VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/misc/thread.cpp@ 90396

Last change on this file since 90396 was 90396, checked in by vboxsync, 3 years ago

IPRT/RTThreadCreate: Modernize assertions.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 49.2 KB
Line 
1/* $Id: thread.cpp 90396 2021-07-29 08:50:51Z vboxsync $ */
2/** @file
3 * IPRT - Threads, common routines.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP RTLOGGROUP_THREAD
32#include <iprt/thread.h>
33#include "internal/iprt.h"
34
35#include <iprt/log.h>
36#include <iprt/avl.h>
37#include <iprt/alloc.h>
38#include <iprt/assert.h>
39#include <iprt/lockvalidator.h>
40#include <iprt/semaphore.h>
41#ifdef IN_RING0
42# include <iprt/spinlock.h>
43#endif
44#include <iprt/asm.h>
45#include <iprt/err.h>
46#include <iprt/string.h>
47#include "internal/magics.h"
48#include "internal/thread.h"
49#include "internal/sched.h"
50#include "internal/process.h"
51#ifdef RT_WITH_ICONV_CACHE
52# include "internal/string.h"
53#endif
54
55
56/*********************************************************************************************************************************
57* Defined Constants And Macros *
58*********************************************************************************************************************************/
59#ifdef IN_RING0
60# define RT_THREAD_LOCK_RW() RTSpinlockAcquire(g_ThreadSpinlock)
61# define RT_THREAD_UNLOCK_RW() RTSpinlockRelease(g_ThreadSpinlock)
62# define RT_THREAD_LOCK_RD() RTSpinlockAcquire(g_ThreadSpinlock)
63# define RT_THREAD_UNLOCK_RD() RTSpinlockRelease(g_ThreadSpinlock)
64#else
65# define RT_THREAD_LOCK_RW() rtThreadLockRW()
66# define RT_THREAD_UNLOCK_RW() rtThreadUnLockRW()
67# define RT_THREAD_LOCK_RD() rtThreadLockRD()
68# define RT_THREAD_UNLOCK_RD() rtThreadUnLockRD()
69#endif
70
71
72/*********************************************************************************************************************************
73* Global Variables *
74*********************************************************************************************************************************/
75/** Indicates whether we've been initialized or not. */
76static bool g_frtThreadInitialized;
77#ifdef IN_RING3
78/** The RW lock protecting the tree. */
79static RTSEMRW g_ThreadRWSem = NIL_RTSEMRW;
80#else
81/** The spinlocks protecting the tree. */
82static RTSPINLOCK g_ThreadSpinlock = NIL_RTSPINLOCK;
83#endif
84/** The AVL thread containing the threads. */
85static PAVLPVNODECORE g_ThreadTree;
86/** The number of threads in the tree (for ring-0 termination kludge). */
87static uint32_t volatile g_cThreadInTree;
88/** Counters for each thread type. */
89DECL_HIDDEN_DATA(uint32_t volatile) g_acRTThreadTypeStats[RTTHREADTYPE_END];
90
91
92/*********************************************************************************************************************************
93* Internal Functions *
94*********************************************************************************************************************************/
95static void rtThreadDestroy(PRTTHREADINT pThread);
96#ifdef IN_RING3
97static int rtThreadAdopt(RTTHREADTYPE enmType, unsigned fFlags, uint32_t fIntFlags, const char *pszName);
98#endif
99static void rtThreadRemoveLocked(PRTTHREADINT pThread);
100static PRTTHREADINT rtThreadAlloc(RTTHREADTYPE enmType, unsigned fFlags, uint32_t fIntFlags, const char *pszName);
101
102
103/** @page pg_rt_thread IPRT Thread Internals
104 *
105 * IPRT provides interface to whatever native threading that the host provides,
106 * preferably using a CRT level interface to better integrate with other libraries.
107 *
108 * Internally IPRT keeps track of threads by means of the RTTHREADINT structure.
109 * All the RTTHREADINT structures are kept in a AVL tree which is protected by a
110 * read/write lock for efficient access. A thread is inserted into the tree in
111 * three places in the code. The main thread is 'adopted' by IPRT on rtR3Init()
112 * by rtThreadAdopt(). When creating a new thread there the child and the parent
113 * race inserting the thread, this is rtThreadMain() and RTThreadCreate.
114 *
115 * RTTHREADINT objects are using reference counting as a mean of sticking around
116 * till no-one needs them any longer. Waitable threads is created with one extra
117 * reference so they won't go away until they are waited on. This introduces a
118 * major problem if we use the host thread identifier as key in the AVL tree - the
119 * host may reuse the thread identifier before the thread was waited on. So, on
120 * most platforms we are using the RTTHREADINT pointer as key and not the
121 * thread id. RTThreadSelf() then have to be implemented using a pointer stored
122 * in thread local storage (TLS).
123 *
124 * In Ring-0 we only try keep track of kernel threads created by RTThreadCreate
125 * at the moment. There we really only need the 'join' feature, but doing things
126 * the same way allow us to name threads and similar stuff.
127 */
128
129
130/**
131 * Initializes the thread database.
132 *
133 * @returns iprt status code.
134 */
135DECLHIDDEN(int) rtThreadInit(void)
136{
137#ifdef IN_RING3
138 int rc = VINF_ALREADY_INITIALIZED;
139 if (g_ThreadRWSem == NIL_RTSEMRW)
140 {
141 /*
142 * We assume the caller is the 1st thread, which we'll call 'main'.
143 * But first, we'll create the semaphore.
144 */
145 rc = RTSemRWCreateEx(&g_ThreadRWSem, RTSEMRW_FLAGS_NO_LOCK_VAL, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, NULL);
146 if (RT_SUCCESS(rc))
147 {
148 rc = rtThreadNativeInit();
149 if (RT_SUCCESS(rc))
150 rc = rtThreadAdopt(RTTHREADTYPE_DEFAULT, 0, RTTHREADINT_FLAGS_MAIN, "main");
151 if (RT_SUCCESS(rc))
152 rc = rtSchedNativeCalcDefaultPriority(RTTHREADTYPE_DEFAULT);
153 if (RT_SUCCESS(rc))
154 {
155 g_frtThreadInitialized = true;
156 return VINF_SUCCESS;
157 }
158
159 /* failed, clear out */
160 RTSemRWDestroy(g_ThreadRWSem);
161 g_ThreadRWSem = NIL_RTSEMRW;
162 }
163 }
164
165#elif defined(IN_RING0)
166 int rc;
167 /*
168 * Create the spinlock and to native init.
169 */
170 Assert(g_ThreadSpinlock == NIL_RTSPINLOCK);
171 rc = RTSpinlockCreate(&g_ThreadSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "RTThread");
172 if (RT_SUCCESS(rc))
173 {
174 rc = rtThreadNativeInit();
175 if (RT_SUCCESS(rc))
176 {
177 g_frtThreadInitialized = true;
178 return VINF_SUCCESS;
179 }
180
181 /* failed, clear out */
182 RTSpinlockDestroy(g_ThreadSpinlock);
183 g_ThreadSpinlock = NIL_RTSPINLOCK;
184 }
185#else
186# error "!IN_RING0 && !IN_RING3"
187#endif
188 return rc;
189}
190
191
192#ifdef IN_RING3
193/**
194 * Called when IPRT was first initialized in unobtrusive mode and later changed
195 * to obtrustive.
196 *
197 * This is only applicable in ring-3.
198 */
199DECLHIDDEN(void) rtThreadReInitObtrusive(void)
200{
201 rtThreadNativeReInitObtrusive();
202}
203#endif
204
205
206/**
207 * Terminates the thread database.
208 */
209DECLHIDDEN(void) rtThreadTerm(void)
210{
211#ifdef IN_RING3
212 /* we don't cleanup here yet */
213
214#elif defined(IN_RING0)
215 /* just destroy the spinlock and assume the thread is fine... */
216 RTSpinlockDestroy(g_ThreadSpinlock);
217 g_ThreadSpinlock = NIL_RTSPINLOCK;
218 if (g_ThreadTree != NULL)
219 RTAssertMsg2Weak("WARNING: g_ThreadTree=%p\n", g_ThreadTree);
220#endif
221}
222
223
224#ifdef IN_RING3
225
226DECLINLINE(void) rtThreadLockRW(void)
227{
228 if (g_ThreadRWSem == NIL_RTSEMRW)
229 rtThreadInit();
230 int rc = RTSemRWRequestWrite(g_ThreadRWSem, RT_INDEFINITE_WAIT);
231 AssertReleaseRC(rc);
232}
233
234
235DECLINLINE(void) rtThreadLockRD(void)
236{
237 if (g_ThreadRWSem == NIL_RTSEMRW)
238 rtThreadInit();
239 int rc = RTSemRWRequestRead(g_ThreadRWSem, RT_INDEFINITE_WAIT);
240 AssertReleaseRC(rc);
241}
242
243
244DECLINLINE(void) rtThreadUnLockRW(void)
245{
246 int rc = RTSemRWReleaseWrite(g_ThreadRWSem);
247 AssertReleaseRC(rc);
248}
249
250
251DECLINLINE(void) rtThreadUnLockRD(void)
252{
253 int rc = RTSemRWReleaseRead(g_ThreadRWSem);
254 AssertReleaseRC(rc);
255}
256
257
258/**
259 * Adopts the calling thread.
260 * No locks are taken or released by this function.
261 */
262static int rtThreadAdopt(RTTHREADTYPE enmType, unsigned fFlags, uint32_t fIntFlags, const char *pszName)
263{
264 int rc;
265 PRTTHREADINT pThread;
266 Assert(!(fFlags & RTTHREADFLAGS_WAITABLE));
267 fFlags &= ~RTTHREADFLAGS_WAITABLE;
268
269 /*
270 * Allocate and insert the thread.
271 * (It is vital that rtThreadNativeAdopt updates the TLS before
272 * we try inserting the thread because of locking.)
273 */
274 rc = VERR_NO_MEMORY;
275 pThread = rtThreadAlloc(enmType, fFlags, RTTHREADINT_FLAGS_ALIEN | fIntFlags, pszName);
276 if (pThread)
277 {
278 RTNATIVETHREAD NativeThread = RTThreadNativeSelf();
279 rc = rtThreadNativeAdopt(pThread);
280 if (RT_SUCCESS(rc))
281 {
282 rtThreadInsert(pThread, NativeThread);
283 rtThreadSetState(pThread, RTTHREADSTATE_RUNNING);
284 rtThreadRelease(pThread);
285 }
286 else
287 rtThreadDestroy(pThread);
288 }
289 return rc;
290}
291
292/**
293 * Adopts a non-IPRT thread.
294 *
295 * @returns IPRT status code.
296 * @param enmType The thread type.
297 * @param fFlags The thread flags. RTTHREADFLAGS_WAITABLE is not currently allowed.
298 * @param pszName The thread name. Optional.
299 * @param pThread Where to store the thread handle. Optional.
300 */
301RTDECL(int) RTThreadAdopt(RTTHREADTYPE enmType, unsigned fFlags, const char *pszName, PRTTHREAD pThread)
302{
303 int rc;
304 RTTHREAD Thread;
305
306 AssertReturn(!(fFlags & RTTHREADFLAGS_WAITABLE), VERR_INVALID_PARAMETER);
307 AssertReturn(!pszName || VALID_PTR(pszName), VERR_INVALID_POINTER);
308 AssertReturn(!pThread || VALID_PTR(pThread), VERR_INVALID_POINTER);
309
310 rc = VINF_SUCCESS;
311 Thread = RTThreadSelf();
312 if (Thread == NIL_RTTHREAD)
313 {
314 /* generate a name if none was given. */
315 char szName[RTTHREAD_NAME_LEN];
316 if (!pszName || !*pszName)
317 {
318 static uint32_t s_i32AlienId = 0;
319 uint32_t i32Id = ASMAtomicIncU32(&s_i32AlienId);
320 RTStrPrintf(szName, sizeof(szName), "ALIEN-%RX32", i32Id);
321 pszName = szName;
322 }
323
324 /* try adopt it */
325 rc = rtThreadAdopt(enmType, fFlags, 0, pszName);
326 Thread = RTThreadSelf();
327 Log(("RTThreadAdopt: %RTthrd %RTnthrd '%s' enmType=%d fFlags=%#x rc=%Rrc\n",
328 Thread, RTThreadNativeSelf(), pszName, enmType, fFlags, rc));
329 }
330 else
331 Log(("RTThreadAdopt: %RTthrd %RTnthrd '%s' enmType=%d fFlags=%#x - already adopted!\n",
332 Thread, RTThreadNativeSelf(), pszName, enmType, fFlags));
333
334 if (pThread)
335 *pThread = Thread;
336 return rc;
337}
338RT_EXPORT_SYMBOL(RTThreadAdopt);
339
340
341/**
342 * Get the thread handle of the current thread, automatically adopting alien
343 * threads.
344 *
345 * @returns Thread handle.
346 */
347RTDECL(RTTHREAD) RTThreadSelfAutoAdopt(void)
348{
349 RTTHREAD hSelf = RTThreadSelf();
350 if (RT_UNLIKELY(hSelf == NIL_RTTHREAD))
351 RTThreadAdopt(RTTHREADTYPE_DEFAULT, 0, NULL, &hSelf);
352 return hSelf;
353}
354RT_EXPORT_SYMBOL(RTThreadSelfAutoAdopt);
355
356#endif /* IN_RING3 */
357
358/**
359 * Allocates a per thread data structure and initializes the basic fields.
360 *
361 * @returns Pointer to per thread data structure.
362 * This is reference once.
363 * @returns NULL on failure.
364 * @param enmType The thread type.
365 * @param fFlags The thread flags.
366 * @param fIntFlags The internal thread flags.
367 * @param pszName Pointer to the thread name.
368 */
369PRTTHREADINT rtThreadAlloc(RTTHREADTYPE enmType, unsigned fFlags, uint32_t fIntFlags, const char *pszName)
370{
371 PRTTHREADINT pThread = (PRTTHREADINT)RTMemAllocZ(sizeof(RTTHREADINT));
372 if (pThread)
373 {
374 size_t cchName;
375 int rc;
376
377 pThread->Core.Key = (void*)NIL_RTTHREAD;
378 pThread->u32Magic = RTTHREADINT_MAGIC;
379 cchName = strlen(pszName);
380 if (cchName >= RTTHREAD_NAME_LEN)
381 cchName = RTTHREAD_NAME_LEN - 1;
382 memcpy(pThread->szName, pszName, cchName);
383 pThread->szName[cchName] = '\0';
384 pThread->cRefs = 2 + !!(fFlags & RTTHREADFLAGS_WAITABLE); /* And extra reference if waitable. */
385 pThread->rc = VERR_PROCESS_RUNNING; /** @todo get a better error code! */
386 pThread->enmType = enmType;
387 pThread->fFlags = fFlags;
388 pThread->fIntFlags = fIntFlags;
389 pThread->enmState = RTTHREADSTATE_INITIALIZING;
390 pThread->fReallySleeping = false;
391#ifdef IN_RING3
392 rtLockValidatorInitPerThread(&pThread->LockValidator);
393#endif
394#ifdef RT_WITH_ICONV_CACHE
395 rtStrIconvCacheInit(pThread);
396#endif
397 rc = RTSemEventMultiCreate(&pThread->EventUser);
398 if (RT_SUCCESS(rc))
399 {
400 rc = RTSemEventMultiCreate(&pThread->EventTerminated);
401 if (RT_SUCCESS(rc))
402 return pThread;
403 RTSemEventMultiDestroy(pThread->EventUser);
404 }
405 RTMemFree(pThread);
406 }
407 return NULL;
408}
409
410
411/**
412 * Insert the per thread data structure into the tree.
413 *
414 * This can be called from both the thread it self and the parent,
415 * thus it must handle insertion failures in a nice manner.
416 *
417 * @param pThread Pointer to thread structure allocated by rtThreadAlloc().
418 * @param NativeThread The native thread id.
419 */
420DECLHIDDEN(void) rtThreadInsert(PRTTHREADINT pThread, RTNATIVETHREAD NativeThread)
421{
422 Assert(pThread);
423 Assert(pThread->u32Magic == RTTHREADINT_MAGIC);
424
425 {
426 RT_THREAD_LOCK_RW();
427
428 /*
429 * Do not insert a terminated thread.
430 *
431 * This may happen if the thread finishes before the RTThreadCreate call
432 * gets this far. Since the OS may quickly reuse the native thread ID
433 * it should not be reinserted at this point.
434 */
435 if (rtThreadGetState(pThread) != RTTHREADSTATE_TERMINATED)
436 {
437 /*
438 * Before inserting we must check if there is a thread with this id
439 * in the tree already. We're racing parent and child on insert here
440 * so that the handle is valid in both ends when they return / start.
441 *
442 * If it's not ourself we find, it's a dead alien thread and we will
443 * unlink it from the tree. Alien threads will be released at this point.
444 */
445 PRTTHREADINT pThreadOther = (PRTTHREADINT)RTAvlPVGet(&g_ThreadTree, (void *)NativeThread);
446 if (pThreadOther != pThread)
447 {
448 bool fRc;
449 /* remove dead alien if any */
450 if (pThreadOther)
451 {
452 AssertMsg(pThreadOther->fIntFlags & RTTHREADINT_FLAGS_ALIEN, ("%p:%s; %p:%s\n", pThread, pThread->szName, pThreadOther, pThreadOther->szName));
453 ASMAtomicBitClear(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE_BIT);
454 rtThreadRemoveLocked(pThreadOther);
455 if (pThreadOther->fIntFlags & RTTHREADINT_FLAGS_ALIEN)
456 rtThreadRelease(pThreadOther);
457 }
458
459 /* insert the thread */
460 ASMAtomicWritePtr(&pThread->Core.Key, (void *)NativeThread);
461 fRc = RTAvlPVInsert(&g_ThreadTree, &pThread->Core);
462 ASMAtomicOrU32(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE);
463 if (fRc)
464 {
465 ASMAtomicIncU32(&g_cThreadInTree);
466 ASMAtomicIncU32(&g_acRTThreadTypeStats[pThread->enmType]);
467 }
468
469 AssertReleaseMsg(fRc, ("Lock problem? %p (%RTnthrd) %s\n", pThread, NativeThread, pThread->szName));
470 NOREF(fRc);
471 }
472 }
473
474 RT_THREAD_UNLOCK_RW();
475 }
476}
477
478
479/**
480 * Removes the thread from the AVL tree, call owns the tree lock
481 * and has cleared the RTTHREADINT_FLAG_IN_TREE bit.
482 *
483 * @param pThread The thread to remove.
484 */
485static void rtThreadRemoveLocked(PRTTHREADINT pThread)
486{
487 PRTTHREADINT pThread2 = (PRTTHREADINT)RTAvlPVRemove(&g_ThreadTree, pThread->Core.Key);
488 AssertMsg(pThread2 == pThread, ("%p(%s) != %p (%p/%s)\n", pThread2, pThread2 ? pThread2->szName : "<null>",
489 pThread, pThread->Core.Key, pThread->szName));
490 if (pThread2)
491 {
492 ASMAtomicDecU32(&g_cThreadInTree);
493 ASMAtomicDecU32(&g_acRTThreadTypeStats[pThread->enmType]);
494 }
495}
496
497
498/**
499 * Removes the thread from the AVL tree.
500 *
501 * @param pThread The thread to remove.
502 */
503static void rtThreadRemove(PRTTHREADINT pThread)
504{
505 RT_THREAD_LOCK_RW();
506 if (ASMAtomicBitTestAndClear(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE_BIT))
507 rtThreadRemoveLocked(pThread);
508 RT_THREAD_UNLOCK_RW();
509}
510
511
512/**
513 * Checks if a thread is alive or not.
514 *
515 * @returns true if the thread is alive (or we don't really know).
516 * @returns false if the thread has surely terminate.
517 */
518DECLINLINE(bool) rtThreadIsAlive(PRTTHREADINT pThread)
519{
520 return !(pThread->fIntFlags & RTTHREADINT_FLAGS_TERMINATED);
521}
522
523
524/**
525 * Gets a thread by it's native ID.
526 *
527 * @returns pointer to the thread structure.
528 * @returns NULL if not a thread IPRT knows.
529 * @param NativeThread The native thread id.
530 */
531DECLHIDDEN(PRTTHREADINT) rtThreadGetByNative(RTNATIVETHREAD NativeThread)
532{
533 PRTTHREADINT pThread;
534 /*
535 * Simple tree lookup.
536 */
537 RT_THREAD_LOCK_RD();
538 pThread = (PRTTHREADINT)RTAvlPVGet(&g_ThreadTree, (void *)NativeThread);
539 RT_THREAD_UNLOCK_RD();
540 return pThread;
541}
542
543
544/**
545 * Gets the per thread data structure for a thread handle.
546 *
547 * @returns Pointer to the per thread data structure for Thread.
548 * The caller must release the thread using rtThreadRelease().
549 * @returns NULL if Thread was not found.
550 * @param Thread Thread id which structure is to be returned.
551 */
552DECLHIDDEN(PRTTHREADINT) rtThreadGet(RTTHREAD Thread)
553{
554 if ( Thread != NIL_RTTHREAD
555 && VALID_PTR(Thread))
556 {
557 PRTTHREADINT pThread = (PRTTHREADINT)Thread;
558 if ( pThread->u32Magic == RTTHREADINT_MAGIC
559 && pThread->cRefs > 0)
560 {
561 ASMAtomicIncU32(&pThread->cRefs);
562 return pThread;
563 }
564 }
565
566 AssertMsgFailed(("Thread=%RTthrd\n", Thread));
567 return NULL;
568}
569
570/**
571 * Release a per thread data structure.
572 *
573 * @returns New reference count.
574 * @param pThread The thread structure to release.
575 */
576DECLHIDDEN(uint32_t) rtThreadRelease(PRTTHREADINT pThread)
577{
578 uint32_t cRefs;
579
580 Assert(pThread);
581 if (pThread->cRefs >= 1)
582 {
583 cRefs = ASMAtomicDecU32(&pThread->cRefs);
584 if (!cRefs)
585 rtThreadDestroy(pThread);
586 }
587 else
588 {
589 cRefs = 0;
590 AssertFailed();
591 }
592 return cRefs;
593}
594
595
596/**
597 * Destroys the per thread data.
598 *
599 * @param pThread The thread to destroy.
600 */
601static void rtThreadDestroy(PRTTHREADINT pThread)
602{
603 RTSEMEVENTMULTI hEvt1, hEvt2;
604 /*
605 * Remove it from the tree and mark it as dead.
