VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/misc/acpi.cpp@ 107455

Last change on this file since 107455 was 107064, checked in by vboxsync, 2 months ago

Runtime/RTAcpi*: Support more statements, an extended variant of the Region() API, bugref:10733

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 57.5 KB
Line 
1/* $Id: acpi.cpp 107064 2024-11-20 20:21:23Z vboxsync $ */
2/** @file
3 * IPRT - Advanced Configuration and Power Interface (ACPI) Table generation API.
4 */
5
6/*
7 * Copyright (C) 2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * The contents of this file may alternatively be used under the terms
26 * of the Common Development and Distribution License Version 1.0
27 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
28 * in the VirtualBox distribution, in which case the provisions of the
29 * CDDL are applicable instead of those of the GPL.
30 *
31 * You may elect to license modified versions of this file under the
32 * terms and conditions of either the GPL or the CDDL or both.
33 *
34 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
35 */
36
37
38/*********************************************************************************************************************************
39* Header Files *
40*********************************************************************************************************************************/
41#define LOG_GROUP RTLOGGROUP_ACPI
42#include <iprt/acpi.h>
43#include <iprt/asm.h>
44#include <iprt/file.h>
45#include <iprt/mem.h>
46#include <iprt/string.h>
47#include <iprt/uuid.h>
48
49#include <iprt/formats/acpi-aml.h>
50#include <iprt/formats/acpi-resources.h>
51
52
53/*********************************************************************************************************************************
54* Defined Constants And Macros *
55*********************************************************************************************************************************/
56
57
58
59/*********************************************************************************************************************************
60* Structures and Typedefs *
61*********************************************************************************************************************************/
62
63/**
64 * Package stack element.
65 */
66typedef struct RTACPITBLSTACKELEM
67{
68 /** Pointer to the table buffer memory where the PkgLength object starts. */
69 uint8_t *pbPkgLength;
70 /** Current size of the package in bytes, without the PkgLength object. */
71 uint32_t cbPkg;
72 /** The operator creating the package, UINT8_MAX denotes the special root operator. */
73 uint8_t bOp;
74} RTACPITBLSTACKELEM;
75/** Pointer to a package stack element. */
76typedef RTACPITBLSTACKELEM *PRTACPITBLSTACKELEM;
77/** Pointer to a const package stack element. */
78typedef const RTACPITBLSTACKELEM *PCRTACPITBLSTACKELEM;
79
80
81/**
82 * ACPI table generator instance.
83 */
84typedef struct RTACPITBLINT
85{
86 /** Pointer to the ACPI table header, needed when finalizing the table. */
87 PACPITBLHDR pHdr;
88 /** Byte buffer holding the actual table. */
89 uint8_t *pbTblBuf;
90 /** Size of the table buffer. */
91 uint32_t cbTblBuf;
92 /** Current offset into the table buffer. */
93 uint32_t offTblBuf;
94 /** Flag whether the table is finalized. */
95 bool fFinalized;
96 /** First error code encountered. */
97 int rcErr;
98 /** Pointer to the package element stack. */
99 PRTACPITBLSTACKELEM paPkgStack;
100 /** Number of elements the package stack can hold. */
101 uint32_t cPkgStackElems;
102 /** Index of the current package in the package stack. */
103 uint32_t idxPkgStackElem;
104} RTACPITBLINT;
105/** Pointer to an ACPI table generator instance. */
106typedef RTACPITBLINT *PRTACPITBLINT;
107
108
109/**
110 * ACPI resource builder instance.
111 */
112typedef struct RTACPIRESINT
113{
114 /** Byte buffer holding the resource. */
115 uint8_t *pbResBuf;
116 /** Size of the resource buffer. */
117 size_t cbResBuf;
118 /** Current offset into the resource buffer. */
119 uint32_t offResBuf;
120 /** Flag whether the resource is sealed. */
121 bool fSealed;
122 /** First error code encountered. */
123 int rcErr;
124} RTACPIRESINT;
125/** Pointer to an ACPI resource builder instance. */
126typedef RTACPIRESINT *PRTACPIRESINT;
127
128
129/*********************************************************************************************************************************
130* Global Variables *
131*********************************************************************************************************************************/
132
133
134/*********************************************************************************************************************************
135* Internal Functions *
136*********************************************************************************************************************************/
137
138
139/**
140 * Copies the given string into the given buffer padding the remainder with the given character.
141 *
142 * @param pbId The destination to copy the string to.
143 * @param cbId Size of the buffer in bytes.
144 * @param pszStr The string to copy.
145 * @param chPad The character to pad with.
146 */
147static void rtAcpiTblCopyStringPadWith(uint8_t *pbId, size_t cbId, const char *pszStr, char chPad)
148{
149 Assert(strlen(pszStr) <= cbId);
150
151 uint32_t idx = 0;
152 while (*pszStr != '\0')
153 pbId[idx++] = (uint8_t)*pszStr++;
154
155 while (idx < cbId)
156 pbId[idx++] = chPad;
157}
158
159
160/**
161 * Updates the package length of the current package in the stack
162 *
163 * @param pThis The ACPI table instance.
164 * @param cbAdd How many bytes to add to the package length.
165 */
166DECL_FORCE_INLINE(void) rtAcpiTblUpdatePkgLength(PRTACPITBLINT pThis, uint32_t cbAdd)
167{
168 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
169 pPkgElem->cbPkg += cbAdd;
170}
171
172
173/**
174 * Ensures there is the given amount of room in the ACPI table buffer returning the pointer.
175 *
176 * @returns The pointer to the free space on success or NULL if out of memory.
177 * @param pThis The ACPI table instance.
178 * @param cbReq Amount of bytes requested.
179 */
180static uint8_t *rtAcpiTblBufEnsureSpace(PRTACPITBLINT pThis, uint32_t cbReq)
181{
182 if (RT_LIKELY(pThis->cbTblBuf - pThis->offTblBuf >= cbReq))
183 {
184 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
185 pThis->offTblBuf += cbReq;
186 return pb;
187 }
188
189 uint32_t const cbNew = RT_ALIGN_32(pThis->cbTblBuf + cbReq, _4K);
190 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbTblBuf, cbNew);
191 if (RT_UNLIKELY(!pbNew))
192 {
193 pThis->rcErr = VERR_NO_MEMORY;
194 return NULL;
195 }
196
197 pThis->pbTblBuf = pbNew;
198 pThis->cbTblBuf = cbNew;
199
200 uint8_t *pb = &pThis->pbTblBuf[pThis->offTblBuf];
201 pThis->offTblBuf += cbReq;
202 return pb;
203}
204
205
206/**
207 * Appends a new package in the given ACPI table instance package stack.
208 *
209 * @returns IPRT status code.
210 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
211 * @param pThis The ACPI table instance.
212 * @param bOp The opcode byte the package starts with (for verification purposes when finalizing the package).
213 * @param pbPkgBuf The Start of the package buffer.
214 */
215static int rtAcpiTblPkgAppendEx(PRTACPITBLINT pThis, uint8_t bOp, uint8_t *pbPkgBuf)
216{
217 /* Get a new stack element. */
218 if (pThis->idxPkgStackElem + 1 == pThis->cPkgStackElems)
219 {
220 uint32_t const cPkgElemsNew = pThis->cPkgStackElems + 8;
221 PRTACPITBLSTACKELEM paPkgStackNew = (PRTACPITBLSTACKELEM)RTMemRealloc(pThis->paPkgStack, cPkgElemsNew * sizeof(*paPkgStackNew));
222 if (!paPkgStackNew)
223 {
224 pThis->rcErr = VERR_NO_MEMORY;
225 return VERR_NO_MEMORY;
226 }
227
228 pThis->paPkgStack = paPkgStackNew;
229 pThis->cPkgStackElems = cPkgElemsNew;
230 }
231
232 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[++pThis->idxPkgStackElem];
233 pStackElem->pbPkgLength = pbPkgBuf;
234 pStackElem->cbPkg = 0;
235 pStackElem->bOp = bOp;
236 return VINF_SUCCESS;
237}
238
239
240/**
241 * Starts a new ACPI package in the given ACPI table instance.
242 *
243 * @returns IPRT status code.
244 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
245 * @param pThis The ACPI table instance.
246 * @param bOp The opcode byte identifying the package content.
247 */
248static int rtAcpiTblPkgStart(PRTACPITBLINT pThis, uint8_t bOp)
249{
250 /*
251 * Allocate 1 byte for opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
252 * This will be corrected when the package is finalized.
253 */
254 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 5);
255 if (!pbPkg)
256 {
257 pThis->rcErr = VERR_NO_MEMORY;
258 return VERR_NO_MEMORY;
259 }
260
261 *pbPkg = bOp;
262 /*
263 * Update the package length of the outer package for the opcode,
264 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
265 */
266 rtAcpiTblUpdatePkgLength(pThis, sizeof(bOp));
267 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 1);
268}
269
270
271/**
272 * Starts a new ACPI package in the given ACPI table instance. This is for opcodes prefixed with
273 * ACPI_AML_BYTE_CODE_PREFIX_EXT_O, which will be added automatically.
274 *
275 * @returns IPRT status code.
276 * @retval VERR_NO_MEMORY if allocating additional resources to hold the new package failed.
277 * @param pThis The ACPI table instance.
278 * @param bOp The opcode byte identifying the package content.
279 */
280static int rtAcpiTblPkgStartExt(PRTACPITBLINT pThis, uint8_t bOp)
281{
282 /*
283 * Allocate 2 bytes for ExtOpPrefix opcode + always 4 bytes for the PkgLength, as we don't know how much we will need upfront.
284 * This will be corrected when the package is finalized.
285 */
286 uint8_t *pbPkg = rtAcpiTblBufEnsureSpace(pThis, 6);
287 if (!pbPkg)
288 {
289 pThis->rcErr = VERR_NO_MEMORY;
290 return VERR_NO_MEMORY;
291 }
292
293 pbPkg[0] = ACPI_AML_BYTE_CODE_PREFIX_EXT_OP;
294 pbPkg[1] = bOp;
295
296 /*
297 * Update the package length of the outer package for the opcode,
298 * the PkgLength object's final length will be added in rtAcpiTblPkgFinish().
299 */
300 rtAcpiTblUpdatePkgLength(pThis, sizeof(uint8_t) + sizeof(bOp));
301 return rtAcpiTblPkgAppendEx(pThis, bOp, pbPkg + 2);
302}
303
304
305/**
306 * Finishes the current package on the top of the package stack, setting the
307 * package length accordingly.
308 *
309 * @returns IPRT status code.
310 * @retval VERR_INVALID_STATE if bOp doesn't match the opcode the package was started with (asserted in debug builds).
311 * @retval VERR_BUFFER_OVERFLOW if the package length exceeds what can be encoded in the package length field.
312 * @param pThis The ACPI table instance.
313 * @param bOp The opcode byte identifying the package content the package was started with.
314 */
315static int rtAcpiTblPkgFinish(PRTACPITBLINT pThis, uint8_t bOp)
316{
317 /* Ensure the op matches what is current on the top of the stack. */
318 AssertReturn(pThis->paPkgStack[pThis->idxPkgStackElem].bOp == bOp, VERR_INVALID_STATE);
319
320 /* Pop the topmost stack element from the stack. */
321 PRTACPITBLSTACKELEM pPkgElem = &pThis->paPkgStack[pThis->idxPkgStackElem--];
322
323 /*
324 * Determine how many bytes we actually need for the PkgLength and re-arrange the ACPI table.
325 *
326 * Note! PkgLength will also include its own length.
327 */
328 uint8_t *pbPkgLength = pPkgElem->pbPkgLength;
329 uint32_t cbThisPkg = pPkgElem->cbPkg;
330 if (cbThisPkg + 1 <= 63)
331 {
332 /* Remove the gap. */
333 memmove(pbPkgLength + 1, pbPkgLength + 4, cbThisPkg);
334 pThis->offTblBuf -= 3;
335
336 /* PkgLength only consists of the package lead byte. */
337 cbThisPkg += 1;
338 *pbPkgLength = (cbThisPkg & 0x3f);
339 }
340 else if (cbThisPkg + 2 < RT_BIT_32(12))
341 {
342 /* Remove the gap. */
343 memmove(pbPkgLength + 2, pbPkgLength + 4, cbThisPkg);
344 pThis->offTblBuf -= 2;
345
346 cbThisPkg += 2;
347 pbPkgLength[0] = (1 << 6) | (cbThisPkg & 0xf);
348 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
349 }
350 else if (cbThisPkg + 3 < RT_BIT_32(20))
351 {
352 /* Remove the gap. */
353 memmove(pbPkgLength + 3, pbPkgLength + 4, cbThisPkg);
354 pThis->offTblBuf -= 1;
355
356 cbThisPkg += 3;
357 pbPkgLength[0] = (2 << 6) | (cbThisPkg & 0xf);
358 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
359 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
360 }
361 else if (cbThisPkg + 4 < RT_BIT_32(28))
362 {
363 cbThisPkg += 4;
364 pbPkgLength[0] = (3 << 6) | (cbThisPkg & 0xf);
365 pbPkgLength[1] = (cbThisPkg >> 4) & 0xff;
366 pbPkgLength[2] = (cbThisPkg >> 12) & 0xff;
367 pbPkgLength[3] = (cbThisPkg >> 20) & 0xff;
368 }
369 else
370 return VERR_BUFFER_OVERFLOW;
371
372 /* Update the size of the outer package. */
373 pThis->paPkgStack[pThis->idxPkgStackElem].cbPkg += cbThisPkg;
374
375 return VINF_SUCCESS;
376}
377
378
379/**
380 * Appends the given byte to the ACPI table, updating the package length of the current package.
381 *
382 * @param pThis The ACPI table instance.
383 * @param bData The byte data to append.
384 */
385DECLINLINE(void) rtAcpiTblAppendByte(PRTACPITBLINT pThis, uint8_t bData)
386{
387 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, sizeof(bData));
388 if (pb)
389 {
390 *pb = bData;
391 rtAcpiTblUpdatePkgLength(pThis, sizeof(bData));
392 }
393}
394
395
396/**
397 * Appends the given date to the ACPI table, updating the package length of the current package.
398 *
399 * @param pThis The ACPI table instance.
400 * @param pvData The data to append.
401 * @param cbData Size of the data in bytes.
402 */
403DECLINLINE(void) rtAcpiTblAppendData(PRTACPITBLINT pThis, const void *pvData, uint32_t cbData)
404{
405 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbData);
406 if (pb)
407 {
408 memcpy(pb, pvData, cbData);
409 rtAcpiTblUpdatePkgLength(pThis, cbData);
410 }
411}
412
413
414/**
415 * Appends the given namestring to the ACPI table, updating the package length of the current package
416 * and padding the name with _ if too short.
417 *
418 * @param pThis The ACPI table instance.
419 * @param pszName The name to append, maximum is 4 bytes (or 5 if \\ is the first character).
420 */
421DECLINLINE(void) rtAcpiTblAppendNameString(PRTACPITBLINT pThis, const char *pszName)
422{
423 uint32_t cbName = *pszName == '\\' ? 5 : 4;
424 uint8_t *pb = rtAcpiTblBufEnsureSpace(pThis, cbName);
425 if (pb)
426 {
427 rtAcpiTblCopyStringPadWith(pb, cbName, pszName, '_');
428 rtAcpiTblUpdatePkgLength(pThis, cbName);
429 }
430}
431
432
433/**
434 * Encodes a PkgLength item for the given number.
435 *
436 * @returns IPRT status code.
437 * @param pThis The ACPI table instance.
438 * @param u64Length The length to encode.
439 */
440DECLINLINE(int) rtAcpiTblEncodePkgLength(PRTACPITBLINT pThis, uint64_t u64Length)
441{
442 AssertReturn(u64Length < RT_BIT_32(28), VERR_BUFFER_OVERFLOW);
443
444 if (u64Length <= 63)
445 {
446 /* PkgLength only consists of the package lead byte. */
447 rtAcpiTblAppendByte(pThis, (u64Length & 0x3f));
448 }
449 else if (u64Length < RT_BIT_32(12))
450 {
451 uint8_t abData[2];
452 abData[0] = (1 << 6) | (u64Length & 0xf);
453 abData[1] = (u64Length >> 4) & 0xff;
454 rtAcpiTblAppendData(pThis, &abData[0], sizeof(abData));
455 }
456 else if (u64Length < RT_BIT_32(20))
457 {
458 uint8_t abData[3];
459 abData[0] = (1 << 6) | (u64Length & 0xf);
460 abData[1] = (u64Length >> 4) & 0xff;
461 abData[2] = (u64Length >> 12) & 0xff;
462 rtAcpiTblAppendData(pThis, &abData[0], sizeof(abData));
463 }
464 else if (u64Length < RT_BIT_32(28))
465 {
466 uint8_t abData[4];
467 abData[0] = (1 << 6) | (u64Length & 0xf);
468 abData[1] = (u64Length >> 4) & 0xff;
469 abData[2] = (u64Length >> 12) & 0xff;
470 abData[3] = (u64Length >> 20) & 0xff;
471 rtAcpiTblAppendData(pThis, &abData[0], sizeof(abData));
472 }
473 else
474 AssertReleaseFailed();
475
476 return VINF_SUCCESS;
477}
478
479
480RTDECL(uint8_t) RTAcpiChecksumGenerate(const void *pvData, size_t cbData)
481{
482 uint8_t const *pbSrc = (uint8_t const *)pvData;
483 uint8_t bSum = 0;
484 for (size_t i = 0; i < cbData; ++i)
485 bSum += pbSrc[i];
486
487 return -bSum;
488}
489
490
491RTDECL(void) RTAcpiTblHdrChecksumGenerate(PACPITBLHDR pTbl, size_t cbTbl)
492{
493 pTbl->bChkSum = 0;
494 pTbl->bChkSum = RTAcpiChecksumGenerate(pTbl, cbTbl);
495}
496
497
498RTDECL(int) RTAcpiTblCreate(PRTACPITBL phAcpiTbl, uint32_t u32TblSig, uint8_t bRevision, const char *pszOemId,
499 const char *pszOemTblId, uint32_t u32OemRevision, const char *pszCreatorId,
500 uint32_t u32CreatorRevision)
501{
502 AssertPtrReturn(phAcpiTbl, VERR_INVALID_POINTER);
503 AssertPtrReturn(pszOemId, VERR_INVALID_POINTER);
504 AssertPtrReturn(pszOemTblId, VERR_INVALID_POINTER);
505 AssertReturn(strlen(pszOemId) <= 6, VERR_INVALID_PARAMETER);
506 AssertReturn(strlen(pszOemTblId) <= 8, VERR_INVALID_PARAMETER);
507 AssertReturn(!pszCreatorId || strlen(pszCreatorId) <= 4, VERR_INVALID_PARAMETER);
508
509 PRTACPITBLINT pThis = (PRTACPITBLINT)RTMemAllocZ(sizeof(*pThis));
510 if (pThis)
511 {
512 pThis->pbTblBuf = (uint8_t *)RTMemAlloc(_4K);
513 if (pThis->pbTblBuf)
514 {
515 pThis->pHdr = (PACPITBLHDR)pThis->pbTblBuf;
516 pThis->offTblBuf = sizeof(*pThis->pHdr);
517 pThis->cbTblBuf = _4K;
518 pThis->fFinalized = false;
519 pThis->rcErr = VINF_SUCCESS;
520 pThis->paPkgStack = NULL;
521 pThis->cPkgStackElems = 0;
522 pThis->idxPkgStackElem = 0;
523
524 /* Add the root stack element for the table, aka DefinitionBlock() in ASL. */
525 uint32_t const cPkgElemsInitial = 8;
526 pThis->paPkgStack = (PRTACPITBLSTACKELEM)RTMemAlloc(cPkgElemsInitial * sizeof(*pThis->paPkgStack));
527 if (pThis->paPkgStack)
528 {
529 pThis->cPkgStackElems = cPkgElemsInitial;
530
531 PRTACPITBLSTACKELEM pStackElem = &pThis->paPkgStack[pThis->idxPkgStackElem];
532 pStackElem->pbPkgLength = pThis->pbTblBuf; /* Starts with the header. */
533 pStackElem->cbPkg = sizeof(*pThis->pHdr);
534 pStackElem->bOp = UINT8_MAX;
535
536 /* Init the table header with static things. */
537 pThis->pHdr->u32Signature = u32TblSig;
538 pThis->pHdr->bRevision = bRevision;
539 pThis->pHdr->u32OemRevision = RT_H2LE_U32(u32OemRevision);
540 pThis->pHdr->u32CreatorRevision = RT_H2LE_U32(u32CreatorRevision);
541
542 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemId[0], sizeof(pThis->pHdr->abOemId), pszOemId, ' ');
543 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abOemTblId[0], sizeof(pThis->pHdr->abOemTblId), pszOemTblId, ' ');
544 rtAcpiTblCopyStringPadWith(&pThis->pHdr->abCreatorId[0], sizeof(pThis->pHdr->abCreatorId),
545 pszCreatorId ? pszCreatorId : "IPRT", ' ');
546
547 *phAcpiTbl = pThis;
548 return VINF_SUCCESS;
549 }
550
551 RTMemFree(pThis->pbTblBuf);
552 }
553
554 RTMemFree(pThis);
555 }
556
557 return VERR_NO_MEMORY;
558}
559
560
561RTDECL(void) RTAcpiTblDestroy(RTACPITBL hAcpiTbl)
562{
563 PRTACPITBLINT pThis = hAcpiTbl;
564 AssertPtrReturnVoid(pThis);
565
566 RTMemFree(pThis->paPkgStack);
567 RTMemFree(pThis->pbTblBuf);
568 pThis->pHdr = NULL;
569 pThis->pbTblBuf = NULL;
570 pThis->cbTblBuf = 0;
571 pThis->offTblBuf = 0;
572 pThis->paPkgStack = NULL;
573 pThis->cPkgStackElems = 0;
574 pThis->idxPkgStackElem = 0;
575 RTMemFree(pThis);
576}
577
578
579RTDECL(int) RTAcpiTblFinalize(RTACPITBL hAcpiTbl)
580{
581 PRTACPITBLINT pThis = hAcpiTbl;
582 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
583 AssertRCReturn(pThis->rcErr, pThis->rcErr);
584 AssertReturn(!pThis->fFinalized, VERR_INVALID_PARAMETER);
585 AssertReturn(pThis->idxPkgStackElem == 0, VERR_INVALID_STATE); /** @todo Better status code. */
586 AssertReturn(pThis->paPkgStack[0].bOp == UINT8_MAX, VERR_INVALID_STATE);
587
588 pThis->pHdr->cbTbl = RT_H2LE_U32(pThis->paPkgStack[0].cbPkg);
589 RTAcpiTblHdrChecksumGenerate(pThis->pHdr, pThis->paPkgStack[0].cbPkg);
590
591 pThis->fFinalized = true;
592 return VINF_SUCCESS;
593}
594
595
596RTDECL(uint32_t) RTAcpiTblGetSize(RTACPITBL hAcpiTbl)
597{
598 PRTACPITBLINT pThis = hAcpiTbl;
599 AssertPtrReturn(pThis, 0);
600 AssertRCReturn(pThis->rcErr, 0);
601 AssertReturn(pThis->fFinalized, 0);
602
603 return pThis->paPkgStack[0].cbPkg;
604}
605
606
607RTDECL(int) RTAcpiTblDumpToVfsIoStrm(RTACPITBL hAcpiTbl, RTVFSIOSTREAM hVfsIos)
608{
609 PRTACPITBLINT pThis = hAcpiTbl;
610 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
611 AssertRCReturn(pThis->rcErr, 0);
612
613 return RTVfsIoStrmWrite(hVfsIos, pThis->pbTblBuf, pThis->paPkgStack[0].cbPkg,
614 true /*fBlocking*/, NULL /*pcbWritten*/);
615}
616
617
618RTDECL(int) RTAcpiTblDumpToFile(RTACPITBL hAcpiTbl, const char *pszFilename)
619{
620 RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM;
621 int rc = RTVfsChainOpenIoStream(pszFilename, RTFILE_O_WRITE | RTFILE_O_CREATE | RTFILE_O_DENY_NONE,
622 &hVfsIos, NULL /*poffError*/, NULL);
623 if (RT_FAILURE(rc))
624 return rc;
625
626 rc = RTAcpiTblDumpToVfsIoStrm(hAcpiTbl, hVfsIos);
627 RTVfsIoStrmRelease(hVfsIos);
628 return rc;
629}
630
631
632RTDECL(int) RTAcpiTblScopeFinalize(RTACPITBL hAcpiTbl)
633{
634 PRTACPITBLINT pThis = hAcpiTbl;
635 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
636
637 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
638}
639
640
641RTDECL(int) RTAcpiTblScopeStart(RTACPITBL hAcpiTbl, const char *pszName)
642{
643 PRTACPITBLINT pThis = hAcpiTbl;
644 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
645
646 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_SCOPE);
647 rtAcpiTblAppendNameString(pThis, pszName);
648 return pThis->rcErr;
649}
650
651
652RTDECL(int) RTAcpiTblPackageStart(RTACPITBL hAcpiTbl, uint8_t cElements)
653{
654 PRTACPITBLINT pThis = hAcpiTbl;
655 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
656
657 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
658 rtAcpiTblAppendByte(pThis, cElements);
659 return pThis->rcErr;
660}
661
662
663RTDECL(int) RTAcpiTblPackageFinalize(RTACPITBL hAcpiTbl)
664{
665 PRTACPITBLINT pThis = hAcpiTbl;
666 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
667
668 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_PACKAGE);
669}
670
671
672RTDECL(int) RTAcpiTblDeviceStart(RTACPITBL hAcpiTbl, const char *pszName)
673{
674 PRTACPITBLINT pThis = hAcpiTbl;
675 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
676
677 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
678 rtAcpiTblAppendNameString(pThis, pszName);
679 return pThis->rcErr;
680}
681
682
683RTDECL(int) RTAcpiTblDeviceStartF(RTACPITBL hAcpiTbl, const char *pszNameFmt, ...)
684{
685 va_list va;
686 va_start(va, pszNameFmt);
687 int rc = RTAcpiTblDeviceStartV(hAcpiTbl, pszNameFmt, va);
688 va_end(va);
689 return rc;
690}
691
692
693RTDECL(int) RTAcpiTblDeviceStartV(RTACPITBL hAcpiTbl, const char *pszNameFmt, va_list va)
694{
695 char szName[5];
696 ssize_t cch = RTStrPrintf2V(&szName[0], sizeof(szName), pszNameFmt, va);
697 if (cch <= 0)
698 return VERR_BUFFER_OVERFLOW;
699
700 return RTAcpiTblDeviceStart(hAcpiTbl, &szName[0]);
701}
702
703
704RTDECL(int) RTAcpiTblDeviceFinalize(RTACPITBL hAcpiTbl)
705{
706 PRTACPITBLINT pThis = hAcpiTbl;
707 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
708
709 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_EXT_OP_DEVICE);
710}
711
712
713RTDECL(int) RTAcpiTblMethodStart(RTACPITBL hAcpiTbl, const char *pszName, uint8_t cArgs, uint32_t fFlags, uint8_t uSyncLvl)
714{
715 PRTACPITBLINT pThis = hAcpiTbl;
716 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
717 AssertReturn(cArgs < 8, VERR_INVALID_PARAMETER);
718 AssertReturn(uSyncLvl < 0x10, VERR_INVALID_PARAMETER);
719
720 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
721 rtAcpiTblAppendNameString(pThis, pszName);
722
723 uint8_t bFlags = cArgs;
724 bFlags |= fFlags & RTACPI_METHOD_F_SERIALIZED ? RT_BIT(3) : 0;
725 bFlags |= uSyncLvl << 4;
726
727 rtAcpiTblAppendByte(pThis, bFlags);
728 return pThis->rcErr;
729}
730
731
732RTDECL(int) RTAcpiTblMethodFinalize(RTACPITBL hAcpiTbl)
733{
734 PRTACPITBLINT pThis = hAcpiTbl;
735 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
736
737 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_METHOD);
738}
739
740
741RTDECL(int) RTAcpiTblNameAppend(RTACPITBL hAcpiTbl, const char *pszName)
742{
743 PRTACPITBLINT pThis = hAcpiTbl;
744 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
745
746 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_NAME);
747 rtAcpiTblAppendNameString(pThis, pszName);
748 return pThis->rcErr;
749}
750
751
752RTDECL(int) RTAcpiTblNullNameAppend(RTACPITBL hAcpiTbl)
753{
754 PRTACPITBLINT pThis = hAcpiTbl;
755 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
756
757 rtAcpiTblAppendByte(pThis, 0x00);
758 return pThis->rcErr;
759}
760
761
762RTDECL(int) RTAcpiTblNameStringAppend(RTACPITBL hAcpiTbl, const char *pszName)
763{
764 PRTACPITBLINT pThis = hAcpiTbl;
765 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
766
767 rtAcpiTblAppendNameString(pThis, pszName);
768 return pThis->rcErr;
769}
770
771
772RTDECL(int) RTAcpiTblStringAppend(RTACPITBL hAcpiTbl, const char *psz)
773{
774 PRTACPITBLINT pThis = hAcpiTbl;
775 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
776
777 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_STRING);
778 rtAcpiTblAppendData(pThis, psz, (uint32_t)strlen(psz) + 1);
779 return pThis->rcErr;
780}
781
782
783RTDECL(int) RTAcpiTblIntegerAppend(RTACPITBL hAcpiTbl, uint64_t u64)
784{
785 PRTACPITBLINT pThis = hAcpiTbl;
786 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
787
788 if (!u64)
789 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ZERO);
790 else if (u64 == 1)
791 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ONE);
792 else if (u64 <= UINT8_MAX)
793 {
794 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_BYTE);
795 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
796 }
797 else if (u64 <= UINT16_MAX)
798 {
799 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_WORD);
800 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
801 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
802 }
803 else if (u64 <= UINT32_MAX)
804 {
805 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_DWORD);
806 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
807 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
808 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
809 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
810 }
811 else
812 {
813 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_PREFIX_QWORD);
814 rtAcpiTblAppendByte(pThis, (uint8_t)u64);
815 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 8));
816 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 16));
817 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 24));
818 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 32));
819 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 40));
820 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 48));
821 rtAcpiTblAppendByte(pThis, (uint8_t)(u64 >> 56));
822 }
823 return pThis->rcErr;
824}
825
826
827RTDECL(int) RTAcpiTblBufferAppend(RTACPITBL hAcpiTbl, const void *pvBuf, size_t cbBuf)
828{
829 PRTACPITBLINT pThis = hAcpiTbl;
830 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
831 AssertReturn(!cbBuf || RT_VALID_PTR(pvBuf), VERR_INVALID_PARAMETER);
832 AssertReturn(cbBuf <= UINT32_MAX, VERR_BUFFER_OVERFLOW);
833
834 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
835 RTAcpiTblIntegerAppend(hAcpiTbl, cbBuf);
836 if (pvBuf)
837 rtAcpiTblAppendData(pThis, pvBuf, (uint32_t)cbBuf);
838 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_BUFFER);
839}
840
841
842RTDECL(int) RTAcpiTblResourceAppend(RTACPITBL hAcpiTbl, RTACPIRES hAcpiRes)
843{
844 PRTACPITBLINT pThis = hAcpiTbl;
845 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
846 AssertRCReturn(pThis->rcErr, pThis->rcErr);
847
848 const void *pvRes = NULL;
849 size_t cbRes = 0;
850 int rc = RTAcpiResourceQueryBuffer(hAcpiRes, &pvRes, &cbRes);
851 if (RT_SUCCESS(rc))
852 rc = RTAcpiTblBufferAppend(pThis, pvRes, cbRes);
853
854 return rc;
855}
856
857
858RTDECL(int) RTAcpiTblStmtSimpleAppend(RTACPITBL hAcpiTbl, RTACPISTMT enmStmt)
859{
860 PRTACPITBLINT pThis = hAcpiTbl;
861 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
862
863 uint8_t bOp;
864 switch (enmStmt)
865 {
866 case kAcpiStmt_Return: bOp = ACPI_AML_BYTE_CODE_OP_RETURN; break;
867 case kAcpiStmt_Breakpoint: bOp = ACPI_AML_BYTE_CODE_OP_BREAK_POINT; break;
868 case kAcpiStmt_Nop: bOp = ACPI_AML_BYTE_CODE_OP_NOOP; break;
869 case kAcpiStmt_Break: bOp = ACPI_AML_BYTE_CODE_OP_BREAK; break;
870 case kAcpiStmt_Continue: bOp = ACPI_AML_BYTE_CODE_OP_CONTINUE; break;
871 case kAcpiStmt_Add: bOp = ACPI_AML_BYTE_CODE_OP_ADD; break;
872 case kAcpiStmt_Subtract: bOp = ACPI_AML_BYTE_CODE_OP_SUBTRACT; break;
873 case kAcpiStmt_And: bOp = ACPI_AML_BYTE_CODE_OP_AND; break;
874 case kAcpiStmt_Nand: bOp = ACPI_AML_BYTE_CODE_OP_NAND; break;
875 case kAcpiStmt_Or: bOp = ACPI_AML_BYTE_CODE_OP_OR; break;
876 case kAcpiStmt_Xor: bOp = ACPI_AML_BYTE_CODE_OP_XOR; break;
877 case kAcpiStmt_Not: bOp = ACPI_AML_BYTE_CODE_OP_NOT; break;
878 case kAcpiStmt_Store: bOp = ACPI_AML_BYTE_CODE_OP_STORE; break;
879 case kAcpiStmt_Index: bOp = ACPI_AML_BYTE_CODE_OP_INDEX; break;
880 case kAcpiStmt_DerefOf: bOp = ACPI_AML_BYTE_CODE_OP_DEREF_OF; break;
881 default:
882 AssertFailedReturn(VERR_INVALID_PARAMETER);
883 }
884 rtAcpiTblAppendByte(pThis, bOp);
885 return pThis->rcErr;
886}
887
888
889RTDECL(int) RTAcpiTblIfStart(RTACPITBL hAcpiTbl)
890{
891 PRTACPITBLINT pThis = hAcpiTbl;
892 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
893
894 rtAcpiTblPkgStart(pThis, ACPI_AML_BYTE_CODE_OP_IF);
895 return pThis->rcErr;
896}
897
898
899RTDECL(int) RTAcpiTblIfFinalize(RTACPITBL hAcpiTbl)
900{
901 PRTACPITBLINT pThis = hAcpiTbl;
902 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
903
904 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_IF);
905}
906
907
908RTDECL(int) RTAcpiTblElseStart(RTACPITBL hAcpiTbl)
909{
910 PRTACPITBLINT pThis = hAcpiTbl;
911 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
912
913 /* Makes only sense inside an IfOp package. */
914 AssertReturn(pThis->paPkgStack[pThis->idxPkgStackElem].bOp == ACPI_AML_BYTE_CODE_OP_IF, VERR_INVALID_STATE);
915
916 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_OP_ELSE);
917 return pThis->rcErr;
918}
919
920
921RTDECL(int) RTAcpiTblElseFinalize(RTACPITBL hAcpiTbl)
922{
923 PRTACPITBLINT pThis = hAcpiTbl;
924 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
925
926 return rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_OP_ELSE);
927}
928
929
930RTDECL(int) RTAcpiTblBinaryOpAppend(RTACPITBL hAcpiTbl, RTACPIBINARYOP enmBinaryOp)
931{
932 PRTACPITBLINT pThis = hAcpiTbl;
933 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
934
935 uint8_t bOp;
936 switch (enmBinaryOp)
937 {
938 case kAcpiBinaryOp_LAnd: bOp = ACPI_AML_BYTE_CODE_OP_LAND; break;
939 case kAcpiBinaryOp_LEqual: bOp = ACPI_AML_BYTE_CODE_OP_LEQUAL; break;
940 case kAcpiBinaryOp_LGreater: bOp = ACPI_AML_BYTE_CODE_OP_LGREATER; break;
941 case kAcpiBinaryOp_LLess: bOp = ACPI_AML_BYTE_CODE_OP_LLESS; break;
942 case kAcpiBinaryOp_LGreaterEqual:
943 case kAcpiBinaryOp_LLessEqual:
944 case kAcpiBinaryOp_LNotEqual:
945 bOp = ACPI_AML_BYTE_CODE_OP_LNOT;
946 break;
947 default:
948 AssertFailedReturn(VERR_INVALID_PARAMETER);
949 }
950 rtAcpiTblAppendByte(pThis, bOp);
951 switch (enmBinaryOp)
952 {
953 case kAcpiBinaryOp_LGreaterEqual: bOp = ACPI_AML_BYTE_CODE_OP_LLESS; break;
954 case kAcpiBinaryOp_LLessEqual: bOp = ACPI_AML_BYTE_CODE_OP_LGREATER; break;
955 case kAcpiBinaryOp_LNotEqual: bOp = ACPI_AML_BYTE_CODE_OP_LEQUAL; break;
956 default:
957 bOp = 0x00;
958 }
959 if (bOp != 0x00)
960 rtAcpiTblAppendByte(pThis, bOp);
961 return pThis->rcErr;
962}
963
964
965RTDECL(int) RTAcpiTblArgOpAppend(RTACPITBL hAcpiTbl, uint8_t idArg)
966{
967 PRTACPITBLINT pThis = hAcpiTbl;
968 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
969 AssertReturn(idArg <= 6, VERR_INVALID_PARAMETER);
970
971 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_ARG_0 + idArg);
972 return pThis->rcErr;
973}
974
975
976RTDECL(int) RTAcpiTblLocalOpAppend(RTACPITBL hAcpiTbl, uint8_t idLocal)
977{
978 PRTACPITBLINT pThis = hAcpiTbl;
979 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
980 AssertReturn(idLocal <= 7, VERR_INVALID_PARAMETER);
981
982 rtAcpiTblAppendByte(pThis, ACPI_AML_BYTE_CODE_OP_LOCAL_0 + idLocal);
983 return pThis->rcErr;
984}
985
986
987RTDECL(int) RTAcpiTblUuidAppend(RTACPITBL hAcpiTbl, PCRTUUID pUuid)
988{
989 /* UUIDs are stored as a buffer object. */
990 /** @todo Needs conversion on big endian machines. */
991 return RTAcpiTblBufferAppend(hAcpiTbl, &pUuid->au8[0], sizeof(*pUuid));
992}
993
994
995RTDECL(int) RTAcpiTblUuidAppendFromStr(RTACPITBL hAcpiTbl, const char *pszUuid)
996{
997 PRTACPITBLINT pThis = hAcpiTbl;
998 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
999
1000 RTUUID Uuid;
1001 pThis->rcErr = RTUuidFromStr(&Uuid, pszUuid);
1002 if (RT_SUCCESS(pThis->rcErr))
1003 return RTAcpiTblUuidAppend(pThis, &Uuid);
1004
1005 return pThis->rcErr;
1006}
1007
1008
1009RTDECL(int) RTAcpiTblOpRegionAppendEx(RTACPITBL hAcpiTbl, const char *pszName, RTACPIOPREGIONSPACE enmSpace)
1010{
1011 PRTACPITBLINT pThis = hAcpiTbl;
1012 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1013
1014 uint8_t abOp[2] = { ACPI_AML_BYTE_CODE_PREFIX_EXT_OP, ACPI_AML_BYTE_CODE_EXT_OP_OP_REGION };
1015 rtAcpiTblAppendData(pThis, &abOp[0], sizeof(abOp));
1016 rtAcpiTblAppendNameString(pThis, pszName);
1017
1018 uint8_t bRegionSpace = 0xff;
1019 switch (enmSpace)
1020 {
1021 case kAcpiOperationRegionSpace_SystemMemory: bRegionSpace = 0x00; break;
1022 case kAcpiOperationRegionSpace_SystemIo: bRegionSpace = 0x01; break;
1023 case kAcpiOperationRegionSpace_PciConfig: bRegionSpace = 0x02; break;
1024 case kAcpiOperationRegionSpace_EmbeddedControl: bRegionSpace = 0x03; break;
1025 case kAcpiOperationRegionSpace_SmBus: bRegionSpace = 0x04; break;
1026 case kAcpiOperationRegionSpace_SystemCmos: bRegionSpace = 0x05; break;
1027 case kAcpiOperationRegionSpace_PciBarTarget: bRegionSpace = 0x06; break;
1028 case kAcpiOperationRegionSpace_Ipmi: bRegionSpace = 0x07; break;
1029 case kAcpiOperationRegionSpace_Gpio: bRegionSpace = 0x08; break;
1030 case kAcpiOperationRegionSpace_GenericSerialBus: bRegionSpace = 0x09; break;
1031 case kAcpiOperationRegionSpace_Pcc: bRegionSpace = 0x0a; break;
1032 default:
1033 pThis->rcErr = VERR_INVALID_PARAMETER;
1034 AssertFailedReturn(pThis->rcErr);
1035 }
1036 rtAcpiTblAppendByte(pThis, bRegionSpace);
1037 return pThis->rcErr;
1038}
1039
1040
1041RTDECL(int) RTAcpiTblOpRegionAppend(RTACPITBL hAcpiTbl, const char *pszName, RTACPIOPREGIONSPACE enmSpace,
1042 uint64_t offRegion, uint64_t cbRegion)
1043{
1044 PRTACPITBLINT pThis = hAcpiTbl;
1045 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1046
1047 int rc = RTAcpiTblOpRegionAppendEx(pThis, pszName, enmSpace);
1048 if (RT_FAILURE(rc))
1049 return rc;
1050
1051 RTAcpiTblIntegerAppend(pThis, offRegion);
1052 RTAcpiTblIntegerAppend(pThis, cbRegion);
1053 return pThis->rcErr;
1054}
1055
1056
1057RTDECL(int) RTAcpiTblFieldAppend(RTACPITBL hAcpiTbl, const char *pszNameRef, RTACPIFIELDACC enmAcc,
1058 bool fLock, RTACPIFIELDUPDATE enmUpdate, PCRTACPIFIELDENTRY paFields,
1059 uint32_t cFields)
1060{
1061 PRTACPITBLINT pThis = hAcpiTbl;
1062 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1063
1064 rtAcpiTblPkgStartExt(pThis, ACPI_AML_BYTE_CODE_EXT_OP_FIELD);
1065 rtAcpiTblAppendNameString(pThis, pszNameRef);
1066
1067 uint8_t fFlags = 0;
1068 switch (enmAcc)
1069 {
1070 case kAcpiFieldAcc_Any: fFlags = 0; break;
1071 case kAcpiFieldAcc_Byte: fFlags = 1; break;
1072 case kAcpiFieldAcc_Word: fFlags = 2; break;
1073 case kAcpiFieldAcc_DWord: fFlags = 3; break;
1074 case kAcpiFieldAcc_QWord: fFlags = 4; break;
1075 case kAcpiFieldAcc_Buffer: fFlags = 5; break;
1076 default:
1077 pThis->rcErr = VERR_INVALID_PARAMETER;
1078 AssertFailedReturn(pThis->rcErr);
1079 }
1080 if (fLock)
1081 fFlags |= RT_BIT(4);
1082 switch (enmUpdate)
1083 {
1084 case kAcpiFieldUpdate_Preserve: fFlags |= 0 << 5; break;
1085 case kAcpiFieldUpdate_WriteAsOnes: fFlags |= 1 << 5; break;
1086 case kAcpiFieldUpdate_WriteAsZeroes: fFlags |= 2 << 5; break;
1087 default:
1088 pThis->rcErr = VERR_INVALID_PARAMETER;
1089 AssertFailedReturn(pThis->rcErr);
1090 }
1091 rtAcpiTblAppendByte(pThis, fFlags);
1092
1093 for (uint32_t i = 0; i < cFields; i++)
1094 {
1095 rtAcpiTblAppendNameString(pThis, paFields[i].pszName);
1096 rtAcpiTblEncodePkgLength(pThis, paFields[i].cBits);
1097 }
1098
1099 rtAcpiTblPkgFinish(pThis, ACPI_AML_BYTE_CODE_EXT_OP_FIELD);
1100 return pThis->rcErr;
1101}
1102
1103
1104/**
1105 * Ensures there is at least the given amount of space in the given ACPI resource.
1106 *
1107 * @returns Pointer to the free buffer space or NULL if out of memory.
1108 * @param pThis The ACPI resource instance.
1109 * @param cbReq Number of free bytes required.
1110 */
1111static uint8_t *rtAcpiResBufEnsureSpace(PRTACPIRESINT pThis, uint32_t cbReq)
1112{
1113 if (RT_LIKELY(pThis->cbResBuf - pThis->offResBuf >= cbReq))
1114 {
1115 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
1116 pThis->offResBuf += cbReq;
1117 return pb;
1118 }
1119
1120 size_t const cbNew = RT_ALIGN_Z(pThis->cbResBuf + cbReq, _4K);
1121 uint8_t *pbNew = (uint8_t *)RTMemRealloc(pThis->pbResBuf, cbNew);
1122 if (RT_UNLIKELY(!pbNew))
1123 {
1124 pThis->rcErr = VERR_NO_MEMORY;
1125 return NULL;
1126 }
1127
1128 pThis->pbResBuf = pbNew;
1129 pThis->cbResBuf = cbNew;
1130
1131 uint8_t *pb = &pThis->pbResBuf[pThis->offResBuf];
1132 pThis->offResBuf += cbReq;
1133 return pb;
1134}
1135
1136
1137/**
1138 * Encodes an ACPI 16-bit integer in the given byte buffer.
1139 *
1140 * @returns Pointer to after the encoded integer.
1141 * @param pb Where to encode the integer into.
1142 * @param u16 The 16-bit unsigned integere to encode.
1143 */
1144DECLINLINE(uint8_t *) rtAcpiResEncode16BitInteger(uint8_t *pb, uint16_t u16)
1145{
1146 *pb++ = (uint8_t)u16;
1147 *pb++ = (uint8_t)(u16 >> 8);
1148 return pb;
1149}
1150
1151
1152/**
1153 * Encodes an ACPI 32-bit integer in the given byte buffer.
1154 *
1155 * @returns Pointer to after the encoded integer.
1156 * @param pb Where to encode the integer into.
1157 * @param u32 The 32-bit unsigned integere to encode.
1158 */
1159DECLINLINE(uint8_t *) rtAcpiResEncode32BitInteger(uint8_t *pb, uint32_t u32)
1160{
1161 *pb++ = (uint8_t)u32;
1162 *pb++ = (uint8_t)(u32 >> 8);
1163 *pb++ = (uint8_t)(u32 >> 16);
1164 *pb++ = (uint8_t)(u32 >> 24);
1165 return pb;
1166}
1167
1168/**
1169 * Encodes an ACPI 64-bit integer in the given byte buffer.
1170 *
1171 * @returns Pointer to after the encoded integer.
1172 * @param pb Where to encode the integer into.
1173 * @param u64 The 64-bit unsigned integere to encode.
1174 */
1175
1176DECLINLINE(uint8_t *) rtAcpiResEncode64BitInteger(uint8_t *pb, uint64_t u64)
1177{
1178 *pb++ = (uint8_t)u64;
1179 *pb++ = (uint8_t)(u64 >> 8);
1180 *pb++ = (uint8_t)(u64 >> 16);
1181 *pb++ = (uint8_t)(u64 >> 24);
1182 *pb++ = (uint8_t)(u64 >> 32);
1183 *pb++ = (uint8_t)(u64 >> 40);
1184 *pb++ = (uint8_t)(u64 >> 48);
1185 *pb++ = (uint8_t)(u64 >> 56);
1186 return pb;
1187}
1188
1189
1190RTDECL(int) RTAcpiResourceCreate(PRTACPIRES phAcpiRes)
1191{
1192 AssertPtrReturn(phAcpiRes, VERR_INVALID_POINTER);
1193
1194 PRTACPIRESINT pThis = (PRTACPIRESINT)RTMemAllocZ(sizeof(*pThis));
1195 if (pThis)
1196 {
1197 pThis->pbResBuf = (uint8_t *)RTMemAlloc(64);
1198 if (pThis->pbResBuf)
1199 {
1200 pThis->offResBuf = 0;
1201 pThis->cbResBuf = 64;
1202 pThis->fSealed = false;
1203 pThis->rcErr = VINF_SUCCESS;
1204
1205 *phAcpiRes = pThis;
1206 return VINF_SUCCESS;
1207 }
1208
1209 RTMemFree(pThis);
1210 }
1211
1212 return VERR_NO_MEMORY;
1213}
1214
1215
1216RTDECL(void) RTAcpiResourceDestroy(RTACPIRES hAcpiRes)
1217{
1218 PRTACPIRESINT pThis = hAcpiRes;
1219 AssertPtrReturnVoid(pThis);
1220
1221 RTMemFree(pThis->pbResBuf);
1222 pThis->pbResBuf = NULL;
1223 pThis->cbResBuf = 0;
1224 pThis->offResBuf = 0;
1225 RTMemFree(pThis);
1226}
1227
1228
1229RTDECL(void) RTAcpiResourceReset(RTACPIRES hAcpiRes)
1230{
1231 PRTACPIRESINT pThis = hAcpiRes;
1232 AssertPtrReturnVoid(pThis);
1233
1234 pThis->offResBuf = 0;
1235 pThis->fSealed = false;
1236 pThis->rcErr = VINF_SUCCESS;
1237}
1238
1239
1240RTDECL(int) RTAcpiResourceSeal(RTACPIRES hAcpiRes)
1241{
1242 PRTACPIRESINT pThis = hAcpiRes;
1243 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1244 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1245 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1246
1247 /* Add the end tag. */
1248 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 2);
1249 if (!pb)
1250 return VERR_NO_MEMORY;
1251
1252 *pb++ = ACPI_RSRCS_TAG_END;
1253 /*
1254 * Generate checksum, we could just write 0 here which will be treated as checksum operation succeeded,
1255 * but having this might catch some bugs.
1256 *
1257 * Checksum algorithm is the same as with the ACPI tables.
1258 */
1259 *pb = RTAcpiChecksumGenerate(pThis->pbResBuf, pThis->offResBuf - 1); /* Exclude the checksum field. */
1260
1261 pThis->fSealed = true;
1262 return VINF_SUCCESS;
1263}
1264
1265
1266RTDECL(int) RTAcpiResourceQueryBuffer(RTACPIRES hAcpiRes, const void **ppvRes, size_t *pcbRes)
1267{
1268 PRTACPIRESINT pThis = hAcpiRes;
1269 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1270 AssertReturn(pThis->fSealed, VERR_INVALID_STATE);
1271 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1272
1273 *ppvRes = pThis->pbResBuf;
1274 *pcbRes = pThis->offResBuf;
1275 return VINF_SUCCESS;
1276}
1277
1278
1279RTDECL(int) RTAcpiResourceAdd32BitFixedMemoryRange(RTACPIRES hAcpiRes, uint32_t u32AddrBase, uint32_t cbRange,
1280 bool fRw)
1281{
1282 PRTACPIRESINT pThis = hAcpiRes;
1283 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1284 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1285 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1286
1287 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 12);
1288 if (!pb)
1289 return VERR_NO_MEMORY;
1290
1291 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_32BIT_FIXED_MEMORY_RANGE; /* Tag */
1292 pb[1] = 9; /* Length[7:0] */
1293 pb[2] = 0; /* Length[15:8] */
1294 pb[3] = fRw ? 1 : 0; /* Information */
1295 rtAcpiResEncode32BitInteger(&pb[4], u32AddrBase);
1296 rtAcpiResEncode32BitInteger(&pb[8], cbRange);
1297 return VINF_SUCCESS;
1298}
1299
1300
1301RTDECL(int) RTAcpiResourceAddExtendedInterrupt(RTACPIRES hAcpiRes, bool fConsumer, bool fEdgeTriggered, bool fActiveLow, bool fShared,
1302 bool fWakeCapable, uint8_t cIntrs, uint32_t *pau32Intrs)
1303{
1304 PRTACPIRESINT pThis = hAcpiRes;
1305 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1306 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1307 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1308
1309 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 2 + cIntrs * sizeof(uint32_t));
1310 if (!pb)
1311 return VERR_NO_MEMORY;
1312
1313 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_EXTENDED_INTERRUPT; /* Tag */
1314 rtAcpiResEncode16BitInteger(&pb[1], 2 + cIntrs * sizeof(uint32_t)); /* Length[15:0] */
1315 pb[3] = (fConsumer ? ACPI_RSRCS_EXT_INTR_VEC_F_CONSUMER : ACPI_RSRCS_EXT_INTR_VEC_F_PRODUCER)
1316 | (fEdgeTriggered ? ACPI_RSRCS_EXT_INTR_VEC_F_EDGE_TRIGGERED : ACPI_RSRCS_EXT_INTR_VEC_F_LEVEL_TRIGGERED)
1317 | (fActiveLow ? ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_LOW : ACPI_RSRCS_EXT_INTR_VEC_F_ACTIVE_HIGH)
1318 | (fShared ? ACPI_RSRCS_EXT_INTR_VEC_F_SHARED : ACPI_RSRCS_EXT_INTR_VEC_F_EXCLUSIVE)
1319 | (fWakeCapable ? ACPI_RSRCS_EXT_INTR_VEC_F_WAKE_CAP : ACPI_RSRCS_EXT_INTR_VEC_F_NOT_WAKE_CAP);
1320 pb[4] = cIntrs;
1321 pb = &pb[5];
1322 for (uint32_t i = 0; i < cIntrs; i++)
1323 pb = rtAcpiResEncode32BitInteger(pb, pau32Intrs[i]);
1324
1325 return VINF_SUCCESS;
1326}
1327
1328
1329/**
1330 * Common worker for encoding a new quad word (64-bit) address range.
1331 *
1332 * @returns IPRT status code
1333 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1334 * @param pThis The ACPI resource instance.
1335 * @param bType The ACPI address range type.
1336 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1337 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1338 * @param u64AddrMin The start address of the memory range.
1339 * @param u64AddrMax Last valid address of the range.
1340 * @param u64OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1341 * @param u64Granularity The access granularity of the range in bytes.
1342 * @param u64Length Length of the memory range in bytes.
1343 */
1344static int rtAcpiResourceAddQWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1345 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1346 uint64_t u64Granularity, uint64_t u64Length)
1347{
1348 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 43);
1349 if (!pb)
1350 return VERR_NO_MEMORY;
1351
1352 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_QWORD_ADDR_SPACE; /* Tag */
1353 pb[1] = 43; /* Length[7:0] */
1354 pb[2] = 0; /* Length[15:8] */
1355 pb[3] = bType;
1356 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1357 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1358 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1359 pb[5] = fType;
1360
1361 pb = rtAcpiResEncode64BitInteger(&pb[6], u64Granularity);
1362 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMin);
1363 pb = rtAcpiResEncode64BitInteger(pb, u64AddrMax);
1364 pb = rtAcpiResEncode64BitInteger(pb, u64OffTrans);
1365 rtAcpiResEncode64BitInteger(pb, u64Length);
1366 return VINF_SUCCESS;
1367}
1368
1369
1370/**
1371 * Common worker for encoding a new double word (32-bit) address range.
1372 *
1373 * @returns IPRT status code
1374 * @retval VERR_NO_MEMORY if not enough memory could be reserved in the ACPI resource descriptor.
1375 * @param pThis The ACPI resource instance.
1376 * @param bType The ACPI address range type.
1377 * @param fAddrSpace Combination of RTACPI_RESOURCE_ADDR_RANGE_F_XXX.
1378 * @param fType The range flags returned from rtAcpiResourceMemoryRangeToTypeFlags().
1379 * @param u32AddrMin The start address of the memory range.
1380 * @param u32AddrMax Last valid address of the range.
1381 * @param u32OffTrans Translation offset being applied to the address (for a PCIe bridge or IOMMU for example).
1382 * @param u32Granularity The access granularity of the range in bytes.
1383 * @param u32Length Length of the memory range in bytes.
1384 */
1385static int rtAcpiResourceAddDWordAddressRange(PRTACPIRESINT pThis, uint8_t bType, uint32_t fAddrSpace, uint8_t fType,
1386 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1387 uint32_t u32Granularity, uint32_t u32Length)
1388{
1389 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 23);
1390 if (!pb)
1391 return VERR_NO_MEMORY;
1392
1393 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_DWORD_ADDR_SPACE; /* Tag */
1394 pb[1] = 23; /* Length[7:0] */
1395 pb[2] = 0; /* Length[15:8] */
1396 pb[3] = bType;
1397 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1398 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1399 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1400 pb[5] = fType;
1401
1402 pb = rtAcpiResEncode32BitInteger(&pb[6], u32Granularity);
1403 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMin);
1404 pb = rtAcpiResEncode32BitInteger(pb, u32AddrMax);
1405 pb = rtAcpiResEncode32BitInteger(pb, u32OffTrans);
1406 rtAcpiResEncode32BitInteger(pb, u32Length);
1407 return VINF_SUCCESS;
1408}
1409
1410
1411/**
1412 * Converts the given cacheability, range type and R/W flag to the ACPI resource flags.
1413 *
1414 * @returns Converted ACPI resource flags.
1415 * @param enmCacheability The cacheability enum to convert.
1416 * @param enmType THe memory range type enum to convert.
1417 * @param fRw The read/write flag.
1418 */
1419DECLINLINE(uint8_t) rtAcpiResourceMemoryRangeToTypeFlags(RTACPIRESMEMRANGECACHEABILITY enmCacheability, RTACPIRESMEMRANGETYPE enmType,
1420 bool fRw)
1421{
1422 uint8_t fType = fRw ? ACPI_RSRCS_ADDR_SPACE_MEM_F_RW : ACPI_RSRCS_ADDR_SPACE_MEM_F_RO;
1423
1424 switch (enmCacheability)
1425 {
1426 case kAcpiResMemRangeCacheability_NonCacheable:
1427 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_NON_CACHEABLE;
1428 break;
1429 case kAcpiResMemRangeCacheability_Cacheable:
1430 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE;
1431 break;
1432 case kAcpiResMemRangeCacheability_CacheableWriteCombining:
1433 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_WR_COMB;
1434 break;
1435 case kAcpiResMemRangeCacheability_CacheablePrefetchable:
1436 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_CACHE_CACHEABLE_PREFETCHABLE;
1437 break;
1438 case kAcpiResMemRangeCacheability_Invalid:
1439 default:
1440 AssertFailedReturn(0);
1441 }
1442
1443 switch (enmType)
1444 {
1445 case kAcpiResMemType_Memory:
1446 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_MEMORY;
1447 break;
1448 case kAcpiResMemType_Reserved:
1449 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_RESERVED;
1450 break;
1451 case kAcpiResMemType_Acpi:
1452 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_ACPI;
1453 break;
1454 case kAcpiResMemType_Nvs:
1455 fType |= ACPI_RSRCS_ADDR_SPACE_MEM_F_ATTR_NVS;
1456 break;
1457 case kAcpiResMemType_Invalid:
1458 default:
1459 AssertFailedReturn(0);
1460 }
1461
1462 return fType;
1463}
1464
1465
1466RTDECL(int) RTAcpiResourceAddQWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1467 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1468 uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1469 uint64_t u64Granularity, uint64_t u64Length)
1470{
1471 PRTACPIRESINT pThis = hAcpiRes;
1472 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1473 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1474 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1475 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1476 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1477 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1478
1479 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1480 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1481 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1482}
1483
1484
1485RTDECL(int) RTAcpiResourceAddDWordMemoryRange(RTACPIRES hAcpiRes, RTACPIRESMEMRANGECACHEABILITY enmCacheability,
1486 RTACPIRESMEMRANGETYPE enmType, bool fRw, uint32_t fAddrSpace,
1487 uint32_t u32AddrMin, uint32_t u32AddrMax, uint32_t u32OffTrans,
1488 uint32_t u32Granularity, uint32_t u32Length)
1489{
1490 PRTACPIRESINT pThis = hAcpiRes;
1491 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1492 AssertReturn(enmCacheability != kAcpiResMemRangeCacheability_Invalid, VERR_INVALID_PARAMETER);
1493 AssertReturn(enmType != kAcpiResMemType_Invalid, VERR_INVALID_PARAMETER);
1494 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1495 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1496 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1497
1498 uint8_t fType = rtAcpiResourceMemoryRangeToTypeFlags(enmCacheability, enmType, fRw);
1499 return rtAcpiResourceAddDWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_MEMORY, fAddrSpace, fType,
1500 u32AddrMin, u32AddrMax, u32OffTrans, u32Granularity, u32Length);
1501}
1502
1503
1504RTDECL(int) RTAcpiResourceAddQWordIoRange(RTACPIRES hAcpiRes, RTACPIRESIORANGETYPE enmIoType, RTACPIRESIORANGE enmIoRange,
1505 uint32_t fAddrSpace, uint64_t u64AddrMin, uint64_t u64AddrMax, uint64_t u64OffTrans,
1506 uint64_t u64Granularity, uint64_t u64Length)
1507{
1508 PRTACPIRESINT pThis = hAcpiRes;
1509 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1510 AssertReturn(enmIoType != kAcpiResIoRangeType_Invalid, VERR_INVALID_PARAMETER);
1511 AssertReturn(enmIoRange != kAcpiResIoRange_Invalid, VERR_INVALID_PARAMETER);
1512 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1513 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1514 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1515
1516 uint8_t fType = 0;
1517 switch (enmIoType)
1518 {
1519 case kAcpiResIoRangeType_Static:
1520 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_STATIC;
1521 break;
1522 case kAcpiResIoRangeType_Translation_Sparse:
1523 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_SPARSE;
1524 break;
1525 case kAcpiResIoRangeType_Translation_Dense:
1526 fType = ACPI_RSRCS_ADDR_SPACE_IO_F_TYPE_TRANSLATION | ACPI_RSRCS_ADDR_SPACE_IO_F_TRANSLATION_DENSE;
1527 break;
1528 case kAcpiResIoRangeType_Invalid:
1529 default:
1530 AssertFailedReturn(VERR_INVALID_PARAMETER);
1531 }
1532
1533 switch (enmIoRange)
1534 {
1535 case kAcpiResIoRange_NonIsaOnly:
1536 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_NON_ISA_ONLY;
1537 break;
1538 case kAcpiResIoRange_IsaOnly:
1539 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_ISA_ONLY;
1540 break;
1541 case kAcpiResIoRange_Whole:
1542 fType |= ACPI_RSRCS_ADDR_SPACE_IO_F_RANGE_WHOLE;
1543 break;
1544 case kAcpiResIoRange_Invalid:
1545 default:
1546 AssertFailedReturn(VERR_INVALID_PARAMETER);
1547 }
1548
1549 return rtAcpiResourceAddQWordAddressRange(pThis, ACPI_RSRCS_ADDR_SPACE_TYPE_IO, fAddrSpace, fType,
1550 u64AddrMin, u64AddrMax, u64OffTrans, u64Granularity, u64Length);
1551}
1552
1553
1554RTDECL(int) RTAcpiResourceAddWordBusNumber(RTACPIRES hAcpiRes, uint32_t fAddrSpace, uint16_t u16BusMin, uint16_t u16BusMax,
1555 uint16_t u16OffTrans, uint16_t u16Granularity, uint16_t u16Length)
1556{
1557 PRTACPIRESINT pThis = hAcpiRes;
1558 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1559 AssertReturn(!(fAddrSpace & ~RTACPI_RESOURCE_ADDR_RANGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
1560 AssertReturn(!pThis->fSealed, VERR_INVALID_STATE);
1561 AssertRCReturn(pThis->rcErr, pThis->rcErr);
1562
1563 uint8_t *pb = rtAcpiResBufEnsureSpace(pThis, 3 + 13);
1564 if (!pb)
1565 return VERR_NO_MEMORY;
1566
1567 pb[0] = ACPI_RSRCS_LARGE_TYPE | ACPI_RSRCS_ITEM_WORD_ADDR_SPACE; /* Tag */
1568 pb[1] = 13; /* Length[7:0] */
1569 pb[2] = 0; /* Length[15:8] */
1570 pb[3] = ACPI_RSRCS_ADDR_SPACE_TYPE_BUS_NUM_RANGE;
1571 pb[4] = (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_DECODE_TYPE_SUB ? ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_SUB : ACPI_RSRCS_ADDR_SPACE_F_DECODE_TYPE_POS)
1572 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MIN_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MIN_ADDR_CHANGEABLE)
1573 | (fAddrSpace & RTACPI_RESOURCE_ADDR_RANGE_F_MAX_ADDR_FIXED ? ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_FIXED : ACPI_RSRCS_ADDR_SPACE_F_MAX_ADDR_CHANGEABLE);
1574 pb[5] = 0;
1575
1576 pb = rtAcpiResEncode16BitInteger(&pb[6], u16Granularity);
1577 pb = rtAcpiResEncode16BitInteger(pb, u16BusMin);
1578 pb = rtAcpiResEncode16BitInteger(pb, u16BusMax);
1579 pb = rtAcpiResEncode16BitInteger(pb, u16OffTrans);
1580 rtAcpiResEncode16BitInteger(pb, u16Length);
1581 return VINF_SUCCESS;
1582
1583}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette