/* $Id: strformatrt.cpp 73801 2018-08-21 13:32:45Z vboxsync $ */ /** @file * IPRT - IPRT String Formatter Extensions. */ /* * Copyright (C) 2006-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP RTLOGGROUP_STRING #include #ifndef RT_NO_EXPORT_SYMBOL # define RT_NO_EXPORT_SYMBOL /* don't slurp which then again slurps arch-specific headers defining symbols */ #endif #include "internal/iprt.h" #include #include #include #include #ifdef IN_RING3 # include # include #endif #include #include #include #include #include #define STRFORMAT_WITH_X86 #ifdef STRFORMAT_WITH_X86 # include #endif #include "internal/string.h" /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ static char g_szHexDigits[17] = "0123456789abcdef"; /** * Helper that formats a 16-bit hex word in a IPv6 address. * * @returns Length in chars. * @param pszDst The output buffer. Written from the start. * @param uWord The word to format as hex. */ static size_t rtstrFormatIPv6HexWord(char *pszDst, uint16_t uWord) { size_t off; uint16_t cDigits; if (uWord & UINT16_C(0xff00)) cDigits = uWord & UINT16_C(0xf000) ? 4 : 3; else cDigits = uWord & UINT16_C(0x00f0) ? 2 : 1; off = 0; switch (cDigits) { case 4: pszDst[off++] = g_szHexDigits[(uWord >> 12) & 0xf]; RT_FALL_THRU(); case 3: pszDst[off++] = g_szHexDigits[(uWord >> 8) & 0xf]; RT_FALL_THRU(); case 2: pszDst[off++] = g_szHexDigits[(uWord >> 4) & 0xf]; RT_FALL_THRU(); case 1: pszDst[off++] = g_szHexDigits[(uWord >> 0) & 0xf]; break; } pszDst[off] = '\0'; return off; } /** * Helper function to format IPv6 address according to RFC 5952. * * @returns The number of bytes formatted. * @param pfnOutput Pointer to output function. * @param pvArgOutput Argument for the output function. * @param pIpv6Addr IPv6 address */ static size_t rtstrFormatIPv6(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, PCRTNETADDRIPV6 pIpv6Addr) { size_t cch; /* result */ bool fEmbeddedIpv4; size_t cwHexPart; size_t cwLongestZeroRun; size_t iLongestZeroStart; size_t idx; char szHexWord[8]; Assert(pIpv6Addr != NULL); /* * Check for embedded IPv4 address. * * IPv4-compatible - ::11.22.33.44 (obsolete) * IPv4-mapped - ::ffff:11.22.33.44 * IPv4-translated - ::ffff:0:11.22.33.44 (RFC 2765) */ fEmbeddedIpv4 = false; cwHexPart = RT_ELEMENTS(pIpv6Addr->au16); if ( pIpv6Addr->au64[0] == 0 && ( ( pIpv6Addr->au32[2] == 0 && pIpv6Addr->au32[3] != 0 && pIpv6Addr->au32[3] != RT_H2BE_U32_C(1) ) || pIpv6Addr->au32[2] == RT_H2BE_U32_C(0x0000ffff) || pIpv6Addr->au32[2] == RT_H2BE_U32_C(0xffff0000) ) ) { fEmbeddedIpv4 = true; cwHexPart -= 2; } /* * Find the longest sequences of two or more zero words. */ cwLongestZeroRun = 0; iLongestZeroStart = 0; for (idx = 0; idx < cwHexPart; idx++) if (pIpv6Addr->au16[idx] == 0) { size_t iZeroStart = idx; size_t cwZeroRun; do idx++; while (idx < cwHexPart && pIpv6Addr->au16[idx] == 0); cwZeroRun = idx - iZeroStart; if (cwZeroRun > 1 && cwZeroRun > cwLongestZeroRun) { cwLongestZeroRun = cwZeroRun; iLongestZeroStart = iZeroStart; if (cwZeroRun >= cwHexPart - idx) break; } } /* * Do the formatting. */ cch = 0; if (cwLongestZeroRun == 0) { for (idx = 0; idx < cwHexPart; ++idx) { if (idx > 0) cch += pfnOutput(pvArgOutput, ":", 1); cch += pfnOutput(pvArgOutput, szHexWord, rtstrFormatIPv6HexWord(szHexWord, RT_BE2H_U16(pIpv6Addr->au16[idx]))); } if (fEmbeddedIpv4) cch += pfnOutput(pvArgOutput, ":", 1); } else { const size_t iLongestZeroEnd = iLongestZeroStart + cwLongestZeroRun; if (iLongestZeroStart == 0) cch += pfnOutput(pvArgOutput, ":", 1); else for (idx = 0; idx < iLongestZeroStart; ++idx) { cch += pfnOutput(pvArgOutput, szHexWord, rtstrFormatIPv6HexWord(szHexWord, RT_BE2H_U16(pIpv6Addr->au16[idx]))); cch += pfnOutput(pvArgOutput, ":", 1); } if (iLongestZeroEnd == cwHexPart) cch += pfnOutput(pvArgOutput, ":", 1); else { for (idx = iLongestZeroEnd; idx < cwHexPart; ++idx) { cch += pfnOutput(pvArgOutput, ":", 1); cch += pfnOutput(pvArgOutput, szHexWord, rtstrFormatIPv6HexWord(szHexWord, RT_BE2H_U16(pIpv6Addr->au16[idx]))); } if (fEmbeddedIpv4) cch += pfnOutput(pvArgOutput, ":", 1); } } if (fEmbeddedIpv4) cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%u.%u.%u.%u", pIpv6Addr->au8[12], pIpv6Addr->au8[13], pIpv6Addr->au8[14], pIpv6Addr->au8[15]); return cch; } /** * Callback to format iprt formatting extentions. * See @ref pg_rt_str_format for a reference on the format types. * * @returns The number of bytes formatted. * @param pfnOutput Pointer to output function. * @param pvArgOutput Argument for the output function. * @param ppszFormat Pointer to the format string pointer. Advance this till the char * after the format specifier. * @param pArgs Pointer to the argument list. Use this to fetch the arguments. * @param cchWidth Format Width. -1 if not specified. * @param cchPrecision Format Precision. -1 if not specified. * @param fFlags Flags (RTSTR_NTFS_*). * @param chArgSize The argument size specifier, 'l' or 'L'. */ DECLHIDDEN(size_t) rtstrFormatRt(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char **ppszFormat, va_list *pArgs, int cchWidth, int cchPrecision, unsigned fFlags, char chArgSize) { const char *pszFormatOrg = *ppszFormat; char ch = *(*ppszFormat)++; size_t cch; char szBuf[80]; if (ch == 'R') { ch = *(*ppszFormat)++; switch (ch) { /* * Groups 1 and 2. */ case 'T': case 'G': case 'H': case 'R': case 'C': case 'I': case 'X': case 'U': case 'K': { /* * Interpret the type. */ typedef enum { RTSF_INT, RTSF_INTW, RTSF_BOOL, RTSF_FP16, RTSF_FP32, RTSF_FP64, RTSF_IPV4, RTSF_IPV6, RTSF_MAC, RTSF_NETADDR, RTSF_UUID } RTSF; static const struct { uint8_t cch; /**< the length of the string. */ char sz[10]; /**< the part following 'R'. */ uint8_t cb; /**< the size of the type. */ uint8_t u8Base; /**< the size of the type. */ RTSF enmFormat; /**< The way to format it. */ uint16_t fFlags; /**< additional RTSTR_F_* flags. */ } /** Sorted array of types, looked up using binary search! */ s_aTypes[] = { #define STRMEM(str) sizeof(str) - 1, str { STRMEM("Ci"), sizeof(RTINT), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("Cp"), sizeof(RTCCPHYS), 16, RTSF_INTW, 0 }, { STRMEM("Cr"), sizeof(RTCCUINTREG), 16, RTSF_INTW, 0 }, { STRMEM("Cu"), sizeof(RTUINT), 10, RTSF_INT, 0 }, { STRMEM("Cv"), sizeof(void *), 16, RTSF_INTW, 0 }, { STRMEM("Cx"), sizeof(RTUINT), 16, RTSF_INT, 0 }, { STRMEM("Gi"), sizeof(RTGCINT), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("Gp"), sizeof(RTGCPHYS), 16, RTSF_INTW, 0 }, { STRMEM("Gr"), sizeof(RTGCUINTREG), 16, RTSF_INTW, 0 }, { STRMEM("Gu"), sizeof(RTGCUINT), 10, RTSF_INT, 0 }, { STRMEM("Gv"), sizeof(RTGCPTR), 16, RTSF_INTW, 0 }, { STRMEM("Gx"), sizeof(RTGCUINT), 16, RTSF_INT, 0 }, { STRMEM("Hi"), sizeof(RTHCINT), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("Hp"), sizeof(RTHCPHYS), 16, RTSF_INTW, 0 }, { STRMEM("Hr"), sizeof(RTHCUINTREG), 16, RTSF_INTW, 0 }, { STRMEM("Hu"), sizeof(RTHCUINT), 10, RTSF_INT, 0 }, { STRMEM("Hv"), sizeof(RTHCPTR), 16, RTSF_INTW, 0 }, { STRMEM("Hx"), sizeof(RTHCUINT), 16, RTSF_INT, 0 }, { STRMEM("I16"), sizeof(int16_t), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("I32"), sizeof(int32_t), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("I64"), sizeof(int64_t), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("I8"), sizeof(int8_t), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("Kv"), sizeof(RTHCPTR), 16, RTSF_INT, RTSTR_F_OBFUSCATE_PTR }, { STRMEM("Rv"), sizeof(RTRCPTR), 16, RTSF_INTW, 0 }, { STRMEM("Tbool"), sizeof(bool), 10, RTSF_BOOL, 0 }, { STRMEM("Tfile"), sizeof(RTFILE), 10, RTSF_INT, 0 }, { STRMEM("Tfmode"), sizeof(RTFMODE), 16, RTSF_INTW, 0 }, { STRMEM("Tfoff"), sizeof(RTFOFF), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("Tfp16"), sizeof(RTFAR16), 16, RTSF_FP16, RTSTR_F_ZEROPAD }, { STRMEM("Tfp32"), sizeof(RTFAR32), 16, RTSF_FP32, RTSTR_F_ZEROPAD }, { STRMEM("Tfp64"), sizeof(RTFAR64), 16, RTSF_FP64, RTSTR_F_ZEROPAD }, { STRMEM("Tgid"), sizeof(RTGID), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("Tino"), sizeof(RTINODE), 16, RTSF_INTW, 0 }, { STRMEM("Tint"), sizeof(RTINT), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("Tiop"), sizeof(RTIOPORT), 16, RTSF_INTW, 0 }, { STRMEM("Tldrm"), sizeof(RTLDRMOD), 16, RTSF_INTW, 0 }, { STRMEM("Tmac"), sizeof(PCRTMAC), 16, RTSF_MAC, 0 }, { STRMEM("Tnaddr"), sizeof(PCRTNETADDR), 10, RTSF_NETADDR,0 }, { STRMEM("Tnaipv4"), sizeof(RTNETADDRIPV4), 10, RTSF_IPV4, 0 }, { STRMEM("Tnaipv6"), sizeof(PCRTNETADDRIPV6),16, RTSF_IPV6, 0 }, { STRMEM("Tnthrd"), sizeof(RTNATIVETHREAD), 16, RTSF_INTW, 0 }, { STRMEM("Tproc"), sizeof(RTPROCESS), 16, RTSF_INTW, 0 }, { STRMEM("Tptr"), sizeof(RTUINTPTR), 16, RTSF_INTW, 0 }, { STRMEM("Treg"), sizeof(RTCCUINTREG), 16, RTSF_INTW, 0 }, { STRMEM("Tsel"), sizeof(RTSEL), 16, RTSF_INTW, 0 }, { STRMEM("Tsem"), sizeof(RTSEMEVENT), 16, RTSF_INTW, 0 }, { STRMEM("Tsock"), sizeof(RTSOCKET), 10, RTSF_INT, 0 }, { STRMEM("Tthrd"), sizeof(RTTHREAD), 16, RTSF_INTW, 0 }, { STRMEM("Tuid"), sizeof(RTUID), 10, RTSF_INT, RTSTR_F_VALSIGNED }, { STRMEM("Tuint"), sizeof(RTUINT), 10, RTSF_INT, 0 }, { STRMEM("Tunicp"), sizeof(RTUNICP), 16, RTSF_INTW, RTSTR_F_ZEROPAD }, { STRMEM("Tutf16"), sizeof(RTUTF16), 16, RTSF_INTW, RTSTR_F_ZEROPAD }, { STRMEM("Tuuid"), sizeof(PCRTUUID), 16, RTSF_UUID, 0 }, { STRMEM("Txint"), sizeof(RTUINT), 16, RTSF_INT, 0 }, { STRMEM("U16"), sizeof(uint16_t), 10, RTSF_INT, 0 }, { STRMEM("U32"), sizeof(uint32_t), 10, RTSF_INT, 0 }, { STRMEM("U64"), sizeof(uint64_t), 10, RTSF_INT, 0 }, { STRMEM("U8"), sizeof(uint8_t), 10, RTSF_INT, 0 }, { STRMEM("X16"), sizeof(uint16_t), 16, RTSF_INT, 0 }, { STRMEM("X32"), sizeof(uint32_t), 16, RTSF_INT, 0 }, { STRMEM("X64"), sizeof(uint64_t), 16, RTSF_INT, 0 }, { STRMEM("X8"), sizeof(uint8_t), 16, RTSF_INT, 0 }, #undef STRMEM }; static const char s_szNull[] = ""; const char *pszType = *ppszFormat - 1; int iStart = 0; int iEnd = RT_ELEMENTS(s_aTypes) - 1; int i = RT_ELEMENTS(s_aTypes) / 2; union { uint8_t u8; uint16_t u16; uint32_t u32; uint64_t u64; int8_t i8; int16_t i16; int32_t i32; int64_t i64; RTR0INTPTR uR0Ptr; RTFAR16 fp16; RTFAR32 fp32; RTFAR64 fp64; bool fBool; PCRTMAC pMac; RTNETADDRIPV4 Ipv4Addr; PCRTNETADDRIPV6 pIpv6Addr; PCRTNETADDR pNetAddr; PCRTUUID pUuid; } u; AssertMsg(!chArgSize, ("Not argument size '%c' for RT types! '%.10s'\n", chArgSize, pszFormatOrg)); RT_NOREF_PV(chArgSize); /* * Lookup the type - binary search. */ for (;;) { int iDiff = strncmp(pszType, s_aTypes[i].sz, s_aTypes[i].cch); if (!iDiff) break; if (iEnd == iStart) { AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg)); return 0; } if (iDiff < 0) iEnd = i - 1; else iStart = i + 1; if (iEnd < iStart) { AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg)); return 0; } i = iStart + (iEnd - iStart) / 2; } /* * Advance the format string and merge flags. */ *ppszFormat += s_aTypes[i].cch - 1; fFlags |= s_aTypes[i].fFlags; /* * Fetch the argument. * It's important that a signed value gets sign-extended up to 64-bit. */ RT_ZERO(u); if (fFlags & RTSTR_F_VALSIGNED) { switch (s_aTypes[i].cb) { case sizeof(int8_t): u.i64 = va_arg(*pArgs, /*int8_t*/int); fFlags |= RTSTR_F_8BIT; break; case sizeof(int16_t): u.i64 = va_arg(*pArgs, /*int16_t*/int); fFlags |= RTSTR_F_16BIT; break; case sizeof(int32_t): u.i64 = va_arg(*pArgs, int32_t); fFlags |= RTSTR_F_32BIT; break; case sizeof(int64_t): u.i64 = va_arg(*pArgs, int64_t); fFlags |= RTSTR_F_64BIT; break; default: AssertMsgFailed(("Invalid format error, size %d'!\n", s_aTypes[i].cb)); break; } } else { switch (s_aTypes[i].cb) { case sizeof(uint8_t): u.u8 = va_arg(*pArgs, /*uint8_t*/unsigned); fFlags |= RTSTR_F_8BIT; break; case sizeof(uint16_t): u.u16 = va_arg(*pArgs, /*uint16_t*/unsigned); fFlags |= RTSTR_F_16BIT; break; case sizeof(uint32_t): u.u32 = va_arg(*pArgs, uint32_t); fFlags |= RTSTR_F_32BIT; break; case sizeof(uint64_t): u.u64 = va_arg(*pArgs, uint64_t); fFlags |= RTSTR_F_64BIT; break; case sizeof(RTFAR32): u.fp32 = va_arg(*pArgs, RTFAR32); break; case sizeof(RTFAR64): u.fp64 = va_arg(*pArgs, RTFAR64); break; default: AssertMsgFailed(("Invalid format error, size %d'!\n", s_aTypes[i].cb)); break; } } #ifndef DEBUG /* * For now don't show the address. */ if (fFlags & RTSTR_F_OBFUSCATE_PTR) { cch = rtStrFormatKernelAddress(szBuf, sizeof(szBuf), u.uR0Ptr, cchWidth, cchPrecision, fFlags); return pfnOutput(pvArgOutput, szBuf, cch); } #endif /* * Format the output. */ switch (s_aTypes[i].enmFormat) { case RTSF_INT: { cch = RTStrFormatNumber(szBuf, u.u64, s_aTypes[i].u8Base, cchWidth, cchPrecision, fFlags); break; } /* hex which defaults to max width. */ case RTSF_INTW: { Assert(s_aTypes[i].u8Base == 16); if (cchWidth < 0) { cchWidth = s_aTypes[i].cb * 2 + (fFlags & RTSTR_F_SPECIAL ? 2 : 0); fFlags |= RTSTR_F_ZEROPAD; } cch = RTStrFormatNumber(szBuf, u.u64, s_aTypes[i].u8Base, cchWidth, cchPrecision, fFlags); break; } case RTSF_BOOL: { static const char s_szTrue[] = "true "; static const char s_szFalse[] = "false"; if (u.u64 == 1) return pfnOutput(pvArgOutput, s_szTrue, sizeof(s_szTrue) - 1); if (u.u64 == 0) return pfnOutput(pvArgOutput, s_szFalse, sizeof(s_szFalse) - 1); /* invalid boolean value */ return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "!%lld!", u.u64); } case RTSF_FP16: { fFlags &= ~(RTSTR_F_VALSIGNED | RTSTR_F_BIT_MASK | RTSTR_F_WIDTH | RTSTR_F_PRECISION | RTSTR_F_THOUSAND_SEP); cch = RTStrFormatNumber(&szBuf[0], u.fp16.sel, 16, 4, -1, fFlags | RTSTR_F_16BIT); Assert(cch == 4); szBuf[4] = ':'; cch = RTStrFormatNumber(&szBuf[5], u.fp16.off, 16, 4, -1, fFlags | RTSTR_F_16BIT); Assert(cch == 4); cch = 4 + 1 + 4; break; } case RTSF_FP32: { fFlags &= ~(RTSTR_F_VALSIGNED | RTSTR_F_BIT_MASK | RTSTR_F_WIDTH | RTSTR_F_PRECISION | RTSTR_F_THOUSAND_SEP); cch = RTStrFormatNumber(&szBuf[0], u.fp32.sel, 16, 4, -1, fFlags | RTSTR_F_16BIT); Assert(cch == 4); szBuf[4] = ':'; cch = RTStrFormatNumber(&szBuf[5], u.fp32.off, 16, 8, -1, fFlags | RTSTR_F_32BIT); Assert(cch == 8); cch = 4 + 1 + 8; break; } case RTSF_FP64: { fFlags &= ~(RTSTR_F_VALSIGNED | RTSTR_F_BIT_MASK | RTSTR_F_WIDTH | RTSTR_F_PRECISION | RTSTR_F_THOUSAND_SEP); cch = RTStrFormatNumber(&szBuf[0], u.fp64.sel, 16, 4, -1, fFlags | RTSTR_F_16BIT); Assert(cch == 4); szBuf[4] = ':'; cch = RTStrFormatNumber(&szBuf[5], u.fp64.off, 16, 16, -1, fFlags | RTSTR_F_64BIT); Assert(cch == 16); cch = 4 + 1 + 16; break; } case RTSF_IPV4: return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%u.%u.%u.%u", u.Ipv4Addr.au8[0], u.Ipv4Addr.au8[1], u.Ipv4Addr.au8[2], u.Ipv4Addr.au8[3]); case RTSF_IPV6: { if (VALID_PTR(u.pIpv6Addr)) return rtstrFormatIPv6(pfnOutput, pvArgOutput, u.pIpv6Addr); return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1); } case RTSF_MAC: { if (VALID_PTR(u.pMac)) return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%02x:%02x:%02x:%02x:%02x:%02x", u.pMac->au8[0], u.pMac->au8[1], u.pMac->au8[2], u.pMac->au8[3], u.pMac->au8[4], u.pMac->au8[5]); return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1); } case RTSF_NETADDR: { if (VALID_PTR(u.pNetAddr)) { switch (u.pNetAddr->enmType) { case RTNETADDRTYPE_IPV4: if (u.pNetAddr->uPort == RTNETADDR_PORT_NA) return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%u.%u.%u.%u", u.pNetAddr->uAddr.IPv4.au8[0], u.pNetAddr->uAddr.IPv4.au8[1], u.pNetAddr->uAddr.IPv4.au8[2], u.pNetAddr->uAddr.IPv4.au8[3]); return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%u.%u.%u.%u:%u", u.pNetAddr->uAddr.IPv4.au8[0], u.pNetAddr->uAddr.IPv4.au8[1], u.pNetAddr->uAddr.IPv4.au8[2], u.pNetAddr->uAddr.IPv4.au8[3], u.pNetAddr->uPort); case RTNETADDRTYPE_IPV6: if (u.pNetAddr->uPort == RTNETADDR_PORT_NA) return rtstrFormatIPv6(pfnOutput, pvArgOutput, &u.pNetAddr->uAddr.IPv6); return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "[%RTnaipv6]:%u", &u.pNetAddr->uAddr.IPv6, u.pNetAddr->uPort); case RTNETADDRTYPE_MAC: return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%02x:%02x:%02x:%02x:%02x:%02x", u.pNetAddr->uAddr.Mac.au8[0], u.pNetAddr->uAddr.Mac.au8[1], u.pNetAddr->uAddr.Mac.au8[2], u.pNetAddr->uAddr.Mac.au8[3], u.pNetAddr->uAddr.Mac.au8[4], u.pNetAddr->uAddr.Mac.au8[5]); default: return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "unsupported-netaddr-type=%u", u.pNetAddr->enmType); } } return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1); } case RTSF_UUID: { if (VALID_PTR(u.pUuid)) { /* cannot call RTUuidToStr because of GC/R0. */ return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", RT_H2LE_U32(u.pUuid->Gen.u32TimeLow), RT_H2LE_U16(u.pUuid->Gen.u16TimeMid), RT_H2LE_U16(u.pUuid->Gen.u16TimeHiAndVersion), u.pUuid->Gen.u8ClockSeqHiAndReserved, u.pUuid->Gen.u8ClockSeqLow, u.pUuid->Gen.au8Node[0], u.pUuid->Gen.au8Node[1], u.pUuid->Gen.au8Node[2], u.pUuid->Gen.au8Node[3], u.pUuid->Gen.au8Node[4], u.pUuid->Gen.au8Node[5]); } return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1); } default: AssertMsgFailed(("Internal error %d\n", s_aTypes[i].enmFormat)); return 0; } /* * Finally, output the formatted string and return. */ return pfnOutput(pvArgOutput, szBuf, cch); } /* Group 3 */ /* * Base name printing, big endian UTF-16. */ case 'b': { switch (*(*ppszFormat)++) { case 'n': { const char *pszLastSep; const char *psz = pszLastSep = va_arg(*pArgs, const char *); if (!VALID_PTR(psz)) return pfnOutput(pvArgOutput, RT_STR_TUPLE("")); while ((ch = *psz) != '\0') { if (RTPATH_IS_SEP(ch)) { do psz++; while ((ch = *psz) != '\0' && RTPATH_IS_SEP(ch)); if (!ch) break; pszLastSep = psz; } psz++; } return pfnOutput(pvArgOutput, pszLastSep, psz - pszLastSep); } /* %lRbs */ case 's': if (chArgSize == 'l') { /* utf-16BE -> utf-8 */ int cchStr; PCRTUTF16 pwszStr = va_arg(*pArgs, PRTUTF16); if (RT_VALID_PTR(pwszStr)) { cchStr = 0; while (cchStr < cchPrecision && pwszStr[cchStr] != '\0') cchStr++; } else { static RTUTF16 s_wszBigNull[] = { RT_H2BE_U16_C((uint16_t)'<'), RT_H2BE_U16_C((uint16_t)'N'), RT_H2BE_U16_C((uint16_t)'U'), RT_H2BE_U16_C((uint16_t)'L'), RT_H2BE_U16_C((uint16_t)'L'), RT_H2BE_U16_C((uint16_t)'>'), '\0' }; pwszStr = s_wszBigNull; cchStr = RT_ELEMENTS(s_wszBigNull) - 1; } cch = 0; if (!(fFlags & RTSTR_F_LEFT)) while (--cchWidth >= cchStr) cch += pfnOutput(pvArgOutput, " ", 1); cchWidth -= cchStr; while (cchStr-- > 0) { /** @todo \#ifndef IN_RC*/ #ifdef IN_RING3 RTUNICP Cp = 0; RTUtf16BigGetCpEx(&pwszStr, &Cp); char *pszEnd = RTStrPutCp(szBuf, Cp); *pszEnd = '\0'; cch += pfnOutput(pvArgOutput, szBuf, pszEnd - szBuf); #else szBuf[0] = (char)(*pwszStr++ >> 8); cch += pfnOutput(pvArgOutput, szBuf, 1); #endif } while (--cchWidth >= 0) cch += pfnOutput(pvArgOutput, " ", 1); return cch; } RT_FALL_THRU(); default: AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg)); break; } break; } /* * Pretty function / method name printing. */ case 'f': { switch (*(*ppszFormat)++) { /* * Pretty function / method name printing. * This isn't 100% right (see classic signal prototype) and it assumes * standardized names, but it'll do for today. */ case 'n': { const char *pszStart; const char *psz = pszStart = va_arg(*pArgs, const char *); int cAngle = 0; if (!VALID_PTR(psz)) return pfnOutput(pvArgOutput, RT_STR_TUPLE("")); while ((ch = *psz) != '\0' && ch != '(') { if (RT_C_IS_BLANK(ch)) { psz++; while ((ch = *psz) != '\0' && (RT_C_IS_BLANK(ch) || ch == '(')) psz++; if (ch && cAngle == 0) pszStart = psz; } else if (ch == '(') break; else if (ch == '<') { cAngle++; psz++; } else if (ch == '>') { cAngle--; psz++; } else psz++; } return pfnOutput(pvArgOutput, pszStart, psz - pszStart); } default: AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg)); break; } break; } /* * hex dumping, COM/XPCOM, human readable sizes. */ case 'h': { ch = *(*ppszFormat)++; switch (ch) { /* * Hex stuff. */ case 'x': { uint8_t *pu8 = va_arg(*pArgs, uint8_t *); if (cchPrecision < 0) cchPrecision = 16; if (pu8) { switch (*(*ppszFormat)++) { /* * Regular hex dump. */ case 'd': { int off = 0; cch = 0; if (cchWidth <= 0) cchWidth = 16; while (off < cchPrecision) { int i; cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s%0*p %04x:", off ? "\n" : "", sizeof(pu8) * 2, (uintptr_t)pu8, off); for (i = 0; i < cchWidth && off + i < cchPrecision ; i++) cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, off + i < cchPrecision ? !(i & 7) && i ? "-%02x" : " %02x" : " ", pu8[i]); while (i++ < cchWidth) cch += pfnOutput(pvArgOutput, " ", 3); cch += pfnOutput(pvArgOutput, " ", 1); for (i = 0; i < cchWidth && off + i < cchPrecision; i++) { uint8_t u8 = pu8[i]; cch += pfnOutput(pvArgOutput, u8 < 127 && u8 >= 32 ? (const char *)&u8 : ".", 1); } /* next */ pu8 += cchWidth; off += cchWidth; } return cch; } /* * Regular hex dump with dittoing. */ case 'D': { int offEndDupCheck; int cDuplicates = 0; int off = 0; cch = 0; if (cchWidth <= 0) cchWidth = 16; offEndDupCheck = cchPrecision - cchWidth; while (off < cchPrecision) { int i; if ( off >= offEndDupCheck || off <= 0 || memcmp(pu8, pu8 - cchWidth, cchWidth) != 0 || ( cDuplicates == 0 && ( off + cchWidth >= offEndDupCheck || memcmp(pu8 + cchWidth, pu8, cchWidth) != 0)) ) { if (cDuplicates > 0) { cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "\n%.*s **** ", sizeof(pu8) * 2, "****************", cDuplicates); cDuplicates = 0; } cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s%0*p %04x:", off ? "\n" : "", sizeof(pu8) * 2, (uintptr_t)pu8, off); for (i = 0; i < cchWidth && off + i < cchPrecision ; i++) cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, off + i < cchPrecision ? !(i & 7) && i ? "-%02x" : " %02x" : " ", pu8[i]); while (i++ < cchWidth) cch += pfnOutput(pvArgOutput, " ", 3); cch += pfnOutput(pvArgOutput, " ", 1); for (i = 0; i < cchWidth && off + i < cchPrecision; i++) { uint8_t u8 = pu8[i]; cch += pfnOutput(pvArgOutput, u8 < 127 && u8 >= 32 ? (const char *)&u8 : ".", 1); } } else cDuplicates++; /* next */ pu8 += cchWidth; off += cchWidth; } return cch; } /* * Hex string. */ case 's': { if (cchPrecision-- > 0) { cch = RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%02x", *pu8++); for (; cchPrecision > 0; cchPrecision--, pu8++) cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, " %02x", *pu8); return cch; } break; } default: AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg)); break; } } else return pfnOutput(pvArgOutput, RT_STR_TUPLE("")); break; } #ifdef IN_RING3 /* * XPCOM / COM status code: %Rhrc, %Rhrf, %Rhra * ASSUMES: If Windows Then COM else XPCOM. */ case 'r': { uint32_t hrc = va_arg(*pArgs, uint32_t); PCRTCOMERRMSG pMsg = RTErrCOMGet(hrc); switch (*(*ppszFormat)++) { case 'c': return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine)); case 'f': return pfnOutput(pvArgOutput, pMsg->pszMsgFull,strlen(pMsg->pszMsgFull)); case 'a': return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (0x%08X) - %s", pMsg->pszDefine, hrc, pMsg->pszMsgFull); default: AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg)); return 0; } break; } #endif /* IN_RING3 */ case 'c': case 'u': { unsigned i; ssize_t cchBuf; uint64_t uValue; uint64_t uFraction = 0; const char *pszPrefix = NULL; unsigned cchFixedPart; char ch2 = *(*ppszFormat)++; AssertMsgReturn(ch2 == 'b' || ch2 == 'i', ("invalid type '%.10s'!\n", pszFormatOrg), 0); uValue = va_arg(*pArgs, uint64_t); if (!(fFlags & RTSTR_F_PRECISION)) cchPrecision = 1; else if (cchPrecision > 3) cchPrecision = 3; else if (cchPrecision < 0) cchPrecision = 0; cchFixedPart = cchPrecision + (cchPrecision != 0) + (ch == 'c'); if (ch2 == 'b') { static const struct { const char *pszPrefix; uint8_t cShift; uint64_t cbMin; uint64_t cbMinZeroPrecision; } s_aUnits[] = { { "Ei", 60, _1E, _1E*2 }, { "Pi", 50, _1P, _1P*2 }, { "Ti", 40, _1T, _1T*2 }, { "Gi", 30, _1G, _1G64*2 }, { "Mi", 20, _1M, _1M*2 }, { "Ki", 10, _1K, _1K*2 }, }; for (i = 0; i < RT_ELEMENTS(s_aUnits); i++) if ( uValue >= s_aUnits[i].cbMin && (cchPrecision > 0 || uValue >= s_aUnits[i].cbMinZeroPrecision)) { if (cchPrecision != 0) { uFraction = uValue & (RT_BIT_64(s_aUnits[i].cShift) - 1); uFraction *= cchPrecision == 1 ? 10 : cchPrecision == 2 ? 100 : 1000; uFraction >>= s_aUnits[i].cShift; } uValue >>= s_aUnits[i].cShift; pszPrefix = s_aUnits[i].pszPrefix; cchFixedPart += 2; break; } } else { static const struct { const char *pszPrefix; uint64_t cbFactor; uint64_t cbMinZeroPrecision; } s_aUnits[] = { { "E", UINT64_C(1000000000000000000), UINT64_C(1010000000000000000), }, { "P", UINT64_C(1000000000000000), UINT64_C(1010000000000000), }, { "T", UINT64_C(1000000000000), UINT64_C(1010000000000), }, { "G", UINT64_C(1000000000), UINT64_C(1010000000), }, { "M", UINT64_C(1000000), UINT64_C(1010000), }, { "k", UINT64_C(1000), UINT64_C(1010), }, }; for (i = 0; i < RT_ELEMENTS(s_aUnits); i++) if ( uValue >= s_aUnits[i].cbFactor && (cchPrecision > 0 || uValue >= s_aUnits[i].cbMinZeroPrecision)) { if (cchPrecision == 0) uValue /= s_aUnits[i].cbFactor; else { uFraction = uValue % s_aUnits[i].cbFactor; uValue = uValue / s_aUnits[i].cbFactor; uFraction *= cchPrecision == 1 ? 10 : cchPrecision == 2 ? 100 : 1000; uFraction += s_aUnits[i].cbFactor >> 1; uFraction /= s_aUnits[i].cbFactor; } pszPrefix = s_aUnits[i].pszPrefix; cchFixedPart += 1; break; } } cchBuf = RTStrFormatU64(szBuf, sizeof(szBuf), uValue, 10, 0, 0, 0); if (pszPrefix) { if (cchPrecision) { szBuf[cchBuf++] = '.'; cchBuf += RTStrFormatU64(&szBuf[cchBuf], sizeof(szBuf) - cchBuf, uFraction, 10, cchPrecision, 0, RTSTR_F_ZEROPAD | RTSTR_F_WIDTH); } szBuf[cchBuf++] = *pszPrefix++; if (*pszPrefix) szBuf[cchBuf++] = *pszPrefix; } if (ch == 'c') szBuf[cchBuf++] = 'B'; szBuf[cchBuf] = '\0'; cch = 0; if ((fFlags & RTSTR_F_WIDTH) && !(fFlags & RTSTR_F_LEFT)) while (cchBuf < cchWidth) { cch += pfnOutput(pvArgOutput, fFlags & RTSTR_F_ZEROPAD ? "0" : " ", 1); cchWidth--; } cch += pfnOutput(pvArgOutput, szBuf, cchBuf); return cch; } default: AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg)); return 0; } break; } /* * iprt status code: %Rrc, %Rrs, %Rrf, %Rra. */ case 'r': { int rc = va_arg(*pArgs, int); #ifdef IN_RING3 /* we don't want this anywhere else yet. */ PCRTSTATUSMSG pMsg = RTErrGet(rc); switch (*(*ppszFormat)++) { case 'c': return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine)); case 's': return pfnOutput(pvArgOutput, pMsg->pszMsgShort, strlen(pMsg->pszMsgShort)); case 'f': return pfnOutput(pvArgOutput, pMsg->pszMsgFull, strlen(pMsg->pszMsgFull)); case 'a': return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (%d) - %s", pMsg->pszDefine, rc, pMsg->pszMsgFull); default: AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg)); return 0; } #else /* !IN_RING3 */ switch (*(*ppszFormat)++) { case 'c': case 's': case 'f': case 'a': return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%d", rc); default: AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg)); return 0; } #endif /* !IN_RING3 */ break; } #if defined(IN_RING3) /* * Windows status code: %Rwc, %Rwf, %Rwa */ case 'w': { long rc = va_arg(*pArgs, long); # if defined(RT_OS_WINDOWS) PCRTWINERRMSG pMsg = RTErrWinGet(rc); # endif switch (*(*ppszFormat)++) { # if defined(RT_OS_WINDOWS) case 'c': return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine)); case 'f': return pfnOutput(pvArgOutput, pMsg->pszMsgFull,strlen(pMsg->pszMsgFull)); case 'a': return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (0x%08X) - %s", pMsg->pszDefine, rc, pMsg->pszMsgFull); # else case 'c': case 'f': case 'a': return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "0x%08X", rc); # endif default: AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg)); return 0; } break; } #endif /* IN_RING3 */ /* * Group 4, structure dumpers. */ case 'D': { /* * Interpret the type. */ typedef enum { RTST_TIMESPEC } RTST; /** Set if it's a pointer */ #define RTST_FLAGS_POINTER RT_BIT(0) static const struct { uint8_t cch; /**< the length of the string. */ char sz[16-2]; /**< the part following 'R'. */ uint8_t cb; /**< the size of the argument. */ uint8_t fFlags; /**< RTST_FLAGS_* */ RTST enmType; /**< The structure type. */ } /** Sorted array of types, looked up using binary search! */ s_aTypes[] = { #define STRMEM(str) sizeof(str) - 1, str { STRMEM("Dtimespec"), sizeof(PCRTTIMESPEC), RTST_FLAGS_POINTER, RTST_TIMESPEC}, #undef STRMEM }; const char *pszType = *ppszFormat - 1; int iStart = 0; int iEnd = RT_ELEMENTS(s_aTypes) - 1; int i = RT_ELEMENTS(s_aTypes) / 2; union { const void *pv; uint64_t u64; PCRTTIMESPEC pTimeSpec; } u; AssertMsg(!chArgSize, ("Not argument size '%c' for RT types! '%.10s'\n", chArgSize, pszFormatOrg)); /* * Lookup the type - binary search. */ for (;;) { int iDiff = strncmp(pszType, s_aTypes[i].sz, s_aTypes[i].cch); if (!iDiff) break; if (iEnd == iStart) { AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg)); return 0; } if (iDiff < 0) iEnd = i - 1; else iStart = i + 1; if (iEnd < iStart) { AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg)); return 0; } i = iStart + (iEnd - iStart) / 2; } *ppszFormat += s_aTypes[i].cch - 1; /* * Fetch the argument. */ u.u64 = 0; switch (s_aTypes[i].cb) { case sizeof(const void *): u.pv = va_arg(*pArgs, const void *); break; default: AssertMsgFailed(("Invalid format error, size %d'!\n", s_aTypes[i].cb)); break; } /* * If it's a pointer, we'll check if it's valid before going on. */ if ((s_aTypes[i].fFlags & RTST_FLAGS_POINTER) && !VALID_PTR(u.pv)) return pfnOutput(pvArgOutput, RT_STR_TUPLE("")); /* * Format the output. */ switch (s_aTypes[i].enmType) { case RTST_TIMESPEC: return RTStrFormat(pfnOutput, pvArgOutput, NULL, NULL, "%'lld ns", RTTimeSpecGetNano(u.pTimeSpec)); default: AssertMsgFailed(("Invalid/unhandled enmType=%d\n", s_aTypes[i].enmType)); break; } break; } #ifdef IN_RING3 /* * Group 5, XML / HTML escapers. */ case 'M': { char chWhat = (*ppszFormat)[0]; bool fAttr = chWhat == 'a'; char chType = (*ppszFormat)[1]; AssertMsgBreak(chWhat == 'a' || chWhat == 'e', ("Invalid IPRT format type '%.10s'!\n", pszFormatOrg)); *ppszFormat += 2; switch (chType) { case 's': { static const char s_szElemEscape[] = "<>&\"'"; static const char s_szAttrEscape[] = "<>&\"\n\r"; /* more? */ const char * const pszEscape = fAttr ? s_szAttrEscape : s_szElemEscape; size_t const cchEscape = (fAttr ? RT_ELEMENTS(s_szAttrEscape) : RT_ELEMENTS(s_szElemEscape)) - 1; size_t cchOutput = 0; const char *pszStr = va_arg(*pArgs, char *); ssize_t cchStr; ssize_t offCur; ssize_t offLast; if (!VALID_PTR(pszStr)) pszStr = ""; cchStr = RTStrNLen(pszStr, (unsigned)cchPrecision); if (fAttr) cchOutput += pfnOutput(pvArgOutput, "\"", 1); if (!(fFlags & RTSTR_F_LEFT)) while (--cchWidth >= cchStr) cchOutput += pfnOutput(pvArgOutput, " ", 1); offLast = offCur = 0; while (offCur < cchStr) { if (memchr(pszEscape, pszStr[offCur], cchEscape)) { if (offLast < offCur) cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast); switch (pszStr[offCur]) { case '<': cchOutput += pfnOutput(pvArgOutput, "<", 4); break; case '>': cchOutput += pfnOutput(pvArgOutput, ">", 4); break; case '&': cchOutput += pfnOutput(pvArgOutput, "&", 5); break; case '\'': cchOutput += pfnOutput(pvArgOutput, "'", 6); break; case '"': cchOutput += pfnOutput(pvArgOutput, """, 6); break; case '\n': cchOutput += pfnOutput(pvArgOutput, " ", 5); break; case '\r': cchOutput += pfnOutput(pvArgOutput, " ", 5); break; default: AssertFailed(); } offLast = offCur + 1; } offCur++; } if (offLast < offCur) cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast); while (--cchWidth >= cchStr) cchOutput += pfnOutput(pvArgOutput, " ", 1); if (fAttr) cchOutput += pfnOutput(pvArgOutput, "\"", 1); return cchOutput; } default: AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg)); } break; } /* * Groups 6 - JSON. */ case 'J': { char chType = (*ppszFormat)[0]; *ppszFormat += 1; switch (chType) { case 's': { const char *pszStr = va_arg(*pArgs, char *); size_t cchOutput; ssize_t cchStr; ssize_t offCur; ssize_t offLast; if (!VALID_PTR(pszStr)) pszStr = ""; cchStr = RTStrNLen(pszStr, (unsigned)cchPrecision); cchOutput = pfnOutput(pvArgOutput, "\"", 1); if (!(fFlags & RTSTR_F_LEFT)) while (--cchWidth >= cchStr) cchOutput += pfnOutput(pvArgOutput, " ", 1); offLast = offCur = 0; while (offCur < cchStr) { unsigned int const uch = pszStr[offCur]; if ( uch >= 0x5d || (uch >= 0x20 && uch != 0x22 && uch != 0x5c)) offCur++; else { if (offLast < offCur) cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast); switch ((char)uch) { case '"': cchOutput += pfnOutput(pvArgOutput, "\\\"", 2); break; case '\\': cchOutput += pfnOutput(pvArgOutput, "\\\\", 2); break; case '/': cchOutput += pfnOutput(pvArgOutput, "\\/", 2); break; case '\b': cchOutput += pfnOutput(pvArgOutput, "\\b", 2); break; case '\f': cchOutput += pfnOutput(pvArgOutput, "\\f", 2); break; case '\n': cchOutput += pfnOutput(pvArgOutput, "\\n", 2); break; case '\t': cchOutput += pfnOutput(pvArgOutput, "\\t", 2); break; default: cchOutput += pfnOutput(pvArgOutput, "\\u00", 2); cchOutput += pfnOutput(pvArgOutput, &g_szHexDigits[(uch >> 4) & 0xf], 1); cchOutput += pfnOutput(pvArgOutput, &g_szHexDigits[uch & 0xf], 1); break; } offLast = ++offCur; } } if (offLast < offCur) cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast); while (--cchWidth >= cchStr) cchOutput += pfnOutput(pvArgOutput, " ", 1); cchOutput += pfnOutput(pvArgOutput, "\"", 1); return cchOutput; } default: AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg)); } break; } #endif /* IN_RING3 */ /* * Groups 7 - CPU Architecture Register Formatters. * "%RAarch[reg]" */ case 'A': { char const * const pszArch = *ppszFormat; const char *pszReg = pszArch; size_t cchOutput = 0; int cPrinted = 0; size_t cchReg; /* Parse out the */ while ((ch = *pszReg++) && ch != '[') { /* nothing */ } AssertMsgBreak(ch == '[', ("Malformed IPRT architecture register format type '%.10s'!\n", pszFormatOrg)); cchReg = 0; while ((ch = pszReg[cchReg]) && ch != ']') cchReg++; AssertMsgBreak(ch == ']', ("Malformed IPRT architecture register format type '%.10s'!\n", pszFormatOrg)); *ppszFormat = &pszReg[cchReg + 1]; #define REG_EQUALS(a_szReg) (sizeof(a_szReg) - 1 == cchReg && !strncmp(a_szReg, pszReg, sizeof(a_szReg) - 1)) #define REG_OUT_BIT(a_uVal, a_fBitMask, a_szName) \ do { \ if ((a_uVal) & (a_fBitMask)) \ { \ if (!cPrinted++) \ cchOutput += pfnOutput(pvArgOutput, "{" a_szName, sizeof(a_szName)); \ else \ cchOutput += pfnOutput(pvArgOutput, "," a_szName, sizeof(a_szName)); \ (a_uVal) &= ~(a_fBitMask); \ } \ } while (0) #define REG_OUT_CLOSE(a_uVal) \ do { \ if ((a_uVal)) \ { \ cchOutput += pfnOutput(pvArgOutput, !cPrinted ? "{unkn=" : ",unkn=", 6); \ cch = RTStrFormatNumber(&szBuf[0], (a_uVal), 16, 1, -1, fFlags); \ cchOutput += pfnOutput(pvArgOutput, szBuf, cch); \ cPrinted++; \ } \ if (cPrinted) \ cchOutput += pfnOutput(pvArgOutput, "}", 1); \ } while (0) if (0) { /* dummy */ } #ifdef STRFORMAT_WITH_X86 /* * X86 & AMD64. */ else if ( pszReg - pszArch == 3 + 1 && pszArch[0] == 'x' && pszArch[1] == '8' && pszArch[2] == '6') { if (REG_EQUALS("cr0")) { uint64_t cr0 = va_arg(*pArgs, uint64_t); fFlags |= RTSTR_F_64BIT; cch = RTStrFormatNumber(&szBuf[0], cr0, 16, 8, -1, fFlags | RTSTR_F_ZEROPAD); cchOutput += pfnOutput(pvArgOutput, szBuf, cch); REG_OUT_BIT(cr0, X86_CR0_PE, "PE"); REG_OUT_BIT(cr0, X86_CR0_MP, "MP"); REG_OUT_BIT(cr0, X86_CR0_EM, "EM"); REG_OUT_BIT(cr0, X86_CR0_TS, "DE"); REG_OUT_BIT(cr0, X86_CR0_ET, "ET"); REG_OUT_BIT(cr0, X86_CR0_NE, "NE"); REG_OUT_BIT(cr0, X86_CR0_WP, "WP"); REG_OUT_BIT(cr0, X86_CR0_AM, "AM"); REG_OUT_BIT(cr0, X86_CR0_NW, "NW"); REG_OUT_BIT(cr0, X86_CR0_CD, "CD"); REG_OUT_BIT(cr0, X86_CR0_PG, "PG"); REG_OUT_CLOSE(cr0); } else if (REG_EQUALS("cr4")) { uint64_t cr4 = va_arg(*pArgs, uint64_t); fFlags |= RTSTR_F_64BIT; cch = RTStrFormatNumber(&szBuf[0], cr4, 16, 8, -1, fFlags | RTSTR_F_ZEROPAD); cchOutput += pfnOutput(pvArgOutput, szBuf, cch); REG_OUT_BIT(cr4, X86_CR4_VME, "VME"); REG_OUT_BIT(cr4, X86_CR4_PVI, "PVI"); REG_OUT_BIT(cr4, X86_CR4_TSD, "TSD"); REG_OUT_BIT(cr4, X86_CR4_DE, "DE"); REG_OUT_BIT(cr4, X86_CR4_PSE, "PSE"); REG_OUT_BIT(cr4, X86_CR4_PAE, "PAE"); REG_OUT_BIT(cr4, X86_CR4_MCE, "MCE"); REG_OUT_BIT(cr4, X86_CR4_PGE, "PGE"); REG_OUT_BIT(cr4, X86_CR4_PCE, "PCE"); REG_OUT_BIT(cr4, X86_CR4_OSFXSR, "OSFXSR"); REG_OUT_BIT(cr4, X86_CR4_OSXMMEEXCPT, "OSXMMEEXCPT"); REG_OUT_BIT(cr4, X86_CR4_VMXE, "VMXE"); REG_OUT_BIT(cr4, X86_CR4_SMXE, "SMXE"); REG_OUT_BIT(cr4, X86_CR4_PCIDE, "PCIDE"); REG_OUT_BIT(cr4, X86_CR4_OSXSAVE, "OSXSAVE"); REG_OUT_BIT(cr4, X86_CR4_SMEP, "SMEP"); REG_OUT_BIT(cr4, X86_CR4_SMAP, "SMAP"); REG_OUT_CLOSE(cr4); } else AssertMsgFailed(("Unknown x86 register specified in '%.10s'!\n", pszFormatOrg)); } #endif else AssertMsgFailed(("Unknown architecture specified in '%.10s'!\n", pszFormatOrg)); #undef REG_OUT_BIT #undef REG_OUT_CLOSE #undef REG_EQUALS return cchOutput; } /* * Invalid/Unknown. Bitch about it. */ default: AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg)); break; } } else AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg)); NOREF(pszFormatOrg); return 0; }