VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/string/strformatrt.cpp@ 66292

Last change on this file since 66292 was 66292, checked in by vboxsync, 8 years ago

Runtime: use R0_ARCH_BITS

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 54.8 KB
Line 
1/* $Id: strformatrt.cpp 66292 2017-03-28 11:33:36Z vboxsync $ */
2/** @file
3 * IPRT - IPRT String Formatter Extensions.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP RTLOGGROUP_STRING
32#include <iprt/string.h>
33#ifndef RT_NO_EXPORT_SYMBOL
34# define RT_NO_EXPORT_SYMBOL /* don't slurp <linux/module.h> which then again
35 slurps arch-specific headers defining symbols */
36#endif
37#include "internal/iprt.h"
38
39#include <iprt/log.h>
40#include <iprt/assert.h>
41#include <iprt/string.h>
42#include <iprt/stdarg.h>
43#ifdef IN_RING3
44# include <iprt/thread.h>
45# include <iprt/err.h>
46#endif
47#include <iprt/ctype.h>
48#include <iprt/time.h>
49#include <iprt/net.h>
50#include <iprt/path.h>
51#include <iprt/asm.h>
52#define STRFORMAT_WITH_X86
53#ifdef STRFORMAT_WITH_X86
54# include <iprt/x86.h>
55#endif
56#include "internal/string.h"
57
58
59/*********************************************************************************************************************************
60* Global Variables *
61*********************************************************************************************************************************/
62static char g_szHexDigits[17] = "0123456789abcdef";
63
64
65/**
66 * Helper that formats a 16-bit hex word in a IPv6 address.
67 *
68 * @returns Length in chars.
69 * @param pszDst The output buffer. Written from the start.
70 * @param uWord The word to format as hex.
71 */
72static size_t rtstrFormatIPv6HexWord(char *pszDst, uint16_t uWord)
73{
74 size_t off;
75 uint16_t cDigits;
76
77 if (uWord & UINT16_C(0xff00))
78 cDigits = uWord & UINT16_C(0xf000) ? 4 : 3;
79 else
80 cDigits = uWord & UINT16_C(0x00f0) ? 2 : 1;
81
82 off = 0;
83 switch (cDigits)
84 {
85 case 4: pszDst[off++] = g_szHexDigits[(uWord >> 12) & 0xf]; /* fall thru */
86 case 3: pszDst[off++] = g_szHexDigits[(uWord >> 8) & 0xf]; /* fall thru */
87 case 2: pszDst[off++] = g_szHexDigits[(uWord >> 4) & 0xf]; /* fall thru */
88 case 1: pszDst[off++] = g_szHexDigits[(uWord >> 0) & 0xf];
89 break;
90 }
91 pszDst[off] = '\0';
92 return off;
93}
94
95
96/**
97 * Helper function to format IPv6 address according to RFC 5952.
98 *
99 * @returns The number of bytes formatted.
100 * @param pfnOutput Pointer to output function.
101 * @param pvArgOutput Argument for the output function.
102 * @param pIpv6Addr IPv6 address
103 */
104static size_t rtstrFormatIPv6(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, PCRTNETADDRIPV6 pIpv6Addr)
105{
106 size_t cch; /* result */
107 bool fEmbeddedIpv4;
108 size_t cwHexPart;
109 size_t cwLongestZeroRun;
110 size_t iLongestZeroStart;
111 size_t idx;
112 char szHexWord[8];
113
114 Assert(pIpv6Addr != NULL);
115
116 /*
117 * Check for embedded IPv4 address.
118 *
119 * IPv4-compatible - ::11.22.33.44 (obsolete)
120 * IPv4-mapped - ::ffff:11.22.33.44
121 * IPv4-translated - ::ffff:0:11.22.33.44 (RFC 2765)
122 */
123 fEmbeddedIpv4 = false;
124 cwHexPart = RT_ELEMENTS(pIpv6Addr->au16);
125 if ( pIpv6Addr->au64[0] == 0
126 && ( ( pIpv6Addr->au32[2] == 0
127 && pIpv6Addr->au32[3] != 0
128 && pIpv6Addr->au32[3] != RT_H2BE_U32_C(1) )
129 || pIpv6Addr->au32[2] == RT_H2BE_U32_C(0x0000ffff)
130 || pIpv6Addr->au32[2] == RT_H2BE_U32_C(0xffff0000) ) )
131 {
132 fEmbeddedIpv4 = true;
133 cwHexPart -= 2;
134 }
135
136 /*
137 * Find the longest sequences of two or more zero words.
138 */
139 cwLongestZeroRun = 0;
140 iLongestZeroStart = 0;
141 for (idx = 0; idx < cwHexPart; idx++)
142 if (pIpv6Addr->au16[idx] == 0)
143 {
144 size_t iZeroStart = idx;
145 size_t cwZeroRun;
146 do
147 idx++;
148 while (idx < cwHexPart && pIpv6Addr->au16[idx] == 0);
149 cwZeroRun = idx - iZeroStart;
150 if (cwZeroRun > 1 && cwZeroRun > cwLongestZeroRun)
151 {
152 cwLongestZeroRun = cwZeroRun;
153 iLongestZeroStart = iZeroStart;
154 if (cwZeroRun >= cwHexPart - idx)
155 break;
156 }
157 }
158
159 /*
160 * Do the formatting.
161 */
162 cch = 0;
163 if (cwLongestZeroRun == 0)
164 {
165 for (idx = 0; idx < cwHexPart; ++idx)
166 {
167 if (idx > 0)
168 cch += pfnOutput(pvArgOutput, ":", 1);
169 cch += pfnOutput(pvArgOutput, szHexWord, rtstrFormatIPv6HexWord(szHexWord, RT_BE2H_U16(pIpv6Addr->au16[idx])));
170 }
171
172 if (fEmbeddedIpv4)
173 cch += pfnOutput(pvArgOutput, ":", 1);
174 }
175 else
176 {
177 const size_t iLongestZeroEnd = iLongestZeroStart + cwLongestZeroRun;
178
179 if (iLongestZeroStart == 0)
180 cch += pfnOutput(pvArgOutput, ":", 1);
181 else
182 for (idx = 0; idx < iLongestZeroStart; ++idx)
183 {
184 cch += pfnOutput(pvArgOutput, szHexWord, rtstrFormatIPv6HexWord(szHexWord, RT_BE2H_U16(pIpv6Addr->au16[idx])));
185 cch += pfnOutput(pvArgOutput, ":", 1);
186 }
187
188 if (iLongestZeroEnd == cwHexPart)
189 cch += pfnOutput(pvArgOutput, ":", 1);
190 else
191 {
192 for (idx = iLongestZeroEnd; idx < cwHexPart; ++idx)
193 {
194 cch += pfnOutput(pvArgOutput, ":", 1);
195 cch += pfnOutput(pvArgOutput, szHexWord, rtstrFormatIPv6HexWord(szHexWord, RT_BE2H_U16(pIpv6Addr->au16[idx])));
196 }
197
198 if (fEmbeddedIpv4)
199 cch += pfnOutput(pvArgOutput, ":", 1);
200 }
201 }
202
203 if (fEmbeddedIpv4)
204 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
205 "%u.%u.%u.%u",
206 pIpv6Addr->au8[12],
207 pIpv6Addr->au8[13],
208 pIpv6Addr->au8[14],
209 pIpv6Addr->au8[15]);
210
211 return cch;
212}
213
214
215/**
216 * Callback to format iprt formatting extentions.
217 * See @ref pg_rt_str_format for a reference on the format types.
218 *
219 * @returns The number of bytes formatted.
220 * @param pfnOutput Pointer to output function.
221 * @param pvArgOutput Argument for the output function.
222 * @param ppszFormat Pointer to the format string pointer. Advance this till the char
223 * after the format specifier.
224 * @param pArgs Pointer to the argument list. Use this to fetch the arguments.
225 * @param cchWidth Format Width. -1 if not specified.
226 * @param cchPrecision Format Precision. -1 if not specified.
227 * @param fFlags Flags (RTSTR_NTFS_*).
228 * @param chArgSize The argument size specifier, 'l' or 'L'.
229 */
230DECLHIDDEN(size_t) rtstrFormatRt(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char **ppszFormat, va_list *pArgs,
231 int cchWidth, int cchPrecision, unsigned fFlags, char chArgSize)
232{
233 const char *pszFormatOrg = *ppszFormat;
234 char ch = *(*ppszFormat)++;
235 size_t cch;
236 char szBuf[80];
237
238 if (ch == 'R')
239 {
240 ch = *(*ppszFormat)++;
241 switch (ch)
242 {
243 /*
244 * Groups 1 and 2.
245 */
246 case 'T':
247 case 'G':
248 case 'H':
249 case 'R':
250 case 'C':
251 case 'I':
252 case 'X':
253 case 'U':
254 case 'K':
255 {
256 /*
257 * Interpret the type.
258 */
259 typedef enum
260 {
261 RTSF_INT,
262 RTSF_INTW,
263 RTSF_BOOL,
264 RTSF_FP16,
265 RTSF_FP32,
266 RTSF_FP64,
267 RTSF_IPV4,
268 RTSF_IPV6,
269 RTSF_MAC,
270 RTSF_NETADDR,
271 RTSF_UUID
272 } RTSF;
273 static const struct
274 {
275 uint8_t cch; /**< the length of the string. */
276 char sz[10]; /**< the part following 'R'. */
277 uint8_t cb; /**< the size of the type. */
278 uint8_t u8Base; /**< the size of the type. */
279 RTSF enmFormat; /**< The way to format it. */
280 uint16_t fFlags; /**< additional RTSTR_F_* flags. */
281 }
282 /** Sorted array of types, looked up using binary search! */
283 s_aTypes[] =
284 {
285#define STRMEM(str) sizeof(str) - 1, str
286 { STRMEM("Ci"), sizeof(RTINT), 10, RTSF_INT, RTSTR_F_VALSIGNED },
287 { STRMEM("Cp"), sizeof(RTCCPHYS), 16, RTSF_INTW, 0 },
288 { STRMEM("Cr"), sizeof(RTCCUINTREG), 16, RTSF_INTW, 0 },
289 { STRMEM("Cu"), sizeof(RTUINT), 10, RTSF_INT, 0 },
290 { STRMEM("Cv"), sizeof(void *), 16, RTSF_INTW, 0 },
291 { STRMEM("Cx"), sizeof(RTUINT), 16, RTSF_INT, 0 },
292 { STRMEM("Gi"), sizeof(RTGCINT), 10, RTSF_INT, RTSTR_F_VALSIGNED },
293 { STRMEM("Gp"), sizeof(RTGCPHYS), 16, RTSF_INTW, 0 },
294 { STRMEM("Gr"), sizeof(RTGCUINTREG), 16, RTSF_INTW, 0 },
295 { STRMEM("Gu"), sizeof(RTGCUINT), 10, RTSF_INT, 0 },
296 { STRMEM("Gv"), sizeof(RTGCPTR), 16, RTSF_INTW, 0 },
297 { STRMEM("Gx"), sizeof(RTGCUINT), 16, RTSF_INT, 0 },
298 { STRMEM("Hi"), sizeof(RTHCINT), 10, RTSF_INT, RTSTR_F_VALSIGNED },
299 { STRMEM("Hp"), sizeof(RTHCPHYS), 16, RTSF_INTW, 0 },
300 { STRMEM("Hr"), sizeof(RTHCUINTREG), 16, RTSF_INTW, 0 },
301 { STRMEM("Hu"), sizeof(RTHCUINT), 10, RTSF_INT, 0 },
302 { STRMEM("Hv"), sizeof(RTHCPTR), 16, RTSF_INTW, 0 },
303 { STRMEM("Hx"), sizeof(RTHCUINT), 16, RTSF_INT, 0 },
304 { STRMEM("I16"), sizeof(int16_t), 10, RTSF_INT, RTSTR_F_VALSIGNED },
305 { STRMEM("I32"), sizeof(int32_t), 10, RTSF_INT, RTSTR_F_VALSIGNED },
306 { STRMEM("I64"), sizeof(int64_t), 10, RTSF_INT, RTSTR_F_VALSIGNED },
307 { STRMEM("I8"), sizeof(int8_t), 10, RTSF_INT, RTSTR_F_VALSIGNED },
308 { STRMEM("Kv"), sizeof(RTHCPTR), 16, RTSF_INT, RTSTR_F_OBFUSCATE_PTR },
309 { STRMEM("Rv"), sizeof(RTRCPTR), 16, RTSF_INTW, 0 },
310 { STRMEM("Tbool"), sizeof(bool), 10, RTSF_BOOL, 0 },
311 { STRMEM("Tfile"), sizeof(RTFILE), 10, RTSF_INT, 0 },
312 { STRMEM("Tfmode"), sizeof(RTFMODE), 16, RTSF_INTW, 0 },
313 { STRMEM("Tfoff"), sizeof(RTFOFF), 10, RTSF_INT, RTSTR_F_VALSIGNED },
314 { STRMEM("Tfp16"), sizeof(RTFAR16), 16, RTSF_FP16, RTSTR_F_ZEROPAD },
315 { STRMEM("Tfp32"), sizeof(RTFAR32), 16, RTSF_FP32, RTSTR_F_ZEROPAD },
316 { STRMEM("Tfp64"), sizeof(RTFAR64), 16, RTSF_FP64, RTSTR_F_ZEROPAD },
317 { STRMEM("Tgid"), sizeof(RTGID), 10, RTSF_INT, RTSTR_F_VALSIGNED },
318 { STRMEM("Tino"), sizeof(RTINODE), 16, RTSF_INTW, 0 },
319 { STRMEM("Tint"), sizeof(RTINT), 10, RTSF_INT, RTSTR_F_VALSIGNED },
320 { STRMEM("Tiop"), sizeof(RTIOPORT), 16, RTSF_INTW, 0 },
321 { STRMEM("Tldrm"), sizeof(RTLDRMOD), 16, RTSF_INTW, 0 },
322 { STRMEM("Tmac"), sizeof(PCRTMAC), 16, RTSF_MAC, 0 },
323 { STRMEM("Tnaddr"), sizeof(PCRTNETADDR), 10, RTSF_NETADDR,0 },
324 { STRMEM("Tnaipv4"), sizeof(RTNETADDRIPV4), 10, RTSF_IPV4, 0 },
325 { STRMEM("Tnaipv6"), sizeof(PCRTNETADDRIPV6),16, RTSF_IPV6, 0 },
326 { STRMEM("Tnthrd"), sizeof(RTNATIVETHREAD), 16, RTSF_INTW, 0 },
327 { STRMEM("Tproc"), sizeof(RTPROCESS), 16, RTSF_INTW, 0 },
328 { STRMEM("Tptr"), sizeof(RTUINTPTR), 16, RTSF_INTW, 0 },
329 { STRMEM("Treg"), sizeof(RTCCUINTREG), 16, RTSF_INTW, 0 },
330 { STRMEM("Tsel"), sizeof(RTSEL), 16, RTSF_INTW, 0 },
331 { STRMEM("Tsem"), sizeof(RTSEMEVENT), 16, RTSF_INTW, 0 },
332 { STRMEM("Tsock"), sizeof(RTSOCKET), 10, RTSF_INT, 0 },
333 { STRMEM("Tthrd"), sizeof(RTTHREAD), 16, RTSF_INTW, 0 },
334 { STRMEM("Tuid"), sizeof(RTUID), 10, RTSF_INT, RTSTR_F_VALSIGNED },
335 { STRMEM("Tuint"), sizeof(RTUINT), 10, RTSF_INT, 0 },
336 { STRMEM("Tunicp"), sizeof(RTUNICP), 16, RTSF_INTW, RTSTR_F_ZEROPAD },
337 { STRMEM("Tutf16"), sizeof(RTUTF16), 16, RTSF_INTW, RTSTR_F_ZEROPAD },
338 { STRMEM("Tuuid"), sizeof(PCRTUUID), 16, RTSF_UUID, 0 },
339 { STRMEM("Txint"), sizeof(RTUINT), 16, RTSF_INT, 0 },
340 { STRMEM("U16"), sizeof(uint16_t), 10, RTSF_INT, 0 },
341 { STRMEM("U32"), sizeof(uint32_t), 10, RTSF_INT, 0 },
342 { STRMEM("U64"), sizeof(uint64_t), 10, RTSF_INT, 0 },
343 { STRMEM("U8"), sizeof(uint8_t), 10, RTSF_INT, 0 },
344 { STRMEM("X16"), sizeof(uint16_t), 16, RTSF_INT, 0 },
345 { STRMEM("X32"), sizeof(uint32_t), 16, RTSF_INT, 0 },
346 { STRMEM("X64"), sizeof(uint64_t), 16, RTSF_INT, 0 },
347 { STRMEM("X8"), sizeof(uint8_t), 16, RTSF_INT, 0 },
348#undef STRMEM
349 };
350 static const char s_szNull[] = "<NULL>";
351
352 const char *pszType = *ppszFormat - 1;
353 int iStart = 0;
354 int iEnd = RT_ELEMENTS(s_aTypes) - 1;
355 int i = RT_ELEMENTS(s_aTypes) / 2;
356
357 union
358 {
359 uint8_t u8;
360 uint16_t u16;
361 uint32_t u32;
362 uint64_t u64;
363 int8_t i8;
364 int16_t i16;
365 int32_t i32;
366 int64_t i64;
367 RTFAR16 fp16;
368 RTFAR32 fp32;
369 RTFAR64 fp64;
370 bool fBool;
371 PCRTMAC pMac;
372 RTNETADDRIPV4 Ipv4Addr;
373 PCRTNETADDRIPV6 pIpv6Addr;
374 PCRTNETADDR pNetAddr;
375 PCRTUUID pUuid;
376 } u;
377
378 AssertMsg(!chArgSize, ("Not argument size '%c' for RT types! '%.10s'\n", chArgSize, pszFormatOrg));
379 RT_NOREF_PV(chArgSize);
380
381 /*
382 * Lookup the type - binary search.
383 */
384 for (;;)
385 {
386 int iDiff = strncmp(pszType, s_aTypes[i].sz, s_aTypes[i].cch);
387 if (!iDiff)
388 break;
389 if (iEnd == iStart)
390 {
391 AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg));
392 return 0;
393 }
394 if (iDiff < 0)
395 iEnd = i - 1;
396 else
397 iStart = i + 1;
398 if (iEnd < iStart)
399 {
400 AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg));
401 return 0;
402 }
403 i = iStart + (iEnd - iStart) / 2;
404 }
405
406 /*
407 * Advance the format string and merge flags.
408 */
409 *ppszFormat += s_aTypes[i].cch - 1;
410 fFlags |= s_aTypes[i].fFlags;
411
412 /*
413 * Fetch the argument.
414 * It's important that a signed value gets sign-extended up to 64-bit.
415 */
416 RT_ZERO(u);
417 if (fFlags & RTSTR_F_VALSIGNED)
418 {
419 switch (s_aTypes[i].cb)
420 {
421 case sizeof(int8_t):
422 u.i64 = va_arg(*pArgs, /*int8_t*/int);
423 fFlags |= RTSTR_F_8BIT;
424 break;
425 case sizeof(int16_t):
426 u.i64 = va_arg(*pArgs, /*int16_t*/int);
427 fFlags |= RTSTR_F_16BIT;
428 break;
429 case sizeof(int32_t):
430 u.i64 = va_arg(*pArgs, int32_t);
431 fFlags |= RTSTR_F_32BIT;
432 break;
433 case sizeof(int64_t):
434 u.i64 = va_arg(*pArgs, int64_t);
435 fFlags |= RTSTR_F_64BIT;
436 break;
437 default:
438 AssertMsgFailed(("Invalid format error, size %d'!\n", s_aTypes[i].cb));
439 break;
440 }
441 }
442 else
443 {
444 switch (s_aTypes[i].cb)
445 {
446 case sizeof(uint8_t):
447 u.u8 = va_arg(*pArgs, /*uint8_t*/unsigned);
448 fFlags |= RTSTR_F_8BIT;
449 break;
450 case sizeof(uint16_t):
451 u.u16 = va_arg(*pArgs, /*uint16_t*/unsigned);
452 fFlags |= RTSTR_F_16BIT;
453 break;
454 case sizeof(uint32_t):
455 u.u32 = va_arg(*pArgs, uint32_t);
456 fFlags |= RTSTR_F_32BIT;
457 break;
458 case sizeof(uint64_t):
459 u.u64 = va_arg(*pArgs, uint64_t);
460 fFlags |= RTSTR_F_64BIT;
461 break;
462 case sizeof(RTFAR32):
463 u.fp32 = va_arg(*pArgs, RTFAR32);
464 break;
465 case sizeof(RTFAR64):
466 u.fp64 = va_arg(*pArgs, RTFAR64);
467 break;
468 default:
469 AssertMsgFailed(("Invalid format error, size %d'!\n", s_aTypes[i].cb));
470 break;
471 }
472 }
473
474#ifndef DEBUG
475 /*
476 * For now don't show the address.
477 */
478 cch = 0;
479 if (fFlags & RTSTR_F_OBFUSCATE_PTR)
480 {
481 if (fFlags & RTSTR_F_SPECIAL)
482 cch += pfnOutput(pvArgOutput, RT_STR_TUPLE("0x"));
483
484# if R0_ARCH_BITS == 32
485 cch += pfnOutput(pvArgOutput, RT_STR_TUPLE("XXXXXXXX"));
486# elif R0_ARCH_BITS == 64
487 cch += pfnOutput(pvArgOutput, RT_STR_TUPLE("XXXXXXXXXXXXXXXX"));
488# elif R0_ARCH_BITS == 16
489 cch += pfnOutput(pvArgOutput, RT_STR_TUPLE("XXXX"));
490# else
491# error implement me!
492# endif
493 return cch;
494 }
495#endif
496
497 /*
498 * Format the output.
499 */
500 switch (s_aTypes[i].enmFormat)
501 {
502 case RTSF_INT:
503 {
504 cch = RTStrFormatNumber(szBuf, u.u64, s_aTypes[i].u8Base, cchWidth, cchPrecision, fFlags);
505 break;
506 }
507
508 /* hex which defaults to max width. */
509 case RTSF_INTW:
510 {
511 Assert(s_aTypes[i].u8Base == 16);
512 if (cchWidth < 0)
513 {
514 cchWidth = s_aTypes[i].cb * 2 + (fFlags & RTSTR_F_SPECIAL ? 2 : 0);
515 fFlags |= RTSTR_F_ZEROPAD;
516 }
517 cch = RTStrFormatNumber(szBuf, u.u64, s_aTypes[i].u8Base, cchWidth, cchPrecision, fFlags);
518 break;
519 }
520
521 case RTSF_BOOL:
522 {
523 static const char s_szTrue[] = "true ";
524 static const char s_szFalse[] = "false";
525 if (u.u64 == 1)
526 return pfnOutput(pvArgOutput, s_szTrue, sizeof(s_szTrue) - 1);
527 if (u.u64 == 0)
528 return pfnOutput(pvArgOutput, s_szFalse, sizeof(s_szFalse) - 1);
529 /* invalid boolean value */
530 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "!%lld!", u.u64);
531 }
532
533 case RTSF_FP16:
534 {
535 fFlags &= ~(RTSTR_F_VALSIGNED | RTSTR_F_BIT_MASK | RTSTR_F_WIDTH | RTSTR_F_PRECISION | RTSTR_F_THOUSAND_SEP);
536 cch = RTStrFormatNumber(&szBuf[0], u.fp16.sel, 16, 4, -1, fFlags | RTSTR_F_16BIT);
537 Assert(cch == 4);
538 szBuf[4] = ':';
539 cch = RTStrFormatNumber(&szBuf[5], u.fp16.off, 16, 4, -1, fFlags | RTSTR_F_16BIT);
540 Assert(cch == 4);
541 cch = 4 + 1 + 4;
542 break;
543 }
544 case RTSF_FP32:
545 {
546 fFlags &= ~(RTSTR_F_VALSIGNED | RTSTR_F_BIT_MASK | RTSTR_F_WIDTH | RTSTR_F_PRECISION | RTSTR_F_THOUSAND_SEP);
547 cch = RTStrFormatNumber(&szBuf[0], u.fp32.sel, 16, 4, -1, fFlags | RTSTR_F_16BIT);
548 Assert(cch == 4);
549 szBuf[4] = ':';
550 cch = RTStrFormatNumber(&szBuf[5], u.fp32.off, 16, 8, -1, fFlags | RTSTR_F_32BIT);
551 Assert(cch == 8);
552 cch = 4 + 1 + 8;
553 break;
554 }
555 case RTSF_FP64:
556 {
557 fFlags &= ~(RTSTR_F_VALSIGNED | RTSTR_F_BIT_MASK | RTSTR_F_WIDTH | RTSTR_F_PRECISION | RTSTR_F_THOUSAND_SEP);
558 cch = RTStrFormatNumber(&szBuf[0], u.fp64.sel, 16, 4, -1, fFlags | RTSTR_F_16BIT);
559 Assert(cch == 4);
560 szBuf[4] = ':';
561 cch = RTStrFormatNumber(&szBuf[5], u.fp64.off, 16, 16, -1, fFlags | RTSTR_F_64BIT);
562 Assert(cch == 16);
563 cch = 4 + 1 + 16;
564 break;
565 }
566
567 case RTSF_IPV4:
568 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
569 "%u.%u.%u.%u",
570 u.Ipv4Addr.au8[0],
571 u.Ipv4Addr.au8[1],
572 u.Ipv4Addr.au8[2],
573 u.Ipv4Addr.au8[3]);
574
575 case RTSF_IPV6:
576 {
577 if (VALID_PTR(u.pIpv6Addr))
578 return rtstrFormatIPv6(pfnOutput, pvArgOutput, u.pIpv6Addr);
579 return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1);
580 }
581
582 case RTSF_MAC:
583 {
584 if (VALID_PTR(u.pMac))
585 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
586 "%02x:%02x:%02x:%02x:%02x:%02x",
587 u.pMac->au8[0],
588 u.pMac->au8[1],
589 u.pMac->au8[2],
590 u.pMac->au8[3],
591 u.pMac->au8[4],
592 u.pMac->au8[5]);
593 return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1);
594 }
595
596 case RTSF_NETADDR:
597 {
598 if (VALID_PTR(u.pNetAddr))
599 {
600 switch (u.pNetAddr->enmType)
601 {
602 case RTNETADDRTYPE_IPV4:
603 if (u.pNetAddr->uPort == RTNETADDR_PORT_NA)
604 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
605 "%u.%u.%u.%u",
606 u.pNetAddr->uAddr.IPv4.au8[0],
607 u.pNetAddr->uAddr.IPv4.au8[1],
608 u.pNetAddr->uAddr.IPv4.au8[2],
609 u.pNetAddr->uAddr.IPv4.au8[3]);
610 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
611 "%u.%u.%u.%u:%u",
612 u.pNetAddr->uAddr.IPv4.au8[0],
613 u.pNetAddr->uAddr.IPv4.au8[1],
614 u.pNetAddr->uAddr.IPv4.au8[2],
615 u.pNetAddr->uAddr.IPv4.au8[3],
616 u.pNetAddr->uPort);
617
618 case RTNETADDRTYPE_IPV6:
619 if (u.pNetAddr->uPort == RTNETADDR_PORT_NA)
620 return rtstrFormatIPv6(pfnOutput, pvArgOutput, &u.pNetAddr->uAddr.IPv6);
621
622 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
623 "[%RTnaipv6]:%u",
624 &u.pNetAddr->uAddr.IPv6,
625 u.pNetAddr->uPort);
626
627 case RTNETADDRTYPE_MAC:
628 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
629 "%02x:%02x:%02x:%02x:%02x:%02x",
630 u.pNetAddr->uAddr.Mac.au8[0],
631 u.pNetAddr->uAddr.Mac.au8[1],
632 u.pNetAddr->uAddr.Mac.au8[2],
633 u.pNetAddr->uAddr.Mac.au8[3],
634 u.pNetAddr->uAddr.Mac.au8[4],
635 u.pNetAddr->uAddr.Mac.au8[5]);
636
637 default:
638 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
639 "unsupported-netaddr-type=%u", u.pNetAddr->enmType);
640
641 }
642 }
643 return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1);
644 }
645
646 case RTSF_UUID:
647 {
648 if (VALID_PTR(u.pUuid))
649 {
650 /* cannot call RTUuidToStr because of GC/R0. */
651 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
652 "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
653 RT_H2LE_U32(u.pUuid->Gen.u32TimeLow),
654 RT_H2LE_U16(u.pUuid->Gen.u16TimeMid),
655 RT_H2LE_U16(u.pUuid->Gen.u16TimeHiAndVersion),
656 u.pUuid->Gen.u8ClockSeqHiAndReserved,
657 u.pUuid->Gen.u8ClockSeqLow,
658 u.pUuid->Gen.au8Node[0],
659 u.pUuid->Gen.au8Node[1],
660 u.pUuid->Gen.au8Node[2],
661 u.pUuid->Gen.au8Node[3],
662 u.pUuid->Gen.au8Node[4],
663 u.pUuid->Gen.au8Node[5]);
664 }
665 return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1);
666 }
667
668 default:
669 AssertMsgFailed(("Internal error %d\n", s_aTypes[i].enmFormat));
670 return 0;
671 }
672
673 /*
674 * Finally, output the formatted string and return.
675 */
676 return pfnOutput(pvArgOutput, szBuf, cch);
677 }
678
679
680 /* Group 3 */
681
682 /*
683 * Base name printing.
684 */
685 case 'b':
686 {
687 switch (*(*ppszFormat)++)
688 {
689 case 'n':
690 {
691 const char *pszLastSep;
692 const char *psz = pszLastSep = va_arg(*pArgs, const char *);
693 if (!VALID_PTR(psz))
694 return pfnOutput(pvArgOutput, RT_STR_TUPLE("<null>"));
695
696 while ((ch = *psz) != '\0')
697 {
698 if (RTPATH_IS_SEP(ch))
699 {
700 do
701 psz++;
702 while ((ch = *psz) != '\0' && RTPATH_IS_SEP(ch));
703 if (!ch)
704 break;
705 pszLastSep = psz;
706 }
707 psz++;
708 }
709
710 return pfnOutput(pvArgOutput, pszLastSep, psz - pszLastSep);
711 }
712
713 default:
714 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
715 break;
716 }
717 break;
718 }
719
720
721 /*
722 * Pretty function / method name printing.
723 */
724 case 'f':
725 {
726 switch (*(*ppszFormat)++)
727 {
728 /*
729 * Pretty function / method name printing.
730 * This isn't 100% right (see classic signal prototype) and it assumes
731 * standardized names, but it'll do for today.
732 */
733 case 'n':
734 {
735 const char *pszStart;
736 const char *psz = pszStart = va_arg(*pArgs, const char *);
737 int cAngle = 0;
738
739 if (!VALID_PTR(psz))
740 return pfnOutput(pvArgOutput, RT_STR_TUPLE("<null>"));
741
742 while ((ch = *psz) != '\0' && ch != '(')
743 {
744 if (RT_C_IS_BLANK(ch))
745 {
746 psz++;
747 while ((ch = *psz) != '\0' && (RT_C_IS_BLANK(ch) || ch == '('))
748 psz++;
749 if (ch && cAngle == 0)
750 pszStart = psz;
751 }
752 else if (ch == '(')
753 break;
754 else if (ch == '<')
755 {
756 cAngle++;
757 psz++;
758 }
759 else if (ch == '>')
760 {
761 cAngle--;
762 psz++;
763 }
764 else
765 psz++;
766 }
767
768 return pfnOutput(pvArgOutput, pszStart, psz - pszStart);
769 }
770
771 default:
772 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
773 break;
774 }
775 break;
776 }
777
778
779 /*
780 * hex dumping and COM/XPCOM.
781 */
782 case 'h':
783 {
784 switch (*(*ppszFormat)++)
785 {
786 /*
787 * Hex stuff.
788 */
789 case 'x':
790 {
791 uint8_t *pu8 = va_arg(*pArgs, uint8_t *);
792 if (cchPrecision < 0)
793 cchPrecision = 16;
794 if (pu8)
795 {
796 switch (*(*ppszFormat)++)
797 {
798 /*
799 * Regular hex dump.
800 */
801 case 'd':
802 {
803 int off = 0;
804 cch = 0;
805
806 if (cchWidth <= 0)
807 cchWidth = 16;
808
809 while (off < cchPrecision)
810 {
811 int i;
812 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s%0*p %04x:", off ? "\n" : "", sizeof(pu8) * 2, (uintptr_t)pu8, off);
813 for (i = 0; i < cchWidth && off + i < cchPrecision ; i++)
814 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
815 off + i < cchPrecision ? !(i & 7) && i ? "-%02x" : " %02x" : " ", pu8[i]);
816 while (i++ < cchWidth)
817 cch += pfnOutput(pvArgOutput, " ", 3);
818
819 cch += pfnOutput(pvArgOutput, " ", 1);
820
821 for (i = 0; i < cchWidth && off + i < cchPrecision; i++)
822 {
823 uint8_t u8 = pu8[i];
824 cch += pfnOutput(pvArgOutput, u8 < 127 && u8 >= 32 ? (const char *)&u8 : ".", 1);
825 }
826
827 /* next */
828 pu8 += cchWidth;
829 off += cchWidth;
830 }
831 return cch;
832 }
833
834 /*
835 * Hex string.
836 */
837 case 's':
838 {
839 if (cchPrecision-- > 0)
840 {
841 cch = RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%02x", *pu8++);
842 for (; cchPrecision > 0; cchPrecision--, pu8++)
843 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, " %02x", *pu8);
844 return cch;
845 }
846 break;
847 }
848
849 default:
850 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
851 break;
852 }
853 }
854 else
855 return pfnOutput(pvArgOutput, RT_STR_TUPLE("<null>"));
856 break;
857 }
858
859
860#ifdef IN_RING3
861 /*
862 * XPCOM / COM status code: %Rhrc, %Rhrf, %Rhra
863 * ASSUMES: If Windows Then COM else XPCOM.
864 */
865 case 'r':
866 {
867 uint32_t hrc = va_arg(*pArgs, uint32_t);
868 PCRTCOMERRMSG pMsg = RTErrCOMGet(hrc);
869 switch (*(*ppszFormat)++)
870 {
871 case 'c':
872 return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine));
873 case 'f':
874 return pfnOutput(pvArgOutput, pMsg->pszMsgFull,strlen(pMsg->pszMsgFull));
875 case 'a':
876 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (0x%08X) - %s", pMsg->pszDefine, hrc, pMsg->pszMsgFull);
877 default:
878 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
879 return 0;
880 }
881 break;
882 }
883#endif /* IN_RING3 */
884
885 default:
886 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
887 return 0;
888
889 }
890 break;
891 }
892
893 /*
894 * iprt status code: %Rrc, %Rrs, %Rrf, %Rra.
895 */
896 case 'r':
897 {
898 int rc = va_arg(*pArgs, int);
899#ifdef IN_RING3 /* we don't want this anywhere else yet. */
900 PCRTSTATUSMSG pMsg = RTErrGet(rc);
901 switch (*(*ppszFormat)++)
902 {
903 case 'c':
904 return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine));
905 case 's':
906 return pfnOutput(pvArgOutput, pMsg->pszMsgShort, strlen(pMsg->pszMsgShort));
907 case 'f':
908 return pfnOutput(pvArgOutput, pMsg->pszMsgFull, strlen(pMsg->pszMsgFull));
909 case 'a':
910 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (%d) - %s", pMsg->pszDefine, rc, pMsg->pszMsgFull);
911 default:
912 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
913 return 0;
914 }
915#else /* !IN_RING3 */
916 switch (*(*ppszFormat)++)
917 {
918 case 'c':
919 case 's':
920 case 'f':
921 case 'a':
922 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%d", rc);
923 default:
924 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
925 return 0;
926 }
927#endif /* !IN_RING3 */
928 break;
929 }
930
931#if defined(IN_RING3)
932 /*
933 * Windows status code: %Rwc, %Rwf, %Rwa
934 */
935 case 'w':
936 {
937 long rc = va_arg(*pArgs, long);
938# if defined(RT_OS_WINDOWS)
939 PCRTWINERRMSG pMsg = RTErrWinGet(rc);
940# endif
941 switch (*(*ppszFormat)++)
942 {
943# if defined(RT_OS_WINDOWS)
944 case 'c':
945 return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine));
946 case 'f':
947 return pfnOutput(pvArgOutput, pMsg->pszMsgFull,strlen(pMsg->pszMsgFull));
948 case 'a':
949 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (0x%08X) - %s", pMsg->pszDefine, rc, pMsg->pszMsgFull);
950# else
951 case 'c':
952 case 'f':
953 case 'a':
954 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "0x%08X", rc);
955# endif
956 default:
957 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
958 return 0;
959 }
960 break;
961 }
962#endif /* IN_RING3 */
963
964 /*
965 * Group 4, structure dumpers.
966 */
967 case 'D':
968 {
969 /*
970 * Interpret the type.
971 */
972 typedef enum
973 {
974 RTST_TIMESPEC
975 } RTST;
976/** Set if it's a pointer */
977#define RTST_FLAGS_POINTER RT_BIT(0)
978 static const struct
979 {
980 uint8_t cch; /**< the length of the string. */
981 char sz[16-2]; /**< the part following 'R'. */
982 uint8_t cb; /**< the size of the argument. */
983 uint8_t fFlags; /**< RTST_FLAGS_* */
984 RTST enmType; /**< The structure type. */
985 }
986 /** Sorted array of types, looked up using binary search! */
987 s_aTypes[] =
988 {
989#define STRMEM(str) sizeof(str) - 1, str
990 { STRMEM("Dtimespec"), sizeof(PCRTTIMESPEC), RTST_FLAGS_POINTER, RTST_TIMESPEC},
991#undef STRMEM
992 };
993 const char *pszType = *ppszFormat - 1;
994 int iStart = 0;
995 int iEnd = RT_ELEMENTS(s_aTypes) - 1;
996 int i = RT_ELEMENTS(s_aTypes) / 2;
997
998 union
999 {
1000 const void *pv;
1001 uint64_t u64;
1002 PCRTTIMESPEC pTimeSpec;
1003 } u;
1004
1005 AssertMsg(!chArgSize, ("Not argument size '%c' for RT types! '%.10s'\n", chArgSize, pszFormatOrg));
1006
1007 /*
1008 * Lookup the type - binary search.
1009 */
1010 for (;;)
1011 {
1012 int iDiff = strncmp(pszType, s_aTypes[i].sz, s_aTypes[i].cch);
1013 if (!iDiff)
1014 break;
1015 if (iEnd == iStart)
1016 {
1017 AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg));
1018 return 0;
1019 }
1020 if (iDiff < 0)
1021 iEnd = i - 1;
1022 else
1023 iStart = i + 1;
1024 if (iEnd < iStart)
1025 {
1026 AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg));
1027 return 0;
1028 }
1029 i = iStart + (iEnd - iStart) / 2;
1030 }
1031 *ppszFormat += s_aTypes[i].cch - 1;
1032
1033 /*
1034 * Fetch the argument.
1035 */
1036 u.u64 = 0;
1037 switch (s_aTypes[i].cb)
1038 {
1039 case sizeof(const void *):
1040 u.pv = va_arg(*pArgs, const void *);
1041 break;
1042 default:
1043 AssertMsgFailed(("Invalid format error, size %d'!\n", s_aTypes[i].cb));
1044 break;
1045 }
1046
1047 /*
1048 * If it's a pointer, we'll check if it's valid before going on.
1049 */
1050 if ((s_aTypes[i].fFlags & RTST_FLAGS_POINTER) && !VALID_PTR(u.pv))
1051 return pfnOutput(pvArgOutput, RT_STR_TUPLE("<null>"));
1052
1053 /*
1054 * Format the output.
1055 */
1056 switch (s_aTypes[i].enmType)
1057 {
1058 case RTST_TIMESPEC:
1059 return RTStrFormat(pfnOutput, pvArgOutput, NULL, NULL, "%'lld ns", RTTimeSpecGetNano(u.pTimeSpec));
1060
1061 default:
1062 AssertMsgFailed(("Invalid/unhandled enmType=%d\n", s_aTypes[i].enmType));
1063 break;
1064 }
1065 break;
1066 }
1067
1068#ifdef IN_RING3
1069 /*
1070 * Group 5, XML / HTML escapers.
1071 */
1072 case 'M':
1073 {
1074 char chWhat = (*ppszFormat)[0];
1075 bool fAttr = chWhat == 'a';
1076 char chType = (*ppszFormat)[1];
1077 AssertMsgBreak(chWhat == 'a' || chWhat == 'e', ("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1078 *ppszFormat += 2;
1079 switch (chType)
1080 {
1081 case 's':
1082 {
1083 static const char s_szElemEscape[] = "<>&\"'";
1084 static const char s_szAttrEscape[] = "<>&\"\n\r"; /* more? */
1085 const char * const pszEscape = fAttr ? s_szAttrEscape : s_szElemEscape;
1086 size_t const cchEscape = (fAttr ? RT_ELEMENTS(s_szAttrEscape) : RT_ELEMENTS(s_szElemEscape)) - 1;
1087 size_t cchOutput = 0;
1088 const char *pszStr = va_arg(*pArgs, char *);
1089 ssize_t cchStr;
1090 ssize_t offCur;
1091 ssize_t offLast;
1092
1093 if (!VALID_PTR(pszStr))
1094 pszStr = "<NULL>";
1095 cchStr = RTStrNLen(pszStr, (unsigned)cchPrecision);
1096
1097 if (fAttr)
1098 cchOutput += pfnOutput(pvArgOutput, "\"", 1);
1099 if (!(fFlags & RTSTR_F_LEFT))
1100 while (--cchWidth >= cchStr)
1101 cchOutput += pfnOutput(pvArgOutput, " ", 1);
1102
1103 offLast = offCur = 0;
1104 while (offCur < cchStr)
1105 {
1106 if (memchr(pszEscape, pszStr[offCur], cchEscape))
1107 {
1108 if (offLast < offCur)
1109 cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast);
1110 switch (pszStr[offCur])
1111 {
1112 case '<': cchOutput += pfnOutput(pvArgOutput, "&lt;", 4); break;
1113 case '>': cchOutput += pfnOutput(pvArgOutput, "&gt;", 4); break;
1114 case '&': cchOutput += pfnOutput(pvArgOutput, "&amp;", 5); break;
1115 case '\'': cchOutput += pfnOutput(pvArgOutput, "&apos;", 6); break;
1116 case '"': cchOutput += pfnOutput(pvArgOutput, "&quot;", 6); break;
1117 case '\n': cchOutput += pfnOutput(pvArgOutput, "&#xA;", 5); break;
1118 case '\r': cchOutput += pfnOutput(pvArgOutput, "&#xD;", 5); break;
1119 default:
1120 AssertFailed();
1121 }
1122 offLast = offCur + 1;
1123 }
1124 offCur++;
1125 }
1126 if (offLast < offCur)
1127 cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast);
1128
1129 while (--cchWidth >= cchStr)
1130 cchOutput += pfnOutput(pvArgOutput, " ", 1);
1131 if (fAttr)
1132 cchOutput += pfnOutput(pvArgOutput, "\"", 1);
1133 return cchOutput;
1134 }
1135
1136 default:
1137 AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1138 }
1139 break;
1140 }
1141#endif /* IN_RING3 */
1142
1143
1144 /*
1145 * Groups 6 - CPU Architecture Register Formatters.
1146 * "%RAarch[reg]"
1147 */
1148 case 'A':
1149 {
1150 char const * const pszArch = *ppszFormat;
1151 const char *pszReg = pszArch;
1152 size_t cchOutput = 0;
1153 int cPrinted = 0;
1154 size_t cchReg;
1155
1156 /* Parse out the */
1157 while ((ch = *pszReg++) && ch != '[')
1158 { /* nothing */ }
1159 AssertMsgBreak(ch == '[', ("Malformed IPRT architecture register format type '%.10s'!\n", pszFormatOrg));
1160
1161 cchReg = 0;
1162 while ((ch = pszReg[cchReg]) && ch != ']')
1163 cchReg++;
1164 AssertMsgBreak(ch == ']', ("Malformed IPRT architecture register format type '%.10s'!\n", pszFormatOrg));
1165
1166 *ppszFormat = &pszReg[cchReg + 1];
1167
1168
1169#define REG_EQUALS(a_szReg) (sizeof(a_szReg) - 1 == cchReg && !strncmp(a_szReg, pszReg, sizeof(a_szReg) - 1))
1170#define REG_OUT_BIT(a_uVal, a_fBitMask, a_szName) \
1171 do { \
1172 if ((a_uVal) & (a_fBitMask)) \
1173 { \
1174 if (!cPrinted++) \
1175 cchOutput += pfnOutput(pvArgOutput, "{" a_szName, sizeof(a_szName)); \
1176 else \
1177 cchOutput += pfnOutput(pvArgOutput, "," a_szName, sizeof(a_szName)); \
1178 (a_uVal) &= ~(a_fBitMask); \
1179 } \
1180 } while (0)
1181#define REG_OUT_CLOSE(a_uVal) \
1182 do { \
1183 if ((a_uVal)) \
1184 { \
1185 cchOutput += pfnOutput(pvArgOutput, !cPrinted ? "{unkn=" : ",unkn=", 6); \
1186 cch = RTStrFormatNumber(&szBuf[0], (a_uVal), 16, 1, -1, fFlags); \
1187 cchOutput += pfnOutput(pvArgOutput, szBuf, cch); \
1188 cPrinted++; \
1189 } \
1190 if (cPrinted) \
1191 cchOutput += pfnOutput(pvArgOutput, "}", 1); \
1192 } while (0)
1193
1194
1195 if (0)
1196 { /* dummy */ }
1197#ifdef STRFORMAT_WITH_X86
1198 /*
1199 * X86 & AMD64.
1200 */
1201 else if ( pszReg - pszArch == 3 + 1
1202 && pszArch[0] == 'x'
1203 && pszArch[1] == '8'
1204 && pszArch[2] == '6')
1205 {
1206 if (REG_EQUALS("cr0"))
1207 {
1208 uint64_t cr0 = va_arg(*pArgs, uint64_t);
1209 fFlags |= RTSTR_F_64BIT;
1210 cch = RTStrFormatNumber(&szBuf[0], cr0, 16, 8, -1, fFlags | RTSTR_F_ZEROPAD);
1211 cchOutput += pfnOutput(pvArgOutput, szBuf, cch);
1212 REG_OUT_BIT(cr0, X86_CR0_PE, "PE");
1213 REG_OUT_BIT(cr0, X86_CR0_MP, "MP");
1214 REG_OUT_BIT(cr0, X86_CR0_EM, "EM");
1215 REG_OUT_BIT(cr0, X86_CR0_TS, "DE");
1216 REG_OUT_BIT(cr0, X86_CR0_ET, "ET");
1217 REG_OUT_BIT(cr0, X86_CR0_NE, "NE");
1218 REG_OUT_BIT(cr0, X86_CR0_WP, "WP");
1219 REG_OUT_BIT(cr0, X86_CR0_AM, "AM");
1220 REG_OUT_BIT(cr0, X86_CR0_NW, "NW");
1221 REG_OUT_BIT(cr0, X86_CR0_CD, "CD");
1222 REG_OUT_BIT(cr0, X86_CR0_PG, "PG");
1223 REG_OUT_CLOSE(cr0);
1224 }
1225 else if (REG_EQUALS("cr4"))
1226 {
1227 uint64_t cr4 = va_arg(*pArgs, uint64_t);
1228 fFlags |= RTSTR_F_64BIT;
1229 cch = RTStrFormatNumber(&szBuf[0], cr4, 16, 8, -1, fFlags | RTSTR_F_ZEROPAD);
1230 cchOutput += pfnOutput(pvArgOutput, szBuf, cch);
1231 REG_OUT_BIT(cr4, X86_CR4_VME, "VME");
1232 REG_OUT_BIT(cr4, X86_CR4_PVI, "PVI");
1233 REG_OUT_BIT(cr4, X86_CR4_TSD, "TSD");
1234 REG_OUT_BIT(cr4, X86_CR4_DE, "DE");
1235 REG_OUT_BIT(cr4, X86_CR4_PSE, "PSE");
1236 REG_OUT_BIT(cr4, X86_CR4_PAE, "PAE");
1237 REG_OUT_BIT(cr4, X86_CR4_MCE, "MCE");
1238 REG_OUT_BIT(cr4, X86_CR4_PGE, "PGE");
1239 REG_OUT_BIT(cr4, X86_CR4_PCE, "PCE");
1240 REG_OUT_BIT(cr4, X86_CR4_OSFXSR, "OSFXSR");
1241 REG_OUT_BIT(cr4, X86_CR4_OSXMMEEXCPT, "OSXMMEEXCPT");
1242 REG_OUT_BIT(cr4, X86_CR4_VMXE, "VMXE");
1243 REG_OUT_BIT(cr4, X86_CR4_SMXE, "SMXE");
1244 REG_OUT_BIT(cr4, X86_CR4_PCIDE, "PCIDE");
1245 REG_OUT_BIT(cr4, X86_CR4_OSXSAVE, "OSXSAVE");
1246 REG_OUT_BIT(cr4, X86_CR4_SMEP, "SMEP");
1247 REG_OUT_BIT(cr4, X86_CR4_SMAP, "SMAP");
1248 REG_OUT_CLOSE(cr4);
1249 }
1250 else
1251 AssertMsgFailed(("Unknown x86 register specified in '%.10s'!\n", pszFormatOrg));
1252 }
1253#endif
1254 else
1255 AssertMsgFailed(("Unknown architecture specified in '%.10s'!\n", pszFormatOrg));
1256#undef REG_OUT_BIT
1257#undef REG_OUT_CLOSE
1258#undef REG_EQUALS
1259 return cchOutput;
1260 }
1261
1262 /*
1263 * Invalid/Unknown. Bitch about it.
1264 */
1265 default:
1266 AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1267 break;
1268 }
1269 }
1270 else
1271 AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1272
1273 NOREF(pszFormatOrg);
1274 return 0;
1275}
1276
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette