VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/string/strcache.cpp@ 49074

Last change on this file since 49074 was 46212, checked in by vboxsync, 12 years ago

build fixes

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 41.2 KB
Line 
1/* $Id: strcache.cpp 46212 2013-05-22 11:04:30Z vboxsync $ */
2/** @file
3 * IPRT - String Cache.
4 */
5
6/*
7 * Copyright (C) 2009-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Header Files *
30*******************************************************************************/
31#include <iprt/strcache.h>
32#include "internal/iprt.h"
33
34#include <iprt/alloca.h>
35#include <iprt/asm.h>
36#include <iprt/assert.h>
37#include <iprt/critsect.h>
38#include <iprt/err.h>
39#include <iprt/list.h>
40#include <iprt/mem.h>
41#include <iprt/once.h>
42#include <iprt/param.h>
43#include <iprt/string.h>
44
45#include "internal/strhash.h"
46#include "internal/magics.h"
47
48
49/*******************************************************************************
50* Defined Constants And Macros *
51*******************************************************************************/
52/** Special NIL pointer for the hash table. It differs from NULL in that it is
53 * a valid hash table entry when doing a lookup. */
54#define PRTSTRCACHEENTRY_NIL ((PRTSTRCACHEENTRY)~(uintptr_t)1)
55
56/** Calcuates the increment when handling a collision.
57 * The current formula makes sure it's always odd so we cannot possibly end
58 * up a cyclic loop with an even sized table. It also takes more bits from
59 * the length part. */
60#define RTSTRCACHE_COLLISION_INCR(uHashLen) ( ((uHashLen >> 8) | 1) )
61
62/** The initial hash table size. Must be power of two. */
63#define RTSTRCACHE_INITIAL_HASH_SIZE 512
64/** The hash table growth factor. */
65#define RTSTRCACHE_HASH_GROW_FACTOR 4
66
67/**
68 * The RTSTRCACHEENTRY size threshold at which we stop using our own allocator
69 * and switch to the application heap, expressed as a power of two.
70 *
71 * Using a 1KB as a reasonable limit here.
72 */
73#ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
74# define RTSTRCACHE_HEAP_THRESHOLD_BIT 10
75#else
76# define RTSTRCACHE_HEAP_THRESHOLD_BIT 9
77#endif
78/** The RTSTRCACHE_HEAP_THRESHOLD_BIT as a byte limit. */
79#define RTSTRCACHE_HEAP_THRESHOLD RT_BIT_32(RTSTRCACHE_HEAP_THRESHOLD_BIT)
80/** Big (heap) entry size alignment. */
81#define RTSTRCACHE_HEAP_ENTRY_SIZE_ALIGN 16
82
83#ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
84/**
85 * The RTSTRCACHEENTRY size threshold at which we start using the merge free
86 * list for allocations, expressed as a power of two.
87 */
88# define RTSTRCACHE_MERGED_THRESHOLD_BIT 6
89
90/** The number of bytes (power of two) that the merged allocation lists should
91 * be grown by. Must be much greater than RTSTRCACHE_MERGED_THRESHOLD. */
92# define RTSTRCACHE_MERGED_GROW_SIZE _32K
93#endif
94
95/** The number of bytes (power of two) that the fixed allocation lists should
96 * be grown by. */
97#define RTSTRCACHE_FIXED_GROW_SIZE _32K
98
99/** The number of fixed sized lists. */
100#define RTSTRCACHE_NUM_OF_FIXED_SIZES 12
101
102
103/** Validates a string cache handle, translating RTSTRCACHE_DEFAULT when found,
104 * and returns rc if not valid. */
105#define RTSTRCACHE_VALID_RETURN_RC(pStrCache, rc) \
106 do { \
107 if ((pStrCache) == RTSTRCACHE_DEFAULT) \
108 { \
109 int rcOnce = RTOnce(&g_rtStrCacheOnce, rtStrCacheInitDefault, NULL); \
110 if (RT_FAILURE(rcOnce)) \
111 return (rc); \
112 (pStrCache) = g_hrtStrCacheDefault; \
113 } \
114 else \
115 { \
116 AssertPtrReturn((pStrCache), (rc)); \
117 AssertReturn((pStrCache)->u32Magic == RTSTRCACHE_MAGIC, (rc)); \
118 } \
119 } while (0)
120
121
122
123/*******************************************************************************
124* Structures and Typedefs *
125*******************************************************************************/
126/**
127 * String cache entry.
128 */
129typedef struct RTSTRCACHEENTRY
130{
131 /** The number of references. */
132 uint32_t volatile cRefs;
133 /** The lower 16-bit hash value. */
134 uint16_t uHash;
135 /** The string length (excluding the terminator).
136 * If this is set to RTSTRCACHEENTRY_BIG_LEN, this is a BIG entry
137 * (RTSTRCACHEBIGENTRY). */
138 uint16_t cchString;
139 /** The string. */
140 char szString[8];
141} RTSTRCACHEENTRY;
142AssertCompileSize(RTSTRCACHEENTRY, 16);
143/** Pointer to a string cache entry. */
144typedef RTSTRCACHEENTRY *PRTSTRCACHEENTRY;
145/** Pointer to a const string cache entry. */
146typedef RTSTRCACHEENTRY *PCRTSTRCACHEENTRY;
147
148/** RTSTCACHEENTRY::cchString value for big cache entries. */
149#define RTSTRCACHEENTRY_BIG_LEN UINT16_MAX
150
151/**
152 * Big string cache entry.
153 *
154 * These are allocated individually from the application heap.
155 */
156typedef struct RTSTRCACHEBIGENTRY
157{
158 /** List entry. */
159 RTLISTNODE ListEntry;
160 /** The string length. */
161 uint32_t cchString;
162 /** The full hash value / padding. */
163 uint32_t uHash;
164 /** The core entry. */
165 RTSTRCACHEENTRY Core;
166} RTSTRCACHEBIGENTRY;
167AssertCompileSize(RTSTRCACHEENTRY, 16);
168/** Pointer to a big string cache entry. */
169typedef RTSTRCACHEBIGENTRY *PRTSTRCACHEBIGENTRY;
170/** Pointer to a const big string cache entry. */
171typedef RTSTRCACHEBIGENTRY *PCRTSTRCACHEBIGENTRY;
172
173
174/**
175 * A free string cache entry.
176 */
177typedef struct RTSTRCACHEFREE
178{
179 /** Zero value indicating that it's a free entry (no refs, no hash). */
180 uint32_t uZero;
181 /** Number of free bytes. Only used for > 32 byte allocations. */
182 uint32_t cbFree;
183 /** Pointer to the next free item. */
184 struct RTSTRCACHEFREE *pNext;
185} RTSTRCACHEFREE;
186AssertCompileSize(RTSTRCACHEENTRY, 16);
187AssertCompileMembersAtSameOffset(RTSTRCACHEENTRY, cRefs, RTSTRCACHEFREE, uZero);
188AssertCompileMembersAtSameOffset(RTSTRCACHEENTRY, szString, RTSTRCACHEFREE, pNext);
189/** Pointer to a free string cache entry. */
190typedef RTSTRCACHEFREE *PRTSTRCACHEFREE;
191
192#ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
193
194/**
195 * A free string cache entry with merging.
196 *
197 * This differs from RTSTRCACHEFREE only in having a back pointer for more
198 * efficient list management (doubly vs. singly linked lists).
199 */
200typedef struct RTSTRCACHEFREEMERGE
201{
202 /** Marker that indicates what kind of entry this is, either . */
203 uint32_t uMarker;
204 /** Number of free bytes. Only used for > 32 byte allocations. */
205 uint32_t cbFree;
206 /** Pointer to the main node. NULL for main nodes. */
207 struct RTSTRCACHEFREEMERGE *pMain;
208 /** The free list entry. */
209 RTLISTNODE ListEntry;
210 /** Pads the size up to the minimum allocation unit for the merge list.
211 * This both defines the minimum allocation unit and simplifies pointer
212 * manipulation during merging and splitting. */
213 uint8_t abPadding[ARCH_BITS == 32 ? 44 : 32];
214} RTSTRCACHEFREEMERGE;
215AssertCompileSize(RTSTRCACHEFREEMERGE, RT_BIT_32(RTSTRCACHE_MERGED_THRESHOLD_BIT));
216/** Pointer to a free cache string in the merge list. */
217typedef RTSTRCACHEFREEMERGE *PRTSTRCACHEFREEMERGE;
218
219/** RTSTRCACHEFREEMERGE::uMarker value indicating that it's the real free chunk
220 * header. Must be something that's invalid UTF-8 for both little and big
221 * endian system. */
222# define RTSTRCACHEFREEMERGE_MAIN UINT32_C(0xfffffff1)
223/** RTSTRCACHEFREEMERGE::uMarker value indicating that it's part of a larger
224 * chunk of free memory. Must be something that's invalid UTF-8 for both little
225 * and big endian system. */
226# define RTSTRCACHEFREEMERGE_PART UINT32_C(0xfffffff2)
227
228#endif /* RTSTRCACHE_WITH_MERGED_ALLOCATOR */
229
230/**
231 * Tracking structure chunk of memory used by the 16 byte or 32 byte
232 * allocations.
233 *
234 * This occupies the first entry in the chunk.
235 */
236typedef struct RTSTRCACHECHUNK
237{
238 /** The size of the chunk. */
239 size_t cb;
240 /** Pointer to the next chunk. */
241 struct RTSTRCACHECHUNK *pNext;
242} RTSTRCACHECHUNK;
243AssertCompile(sizeof(RTSTRCACHECHUNK) <= sizeof(RTSTRCACHEENTRY));
244/** Pointer to the chunk tracking structure. */
245typedef RTSTRCACHECHUNK *PRTSTRCACHECHUNK;
246
247
248/**
249 * Cache instance data.
250 */
251typedef struct RTSTRCACHEINT
252{
253 /** The string cache magic (RTSTRCACHE_MAGIC). */
254 uint32_t u32Magic;
255 /** Ref counter for the cache handle. */
256 uint32_t volatile cRefs;
257 /** The number of strings currently entered in the cache. */
258 uint32_t cStrings;
259 /** The size of the hash table. */
260 uint32_t cHashTab;
261 /** Pointer to the hash table. */
262 PRTSTRCACHEENTRY *papHashTab;
263 /** Free list for allocations of the sizes defined by g_acbFixedLists. */
264 PRTSTRCACHEFREE apFreeLists[RTSTRCACHE_NUM_OF_FIXED_SIZES];
265#ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
266 /** Free lists based on */
267 RTLISTANCHOR aMergedFreeLists[RTSTRCACHE_HEAP_THRESHOLD_BIT - RTSTRCACHE_MERGED_THRESHOLD_BIT + 1];
268#endif
269 /** List of allocated memory chunks. */
270 PRTSTRCACHECHUNK pChunkList;
271 /** List of big cache entries. */
272 RTLISTANCHOR BigEntryList;
273
274 /** @name Statistics
275 * @{ */
276 /** The total size of all chunks. */
277 size_t cbChunks;
278 /** The total length of all the strings, terminators included. */
279 size_t cbStrings;
280 /** The total size of all the big entries. */
281 size_t cbBigEntries;
282 /** Hash collisions. */
283 uint32_t cHashCollisions;
284 /** Secondary hash collisions. */
285 uint32_t cHashCollisions2;
286 /** The number of inserts to compare cHashCollisions to. */
287 uint32_t cHashInserts;
288 /** The number of rehashes. */
289 uint32_t cRehashes;
290 /** @} */
291
292 /** Critical section protecting the cache structures. */
293 RTCRITSECT CritSect;
294} RTSTRCACHEINT;
295/** Pointer to a cache instance. */
296typedef RTSTRCACHEINT *PRTSTRCACHEINT;
297
298
299
300/*******************************************************************************
301* Global Variables *
302*******************************************************************************/
303/** The entry sizes of the fixed lists (RTSTRCACHEINT::apFreeLists). */
304static const uint32_t g_acbFixedLists[RTSTRCACHE_NUM_OF_FIXED_SIZES] =
305{
306 16, 32, 48, 64, 96, 128, 192, 256, 320, 384, 448, 512
307};
308
309/** Init once for the default string cache. */
310static RTONCE g_rtStrCacheOnce = RTONCE_INITIALIZER;
311/** The default string cache. */
312static RTSTRCACHE g_hrtStrCacheDefault = NIL_RTSTRCACHE;
313
314
315/** @callback_method_impl{FNRTONCE, Initializes g_hrtStrCacheDefault} */
316static DECLCALLBACK(int) rtStrCacheInitDefault(void *pvUser)
317{
318 NOREF(pvUser);
319 return RTStrCacheCreate(&g_hrtStrCacheDefault, "Default");
320}
321
322
323RTDECL(int) RTStrCacheCreate(PRTSTRCACHE phStrCache, const char *pszName)
324{
325 int rc = VERR_NO_MEMORY;
326 PRTSTRCACHEINT pThis = (PRTSTRCACHEINT)RTMemAllocZ(sizeof(*pThis));
327 if (pThis)
328 {
329 pThis->cHashTab = RTSTRCACHE_INITIAL_HASH_SIZE;
330 pThis->papHashTab = (PRTSTRCACHEENTRY*)RTMemAllocZ(sizeof(pThis->papHashTab[0]) * pThis->cHashTab);
331 if (pThis->papHashTab)
332 {
333 rc = RTCritSectInit(&pThis->CritSect);
334 if (RT_SUCCESS(rc))
335 {
336 RTListInit(&pThis->BigEntryList);
337#ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
338 for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aMergedFreeLists); i++)
339 RTListInit(&pThis->aMergedFreeLists[i]);
340#endif
341 pThis->cRefs = 1;
342 pThis->u32Magic = RTSTRCACHE_MAGIC;
343
344 *phStrCache = pThis;
345 return VINF_SUCCESS;
346 }
347 RTMemFree(pThis->papHashTab);
348 }
349 RTMemFree(pThis);
350 }
351 return rc;
352}
353RT_EXPORT_SYMBOL(RTStrCacheCreate);
354
355
356RTDECL(int) RTStrCacheDestroy(RTSTRCACHE hStrCache)
357{
358 if ( hStrCache == NIL_RTSTRCACHE
359 || hStrCache == RTSTRCACHE_DEFAULT)
360 return VINF_SUCCESS;
361
362 PRTSTRCACHEINT pThis = hStrCache;
363 RTSTRCACHE_VALID_RETURN_RC(pThis, VERR_INVALID_HANDLE);
364
365 /*
366 * Invalidate it. Enter the crit sect just to be on the safe side.
367 */
368 AssertReturn(ASMAtomicCmpXchgU32(&pThis->u32Magic, RTSTRCACHE_MAGIC_DEAD, RTSTRCACHE_MAGIC), VERR_INVALID_HANDLE);
369 RTCritSectEnter(&pThis->CritSect);
370 Assert(pThis->cRefs == 1);
371
372 PRTSTRCACHECHUNK pChunk;
373 while ((pChunk = pThis->pChunkList) != NULL)
374 {
375 pThis->pChunkList = pChunk->pNext;
376 RTMemPageFree(pChunk, pChunk->cb);
377 }
378
379 RTMemFree(pThis->papHashTab);
380 pThis->papHashTab = NULL;
381 pThis->cHashTab = 0;
382
383 PRTSTRCACHEBIGENTRY pCur, pNext;
384 RTListForEachSafe(&pThis->BigEntryList, pCur, pNext, RTSTRCACHEBIGENTRY, ListEntry)
385 {
386 RTMemFree(pCur);
387 }
388
389 RTCritSectLeave(&pThis->CritSect);
390 RTCritSectDelete(&pThis->CritSect);
391
392 RTMemFree(pThis);
393 return VINF_SUCCESS;
394}
395RT_EXPORT_SYMBOL(RTStrCacheDestroy);
396
397
398/**
399 * Selects the fixed free list index for a given minimum entry size.
400 *
401 * @returns Free list index.
402 * @param cbMin Minimum entry size.
403 */
404DECLINLINE(uint32_t) rtStrCacheSelectFixedList(uint32_t cbMin)
405{
406 Assert(cbMin <= g_acbFixedLists[RT_ELEMENTS(g_acbFixedLists) - 1]);
407 unsigned i = 0;
408 while (cbMin > g_acbFixedLists[i])
409 i++;
410 return i;
411}
412
413
414#ifdef RT_STRICT
415# define RTSTRCACHE_CHECK(a_pThis) do { rtStrCacheCheck(pThis); } while (0)
416/**
417 * Internal cache check.
418 */
419static void rtStrCacheCheck(PRTSTRCACHEINT pThis)
420{
421# ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
422 for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aMergedFreeLists); i++)
423 {
424 PRTSTRCACHEFREEMERGE pFree;
425 RTListForEach(&pThis->aMergedFreeLists[i], pFree, RTSTRCACHEFREEMERGE, ListEntry)
426 {
427 Assert(pFree->uMarker == RTSTRCACHEFREEMERGE_MAIN);
428 Assert(pFree->cbFree > 0);
429 Assert(RT_ALIGN_32(pFree->cbFree, sizeof(*pFree)) == pFree->cbFree);
430 }
431 }
432# endif
433}
434#else
435# define RTSTRCACHE_CHECK(a_pThis) do { } while (0)
436#endif
437
438
439/**
440 * Finds the first empty hash table entry given a hash+length value.
441 *
442 * ASSUMES that the hash table isn't full.
443 *
444 * @returns Hash table index.
445 * @param pThis The string cache instance.
446 * @param uHashLen The hash + length (not RTSTRCACHEENTRY_BIG_LEN).
447 */
448static uint32_t rtStrCacheFindEmptyHashTabEntry(PRTSTRCACHEINT pThis, uint32_t uHashLen)
449{
450 uint32_t iHash = uHashLen % pThis->cHashTab;
451 for (;;)
452 {
453 PRTSTRCACHEENTRY pEntry = pThis->papHashTab[iHash];
454 if (pEntry == NULL || pEntry == PRTSTRCACHEENTRY_NIL)
455 return iHash;
456
457 /* Advance. */
458 iHash += RTSTRCACHE_COLLISION_INCR(uHashLen);
459 iHash %= pThis->cHashTab;
460 }
461}
462
463/**
464 * Grows the hash table.
465 *
466 * @returns vINF_SUCCESS or VERR_NO_MEMORY.
467 * @param pThis The string cache instance.
468 */
469static int rtStrCacheGrowHashTab(PRTSTRCACHEINT pThis)
470{
471 /*
472 * Allocate a new hash table two times the size of the old one.
473 */
474 uint32_t cNew = pThis->cHashTab * RTSTRCACHE_HASH_GROW_FACTOR;
475 PRTSTRCACHEENTRY *papNew = (PRTSTRCACHEENTRY *)RTMemAllocZ(sizeof(papNew[0]) * cNew);
476 if (papNew == NULL)
477 return VERR_NO_MEMORY;
478
479 /*
480 * Install the new table and move the items from the old table and into the new one.
481 */
482 PRTSTRCACHEENTRY *papOld = pThis->papHashTab;
483 uint32_t iOld = pThis->cHashTab;
484
485 pThis->papHashTab = papNew;
486 pThis->cHashTab = cNew;
487 pThis->cRehashes++;
488
489 while (iOld-- > 0)
490 {
491 PRTSTRCACHEENTRY pEntry = papOld[iOld];
492 if (pEntry != NULL && pEntry != PRTSTRCACHEENTRY_NIL)
493 {
494 uint32_t cchString = pEntry->cchString;
495 if (cchString == RTSTRCACHEENTRY_BIG_LEN)
496 cchString = RT_FROM_MEMBER(pEntry, RTSTRCACHEBIGENTRY, Core)->cchString;
497
498 uint32_t iHash = rtStrCacheFindEmptyHashTabEntry(pThis, RT_MAKE_U32(pEntry->uHash, cchString));
499 pThis->papHashTab[iHash] = pEntry;
500 }
501 }
502
503 /*
504 * Free the old hash table.
505 */
506 RTMemFree(papOld);
507 return VINF_SUCCESS;
508}
509
510#ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
511
512/**
513 * Link/Relink into the free right list.
514 *
515 * @param pThis The string cache instance.
516 * @param pFree The free string entry.
517 */
518static void rtStrCacheRelinkMerged(PRTSTRCACHEINT pThis, PRTSTRCACHEFREEMERGE pFree)
519{
520 Assert(pFree->uMarker == RTSTRCACHEFREEMERGE_MAIN);
521 Assert(pFree->cbFree > 0);
522 Assert(RT_ALIGN_32(pFree->cbFree, sizeof(*pFree)) == pFree->cbFree);
523
524 if (!RTListIsEmpty(&pFree->ListEntry))
525 RTListNodeRemove(&pFree->ListEntry);
526
527 uint32_t iList = (ASMBitLastSetU32(pFree->cbFree) - 1) - RTSTRCACHE_MERGED_THRESHOLD_BIT;
528 if (iList >= RT_ELEMENTS(pThis->aMergedFreeLists))
529 iList = RT_ELEMENTS(pThis->aMergedFreeLists) - 1;
530
531 RTListPrepend(&pThis->aMergedFreeLists[iList], &pFree->ListEntry);
532}
533
534
535/**
536 * Allocate a cache entry from the merged free lists.
537 *
538 * @returns Pointer to the cache entry on success, NULL on allocation error.
539 * @param pThis The string cache instance.
540 * @param uHash The full hash of the string.
541 * @param pchString The string.
542 * @param cchString The string length.
543 * @param cbEntry The required entry size.
544 */
545static PRTSTRCACHEENTRY rtStrCacheAllocMergedEntry(PRTSTRCACHEINT pThis, uint32_t uHash,
546 const char *pchString, uint32_t cchString, uint32_t cbEntry)
547{
548 cbEntry = RT_ALIGN_32(cbEntry, sizeof(RTSTRCACHEFREEMERGE));
549 Assert(cbEntry > cchString);
550
551 /*
552 * Search the list heads first.
553 */
554 PRTSTRCACHEFREEMERGE pFree = NULL;
555
556 uint32_t iList = ASMBitLastSetU32(cbEntry) - 1;
557 if (!RT_IS_POWER_OF_TWO(cbEntry))
558 iList++;
559 iList -= RTSTRCACHE_MERGED_THRESHOLD_BIT;
560
561 while (iList < RT_ELEMENTS(pThis->aMergedFreeLists))
562 {
563 pFree = RTListGetFirst(&pThis->aMergedFreeLists[iList], RTSTRCACHEFREEMERGE, ListEntry);
564 if (pFree)
565 {
566 /*
567 * Found something. Should we we split it? We split from the end
568 * to avoid having to update all the sub entries.
569 */
570 Assert(pFree->uMarker == RTSTRCACHEFREEMERGE_MAIN);
571 Assert(pFree->cbFree >= cbEntry);
572 Assert(RT_ALIGN_32(pFree->cbFree, sizeof(*pFree)) == pFree->cbFree);
573
574 if (pFree->cbFree == cbEntry)
575 RTListNodeRemove(&pFree->ListEntry);
576 else
577 {
578 uint32_t cRemainder = (pFree->cbFree - cbEntry) / sizeof(*pFree);
579 PRTSTRCACHEFREEMERGE pRemainder = pFree;
580 pFree += cRemainder;
581
582 Assert((pRemainder->cbFree - cbEntry) == cRemainder * sizeof(*pFree));
583 pRemainder->cbFree = cRemainder * sizeof(*pFree);
584
585 rtStrCacheRelinkMerged(pThis, pRemainder);
586 }
587 break;
588 }
589 iList++;
590 }
591 if (!pFree)
592 {
593 /*
594 * Allocate a new block. (We could search the list below in some
595 * cases, but it's too much effort to write and execute).
596 */
597 size_t const cbChunk = RTSTRCACHE_MERGED_GROW_SIZE; AssertReturn(cbChunk > cbEntry * 2, NULL);
598 PRTSTRCACHECHUNK pChunk = (PRTSTRCACHECHUNK)RTMemPageAlloc(cbChunk);
599 if (!pChunk)
600 return NULL;
601 pChunk->cb = cbChunk;
602 pChunk->pNext = pThis->pChunkList;
603 pThis->pChunkList = pChunk;
604 pThis->cbChunks += cbChunk;
605 AssertCompile(sizeof(*pChunk) <= sizeof(*pFree));
606
607 /*
608 * Get one node for the allocation at hand.
609 */
610 pFree = (PRTSTRCACHEFREEMERGE)((uintptr_t)pChunk + sizeof(*pFree));
611
612 /*
613 * Create a free block out of the remainder (always a reminder).
614 */
615 PRTSTRCACHEFREEMERGE pNewFree = (PRTSTRCACHEFREEMERGE)((uintptr_t)pFree + cbEntry);
616 pNewFree->uMarker = RTSTRCACHEFREEMERGE_MAIN;
617 pNewFree->cbFree = cbChunk - sizeof(*pNewFree) - cbEntry; Assert(pNewFree->cbFree < cbChunk && pNewFree->cbFree > 0);
618 pNewFree->pMain = NULL;
619 RTListInit(&pNewFree->ListEntry);
620
621 uint32_t iInternalBlock = pNewFree->cbFree / sizeof(*pNewFree);
622 while (iInternalBlock-- > 1)
623 {
624 pNewFree[iInternalBlock].uMarker = RTSTRCACHEFREEMERGE_PART;
625 pNewFree[iInternalBlock].cbFree = 0;
626 pNewFree[iInternalBlock].pMain = pNewFree;
627 }
628
629 rtStrCacheRelinkMerged(pThis, pNewFree);
630 }
631
632 /*
633 * Initialize the entry. We zero all bytes we don't use so they cannot
634 * accidentally be mistaken for a free entry.
635 */
636 ASMCompilerBarrier();
637 PRTSTRCACHEENTRY pEntry = (PRTSTRCACHEENTRY)pFree;
638 pEntry->cRefs = 1;
639 pEntry->uHash = (uint16_t)uHash;
640 pEntry->cchString = (uint16_t)cchString;
641 memcpy(pEntry->szString, pchString, cchString);
642 RT_BZERO(&pEntry->szString[cchString], cbEntry - RT_UOFFSETOF(RTSTRCACHEENTRY, szString) - cchString);
643
644 RTSTRCACHE_CHECK(pThis);
645
646 return pEntry;
647}
648
649#endif /* RTSTRCACHE_WITH_MERGED_ALLOCATOR */
650
651/**
652 * Allocate a cache entry from the heap.
653 *
654 * @returns Pointer to the cache entry on success, NULL on allocation error.
655 * @param pThis The string cache instance.
656 * @param uHash The full hash of the string.
657 * @param pchString The string.
658 * @param cchString The string length.
659 */
660static PRTSTRCACHEENTRY rtStrCacheAllocHeapEntry(PRTSTRCACHEINT pThis, uint32_t uHash,
661 const char *pchString, uint32_t cchString)
662{
663 /*
664 * Allocate a heap block for storing the string. We do some size aligning
665 * here to encourage the heap to give us optimal alignment.
666 */
667 size_t cbEntry = RT_UOFFSETOF(RTSTRCACHEBIGENTRY, Core.szString[cchString + 1]);
668 PRTSTRCACHEBIGENTRY pBigEntry = (PRTSTRCACHEBIGENTRY)RTMemAlloc(RT_ALIGN_Z(cbEntry, RTSTRCACHE_HEAP_ENTRY_SIZE_ALIGN));
669 if (!pBigEntry)
670 return NULL;
671
672 /*
673 * Initialize the block.
674 */
675 RTListAppend(&pThis->BigEntryList, &pBigEntry->ListEntry);
676 pThis->cbBigEntries += cbEntry;
677 pBigEntry->cchString = cchString;
678 pBigEntry->uHash = uHash;
679 pBigEntry->Core.cRefs = 1;
680 pBigEntry->Core.uHash = (uint16_t)uHash;
681 pBigEntry->Core.cchString = RTSTRCACHEENTRY_BIG_LEN;
682 memcpy(pBigEntry->Core.szString, pchString, cchString);
683 pBigEntry->Core.szString[cchString] = '\0';
684
685 return &pBigEntry->Core;
686}
687
688
689/**
690 * Allocate a cache entry from a fixed size free list.
691 *
692 * @returns Pointer to the cache entry on success, NULL on allocation error.
693 * @param pThis The string cache instance.
694 * @param uHash The full hash of the string.
695 * @param pchString The string.
696 * @param cchString The string length.
697 * @param iFreeList Which free list.
698 */
699static PRTSTRCACHEENTRY rtStrCacheAllocFixedEntry(PRTSTRCACHEINT pThis, uint32_t uHash,
700 const char *pchString, uint32_t cchString, uint32_t iFreeList)
701{
702 /*
703 * Get an entry from the free list. If empty, allocate another chunk of
704 * memory and split it up into free entries of the desired size.
705 */
706 PRTSTRCACHEFREE pFree = pThis->apFreeLists[iFreeList];
707 if (!pFree)
708 {
709 PRTSTRCACHECHUNK pChunk = (PRTSTRCACHECHUNK)RTMemPageAlloc(RTSTRCACHE_FIXED_GROW_SIZE);
710 if (!pChunk)
711 return NULL;
712 pChunk->cb = RTSTRCACHE_FIXED_GROW_SIZE;
713 pChunk->pNext = pThis->pChunkList;
714 pThis->pChunkList = pChunk;
715 pThis->cbChunks += RTSTRCACHE_FIXED_GROW_SIZE;
716
717 PRTSTRCACHEFREE pPrev = NULL;
718 uint32_t const cbEntry = g_acbFixedLists[iFreeList];
719 uint32_t cLeft = RTSTRCACHE_FIXED_GROW_SIZE / cbEntry - 1;
720 pFree = (PRTSTRCACHEFREE)((uintptr_t)pChunk + cbEntry);
721
722 Assert(sizeof(*pChunk) <= cbEntry);
723 Assert(sizeof(*pFree) <= cbEntry);
724 Assert(cbEntry < RTSTRCACHE_FIXED_GROW_SIZE / 16);
725
726 while (cLeft-- > 0)
727 {
728 pFree->uZero = 0;
729 pFree->cbFree = cbEntry;
730 pFree->pNext = pPrev;
731 pPrev = pFree;
732 pFree = (PRTSTRCACHEFREE)((uintptr_t)pFree + cbEntry);
733 }
734
735 Assert(pPrev);
736 pThis->apFreeLists[iFreeList] = pFree = pPrev;
737 }
738
739 /*
740 * Unlink it.
741 */
742 pThis->apFreeLists[iFreeList] = pFree->pNext;
743 ASMCompilerBarrier();
744
745 /*
746 * Initialize the entry.
747 */
748 PRTSTRCACHEENTRY pEntry = (PRTSTRCACHEENTRY)pFree;
749 pEntry->cRefs = 1;
750 pEntry->uHash = (uint16_t)uHash;
751 pEntry->cchString = (uint16_t)cchString;
752 memcpy(pEntry->szString, pchString, cchString);
753 pEntry->szString[cchString] = '\0';
754
755 return pEntry;
756}
757
758
759/**
760 * Looks up a string in the hash table.
761 *
762 * @returns Pointer to the string cache entry, NULL + piFreeHashTabEntry if not
763 * found.
764 * @param pThis The string cache instance.
765 * @param uHashLen The hash + length (not RTSTRCACHEENTRY_BIG_LEN).
766 * @param cchString The real length.
767 * @param pchString The string.
768 * @param piFreeHashTabEntry Where to store the index insertion index if NULL
769 * is returned (same as what
770 * rtStrCacheFindEmptyHashTabEntry would return).
771 * @param pcCollisions Where to return a collision counter.
772 */
773static PRTSTRCACHEENTRY rtStrCacheLookUp(PRTSTRCACHEINT pThis, uint32_t uHashLen, uint32_t cchString, const char *pchString,
774 uint32_t *piFreeHashTabEntry, uint32_t *pcCollisions)
775{
776 *piFreeHashTabEntry = UINT32_MAX;
777 *pcCollisions = 0;
778
779 uint16_t cchStringFirst = RT_UOFFSETOF(RTSTRCACHEENTRY, szString[cchString + 1]) < RTSTRCACHE_HEAP_THRESHOLD
780 ? (uint16_t)cchString : RTSTRCACHEENTRY_BIG_LEN;
781 uint32_t iHash = uHashLen % pThis->cHashTab;
782 for (;;)
783 {
784 PRTSTRCACHEENTRY pEntry = pThis->papHashTab[iHash];
785
786 /* Give up if NULL, but record the index for insertion. */
787 if (pEntry == NULL)
788 {
789 if (*piFreeHashTabEntry == UINT32_MAX)
790 *piFreeHashTabEntry = iHash;
791 return NULL;
792 }
793
794 if (pEntry != PRTSTRCACHEENTRY_NIL)
795 {
796 /* Compare. */
797 if ( pEntry->uHash == (uint16_t)uHashLen
798 && pEntry->cchString == cchStringFirst)
799 {
800 if (pEntry->cchString != RTSTRCACHEENTRY_BIG_LEN)
801 {
802 if ( !memcmp(pEntry->szString, pchString, cchString)
803 && pEntry->szString[cchString] == '\0')
804 return pEntry;
805 }
806 else
807 {
808 PRTSTRCACHEBIGENTRY pBigEntry = RT_FROM_MEMBER(pEntry, RTSTRCACHEBIGENTRY, Core);
809 if ( pBigEntry->cchString == cchString
810 && !memcmp(pBigEntry->Core.szString, pchString, cchString))
811 return &pBigEntry->Core;
812 }
813 }
814
815 if (*piFreeHashTabEntry == UINT32_MAX)
816 *pcCollisions += 1;
817 }
818 /* Record the first NIL index for insertion in case we don't get a hit. */
819 else if (*piFreeHashTabEntry == UINT32_MAX)
820 *piFreeHashTabEntry = iHash;
821
822 /* Advance. */
823 iHash += RTSTRCACHE_COLLISION_INCR(uHashLen);
824 iHash %= pThis->cHashTab;
825 }
826}
827
828
829RTDECL(const char *) RTStrCacheEnterN(RTSTRCACHE hStrCache, const char *pchString, size_t cchString)
830{
831 PRTSTRCACHEINT pThis = hStrCache;
832 RTSTRCACHE_VALID_RETURN_RC(pThis, NULL);
833
834
835 /*
836 * Calculate the hash and figure the exact string length, then look for an existing entry.
837 */
838 uint32_t const uHash = sdbmN(pchString, cchString, &cchString);
839 uint32_t const uHashLen = RT_MAKE_U32(uHash, cchString);
840 AssertReturn(cchString < _1G, NULL);
841 uint32_t const cchString32 = (uint32_t)cchString;
842
843 RTCritSectEnter(&pThis->CritSect);
844 RTSTRCACHE_CHECK(pThis);
845
846 uint32_t cCollisions;
847 uint32_t iFreeHashTabEntry;
848 PRTSTRCACHEENTRY pEntry = rtStrCacheLookUp(pThis, uHashLen, cchString32, pchString, &iFreeHashTabEntry, &cCollisions);
849 if (pEntry)
850 {
851 uint32_t cRefs = ASMAtomicIncU32(&pEntry->cRefs);
852 Assert(cRefs < UINT32_MAX / 2);
853 }
854 else
855 {
856 /*
857 * Allocate a new entry.
858 */
859 uint32_t cbEntry = cchString32 + 1U + RT_UOFFSETOF(RTSTRCACHEENTRY, szString);
860 if (cbEntry >= RTSTRCACHE_HEAP_THRESHOLD)
861 pEntry = rtStrCacheAllocHeapEntry(pThis, uHash, pchString, cchString32);
862#ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
863 else if (cbEntry >= RTSTRCACHE_MERGED_THRESHOLD_BIT)
864 pEntry = rtStrCacheAllocMergedEntry(pThis, uHash, pchString, cchString32, cbEntry);
865#endif
866 else
867 pEntry = rtStrCacheAllocFixedEntry(pThis, uHash, pchString, cchString32,
868 rtStrCacheSelectFixedList(cbEntry));
869 if (!pEntry)
870 {
871 RTSTRCACHE_CHECK(pThis);
872 RTCritSectLeave(&pThis->CritSect);
873 return NULL;
874 }
875
876 /*
877 * Insert it into the hash table.
878 */
879 if (pThis->cHashTab - pThis->cStrings < pThis->cHashTab / 2)
880 {
881 int rc = rtStrCacheGrowHashTab(pThis);
882 if (RT_SUCCESS(rc))
883 iFreeHashTabEntry = rtStrCacheFindEmptyHashTabEntry(pThis, uHashLen);
884 else if (pThis->cHashTab - pThis->cStrings <= pThis->cHashTab / 8) /* 12.5% full => error */
885 {
886 pThis->papHashTab[iFreeHashTabEntry] = pEntry;
887 pThis->cStrings++;
888 pThis->cHashInserts++;
889 pThis->cHashCollisions += cCollisions > 0;
890 pThis->cHashCollisions2 += cCollisions > 1;
891 pThis->cbStrings += cchString32 + 1;
892 RTStrCacheRelease(hStrCache, pEntry->szString);
893
894 RTSTRCACHE_CHECK(pThis);
895 RTCritSectLeave(&pThis->CritSect);
896 return NULL;
897 }
898 }
899
900 pThis->papHashTab[iFreeHashTabEntry] = pEntry;
901 pThis->cStrings++;
902 pThis->cHashInserts++;
903 pThis->cHashCollisions += cCollisions > 0;
904 pThis->cHashCollisions2 += cCollisions > 1;
905 pThis->cbStrings += cchString32 + 1;
906 Assert(pThis->cStrings < pThis->cHashTab && pThis->cStrings > 0);
907 }
908
909 RTSTRCACHE_CHECK(pThis);
910 RTCritSectLeave(&pThis->CritSect);
911 return pEntry->szString;
912}
913RT_EXPORT_SYMBOL(RTStrCacheEnterN);
914
915
916RTDECL(const char *) RTStrCacheEnter(RTSTRCACHE hStrCache, const char *psz)
917{
918 return RTStrCacheEnterN(hStrCache, psz, strlen(psz));
919}
920RT_EXPORT_SYMBOL(RTStrCacheEnter);
921
922
923static const char *rtStrCacheEnterLowerWorker(PRTSTRCACHEINT pThis, const char *pchString, size_t cchString)
924{
925 /*
926 * Try use a dynamic heap buffer first.
927 */
928 if (cchString < 512)
929 {
930 char *pszStackBuf = (char *)alloca(cchString + 1);
931 if (pszStackBuf)
932 {
933 memcpy(pszStackBuf, pchString, cchString);
934 pszStackBuf[cchString] = '\0';
935 RTStrToLower(pszStackBuf);
936 return RTStrCacheEnterN(pThis, pszStackBuf, cchString);
937 }
938 }
939
940 /*
941 * Fall back on heap.
942 */
943 char *pszHeapBuf = (char *)RTMemTmpAlloc(cchString + 1);
944 if (!pszHeapBuf)
945 return NULL;
946 memcpy(pszHeapBuf, pchString, cchString);
947 pszHeapBuf[cchString] = '\0';
948 RTStrToLower(pszHeapBuf);
949 const char *pszRet = RTStrCacheEnterN(pThis, pszHeapBuf, cchString);
950 RTMemTmpFree(pszHeapBuf);
951 return pszRet;
952}
953
954RTDECL(const char *) RTStrCacheEnterLowerN(RTSTRCACHE hStrCache, const char *pchString, size_t cchString)
955{
956 PRTSTRCACHEINT pThis = hStrCache;
957 RTSTRCACHE_VALID_RETURN_RC(pThis, NULL);
958 return rtStrCacheEnterLowerWorker(pThis, pchString, RTStrNLen(pchString, cchString));
959}
960RT_EXPORT_SYMBOL(RTStrCacheEnterLowerN);
961
962
963RTDECL(const char *) RTStrCacheEnterLower(RTSTRCACHE hStrCache, const char *psz)
964{
965 PRTSTRCACHEINT pThis = hStrCache;
966 RTSTRCACHE_VALID_RETURN_RC(pThis, NULL);
967 return rtStrCacheEnterLowerWorker(pThis, psz, strlen(psz));
968}
969RT_EXPORT_SYMBOL(RTStrCacheEnterLower);
970
971
972RTDECL(uint32_t) RTStrCacheRetain(const char *psz)
973{
974 AssertPtr(psz);
975
976 PRTSTRCACHEENTRY pStr = RT_FROM_MEMBER(psz, RTSTRCACHEENTRY, szString);
977 Assert(!((uintptr_t)pStr & 15) || pStr->cchString == RTSTRCACHEENTRY_BIG_LEN);
978
979 uint32_t cRefs = ASMAtomicIncU32(&pStr->cRefs);
980 Assert(cRefs > 1);
981 Assert(cRefs < UINT32_MAX / 2);
982
983 return cRefs;
984}
985RT_EXPORT_SYMBOL(RTStrCacheRetain);
986
987
988static uint32_t rtStrCacheFreeEntry(PRTSTRCACHEINT pThis, PRTSTRCACHEENTRY pStr)
989{
990 RTCritSectEnter(&pThis->CritSect);
991 RTSTRCACHE_CHECK(pThis);
992
993 /* Remove it from the hash table. */
994 uint32_t cchString = pStr->cchString == RTSTRCACHEENTRY_BIG_LEN
995 ? RT_FROM_MEMBER(pStr, RTSTRCACHEBIGENTRY, Core)->cchString
996 : pStr->cchString;
997 uint32_t uHashLen = RT_MAKE_U32(pStr->uHash, cchString);
998 uint32_t iHash = uHashLen % pThis->cHashTab;
999 if (pThis->papHashTab[iHash] == pStr)
1000 pThis->papHashTab[iHash] = PRTSTRCACHEENTRY_NIL;
1001 else
1002 {
1003 do
1004 {
1005 AssertBreak(pThis->papHashTab[iHash] != NULL);
1006 iHash += RTSTRCACHE_COLLISION_INCR(uHashLen);
1007 iHash %= pThis->cHashTab;
1008 } while (pThis->papHashTab[iHash] != pStr);
1009 if (RT_LIKELY(pThis->papHashTab[iHash] == pStr))
1010 pThis->papHashTab[iHash] = PRTSTRCACHEENTRY_NIL;
1011 else
1012 {
1013 AssertFailed();
1014 iHash = pThis->cHashTab;
1015 while (iHash-- > 0)
1016 if (pThis->papHashTab[iHash] == pStr)
1017 break;
1018 AssertMsgFailed(("iHash=%u cHashTab=%u\n", iHash, pThis->cHashTab));
1019 }
1020 }
1021
1022 pThis->cStrings--;
1023 pThis->cbStrings -= cchString;
1024 Assert(pThis->cStrings < pThis->cHashTab);
1025
1026 /* Free it. */
1027 if (pStr->cchString != RTSTRCACHEENTRY_BIG_LEN)
1028 {
1029 uint32_t const cbMin = pStr->cchString + 1U + RT_UOFFSETOF(RTSTRCACHEENTRY, szString);
1030#ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
1031 if (cbMin <= RTSTRCACHE_MAX_FIXED)
1032#endif
1033 {
1034 /*
1035 * No merging, just add it to the list.
1036 */
1037 uint32_t const iFreeList = rtStrCacheSelectFixedList(cbMin);
1038 ASMCompilerBarrier();
1039 PRTSTRCACHEFREE pFreeStr = (PRTSTRCACHEFREE)pStr;
1040 pFreeStr->cbFree = cbMin;
1041 pFreeStr->uZero = 0;
1042 pFreeStr->pNext = pThis->apFreeLists[iFreeList];
1043 pThis->apFreeLists[iFreeList] = pFreeStr;
1044 }
1045#ifdef RTSTRCACHE_WITH_MERGED_ALLOCATOR
1046 else
1047 {
1048 /*
1049 * Complicated mode, we merge with adjecent nodes.
1050 */
1051 ASMCompilerBarrier();
1052 PRTSTRCACHEFREEMERGE pFreeStr = (PRTSTRCACHEFREEMERGE)pStr;
1053 pFreeStr->cbFree = RT_ALIGN_32(cbMin, sizeof(*pFreeStr));
1054 pFreeStr->uMarker = RTSTRCACHEFREEMERGE_MAIN;
1055 pFreeStr->pMain = NULL;
1056 RTListInit(&pFreeStr->ListEntry);
1057
1058 /*
1059 * Merge with previous?
1060 * (Reading one block back is safe because there is always the
1061 * RTSTRCACHECHUNK structure at the head of each memory chunk.)
1062 */
1063 uint32_t cInternalBlocks = pFreeStr->cbFree / sizeof(*pFreeStr);
1064 PRTSTRCACHEFREEMERGE pMain = pFreeStr - 1;
1065 if ( pMain->uMarker == RTSTRCACHEFREEMERGE_MAIN
1066 || pMain->uMarker == RTSTRCACHEFREEMERGE_PART)
1067 {
1068 while (pMain->uMarker != RTSTRCACHEFREEMERGE_MAIN)
1069 pMain--;
1070 pMain->cbFree += pFreeStr->cbFree;
1071 }
1072 else
1073 {
1074 pMain = pFreeStr;
1075 pFreeStr++;
1076 cInternalBlocks--;
1077 }
1078
1079 /*
1080 * Mark internal blocks in the string we're freeing.
1081 */
1082 while (cInternalBlocks-- > 0)
1083 {
1084 pFreeStr->uMarker = RTSTRCACHEFREEMERGE_PART;
1085 pFreeStr->cbFree = 0;
1086 pFreeStr->pMain = pMain;
1087 RTListInit(&pFreeStr->ListEntry);
1088 pFreeStr++;
1089 }
1090
1091 /*
1092 * Merge with next? Limitation: We won't try cross page boundraries.
1093 * (pFreeStr points to the next first free enter after the string now.)
1094 */
1095 if ( PAGE_ADDRESS(pFreeStr) == PAGE_ADDRESS(&pFreeStr[-1])
1096 && pFreeStr->uMarker == RTSTRCACHEFREEMERGE_MAIN)
1097 {
1098 pMain->cbFree += pFreeStr->cbFree;
1099 cInternalBlocks = pFreeStr->cbFree / sizeof(*pFreeStr);
1100 Assert(cInternalBlocks > 0);
1101
1102 /* Update the main block we merge with. */
1103 pFreeStr->cbFree = 0;
1104 pFreeStr->uMarker = RTSTRCACHEFREEMERGE_PART;
1105 RTListNodeRemove(&pFreeStr->ListEntry);
1106 RTListInit(&pFreeStr->ListEntry);
1107
1108 /* Change the internal blocks we merged in. */
1109 cInternalBlocks--;
1110 while (cInternalBlocks-- > 0)
1111 {
1112 pFreeStr++;
1113 pFreeStr->pMain = pMain;
1114 Assert(pFreeStr->uMarker == RTSTRCACHEFREEMERGE_PART);
1115 Assert(!pFreeStr->cbFree);
1116 }
1117 }
1118
1119 /*
1120 * Add/relink into the appropriate free list.
1121 */
1122 rtStrCacheRelinkMerged(pThis, pMain);
1123 }
1124#endif /* RTSTRCACHE_WITH_MERGED_ALLOCATOR */
1125 RTSTRCACHE_CHECK(pThis);
1126 RTCritSectLeave(&pThis->CritSect);
1127 }
1128 else
1129 {
1130 /* Big string. */
1131 PRTSTRCACHEBIGENTRY pBigStr = RT_FROM_MEMBER(pStr, RTSTRCACHEBIGENTRY, Core);
1132 RTListNodeRemove(&pBigStr->ListEntry);
1133 pThis->cbBigEntries -= RT_ALIGN_32(RT_UOFFSETOF(RTSTRCACHEBIGENTRY, Core.szString[cchString + 1]),
1134 RTSTRCACHE_HEAP_ENTRY_SIZE_ALIGN);
1135
1136 RTSTRCACHE_CHECK(pThis);
1137 RTCritSectLeave(&pThis->CritSect);
1138
1139 RTMemFree(pBigStr);
1140 }
1141
1142 return 0;
1143}
1144
1145RTDECL(uint32_t) RTStrCacheRelease(RTSTRCACHE hStrCache, const char *psz)
1146{
1147 if (!psz)
1148 return 0;
1149
1150 PRTSTRCACHEINT pThis = hStrCache;
1151 RTSTRCACHE_VALID_RETURN_RC(pThis, UINT32_MAX);
1152
1153 AssertPtr(psz);
1154 PRTSTRCACHEENTRY pStr = RT_FROM_MEMBER(psz, RTSTRCACHEENTRY, szString);
1155 Assert(!((uintptr_t)pStr & 15) || pStr->cchString == RTSTRCACHEENTRY_BIG_LEN);
1156
1157 /*
1158 * Drop a reference and maybe free the entry.
1159 */
1160 uint32_t cRefs = ASMAtomicDecU32(&pStr->cRefs);
1161 Assert(cRefs < UINT32_MAX / 2);
1162 if (!cRefs)
1163 return rtStrCacheFreeEntry(pThis, pStr);
1164
1165 return cRefs;
1166}
1167RT_EXPORT_SYMBOL(RTStrCacheRelease);
1168
1169
1170RTDECL(size_t) RTStrCacheLength(const char *psz)
1171{
1172 if (!psz)
1173 return 0;
1174
1175 AssertPtr(psz);
1176 PRTSTRCACHEENTRY pStr = RT_FROM_MEMBER(psz, RTSTRCACHEENTRY, szString);
1177 if (pStr->cchString == RTSTRCACHEENTRY_BIG_LEN)
1178 {
1179 PRTSTRCACHEBIGENTRY pBigStr = RT_FROM_MEMBER(psz, RTSTRCACHEBIGENTRY, Core.szString);
1180 return pBigStr->cchString;
1181 }
1182 Assert(!((uintptr_t)pStr & 15));
1183 return pStr->cchString;
1184}
1185RT_EXPORT_SYMBOL(RTStrCacheLength);
1186
1187
1188RTDECL(bool) RTStrCacheIsRealImpl(void)
1189{
1190 return true;
1191}
1192RT_EXPORT_SYMBOL(RTStrCacheIsRealImpl);
1193
1194
1195RTDECL(uint32_t) RTStrCacheGetStats(RTSTRCACHE hStrCache, size_t *pcbStrings, size_t *pcbChunks, size_t *pcbBigEntries,
1196 uint32_t *pcHashCollisions, uint32_t *pcHashCollisions2, uint32_t *pcHashInserts,
1197 uint32_t *pcRehashes)
1198{
1199 PRTSTRCACHEINT pThis = hStrCache;
1200 RTSTRCACHE_VALID_RETURN_RC(pThis, UINT32_MAX);
1201
1202 RTCritSectEnter(&pThis->CritSect);
1203
1204 if (pcbStrings)
1205 *pcbStrings = pThis->cbStrings;
1206 if (pcbChunks)
1207 *pcbChunks = pThis->cbChunks;
1208 if (pcbBigEntries)
1209 *pcbBigEntries = pThis->cbBigEntries;
1210 if (pcHashCollisions)
1211 *pcHashCollisions = pThis->cHashCollisions;
1212 if (pcHashCollisions2)
1213 *pcHashCollisions2 = pThis->cHashCollisions2;
1214 if (pcHashInserts)
1215 *pcHashInserts = pThis->cHashInserts;
1216 if (pcRehashes)
1217 *pcRehashes = pThis->cRehashes;
1218 uint32_t cStrings = pThis->cStrings;
1219
1220 RTCritSectLeave(&pThis->CritSect);
1221 return cStrings;
1222}
1223RT_EXPORT_SYMBOL(RTStrCacheRelease);
1224
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette