/* $Id: utf-8.cpp 17189 2009-02-27 08:41:03Z vboxsync $ */ /** @file * IPRT - UTF-8 Decoding. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include #include #include #include #include #include "internal/string.h" /** * Get get length in code points of a UTF-8 encoded string. * The string is validated while doing this. * * @returns IPRT status code. * @param psz Pointer to the UTF-8 string. * @param cch The max length of the string. (btw cch = cb) * Use RTSTR_MAX if all of the string is to be examined. * @param pcuc Where to store the length in unicode code points. * @param pcchActual Where to store the actual size of the UTF-8 string * on success (cch = cb again). Optional. */ static int rtUtf8Length(const char *psz, size_t cch, size_t *pcuc, size_t *pcchActual) { const unsigned char *puch = (const unsigned char *)psz; size_t cCodePoints = 0; while (cch > 0) { const unsigned char uch = *puch; if (!uch) break; if (uch & RT_BIT(7)) { /* figure sequence length and validate the first byte */ unsigned cb; if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5))) == (RT_BIT(7) | RT_BIT(6))) cb = 2; else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5))) cb = 3; else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4))) cb = 4; else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3))) cb = 5; else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2) | RT_BIT(1))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2))) cb = 6; else { RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(cch, 10), puch)); return VERR_INVALID_UTF8_ENCODING; } /* check length */ if (cb > cch) { RTStrAssertMsgFailed(("Invalid UTF-8 length: cb=%d cch=%d (%.*Rhxs)\n", cb, cch, RT_MIN(cch, 10), puch)); return VERR_INVALID_UTF8_ENCODING; } /* validate the rest */ switch (cb) { case 6: RTStrAssertMsgReturn((puch[5] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("6/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); case 5: RTStrAssertMsgReturn((puch[4] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("5/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); case 4: RTStrAssertMsgReturn((puch[3] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("4/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); case 3: RTStrAssertMsgReturn((puch[2] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("3/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); case 2: RTStrAssertMsgReturn((puch[1] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("2/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); break; } /* validate the code point. */ RTUNICP uc; switch (cb) { case 6: uc = (puch[5] & 0x3f) | ((RTUNICP)(puch[4] & 0x3f) << 6) | ((RTUNICP)(puch[3] & 0x3f) << 12) | ((RTUNICP)(puch[2] & 0x3f) << 18) | ((RTUNICP)(puch[1] & 0x3f) << 24) | ((RTUNICP)(uch & 0x01) << 30); RTStrAssertMsgReturn(uc >= 0x04000000 && uc <= 0x7fffffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); break; case 5: uc = (puch[4] & 0x3f) | ((RTUNICP)(puch[3] & 0x3f) << 6) | ((RTUNICP)(puch[2] & 0x3f) << 12) | ((RTUNICP)(puch[1] & 0x3f) << 18) | ((RTUNICP)(uch & 0x03) << 24); RTStrAssertMsgReturn(uc >= 0x00200000 && uc <= 0x03ffffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); break; case 4: uc = (puch[3] & 0x3f) | ((RTUNICP)(puch[2] & 0x3f) << 6) | ((RTUNICP)(puch[1] & 0x3f) << 12) | ((RTUNICP)(uch & 0x07) << 18); RTStrAssertMsgReturn(uc >= 0x00010000 && uc <= 0x001fffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); break; case 3: uc = (puch[2] & 0x3f) | ((RTUNICP)(puch[1] & 0x3f) << 6) | ((RTUNICP)(uch & 0x0f) << 12); RTStrAssertMsgReturn(uc >= 0x00000800 && uc <= 0x0000fffd, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), uc == 0xffff || uc == 0xfffe ? VERR_CODE_POINT_ENDIAN_INDICATOR : VERR_INVALID_UTF8_ENCODING); RTStrAssertMsgReturn(uc < 0xd800 || uc > 0xdfff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_CODE_POINT_SURROGATE); break; case 2: uc = (puch[1] & 0x3f) | ((RTUNICP)(uch & 0x1f) << 6); RTStrAssertMsgReturn(uc >= 0x00000080 && uc <= 0x000007ff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); break; } /* advance */ cch -= cb; puch += cb; } else { /* one ASCII byte */ puch++; cch--; } cCodePoints++; } /* done */ *pcuc = cCodePoints; if (pcchActual) *pcchActual = puch - (unsigned char const *)psz; return VINF_SUCCESS; } /** * Decodes and UTF-8 string into an array of unicode code point. * * Since we know the input is valid, we do *not* perform encoding or length checks. * * @returns iprt status code. * @param psz The UTF-8 string to recode. This is a valid encoding. * @param cch The number of chars (the type char, so bytes if you like) to process of the UTF-8 string. * The recoding will stop when cch or '\\0' is reached. Pass RTSTR_MAX to process up to '\\0'. * @param paCps Where to store the code points array. * @param cCps The number of RTUNICP items the paCps buffer can hold, excluding the terminator ('\\0'). * @param pcCps Where to store the actual number of decoded code points. This excludes the terminator. */ static int rtUtf8Decode(const char *psz, size_t cch, PRTUNICP paCps, size_t cCps, size_t *pcCps) { int rc = VINF_SUCCESS; const unsigned char *puch = (const unsigned char *)psz; const PRTUNICP pCpEnd = paCps + cCps; PRTUNICP pCp = paCps; Assert(pCpEnd >= pCp); while (cch > 0) { /* read the next char and check for terminator. */ const unsigned char uch = *puch; if (!uch) break; /* check for output overflow */ if (pCp >= pCpEnd) { rc = VERR_BUFFER_OVERFLOW; break; } /* decode and recode the code point */ if (!(uch & RT_BIT(7))) { *pCp++ = uch; puch++; cch--; } #ifdef RT_STRICT else if (!(uch & RT_BIT(6))) AssertMsgFailed(("Internal error!\n")); #endif else if (!(uch & RT_BIT(5))) { *pCp++ = (puch[1] & 0x3f) | ((uint16_t)(uch & 0x1f) << 6); puch += 2; cch -= 2; } else if (!(uch & RT_BIT(4))) { *pCp++ = (puch[2] & 0x3f) | ((uint16_t)(puch[1] & 0x3f) << 6) | ((uint16_t)(uch & 0x0f) << 12); puch += 3; cch -= 3; } else if (!(uch & RT_BIT(3))) { *pCp++ = (puch[3] & 0x3f) | ((RTUNICP)(puch[2] & 0x3f) << 6) | ((RTUNICP)(puch[1] & 0x3f) << 12) | ((RTUNICP)(uch & 0x07) << 18); puch += 4; cch -= 4; } else if (!(uch & RT_BIT(2))) { *pCp++ = (puch[4] & 0x3f) | ((RTUNICP)(puch[3] & 0x3f) << 6) | ((RTUNICP)(puch[2] & 0x3f) << 12) | ((RTUNICP)(puch[1] & 0x3f) << 18) | ((RTUNICP)(uch & 0x03) << 24); puch += 5; cch -= 6; } else { Assert(!(uch & RT_BIT(1))); *pCp++ = (puch[5] & 0x3f) | ((RTUNICP)(puch[4] & 0x3f) << 6) | ((RTUNICP)(puch[3] & 0x3f) << 12) | ((RTUNICP)(puch[2] & 0x3f) << 18) | ((RTUNICP)(puch[1] & 0x3f) << 24) | ((RTUNICP)(uch & 0x01) << 30); puch += 6; cch -= 6; } } /* done */ *pCp = 0; *pcCps = pCp - paCps; return rc; } RTDECL(size_t) RTStrUniLen(const char *psz) { size_t cCodePoints; int rc = rtUtf8Length(psz, RTSTR_MAX, &cCodePoints, NULL); return RT_SUCCESS(rc) ? cCodePoints : 0; } RTDECL(int) RTStrUniLenEx(const char *psz, size_t cch, size_t *pcCps) { size_t cCodePoints; int rc = rtUtf8Length(psz, cch, &cCodePoints, NULL); if (pcCps) *pcCps = RT_SUCCESS(rc) ? cCodePoints : 0; return rc; } RTDECL(int) RTStrValidateEncoding(const char *psz) { return RTStrValidateEncodingEx(psz, RTSTR_MAX, 0); } RTDECL(int) RTStrValidateEncodingEx(const char *psz, size_t cch, uint32_t fFlags) { AssertReturn(!(fFlags & ~(RTSTR_VALIDATE_ENCODING_ZERO_TERMINATED)), VERR_INVALID_PARAMETER); AssertPtr(psz); /* * Use rtUtf8Length for the job. */ size_t cchActual; size_t cCpsIgnored; int rc = rtUtf8Length(psz, cch, &cCpsIgnored, &cchActual); if (RT_SUCCESS(rc)) { if ( (fFlags & RTSTR_VALIDATE_ENCODING_ZERO_TERMINATED) && cchActual >= cch) rc = VERR_BUFFER_OVERFLOW; } return rc; return RTStrUniLenEx(psz, cch, &cCpsIgnored); } RTDECL(bool) RTStrIsValidEncoding(const char *psz) { int rc = RTStrValidateEncodingEx(psz, RTSTR_MAX, 0); return RT_SUCCESS(rc); } RTDECL(int) RTStrToUni(const char *pszString, PRTUNICP *ppaCps) { /* * Validate input. */ Assert(VALID_PTR(pszString)); Assert(VALID_PTR(ppaCps)); *ppaCps = NULL; /* * Validate the UTF-8 input and count its code points. */ size_t cCps; int rc = rtUtf8Length(pszString, RTSTR_MAX, &cCps, NULL); if (RT_SUCCESS(rc)) { /* * Allocate buffer. */ PRTUNICP paCps = (PRTUNICP)RTMemAlloc((cCps + 1) * sizeof(RTUNICP)); if (paCps) { /* * Decode the string. */ rc = rtUtf8Decode(pszString, RTSTR_MAX, paCps, cCps, &cCps); if (RT_SUCCESS(rc)) { *ppaCps = paCps; return rc; } RTMemFree(paCps); } else rc = VERR_NO_CODE_POINT_MEMORY; } return rc; } RTDECL(int) RTStrToUniEx(const char *pszString, size_t cchString, PRTUNICP *ppaCps, size_t cCps, size_t *pcCps) { /* * Validate input. */ Assert(VALID_PTR(pszString)); Assert(VALID_PTR(ppaCps)); Assert(!pcCps || VALID_PTR(pcCps)); /* * Validate the UTF-8 input and count the code points. */ size_t cCpsResult; int rc = rtUtf8Length(pszString, cchString, &cCpsResult, NULL); if (RT_SUCCESS(rc)) { if (pcCps) *pcCps = cCpsResult; /* * Check buffer size / Allocate buffer. */ bool fShouldFree; PRTUNICP paCpsResult; if (cCps > 0 && *ppaCps) { fShouldFree = false; if (cCps <= cCpsResult) return VERR_BUFFER_OVERFLOW; paCpsResult = *ppaCps; } else { *ppaCps = NULL; fShouldFree = true; cCps = RT_MAX(cCpsResult + 1, cCps); paCpsResult = (PRTUNICP)RTMemAlloc(cCps * sizeof(RTUNICP)); } if (paCpsResult) { /* * Encode the UTF-16 string. */ rc = rtUtf8Decode(pszString, cchString, paCpsResult, cCps - 1, &cCpsResult); if (RT_SUCCESS(rc)) { *ppaCps = paCpsResult; return rc; } if (fShouldFree) RTMemFree(paCpsResult); } else rc = VERR_NO_CODE_POINT_MEMORY; } return rc; } /** * Calculates the UTF-16 length of a string, validating the encoding while doing so. * * @returns IPRT status code. * @param psz Pointer to the UTF-8 string. * @param cch The max length of the string. (btw cch = cb) * Use RTSTR_MAX if all of the string is to be examined.s * @param pcwc Where to store the length of the UTF-16 string as a number of RTUTF16 characters. */ static int rtUtf8CalcUtf16Length(const char *psz, size_t cch, size_t *pcwc) { const unsigned char *puch = (const unsigned char *)psz; size_t cwc = 0; while (cch > 0) { const unsigned char uch = *puch; if (!uch) break; if (!(uch & RT_BIT(7))) { /* one ASCII byte */ cwc++; puch++; cch--; } else { /* figure sequence length and validate the first byte */ unsigned cb; if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5))) == (RT_BIT(7) | RT_BIT(6))) cb = 2; else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5))) cb = 3; else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4))) cb = 4; else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3))) cb = 5; else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2) | RT_BIT(1))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2))) cb = 6; else { RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(cch, 10), puch)); return VERR_INVALID_UTF8_ENCODING; } /* check length */ if (cb > cch) { RTStrAssertMsgFailed(("Invalid UTF-8 length: cb=%d cch=%d (%.*Rhxs)\n", cb, cch, RT_MIN(cch, 10), puch)); return VERR_INVALID_UTF8_ENCODING; } /* validate the rest */ switch (cb) { case 6: RTStrAssertMsgReturn((puch[5] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("6/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); case 5: RTStrAssertMsgReturn((puch[4] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("5/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); case 4: RTStrAssertMsgReturn((puch[3] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("4/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); case 3: RTStrAssertMsgReturn((puch[2] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("3/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); case 2: RTStrAssertMsgReturn((puch[1] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("2/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); break; } /* validate the code point. */ RTUNICP uc; switch (cb) { case 6: uc = (puch[5] & 0x3f) | ((RTUNICP)(puch[4] & 0x3f) << 6) | ((RTUNICP)(puch[3] & 0x3f) << 12) | ((RTUNICP)(puch[2] & 0x3f) << 18) | ((RTUNICP)(puch[1] & 0x3f) << 24) | ((RTUNICP)(uch & 0x01) << 30); RTStrAssertMsgReturn(uc >= 0x04000000 && uc <= 0x7fffffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); RTStrAssertMsgFailed(("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch)); return VERR_CANT_RECODE_AS_UTF16; case 5: uc = (puch[4] & 0x3f) | ((RTUNICP)(puch[3] & 0x3f) << 6) | ((RTUNICP)(puch[2] & 0x3f) << 12) | ((RTUNICP)(puch[1] & 0x3f) << 18) | ((RTUNICP)(uch & 0x03) << 24); RTStrAssertMsgReturn(uc >= 0x00200000 && uc <= 0x03ffffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); RTStrAssertMsgFailed(("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch)); return VERR_CANT_RECODE_AS_UTF16; case 4: uc = (puch[3] & 0x3f) | ((RTUNICP)(puch[2] & 0x3f) << 6) | ((RTUNICP)(puch[1] & 0x3f) << 12) | ((RTUNICP)(uch & 0x07) << 18); RTStrAssertMsgReturn(uc >= 0x00010000 && uc <= 0x001fffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); RTStrAssertMsgReturn(uc <= 0x0010ffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_CANT_RECODE_AS_UTF16); cwc++; break; case 3: uc = (puch[2] & 0x3f) | ((RTUNICP)(puch[1] & 0x3f) << 6) | ((RTUNICP)(uch & 0x0f) << 12); RTStrAssertMsgReturn(uc >= 0x00000800 && uc <= 0x0000fffd, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), uc == 0xffff || uc == 0xfffe ? VERR_CODE_POINT_ENDIAN_INDICATOR : VERR_INVALID_UTF8_ENCODING); RTStrAssertMsgReturn(uc < 0xd800 || uc > 0xdfff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_CODE_POINT_SURROGATE); break; case 2: uc = (puch[1] & 0x3f) | ((RTUNICP)(uch & 0x1f) << 6); RTStrAssertMsgReturn(uc >= 0x00000080 && uc <= 0x000007ff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING); break; } /* advance */ cch -= cb; puch += cb; cwc++; } } /* done */ *pcwc = cwc; return VINF_SUCCESS; } /** * Recodes a valid UTF-8 string as UTF-16. * * Since we know the input is valid, we do *not* perform encoding or length checks. * * @returns iprt status code. * @param psz The UTF-8 string to recode. This is a valid encoding. * @param cch The number of chars (the type char, so bytes if you like) to process of the UTF-8 string. * The recoding will stop when cch or '\\0' is reached. Pass RTSTR_MAX to process up to '\\0'. * @param pwsz Where to store the UTF-16 string. * @param cwc The number of RTUTF16 items the pwsz buffer can hold, excluding the terminator ('\\0'). * @param pcwc Where to store the actual number of RTUTF16 items encoded into the UTF-16. This excludes the terminator. */ static int rtUtf8RecodeAsUtf16(const char *psz, size_t cch, PRTUTF16 pwsz, size_t cwc, size_t *pcwc) { int rc = VINF_SUCCESS; const unsigned char *puch = (const unsigned char *)psz; const PRTUTF16 pwszEnd = pwsz + cwc; PRTUTF16 pwc = pwsz; Assert(pwszEnd >= pwc); while (cch > 0) { /* read the next char and check for terminator. */ const unsigned char uch = *puch; if (!uch) break; /* check for output overflow */ if (pwc >= pwszEnd) { rc = VERR_BUFFER_OVERFLOW; break; } /* decode and recode the code point */ if (!(uch & RT_BIT(7))) { *pwc++ = uch; puch++; cch--; } else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5))) == (RT_BIT(7) | RT_BIT(6))) { uint16_t uc = (puch[1] & 0x3f) | ((uint16_t)(uch & 0x1f) << 6); *pwc++ = uc; puch += 2; cch -= 2; } else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5))) { uint16_t uc = (puch[2] & 0x3f) | ((uint16_t)(puch[1] & 0x3f) << 6) | ((uint16_t)(uch & 0x0f) << 12); *pwc++ = uc; puch += 3; cch -= 3; } else { /* generate surrugate pair */ Assert((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4))); RTUNICP uc = (puch[3] & 0x3f) | ((RTUNICP)(puch[2] & 0x3f) << 6) | ((RTUNICP)(puch[1] & 0x3f) << 12) | ((RTUNICP)(uch & 0x07) << 18); if (pwc + 1 >= pwszEnd) { rc = VERR_BUFFER_OVERFLOW; break; } uc -= 0x10000; *pwc++ = 0xd800 | (uc >> 10); *pwc++ = 0xdc00 | (uc & 0x3ff); puch += 4; cch -= 4; } } /* done */ *pwc = '\0'; *pcwc = pwc - pwsz; return rc; } RTDECL(int) RTStrToUtf16(const char *pszString, PRTUTF16 *ppwszString) { /* * Validate input. */ Assert(VALID_PTR(ppwszString)); Assert(VALID_PTR(pszString)); *ppwszString = NULL; /* * Validate the UTF-8 input and calculate the length of the UTF-16 string. */ size_t cwc; int rc = rtUtf8CalcUtf16Length(pszString, RTSTR_MAX, &cwc); if (RT_SUCCESS(rc)) { /* * Allocate buffer. */ PRTUTF16 pwsz = (PRTUTF16)RTMemAlloc((cwc + 1) * sizeof(RTUTF16)); if (pwsz) { /* * Encode the UTF-16 string. */ rc = rtUtf8RecodeAsUtf16(pszString, RTSTR_MAX, pwsz, cwc, &cwc); if (RT_SUCCESS(rc)) { *ppwszString = pwsz; return rc; } RTMemFree(pwsz); } else rc = VERR_NO_UTF16_MEMORY; } return rc; } RTDECL(int) RTStrToUtf16Ex(const char *pszString, size_t cchString, PRTUTF16 *ppwsz, size_t cwc, size_t *pcwc) { /* * Validate input. */ Assert(VALID_PTR(pszString)); Assert(VALID_PTR(ppwsz)); Assert(!pcwc || VALID_PTR(pcwc)); /* * Validate the UTF-8 input and calculate the length of the UTF-16 string. */ size_t cwcResult; int rc = rtUtf8CalcUtf16Length(pszString, cchString, &cwcResult); if (RT_SUCCESS(rc)) { if (pcwc) *pcwc = cwcResult; /* * Check buffer size / Allocate buffer. */ bool fShouldFree; PRTUTF16 pwszResult; if (cwc > 0 && *ppwsz) { fShouldFree = false; if (cwc <= cwcResult) return VERR_BUFFER_OVERFLOW; pwszResult = *ppwsz; } else { *ppwsz = NULL; fShouldFree = true; cwc = RT_MAX(cwcResult + 1, cwc); pwszResult = (PRTUTF16)RTMemAlloc(cwc * sizeof(RTUTF16)); } if (pwszResult) { /* * Encode the UTF-16 string. */ rc = rtUtf8RecodeAsUtf16(pszString, cchString, pwszResult, cwc - 1, &cwcResult); if (RT_SUCCESS(rc)) { *ppwsz = pwszResult; return rc; } if (fShouldFree) RTMemFree(pwszResult); } else rc = VERR_NO_UTF16_MEMORY; } return rc; } RTDECL(size_t) RTStrCalcUtf16Len(const char *psz) { size_t cwc; int rc = rtUtf8CalcUtf16Length(psz, RTSTR_MAX, &cwc); return RT_SUCCESS(rc) ? cwc : 0; } RTDECL(int) RTStrCalcUtf16LenEx(const char *psz, size_t cch, size_t *pcwc) { size_t cwc; int rc = rtUtf8CalcUtf16Length(psz, cch, &cwc); if (pcwc) *pcwc = RT_SUCCESS(rc) ? cwc : ~(size_t)0; return rc; } /** * Handle invalid encodings passed to RTStrGetCp() and RTStrGetCpEx(). * @returns rc * @param ppsz The pointer to the string position point. * @param pCp Where to store RTUNICP_INVALID. * @param rc The iprt error code. */ static int rtStrGetCpExFailure(const char **ppsz, PRTUNICP pCp, int rc) { /* * Try find a valid encoding. */ (*ppsz)++; /** @todo code this! */ *pCp = RTUNICP_INVALID; return rc; } RTDECL(RTUNICP) RTStrGetCpInternal(const char *psz) { RTUNICP Cp; RTStrGetCpExInternal(&psz, &Cp); return Cp; } RTDECL(int) RTStrGetCpExInternal(const char **ppsz, PRTUNICP pCp) { const unsigned char *puch = (const unsigned char *)*ppsz; const unsigned char uch = *puch; RTUNICP uc; /* ASCII ? */ if (!(uch & RT_BIT(7))) { uc = uch; puch++; } else if (uch & RT_BIT(6)) { /* figure the length and validate the first octet. */ unsigned cb; if (!(uch & RT_BIT(5))) cb = 2; else if (!(uch & RT_BIT(4))) cb = 3; else if (!(uch & RT_BIT(3))) cb = 4; else if (!(uch & RT_BIT(2))) cb = 5; else if (!(uch & RT_BIT(1))) cb = 6; else { RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(strlen((char *)puch), 10), puch)); return rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING); } /* validate the rest */ switch (cb) { case 6: RTStrAssertMsgReturn((puch[5] & 0xc0) == 0x80, ("6/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING)); case 5: RTStrAssertMsgReturn((puch[4] & 0xc0) == 0x80, ("5/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING)); case 4: RTStrAssertMsgReturn((puch[3] & 0xc0) == 0x80, ("4/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING)); case 3: RTStrAssertMsgReturn((puch[2] & 0xc0) == 0x80, ("3/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING)); case 2: RTStrAssertMsgReturn((puch[1] & 0xc0) == 0x80, ("2/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING)); break; } /* get and validate the code point. */ switch (cb) { case 6: uc = (puch[5] & 0x3f) | ((RTUNICP)(puch[4] & 0x3f) << 6) | ((RTUNICP)(puch[3] & 0x3f) << 12) | ((RTUNICP)(puch[2] & 0x3f) << 18) | ((RTUNICP)(puch[1] & 0x3f) << 24) | ((RTUNICP)(uch & 0x01) << 30); RTStrAssertMsgReturn(uc >= 0x04000000 && uc <= 0x7fffffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING)); break; case 5: uc = (puch[4] & 0x3f) | ((RTUNICP)(puch[3] & 0x3f) << 6) | ((RTUNICP)(puch[2] & 0x3f) << 12) | ((RTUNICP)(puch[1] & 0x3f) << 18) | ((RTUNICP)(uch & 0x03) << 24); RTStrAssertMsgReturn(uc >= 0x00200000 && uc <= 0x03ffffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING)); break; case 4: uc = (puch[3] & 0x3f) | ((RTUNICP)(puch[2] & 0x3f) << 6) | ((RTUNICP)(puch[1] & 0x3f) << 12) | ((RTUNICP)(uch & 0x07) << 18); RTStrAssertMsgReturn(uc >= 0x00010000 && uc <= 0x001fffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING)); break; case 3: uc = (puch[2] & 0x3f) | ((RTUNICP)(puch[1] & 0x3f) << 6) | ((RTUNICP)(uch & 0x0f) << 12); RTStrAssertMsgReturn(uc >= 0x00000800 && uc <= 0x0000fffd, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, uc == 0xffff || uc == 0xfffe ? VERR_CODE_POINT_ENDIAN_INDICATOR : VERR_INVALID_UTF8_ENCODING)); RTStrAssertMsgReturn(uc < 0xd800 || uc > 0xdfff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_CODE_POINT_SURROGATE)); break; case 2: uc = (puch[1] & 0x3f) | ((RTUNICP)(uch & 0x1f) << 6); RTStrAssertMsgReturn(uc >= 0x00000080 && uc <= 0x000007ff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING)); break; default: /* impossible, but GCC is bitching. */ uc = RTUNICP_INVALID; break; } puch += cb; } else { /* 6th bit is always set. */ RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(strlen((char *)puch), 10), puch)); return rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING); } *pCp = uc; *ppsz = (const char *)puch; return VINF_SUCCESS; } /** * Handle invalid encodings passed to RTStrGetCpNEx(). * @returns rc * @param ppsz The pointer to the string position point. * @param pcch Pointer to the string length. * @param pCp Where to store RTUNICP_INVALID. * @param rc The iprt error code. */ static int rtStrGetCpNExFailure(const char **ppsz, size_t *pcch, PRTUNICP pCp, int rc) { /* * Try find a valid encoding. */ (*ppsz)++; /** @todo code this! */ (*pcch)--; *pCp = RTUNICP_INVALID; return rc; } RTDECL(int) RTStrGetCpNExInternal(const char **ppsz, size_t *pcch, PRTUNICP pCp) { const unsigned char *puch = (const unsigned char *)*ppsz; const unsigned char uch = *puch; size_t cch = *pcch; RTUNICP uc; if (cch == 0) { *pCp = RTUNICP_INVALID; return VERR_END_OF_STRING; } /* ASCII ? */ if (!(uch & RT_BIT(7))) { uc = uch; puch++; cch--; } else if (uch & RT_BIT(6)) { /* figure the length and validate the first octet. */ unsigned cb; if (!(uch & RT_BIT(5))) cb = 2; else if (!(uch & RT_BIT(4))) cb = 3; else if (!(uch & RT_BIT(3))) cb = 4; else if (!(uch & RT_BIT(2))) cb = 5; else if (!(uch & RT_BIT(1))) cb = 6; else { RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(strlen((char *)puch), 10), puch)); return rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING); } if (cb > cch) return rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING); /* validate the rest */ switch (cb) { case 6: RTStrAssertMsgReturn((puch[5] & 0xc0) == 0x80, ("6/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING)); case 5: RTStrAssertMsgReturn((puch[4] & 0xc0) == 0x80, ("5/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING)); case 4: RTStrAssertMsgReturn((puch[3] & 0xc0) == 0x80, ("4/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING)); case 3: RTStrAssertMsgReturn((puch[2] & 0xc0) == 0x80, ("3/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING)); case 2: RTStrAssertMsgReturn((puch[1] & 0xc0) == 0x80, ("2/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING)); break; } /* get and validate the code point. */ switch (cb) { case 6: uc = (puch[5] & 0x3f) | ((RTUNICP)(puch[4] & 0x3f) << 6) | ((RTUNICP)(puch[3] & 0x3f) << 12) | ((RTUNICP)(puch[2] & 0x3f) << 18) | ((RTUNICP)(puch[1] & 0x3f) << 24) | ((RTUNICP)(uch & 0x01) << 30); RTStrAssertMsgReturn(uc >= 0x04000000 && uc <= 0x7fffffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING)); break; case 5: uc = (puch[4] & 0x3f) | ((RTUNICP)(puch[3] & 0x3f) << 6) | ((RTUNICP)(puch[2] & 0x3f) << 12) | ((RTUNICP)(puch[1] & 0x3f) << 18) | ((RTUNICP)(uch & 0x03) << 24); RTStrAssertMsgReturn(uc >= 0x00200000 && uc <= 0x03ffffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING)); break; case 4: uc = (puch[3] & 0x3f) | ((RTUNICP)(puch[2] & 0x3f) << 6) | ((RTUNICP)(puch[1] & 0x3f) << 12) | ((RTUNICP)(uch & 0x07) << 18); RTStrAssertMsgReturn(uc >= 0x00010000 && uc <= 0x001fffff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING)); break; case 3: uc = (puch[2] & 0x3f) | ((RTUNICP)(puch[1] & 0x3f) << 6) | ((RTUNICP)(uch & 0x0f) << 12); RTStrAssertMsgReturn(uc >= 0x00000800 && uc <= 0x0000fffd, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, uc == 0xffff || uc == 0xfffe ? VERR_CODE_POINT_ENDIAN_INDICATOR : VERR_INVALID_UTF8_ENCODING)); RTStrAssertMsgReturn(uc < 0xd800 || uc > 0xdfff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_CODE_POINT_SURROGATE)); break; case 2: uc = (puch[1] & 0x3f) | ((RTUNICP)(uch & 0x1f) << 6); RTStrAssertMsgReturn(uc >= 0x00000080 && uc <= 0x000007ff, ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch), rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING)); break; default: /* impossible, but GCC is bitching. */ uc = RTUNICP_INVALID; break; } puch += cb; cch -= cb; } else { /* 6th bit is always set. */ RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(strlen((char *)puch), 10), puch)); return rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING); } *pCp = uc; *ppsz = (const char *)puch; (*pcch) = cch; return VINF_SUCCESS; } RTDECL(char *) RTStrPutCpInternal(char *psz, RTUNICP uc) { unsigned char *puch = (unsigned char *)psz; if (uc < 0x80) *puch++ = (unsigned char )uc; else if (uc < 0x00000800) { *puch++ = 0xc0 | (uc >> 6); *puch++ = 0x80 | (uc & 0x3f); } else if (uc < 0x00010000) { if ( uc < 0x0000d8000 || ( uc > 0x0000dfff && uc < 0x0000fffe)) { *puch++ = 0xe0 | (uc >> 12); *puch++ = 0x80 | ((uc >> 6) & 0x3f); *puch++ = 0x80 | (uc & 0x3f); } else { AssertMsgFailed(("Invalid code point U+%05x!\n", uc)); *puch++ = 0x7f; } } else if (uc < 0x00200000) { *puch++ = 0xf0 | (uc >> 18); *puch++ = 0x80 | ((uc >> 12) & 0x3f); *puch++ = 0x80 | ((uc >> 6) & 0x3f); *puch++ = 0x80 | (uc & 0x3f); } else if (uc < 0x04000000) { *puch++ = 0xf1 | (uc >> 24); *puch++ = 0x80 | ((uc >> 18) & 0x3f); *puch++ = 0x80 | ((uc >> 12) & 0x3f); *puch++ = 0x80 | ((uc >> 6) & 0x3f); *puch++ = 0x80 | (uc & 0x3f); } else if (uc <= 0x7fffffff) { *puch++ = 0xf3 | (uc >> 30); *puch++ = 0x80 | ((uc >> 24) & 0x3f); *puch++ = 0x80 | ((uc >> 18) & 0x3f); *puch++ = 0x80 | ((uc >> 12) & 0x3f); *puch++ = 0x80 | ((uc >> 6) & 0x3f); *puch++ = 0x80 | (uc & 0x3f); } else { AssertMsgFailed(("Invalid code point U+%08x!\n", uc)); *puch++ = 0x7f; } return (char *)puch; } RTDECL(char *) RTStrPrevCp(const char *pszStart, const char *psz) { if (pszStart < psz) { /* simple char? */ const unsigned char *puch = (const unsigned char *)psz; unsigned uch = *--puch; if (!(uch & RT_BIT(7))) return (char *)puch; RTStrAssertMsgReturn(!(uch & RT_BIT(6)), ("uch=%#x\n", uch), (char *)pszStart); /* two or more. */ uint32_t uMask = 0xffffffc0; while ( (const unsigned char *)pszStart < puch && !(uMask & 1)) { unsigned uch = *--puch; if ((uch & 0xc0) != 0x80) { RTStrAssertMsgReturn((uch & (uMask >> 1)) == (uMask & 0xff), ("Invalid UTF-8 encoding: %.*Rhxs puch=%p psz=%p\n", psz - (char *)puch, puch, psz), (char *)pszStart); return (char *)puch; } uMask >>= 1; } RTStrAssertMsgFailed(("Invalid UTF-8 encoding: %.*Rhxs puch=%p psz=%p\n", psz - (char *)puch, puch, psz)); } return (char *)pszStart; } /** * Performs a case sensitive string compare between two UTF-8 strings. * * Encoding errors are ignored by the current implementation. So, the only * difference between this and the CRT strcmp function is the handling of * NULL arguments. * * @returns < 0 if the first string less than the second string. * @returns 0 if the first string identical to the second string. * @returns > 0 if the first string greater than the second string. * @param psz1 First UTF-8 string. Null is allowed. * @param psz2 Second UTF-8 string. Null is allowed. */ RTDECL(int) RTStrCmp(const char *psz1, const char *psz2) { if (psz1 == psz2) return 0; if (!psz1) return -1; if (!psz2) return 1; return strcmp(psz1, psz2); } /** * Performs a case sensitive string compare between two UTF-8 strings, given * a maximum string length. * * Encoding errors are ignored by the current implementation. So, the only * difference between this and the CRT strncmp function is the handling of * NULL arguments. * * @returns < 0 if the first string less than the second string. * @returns 0 if the first string identical to the second string. * @returns > 0 if the first string greater than the second string. * @param psz1 First UTF-8 string. Null is allowed. * @param psz2 Second UTF-8 string. Null is allowed. * @param cchMax The maximum string length */ RTDECL(int) RTStrNCmp(const char *psz1, const char *psz2, size_t cchMax) { if (psz1 == psz2) return 0; if (!psz1) return -1; if (!psz2) return 1; return strncmp(psz1, psz2, cchMax); } /** * Performs a case insensitive string compare between two UTF-8 strings. * * This is a simplified compare, as only the simplified lower/upper case folding * specified by the unicode specs are used. It does not consider character pairs * as they are used in some languages, just simple upper & lower case compares. * * The result is the difference between the mismatching codepoints after they * both have been lower cased. * * If the string encoding is invalid the function will assert (strict builds) * and use RTStrCmp for the remainder of the string. * * @returns < 0 if the first string less than the second string. * @returns 0 if the first string identical to the second string. * @returns > 0 if the first string greater than the second string. * @param psz1 First UTF-8 string. Null is allowed. * @param psz2 Second UTF-8 string. Null is allowed. */ RTDECL(int) RTStrICmp(const char *psz1, const char *psz2) { if (psz1 == psz2) return 0; if (!psz1) return -1; if (!psz2) return 1; const char *pszStart1 = psz1; for (;;) { /* Get the codepoints */ RTUNICP cp1; int rc = RTStrGetCpEx(&psz1, &cp1); if (RT_FAILURE(rc)) { AssertRC(rc); psz1--; break; } RTUNICP cp2; rc = RTStrGetCpEx(&psz2, &cp2); if (RT_FAILURE(rc)) { AssertRC(rc); psz2--; psz1 = RTStrPrevCp(pszStart1, psz1); break; } /* compare */ int iDiff = cp1 - cp2; if (iDiff) { iDiff = RTUniCpToUpper(cp1) != RTUniCpToUpper(cp2); if (iDiff) { iDiff = RTUniCpToLower(cp1) - RTUniCpToLower(cp2); /* lower case diff last! */ if (iDiff) return iDiff; } } /* hit the terminator? */ if (!cp1) return 0; } /* Hit some bad encoding, continue in case insensitive mode. */ return RTStrCmp(psz1, psz2); } /** * Performs a case insensitive string compare between two UTF-8 strings, given a * maximum string length. * * This is a simplified compare, as only the simplified lower/upper case folding * specified by the unicode specs are used. It does not consider character pairs * as they are used in some languages, just simple upper & lower case compares. * * The result is the difference between the mismatching codepoints after they * both have been lower cased. * * If the string encoding is invalid the function will assert (strict builds) * and use RTStrCmp for the remainder of the string. * * @returns < 0 if the first string less than the second string. * @returns 0 if the first string identical to the second string. * @returns > 0 if the first string greater than the second string. * @param psz1 First UTF-8 string. Null is allowed. * @param psz2 Second UTF-8 string. Null is allowed. * @param cchMax Maximum string length */ RTDECL(int) RTStrNICmp(const char *psz1, const char *psz2, size_t cchMax) { if (cchMax == 0) return 0; if (psz1 == psz2) return 0; if (!psz1) return -1; if (!psz2) return 1; for (;;) { /* Get the codepoints */ RTUNICP cp1; size_t cchMax2 = cchMax; int rc = RTStrGetCpNEx(&psz1, &cchMax, &cp1); if (RT_FAILURE(rc)) { AssertRC(rc); psz1--; cchMax++; break; } RTUNICP cp2; rc = RTStrGetCpNEx(&psz2, &cchMax2, &cp2); if (RT_FAILURE(rc)) { AssertRC(rc); psz2--; psz1 -= (cchMax - cchMax2 + 1); /* This can't overflow, can it? */ cchMax = cchMax2 + 1; break; } /* compare */ int iDiff = cp1 - cp2; if (iDiff) { iDiff = RTUniCpToUpper(cp1) != RTUniCpToUpper(cp2); if (iDiff) { iDiff = RTUniCpToLower(cp1) - RTUniCpToLower(cp2); /* lower case diff last! */ if (iDiff) return iDiff; } } /* hit the terminator? */ if (!cp1 || cchMax == 0) return 0; } /* Hit some bad encoding, continue in case insensitive mode. */ return RTStrNCmp(psz1, psz2, cchMax); }