606 *
607 * Threads that has seen rtThreadTerminate and should already have been
608 * removed from the tree. There is probably no thread that should
609 * require removing here. However, be careful making sure that cRefs
610 * isn't 0 if we do or we'll blow up because the strict locking code
611 * will be calling us back.
612 */
613 if (ASMBitTest(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE_BIT))
614 {
615 ASMAtomicIncU32(&pThread->cRefs);
616 rtThreadRemove(pThread);
617 ASMAtomicDecU32(&pThread->cRefs);
618 }
619
620 /*
621 * Invalidate the thread structure.
622 */
623#ifdef IN_RING3
624 rtLockValidatorSerializeDestructEnter();
625
626 rtLockValidatorDeletePerThread(&pThread->LockValidator);
627#endif
628#ifdef RT_WITH_ICONV_CACHE
629 rtStrIconvCacheDestroy(pThread);
630#endif
631 ASMAtomicXchgU32(&pThread->u32Magic, RTTHREADINT_MAGIC_DEAD);
632 ASMAtomicWritePtr(&pThread->Core.Key, (void *)NIL_RTTHREAD);
633 pThread->enmType = RTTHREADTYPE_INVALID;
634 hEvt1 = pThread->EventUser;
635 pThread->EventUser = NIL_RTSEMEVENTMULTI;
636 hEvt2 = pThread->EventTerminated;
637 pThread->EventTerminated = NIL_RTSEMEVENTMULTI;
638
639#ifdef IN_RING3
640 rtLockValidatorSerializeDestructLeave();
641#endif
642
643 /*
644 * Destroy semaphore resources and free the bugger.
645 */
646 RTSemEventMultiDestroy(hEvt1);
647 if (hEvt2 != NIL_RTSEMEVENTMULTI)
648 RTSemEventMultiDestroy(hEvt2);
649
650 rtThreadNativeDestroy(pThread);
651 RTMemFree(pThread);
652}
653
654
655/**
656 * Terminates the thread.
657 * Called by the thread wrapper function when the thread terminates.
658 *
659 * @param pThread The thread structure.
660 * @param rc The thread result code.
661 */
662DECLHIDDEN(void) rtThreadTerminate(PRTTHREADINT pThread, int rc)
663{
664 Assert(pThread->cRefs >= 1);
665
666 /*
667 * Destroy TLS entries.
668 */
669#ifdef IPRT_WITH_GENERIC_TLS
670 rtThreadTlsDestruction(pThread);
671#elif defined(RT_OS_WINDOWS) && defined(IN_RING3)
672 rtThreadWinTlsDestruction();
673#endif
674
675 /*
676 * Set the rc, mark it terminated and signal anyone waiting.
677 */
678 pThread->rc = rc;
679 rtThreadSetState(pThread, RTTHREADSTATE_TERMINATED);
680 ASMAtomicOrU32(&pThread->fIntFlags, RTTHREADINT_FLAGS_TERMINATED);
681 if (pThread->EventTerminated != NIL_RTSEMEVENTMULTI)
682 RTSemEventMultiSignal(pThread->EventTerminated);
683
684 /*
685 * Remove the thread from the tree so that there will be no
686 * key clashes in the AVL tree and release our reference to ourself.
687 */
688 rtThreadRemove(pThread);
689 rtThreadRelease(pThread);
690}
691
692
693/**
694 * The common thread main function.
695 * This is called by rtThreadNativeMain().
696 *
697 * @returns The status code of the thread.
698 * pThread is dereference by the thread before returning!
699 * @param pThread The thread structure.
700 * @param NativeThread The native thread id.
701 * @param pszThreadName The name of the thread (purely a dummy for backtrace).
702 */
703DECL_HIDDEN_CALLBACK(int) rtThreadMain(PRTTHREADINT pThread, RTNATIVETHREAD NativeThread, const char *pszThreadName)
704{
705 int rc;
706 NOREF(pszThreadName);
707 rtThreadInsert(pThread, NativeThread);
708 Log(("rtThreadMain: Starting: pThread=%p NativeThread=%RTnthrd Name=%s pfnThread=%p pvUser=%p\n",
709 pThread, NativeThread, pThread->szName, pThread->pfnThread, pThread->pvUser));
710
711 /*
712 * Change the priority.
713 */
714 rc = rtThreadNativeSetPriority(pThread, pThread->enmType);
715#ifdef IN_RING3
716 AssertMsgRC(rc, ("Failed to set priority of thread %p (%RTnthrd / %s) to enmType=%d enmPriority=%d rc=%Rrc\n",
717 pThread, NativeThread, pThread->szName, pThread->enmType, g_enmProcessPriority, rc));
718#else
719 AssertMsgRC(rc, ("Failed to set priority of thread %p (%RTnthrd / %s) to enmType=%d rc=%Rrc\n",
720 pThread, NativeThread, pThread->szName, pThread->enmType, rc));
721#endif
722
723 /*
724 * Call thread function and terminate when it returns.
725 */
726 rtThreadSetState(pThread, RTTHREADSTATE_RUNNING);
727 rc = pThread->pfnThread(pThread, pThread->pvUser);
728
729 /*
730 * Paranoia checks for leftover resources.
731 */
732#ifdef RTSEMRW_STRICT
733 int32_t cWrite = ASMAtomicReadS32(&pThread->cWriteLocks);
734 Assert(!cWrite);
735 int32_t cRead = ASMAtomicReadS32(&pThread->cReadLocks);
736 Assert(!cRead);
737#endif
738
739 Log(("rtThreadMain: Terminating: rc=%d pThread=%p NativeThread=%RTnthrd Name=%s pfnThread=%p pvUser=%p\n",
740 rc, pThread, NativeThread, pThread->szName, pThread->pfnThread, pThread->pvUser));
741 rtThreadTerminate(pThread, rc);
742 return rc;
743}
744
745
746/**
747 * Create a new thread.
748 *
749 * @returns iprt status code.
750 * @param pThread Where to store the thread handle to the new thread. (optional)
751 * @param pfnThread The thread function.
752 * @param pvUser User argument.
753 * @param cbStack The size of the stack for the new thread.
754 * Use 0 for the default stack size.
755 * @param enmType The thread type. Used for deciding scheduling attributes
756 * of the thread.
757 * @param fFlags Flags of the RTTHREADFLAGS type (ORed together).
758 * @param pszName Thread name.
759 */
760RTDECL(int) RTThreadCreate(PRTTHREAD pThread, PFNRTTHREAD pfnThread, void *pvUser, size_t cbStack,
761 RTTHREADTYPE enmType, unsigned fFlags, const char *pszName)
762{
763 int rc;
764 PRTTHREADINT pThreadInt;
765
766 LogFlow(("RTThreadCreate: pThread=%p pfnThread=%p pvUser=%p cbStack=%#x enmType=%d fFlags=%#x pszName=%p:{%s}\n",
767 pThread, pfnThread, pvUser, cbStack, enmType, fFlags, pszName, pszName));
768
769 /*
770 * Validate input.
771 */
772 AssertPtrNullReturn(pThread, VERR_INVALID_POINTER);
773 AssertPtrReturn(pfnThread, VERR_INVALID_POINTER);
774 AssertMsgReturn(pszName && *pszName != '\0' && strlen(pszName) < RTTHREAD_NAME_LEN,
775 ("pszName=%s (max len is %d because of logging)\n", pszName, RTTHREAD_NAME_LEN - 1),
776 VERR_INVALID_PARAMETER);
777 AssertMsgReturn(!(fFlags & ~RTTHREADFLAGS_MASK), ("fFlags=%#x\n", fFlags), VERR_INVALID_FLAGS);
778
779 /*
780 * Allocate thread argument.
781 */
782 pThreadInt = rtThreadAlloc(enmType, fFlags, 0, pszName);
783 if (pThreadInt)
784 {
785 RTNATIVETHREAD NativeThread;
786
787 pThreadInt->pfnThread = pfnThread;
788 pThreadInt->pvUser = pvUser;
789 pThreadInt->cbStack = cbStack;
790
791 rc = rtThreadNativeCreate(pThreadInt, &NativeThread);
792 if (RT_SUCCESS(rc))
793 {
794 rtThreadInsert(pThreadInt, NativeThread);
795 rtThreadRelease(pThreadInt);
796 Log(("RTThreadCreate: Created thread %p (%p) %s\n", pThreadInt, NativeThread, pszName));
797 if (pThread)
798 *pThread = pThreadInt;
799 return VINF_SUCCESS;
800 }
801
802 pThreadInt->cRefs = 1;
803 rtThreadRelease(pThreadInt);
804 }
805 else
806 rc = VERR_NO_TMP_MEMORY;
807 LogFlow(("RTThreadCreate: Failed to create thread, rc=%Rrc\n", rc));
808 AssertReleaseRC(rc);
809 return rc;
810}
811RT_EXPORT_SYMBOL(RTThreadCreate);
812
813
814/**
815 * Create a new thread.
816 *
817 * Same as RTThreadCreate except the name is given in the RTStrPrintfV form.
818 *
819 * @returns iprt status code.
820 * @param pThread See RTThreadCreate.
821 * @param pfnThread See RTThreadCreate.
822 * @param pvUser See RTThreadCreate.
823 * @param cbStack See RTThreadCreate.
824 * @param enmType See RTThreadCreate.
825 * @param fFlags See RTThreadCreate.
826 * @param pszNameFmt Thread name format.
827 * @param va Format arguments.
828 */
829RTDECL(int) RTThreadCreateV(PRTTHREAD pThread, PFNRTTHREAD pfnThread, void *pvUser, size_t cbStack,
830 RTTHREADTYPE enmType, uint32_t fFlags, const char *pszNameFmt, va_list va)
831{
832 char szName[RTTHREAD_NAME_LEN * 2];
833 RTStrPrintfV(szName, sizeof(szName), pszNameFmt, va);
834 return RTThreadCreate(pThread, pfnThread, pvUser, cbStack, enmType, fFlags, szName);
835}
836RT_EXPORT_SYMBOL(RTThreadCreateV);
837
838
839/**
840 * Create a new thread.
841 *
842 * Same as RTThreadCreate except the name is given in the RTStrPrintf form.
843 *
844 * @returns iprt status code.
845 * @param pThread See RTThreadCreate.
846 * @param pfnThread See RTThreadCreate.
847 * @param pvUser See RTThreadCreate.
848 * @param cbStack See RTThreadCreate.
849 * @param enmType See RTThreadCreate.
850 * @param fFlags See RTThreadCreate.
851 * @param pszNameFmt Thread name format.
852 * @param ... Format arguments.
853 */
854RTDECL(int) RTThreadCreateF(PRTTHREAD pThread, PFNRTTHREAD pfnThread, void *pvUser, size_t cbStack,
855 RTTHREADTYPE enmType, uint32_t fFlags, const char *pszNameFmt, ...)
856{
857 va_list va;
858 int rc;
859 va_start(va, pszNameFmt);
860 rc = RTThreadCreateV(pThread, pfnThread, pvUser, cbStack, enmType, fFlags, pszNameFmt, va);
861 va_end(va);
862 return rc;
863}
864RT_EXPORT_SYMBOL(RTThreadCreateF);
865
866
867/**
868 * Gets the native thread id of a IPRT thread.
869 *
870 * @returns The native thread id.
871 * @param Thread The IPRT thread.
872 */
873RTDECL(RTNATIVETHREAD) RTThreadGetNative(RTTHREAD Thread)
874{
875 PRTTHREADINT pThread = rtThreadGet(Thread);
876 if (pThread)
877 {
878 RTNATIVETHREAD NativeThread = (RTNATIVETHREAD)pThread->Core.Key;
879 rtThreadRelease(pThread);
880 return NativeThread;
881 }
882 return NIL_RTNATIVETHREAD;
883}
884RT_EXPORT_SYMBOL(RTThreadGetNative);
885
886
887/**
888 * Gets the IPRT thread of a native thread.
889 *
890 * @returns The IPRT thread handle
891 * @returns NIL_RTTHREAD if not a thread known to IPRT.
892 * @param NativeThread The native thread handle/id.
893 */
894RTDECL(RTTHREAD) RTThreadFromNative(RTNATIVETHREAD NativeThread)
895{
896 PRTTHREADINT pThread = rtThreadGetByNative(NativeThread);
897 if (pThread)
898 return pThread;
899 return NIL_RTTHREAD;
900}
901RT_EXPORT_SYMBOL(RTThreadFromNative);
902
903
904/**
905 * Gets the name of the current thread thread.
906 *
907 * @returns Pointer to readonly name string.
908 * @returns NULL on failure.
909 */
910RTDECL(const char *) RTThreadSelfName(void)
911{
912 RTTHREAD Thread = RTThreadSelf();
913 if (Thread != NIL_RTTHREAD)
914 {
915 PRTTHREADINT pThread = rtThreadGet(Thread);
916 if (pThread)
917 {
918 const char *szName = pThread->szName;
919 rtThreadRelease(pThread);
920 return szName;
921 }
922 }
923 return NULL;
924}
925RT_EXPORT_SYMBOL(RTThreadSelfName);
926
927
928/**
929 * Gets the name of a thread.
930 *
931 * @returns Pointer to readonly name string.
932 * @returns NULL on failure.
933 * @param Thread Thread handle of the thread to query the name of.
934 */
935RTDECL(const char *) RTThreadGetName(RTTHREAD Thread)
936{
937 PRTTHREADINT pThread;
938 if (Thread == NIL_RTTHREAD)
939 return NULL;
940 pThread = rtThreadGet(Thread);
941 if (pThread)
942 {
943 const char *szName = pThread->szName;
944 rtThreadRelease(pThread);
945 return szName;
946 }
947 return NULL;
948}
949RT_EXPORT_SYMBOL(RTThreadGetName);
950
951
952/**
953 * Sets the name of a thread.
954 *
955 * @returns iprt status code.
956 * @param Thread Thread handle of the thread to query the name of.
957 * @param pszName The thread name.
958 */
959RTDECL(int) RTThreadSetName(RTTHREAD Thread, const char *pszName)
960{
961 /*
962 * Validate input.
963 */
964 PRTTHREADINT pThread;
965 size_t cchName = strlen(pszName);
966 if (cchName >= RTTHREAD_NAME_LEN)
967 {
968 AssertMsgFailed(("pszName=%s is too long, max is %d\n", pszName, RTTHREAD_NAME_LEN - 1));
969 return VERR_INVALID_PARAMETER;
970 }
971 pThread = rtThreadGet(Thread);
972 if (!pThread)
973 return VERR_INVALID_HANDLE;
974
975 /*
976 * Update the name.
977 */
978 pThread->szName[cchName] = '\0'; /* paranoia */
979 memcpy(pThread->szName, pszName, cchName);
980 rtThreadRelease(pThread);
981 return VINF_SUCCESS;
982}
983RT_EXPORT_SYMBOL(RTThreadSetName);
984
985
986/**
987 * Checks if the specified thread is the main thread.
988 *
989 * @returns true if it is, false if it isn't.
990 *
991 * @param hThread The thread handle.
992 *
993 * @remarks This function may not return the correct value when rtR3Init was
994 * called on a thread of the than the main one. This could for
995 * instance happen when the DLL/DYLIB/SO containing IPRT is dynamically
996 * loaded at run time by a different thread.
997 */
998RTDECL(bool) RTThreadIsMain(RTTHREAD hThread)
999{
1000 PRTTHREADINT pThread = rtThreadGet(hThread);
1001 if (pThread)
1002 {
1003 bool fRc = !!(pThread->fIntFlags & RTTHREADINT_FLAGS_MAIN);
1004 rtThreadRelease(pThread);
1005 return fRc;
1006 }
1007 return false;
1008}
1009RT_EXPORT_SYMBOL(RTThreadIsMain);
1010
1011
1012RTDECL(bool) RTThreadIsSelfAlive(void)
1013{
1014 if (g_frtThreadInitialized)
1015 {
1016 RTTHREAD hSelf = RTThreadSelf();
1017 if (hSelf != NIL_RTTHREAD)
1018 {
1019 /*
1020 * Inspect the thread state. ASSUMES thread state order.
1021 */
1022 RTTHREADSTATE enmState = rtThreadGetState(hSelf);
1023 if ( enmState >= RTTHREADSTATE_RUNNING
1024 && enmState <= RTTHREADSTATE_END)
1025 return true;
1026 }
1027 }
1028 return false;
1029}
1030RT_EXPORT_SYMBOL(RTThreadIsSelfAlive);
1031
1032
1033RTDECL(bool) RTThreadIsSelfKnown(void)
1034{
1035 if (g_frtThreadInitialized)
1036 {
1037 RTTHREAD hSelf = RTThreadSelf();
1038 if (hSelf != NIL_RTTHREAD)
1039 return true;
1040 }
1041 return false;
1042}
1043RT_EXPORT_SYMBOL(RTThreadIsSelfKnown);
1044
1045
1046RTDECL(bool) RTThreadIsInitialized(void)
1047{
1048 return g_frtThreadInitialized;
1049}
1050RT_EXPORT_SYMBOL(RTThreadIsInitialized);
1051
1052
1053/**
1054 * Signal the user event.
1055 *
1056 * @returns iprt status code.
1057 */
1058RTDECL(int) RTThreadUserSignal(RTTHREAD Thread)
1059{
1060 int rc;
1061 PRTTHREADINT pThread = rtThreadGet(Thread);
1062 if (pThread)
1063 {
1064 rc = RTSemEventMultiSignal(pThread->EventUser);
1065 rtThreadRelease(pThread);
1066 }
1067 else
1068 rc = VERR_INVALID_HANDLE;
1069 return rc;
1070}
1071RT_EXPORT_SYMBOL(RTThreadUserSignal);
1072
1073
1074/**
1075 * Wait for the user event, resume on interruption.
1076 *
1077 * @returns iprt status code.
1078 * @param Thread The thread to wait for.
1079 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
1080 * an indefinite wait.
1081 */
1082RTDECL(int) RTThreadUserWait(RTTHREAD Thread, RTMSINTERVAL cMillies)
1083{
1084 int rc;
1085 PRTTHREADINT pThread = rtThreadGet(Thread);
1086 if (pThread)
1087 {
1088 rc = RTSemEventMultiWait(pThread->EventUser, cMillies);
1089 rtThreadRelease(pThread);
1090 }
1091 else
1092 rc = VERR_INVALID_HANDLE;
1093 return rc;
1094}
1095RT_EXPORT_SYMBOL(RTThreadUserWait);
1096
1097
1098/**
1099 * Wait for the user event, return on interruption.
1100 *
1101 * @returns iprt status code.
1102 * @param Thread The thread to wait for.
1103 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
1104 * an indefinite wait.
1105 */
1106RTDECL(int) RTThreadUserWaitNoResume(RTTHREAD Thread, RTMSINTERVAL cMillies)
1107{
1108 int rc;
1109 PRTTHREADINT pThread = rtThreadGet(Thread);
1110 if (pThread)
1111 {
1112 rc = RTSemEventMultiWaitNoResume(pThread->EventUser, cMillies);
1113 rtThreadRelease(pThread);
1114 }
1115 else
1116 rc = VERR_INVALID_HANDLE;
1117 return rc;
1118}
1119RT_EXPORT_SYMBOL(RTThreadUserWaitNoResume);
1120
1121
1122/**
1123 * Reset the user event.
1124 *
1125 * @returns iprt status code.
1126 * @param Thread The thread to reset.
1127 */
1128RTDECL(int) RTThreadUserReset(RTTHREAD Thread)
1129{
1130 int rc;
1131 PRTTHREADINT pThread = rtThreadGet(Thread);
1132 if (pThread)
1133 {
1134 rc = RTSemEventMultiReset(pThread->EventUser);
1135 rtThreadRelease(pThread);
1136 }
1137 else
1138 rc = VERR_INVALID_HANDLE;
1139 return rc;
1140}
1141RT_EXPORT_SYMBOL(RTThreadUserReset);
1142
1143
1144/**
1145 * Wait for the thread to terminate.
1146 *
1147 * @returns iprt status code.
1148 * @param Thread The thread to wait for.
1149 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
1150 * an indefinite wait.
1151 * @param prc Where to store the return code of the thread. Optional.
1152 * @param fAutoResume Whether or not to resume the wait on VERR_INTERRUPTED.
1153 */
1154static int rtThreadWait(RTTHREAD Thread, RTMSINTERVAL cMillies, int *prc, bool fAutoResume)
1155{
1156 int rc = VERR_INVALID_HANDLE;
1157 if (Thread != NIL_RTTHREAD)
1158 {
1159 PRTTHREADINT pThread = rtThreadGet(Thread);
1160 if (pThread)
1161 {
1162 if (pThread->fFlags & RTTHREADFLAGS_WAITABLE)
1163 {
1164#if defined(IN_RING3) && defined(RT_OS_WINDOWS)
1165 if (RT_LIKELY(rtThreadNativeIsAliveKludge(pThread)))
1166#endif
1167 {
1168 if (fAutoResume)
1169 rc = RTSemEventMultiWait(pThread->EventTerminated, cMillies);
1170 else
1171 rc = RTSemEventMultiWaitNoResume(pThread->EventTerminated, cMillies);
1172 }
1173#if defined(IN_RING3) && defined(RT_OS_WINDOWS)
1174 else
1175 {
1176 rc = VINF_SUCCESS;
1177 if (pThread->rc == VERR_PROCESS_RUNNING)
1178 pThread->rc = VERR_THREAD_IS_DEAD;
1179 }
1180#endif
1181 if (RT_SUCCESS(rc))
1182 {
1183 if (prc)
1184 *prc = pThread->rc;
1185
1186 /*
1187 * If the thread is marked as waitable, we'll do one additional
1188 * release in order to free up the thread structure (see how we
1189 * init cRef in rtThreadAlloc()).
1190 */
1191 if (ASMAtomicBitTestAndClear(&pThread->fFlags, RTTHREADFLAGS_WAITABLE_BIT))
1192 {
1193 rtThreadRelease(pThread);
1194#ifdef IN_RING0
1195 /*
1196 * IPRT termination kludge. Call native code to make sure
1197 * the last thread is really out of IPRT to prevent it from
1198 * crashing after we destroyed the spinlock in rtThreadTerm.
1199 */
1200 if ( ASMAtomicReadU32(&g_cThreadInTree) == 1
1201 && ASMAtomicReadU32(&pThread->cRefs) > 1)
1202 rtThreadNativeWaitKludge(pThread);
1203#endif
1204 }
1205 }
1206 }
1207 else
1208 {
1209 rc = VERR_THREAD_NOT_WAITABLE;
1210 AssertRC(rc);
1211 }
1212 rtThreadRelease(pThread);
1213 }
1214 }
1215 return rc;
1216}
1217
1218
1219/**
1220 * Wait for the thread to terminate, resume on interruption.
1221 *
1222 * @returns iprt status code.
1223 * Will not return VERR_INTERRUPTED.
1224 * @param Thread The thread to wait for.
1225 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
1226 * an indefinite wait.
1227 * @param prc Where to store the return code of the thread. Optional.
1228 */
1229RTDECL(int) RTThreadWait(RTTHREAD Thread, RTMSINTERVAL cMillies, int *prc)
1230{
1231 int rc = rtThreadWait(Thread, cMillies, prc, true);
1232 Assert(rc != VERR_INTERRUPTED);
1233 return rc;
1234}
1235RT_EXPORT_SYMBOL(RTThreadWait);
1236
1237
1238/**
1239 * Wait for the thread to terminate, return on interruption.
1240 *
1241 * @returns iprt status code.
1242 * @param Thread The thread to wait for.
1243 * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
1244 * an indefinite wait.
1245 * @param prc Where to store the return code of the thread. Optional.
1246 */
1247RTDECL(int) RTThreadWaitNoResume(RTTHREAD Thread, RTMSINTERVAL cMillies, int *prc)
1248{
1249 return rtThreadWait(Thread, cMillies, prc, false);
1250}
1251RT_EXPORT_SYMBOL(RTThreadWaitNoResume);
1252
1253
1254/**
1255 * Changes the type of the specified thread.
1256 *
1257 * @returns iprt status code.
1258 * @param Thread The thread which type should be changed.
1259 * @param enmType The new thread type.
1260 */
1261RTDECL(int) RTThreadSetType(RTTHREAD Thread, RTTHREADTYPE enmType)
1262{
1263 /*
1264 * Validate input.
1265 */
1266 int rc;
1267 if ( enmType > RTTHREADTYPE_INVALID
1268 && enmType < RTTHREADTYPE_END)
1269 {
1270 PRTTHREADINT pThread = rtThreadGet(Thread);
1271 if (pThread)
1272 {
1273 if (rtThreadIsAlive(pThread))
1274 {
1275 /*
1276 * Do the job.
1277 */
1278 RT_THREAD_LOCK_RW();
1279 rc = rtThreadNativeSetPriority(pThread, enmType);
1280 if (RT_SUCCESS(rc))
1281 ASMAtomicXchgSize(&pThread->enmType, enmType);
1282 RT_THREAD_UNLOCK_RW();
1283 if (RT_FAILURE(rc))
1284 Log(("RTThreadSetType: failed on thread %p (%s), rc=%Rrc!!!\n", Thread, pThread->szName, rc));
1285 }
1286 else
1287 rc = VERR_THREAD_IS_DEAD;
1288 rtThreadRelease(pThread);
1289 }
1290 else
1291 rc = VERR_INVALID_HANDLE;
1292 }
1293 else
1294 {
1295 AssertMsgFailed(("enmType=%d\n", enmType));
1296 rc = VERR_INVALID_PARAMETER;
1297 }
1298 return rc;
1299}
1300RT_EXPORT_SYMBOL(RTThreadSetType);
1301
1302
1303/**
1304 * Gets the type of the specified thread.
1305 *
1306 * @returns The thread type.
1307 * @returns RTTHREADTYPE_INVALID if the thread handle is invalid.
1308 * @param Thread The thread in question.
1309 */
1310RTDECL(RTTHREADTYPE) RTThreadGetType(RTTHREAD Thread)
1311{
1312 RTTHREADTYPE enmType = RTTHREADTYPE_INVALID;
1313 PRTTHREADINT pThread = rtThreadGet(Thread);
1314 if (pThread)
1315 {
1316 enmType = pThread->enmType;
1317 rtThreadRelease(pThread);
1318 }
1319 return enmType;
1320}
1321RT_EXPORT_SYMBOL(RTThreadGetType);
1322
1323#ifdef IN_RING3
1324
1325/**
1326 * Recalculates scheduling attributes for the default process
1327 * priority using the specified priority type for the calling thread.
1328 *
1329 * The scheduling attributes are targeted at threads and they are protected
1330 * by the thread read-write semaphore, that's why RTProc is forwarding the
1331 * operation to RTThread.
1332 *
1333 * @returns iprt status code.
1334 * @remarks Will only work for strict builds.
1335 */
1336int rtThreadDoCalcDefaultPriority(RTTHREADTYPE enmType)
1337{
1338 RT_THREAD_LOCK_RW();
1339 int rc = rtSchedNativeCalcDefaultPriority(enmType);
1340 RT_THREAD_UNLOCK_RW();
1341 return rc;
1342}
1343
1344
1345/**
1346 * Thread enumerator - sets the priority of one thread.
1347 *
1348 * @returns 0 to continue.
1349 * @returns !0 to stop. In our case a VERR_ code.
1350 * @param pNode The thread node.
1351 * @param pvUser The new priority.
1352 */
1353static DECLCALLBACK(int) rtThreadSetPriorityOne(PAVLPVNODECORE pNode, void *pvUser)
1354{
1355 PRTTHREADINT pThread = (PRTTHREADINT)pNode;
1356 if (!rtThreadIsAlive(pThread))
1357 return VINF_SUCCESS;
1358 int rc = rtThreadNativeSetPriority(pThread, pThread->enmType);
1359 if (RT_SUCCESS(rc)) /* hide any warnings */
1360 return VINF_SUCCESS;
1361 NOREF(pvUser);
1362 return rc;
1363}
1364
1365
1366/**
1367 * Attempts to alter the priority of the current process.
1368 *
1369 * The scheduling attributes are targeted at threads and they are protected
1370 * by the thread read-write semaphore, that's why RTProc is forwarding the
1371 * operation to RTThread. This operation also involves updating all thread
1372 * which is much faster done from RTThread.
1373 *
1374 * @returns iprt status code.
1375 * @param enmPriority The new priority.
1376 */
1377DECLHIDDEN(int) rtThreadDoSetProcPriority(RTPROCPRIORITY enmPriority)
1378{
1379 LogFlow(("rtThreadDoSetProcPriority: enmPriority=%d\n", enmPriority));
1380
1381 /*
1382 * First validate that we're allowed by the OS to use all the
1383 * scheduling attributes defined by the specified process priority.
1384 */
1385 RT_THREAD_LOCK_RW();
1386 int rc = rtProcNativeSetPriority(enmPriority);
1387 if (RT_SUCCESS(rc))
1388 {
1389 /*
1390 * Update the priority of existing thread.
1391 */
1392 rc = RTAvlPVDoWithAll(&g_ThreadTree, true, rtThreadSetPriorityOne, NULL);
1393 if (RT_SUCCESS(rc))
1394 ASMAtomicXchgSize(&g_enmProcessPriority, enmPriority);
1395 else
1396 {
1397 /*
1398 * Failed, restore the priority.
1399 */
1400 rtProcNativeSetPriority(g_enmProcessPriority);
1401 RTAvlPVDoWithAll(&g_ThreadTree, true, rtThreadSetPriorityOne, NULL);
1402 }
1403 }
1404 RT_THREAD_UNLOCK_RW();
1405 LogFlow(("rtThreadDoSetProcPriority: returns %Rrc\n", rc));
1406 return rc;
1407}
1408
1409
1410/**
1411 * Change the thread state to blocking.
1412 *
1413 * @param hThread The current thread.
1414 * @param enmState The sleep state.
1415 * @param fReallySleeping Really going to sleep now.
1416 */
1417RTDECL(void) RTThreadBlocking(RTTHREAD hThread, RTTHREADSTATE enmState, bool fReallySleeping)
1418{
1419 Assert(RTTHREAD_IS_SLEEPING(enmState));
1420 PRTTHREADINT pThread = hThread;
1421 if (pThread != NIL_RTTHREAD)
1422 {
1423 Assert(pThread == RTThreadSelf());
1424 if (rtThreadGetState(pThread) == RTTHREADSTATE_RUNNING)
1425 rtThreadSetState(pThread, enmState);
1426 ASMAtomicWriteBool(&pThread->fReallySleeping, fReallySleeping);
1427 }
1428}
1429RT_EXPORT_SYMBOL(RTThreadBlocking);
1430
1431
1432/**
1433 * Unblocks a thread.
1434 *
1435 * This function is paired with rtThreadBlocking.
1436 *
1437 * @param hThread The current thread.
1438 * @param enmCurState The current state, used to check for nested blocking.
1439 * The new state will be running.
1440 */
1441RTDECL(void) RTThreadUnblocked(RTTHREAD hThread, RTTHREADSTATE enmCurState)
1442{
1443 PRTTHREADINT pThread = hThread;
1444 if (pThread != NIL_RTTHREAD)
1445 {
1446 Assert(pThread == RTThreadSelf());
1447 ASMAtomicWriteBool(&pThread->fReallySleeping, false);
1448
1449 RTTHREADSTATE enmActualState = rtThreadGetState(pThread);
1450 if (enmActualState == enmCurState)
1451 {
1452 rtThreadSetState(pThread, RTTHREADSTATE_RUNNING);
1453 if ( pThread->LockValidator.pRec
1454 && pThread->LockValidator.enmRecState == enmCurState)
1455 ASMAtomicWriteNullPtr(&pThread->LockValidator.pRec);
1456 }
1457 /* This is a bit ugly... :-/ */
1458 else if ( ( enmActualState == RTTHREADSTATE_TERMINATED
1459 || enmActualState == RTTHREADSTATE_INITIALIZING)
1460 && pThread->LockValidator.pRec)
1461 ASMAtomicWriteNullPtr(&pThread->LockValidator.pRec);
1462 Assert( pThread->LockValidator.pRec == NULL
1463 || RTTHREAD_IS_SLEEPING(enmActualState));
1464 }
1465}
1466RT_EXPORT_SYMBOL(RTThreadUnblocked);
1467
1468
1469/**
1470 * Get the current thread state.
1471 *
1472 * @returns The thread state.
1473 * @param hThread The thread.
1474 */
1475RTDECL(RTTHREADSTATE) RTThreadGetState(RTTHREAD hThread)
1476{
1477 RTTHREADSTATE enmState = RTTHREADSTATE_INVALID;
1478 PRTTHREADINT pThread = rtThreadGet(hThread);
1479 if (pThread)
1480 {
1481 enmState = rtThreadGetState(pThread);
1482 rtThreadRelease(pThread);
1483 }
1484 return enmState;
1485}
1486RT_EXPORT_SYMBOL(RTThreadGetState);
1487
1488
1489RTDECL(RTTHREADSTATE) RTThreadGetReallySleeping(RTTHREAD hThread)
1490{
1491 RTTHREADSTATE enmState = RTTHREADSTATE_INVALID;
1492 PRTTHREADINT pThread = rtThreadGet(hThread);
1493 if (pThread)
1494 {
1495 enmState = rtThreadGetState(pThread);
1496 if (!ASMAtomicUoReadBool(&pThread->fReallySleeping))
1497 enmState = RTTHREADSTATE_RUNNING;
1498 rtThreadRelease(pThread);
1499 }
1500 return enmState;
1501}
1502RT_EXPORT_SYMBOL(RTThreadGetReallySleeping);
1503
1504
1505/**
1506 * Translate a thread state into a string.
1507 *
1508 * @returns Pointer to a read-only string containing the state name.
1509 * @param enmState The state.
1510 */
1511RTDECL(const char *) RTThreadStateName(RTTHREADSTATE enmState)
1512{
1513 switch (enmState)
1514 {
1515 case RTTHREADSTATE_INVALID: return "INVALID";
1516 case RTTHREADSTATE_INITIALIZING: return "INITIALIZING";
1517 case RTTHREADSTATE_TERMINATED: return "TERMINATED";
1518 case RTTHREADSTATE_RUNNING: return "RUNNING";
1519 case RTTHREADSTATE_CRITSECT: return "CRITSECT";
1520 case RTTHREADSTATE_EVENT: return "EVENT";
1521 case RTTHREADSTATE_EVENT_MULTI: return "EVENT_MULTI";
1522 case RTTHREADSTATE_FAST_MUTEX: return "FAST_MUTEX";
1523 case RTTHREADSTATE_MUTEX: return "MUTEX";
1524 case RTTHREADSTATE_RW_READ: return "RW_READ";
1525 case RTTHREADSTATE_RW_WRITE: return "RW_WRITE";
1526 case RTTHREADSTATE_SLEEP: return "SLEEP";
1527 case RTTHREADSTATE_SPIN_MUTEX: return "SPIN_MUTEX";
1528 default: return "UnknownThreadState";
1529 }
1530}
1531RT_EXPORT_SYMBOL(RTThreadStateName);
1532
1533#endif /* IN_RING3 */
1534#ifdef IPRT_WITH_GENERIC_TLS
1535
1536/**
1537 * Thread enumerator - clears a TLS entry.
1538 *
1539 * @returns 0.
1540 * @param pNode The thread node.
1541 * @param pvUser The TLS index.
1542 */
1543static DECLCALLBACK(int) rtThreadClearTlsEntryCallback(PAVLPVNODECORE pNode, void *pvUser)
1544{
1545 PRTTHREADINT pThread = (PRTTHREADINT)pNode;
1546 RTTLS iTls = (RTTLS)(uintptr_t)pvUser;
1547 ASMAtomicWriteNullPtr(&pThread->apvTlsEntries[iTls]);
1548 return 0;
1549}
1550
1551
1552/**
1553 * Helper for the generic TLS implementation that clears a given TLS
1554 * entry on all threads.
1555 *
1556 * @param iTls The TLS entry. (valid)
1557 */
1558DECLHIDDEN(void) rtThreadClearTlsEntry(RTTLS iTls)
1559{
1560 RT_THREAD_LOCK_RD();
1561 RTAvlPVDoWithAll(&g_ThreadTree, true /* fFromLeft*/, rtThreadClearTlsEntryCallback, (void *)(uintptr_t)iTls);
1562 RT_THREAD_UNLOCK_RD();
1563}
1564
1565#endif /* IPRT_WITH_GENERIC_TLS */
1566
1567
1568#if defined(RT_OS_WINDOWS) && defined(IN_RING3)
1569
1570/**
1571 * Thread enumeration callback for RTThreadNameThreads
1572 */
1573static DECLCALLBACK(int) rtThreadNameThreadCallback(PAVLPVNODECORE pNode, void *pvUser)
1574{
1575 PRTTHREADINT pThread = (PRTTHREADINT)pNode;
1576 rtThreadNativeInformDebugger(pThread);
1577 RT_NOREF_PV(pvUser);
1578 return 0;
1579}
1580
1581/**
1582 * A function that can be called from the windows debugger to get the names of
1583 * all threads when attaching to a process.
1584 *
1585 * Usage: .call VBoxRT!RTThreadNameThreads()
1586 *
1587 * @returns 0
1588 * @remarks Do not call from source code as it skips locks.
1589 */
1590extern "C" RTDECL(int) RTThreadNameThreads(void);
1591RTDECL(int) RTThreadNameThreads(void)
1592{
1593 return RTAvlPVDoWithAll(&g_ThreadTree, true /* fFromLeft*/, rtThreadNameThreadCallback, NULL);
1594}
1595
1596#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette