VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/misc/thread.cpp@ 26943

Last change on this file since 26943 was 25759, checked in by vboxsync, 15 years ago

iprt/semaphore.h: RT_LOCK_CHECK_ORDER && IN_RING3 -> wrap RTSemRWCreate and RTSemMutexCreate so automatic order validation is performed.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 44.9 KB
Line 
1/* $Id: thread.cpp 25759 2010-01-12 13:06:06Z vboxsync $ */
2/** @file
3 * IPRT - Threads, common routines.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 *
26 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
27 * Clara, CA 95054 USA or visit http://www.sun.com if you need
28 * additional information or have any questions.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#define LOG_GROUP RTLOGGROUP_THREAD
36#include <iprt/thread.h>
37#include "internal/iprt.h"
38
39#include <iprt/log.h>
40#include <iprt/avl.h>
41#include <iprt/alloc.h>
42#include <iprt/assert.h>
43#include <iprt/lockvalidator.h>
44#include <iprt/semaphore.h>
45#ifdef IN_RING0
46# include <iprt/spinlock.h>
47#endif
48#include <iprt/asm.h>
49#include <iprt/err.h>
50#include <iprt/string.h>
51#include "internal/magics.h"
52#include "internal/thread.h"
53#include "internal/sched.h"
54#include "internal/process.h"
55
56
57/*******************************************************************************
58* Defined Constants And Macros *
59*******************************************************************************/
60#ifdef IN_RING0
61# define RT_THREAD_LOCK_TMP(Tmp) RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER
62# define RT_THREAD_LOCK_RW(Tmp) RTSpinlockAcquireNoInts(g_ThreadSpinlock, &(Tmp))
63# define RT_THREAD_UNLOCK_RW(Tmp) RTSpinlockReleaseNoInts(g_ThreadSpinlock, &(Tmp))
64# define RT_THREAD_LOCK_RD(Tmp) RTSpinlockAcquireNoInts(g_ThreadSpinlock, &(Tmp))
65# define RT_THREAD_UNLOCK_RD(Tmp) RTSpinlockReleaseNoInts(g_ThreadSpinlock, &(Tmp))
66#else
67# define RT_THREAD_LOCK_TMP(Tmp)
68# define RT_THREAD_LOCK_RW(Tmp) rtThreadLockRW()
69# define RT_THREAD_UNLOCK_RW(Tmp) rtThreadUnLockRW()
70# define RT_THREAD_LOCK_RD(Tmp) rtThreadLockRD()
71# define RT_THREAD_UNLOCK_RD(Tmp) rtThreadUnLockRD()
72#endif
73
74
75/*******************************************************************************
76* Global Variables *
77*******************************************************************************/
78/** The AVL thread containing the threads. */
79static PAVLPVNODECORE g_ThreadTree;
80#ifdef IN_RING3
81/** The RW lock protecting the tree. */
82static RTSEMRW g_ThreadRWSem = NIL_RTSEMRW;
83#else
84/** The spinlocks protecting the tree. */
85static RTSPINLOCK g_ThreadSpinlock = NIL_RTSPINLOCK;
86#endif
87
88
89/*******************************************************************************
90* Internal Functions *
91*******************************************************************************/
92static void rtThreadDestroy(PRTTHREADINT pThread);
93static int rtThreadAdopt(RTTHREADTYPE enmType, unsigned fFlags, uint32_t fIntFlags, const char *pszName);
94static void rtThreadRemoveLocked(PRTTHREADINT pThread);
95static PRTTHREADINT rtThreadAlloc(RTTHREADTYPE enmType, unsigned fFlags, uint32_t fIntFlags, const char *pszName);
96
97
98/** @page pg_rt_thread IPRT Thread Internals
99 *
100 * IPRT provides interface to whatever native threading that the host provides,
101 * preferably using a CRT level interface to better integrate with other libraries.
102 *
103 * Internally IPRT keeps track of threads by means of the RTTHREADINT structure.
104 * All the RTTHREADINT structures are kept in a AVL tree which is protected by a
105 * read/write lock for efficient access. A thread is inserted into the tree in
106 * three places in the code. The main thread is 'adopted' by IPRT on RTR3Init()
107 * by rtThreadAdopt(). When creating a new thread there the child and the parent
108 * race inserting the thread, this is rtThreadMain() and RTThreadCreate.
109 *
110 * RTTHREADINT objects are using reference counting as a mean of sticking around
111 * till no-one needs them any longer. Waitable threads is created with one extra
112 * reference so they won't go away until they are waited on. This introduces a
113 * major problem if we use the host thread identifier as key in the AVL tree - the
114 * host may reuse the thread identifier before the thread was waited on. So, on
115 * most platforms we are using the RTTHREADINT pointer as key and not the
116 * thread id. RTThreadSelf() then have to be implemented using a pointer stored
117 * in thread local storage (TLS).
118 *
119 * In Ring-0 we only try keep track of kernel threads created by RTThreadCreate
120 * at the moment. There we really only need the 'join' feature, but doing things
121 * the same way allow us to name threads and similar stuff.
122 */
123
124
125/**
126 * Initializes the thread database.
127 *
128 * @returns iprt status code.
129 */
130int rtThreadInit(void)
131{
132#ifdef IN_RING3
133 int rc = VINF_ALREADY_INITIALIZED;
134 if (g_ThreadRWSem == NIL_RTSEMRW)
135 {
136 /*
137 * We assume the caller is the 1st thread, which we'll call 'main'.
138 * But first, we'll create the semaphore.
139 */
140 rc = RTSemRWCreateEx(&g_ThreadRWSem, RTSEMRW_FLAGS_NO_LOCK_VAL, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, NULL);
141 if (RT_SUCCESS(rc))
142 {
143 rc = rtThreadNativeInit();
144 if (RT_SUCCESS(rc))
145 rc = rtThreadAdopt(RTTHREADTYPE_DEFAULT, 0, RTTHREADINT_FLAGS_MAIN, "main");
146 if (RT_SUCCESS(rc))
147 rc = rtSchedNativeCalcDefaultPriority(RTTHREADTYPE_DEFAULT);
148 if (RT_SUCCESS(rc))
149 return VINF_SUCCESS;
150
151 /* failed, clear out */
152 RTSemRWDestroy(g_ThreadRWSem);
153 g_ThreadRWSem = NIL_RTSEMRW;
154 }
155 }
156
157#elif defined(IN_RING0)
158
159 /*
160 * Create the spinlock and to native init.
161 */
162 Assert(g_ThreadSpinlock == NIL_RTSPINLOCK);
163 int rc = RTSpinlockCreate(&g_ThreadSpinlock);
164 if (RT_SUCCESS(rc))
165 {
166 rc = rtThreadNativeInit();
167 if (RT_SUCCESS(rc))
168 return VINF_SUCCESS;
169
170 /* failed, clear out */
171 RTSpinlockDestroy(g_ThreadSpinlock);
172 g_ThreadSpinlock = NIL_RTSPINLOCK;
173 }
174#else
175# error "!IN_RING0 && !IN_RING3"
176#endif
177 return rc;
178}
179
180
181/**
182 * Terminates the thread database.
183 */
184void rtThreadTerm(void)
185{
186#ifdef IN_RING3
187 /* we don't cleanup here yet */
188
189#elif defined(IN_RING0)
190 /* just destroy the spinlock and assume the thread is fine... */
191 RTSpinlockDestroy(g_ThreadSpinlock);
192 g_ThreadSpinlock = NIL_RTSPINLOCK;
193 if (g_ThreadTree != NULL)
194 RTAssertMsg2Weak("WARNING: g_ThreadTree=%p\n", g_ThreadTree);
195#endif
196}
197
198
199#ifdef IN_RING3
200
201DECLINLINE(void) rtThreadLockRW(void)
202{
203 if (g_ThreadRWSem == NIL_RTSEMRW)
204 rtThreadInit();
205 int rc = RTSemRWRequestWrite(g_ThreadRWSem, RT_INDEFINITE_WAIT);
206 AssertReleaseRC(rc);
207}
208
209
210DECLINLINE(void) rtThreadLockRD(void)
211{
212 if (g_ThreadRWSem == NIL_RTSEMRW)
213 rtThreadInit();
214 int rc = RTSemRWRequestRead(g_ThreadRWSem, RT_INDEFINITE_WAIT);
215 AssertReleaseRC(rc);
216}
217
218
219DECLINLINE(void) rtThreadUnLockRW(void)
220{
221 int rc = RTSemRWReleaseWrite(g_ThreadRWSem);
222 AssertReleaseRC(rc);
223}
224
225
226DECLINLINE(void) rtThreadUnLockRD(void)
227{
228 int rc = RTSemRWReleaseRead(g_ThreadRWSem);
229 AssertReleaseRC(rc);
230}
231
232#endif /* IN_RING3 */
233
234
235/**
236 * Adopts the calling thread.
237 * No locks are taken or released by this function.
238 */
239static int rtThreadAdopt(RTTHREADTYPE enmType, unsigned fFlags, uint32_t fIntFlags, const char *pszName)
240{
241 Assert(!(fFlags & RTTHREADFLAGS_WAITABLE));
242 fFlags &= ~RTTHREADFLAGS_WAITABLE;
243
244 /*
245 * Allocate and insert the thread.
246 * (It is vital that rtThreadNativeAdopt updates the TLS before
247 * we try inserting the thread because of locking.)
248 */
249 int rc = VERR_NO_MEMORY;
250 PRTTHREADINT pThread = rtThreadAlloc(enmType, fFlags, RTTHREADINT_FLAGS_ALIEN | fIntFlags, pszName);
251 if (pThread)
252 {
253 RTNATIVETHREAD NativeThread = RTThreadNativeSelf();
254 rc = rtThreadNativeAdopt(pThread);
255 if (RT_SUCCESS(rc))
256 {
257 rtThreadInsert(pThread, NativeThread);
258 rtThreadSetState(pThread, RTTHREADSTATE_RUNNING);
259 rtThreadRelease(pThread);
260 }
261 }
262 return rc;
263}
264
265
266/**
267 * Adopts a non-IPRT thread.
268 *
269 * @returns IPRT status code.
270 * @param enmType The thread type.
271 * @param fFlags The thread flags. RTTHREADFLAGS_WAITABLE is not currently allowed.
272 * @param pszName The thread name. Optional.
273 * @param pThread Where to store the thread handle. Optional.
274 */
275RTDECL(int) RTThreadAdopt(RTTHREADTYPE enmType, unsigned fFlags, const char *pszName, PRTTHREAD pThread)
276{
277 AssertReturn(!(fFlags & RTTHREADFLAGS_WAITABLE), VERR_INVALID_PARAMETER);
278 AssertReturn(!pszName || VALID_PTR(pszName), VERR_INVALID_POINTER);
279 AssertReturn(!pThread || VALID_PTR(pThread), VERR_INVALID_POINTER);
280
281 int rc = VINF_SUCCESS;
282 RTTHREAD Thread = RTThreadSelf();
283 if (Thread == NIL_RTTHREAD)
284 {
285 /* generate a name if none was given. */
286 char szName[RTTHREAD_NAME_LEN];
287 if (!pszName || !*pszName)
288 {
289 static uint32_t s_i32AlienId = 0;
290 uint32_t i32Id = ASMAtomicIncU32(&s_i32AlienId);
291 RTStrPrintf(szName, sizeof(szName), "ALIEN-%RX32", i32Id);
292 pszName = szName;
293 }
294
295 /* try adopt it */
296 rc = rtThreadAdopt(enmType, fFlags, 0, pszName);
297 Thread = RTThreadSelf();
298 Log(("RTThreadAdopt: %RTthrd %RTnthrd '%s' enmType=%d fFlags=%#x rc=%Rrc\n",
299 Thread, RTThreadNativeSelf(), pszName, enmType, fFlags, rc));
300 }
301 else
302 Log(("RTThreadAdopt: %RTthrd %RTnthrd '%s' enmType=%d fFlags=%#x - already adopted!\n",
303 Thread, RTThreadNativeSelf(), pszName, enmType, fFlags));
304
305 if (pThread)
306 *pThread = Thread;
307 return rc;
308}
309RT_EXPORT_SYMBOL(RTThreadAdopt);
310
311
312/**
313 * Get the thread handle of the current thread, automatically adopting alien
314 * threads.
315 *
316 * @returns Thread handle.
317 */
318RTDECL(RTTHREAD) RTThreadSelfAutoAdopt(void)
319{
320 RTTHREAD hSelf = RTThreadSelf();
321 if (RT_UNLIKELY(hSelf == NIL_RTTHREAD))
322 RTThreadAdopt(RTTHREADTYPE_DEFAULT, 0, NULL, &hSelf);
323 return hSelf;
324}
325RT_EXPORT_SYMBOL(RTThreadSelfAutoAdopt);
326
327
328/**
329 * Allocates a per thread data structure and initializes the basic fields.
330 *
331 * @returns Pointer to per thread data structure.
332 * This is reference once.
333 * @returns NULL on failure.
334 * @param enmType The thread type.
335 * @param fFlags The thread flags.
336 * @param fIntFlags The internal thread flags.
337 * @param pszName Pointer to the thread name.
338 */
339PRTTHREADINT rtThreadAlloc(RTTHREADTYPE enmType, unsigned fFlags, uint32_t fIntFlags, const char *pszName)
340{
341 PRTTHREADINT pThread = (PRTTHREADINT)RTMemAllocZ(sizeof(RTTHREADINT));
342 if (pThread)
343 {
344 pThread->Core.Key = (void*)NIL_RTTHREAD;
345 pThread->u32Magic = RTTHREADINT_MAGIC;
346 size_t cchName = strlen(pszName);
347 if (cchName >= RTTHREAD_NAME_LEN)
348 cchName = RTTHREAD_NAME_LEN - 1;
349 memcpy(pThread->szName, pszName, cchName);
350 pThread->szName[cchName] = '\0';
351 pThread->cRefs = 2 + !!(fFlags & RTTHREADFLAGS_WAITABLE); /* And extra reference if waitable. */
352 pThread->rc = VERR_PROCESS_RUNNING; /** @todo get a better error code! */
353 pThread->enmType = enmType;
354 pThread->fFlags = fFlags;
355 pThread->fIntFlags = fIntFlags;
356 pThread->enmState = RTTHREADSTATE_INITIALIZING;
357 pThread->fReallySleeping = false;
358#ifdef IN_RING3
359 rtLockValidatorInitPerThread(&pThread->LockValidator);
360#endif
361 int rc = RTSemEventMultiCreate(&pThread->EventUser);
362 if (RT_SUCCESS(rc))
363 {
364 rc = RTSemEventMultiCreate(&pThread->EventTerminated);
365 if (RT_SUCCESS(rc))
366 return pThread;
367 RTSemEventMultiDestroy(pThread->EventUser);
368 }
369 RTMemFree(pThread);
370 }
371 return NULL;
372}
373
374
375/**
376 * Insert the per thread data structure into the tree.
377 *
378 * This can be called from both the thread it self and the parent,
379 * thus it must handle insertion failures in a nice manner.
380 *
381 * @param pThread Pointer to thread structure allocated by rtThreadAlloc().
382 * @param NativeThread The native thread id.
383 */
384void rtThreadInsert(PRTTHREADINT pThread, RTNATIVETHREAD NativeThread)
385{
386 Assert(pThread);
387 Assert(pThread->u32Magic == RTTHREADINT_MAGIC);
388
389 RT_THREAD_LOCK_TMP(Tmp);
390 RT_THREAD_LOCK_RW(Tmp);
391
392 /*
393 * Do not insert a terminated thread.
394 *
395 * This may happen if the thread finishes before the RTThreadCreate call
396 * gets this far. Since the OS may quickly reuse the native thread ID
397 * it should not be reinserted at this point.
398 */
399 if (rtThreadGetState(pThread) != RTTHREADSTATE_TERMINATED)
400 {
401 /*
402 * Before inserting we must check if there is a thread with this id
403 * in the tree already. We're racing parent and child on insert here
404 * so that the handle is valid in both ends when they return / start.
405 *
406 * If it's not ourself we find, it's a dead alien thread and we will
407 * unlink it from the tree. Alien threads will be released at this point.
408 */
409 PRTTHREADINT pThreadOther = (PRTTHREADINT)RTAvlPVGet(&g_ThreadTree, (void *)NativeThread);
410 if (pThreadOther != pThread)
411 {
412 /* remove dead alien if any */
413 if (pThreadOther)
414 {
415 AssertMsg(pThreadOther->fIntFlags & RTTHREADINT_FLAGS_ALIEN, ("%p:%s; %p:%s\n", pThread, pThread->szName, pThreadOther, pThreadOther->szName));
416 ASMAtomicBitClear(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE_BIT);
417 rtThreadRemoveLocked(pThreadOther);
418 if (pThreadOther->fIntFlags & RTTHREADINT_FLAGS_ALIEN)
419 rtThreadRelease(pThreadOther);
420 }
421
422 /* insert the thread */
423 ASMAtomicWritePtr(&pThread->Core.Key, (void *)NativeThread);
424 bool fRc = RTAvlPVInsert(&g_ThreadTree, &pThread->Core);
425 ASMAtomicOrU32(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE);
426
427 AssertReleaseMsg(fRc, ("Lock problem? %p (%RTnthrd) %s\n", pThread, NativeThread, pThread->szName));
428 NOREF(fRc);
429 }
430 }
431
432 RT_THREAD_UNLOCK_RW(Tmp);
433}
434
435
436/**
437 * Removes the thread from the AVL tree, call owns the tree lock
438 * and has cleared the RTTHREADINT_FLAG_IN_TREE bit.
439 *
440 * @param pThread The thread to remove.
441 */
442static void rtThreadRemoveLocked(PRTTHREADINT pThread)
443{
444 PRTTHREADINT pThread2 = (PRTTHREADINT)RTAvlPVRemove(&g_ThreadTree, pThread->Core.Key);
445#if !defined(RT_OS_OS2) /** @todo this asserts for threads created by NSPR */
446 AssertMsg(pThread2 == pThread, ("%p(%s) != %p (%p/%s)\n", pThread2, pThread2 ? pThread2->szName : "<null>",
447 pThread, pThread->Core.Key, pThread->szName));
448#endif
449 NOREF(pThread2);
450}
451
452
453/**
454 * Removes the thread from the AVL tree.
455 *
456 * @param pThread The thread to remove.
457 */
458static void rtThreadRemove(PRTTHREADINT pThread)
459{
460 RT_THREAD_LOCK_TMP(Tmp);
461 RT_THREAD_LOCK_RW(Tmp);
462 if (ASMAtomicBitTestAndClear(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE_BIT))
463 rtThreadRemoveLocked(pThread);
464 RT_THREAD_UNLOCK_RW(Tmp);
465}
466
467
468/**
469 * Checks if a thread is alive or not.
470 *
471 * @returns true if the thread is alive (or we don't really know).
472 * @returns false if the thread has surely terminate.
473 */
474DECLINLINE(bool) rtThreadIsAlive(PRTTHREADINT pThread)
475{
476 return !(pThread->fIntFlags & RTTHREADINT_FLAGS_TERMINATED);
477}
478
479
480/**
481 * Gets a thread by it's native ID.
482 *
483 * @returns pointer to the thread structure.
484 * @returns NULL if not a thread IPRT knows.
485 * @param NativeThread The native thread id.
486 */
487PRTTHREADINT rtThreadGetByNative(RTNATIVETHREAD NativeThread)
488{
489 /*
490 * Simple tree lookup.
491 */
492 RT_THREAD_LOCK_TMP(Tmp);
493 RT_THREAD_LOCK_RD(Tmp);
494 PRTTHREADINT pThread = (PRTTHREADINT)RTAvlPVGet(&g_ThreadTree, (void *)NativeThread);
495 RT_THREAD_UNLOCK_RD(Tmp);
496 return pThread;
497}
498
499
500/**
501 * Gets the per thread data structure for a thread handle.
502 *
503 * @returns Pointer to the per thread data structure for Thread.
504 * The caller must release the thread using rtThreadRelease().
505 * @returns NULL if Thread was not found.
506 * @param Thread Thread id which structure is to be returned.
507 */
508PRTTHREADINT rtThreadGet(RTTHREAD Thread)
509{
510 if ( Thread != NIL_RTTHREAD
511 && VALID_PTR(Thread))
512 {
513 PRTTHREADINT pThread = (PRTTHREADINT)Thread;
514 if ( pThread->u32Magic == RTTHREADINT_MAGIC
515 && pThread->cRefs > 0)
516 {
517 ASMAtomicIncU32(&pThread->cRefs);
518 return pThread;
519 }
520 }
521
522 AssertMsgFailed(("Thread=%RTthrd\n", Thread));
523 return NULL;
524}
525
526/**
527 * Release a per thread data structure.
528 *
529 * @returns New reference count.
530 * @param pThread The thread structure to release.
531 */
532uint32_t rtThreadRelease(PRTTHREADINT pThread)
533{
534 Assert(pThread);
535 uint32_t cRefs;
536 if (pThread->cRefs >= 1)
537 {
538 cRefs = ASMAtomicDecU32(&pThread->cRefs);
539 if (!cRefs)
540 rtThreadDestroy(pThread);
541 }
542 else
543 {
544 cRefs = 0;
545 AssertFailed();
546 }
547 return cRefs;
548}
549
550
551/**
552 * Destroys the per thread data.
553 *
554 * @param pThread The thread to destroy.
555 */
556static void rtThreadDestroy(PRTTHREADINT pThread)
557{
558 /*
559 * Remove it from the tree and mark it as dead.
560 *
561 * Threads that has seen rtThreadTerminate and should already have been
562 * removed from the tree. There is probably no thread that should
563 * require removing here. However, be careful making sure that cRefs
564 * isn't 0 if we do or we'll blow up because the strict locking code
565 * will be calling us back.
566 */
567 if (ASMBitTest(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE_BIT))
568 {
569 ASMAtomicIncU32(&pThread->cRefs);
570 rtThreadRemove(pThread);
571 ASMAtomicDecU32(&pThread->cRefs);
572 }
573
574 /*
575 * Invalidate the thread structure.
576 */
577#ifdef IN_RING3
578 rtLockValidatorSerializeDestructEnter();
579
580 rtLockValidatorDeletePerThread(&pThread->LockValidator);
581#endif
582 ASMAtomicXchgU32(&pThread->u32Magic, RTTHREADINT_MAGIC_DEAD);
583 ASMAtomicWritePtr(&pThread->Core.Key, (void *)NIL_RTTHREAD);
584 pThread->enmType = RTTHREADTYPE_INVALID;
585 RTSEMEVENTMULTI hEvt1 = pThread->EventUser;
586 pThread->EventUser = NIL_RTSEMEVENTMULTI;
587 RTSEMEVENTMULTI hEvt2 = pThread->EventTerminated;
588 pThread->EventTerminated = NIL_RTSEMEVENTMULTI;
589
590#ifdef IN_RING3
591 rtLockValidatorSerializeDestructLeave();
592#endif
593
594 /*
595 * Destroy semaphore resources and free the bugger.
596 */
597 RTSemEventMultiDestroy(hEvt1);
598 if (hEvt2 != NIL_RTSEMEVENTMULTI)
599 RTSemEventMultiDestroy(hEvt2);
600
601 RTMemFree(pThread);
602}
603
604
605/**
606 * Terminates the thread.
607 * Called by the thread wrapper function when the thread terminates.
608 *
609 * @param pThread The thread structure.
610 * @param rc The thread result code.
611 */
612void rtThreadTerminate(PRTTHREADINT pThread, int rc)
613{
614 Assert(pThread->cRefs >= 1);
615
616#ifdef IPRT_WITH_GENERIC_TLS
617 /*
618 * Destroy TLS entries.
619 */
620 rtThreadTlsDestruction(pThread);
621#endif /* IPRT_WITH_GENERIC_TLS */
622
623 /*
624 * Set the rc, mark it terminated and signal anyone waiting.
625 */
626 pThread->rc = rc;
627 rtThreadSetState(pThread, RTTHREADSTATE_TERMINATED);
628 ASMAtomicOrU32(&pThread->fIntFlags, RTTHREADINT_FLAGS_TERMINATED);
629 if (pThread->EventTerminated != NIL_RTSEMEVENTMULTI)
630 RTSemEventMultiSignal(pThread->EventTerminated);
631
632 /*
633 * Remove the thread from the tree so that there will be no
634 * key clashes in the AVL tree and release our reference to ourself.
635 */
636 rtThreadRemove(pThread);
637 rtThreadRelease(pThread);
638}
639
640
641/**
642 * The common thread main function.
643 * This is called by rtThreadNativeMain().
644 *
645 * @returns The status code of the thread.
646 * pThread is dereference by the thread before returning!
647 * @param pThread The thread structure.
648 * @param NativeThread The native thread id.
649 * @param pszThreadName The name of the thread (purely a dummy for backtrace).
650 */
651int rtThreadMain(PRTTHREADINT pThread, RTNATIVETHREAD NativeThread, const char *pszThreadName)
652{
653 NOREF(pszThreadName);
654 rtThreadInsert(pThread, NativeThread);
655 Log(("rtThreadMain: Starting: pThread=%p NativeThread=%RTnthrd Name=%s pfnThread=%p pvUser=%p\n",
656 pThread, NativeThread, pThread->szName, pThread->pfnThread, pThread->pvUser));
657
658 /*
659 * Change the priority.
660 */
661 int rc = rtThreadNativeSetPriority(pThread, pThread->enmType);
662#ifdef IN_RING3
663 AssertMsgRC(rc, ("Failed to set priority of thread %p (%RTnthrd / %s) to enmType=%d enmPriority=%d rc=%Rrc\n",
664 pThread, NativeThread, pThread->szName, pThread->enmType, g_enmProcessPriority, rc));
665#else
666 AssertMsgRC(rc, ("Failed to set priority of thread %p (%RTnthrd / %s) to enmType=%d rc=%Rrc\n",
667 pThread, NativeThread, pThread->szName, pThread->enmType, rc));
668#endif
669
670 /*
671 * Call thread function and terminate when it returns.
672 */
673 rtThreadSetState(pThread, RTTHREADSTATE_RUNNING);
674 rc = pThread->pfnThread(pThread, pThread->pvUser);
675
676 /*
677 * Paranoia checks for leftover resources.
678 */
679#ifdef RTSEMRW_STRICT
680 int32_t cWrite = ASMAtomicReadS32(&pThread->cWriteLocks);
681 Assert(!cWrite);
682 int32_t cRead = ASMAtomicReadS32(&pThread->cReadLocks);
683 Assert(!cRead);
684#endif
685
686 Log(("rtThreadMain: Terminating: rc=%d pThread=%p NativeThread=%RTnthrd Name=%s pfnThread=%p pvUser=%p\n",
687 rc, pThread, NativeThread, pThread->szName, pThread->pfnThread, pThread->pvUser));
688 rtThreadTerminate(pThread, rc);
689 return rc;
690}
691
692
693/**
694 * Create a new thread.
695 *
696 * @returns iprt status code.
697 * @param pThread Where to store the thread handle to the new thread. (optional)
698 * @param pfnThread The thread function.
699 * @param pvUser User argument.
700 * @param cbStack The size of the stack for the new thread.
701 * Use 0 for the default stack size.
702 * @param enmType The thread type. Used for deciding scheduling attributes
703 * of the thread.
704 * @param fFlags Flags of the RTTHREADFLAGS type (ORed together).
705 * @param pszName Thread name.
706 */
707RTDECL(int) RTThreadCreate(PRTTHREAD pThread, PFNRTTHREAD pfnThread, void *pvUser, size_t cbStack,
708 RTTHREADTYPE enmType, unsigned fFlags, const char *pszName)
709{
710 LogFlow(("RTThreadCreate: pThread=%p pfnThread=%p pvUser=%p cbStack=%#x enmType=%d fFlags=%#x pszName=%p:{%s}\n",
711 pThread, pfnThread, pvUser, cbStack, enmType, fFlags, pszName, pszName));
712
713 /*
714 * Validate input.
715 */
716 if (!VALID_PTR(pThread) && pThread)
717 {
718 Assert(VALID_PTR(pThread));
719 return VERR_INVALID_PARAMETER;
720 }
721 if (!VALID_PTR(pfnThread))
722 {
723 Assert(VALID_PTR(pfnThread));
724 return VERR_INVALID_PARAMETER;
725 }
726 if (!pszName || !*pszName || strlen(pszName) >= RTTHREAD_NAME_LEN)
727 {
728 AssertMsgFailed(("pszName=%s (max len is %d because of logging)\n", pszName, RTTHREAD_NAME_LEN - 1));
729 return VERR_INVALID_PARAMETER;
730 }
731 if (fFlags & ~RTTHREADFLAGS_MASK)
732 {
733 AssertMsgFailed(("fFlags=%#x\n", fFlags));
734 return VERR_INVALID_PARAMETER;
735 }
736
737 /*
738 * Allocate thread argument.
739 */
740 int rc;
741 PRTTHREADINT pThreadInt = rtThreadAlloc(enmType, fFlags, 0, pszName);
742 if (pThreadInt)
743 {
744 pThreadInt->pfnThread = pfnThread;
745 pThreadInt->pvUser = pvUser;
746 pThreadInt->cbStack = cbStack;
747
748 RTNATIVETHREAD NativeThread;
749 rc = rtThreadNativeCreate(pThreadInt, &NativeThread);
750 if (RT_SUCCESS(rc))
751 {
752 rtThreadInsert(pThreadInt, NativeThread);
753 rtThreadRelease(pThreadInt);
754 Log(("RTThreadCreate: Created thread %p (%p) %s\n", pThreadInt, NativeThread, pszName));
755 if (pThread)
756 *pThread = pThreadInt;
757 return VINF_SUCCESS;
758 }
759
760 pThreadInt->cRefs = 1;
761 rtThreadRelease(pThreadInt);
762 }
763 else
764 rc = VERR_NO_TMP_MEMORY;
765 LogFlow(("RTThreadCreate: Failed to create thread, rc=%Rrc\n", rc));
766 AssertReleaseRC(rc);
767 return rc;
768}
769RT_EXPORT_SYMBOL(RTThreadCreate);
770
771
772/**
773 * Create a new thread.
774 *
775 * Same as RTThreadCreate except the name is given in the RTStrPrintfV form.
776 *
777 * @returns iprt status code.
778 * @param pThread See RTThreadCreate.
779 * @param pfnThread See RTThreadCreate.
780 * @param pvUser See RTThreadCreate.
781 * @param cbStack See RTThreadCreate.
782 * @param enmType See RTThreadCreate.
783 * @param fFlags See RTThreadCreate.
784 * @param pszNameFmt Thread name format.
785 * @param va Format arguments.
786 */
787RTDECL(int) RTThreadCreateV(PRTTHREAD pThread, PFNRTTHREAD pfnThread, void *pvUser, size_t cbStack,
788 RTTHREADTYPE enmType, uint32_t fFlags, const char *pszNameFmt, va_list va)
789{
790 char szName[RTTHREAD_NAME_LEN * 2];
791 RTStrPrintfV(szName, sizeof(szName), pszNameFmt, va);
792 return RTThreadCreate(pThread, pfnThread, pvUser, cbStack, enmType, fFlags, szName);
793}
794RT_EXPORT_SYMBOL(RTThreadCreateV);
795
796
797/**
798 * Create a new thread.
799 *
800 * Same as RTThreadCreate except the name is given in the RTStrPrintf form.
801 *
802 * @returns iprt status code.
803 * @param pThread See RTThreadCreate.
804 * @param pfnThread See RTThreadCreate.
805 * @param pvUser See RTThreadCreate.
806 * @param cbStack See RTThreadCreate.
807 * @param enmType See RTThreadCreate.
808 * @param fFlags See RTThreadCreate.
809 * @param pszNameFmt Thread name format.
810 * @param ... Format arguments.
811 */
812RTDECL(int) RTThreadCreateF(PRTTHREAD pThread, PFNRTTHREAD pfnThread, void *pvUser, size_t cbStack,
813 RTTHREADTYPE enmType, uint32_t fFlags, const char *pszNameFmt, ...)
814{
815 va_list va;
816 va_start(va, pszNameFmt);
817 int rc = RTThreadCreateV(pThread, pfnThread, pvUser, cbStack, enmType, fFlags, pszNameFmt, va);
818 va_end(va);
819 return rc;
820}
821RT_EXPORT_SYMBOL(RTThreadCreateF);
822
823
824/**
825 * Gets the native thread id of a IPRT thread.
826 *
827 * @returns The native thread id.
828 * @param Thread The IPRT thread.
829 */
830RTDECL(RTNATIVETHREAD) RTThreadGetNative(RTTHREAD Thread)
831{
832 PRTTHREADINT pThread = rtThreadGet(Thread);
833 if (pThread)
834 {
835 RTNATIVETHREAD NativeThread = (RTNATIVETHREAD)pThread->Core.Key;
836 rtThreadRelease(pThread);
837 return NativeThread;
838 }
839 return NIL_RTNATIVETHREAD;
840}
841RT_EXPORT_SYMBOL(RTThreadGetNative);
842
843
844/**
845 * Gets the IPRT thread of a native thread.
846 *
847 * @returns The IPRT thread handle
848 * @returns NIL_RTTHREAD if not a thread known to IPRT.
849 * @param NativeThread The native thread handle/id.
850 */
851RTDECL(RTTHREAD) RTThreadFromNative(RTNATIVETHREAD NativeThread)
852{
853 PRTTHREADINT pThread = rtThreadGetByNative(NativeThread);
854 if (pThread)
855 return pThread;
856 return NIL_RTTHREAD;
857}
858RT_EXPORT_SYMBOL(RTThreadFromNative);
859
860
861/**
862 * Gets the name of the current thread thread.
863 *
864 * @returns Pointer to readonly name string.
865 * @returns NULL on failure.
866 */
867RTDECL(const char *) RTThreadSelfName(void)
868{
869 RTTHREAD Thread = RTThreadSelf();
870 if (Thread != NIL_RTTHREAD)
871 {
872 PRTTHREADINT pThread = rtThreadGet(Thread);
873 if (pThread)
874 {
875 const char *szName = pThread->szName;
876 rtThreadRelease(pThread);
877 return szName;
878 }
879 }
880 return NULL;
881}
882RT_EXPORT_SYMBOL(RTThreadSelfName);
883
884
885/**
886 * Gets the name of a thread.
887 *
888 * @returns Pointer to readonly name string.
889 * @returns NULL on failure.
890 * @param Thread Thread handle of the thread to query the name of.
891 */
892RTDECL(const char *) RTThreadGetName(RTTHREAD Thread)
893{
894 if (Thread == NIL_RTTHREAD)
895 return NULL;
896 PRTTHREADINT pThread = rtThreadGet(Thread);
897 if (pThread)
898 {
899 const char *szName = pThread->szName;
900 rtThreadRelease(pThread);
901 return szName;
902 }
903 return NULL;
904}
905RT_EXPORT_SYMBOL(RTThreadGetName);
906
907
908/**
909 * Sets the name of a thread.
910 *
911 * @returns iprt status code.
912 * @param Thread Thread handle of the thread to query the name of.
913 * @param pszName The thread name.
914 */
915RTDECL(int) RTThreadSetName(RTTHREAD Thread, const char *pszName)
916{
917 /*
918 * Validate input.
919 */
920 size_t cchName = strlen(pszName);
921 if (cchName >= RTTHREAD_NAME_LEN)
922 {
923 AssertMsgFailed(("pszName=%s is too long, max is %d\n", pszName, RTTHREAD_NAME_LEN - 1));
924 return VERR_INVALID_PARAMETER;
925 }
926 PRTTHREADINT pThread = rtThreadGet(Thread);
927 if (!pThread)
928 return VERR_INVALID_HANDLE;
929
930 /*
931 * Update the name.
932 */
933 pThread->szName[cchName] = '\0'; /* paranoia */
934 memcpy(pThread->szName, pszName, cchName);
935 rtThreadRelease(pThread);
936 return VINF_SUCCESS;
937}
938RT_EXPORT_SYMBOL(RTThreadSetName);
939
940
941/**
942 * Checks if the specified thread is the main thread.
943 *
944 * @returns true if it is, false if it isn't.
945 *
946 * @param hThread The thread handle.
947 *
948 * @remarks This function may not return the correct value when RTR3Init was
949 * called on a thread of the than the main one. This could for
950 * instance happen when the DLL/DYLIB/SO containing IPRT is dynamically
951 * loaded at run time by a different thread.
952 */
953RTDECL(bool) RTThreadIsMain(RTTHREAD hThread)
954{
955 PRTTHREADINT pThread = rtThreadGet(hThread);
956 if (pThread)
957 {
958 bool fRc = !!(pThread->fIntFlags & RTTHREADINT_FLAGS_MAIN);
959 rtThreadRelease(pThread);
960 return fRc;
961 }
962 return false;
963}
964RT_EXPORT_SYMBOL(RTThreadIsMain);
965
966
967/**
968 * Signal the user event.
969 *
970 * @returns iprt status code.
971 */
972RTDECL(int) RTThreadUserSignal(RTTHREAD Thread)
973{
974 int rc;
975 PRTTHREADINT pThread = rtThreadGet(Thread);
976 if (pThread)
977 {
978 rc = RTSemEventMultiSignal(pThread->EventUser);
979 rtThreadRelease(pThread);
980 }
981 else
982 rc = VERR_INVALID_HANDLE;
983 return rc;
984}
985RT_EXPORT_SYMBOL(RTThreadUserSignal);
986
987
988/**
989 * Wait for the user event, resume on interruption.
990 *
991 * @returns iprt status code.
992 * @param Thread The thread to wait for.
993 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
994 * an indefinite wait.
995 */
996RTDECL(int) RTThreadUserWait(RTTHREAD Thread, RTMSINTERVAL cMillies)
997{
998 int rc;
999 PRTTHREADINT pThread = rtThreadGet(Thread);
1000 if (pThread)
1001 {
1002 rc = RTSemEventMultiWait(pThread->EventUser, cMillies);
1003 rtThreadRelease(pThread);
1004 }
1005 else
1006 rc = VERR_INVALID_HANDLE;
1007 return rc;
1008}
1009RT_EXPORT_SYMBOL(RTThreadUserWait);
1010
1011
1012/**
1013 * Wait for the user event, return on interruption.
1014 *
1015 * @returns iprt status code.
1016 * @param Thread The thread to wait for.
1017 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
1018 * an indefinite wait.
1019 */
1020RTDECL(int) RTThreadUserWaitNoResume(RTTHREAD Thread, RTMSINTERVAL cMillies)
1021{
1022 int rc;
1023 PRTTHREADINT pThread = rtThreadGet(Thread);
1024 if (pThread)
1025 {
1026 rc = RTSemEventMultiWaitNoResume(pThread->EventUser, cMillies);
1027 rtThreadRelease(pThread);
1028 }
1029 else
1030 rc = VERR_INVALID_HANDLE;
1031 return rc;
1032}
1033RT_EXPORT_SYMBOL(RTThreadUserWaitNoResume);
1034
1035
1036/**
1037 * Reset the user event.
1038 *
1039 * @returns iprt status code.
1040 * @param Thread The thread to reset.
1041 */
1042RTDECL(int) RTThreadUserReset(RTTHREAD Thread)
1043{
1044 int rc;
1045 PRTTHREADINT pThread = rtThreadGet(Thread);
1046 if (pThread)
1047 {
1048 rc = RTSemEventMultiReset(pThread->EventUser);
1049 rtThreadRelease(pThread);
1050 }
1051 else
1052 rc = VERR_INVALID_HANDLE;
1053 return rc;
1054}
1055RT_EXPORT_SYMBOL(RTThreadUserReset);
1056
1057
1058/**
1059 * Wait for the thread to terminate.
1060 *
1061 * @returns iprt status code.
1062 * @param Thread The thread to wait for.
1063 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
1064 * an indefinite wait.
1065 * @param prc Where to store the return code of the thread. Optional.
1066 * @param fAutoResume Whether or not to resume the wait on VERR_INTERRUPTED.
1067 */
1068static int rtThreadWait(RTTHREAD Thread, RTMSINTERVAL cMillies, int *prc, bool fAutoResume)
1069{
1070 int rc = VERR_INVALID_HANDLE;
1071 if (Thread != NIL_RTTHREAD)
1072 {
1073 PRTTHREADINT pThread = rtThreadGet(Thread);
1074 if (pThread)
1075 {
1076 if (pThread->fFlags & RTTHREADFLAGS_WAITABLE)
1077 {
1078 if (fAutoResume)
1079 rc = RTSemEventMultiWait(pThread->EventTerminated, cMillies);
1080 else
1081 rc = RTSemEventMultiWaitNoResume(pThread->EventTerminated, cMillies);
1082 if (RT_SUCCESS(rc))
1083 {
1084 if (prc)
1085 *prc = pThread->rc;
1086
1087 /*
1088 * If the thread is marked as waitable, we'll do one additional
1089 * release in order to free up the thread structure (see how we
1090 * init cRef in rtThreadAlloc()).
1091 */
1092 if (ASMAtomicBitTestAndClear(&pThread->fFlags, RTTHREADFLAGS_WAITABLE_BIT))
1093 rtThreadRelease(pThread);
1094 }
1095 }
1096 else
1097 {
1098 rc = VERR_THREAD_NOT_WAITABLE;
1099 AssertRC(rc);
1100 }
1101 rtThreadRelease(pThread);
1102 }
1103 }
1104 return rc;
1105}
1106
1107
1108/**
1109 * Wait for the thread to terminate, resume on interruption.
1110 *
1111 * @returns iprt status code.
1112 * Will not return VERR_INTERRUPTED.
1113 * @param Thread The thread to wait for.
1114 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
1115 * an indefinite wait.
1116 * @param prc Where to store the return code of the thread. Optional.
1117 */
1118RTDECL(int) RTThreadWait(RTTHREAD Thread, RTMSINTERVAL cMillies, int *prc)
1119{
1120 int rc = rtThreadWait(Thread, cMillies, prc, true);
1121 Assert(rc != VERR_INTERRUPTED);
1122 return rc;
1123}
1124RT_EXPORT_SYMBOL(RTThreadWait);
1125
1126
1127/**
1128 * Wait for the thread to terminate, return on interruption.
1129 *
1130 * @returns iprt status code.
1131 * @param Thread The thread to wait for.
1132 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
1133 * an indefinite wait.
1134 * @param prc Where to store the return code of the thread. Optional.
1135 */
1136RTDECL(int) RTThreadWaitNoResume(RTTHREAD Thread, RTMSINTERVAL cMillies, int *prc)
1137{
1138 return rtThreadWait(Thread, cMillies, prc, false);
1139}
1140RT_EXPORT_SYMBOL(RTThreadWaitNoResume);
1141
1142
1143/**
1144 * Changes the type of the specified thread.
1145 *
1146 * @returns iprt status code.
1147 * @param Thread The thread which type should be changed.
1148 * @param enmType The new thread type.
1149 */
1150RTDECL(int) RTThreadSetType(RTTHREAD Thread, RTTHREADTYPE enmType)
1151{
1152 /*
1153 * Validate input.
1154 */
1155 int rc;
1156 if ( enmType > RTTHREADTYPE_INVALID
1157 && enmType < RTTHREADTYPE_END)
1158 {
1159 PRTTHREADINT pThread = rtThreadGet(Thread);
1160 if (pThread)
1161 {
1162 if (rtThreadIsAlive(pThread))
1163 {
1164 /*
1165 * Do the job.
1166 */
1167 RT_THREAD_LOCK_TMP(Tmp);
1168 RT_THREAD_LOCK_RW(Tmp);
1169 rc = rtThreadNativeSetPriority(pThread, enmType);
1170 if (RT_SUCCESS(rc))
1171 ASMAtomicXchgSize(&pThread->enmType, enmType);
1172 RT_THREAD_UNLOCK_RW(Tmp);
1173 if (RT_FAILURE(rc))
1174 Log(("RTThreadSetType: failed on thread %p (%s), rc=%Rrc!!!\n", Thread, pThread->szName, rc));
1175 }
1176 else
1177 rc = VERR_THREAD_IS_DEAD;
1178 rtThreadRelease(pThread);
1179 }
1180 else
1181 rc = VERR_INVALID_HANDLE;
1182 }
1183 else
1184 {
1185 AssertMsgFailed(("enmType=%d\n", enmType));
1186 rc = VERR_INVALID_PARAMETER;
1187 }
1188 return rc;
1189}
1190RT_EXPORT_SYMBOL(RTThreadSetType);
1191
1192
1193/**
1194 * Gets the type of the specified thread.
1195 *
1196 * @returns The thread type.
1197 * @returns RTTHREADTYPE_INVALID if the thread handle is invalid.
1198 * @param Thread The thread in question.
1199 */
1200RTDECL(RTTHREADTYPE) RTThreadGetType(RTTHREAD Thread)
1201{
1202 RTTHREADTYPE enmType = RTTHREADTYPE_INVALID;
1203 PRTTHREADINT pThread = rtThreadGet(Thread);
1204 if (pThread)
1205 {
1206 enmType = pThread->enmType;
1207 rtThreadRelease(pThread);
1208 }
1209 return enmType;
1210}
1211RT_EXPORT_SYMBOL(RTThreadGetType);
1212
1213#ifdef IN_RING3
1214
1215/**
1216 * Recalculates scheduling attributes for the default process
1217 * priority using the specified priority type for the calling thread.
1218 *
1219 * The scheduling attributes are targeted at threads and they are protected
1220 * by the thread read-write semaphore, that's why RTProc is forwarding the
1221 * operation to RTThread.
1222 *
1223 * @returns iprt status code.
1224 * @remarks Will only work for strict builds.
1225 */
1226int rtThreadDoCalcDefaultPriority(RTTHREADTYPE enmType)
1227{
1228 RT_THREAD_LOCK_TMP(Tmp);
1229 RT_THREAD_LOCK_RW(Tmp);
1230 int rc = rtSchedNativeCalcDefaultPriority(enmType);
1231 RT_THREAD_UNLOCK_RW(Tmp);
1232 return rc;
1233}
1234
1235
1236/**
1237 * Thread enumerator - sets the priority of one thread.
1238 *
1239 * @returns 0 to continue.
1240 * @returns !0 to stop. In our case a VERR_ code.
1241 * @param pNode The thread node.
1242 * @param pvUser The new priority.
1243 */
1244static DECLCALLBACK(int) rtThreadSetPriorityOne(PAVLPVNODECORE pNode, void *pvUser)
1245{
1246 PRTTHREADINT pThread = (PRTTHREADINT)pNode;
1247 if (!rtThreadIsAlive(pThread))
1248 return VINF_SUCCESS;
1249 int rc = rtThreadNativeSetPriority(pThread, pThread->enmType);
1250 if (RT_SUCCESS(rc)) /* hide any warnings */
1251 return VINF_SUCCESS;
1252 return rc;
1253}
1254
1255
1256/**
1257 * Attempts to alter the priority of the current process.
1258 *
1259 * The scheduling attributes are targeted at threads and they are protected
1260 * by the thread read-write semaphore, that's why RTProc is forwarding the
1261 * operation to RTThread. This operation also involves updating all thread
1262 * which is much faster done from RTThread.
1263 *
1264 * @returns iprt status code.
1265 * @param enmPriority The new priority.
1266 */
1267int rtThreadDoSetProcPriority(RTPROCPRIORITY enmPriority)
1268{
1269 LogFlow(("rtThreadDoSetProcPriority: enmPriority=%d\n", enmPriority));
1270
1271 /*
1272 * First validate that we're allowed by the OS to use all the
1273 * scheduling attributes defined by the specified process priority.
1274 */
1275 RT_THREAD_LOCK_TMP(Tmp);
1276 RT_THREAD_LOCK_RW(Tmp);
1277 int rc = rtProcNativeSetPriority(enmPriority);
1278 if (RT_SUCCESS(rc))
1279 {
1280 /*
1281 * Update the priority of existing thread.
1282 */
1283 rc = RTAvlPVDoWithAll(&g_ThreadTree, true, rtThreadSetPriorityOne, NULL);
1284 if (RT_SUCCESS(rc))
1285 ASMAtomicXchgSize(&g_enmProcessPriority, enmPriority);
1286 else
1287 {
1288 /*
1289 * Failed, restore the priority.
1290 */
1291 rtProcNativeSetPriority(g_enmProcessPriority);
1292 RTAvlPVDoWithAll(&g_ThreadTree, true, rtThreadSetPriorityOne, NULL);
1293 }
1294 }
1295 RT_THREAD_UNLOCK_RW(Tmp);
1296 LogFlow(("rtThreadDoSetProcPriority: returns %Rrc\n", rc));
1297 return rc;
1298}
1299
1300
1301/**
1302 * Change the thread state to blocking.
1303 *
1304 * @param hThread The current thread.
1305 * @param enmState The sleep state.
1306 * @param fReallySleeping Really going to sleep now.
1307 */
1308RTDECL(void) RTThreadBlocking(RTTHREAD hThread, RTTHREADSTATE enmState, bool fReallySleeping)
1309{
1310 Assert(RTTHREAD_IS_SLEEPING(enmState));
1311 PRTTHREADINT pThread = hThread;
1312 if (pThread != NIL_RTTHREAD)
1313 {
1314 Assert(pThread == RTThreadSelf());
1315 if (rtThreadGetState(pThread) == RTTHREADSTATE_RUNNING)
1316 rtThreadSetState(pThread, enmState);
1317 ASMAtomicWriteBool(&pThread->fReallySleeping, fReallySleeping);
1318 }
1319}
1320RT_EXPORT_SYMBOL(RTThreadBlocking);
1321
1322
1323/**
1324 * Unblocks a thread.
1325 *
1326 * This function is paired with rtThreadBlocking.
1327 *
1328 * @param hThread The current thread.
1329 * @param enmCurState The current state, used to check for nested blocking.
1330 * The new state will be running.
1331 */
1332RTDECL(void) RTThreadUnblocked(RTTHREAD hThread, RTTHREADSTATE enmCurState)
1333{
1334 PRTTHREADINT pThread = hThread;
1335 if (pThread != NIL_RTTHREAD)
1336 {
1337 Assert(pThread == RTThreadSelf());
1338 ASMAtomicWriteBool(&pThread->fReallySleeping, false);
1339
1340 RTTHREADSTATE enmActualState = rtThreadGetState(pThread);
1341 if (enmActualState == enmCurState)
1342 {
1343 rtThreadSetState(pThread, RTTHREADSTATE_RUNNING);
1344 if ( pThread->LockValidator.pRec
1345 && pThread->LockValidator.enmRecState == enmCurState)
1346 ASMAtomicWritePtr((void * volatile *)&pThread->LockValidator.pRec, NULL);
1347 }
1348 /* This is a bit ugly... :-/ */
1349 else if ( ( enmActualState == RTTHREADSTATE_TERMINATED
1350 || enmActualState == RTTHREADSTATE_INITIALIZING)
1351 && pThread->LockValidator.pRec)
1352 ASMAtomicWritePtr((void * volatile *)&pThread->LockValidator.pRec, NULL);
1353 Assert( pThread->LockValidator.pRec == NULL
1354 || RTTHREAD_IS_SLEEPING(enmActualState));
1355 }
1356}
1357RT_EXPORT_SYMBOL(RTThreadUnblocked);
1358
1359
1360/**
1361 * Get the current thread state.
1362 *
1363 * @returns The thread state.
1364 * @param hThread The thread.
1365 */
1366RTDECL(RTTHREADSTATE) RTThreadGetState(RTTHREAD hThread)
1367{
1368 RTTHREADSTATE enmState = RTTHREADSTATE_INVALID;
1369 PRTTHREADINT pThread = rtThreadGet(hThread);
1370 if (pThread)
1371 {
1372 enmState = rtThreadGetState(pThread);
1373 rtThreadRelease(pThread);
1374 }
1375 return enmState;
1376}
1377RT_EXPORT_SYMBOL(RTThreadGetState);
1378
1379
1380RTDECL(RTTHREADSTATE) RTThreadGetReallySleeping(RTTHREAD hThread)
1381{
1382 RTTHREADSTATE enmState = RTTHREADSTATE_INVALID;
1383 PRTTHREADINT pThread = rtThreadGet(hThread);
1384 if (pThread)
1385 {
1386 enmState = rtThreadGetState(pThread);
1387 if (!ASMAtomicUoReadBool(&pThread->fReallySleeping))
1388 enmState = RTTHREADSTATE_RUNNING;
1389 rtThreadRelease(pThread);
1390 }
1391 return enmState;
1392}
1393RT_EXPORT_SYMBOL(RTThreadGetReallySleeping);
1394
1395
1396/**
1397 * Translate a thread state into a string.
1398 *
1399 * @returns Pointer to a read-only string containing the state name.
1400 * @param enmState The state.
1401 */
1402RTDECL(const char *) RTThreadStateName(RTTHREADSTATE enmState)
1403{
1404 switch (enmState)
1405 {
1406 case RTTHREADSTATE_INVALID: return "INVALID";
1407 case RTTHREADSTATE_INITIALIZING: return "INITIALIZING";
1408 case RTTHREADSTATE_TERMINATED: return "TERMINATED";
1409 case RTTHREADSTATE_RUNNING: return "RUNNING";
1410 case RTTHREADSTATE_CRITSECT: return "CRITSECT";
1411 case RTTHREADSTATE_EVENT: return "EVENT";
1412 case RTTHREADSTATE_EVENT_MULTI: return "EVENT_MULTI";
1413 case RTTHREADSTATE_FAST_MUTEX: return "FAST_MUTEX";
1414 case RTTHREADSTATE_MUTEX: return "MUTEX";
1415 case RTTHREADSTATE_RW_READ: return "RW_READ";
1416 case RTTHREADSTATE_RW_WRITE: return "RW_WRITE";
1417 case RTTHREADSTATE_SLEEP: return "SLEEP";
1418 case RTTHREADSTATE_SPIN_MUTEX: return "SPIN_MUTEX";
1419 default: return "UnknownThreadState";
1420 }
1421}
1422RT_EXPORT_SYMBOL(RTThreadStateName);
1423
1424#endif /* IN_RING3 */
1425#ifdef IPRT_WITH_GENERIC_TLS
1426
1427/**
1428 * Thread enumerator - clears a TLS entry.
1429 *
1430 * @returns 0.
1431 * @param pNode The thread node.
1432 * @param pvUser The TLS index.
1433 */
1434static DECLCALLBACK(int) rtThreadClearTlsEntryCallback(PAVLPVNODECORE pNode, void *pvUser)
1435{
1436 PRTTHREADINT pThread = (PRTTHREADINT)pNode;
1437 RTTLS iTls = (RTTLS)(uintptr_t)pvUser;
1438 ASMAtomicWritePtr(&pThread->apvTlsEntries[iTls], NULL);
1439 return 0;
1440}
1441
1442
1443/**
1444 * Helper for the generic TLS implementation that clears a given TLS
1445 * entry on all threads.
1446 *
1447 * @param iTls The TLS entry. (valid)
1448 */
1449void rtThreadClearTlsEntry(RTTLS iTls)
1450{
1451 RT_THREAD_LOCK_TMP(Tmp);
1452 RT_THREAD_LOCK_RD(Tmp);
1453 RTAvlPVDoWithAll(&g_ThreadTree, true /* fFromLeft*/, rtThreadClearTlsEntryCallback, (void *)(uintptr_t)iTls);
1454 RT_THREAD_UNLOCK_RD(Tmp);
1455}
1456
1457#endif /* IPRT_WITH_GENERIC_TLS */
1458
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette