;
575 RTMemFree(pThis);
576}
577
578
579RTDECL(int) RTAcpiTblFinalize(RTACPITBL hAcpiTbl)
580{
581 PRTACPITBLINT pThis = hAcpiTbl;
582 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
583 AssertRCReturn(pThis->rcErr, pThis->rcErr);
584 AssertReturn(!pThis->fFinalized, VERR_INVALID_PARAMETER);
585 AssertReturn(pThis->idxPkgStackElem == 0, VERR_INVALID_STATE); /** @todo Better status code. */
586 AssertReturn(pThis->paPkgStack[0].bOp == UINT8_MAX, VERR_INVALID_STATE);
587
588 pThis->pHdr->cbTbl = RT_H2LE_U32(pThis->paPkgStack[0].cbPkg);
589 RTAcpiTblHdrChecksumGenerate(pThis->pHdr, pThis->paPkgStack[0].cbPkg);
590
591 pThis->fFinalized = true;
592 return VINF_SUCCESS;
593}
594
595
596RTDECL(uint32_t) RTAcpiTblGetSize(RTACPITBL hAcpiTbl)
597{
598 PRTACPITBLINT pThis = hAcpiTbl;
599 AssertPtrReturn(pThis, 0);
600 AssertRCReturn(pThis->rcErr, 0);
601 AssertReturn(pThis->fFinalized, 0);
602
603 return pThis->paPkgStack[0].cbPkg;
604}
605
606
607RTDECL(int) RTAcpiTblDumpToVfsIoStrm(RTACPITBL hAcpiTbl, RTVFSIOSTREAM hVfsIos)
608{
609 PRTACPITBLINT pThis = hAcpiTbl;
610 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
611 AssertRCReturn(pThis->rcErr, 0);
612
613 return RTVfsIoStrmWrite(hVfsIos, pThis->pbTblBuf, pThis->paPkgStack[0].cbPkg,
614 true /*fBlocking*/, NULL /*pcbWritten*/);
615}
616
617
618RTDECL(int) RTAcpiTblDumpToFile(RTACPITBL hAcpiTbl, const char *pszFilename)
619{
620 RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM;
621 int rc = RTVfsChainOpenIoStream(pszFilename, RTFILE_O_WRITE | RTFILE_O_CREATE | RTFILE_O_DENY_NONE,
622 &hVfsIos, NULL /*poffError*/, NULL);
623 if (RT_FAILURE(rc))
624 return rc;
625
626 rc = RTAcpiTblDumpToVfsIoStrm(hAcpiTbl, hVfsIos);
627 RTVfsIoStrmRelease(hVfsIos);
628 return rc;
629}
630
631
632RTDECL(int) RTAcpiTblScopeFinalize(RTACPITBL hAcpiTbl)
633{
634 PRTACPITBLINT pThis = hAcpiTbl;
635 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
636
637 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
638}
639
640
641RTDECL(int) RTAcpiTblScopeStart(RTACPITBL hAcpiTbl, const char *pszName)
642{
643 PRTACPITBLINT pThis = hAcpiTbl;
644 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
645
646 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
647 rtAcpiTblAppendNameString(pThis, pszName);
648 return pThis->rcErr;
649}
650
651
652RTDECL(int) RTAcpiTblPackageStart(RTACPITBL hAcpiTbl, uint8_t cElements)
653{
654 PRTACPITBLINT pThis = hAcpiTbl;
655 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
656
657 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
658 rtAcpiTblAppendByte(pThis, cElements);
659 return pThis->rcErr;
660}
661
662
663RTDECL(int) RTAcpiTblPackageFinalize(RTACPITBL hAcpiTbl)
664{
665 PRTACPITBLINT pThis = hAcpiTbl;
666 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
667
668 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
669}
670
671
672RTDECL(int) RTAcpiTblDeviceStart(RTACPITBL hAcpiTbl, const char *pszName)
673{
674 PRTACPITBLINT pThis = hAcpiTbl;
675 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
676
677 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
678 rtAcpiTblAppendNameString(pThis, pszName);
679 return pThis->rcErr;
680}
681
682
683RTDECL(int) RTAcpiTblDeviceStartF(RTACPITBL hAcpiTbl, const char *pszNameFmt, ...)
684{
685 va_list va;
686 va_start(va, pszNameFmt);
687 int rc = RTAcpiTblDeviceStartV(hAcpiTbl, pszNameFmt, va);
688 va_end(va);
689 return rc;
690}
691
692
693RTDECL(int) RTAcpiTblDeviceStartV(RTACPITBL hAcpiTbl, const char *pszNameFmt, va_list va)
694{
695 char szName[5];
696 ssize_t cch = RTStrPrintf2V(&szName[0], sizeof(szName), pszNameFmt, va);
697 if (cch <= 0)
698 return VERR_BUFFER_OVERFLOW;
699
700 return RTAcpiTblDeviceStart(hAcpiTbl, &szName[0]);
701}
702
703
704RTDECL(int) RTAcpiTblDeviceFinalize(RTACPITBL hAcpiTbl)
705{
706 PRTACPITBLINT pThis = hAcpiTbl;
707 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
708
709 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
710}
711
712
713RTDECL(int) RTAcpiTblMethodStart(RTACPITBL hAcpiTbl, const char *pszName, uint8_t cArgs, uint32_t fFlags, uint8_t uSyncLvl)
714{
715 PRTACPITBLINT pThis = hAcpiTbl;
716 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
717 AssertReturn(cArgs < 8, VERR_INVALID_PARAMETER);
718 AssertReturn(uSyncLvl < 0x10, VERR_INVALID_PARAMETER);
719
720 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
721 rtAcpiTblAppendNameString(pThis, pszName);
722
723 uint8_t bFlags = cArgs;
724 bFlags |= fFlags & RTACPI_METHOD_F_SERIALIZED ? RT_BIT(3) : 0;
725 bFlags |= uSyncLvl << 4;
726
727 rtAcpiTblAppendByte(pThis, bFlags);
728 return pThis->rcErr;
729}
730
731
732RTDECL(int) RTAcpiTblMethodFinalize(RTACPITBL hAcpiTbl)
733{
734 PRTACPITBLINT pThis = hAcpiTbl;
735 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
736
737 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
738}
739
740
741RTDECL(int) RTAcpiTblNameAppend(RTACPITBL hAcpiTbl, const char *pszName)
742{
743 PRTACPITBLINT pThis = hAcpiTbl;
744 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
745
746 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_NAME);
747 rtAcpiTblAppendNameString(pThis, pszName);
748 return pThis->rcErr;
749}
750
751
752RTDECL(int) RTAcpiTblStringAppend(RTACPITBL hAcpiTbl, const char *psz)
753{
754 PRTACPITBLINT pThis = hAcpiTbl;
755 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
756
757 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_STRING);
758 rtAcpiTblAppendData(pThis, psz, (uint32_t)strlen(psz) + 1);
759 return pThis->rcErr;
760}
761
762
763RTDECL(int) RTAcpiTblIntegerAppend(RTACPITBL hAcpiTbl, uint64_t u64)
764{
765 PRTACPITBLINT pThis = hAcpiTbl;
766 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
767
768 if (!u64)
769 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ZERO);
770 else if (u64 == 1)
771 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ONE);
772 else if (u64 <= UINT8_MAX)
773 {
774 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_BYTE);
775 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
776 }
777 else if (u64 <= UINT16_MAX)
778 {
779 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_WORD);
780 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
781 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
782 }
783 else if (u64 <= UINT32_MAX)
784 {
785 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_DWORD);
786 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
787 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
788 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
789 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
790 }
791 else
792 {
793 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_QWORD);
794 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
795 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
796 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
797 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
798 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 32));
799 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 40));
800 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 48));
801 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 56));
802 }
803 return pThis->rcErr;
804}
805
806
807RTDECL(int) RTAcpiTblBufferAppend(RTACPITBL hAcpiTbl, const void *pvBuf, size_t cbBuf)
808{
809 PRTACPITBLINT pThis = hAcpiTbl;
810 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
811 AssertReturn(!cbBuf || RT_VALID_PTR(pvBuf), VERR_INVALID_PARAMETER);
812 AssertReturn(cbBuf <= UINT32_MAX, VERR_BUFFER_OVERFLOW);
813
814 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
815 RTAcpiTblIntegerAppend(hAcpiTbl, cbBuf);
816 if (pvBuf)
817 rtAcpiTblAppendData(pThis, pvBuf, (uint32_t)cbBuf);
818 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
819}
820
821
822RTDECL(int) RTAcpiTblResourceAppend(RTACPITBL hAcpiTbl, RTACPIRES hAcpiRes)
823{
824 PRTACPITBLINT pThis = hAcpiTbl;
825 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
826 AssertRCReturn(pThis->rcErr, pThis->rcErr);
827
828 const void *pvRes = NULL;
829 size_t cbRes = 0;
830 int rc = RTAcpiResourceQueryBuffer(hAcpiRes, &pvRes, &cbRes);
831 if (RT_SUCCESS(rc))
832 rc = RTAcpiTblBufferAppend(pThis, pvRes, cbRes);
833
834 return rc;
835}
836
837
838RTDECL(int) RTAcpiTblStmtSimpleAppend(RTACPITBL hAcpiTbl, RTACPISTMT enmStmt)
839{
840 PRTACPITBLINT pThis = hAcpiTbl;
841 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
842
843 uint8_t bOp;
844 switch (enmStmt)
845 {
846 case kAcpiStmt_Return: bOp = ACPI_AML_BYTE_CODE_OP_RETURN; break;
847 case kAcpiStmt_Breakpoint: bOp = ACPI_AML_BYTE_CODE_OP_BREAK_POINT; break;
848 case kAcpiStmt_Nop: bOp = ACPI_AML_BYTE_CODE_OP_NOOP; break;
849 case kAcpiStmt_Break: bOp = ACPI_AML_BYTE_CODE_OP_BREAK; break;
850 case kAcpiStmt_Continue: bOp = ACPI_AML_BYTE_CODE_OP_CONTINUE; break;
851 default:
852 AssertFailedReturn(VERR_INVALID_PARAMETER);
853 }
854 rtAcpiTblAppendByte(pThis, bOp);
855 return pThis->rcErr;
856}
857
858
859RTDECL(int) RTAcpiTblIfStart(RTACPITBL hAcpiTbl)
860{
861 PRTACPITBLINT pThis = hAcpiTbl;
862 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
863
864 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_IF);
865 return pThis->rcErr;
866}
867
868
869RTDECL(int) RTAcpiTblIfFinalize(RTACPITBL hAcpiTbl)
870{
871 PRTACPITBLINT pThis = hAcpiTbl;
872 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
873
874 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_IF);
875}
876
877
878RTDECL(int) RTAcpiTblElseStart(RTACPITBL hAcpiTbl)
879{
880 PRTACPITBLINT pThis = hAcpiTbl;
881 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
882
883 /* Makes only sense inside an IfOp package. */
884 AssertReturn(pThis->paPkgStack[pThis->idxPkgStackElem].bOp == ACPI_AML_BYTE_CODE_OP_IF, VERR_INVALID_STATE);
885
886 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_OP_ELSE);
887 return pThis->rcErr;
888}
889
890
891RTDECL(int) RTAcpiTblElseFinalize(RTACPITBL hAcpiTbl)
892{
893 PRTACPITBLINT pThis = hAcpiTbl;
894 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
895
896 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_ELSE);
897}
898
899
900RTDECL(int) RTAcpiTblBinaryOpAppend(RTACPITBL hAcpiTbl, RTACPIBINARYOP enmBinaryOp)
901{
902 PRTACPITBLINT pThis = hAcpiTbl;
903 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
904
905 uint8_t bOp;
906 switch (enmBinaryOp)
907 {
908 case kAcpiBinaryOp_LAnd: bOp = ACPI_AML_BYTE_CODE_OP_LAND; break;
909 case kAcpiBinaryOp_LEqual: bOp = ACPI_AML_BYTE_CODE_OP_LEQUAL; break;
910 case kAcpiBinaryOp_LGreater: bOp = ACPI_AML_BYTE_CODE_OP_LGREATER; break;
911 case kAcpiBinaryOp_LLess: bOp = ACPI_AML_BYTE_CODE_OP_LLESS; break;
912 case kAcpiBinaryOp_LGreaterEqual:
913 case kAcpiBinaryOp_LLessEqual:
914 case kAcpiBinaryOp_LNotEqual:
915 bOp = ACPI_AML_BYTE_CODE_OP_LNOT;
916 break;
917 default:
918 AssertFailedReturn(VERR_INVALID_PARAMETER);
919 }
920 rtAcpiTblAppendByte(pThis, bOp);
921 switch (enmBinaryOp)
922 {
923 case kAcpiBinaryOp_LGreaterEqual: bOp = ACPI_AML_BYTE_CODE_OP_LLESS; break;
924 case kAcpiBinaryOp_LLessEqual: bOp = ACPI_AML_BYTE_CODE_OP_LGREATER; break;
925 case kAcpiBinaryOp_LNotEqual: bOp = ACPI_AML_BYTE_CODE_OP_LEQUAL; break;
926 default:
927 bOp = 0x00;
928 }
929 if (bOp != 0x00)
930 rtAcpiTblAppendByte(pThis, bOp);
931 return pThis->rcErr;
932}
933
934
935RTDECL(int) RTAcpiTblArgOpAppend(RTACPITBL hAcpiTbl, uint8_t idArg)
936{
937 PRTACPITBLINT pThis = hAcpiTbl;
938 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
939 AssertReturn(idArg <= 6, VERR_INVALID_PARAMETER);
940
941 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ARG_0 + idArg);
942 return pThis->rcErr;
943}
944
945
946RTDECL(int) RTAcpiTblLocalOpAppend(RTACPITBL hAcpiTbl, uint8_t idLocal)
947{
948 PRTACPITBLINT pThis = hAcpiTbl;
949 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
950 AssertReturn(idLocal <= 7, VERR_INVALID_PARAMETER);
951
952 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_LOCAL_0 + idLocal);
953 return pThis->rcErr;
954}
955
956
957RTDECL(int) RTAcpiTblUuidAppend(RTACPITBL hAcpiTbl, PCRTUUID pUuid)
958{
959 /* UUIDs are stored as a buffer object. */
960 /** @todo Needs conversion on big endian machines. */
961 return RTAcpiTblBufferAppend(hAcpiTbl, &pUuid->au8[0], sizeof(*pUuid));
962}
963
964
965RTDECL(int) RTAcpiTblUuidAppendFromStr(RTACPITBL hAcpiTbl, const char *pszUuid)
966{
967 PRTACPITBLINT pThis = hAcpiTbl;
968 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
969
970 RTUUID Uuid;
971 pThis->rcErr = RTUuidFromStr(&Uuid, pszUuid);
972 if (RT_SUCCESS(pThis->rcErr))
973 return RTAcpiTblUuidAppend(pThis, &Uuid);
974
975 return pThis->rcErr;
976}
977
978
979RTDECL(int) RTAcpiTblOpRegionAppend(RTACPITBL hAcpiTbl, const char *pszName, RTACPIOPREGIONSPACE enmSpace,
980 uint64_t offRegion, uint64_t cbRegion)
981{
982 PRTACPITBLINT pThis = hAcpiTbl;
983 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
984
985 uint8_t abOp[2] = { ACPI_AML_BYTE_CODE_PREFIX_EXT_OP, ACPI_AML_BYTE_CODE_EXT_OP_OP_REGION };
986 rtAcpiTblAppendData(pThis, &abOp[0], sizeof(abOp));
987 rtAcpiTblAppendNameString(pThis, pszName);
988
989 uint8_t bRegionSpace = 0xff;
990 switch (enmSpace)
991 {
992 case kAcpiOperationRegionSpace_SystemMemory: bRegionSpace = 0x00; break;
993 case kAcpiOperationRegionSpace_SystemIo: bRegionSpace = 0x01; break;
994 case kAcpiOperationRegionSpace_PciConfig: bRegionSpace = 0x02; break;
995 case kAcpiOperationRegionSpace_EmbeddedControl: bRegionSpace = 0x03; break;
996 case kAcpiOperationRegionSpace_SmBus: bRegionSpace = 0x04; break;
997 case kAcpiOperationRegionSpace_SystemCmos: bRegionSpace = 0x05; break;
998 case kAcpiOperationRegionSpace_PciBarTarget: bRegionSpace = 0x06; break;
999 case kAcpiOperationRegionSpace_Ipmi: bRegionSpace = 0x07; break;
1000 case kAcpiOperationRegionSpace_Gpio: bRegionSpace = 0x08; break;
1001 case kAcpiOperationRegionSpace_GenericSerialBus: bRegionSpace = 0x09; break;
1002 case kAcpiOperationRegionSpace_Pcc: bRegionSpace = 0x0a; break;
1003 default:
1004 pThis->rcErr = VERR_INVALID_PARAMETER;
1005 AssertFailedReturn(pThis->rcErr);
1006 }
1007 rtAcpiTblAppendByte(pThis, bRegionSpace);
1008 RTAcpiTblIntegerAppend(pThis, offRegion);
1009 RTAcpiTblIntegerAppend(pThis, cbRegion);
1010 return pThis->rcErr;
1011}
1012
1013
1014RTDECL(int) RTAcpiTblFieldAppend(RTACPITBL hAcpiTbl, const char *pszNameRef, RTACPIFIELDACC enmAcc,
1015 bool fLock, RTACPIFIELDUPDATE enmUpdate, PCRTACPIFIELDENTRY paFields,
1016 uint32_t cFields)
1017{
1018 PRTACPITBLINT pThis = hAcpiTbl;
1019 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1020
1021 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_EXT_OP_FIELD);
1022 rtAcpiTblAppendNameString(pThis, pszNameRef);
1023
1024 uint8_t fFlags = 0;
1025 switch (enmAcc)
1026 {
1027 case kAcpiFieldAcc_Any: fFlags = 0; break;
1028 case kAcpiFieldAcc_Byte: fFlags = 1; break;
1029 case kAcpiFieldAcc_Word: fFlags = 2; break;
1030 case kAcpiFieldAcc_DWord: fFlags = 3; break;
1031 case kAcpiFieldAcc_QWord: fFlags = 4; break;
1032 case kAcpiFieldAcc_Buffer: fFlags = 5; break;
1033 default:
1034 pThis->rcErr = VERR_INVALID_PARAMETER;
1035 AssertFailedReturn(pThis->rcErr);
1036 }
1037 if (fLock)
1038 fFlags |= RT_BIT(4);
1039 switch (enmUpdate)
1040 {
1041 case kAcpiFieldUpdate_Preserve: fFlags |= 0 << 5; break;
1042 case kAcpiFieldUpdate_WriteAsOnes: fFlags |= 1 << 5; break;
1043 case kAcpiFieldUpdate_WriteAsZeroes: fFlags |= 2 << 5; break;
1044 default:
1045 pThis->rcErr = VERR_INVALID_PARAMETER;
1046 AssertFailedReturn(pThis->rcErr);
1047 }
1048 rtAcpiTblAppendByte(pThis, fFlags);
1049
1050 for (uint32_t i = 0; i < cFields; i++)
1051 {
1052 rtAcpiTblAppendNameString(pThis, paFields[i].pszName);
1053 rtAcpiTblEncodePkgLength(pThis, paFields[i].cBits);
1054 }
1055
1056 rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_EXT_OP_FIELD);
1057 return pThis->rcErr;
1058}
1059
1060
1061/**
1062 * Ensures there is at least the given amount of space in the given ACPI resource.
1063 *
1064 * @returns Pointer to the free buffer space or NULL if out of memory.
1065 * @param pThis The ACPI resource instance.
1066 * @param cbReq Number of free bytes required.
1067 */
1068static uint8_t *rtAcpiResBufEnsureSpace(PRTACPIRESINT pThis, uint32_t cbReq)
1069{
1070 if (RT_LIKELY(pThis->cbResBuf - pThis->offResBuf >= cbReq))
1071 {
1072 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
1073 pThis->offResBuf += cbReq;
1074 return pb;
1075 }
1076
1077 size_t const cbNew = RT_ALIGN_Z(pThis->cbResBuf + cbReq, _4K);
1078 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbResBuf, cbNew);
1079 if (RT_UNLIKELY(!pbNew))
1080 {
1081 pThis->rcErr = VERR_NO_MEMORY;
1082 return NULL;
1083 }
1084
1085 pThis->pbResBuf = pbNew;
1086 pThis->cbResBuf = cbNew;
1087
1088 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
1089 pThis->offResBuf += cbReq;
1090 return pb;
1091}
1092
1093
1094/**
1095 * Encodes an ACPI 16-bit integer in the given byte buffer.
1096 *
1097 * @returns Pointer to after the encoded integer.
1098 * @param pb Where to encode the integer into.
1099 * @param u16 The 16-bit unsigned integere to encode.
1100 */
1101DECLINLINE(uint8_t *) rtAcpiResEncode16BitInteger(uint8_t *pb, uint16_t u16)
1102{
1103 *pb++ = (uint8_t)u16;
1104 *pb++ = (uint8_t)(u16 >> 8);
1105 return pb;
1106}
1107
1108
1109/**
1110 * Encodes an ACPI 32-bit integer in the given byte buffer.
1111 *
1112 * @returns Pointer to after the encoded integer.
1113 * @param pb Where to encode the integer into.
1114 * @param u32 The 32-bit unsigned integere to encode.
1115 */
1116DECLINLINE(uint8_t *) rtAcpiResEncode32BitInteger(uint8_t *pb, uint32_t u32)
1117{
1118 *pb++ = (uint8_t)u32;
1119 *pb++ = (uint8_t)(u32 >> 8);
1120 *pb++ = (uint8_t)(u32 >> 16);
1121 *pb++ = (uint8_t)(u32 >> 24);
1122 return pb;
1123}
1124
1125/**
1126 * Encodes an ACPI 64-bit integer in the given byte buffer.
1127 *
1128 * @returns Pointer to after the encoded integer.
1129 * @param pb Where to encode the integer into.
1130 * @param u64 The 64-bit unsigned integere to encode.
1131 */
1132
1133DECLINLINE(uint8_t *) rtAcpiResEncode64BitInteger(uint8_t *pb, uint64_t u64)
1134{
1135 *pb++ = (uint8_t)u64;
1136 *pb++ = (uint8_t)(u64 >> 8);
1137 *pb++ = (uint8_t)(u64 >> 16);
1138 *pb++ = (uint8_t)(u64 >> 24);
1139 *pb++ = (uint8_t)(u64 >> 32);
1140 *pb++ = (uint8_t)(u64 >> 40);
1141 *pb++ = (uint8_t)(u64 >> 48);
1142 *pb++ = (uint8_t)(u64 >> 56);
1143 return pb;
1144}
1145
1146
1147RTDECL(int) RTAcpiResourceCreate(PRTACPIRES phAcpiRes)
1148{
1149 AssertPtrReturn(phAcpiRes, VERR_INVALID_POINTER);
1150
1151 PRTACPIRESINT pThis = (PRTACPIRESINT)RTMemAllocZ(sizeof(*pThis));
1152 if (pThis)
1153 {
1154 pThis->pbResBuf = (uint8_t *)RTMemAlloc(64);
1155 if (pThis->pbResBuf)
1156 {
1157 pThis->offResBuf = 0;
1158 pThis->cbResBuf = 64;
1159 pThis->fSealed = false;
1160 pThis->rcErr = VINF_SUCCESS;
1161
1162 *phAcpiRes = pThis;
1163 return VINF_SUCCESS;
1164 }
1165
1166 RTMemFree(pThis);
1167 }
1168
1169 return VERR_NO_MEMORY;
1170}
1171
1172
1173RTDECL(void) RTAcpiResourceDestroy(RTACPIRES hAcpiRes)
1174{
1175 PRTACPIRESINT pThis = hAcpiRes;
1176 AssertPtrReturnVoid(pThis);
1177
1178 RTMemFree(pThis->pbResBuf);
1179 pThis->pbResBuf = NULL;
1180 pThis->cbResBuf = 0;
1181 pThis->offResBuf = 0;
1182 RTMemFree(pThis);
1183}
1184
1185
1186RTDECL(void) RTAcpiResourceReset(RTACPIRES hAcpiRes)
1187{
1188 PRTACPIRESINT pThis = hAcpiRes;
1189 AssertPtrReturnVoid(pThis);
1190
1191 pThis->offResBuf = 0;
1192 pThis->fSealed = false;
1193 pThis->rcErr = VINF_SUCCESS;
1194}
1195
1196
1197RTDECL(int) RTAcpiResourceSeal(RTACPIRES hAcpiRes)
1198{
1199 PRTACPIRESINT pThis = hAcpiRes;
1200 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1201 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1202 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1203
1204 /* Add the end tag. */
1205 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 2);
1206 if (!pb)
1207 return VERR_NO_MEMORY;
1208
1209 *pb++ = ACPI_RSRCS_TAG_END;
1210 /*
1211 * Generate checksum, we could just write 0 here which will be treated as checksum operation succeeded,
1212 * but having this might catch some bugs.
1213 *
1214 * Checksum algorithm is the same as with the ACPI tables.
1215 */
1216 *pb = RTAcpiChecksumGenerate(pThis->pbResBuf, pThis->offResBuf - 1); /* Exclude the checksum field. */
1217
1218 pThis->fSealed = true;
1219 return VINF_SUCCESS;
1220}
1221
1222
1223RTDECL(int) RTAcpiResourceQueryBuffer(RTACPIRES hAcpiRes, const void **ppvRes, size_t *pcbRes)
1224{
1225 PRTACPIRESINT pThis = hAcpiRes;
1226 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1227 AssertReturn(pThis->fSealed, VERR_INVALID_STATE);
1228 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1229
1230 *ppvRes = pThis->pbResBuf;
1231 *pcbRes = pThis->offResBuf;
1232 return VINF_SUCCESS;
1233}
1234
1235
1236RTDECL(int) RTAcpiResourceAdd32BitFixedMemoryRange(RTACPIRES hAcpiRes, uint32_t u32AddrBase, uint32_t cbRange,
1237 bool fRw)
1238{
1239 PRTACPIRESINT pThis = hAcpiRes;
1240 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1241 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1242 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1243
1244 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 12);
1245 if (!pb)
1246 return VERR_NO_MEMORY;
1247
1248 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_32BIT_FIXED_MEMORY_RANGE; /* Tag */
1249 pb[1] = 9; /* Length[7:0] */
1250 pb[2] = 0; /* Length[15:8] */
1251 pb[3] = fRw ? 1 : 0; /* Information */
1252 rtAcpiResEncode32BitInteger(&pb[4], u32AddrBase);
1253 rtAcpiResEncode32BitInteger(&pb[8], cbRange);
1254 return VINF_SUCCESS;
1255}
1256
1257
1258RTDECL(int) RTAcpiResourceAddExtendedInterrupt(RTACPIRES hAcpiRes, bool fConsumer, bool fEdgeTriggered, bool fActiveLow, bool fShared,
1259 bool fWakeCapable, uint8_t cIntrs, uint32_t *pau32Intrs)
1260{
1261 PRTACPIRESINT pThis = hAcpiRes;
1262 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1263 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1264 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1265
1266 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 2 + cIntrs * sizeof(uint32_t));
1267 if (!pb)
1268 return VERR_NO_MEMORY;
1269
1270 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_EXTENDED_INTERRUPT; /* Tag */
1271 rtAcpiResEncode16BitInteger(&pb[1], 2 + cIntrs * sizeof(uint32_t)); /* Length[15:0] */
1272 pb[3] = (fConsumer ? ACPI_RSRCS_EXT_INTR_VEC_F_CONSUMER : ACPI_RSRCS_EXT_INTR_VEC_F_PRODUCER)
1273 | (fEdgeTriggered ? ACPI_RSRCS_EXT_INTR_VEC_F_EDGE_TRIGGERED : ACPI_RSRCS_EXT_INTR_VEC_F_LEVEL_TRIGGERED)
1274 | (fActiveLow ? ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_LOW : ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_HIGH)
1275 | (fShared ? ACPI_RSRCS_EXT_INTR_VEC_F_SHARED : ACPI_RSRCS_EXT_INTR_VEC_F_EXCLUSIVE)
1276 | (fWakeCapable ? ACPI_RSRCS_EXT_INTR_VEC_F_WAKE_CAP : ACPI_RSRCS_EXT_INTR_VEC_F_NOT_WAKE_CAP);
1277 pb[4] = cIntrs;
1278 pb = &pb[5];
1279 for (uint32_t i = 0; i < cIntrs; i++)
1280 pb = rtAcpiResEncode32BitInteger(pb, pau32Intrs[i]);
1281
1282 return VINF_SUCCESS;
1283}
1284
1285
1286/**
1287 * Common worker for encoding a new quad word (64-bit) address range.
1288 *
1289 * @returns IPRT status code
1290 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1291 * @param pThis The ACPI resource instance.
1292 * @param bType The ACPI address range type.
1293 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1294 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1295 * @param u64AddrMin The start address of the memory range.
1296 * @param u64AddrMax Last valid address of the range.
1297 * @param u64OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1298 * @param u64Granularity The access granularity of the range in bytes.
1299 * @param u64Length Length of the memory range in bytes.
1300 */
1301static int rtAcpiResourceAddQWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1302 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1303 uint64_t u64Granularity, uint64_t u64Length)
1304{
1305 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 43);
1306 if (!pb)
1307 return VERR_NO_MEMORY;
1308
1309 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_QWORD_ADDR_SPACE; /* Tag */
1310 pb[1] = 43; /* Length[7:0] */
1311 pb[2] = 0; /* Length[15:8] */
1312 pb[3] = bType;
1313 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1314 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1315 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1316 pb[5] = fType;
1317
1318 pb = rtAcpiResEncode64BitInteger(&pb[6], u64Granularity);
1319 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMin);
1320 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMax);
1321 pb = rtAcpiResEncode64BitInteger(pb, u64OffTrans);
1322 rtAcpiResEncode64BitInteger(pb, u64Length);
1323 return VINF_SUCCESS;
1324}
1325
1326
1327/**
1328 * Common worker for encoding a new double word (32-bit) address range.
1329 *
1330 * @returns IPRT status code
1331 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1332 * @param pThis The ACPI resource instance.
1333 * @param bType The ACPI address range type.
1334 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1335 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1336 * @param u32AddrMin The start address of the memory range.
1337 * @param u32AddrMax Last valid address of the range.
1338 * @param u32OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1339 * @param u32Granularity The access granularity of the range in bytes.
1340 * @param u32Length Length of the memory range in bytes.
1341 */
1342static int rtAcpiResourceAddDWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1343 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1344 uint32_t u32Granularity, uint32_t u32Length)
1345{
1346 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 23);
1347 if (!pb)
1348 return VERR_NO_MEMORY;
1349
1350 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_DWORD_ADDR_SPACE; /* Tag */
1351 pb[1] = 23; /* Length[7:0] */
1352 pb[2] = 0; /* Length[15:8] */
1353 pb[3] = bType;
1354 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1355 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1356 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1357 pb[5] = fType;
1358
1359 pb = rtAcpiResEncode32BitInteger(&pb[6], u32Granularity);
1360 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMin);
1361 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMax);
1362 pb = rtAcpiResEncode32BitInteger(pb, u32OffTrans);
1363 rtAcpiResEncode32BitInteger(pb, u32Length);
1364 return VINF_SUCCESS;
1365}
1366
1367
1368/**
1369 * Converts the given cacheability, range type and R/W flag to the ACPI resource flags.
1370 *
1371 * @returns Converted ACPI resource flags.
1372 * @param enmCacheability The cacheability enum to convert.
1373 * @param enmType THe memory range type enum to convert.
1374 * @param fRw The read/write flag.
1375 */
1376DECLINLINE(uint8_t) rtAcpiResourceMemoryRangeToTypeFlags(RTACPIRESMEMRANGECACHEABILITY enmCacheability, RTACPIRESMEMRANGETYPE enmType,
1377 bool fRw)
1378{
1379 uint8_t fType = fRw ? ACPI_RSRCS_ADDR_SPACE_MEM_F_RW : ACPI_RSRCS_ADDR_SPACE_MEM_F_RO;
1380
1381 switch (enmCacheability)
1382 {
1383 case kAcpiResMemRangeCacheability_NonCacheable:
1384 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_NON_CACHEABLE;
1385 break;
1386 case kAcpiResMemRangeCacheability_Cacheable:
1387 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE;
1388 break;
1389 case kAcpiResMemRangeCacheability_CacheableWriteCombining:
1390 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_WR_COMB;
1391 break;
1392 case kAcpiResMemRangeCacheability_CacheablePrefetchable:
1393 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_PREFETCHABLE;
1394 break;
1395 case kAcpiResMemRangeCacheability_Invalid:
1396 default:
1397 AssertFailedReturn(0);
1398 }
1399
1400 switch (enmType)
1401 {
1402 case kAcpiResMemType_Memory:
1403 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_MEMORY;
1404 break;
1405 case kAcpiResMemType_Reserved:
1406 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_RESERVED;
1407 break;
1408 case kAcpiResMemType_Acpi:
1409 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_ACPI;
1410 break;
1411 case kAcpiResMemType_Nvs:
1412 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_NVS;
1413 break;
1414 case kAcpiResMemType_Invalid:
1415 default:
1416 AssertFailedReturn(0);
1417 }
1418
1419 return fType;
1420}
1421
1422
1423RTDECL(int) RTAcpiResourceAddQWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1424 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1425 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1426 uint64_t u64Granularity, uint64_t u64Length)
1427{
1428 PRTACPIRESINT pThis = hAcpiRes;
1429 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1430 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1431 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1432 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1433 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1434 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1435
1436 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1437 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1438 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1439}
1440
1441
1442RTDECL(int) RTAcpiResourceAddDWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1443 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1444 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1445 uint32_t u32Granularity, uint32_t u32Length)
1446{
1447 PRTACPIRESINT pThis = hAcpiRes;
1448 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1449 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1450 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1451 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1452 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1453 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1454
1455 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1456 return rtAcpiResourceAddDWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1457 u32AddrMin, u32AddrMax, u32OffTrans, u32Granularity, u32Length);
1458}
1459
1460
1461RTDECL(int) RTAcpiResourceAddQWordIoRange(RTACPIRES hAcpiRes, RTACPIRESIORANGETYPE enmIoType, RTACPIRESIORANGE enmIoRange,
1462 uint32_t fAddrSpace, uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1463 uint64_t u64Granularity, uint64_t u64Length)
1464{
1465 PRTACPIRESINT pThis = hAcpiRes;
1466 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1467 AssertReturn(enmIoType != kAcpiResIoRangeType_Invalid, VERR_INVALID_PARAMETER);
1468 AssertReturn(enmIoRange != kAcpiResIoRange_Invalid, VERR_INVALID_PARAMETER);
1469 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1470 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1471 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1472
1473 uint8_t fType = 0;
1474 switch (enmIoType)
1475 {
1476 case kAcpiResIoRangeType_Static:
1477 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_STATIC;
1478 break;
1479 case kAcpiResIoRangeType_Translation_Sparse:
1480 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_SPARSE;
1481 break;
1482 case kAcpiResIoRangeType_Translation_Dense:
1483 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_DENSE;
1484 break;
1485 case kAcpiResIoRangeType_Invalid:
1486 default:
1487 AssertFailedReturn(VERR_INVALID_PARAMETER);
1488 }
1489
1490 switch (enmIoRange)
1491 {
1492 case kAcpiResIoRange_NonIsaOnly:
1493 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_NON_ISA_ONLY;
1494 break;
1495 case kAcpiResIoRange_IsaOnly:
1496 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_ISA_ONLY;
1497 break;
1498 case kAcpiResIoRange_Whole:
1499 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_WHOLE;
1500 break;
1501 case kAcpiResIoRange_Invalid:
1502 default:
1503 AssertFailedReturn(VERR_INVALID_PARAMETER);
1504 }
1505
1506 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_IO, fAddrSpace, fType,
1507 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1508}
1509
1510
1511RTDECL(int) RTAcpiResourceAddWordBusNumber(RTACPIRES hAcpiRes, uint32_t fAddrSpace, uint16_t u16BusMin, uint16_t u16BusMax,
1512 uint16_t u16OffTrans, uint16_t u16Granularity, uint16_t u16Length)
1513{
1514 PRTACPIRESINT pThis = hAcpiRes;
1515 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1516 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1517 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1518 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1519
1520 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 13);
1521 if (!pb)
1522 return VERR_NO_MEMORY;
1523
1524 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_WORD_ADDR_SPACE; /* Tag */
1525 pb[1] = 13; /* Length[7:0] */
1526 pb[2] = 0; /* Length[15:8] */
1527 pb[3] = ACPI_RSRCS_ADDR_SPACE_TYPE_BUS_NUM_RANGE;
1528 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1529 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1530 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1531 pb[5] = 0;
1532
1533 pb = rtAcpiResEncode16BitInteger(&pb[6], u16Granularity);
1534 pb = rtAcpiResEncode16BitInteger(pb, u16BusMin);
1535 pb = rtAcpiResEncode16BitInteger(pb, u16BusMax);
1536 pb = rtAcpiResEncode16BitInteger(pb, u16OffTrans);
1537 rtAcpiResEncode16BitInteger(pb, u16Length);
1538 return VINF_SUCCESS;
1539
1540}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette